Amplitude Models for Discrimination and Yield Estimation
Energy Technology Data Exchange (ETDEWEB)
Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-01
This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.
The Impact of Statistical Leakage Models on Design Yield Estimation
Directory of Open Access Journals (Sweden)
Rouwaida Kanj
2011-01-01
Full Text Available Device mismatch and process variation models play a key role in determining the functionality and yield of sub-100 nm design. Average characteristics are often of interest, such as the average leakage current or the average read delay. However, detecting rare functional fails is critical for memory design and designers often seek techniques that enable accurately modeling such events. Extremely leaky devices can inflict functionality fails. The plurality of leaky devices on a bitline increase the dimensionality of the yield estimation problem. Simplified models are possible by adopting approximations to the underlying sum of lognormals. The implications of such approximations on tail probabilities may in turn bias the yield estimate. We review different closed form approximations and compare against the CDF matching method, which is shown to be most effective method for accurate statistical leakage modeling.
Regression models for estimating charcoal yield in a Eucalyptus ...
African Journals Online (AJOL)
... dbh2H, and the product of dbh and merchantable height [(dbh)MH] as independent variables. Results of residual analysis showed that the models satisfied all the assumptions of regression analysis. Keywords: Models, charcoal production, biomass, Eucalyptus, arid, anergy, allometric. Bowen Journal of Agriculture Vol.
Evaluating accuracy of DSSAT model for soybean yield estimation using satellite weather data
Ovando, Gustavo; Sayago, Silvina; Bocco, Mónica
2018-04-01
Crop models allow simulating the development and yield of the crops, to represent and to evaluate the influence of multiple factors. The DSSAT cropping system model is one of the most widely used and contains CROPGRO module for soybean. This crop has a great importance for many southern countries of Latin America and for Argentina. Solar radiation and rainfall are necessary variables as inputs for crop models; however these data are not as readily available. The satellital products from Clouds and Earth's Radiant Energy System (CERES) and Tropic Rainfall Measurement Mission (TRMM) provide continuous spatial and temporal information of solar radiation and precipitation, respectively. This study evaluates and quantifies the uncertainty in estimating soybean yield using a DSSAT model, when recorded weather data are replaced with CERES and TRMM ones. Different percentages of data replacements, soybean maturity groups and planting dates are considered, for 2006-2016 period in Oliveros (Argentina). Results show that CERES and TRMM products can be used for soybean yield estimation with DSSAT considering that: percentage of data replacement, campaign, planting date and maturity group, determine the amounts and trends of yield errors. Replacements with CERES data up to 30% result in %RMSE lower than 10% in 87% of the cases; while the replacement with TRMM data presents the best statisticals in campaigns with high yields. Simulations based entirely on CERES solar radiation give better results than those with TRMM. In general, similar percentages of replacement show better performance in the estimation of soybean yield for solar radiation than the replacement of precipitation values.
Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara
2015-04-01
Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.
Kuwata, K.
2013-12-01
Accurate information of crop yield is important for production planning in agriculture. Crop growth model is a effective tool to comprehend crop growth situation. Accordingly, we use the MOSIS data for two types of utilization to provide necessary information for DSSAT. The objective of this study is developing a method of estimating winter wheat yield without adequate information of the field. The first use is estimation of solar radiation, which is required as input data into DSSAT. Since MODIS is observing the earth everyday, solar radiation can be estimated in a region where a climate observation system is not developed. The second use is data assimilation that provides appropriate parameter of cultivation management to DSSAT. MODIS LAI and Dry Matter Production (DMP) estimated from MODIS GPP are assimilated into DSSAT. Before developing data assimilation, we have accomplished sensitivity analysis of DSSAT. As the result of the analysis, we found that planting date and amount of applied fertilizer have correlated strongly with LAI and Dry Matter (DM) for specific growth period. Based on the result, we estimated winter wheat yield by assimilating MODIS LAI and DMP observed during the specific period. In contrast, previous study estimated crop yield by assimilating satellite data observed for the whole growth period. Three different assimilation schemes were tested to verify the accuracy of our method. Our results showed that the estimated winter wheat yield agreed very well with the Japanese agricultural experiment station data. Among different assimilating scenarios, the best result was obtained when MODIS LAI and DMP observed for specific growth period; the Root Square Mean Error (RMSE) was 406.52 kg ha2. The distribution map of full year incident PAR in Asia. Estimated Winter Wheat Yield in Japan In the case 1, detail information gathered by experiment reports.In the case 2, all management parameters are determined by reference to cultivation manuals.In the
Critical-point model to estimate yield loss caused by Asian soybean rust
Directory of Open Access Journals (Sweden)
Anderson Luiz Durante Danelli
2015-12-01
Full Text Available ABSTRACTA model to estimate yield loss caused by Asian soybean rust (ASR (Phakopsora pachyrhizi was developed by collecting data from field experiments during the growing seasons 2009/10 and 2010/11, in Passo Fundo, RS. The disease intensity gradient, evaluated in the phenological stages R5.3, R5.4 and R5.5 based on leaflet incidence (LI and number of uredinium and lesions/cm2, was generated by applying azoxystrobin 60 g a.i/ha + cyproconazole 24 g a.i/ha + 0.5% of the adjuvant Nimbus. The first application occurred when LI = 25% and the remaining ones at 10, 15, 20 and 25-day intervals. Harvest occurred at physiological maturity and was followed by grain drying and cleaning. Regression analysis between the grain yield and the disease intensity assessment criteria generated 56 linear equations of the yield loss function. The greatest loss was observed in the earliest growth stage, and yield loss coefficients ranged from 3.41 to 9.02 kg/ha for each 1% LI for leaflet incidence, from 13.34 to 127.4 kg/ha/1 lesion/cm2 for lesion density and from 5.53 to 110.0 kg/ha/1 uredinium/cm2 for uredinium density.
Xu, Wenbo; Fan, Jinlong
2014-11-01
Taking the winter wheat planting area Taihang piedmont as object of the study, and based on WOFST model and FY Satellite 250m-resolution MERSI data, this article launched the assimilation yield estimation study on winter wheat. Firstly, MERSI-LAI data is inversed from the measured biophysics data and MERSI data of winter wheat in growing season within the study area; next, WOFOST model sensitivity analysis was developed and conduct assimilation yield estimation through MERSI-LAI built by SCE algorithm and the minimum cost function of model simulation LAI; finally, conduct comparison validation between the estimation results and MODIS-LAI assimilation yield estimation results as well as the statistical data. The conclusion has been drawn that the estimation accuracy based on FY-3 MERSI data assimilation is higher than that based on MODIS data assimilation, with the RMES being reduced by 750.20kg/ha, and the yield being closer to the statistics.
Mishra, V.; Cruise, J.; Mecikalski, J. R.
2017-12-01
Much effort has been expended recently on the assimilation of remotely sensed soil moisture into operational land surface models (LSM). These efforts have normally been focused on the use of data derived from the microwave bands and results have often shown that improvements to model simulations have been limited due to the fact that microwave signals only penetrate the top 2-5 cm of the soil surface. It is possible that model simulations could be further improved through the introduction of geostationary satellite thermal infrared (TIR) based root zone soil moisture in addition to the microwave deduced surface estimates. In this study, root zone soil moisture estimates from the TIR based Atmospheric Land Exchange Inverse (ALEXI) model were merged with NASA Soil Moisture Active Passive (SMAP) based surface estimates through the application of informational entropy. Entropy can be used to characterize the movement of moisture within the vadose zone and accounts for both advection and diffusion processes. The Principle of Maximum Entropy (POME) can be used to derive complete soil moisture profiles and, fortuitously, only requires a surface boundary condition as well as the overall mean moisture content of the soil column. A lower boundary can be considered a soil parameter or obtained from the LSM itself. In this study, SMAP provided the surface boundary while ALEXI supplied the mean and the entropy integral was used to tie the two together and produce the vertical profile. However, prior to the merging, the coarse resolution (9 km) SMAP data were downscaled to the finer resolution (4.7 km) ALEXI grid. The disaggregation scheme followed the Soil Evaporative Efficiency approach and again, all necessary inputs were available from the TIR model. The profiles were then assimilated into a standard agricultural crop model (Decision Support System for Agrotechnology, DSSAT) via the ensemble Kalman Filter. The study was conducted over the Southeastern United States for the
Costa, Anna; Molnar, Peter; Anghileri, Daniela
2017-04-01
Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units
Estimating crop yield using a satellite-based light use efficiency model
DEFF Research Database (Denmark)
Yuan, Wenping; Chen, Yang; Xia, Jiangzhou
2016-01-01
for simulating crops’ GPP. At both irrigated and rainfed sites, the EC-LUE model exhibits a similar level of performance. However, large errors are found when simulating yield based on crop harvest index. This analysis highlights the need to improve the representation of the harvest index and carbon allocation......Satellite-based techniques that provide temporally and spatially continuous information over vegetated surfaces have become increasingly important in monitoring the global agriculture yield. In this study, we examine the performance of a light use efficiency model (EC-LUE) for simulating the gross...... primary production (GPP) and yield of crops. The EC-LUE model can explain on average approximately 90% of the variability in GPP for 36 FLUXNET sites globally. The results indicate that a universal set of parameters, independent of crop species (except for C4 crops), can be adopted in the EC-LUE model...
Yao, Fengmei; Tang, Yanjing; Wang, Peijuan; Zhang, Jiahua
Climate change significantly impact on agriculture in recent year, the accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The 111 statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (p yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002 to 2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale.
Jin, Huaan; Wang, Jindi; Bo, Yanchen; Chen, Guifen; Xue, Huazhu
2010-08-01
Accurate and real-time estimation of crop yield over large areas is critical for many applications such as crop management, and agricultural management decision-making. This study presents a scheme to assimilate multi-temporal MODIS and Landsat TM reflectance data into the CERES-Maize crop growth model which is coupled with the radiative transfer model SAIL for maize yield estimation. We extract the directional reflectance data of MODIS subpixels corresponding to pure maize conditions with the objective to increase time series observations at the TM scale. The variables to be assimilated were chosen by conducting the sensitivity analysis on the coupled model. The SCE-UA algorithm was applied to determine the optimal set of these sensitive variables. Finally the maize yields maps were produced at TM scale with the coupled assimilation model. The proposed scheme was applied over Yushu County located in Jilin province of Northeast China and validated by using field yield measurement dataset during the maize growing season in 2007. The measurement data include the species of planting maize, soil type and fertility, field observed leaf, canopy and soil reflectance data etc. Furthermore, yield data were gained in specially designed experimental campaigns. The validation results indicate that the yield estimation scheme using multiple remote sensing data assimilation is very promising. The accuracy of TM yield map produced by adding time series MODIS subpixel information was improved comparing with that only using TM data.
Directory of Open Access Journals (Sweden)
Jaime Araujo Cobuci
2005-03-01
Full Text Available Test-day milk yield records of 11,023 first-parity Holstein cows were used to estimate genetic parameters for milk yield during different lactation periods. (Covariance components were estimated using two random regression models, RRM1 and RRM2, and the restricted maximum likelihood method, compared by the likelihood ratio test. Additive genetic variances determined by RRM1 and additive genetic and permanent environmental variances estimated by RRM2 were described, using the Wilmink function. Residual variance was constant throughout lactation for the two models. The heritability estimates obtained by RRM1 (0.34 to 0.56 were higher than those obtained by RRM2 (0.15 to 0.31. Due to the high heritability estimates for milk yield throughout lactation and the negative genetic correlation between test-day yields during different lactation periods, the RRM1 model did not fit the data. Overall, genetic correlations between individual test days tended to decrease at the extremes of the lactation trajectory, showing values close to unity for adjacent test days. The inclusion of random regression coefficients to describe permanent environmental effects led to a more precise estimation of genetic and non-genetic effects that influence milk yield.
Estimating Rice Yield under Changing Weather Conditions in Kenya Using CERES Rice Model
Directory of Open Access Journals (Sweden)
W. O. Nyang’au
2014-01-01
Full Text Available Effects of change in weather conditions on the yields of Basmati 370 and IR 2793-80-1 cultivated under System of Rice Intensification (SRI in Mwea and Western Kenya irrigation schemes were assessed through sensitivity analysis using the Ceres rice model v 4.5 of the DSSAT modeling system. Genetic coefficients were determined using 2010 experimental data. The model was validated using rice growth and development data during the 2011 cropping season. Two SRI farmers were selected randomly from each irrigation scheme and their farms were used as research fields. Daily maximum and minimum temperatures and precipitation were collected from the weather station in each of the irrigation schemes while daily solar radiation was generated using weatherman in the DSSAT shell. The study revealed that increase in both maximum and minimum temperatures affects Basmati 370 and IR 2793-80-1 grain yield under SRI. Increase in atmospheric CO2 concentration led to an increase in grain yield for both Basmati and IR 2793-80-1 under SRI and increase in solar radiation also had an increasing impact on both Basmati 370 and IR 2793-80-1 grain yield. The results of the study therefore show that weather conditions in Kenya affect rice yield under SRI and should be taken into consideration to improve food security.
International Nuclear Information System (INIS)
Kaneko, D.; Moriwaki, Y.
2008-01-01
This study presents a crop production model improvement: the previously adopted Michaelis-Menten (MM) type photosynthesis response function (fsub(rad-MM)) was replaced with a Prioul-Chartier (PC) type function (fsub(rad-PC)). The authors' analysis reflects concerns regarding the background effect of global warming, under simultaneous conditions of high air temperature and strong solar radiation. The MM type function fsub(rad-MM) can give excessive values leading to an overestimate of photosynthesis rate (PSN) and grain yield for paddy-rice. The MM model is applicable to many plants whose (PSN) increases concomitant with increased insolation: wheat, maize, soybean, etc. For paddy rice, the PSN apparently shows a maximum PSN. This paper proves that the MM model overestimated the PSN for paddy rice for sufficient solar radiation: the PSN using the PC model yields 10% lower values. However, the unit crop production index (CPIsub(U)) is almost independent of the MM and PC models because of respective standardization of both PSN and crop production index using average PSNsub(0) and CPIsub(0). The authors improved the estimation method using a photosynthesis-and-sterility based crop situation index (CSIsub(E)) to produce a crop yield index (CYIsub(E)), which is used to estimate rice yields in place of the crop situation index (CSI); the CSI gives a percentage of rice yields compared to normal annual production. The model calculates PSN including biomass effects, low-temperature sterility, and high-temperature injury by incorporating insolation, effective air temperature, the normalized difference vegetation index (NDVI), and effects of temperature on photosynthesis. Based on routine observation data, the method enables automated crop-production monitoring in remote regions without special observations. This method can quantify grain production early to raise an alarm in Southeast Asian countries, which must confront climate fluctuation through this era of global
The scale mismatch between remotely sensed observations and crop growth models simulated state variables decreases the reliability of crop yield estimates. To overcome this problem, we used a two-step data assimilation phases: first we generated a complete leaf area index (LAI) time series by combin...
Directory of Open Access Journals (Sweden)
Xiuliang Jin
2016-11-01
Full Text Available Knowledge of spatial and temporal variations in crop growth is important for crop management and stable crop production for the food security of a country. A combination of crop growth models and remote sensing data is a useful method for monitoring crop growth status and estimating crop yield. The objective of this study was to use spectral-based biomass values generated from spectral indices to calibrate the AquaCrop model using the particle swarm optimization (PSO algorithm to improve biomass and yield estimations. Spectral reflectance and concurrent biomass and yield were measured at the Xiaotangshan experimental site in Beijing, China, during four winter wheat-growing seasons. The results showed that all of the measured spectral indices were correlated with biomass to varying degrees. The normalized difference matter index (NDMI was the best spectral index for estimating biomass, with the coefficient of determination (R2, root mean square error (RMSE, and relative RMSE (RRMSE values of 0.77, 1.80 ton/ha, and 25.75%, respectively. The data assimilation method (R2 = 0.83, RMSE = 1.65 ton/ha, and RRMSE = 23.60% achieved the most accurate biomass estimations compared with the spectral index method. The estimated yield was in good agreement with the measured yield (R2 = 0.82, RMSE = 0.55 ton/ha, and RRMSE = 8.77%. This study offers a new method for agricultural resource management through consistent assessments of winter wheat biomass and yield based on the AquaCrop model and remote sensing data.
DeGroot, B J; Keown, J F; Van Vleck, L D; Kachman, S D
2007-06-30
Genetic parameters were estimated with restricted maximum likelihood for individual test-day milk, fat, and protein yields and somatic cell scores with a random regression cubic spline model. Test-day records of Holstein cows that calved from 1994 through early 1999 were obtained from Dairy Records Management Systems in Raleigh, North Carolina, for the analysis. Estimates of heritability for individual test-days and estimates of genetic and phenotypic correlations between test-days were obtained from estimates of variances and covariances from the cubic spline analysis. Estimates were calculated of genetic parameters for the averages of the test days within each of the ten 30-day test intervals. The model included herd test-day, age at first calving, and bovine somatropin treatment as fixed factors. Cubic splines were fitted for the overall lactation curve and for random additive genetic and permanent environmental effects, with five predetermined knots or four intervals between days 0, 50, 135, 220, and 305. Estimates of heritability for lactation one ranged from 0.10 to 0.15, 0.06 to 0.10, 0.09 to 0.15, and 0.02 to 0.06 for test-day one to test-day 10 for milk, fat, and protein yields and somatic cell scores, respectively. Estimates of heritability were greater in lactations two and three. Estimates of heritability increased over the course of the lactation. Estimates of genetic and phenotypic correlations were smaller for test-days further apart.
Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA Crop Growth Model
Directory of Open Access Journals (Sweden)
Tri D. Setiyono
2018-02-01
Full Text Available Crop insurance is a viable solution to reduce the vulnerability of smallholder farmers to risks from pest and disease outbreaks, extreme weather events, and market shocks that threaten their household food and income security. In developing and emerging countries, the implementation of area yield-based insurance, the form of crop insurance preferred by clients and industry, is constrained by the limited availability of detailed historical yield records. Remote-sensing technology can help to fill this gap by providing an unbiased and replicable source of the needed data. This study is dedicated to demonstrating and validating the methodology of remote sensing and crop growth model-based rice yield estimation with the intention of historical yield data generation for application in crop insurance. The developed system combines MODIS and SAR-based remote-sensing data to generate spatially explicit inputs for rice using a crop growth model. MODIS reflectance data were used to generate multitemporal LAI maps using the inverted Radiative Transfer Model (RTM. SAR data were used to generate rice area maps using MAPScape-RICE to mask LAI map products for further processing, including smoothing with logistic function and running yield simulation using the ORYZA crop growth model facilitated by the Rice Yield Estimation System (Rice-YES. Results from this study indicate that the approach of assimilating MODIS and SAR data into a crop growth model can generate well-adjusted yield estimates that adequately describe spatial yield distribution in the study area while reliably replicating official yield data with root mean square error, RMSE, of 0.30 and 0.46 t ha−1 (normalized root mean square error, NRMSE of 5% and 8% for the 2016 spring and summer seasons, respectively, in the Red River Delta of Vietnam, as evaluated at district level aggregation. The information from remote-sensing technology was also useful for identifying geographic locations with
Yeom, J. M.; Kim, H. O.
2014-12-01
In this study, we estimated the rice paddy yield with moderate geostationary satellite based vegetation products and GRAMI model over South Korea. Rice is the most popular staple food for Asian people. In addition, the effects of climate change are getting stronger especially in Asian region, where the most of rice are cultivated. Therefore, accurate and timely prediction of rice yield is one of the most important to accomplish food security and to prepare natural disasters such as crop defoliation, drought, and pest infestation. In the present study, GOCI, which is world first Geostationary Ocean Color Image, was used for estimating temporal vegetation indices of the rice paddy by adopting atmospheric correction BRDF modeling. For the atmospheric correction with LUT method based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S), MODIS atmospheric products such as MOD04, MOD05, MOD07 from NASA's Earth Observing System Data and Information System (EOSDIS) were used. In order to correct the surface anisotropy effect, Ross-Thick Li-Sparse Reciprocal (RTLSR) BRDF model was performed at daily basis with 16day composite period. The estimated multi-temporal vegetation images was used for crop classification by using high resolution satellite images such as Rapideye, KOMPSAT-2 and KOMPSAT-3 to extract the proportional rice paddy area in corresponding a pixel of GOCI. In the case of GRAMI crop model, initial conditions are determined by performing every 2 weeks field works at Chonnam National University, Gwangju, Korea. The corrected GOCI vegetation products were incorporated with GRAMI model to predict rice yield estimation. The predicted rice yield was compared with field measurement of rice yield.
Hoffman, A.; Forest, C. E.; Kemanian, A.
2016-12-01
A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with
Directory of Open Access Journals (Sweden)
Rebecca Boehm
2016-04-01
Full Text Available Farmers in China’s tea-growing regions report that monsoon dynamics and other weather factors are changing and that this is affecting tea harvest decisions. To assess the effect of climate change on tea production in China, this study uses historical weather and production data from 1980 to 2011 to construct a yield response model that estimates the partial effect of weather factors on tea yields in China, with a specific focus on East Asian Monsoon dynamics. Tea (Camellia sinensis (L. Kunze has not been studied using these methods even though it is an important crop for human nutrition and the economic well-being of rural communities in many countries. Previous studies have approximated the monsoon period using historical average onset and retreat dates, which we believe limits our understanding of how changing monsoon patterns affect crop productivity. In our analysis, we instead estimate the monsoon season across China’s tea growing regions empirically by identifying the unknown breakpoints in the year-by-province cumulative precipitation. We find that a 1% increase in the monsoon retreat date is associated with 0.481%–0.535% reduction in tea yield. In the previous year, we also find that a 1% increase in the date of the monsoon retreat is associated with a 0.604% decrease in tea yields. For precipitation, we find that a 1% increase in average daily precipitation occurring during the monsoon period is associated with a 0.184%–0.262% reduction in tea yields. In addition, our models show that 1% increase in the average daily monsoon precipitation from the previous growing season is associated with 0.258%–0.327% decline in yields. We also find that a 1% decrease in solar radiation in the previous growing season is associated with 0.554%-0.864% decrease in tea yields. These findings suggest the need for adaptive management and harvesting strategies given climate change projections and the known negative association between excess
Rogers, A.; Serbin, S.; Ely, K.; Wullschleger, S.
2017-12-01
Estimates of Gross Primary Productivity (GPP) by terrestrial biosphere models (TBMs) rely on accurate model representation of photosynthesis. In the Arctic, TBM uncertainty over GPP is the dominant driver of an uncertain Arctic carbon cycle. Previously we have shown that TBMs underestimate light saturated photosynthesis due to poor model representation of maximum carboxylation capacity and maximum electron transport. Here we extend this work to investigate model representation of the response of photosynthesis to irradiance. TBMs use an empirical relationship, typically a non-rectangular hyperbola, to estimate potential electron transport rate from incident irradiance. The key model inputs used to parameterize this formulation are; absorptance, quantum yield, and a curvature factor. TBMs show a high divergence in the response of photosynthesis to irradiance driven in part by variation in these parameters. In addition, most existing measurements used to parameterize TBMs have been made within a narrow temperature range (20-30°C) and the scarcity of data collected at low temperature has been highlighted as an important driver of model uncertainty at high latitudes. To address this issue we measured photosynthetic light response curves at 5 and 15°C and the leaf optical properties of six species growing on the Barrow Environmental Observatory, Barrow, Alaska. We determined leaf absorbtance, the convexity term, and apparent quantum yield. Our key finding was that measured apparent quantum yield was lower than model estimates, particularly at 5°C. Our results show that TBMs that rely on relatively high theoretical estimates of apparent quantum yield will likely overestimate carbon assimilation at low temperature and low irradiance.
Directory of Open Access Journals (Sweden)
Andrew E. Suyker
2013-11-01
Full Text Available Remote sensing techniques that provide synoptic and repetitive observations over large geographic areas have become increasingly important in studying the role of agriculture in global carbon cycles. However, it is still challenging to model crop yields based on remotely sensed data due to the variation in radiation use efficiency (RUE across crop types and the effects of spatial heterogeneity. In this paper, we propose a production efficiency model-based method to estimate corn and soybean yields with MODerate Resolution Imaging Spectroradiometer (MODIS data by explicitly handling the following two issues: (1 field-measured RUE values for corn and soybean are applied to relatively pure pixels instead of the biome-wide RUE value prescribed in the MODIS vegetation productivity product (MOD17; and (2 contributions to productivity from vegetation other than crops in mixed pixels are deducted at the level of MODIS resolution. Our estimated yields statistically correlate with the national survey data for rainfed counties in the Midwestern US with low errors for both corn (R2 = 0.77; RMSE = 0.89 MT/ha and soybeans (R2 = 0.66; RMSE = 0.38 MT/ha. Because the proposed algorithm does not require any retrospective analysis that constructs empirical relationships between the reported yields and remotely sensed data, it could monitor crop yields over large areas.
Principal component regression for crop yield estimation
Suryanarayana, T M V
2016-01-01
This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...
Directory of Open Access Journals (Sweden)
Rafael de Ávila Rodrigues
2012-01-01
Full Text Available In recent years, crop models have increasingly been used to simulate agricultural features. The DSSAT (Decision Support System for Agrotechnology Transfer is an important tool in modeling growth; however, one of its limitations is related to the unaccounted-for effect of diseases. Therefore, the goals of this study were to calibrate and validate the CSM CROPGRO-Soybean for the soybean cultivars M-SOY 6101 and MG/BR 46 (Conquista, analyze the performance and the effect of Asian soybean rust on these cultivars under the environmental conditions of Viçosa, Minas Gerais, Brazil. The experimental data for the evaluation, testing, and adjustment of the genetic coefficients for the cultivars, M-SOY 6101 and MG/BR 46 (Conquista, were obtained during the 2006/2007, 2007/2008 and 2009/2010 growing seasons. GLUE (Generalized Likelihood Uncertainty Estimation was used for the estimation of the genetic coefficients, and pedotransfer functions have been utilized to estimate the physical characteristics of the soil. For all of the sowing dates, the early season cultivar, M-SOY 6101, exhibited a lower variance in yield, which represents more stability with regard to the interannual climate variability, i.e., the farmers who use this cultivar will have in 50% of the crop years analyzed, a higher yield than a late-season cultivar. The MG/BR 46 (Conquista cultivar demonstrated a greater probability of obtaining higher yield in years with favorable weather conditions. However, in the presence of the Asian soybean rust, yield is heavily affected. The early cultivar, M-SOY 6101, showed a lower risk of being affected by the rust and consequently exhibited less yield loss considering the scenario D90 (condensation on the leaf surface occurs when the relative humidity is greater than or equal to 90%, for a sowing date of November 14.
Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei
2017-04-01
Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed
Marshall, M.; Tu, K. P.
2015-12-01
Large-area crop yield models (LACMs) are commonly employed to address climate-driven changes in crop yield and inform policy makers concerned with climate change adaptation. Production efficiency models (PEMs), a class of LACMs that rely on the conservative response of carbon assimilation to incoming solar radiation absorbed by a crop contingent on environmental conditions, have increasingly been used over large areas with remote sensing spectral information to improve the spatial resolution of crop yield estimates and address important data gaps. Here, we present a new PEM that combines model principles from the remote sensing-based crop yield and evapotranspiration (ET) model literature. One of the major limitations of PEMs is that they are evaluated using data restricted in both space and time. To overcome this obstacle, we first validated the model using 2009-2014 eddy covariance flux tower Gross Primary Production data in a rice field in the Central Valley of California- a critical agro-ecosystem of the United States. This evaluation yielded a Willmot's D and mean absolute error of 0.81 and 5.24 g CO2/d, respectively, using CO2, leaf area, temperature, and moisture constraints from the MOD16 ET model, Priestley-Taylor ET model, and the Global Production Efficiency Model (GLOPEM). A Monte Carlo simulation revealed that the model was most sensitive to the Enhanced Vegetation Index (EVI) input, followed by Photosynthetically Active Radiation, vapor pressure deficit, and air temperature. The model will now be evaluated using 30 x 30m (Landsat resolution) biomass transects developed in 2011 and 2012 from spectroradiometric and other non-destructive in situ metrics for several cotton, maize, and rice fields across the Central Valley. Finally, the model will be driven by Daymet and MODIS data over the entire State of California and compared with county-level crop yield statistics. It is anticipated that the new model will facilitate agro-climatic decision-making in
Directory of Open Access Journals (Sweden)
Lorenčič Eva
2016-06-01
Full Text Available Understanding the relationship between interest rates and term to maturity of securities is a prerequisite for developing financial theory and evaluating whether it holds up in the real world; therefore, such an understanding lies at the heart of monetary and financial economics. Accurately fitting the term structure of interest rates is the backbone of a smoothly functioning financial market, which is why the testing of various models for estimating and predicting the term structure of interest rates is an important topic in finance that has received considerable attention for many decades. In this paper, we empirically contrast the performance of cubic splines and the Nelson-Siegel model by estimating the zero-coupon yields of Austrian government bonds. The main conclusion that can be drawn from the results of the calculations is that the Nelson-Siegel model outperforms cubic splines at the short end of the yield curve (up to 2 years, whereas for medium-term maturities (2 to 10 years the fitting performance of both models is comparable.
Sesana, R C; Bignardi, A B; Borquis, R R A; El Faro, L; Baldi, F; Albuquerque, L G; Tonhati, H
2010-10-01
The objective of this work was to estimate covariance functions for additive genetic and permanent environmental effects and, subsequently, to obtain genetic parameters for buffalo's test-day milk production using random regression models on Legendre polynomials (LPs). A total of 17 935 test-day milk yield (TDMY) from 1433 first lactations of Murrah buffaloes, calving from 1985 to 2005 and belonging to 12 herds located in São Paulo state, Brazil, were analysed. Contemporary groups (CGs) were defined by herd, year and month of milk test. Residual variances were modelled through variance functions, from second to fourth order and also by a step function with 1, 4, 6, 22 and 42 classes. The model of analyses included the fixed effect of CGs, number of milking, age of cow at calving as a covariable (linear and quadratic) and the mean trend of the population. As random effects were included the additive genetic and permanent environmental effects. The additive genetic and permanent environmental random effects were modelled by LP of days in milk from quadratic to seventh degree polynomial functions. The model with additive genetic and animal permanent environmental effects adjusted by quintic and sixth order LP, respectively, and residual variance modelled through a step function with six classes was the most adequate model to describe the covariance structure of the data. Heritability estimates decreased from 0.44 (first week) to 0.18 (fourth week). Unexpected negative genetic correlation estimates were obtained between TDMY records at first weeks with records from middle to the end of lactation, being the values varied from -0.07 (second with eighth week) to -0.34 (1st with 42nd week). TDMY heritability estimates were moderate in the course of the lactation, suggesting that this trait could be applied as selection criteria in milking buffaloes. Copyright 2010 Blackwell Verlag GmbH.
Flores, E B; van der Werf, J
2015-08-01
Heritabilities and genetic correlations for milk production traits were estimated from first-parity test day records on 1022 Philippine dairy buffalo cows. Traits analysed included milk (MY), fat (FY) and protein (PY) yields, and fat (Fat%) and protein (Prot%) concentrations. Varying orders of Legendre polynomials (Leg(m)) as well as the Wilmink function (Wil) were used in random regression models. These various models were compared based on log likelihood, Akaike's information criterion, Bayesian information criterion and genetic variance estimates. Six residual variance classes were sufficient for MY, FY, PY and Fat%, while seven residual classes for Prot%. Multivariate analysis gave higher estimates of genetic variance and heritability compared with univariate analysis for all traits. Heritability estimates ranged from 0.25 to 0.44, 0.13 to 0.31 and 0.21 to 0.36 for MY, FY and PY, respectively. Wilmink's function was the better fitting function for additive genetic effects for all traits. It was also the preferred function for permanent environment effects for Fat% and Prot%, but for MY, FY and PY, the Legm was the appropriate function. Genetic correlations of MY with FY and PY were high and they were moderately negative with Fat% and Prot%. To prevent deterioration in Fat% and Prot% and improve milk quality, more weight should be applied to milk component traits. © 2015 Blackwell Verlag GmbH.
Zhiqiang Cheng; Jihua Meng; Yiming Wang
2016-01-01
Field crop yield prediction is crucial to grain storage, agricultural field management, and national agricultural decision-making. Currently, crop models are widely used for crop yield prediction. However, they are hampered by the uncertainty or similarity of input parameters when extrapolated to field scale. Data assimilation methods that combine crop models and remote sensing are the most effective methods for field yield estimation. In this study, the World Food Studies (WOFOST) model is u...
Models for Broad Area Event Identification and Yield Estimation: Multiple Coda Types
2011-09-01
microearthquakes accompanying hydraulic fracturing in granitic rock, Bull. Seism . Soc. Am., 81, 553-575, 1991. Fisk, M. and S. R. Taylor, (2007...146882, pp. 13. Yang, X., T. Lay, X.-B. Xie, and M. S. Thorne (2007). Geometric spreading of Pn and Sn in a spherical Earth model, Bull. Seism . Soc
Xiong, Wei; Skalský, Rastislav; Porter, Cheryl H.; Balkovič, Juraj; Jones, James W.; Yang, Di
2016-09-01
Understanding the interactions between agricultural production and climate is necessary for sound decision-making in climate policy. Gridded and high-resolution crop simulation has emerged as a useful tool for building this understanding. Large uncertainty exists in this utilization, obstructing its capacity as a tool to devise adaptation strategies. Increasing focus has been given to sources of uncertainties for climate scenarios, input-data, and model, but uncertainties due to model parameter or calibration are still unknown. Here, we use publicly available geographical data sets as input to the Environmental Policy Integrated Climate model (EPIC) for simulating global-gridded maize yield. Impacts of climate change are assessed up to the year 2099 under a climate scenario generated by HadEM2-ES under RCP 8.5. We apply five strategies by shifting one specific parameter in each simulation to calibrate the model and understand the effects of calibration. Regionalizing crop phenology or harvest index appears effective to calibrate the model for the globe, but using various values of phenology generates pronounced difference in estimated climate impact. However, projected impacts of climate change on global maize production are consistently negative regardless of the parameter being adjusted. Different values of model parameter result in a modest uncertainty at global level, with difference of the global yield change less than 30% by the 2080s. The uncertainty subjects to decrease if applying model calibration or input data quality control. Calibration has a larger effect at local scales, implying the possible types and locations for adaptation.
DEFF Research Database (Denmark)
Græsbøll, Kaare; Kirkeby, Carsten Thure; Nielsen, Søren Saxmose
2016-01-01
using a herd level curve allows for estimating the cow production level from first the recording in the parity, while a two-parameter model requires more recordings for a credible estimate, but may more precisely predict persistence, and given the independence of parameters, these can be easily drawn....... Furthermore, we investigated how the parameters of lactation models correlate between parities and from dam to offspring. The aim of the study was to provide simple and robust models for cow level milk yield and somatic cell count for fitting to sparse data to parameterize herd- and cow-specific simulation...... than somatic cells per milliliter. A positive correlation was found between relative levels of the total somatic cell count and the milk yield. The variation of lactation and somatic cell count curves between farms highlights the importance of a herd level approach. The one-parameter per cow model...
Berry, D.P.; Buckley, F.; Dillon, P.; Evans, R.D.; Rath, M.; Veerkamp, R.F.
2003-01-01
(Co)variance components for milk yield, body condition score (BCS), body weight (BW), BCS change and BW change over different herd-year mean milk yields (HMY) and nutritional environments (concentrate feeding level, grazing severity and silage quality) were estimated using a random regression model.
Directory of Open Access Journals (Sweden)
Ajay Singh
2016-06-01
Full Text Available A single trait linear mixed random regression test-day model was applied for the first time for analyzing the first lactation monthly test-day milk yield records in Karan Fries cattle. The test-day milk yield data was modeled using a random regression model (RRM considering different order of Legendre polynomial for the additive genetic effect (4th order and the permanent environmental effect (5th order. Data pertaining to 1,583 lactation records spread over a period of 30 years were recorded and analyzed in the study. The variance component, heritability and genetic correlations among test-day milk yields were estimated using RRM. RRM heritability estimates of test-day milk yield varied from 0.11 to 0.22 in different test-day records. The estimates of genetic correlations between different test-day milk yields ranged 0.01 (test-day 1 [TD-1] and TD-11 to 0.99 (TD-4 and TD-5. The magnitudes of genetic correlations between test-day milk yields decreased as the interval between test-days increased and adjacent test-day had higher correlations. Additive genetic and permanent environment variances were higher for test-day milk yields at both ends of lactation. The residual variance was observed to be lower than the permanent environment variance for all the test-day milk yields.
Directory of Open Access Journals (Sweden)
Zhiqiang Cheng
2016-04-01
Full Text Available Field crop yield prediction is crucial to grain storage, agricultural field management, and national agricultural decision-making. Currently, crop models are widely used for crop yield prediction. However, they are hampered by the uncertainty or similarity of input parameters when extrapolated to field scale. Data assimilation methods that combine crop models and remote sensing are the most effective methods for field yield estimation. In this study, the World Food Studies (WOFOST model is used to simulate the growing process of spring maize. Common assimilation methods face some difficulties due to the scarce, constant, or similar nature of the input parameters. For example, yield spatial heterogeneity simulation, coexistence of common assimilation methods and the nutrient module, and time cost are relatively important limiting factors. To address the yield simulation problems at field scale, a simple yet effective method with fast algorithms is presented for assimilating the time-series HJ-1 A/B data into the WOFOST model in order to improve the spring maize yield simulation. First, the WOFOST model is calibrated and validated to obtain the precise mean yield. Second, the time-series leaf area index (LAI is calculated from the HJ data using an empirical regression model. Third, some fast algorithms are developed to complete assimilation. Finally, several experiments are conducted in a large farmland (Hongxing to evaluate the yield simulation results. In general, the results indicate that the proposed method reliably improves spring maize yield estimation in terms of spatial heterogeneity simulation ability and prediction accuracy without affecting the simulation efficiency.
Science yield estimation for AFTA coronagraphs
Traub, Wesley A.; Belikov, Ruslan; Guyon, Olivier; Kasdin, N. Jeremy; Krist, John; Macintosh, Bruce; Mennesson, Bertrand; Savransky, Dmitry; Shao, Michael; Serabyn, Eugene; Trauger, John
2014-08-01
We describe the algorithms and results of an estimation of the science yield for five candidate coronagraph designs for the WFIRST-AFTA space mission. The targets considered are of three types, known radial-velocity planets, expected but as yet undiscovered exoplanets, and debris disks, all around nearby stars. The results of the original estimation are given, as well as those from subsequently updated designs that take advantage of experience from the initial estimates.
Jain, M.; Singh, B.; Srivastava, A.; Lobell, D. B.
2015-12-01
Food security will be challenged over the upcoming decades due to increased food demand, natural resource degradation, and climate change. In order to identify potential solutions to increase food security in the face of these changes, tools that can rapidly and accurately assess farm productivity are needed. With this aim, we have developed generalizable methods to map crop yields at the field scale using a combination of satellite imagery and crop models, and implement this approach within Google Earth Engine. We use these methods to examine wheat yield trends in Northern India, which provides over 15% of the global wheat supply and where over 80% of farmers rely on wheat as a staple food source. In addition, we identify the extent to which farmers are shifting sow date in response to heat stress, and how well shifting sow date reduces the negative impacts of heat stress on yield. To identify local-level decision-making, we map wheat sow date and yield at a high spatial resolution (30 m) using Landsat satellite imagery from 1980 to the present. This unique dataset allows us to examine sow date decisions at the field scale over 30 years, and by relating these decisions to weather experienced over the same time period, we can identify how farmers learn and adapt cropping decisions based on weather through time.
Zhang, Yuan; Yang, Bin; Liu, Xiaohui; Wang, Cuizhen
2017-05-01
Fast and accurate estimation of rice yield plays a role in forecasting rice productivity for ensuring regional or national food security. Microwave synthetic aperture radar (SAR) data has been proved to have a great potential for rice monitoring and parameters retrieval. In this study, a rice canopy scattering model (RCSM) was revised and then was applied to simulate the backscatter of rice canopy. The combination of RCSM and genetic algorithm (GA) was proposed for retrieving two important rice parameters relating to grain yield, ear length and ear number density, from a C-band, dual-polarization (HH and HV) Radarsat-2 SAR data. The stability of retrieved results of GA inversion was also evaluated by changing various parameter configurations. Results show that RCSM can effectively simulate backscattering coefficients of rice canopy at HH and HV mode with an error of <1 dB. Reasonable selection of GA's parameters is essential for stability and efficiency of rice parameter retrieval. Two rice parameters are retrieved by the proposed RCSM-GA technology with better accuracy. The rice ear length are estimated with error of <1.5 cm, and ear number density with error of <23 #/m2. Rice grain yields are effectively estimated and mapped by the retrieved ear length and number density via a simple yield regression equation. This study further illustrates the capability of C-band Radarsat-2 SAR data on retrieval of rice ear parameters and the practicability of radar remote sensing technology for operational yield estimation.
Vincenzi, Simone; Caramori, Graziano; Rossi, Remigio; De Leo, Giulio A
2007-01-01
Habitat Suitability (HS) models have been extensively used by conservation planners to estimate the spatial distribution of threatened species and of species of commercial interest. In this work we compare three HS models for the estimation of commercial yield potential and the identification of suitable sites for Tapes philippinarum rearing in the Sacca di Goro lagoon (Italy) on the basis of six environmental factors. The habitat suitability index (HSI) is based on expert opinion while the habitat suitability conditional (HSC) is calibrated on observational data. The habitat suitability mixed (HSM) model is a two-part model combining expert knowledge and regression analysis: the first component of the model uses logistic regression to identify the areas in which clams are likely to be present; the second part applies the same parameter-specific suitability functions of the HSI model only in the areas previously identified as productive by the logistic component. The HS models were validated on an independent data set and estimates of potential yield of the Goro lagoon were compared. The effectiveness of the three approaches is then discussed in terms of predicted yield and identification of suitable sites for farming.
Rice yield estimation with multi-temporal Radarsat-2 data
Chen, Chi-Farn; Son, Nguyen-Thanh; Chen, Cheng-Ru
2015-04-01
Rice is the most important food crop in Taiwan. Monitoring rice crop yield is thus crucial for agronomic planners to formulate successful strategies to address national food security and rice grain export issues. However, there is a real challenge for this monitoring purpose because the size of rice fields in Taiwan was generally small and fragmented, and the cropping calendar was also different from region to region. Thus, satellite-based estimation of rice crop yield requires the data that have sufficient spatial and temporal resolutions. This study aimed to develop models to estimate rice crop yield from multi-temporal Radarsat-2 data (5 m resolution). Data processing were carried out for the first rice cropping season from February to July in 2014 in the western part of Taiwan, consisting of four main steps: (1) constructing time-series backscattering coefficient data, (2) spatiotemporal noise filtering of the time-series data, (3) establishment of crop yield models using the time-series backscattering coefficients and in-situ measured yield data, and (4) model validation using field data and government's yield statistics. The results indicated that backscattering behavior varied from region to region due to changes in cultural practices and cropping calendars. The highest correlation coefficient (R2 > 0.8) was obtained at the ripening period. The robustness of the established models was evaluated by comparisons between the estimated yields and in-situ measured yield data showed satisfactory results, with the root mean squared error (RMSE) smaller than 10%. Such results were reaffirmed by the correlation analysis between the estimated yields and government's rice yield statistics (R2 > 0.8). This study demonstrates advantages of using multi-temporal Radarsat-2 backscattering data for estimating rice crop yields in Taiwan prior to the harvesting period, and thus the methods were proposed for rice yield monitoring in other regions.
Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan
2016-12-01
The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.
Directory of Open Access Journals (Sweden)
Javier Hernandez
2015-02-01
Full Text Available Plant breeding based on grain yield (GY is an expensive and time-consuming method, so new indirect estimation techniques to evaluate the performance of crops represent an alternative method to improve grain yield. The present study evaluated the ability of canopy reflectance spectroscopy at the range from 350 to 2500 nm to predict GY in a large panel (368 genotypes of wheat (Triticum aestivum L. through multivariate ridge regression models. Plants were treated under three water regimes in the Mediterranean conditions of central Chile: severe water stress (SWS, rain fed, mild water stress (MWS; one irrigation event around booting and full irrigation (FI with mean GYs of 1655, 4739, and 7967 kg∙ha−1, respectively. Models developed from reflectance data during anthesis and grain filling under all water regimes explained between 77% and 91% of the GY variability, with the highest values in SWS condition. When individual models were used to predict yield in the rest of the trials assessed, models fitted during anthesis under MWS performed best. Combined models using data from different water regimes and each phenological stage were used to predict grain yield, and the coefficients of determination (R2 increased to 89.9% and 92.0% for anthesis and grain filling, respectively. The model generated during anthesis in MWS was the best at predicting yields when it was applied to other conditions. Comparisons against conventional reflectance indices were made, showing lower predictive abilities. It was concluded that a Ridge Regression Model using a data set based on spectral reflectance at anthesis or grain filling represents an effective method to predict grain yield in genotypes under different water regimes.
Directory of Open Access Journals (Sweden)
Luciana Miura Sugawara Berka
2003-01-01
Full Text Available Agrometeorological models interfaced with the Geographic Information System - GIS are an alternative to simulate and quantify the effect of weather spatial and temporal variability on crop yield. The objective of this work was to adapt and interface an agrometeorological model with a GIS to estimate soybean [Glycine max (L. Merr.] yield. Yield estimates were generated for 144 municipalities in the State of Paraná, Brazil, responsible for 90% of the soybean production in the State, from 1996/1997 to 2000/2001. The model uses agronomical parameters and meteorological data to calculate maximum yield which will be penalized under drought stress. Comparative analyses between the yield estimated by the model and that reported by the Paraná State Department of Agriculture (SEAB were performed using the "t" test for paired observations. For the 1996/1997 year the model overestimated yield by 10.8%, which may be attributed to the occurrence of fungal diseases not considered by the model. For 1997/1998, 1998/1999 and 1999/2000 no differences (P > 0.05 were found between the yield estimated by the model and SEAB's data. For 2000/2001 the model underestimated yield by 10.5% and the cause for this difference needs further investigation. The model interfaced with a GIS is an useful tool to monitor soybean crop during growing season to estimate crop yield.Os modelos agrometeorológicos integrados em Sistemas de Informação Geográfica - SIG são uma alternativa para simular e quantificar o efeito da variabilidade espacial e temporal do clima sobre a produtividade agrícola. O objetivo deste trabalho foi adaptar e integrar um modelo agrometeorológico num SIG para estimar a produtividade da soja [Glycine max (L. Merr.]. Foram geradas estimativas de produtividade para 144 municípios do Estado do Paraná, responsáveis por 90% da produção de soja no Estado, em cinco anos-safra no período de 1996/1997 a 2000/2001. O modelo utiliza parâmetros agronômicos e
Critical yield-point model to estimate damage caused by brown spot and powdery mildew in barley
Directory of Open Access Journals (Sweden)
Lenita Agostinetto
2014-06-01
Full Text Available Barley (Hordeum vulgaris L. is the second most important winter crop in Southern Brazil. The excessive rainfall in this region during the crop-growing season increases the frequency and intensity of foliar fungal diseases. The research aimed to determine the damage function equations (DFE for the multiple pathosystem of barley brown spot and powdery mildew based on the relationship between grain yield and diseases intensity at different 'BRS Cauê' cultivar growth stages (GS during 2009 and 2010 growing seasons in Southern Brazil. The experiments were arranged in a randomized complete block design with nine treatments and four replicates. The disease gradients were generated by strobilurins and triazols fungicides rates and number of applications on barley cv. Cauê. The fungicide applications and disease incidence and severity assessments were performed at the 22, 31, 39, 45 and 56 plant GS. The DFE were obtained by variance analysis and linear regression between grain yield and diseases intensity. Significant and negative DFE were obtained and the damage coefficients (DC varied from 29.48 to 100.08 (2009 and from 36.08 to 113.57kg ha-1 (2010 for incidence, and from 219.5 to 6,276.6 (2009 and 102.3 to 5,292.5kg ha-1 (2010 for severity. The largest damage coefficients were obtained when diseases assessments were made on GS 22 and 31 on both growing seasons evaluated. DFE were used to calculate the economic damage threshold (EDT as a criterion to indicate the fungicide application moment to control the diseases in cultivars similar to 'BRS Cauê' in Southern Brazil.
Guedj, Jeremie; Dahari, Harel; Rong, Libin; Sansone, Natasha D; Nettles, Richard E; Cotler, Scott J; Layden, Thomas J; Uprichard, Susan L; Perelson, Alan S
2013-03-05
The nonstructural 5A (NS5A) protein is a target for drug development against hepatitis C virus (HCV). Interestingly, the NS5A inhibitor daclatasvir (BMS-790052) caused a decrease in serum HCV RNA levels by about two orders of magnitude within 6 h of administration. However, NS5A has no known enzymatic functions, making it difficult to understand daclatasvir's mode of action (MOA) and to estimate its antiviral effectiveness. Modeling viral kinetics during therapy has provided important insights into the MOA and effectiveness of a variety of anti-HCV agents. Here, we show that understanding the effects of daclatasvir in vivo requires a multiscale model that incorporates drug effects on the HCV intracellular lifecycle, and we validated this approach with in vitro HCV infection experiments. The model predicts that daclatasvir efficiently blocks two distinct stages of the viral lifecycle, namely viral RNA synthesis and virion assembly/secretion with mean effectiveness of 99% and 99.8%, respectively, and yields a more precise estimate of the serum HCV half-life, 45 min, i.e., around four times shorter than previous estimates. Intracellular HCV RNA in HCV-infected cells treated with daclatasvir and the HCV polymerase inhibitor NM107 showed a similar pattern of decline. However, daclatasvir treatment led to an immediate and rapid decline of extracellular HCV titers compared to a delayed (6-9 h) and slower decline with NM107, confirming an effect of daclatasvir on both viral replication and assembly/secretion. The multiscale modeling approach, validated with in vitro kinetic experiments, brings a unique conceptual framework for understanding the mechanism of action of a variety of agents in development for the treatment of HCV.
Estimation of Rice Crop Yields Using Random Forests in Taiwan
Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.
2017-12-01
Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the first rice crop were respectively 6.2% and 2.7%, while those for the second rice crop were 5.3% and 2
Directory of Open Access Journals (Sweden)
Paulo Augusto Manfron
2012-10-01
Full Text Available Despite the great importance of soybeans in Brazil, there have been few applications of soybean crop modeling on Brazilian conditions. Thus, the objective of this study was to use modified crop models to estimate the depleted and potential soybean crop yield in Brazil. The climatic variable data used in the modified simulation of the soybean crop models were temperature, insolation and rainfall. The data set was taken from 33 counties (28 Sao Paulo state counties, and 5 counties from other states that neighbor São Paulo. Among the models, modifications in the estimation of the leaf area of the soybean crop, which includes corrections for the temperature, shading, senescence, CO2, and biomass partition were proposed; also, the methods of input for the model’s simulation of the climatic variables were reconsidered. The depleted yields were estimated through a water balance, from which the depletion coefficient was estimated. It can be concluded that the adaptation soybean growth crop model might be used to predict the results of the depleted and potential yield of soybeans, and it can also be used to indicate better locations and periods of tillage.Aplicações de modelos de previsão de produtividade na cultura da soja são muito raros. Assim, o objetivo desta pesquisa foi realizar a estimação da produtividade deplecionada e potencial da cultura de soja, usando modelos de previsão modificados. Os dados climáticos utilizados nos modelos de simulação foram a temperatura, precipitação e insolação. Os dados foram proveniente de 33 municípios (28 do estado de São Paulo, e cinco municípios de estados vizinhos. Dentre os modelos propostos modificados está a estimação da área foliar da soja, com correções para temperatura, sombreamento, senescência, CO2, partição de biomassa, bem como os métodos de simulação das variávies climáticas do “input” para o modelo. As produções deplecionadas foram estimadas através do balan
Sesame ( Sesamum indicum L.) yield loss estimation with common ...
African Journals Online (AJOL)
Common cocklebur (Xanthium strumarium L.) is the most prevalent weed for sesame in Turkey. Sesame yield decreased by the increasing densities of common cocklebur. The asymptotic weed-free yield of sesame was 1863 kg ha-1 in 2005 and 1931 kg ha-1 in 2006, while the yield was estimated to be 239 and 424 kg ...
Soil Moisture as an Estimator for Crop Yield in Germany
Peichl, Michael; Meyer, Volker; Samaniego, Luis; Thober, Stephan
2015-04-01
Annual crop yield depends on various factors such as soil properties, management decisions, and meteorological conditions. Unfavorable weather conditions, e.g. droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany. Predicting crop yields allows to mitigate negative effects of weather extremes which are assumed to occur more often in the future due to climate change. A standard approach in economics is to predict the impact of climate change on agriculture as a function of temperature and precipitation. This approach has been developed further using concepts like growing degree days. Other econometric models use nonlinear functions of heat or vapor pressure deficit. However, none of these approaches uses soil moisture to predict crop yield. We hypothesize that soil moisture is a better indicator to explain stress on plant growth than estimations based on precipitation and temperature. This is the case because the latter variables do not explicitly account for the available water content in the root zone, which is the primary source of water supply for plant growth. In this study, a reduced form panel approach is applied to estimate a multivariate econometric production function for the years 1999 to 2010. Annual crop yield data of various crops on the administrative district level serve as depending variables. The explanatory variable of major interest is the Soil Moisture Index (SMI), which quantifies anomalies in root zone soil moisture. The SMI is computed by the mesoscale Hydrological Model (mHM, www.ufz.de/mhm). The index represents the monthly soil water quantile at a 4 km2 grid resolution covering entire Germany. A reduced model approach is suitable because the SMI is the result of a stochastic weather process and therefore can be considered exogenous. For the ease of interpretation a linear functionality is preferred. Meteorological
Statistical modelling and deconvolution of yield meter data
DEFF Research Database (Denmark)
Tøgersen, Frede Aakmann; Waagepetersen, Rasmus Plenge
2004-01-01
This paper considers the problem of mapping spatial variation of yield in a field using data from a yield monitoring system on a combine harvester. The unobserved yield is assumed to be a Gaussian random field and the yield monitoring system data is modelled as a convolution of the yield and an i......This paper considers the problem of mapping spatial variation of yield in a field using data from a yield monitoring system on a combine harvester. The unobserved yield is assumed to be a Gaussian random field and the yield monitoring system data is modelled as a convolution of the yield...... and an impulse response function. This results in an unusual spatial covariance structure (depending on the driving pattern of the combine harverster) for the yield monitoring system data. Parameters of the impulse response function and the spatial covariance function of the yield are estimated using maximum...
CSIR Research Space (South Africa)
Malherbe, J
2014-07-01
Full Text Available Forecasts of a Global Coupled Model for austral summer with a 1 month lead are downscaled to end-of-season maize yields and accumulated streamflow over the Limpopo Province and adjacent districts in northeastern South Africa through application...
Yin, X.Y.; Chasalow, S.D.; Dourleijn, C.J.; Stam, P.; Kropff, M.J.
2000-01-01
Advances in the use of molecular markers to elucidate the inheritance of quantitative traits enable the integration of genetic information on physiological traits into crop growth models. The objective of this study was to assess the ability of a crop growth model with QTL-based estimates of
Performance of a procedure for yield estimation in fruit orchards
DEFF Research Database (Denmark)
Aravena Zamora, Felipe; Potin, Camila; Wulfsohn, Dvora-Laio
for fruit yield estimation. In the Spring of 2009 we estimated the total number of fruit in several rows in each of 14 commercial fruit orchards growing apple, kiwi, and table grapes in central Chile. Survey times were 10-100 minutes for apples, 85 minutes for table grapes, and up to 150 minutes for kiwis....... At harvest in the Fall, the fruit were counted to obtain the true yield. Yields ranged from lows of several thousand (grape bunches), to highs of more than 40 thousand fruit (apples, kiwis). In 11 orchards, true errors less than 10% were obtained. In two highly variable orchards we obtained absolute true...
Lofton, Josh; Tubana, Brenda S.; Kanke, Yumiko; Teboh, Jasper; Viator, Howard; Dalen, Marilyn
2012-01-01
Estimating crop yield using remote sensing techniques has proven to be successful. However, sugarcane possesses unique characteristics; such as, a multi-year cropping cycle and plant height-limiting for midseason fertilizer application timing. Our study objective was to determine if sugarcane yield potential could be estimated using an in-season estimation of normalized difference vegetative index (NDVI). Sensor readings were taken using the GreenSeeker® handheld sensor from 2008 to 2011 in St. Gabriel and Jeanerette, LA, USA. In-season estimates of yield (INSEY) values were calculated by dividing NDVI by thermal variables. Optimum timing for estimating sugarcane yield was between 601–750 GDD. In-season estimated yield values improved the yield potential (YP) model compared to using NDVI. Generally, INSEY value showed a positive exponential relationship with yield (r2 values 0.48 and 0.42 for cane tonnage and sugar yield, respectively). When models were separated based on canopy structure there was an increase the strength of the relationship for the erectophile varieties (r2 0.53 and 0.47 for cane tonnage and sugar yield, respectively); however, the model for planophile varieties weakened slightly. Results of this study indicate using an INSEY value for predicting sugarcane yield shows potential of being a valuable management tool for sugarcane producers in Louisiana. PMID:22969359
minimum variance estimation of yield parameters of rubber tree
African Journals Online (AJOL)
2013-03-01
Mar 1, 2013 ... year. Kalman filter, a flexible statistical estimator, is used to combine the inexact prediction of the rubber production with an equally inexact rubber yield, tree ... tapping system measurements to obtain an optimal estimate of one year ahead rubber production. ...... tation management prevision gap of 55%.
Soniat, Thomas M.; Klinck, John M.; Powell, Eric N.; Cooper, Nathan; Abdelguerfi, Mahdi; Hofmann, Eileen E.; Dahal, Janak; Tu, Shengru; Finigan, John; Eberline, Benjamin S.; La Peyre, Jerome F.; LaPeyre, Megan K.; Qaddoura, Fareed
2012-01-01
A numerical model is presented that defines a sustainability criterion as no net loss of shell, and calculates a sustainable harvest of seed (market oysters (≥75 mm). Stock assessments of the Primary State Seed Grounds conducted east of the Mississippi from 2009 to 2011 show a general trend toward decreasing abundance of sack and seed oysters. Retrospective simulations provide estimates of annual sustainable harvests. Comparisons of simulated sustainable harvests with actual harvests show a trend toward unsustainable harvests toward the end of the time series. Stock assessments combined with shell-neutral models can be used to estimate sustainable harvest and manage cultch through shell planting when actual harvest exceeds sustainable harvest. For exclusive restoration efforts (no fishing allowed), the model provides a metric for restoration success-namely, shell accretion. Oyster fisheries that remove shell versus reef restorations that promote shell accretion, although divergent in their goals, are convergent in their management; both require vigilant attention to shell budgets.
modelling relationship between rainfall variability and yields
African Journals Online (AJOL)
yield models should be used for planning and forecasting the yield of millet and sorghum in the study area. Key words: modelling, rainfall, yields, millet, sorghum. INTRODUCTION. Meteorological variables, such as rainfall parameters, temperature, sunshine hours, relative humidity, and wind velocity and soil moisture are.
A Comparison of Machine Learning Approaches for Corn Yield Estimation
Kim, N.; Lee, Y. W.
2017-12-01
Machine learning is an efficient empirical method for classification and prediction, and it is another approach to crop yield estimation. The objective of this study is to estimate corn yield in the Midwestern United States by employing the machine learning approaches such as the support vector machine (SVM), random forest (RF), and deep neural networks (DNN), and to perform the comprehensive comparison for their results. We constructed the database using satellite images from MODIS, the climate data of PRISM climate group, and GLDAS soil moisture data. In addition, to examine the seasonal sensitivities of corn yields, two period groups were set up: May to September (MJJAS) and July and August (JA). In overall, the DNN showed the highest accuracies in term of the correlation coefficient for the two period groups. The differences between our predictions and USDA yield statistics were about 10-11 %.
PREDICTION MODELS OF GRAIN YIELD AND CHARACTERIZATION
Directory of Open Access Journals (Sweden)
Narciso Ysac Avila Serrano
2009-06-01
Full Text Available With the objective to characterize the grain yield of five cowpea cultivars and to find linear regression models to predict it, a study was developed in La Paz, Baja California Sur, Mexico. A complete randomized blocks design was used. Simple and multivariate analyses of variance were carried out using the canonical variables to characterize the cultivars. The variables cluster per plant, pods per plant, pods per cluster, seeds weight per plant, seeds hectoliter weight, 100-seed weight, seeds length, seeds wide, seeds thickness, pods length, pods wide, pods weight, seeds per pods, and seeds weight per pods, showed significant differences (Pâ‰¤ 0.05 among cultivars. PaceÃ±o and IT90K-277-2 cultivars showed the higher seeds weight per plant. The linear regression models showed correlation coefficients â‰¥0.92. In these models, the seeds weight per plant, pods per cluster, pods per plant, cluster per plant and pods length showed significant correlations (Pâ‰¤ 0.05. In conclusion, the results showed that grain yield differ among cultivars and for its estimation, the prediction models showed determination coefficients highly dependable.
Large-area dry bean yield prediction modeling in Mexico
Given the importance of dry bean in Mexico, crop yield predictions before harvest are valuable for authorities of the agricultural sector, in order to define support for producers. The aim of this study was to develop an empirical model to estimate the yield of dry bean at the regional level prior t...
Real-time yield estimation based on deep learning
Rahnemoonfar, Maryam; Sheppard, Clay
2017-05-01
Crop yield estimation is an important task in product management and marketing. Accurate yield prediction helps farmers to make better decision on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on the manual counting of fruits is very time consuming and expensive process and it is not practical for big fields. Robotic systems including Unmanned Aerial Vehicles (UAV) and Unmanned Ground Vehicles (UGV), provide an efficient, cost-effective, flexible, and scalable solution for product management and yield prediction. Recently huge data has been gathered from agricultural field, however efficient analysis of those data is still a challenging task. Computer vision approaches currently face diffident challenges in automatic counting of fruits or flowers including occlusion caused by leaves, branches or other fruits, variance in natural illumination, and scale. In this paper a novel deep convolutional network algorithm was developed to facilitate the accurate yield prediction and automatic counting of fruits and vegetables on the images. Our method is robust to occlusion, shadow, uneven illumination and scale. Experimental results in comparison to the state-of-the art show the effectiveness of our algorithm.
Estimation of rice yield affected by drought and relation between rice yield and TVDI
Hongo, C.; Tamura, E.; Sigit, G.
2016-12-01
Impact of climate change is not only seen on food production but also on food security and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change. As the adaptation, the Government of Indonesia has launched agricultural insurance program for damage of rice by drought, flood and pest and disease. The Government started a pilot project in 2013 and this year the pilot project has been extended to 22 provinces. Having the above as background, we conducted research on development of new damage assessment method for rice using remote sensing data which could be used for evaluation of damage ratio caused by drought in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield affected by drought in dry season could be estimated at level of 1 % significance using SPOT 7 data taken in 2015, and the validation result was 0.8t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data of the estimated result and the average yield of the past 10 years. In addition, TVDI (Temperature Vegetation Dryness Index) which was calculated from Landsat8 data in heading season indicated the dryness in low yield area. The result suggests that rice yield was affected by irrigation water shortage around heading season as a result of the decreased precipitation by El Nino. Through our study, it becomes clear that the utilization of remote sensing data can be promising for assessment of the damage ratio of rice production precisely, quickly and quantitatively, and also it can be incorporated into the insurance procedures.
Sugarcane yield estimation for climatic conditions in the state of Goiás
Directory of Open Access Journals (Sweden)
Jordana Moura Caetano
Full Text Available ABSTRACT Models that estimate potential and depleted crop yield according to climatic variable enable the crop planning and production quantification for a specific region. Therefore, the objective of this study was to compare methods to sugarcane yield estimates grown in the climatic condition in the central part of Goiás, Brazil. So, Agroecological Zone Method (ZAE and the model proposed by Scarpari (S were correlated with real data of sugarcane yield from an experimental area, located in Santo Antônio de Goiás, state of Goiás, Brazil. Data yield refer to the crops of 2008/2009 (sugarcane plant, 2009/2010, 2010/2011 and 2011/2012 (ratoon sugarcane. Yield rates were calculated as a function of atmospheric water demand and water deficit in the area under study. Real and estimated yields were adjusted in function of productivity loss due to cutting stage of sugarcane, using an average reduction in productivity observed in the experimental area and the average reduction in the state of Goiás. The results indicated that the ZAE method, considering the water deficit, displayed good yield estimates for cane-plant (d > 0.90. Water deficit decreased the yield rates (r = -0.8636; α = 0.05 while the thermal sum increased that rate for all evaluated harvests (r > 0.68; α = 0.05.
System Model of Daily Sediment Yield
Sharma, T. C.; Dickinson, W. T.
1980-06-01
Input-output systems concepts have been applied to the modeling of daily runoff-sediment yield of the Thames River in southern Ontario, Canada. Spectral and correlation techniques have been used to construct a parsimonious model of daily sediment yields. It is shown that a linear discrete dynamic model is possible in terms of the log-transformed daily runoff and sediment yield sequences. The fluvial system of the Thames River watershed exhibits a weak memory on a daily basis, and the noise component corrupting the watershed fluvial system resembles a white noise process.
Directory of Open Access Journals (Sweden)
Zhiwei Jiang
2014-03-01
Full Text Available To improve crop model performance for regional crop yield estimates, a new four-dimensional variational algorithm (POD4DVar merging the Monte Carlo and proper orthogonal decomposition techniques was introduced to develop a data assimilation strategy using the Crop Environment Resource Synthesis (CERES-Wheat model. Two winter wheat yield estimation procedures were conducted on a field plot and regional scale to test the feasibility and potential of the POD4DVar-based strategy. Winter wheat yield forecasts for the field plots showed a coefficient of determination (R2 of 0.73, a root mean square error (RMSE of 319 kg/ha, and a relative error (RE of 3.49%. An acceptable yield at the regional scale was estimated with an R2 of 0.997, RMSE of 7346 tons, and RE of 3.81%. The POD4DVar-based strategy was more accurate and efficient than the EnKF-based strategy. In addition to crop yield, other critical crop variables such as the biomass, harvest index, evapotranspiration, and soil organic carbon may also be estimated. The present study thus introduces a promising approach for operationally monitoring regional crop growth and predicting yield. Successful application of this assimilation model at regional scales must focus on uncertainties derived from the crop model, model inputs, data assimilation algorithm, and assimilated observations.
Estimation of Maize grain yield using multispectral satellite data sets ...
African Journals Online (AJOL)
This study utilised canopy reflectance from a multispectral sensor to develop vegetation indices that serve as input variables into an empirical pre-harvest maize (Zea mays) yield prediction model in the north eastern section in Free State province of South Africa. Some fields in this region that were grown of maize under ...
Ethiopian Wheat Yield and Yield Gap Estimation: A Spatial Small Area Integrated Data Approach
Mann, M.; Warner, J.
2015-12-01
Despite the collection of routine annual agricultural surveys and significant advances in GIS and remote sensing products, little econometric research has been undertaken in predicting developing nation's agricultural yields. In this paper, we explore the determinants of wheat output per hectare in Ethiopia during the 2011-2013 Meher crop seasons aggregated to the woreda administrative area. Using a panel data approach, combining national agricultural field surveys with relevant GIS and remote sensing products, the model explains nearly 40% of the total variation in wheat output per hectare across the country. The model also identifies specific contributors to wheat yields that include farm management techniques (eg. area planted, improved seed, fertilizer, irrigation), weather (eg. rainfall), water availability (vegetation and moisture deficit indexes) and policy intervention. Our findings suggest that woredas produce between 9.8 and 86.5% of their potential wheat output per hectare given their altitude, weather conditions, terrain, and plant health. At the median, Amhara, Oromiya, SNNP, and Tigray produce 48.6, 51.5, 49.7, and 61.3% of their local attainable yields, respectively. This research has a broad range of applications, especially from a public policy perspective: identifying causes of yield fluctuations, remotely evaluating larger agricultural intervention packages, and analyzing relative yield potential. Overall, the combination of field surveys with spatial data can be used to identify management priorities for improving production at a variety of administrative levels.
A Remote-Sensing Driven Tool for Estimating Crop Stress and Yields
Directory of Open Access Journals (Sweden)
Martha C. Anderson
2013-07-01
Full Text Available Biophysical crop simulation models are normally forced with precipitation data recorded with either gauges or ground-based radar. However, ground-based recording networks are not available at spatial and temporal scales needed to drive the models at many critical places on earth. An alternative would be to employ satellite-based observations of either precipitation or soil moisture. Satellite observations of precipitation are currently not considered capable of forcing the models with sufficient accuracy for crop yield predictions. However, deduction of soil moisture from space-based platforms is in a more advanced state than are precipitation estimates so that these data may be capable of forcing the models with better accuracy. In this study, a mature two-source energy balance model, the Atmosphere Land Exchange Inverse (ALEXI model, was used to deduce root zone soil moisture for an area of North Alabama, USA. The soil moisture estimates were used in turn to force the state-of-the-art Decision Support System for Agrotechnology Transfer (DSSAT crop simulation model. The study area consisted of a mixture of rainfed and irrigated cornfields. The results indicate that the model forced with the ALEXI moisture estimates produced yield simulations that compared favorably with observed yields and with the rainfed model. The data appear to indicate that the ALEXI model did detect the soil moisture signal from the mixed rainfed/irrigation corn fields and this signal was of sufficient strength to produce adequate simulations of recorded yields over a 10 year period.
Schauberger, Bernhard; Gornott, Christoph; Wechsung, Frank
2017-11-01
Quantifying the influence of weather on yield variability is decisive for agricultural management under current and future climate anomalies. We extended an existing semiempirical modeling scheme that allows for such quantification. Yield anomalies, measured as interannual differences, were modeled for maize, soybeans, and wheat in the United States and 32 other main producer countries. We used two yield data sets, one derived from reported yields and the other from a global yield data set deduced from remote sensing. We assessed the capacity of the model to forecast yields within the growing season. In the United States, our model can explain at least two-thirds (63%-81%) of observed yield anomalies. Its out-of-sample performance (34%-55%) suggests a robust yield projection capacity when applied to unknown weather. Out-of-sample performance is lower when using remote sensing-derived yield data. The share of weather-driven yield fluctuation varies spatially, and estimated coefficients agree with expectations. Globally, the explained variance in yield anomalies based on the remote sensing data set is similar to the United States (71%-84%). But the out-of-sample performance is lower (15%-42%). The performance discrepancy is likely due to shortcomings of the remote sensing yield data as it diminishes when using reported yield anomalies instead. Our model allows for robust forecasting of yields up to 2 months before harvest for several main producer countries. An additional experiment suggests moderate yield losses under mean warming, assuming no major changes in temperature extremes. We conclude that our model can detect weather influences on yield anomalies and project yields with unknown weather. It requires only monthly input data and has a low computational demand. Its within-season yield forecasting capacity provides a basis for practical applications like local adaptation planning. Our study underlines high-quality yield monitoring and statistics as critical
Yield Estimation of Sugar Beet Based on Plant Canopy Using Machine Vision Methods
Directory of Open Access Journals (Sweden)
S Latifaltojar
2014-09-01
Full Text Available Crop yield estimation is one of the most important parameters for information and resources management in precision agriculture. This information is employed for optimizing the field inputs for successive cultivations. In the present study, the feasibility of sugar beet yield estimation by means of machine vision was studied. For the field experiments stripped images were taken during the growth season with one month intervals. The image of horizontal view of plants canopy was prepared at the end of each month. At the end of growth season, beet roots were harvested and the correlation between the sugar beet canopy in each month of growth period and corresponding weight of the roots were investigated. Results showed that there was a strong correlation between the beet yield and green surface area of autumn cultivated sugar beets. The highest coefficient of determination was 0.85 at three months before harvest. In order to assess the accuracy of the final model, the second year of study was performed with the same methodology. The results depicted a strong relationship between the actual and estimated beet weights with R2=0.94. The model estimated beet yield with about 9 percent relative error. It is concluded that this method has appropriate potential for estimation of sugar beet yield based on band imaging prior to harvest
Functional dynamic factor models with application to yield curve forecasting
Hays, Spencer
2012-09-01
Accurate forecasting of zero coupon bond yields for a continuum of maturities is paramount to bond portfolio management and derivative security pricing. Yet a universal model for yield curve forecasting has been elusive, and prior attempts often resulted in a trade-off between goodness of fit and consistency with economic theory. To address this, herein we propose a novel formulation which connects the dynamic factor model (DFM) framework with concepts from functional data analysis: a DFM with functional factor loading curves. This results in a model capable of forecasting functional time series. Further, in the yield curve context we show that the model retains economic interpretation. Model estimation is achieved through an expectation- maximization algorithm, where the time series parameters and factor loading curves are simultaneously estimated in a single step. Efficient computing is implemented and a data-driven smoothing parameter is nicely incorporated. We show that our model performs very well on forecasting actual yield data compared with existing approaches, especially in regard to profit-based assessment for an innovative trading exercise. We further illustrate the viability of our model to applications outside of yield forecasting.
Added-values of high spatiotemporal remote sensing data in crop yield estimation
Gao, F.; Anderson, M. C.
2017-12-01
Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate
Exoplanet Classification and Yield Estimates for Direct Imaging Missions
Kopparapu, Ravi Kumar; Hébrard, Eric; Belikov, Rus; Batalha, Natalie M.; Mulders, Gijs D.; Stark, Chris; Teal, Dillon; Domagal-Goldman, Shawn; Mandell, Avi
2018-04-01
Future NASA concept missions that are currently under study, like the Habitable Exoplanet Imaging Mission (HabEx) and the Large Ultra-violet Optical Infra Red Surveyor, could discover a large diversity of exoplanets. We propose here a classification scheme that distinguishes exoplanets into different categories based on their size and incident stellar flux, for the purpose of providing the expected number of exoplanets observed (yield) with direct imaging missions. The boundaries of this classification can be computed using the known chemical behavior of gases and condensates at different pressures and temperatures in a planetary atmosphere. In this study, we initially focus on condensation curves for sphalerite ZnS, {{{H}}}2{{O}}, {CO}}2, and {CH}}4. The order in which these species condense in a planetary atmosphere define the boundaries between different classes of planets. Broadly, the planets are divided into rocky planets (0.5–1.0 R ⊕), super-Earths (1.0–1.75 R ⊕), sub-Neptunes (1.75–3.5 R ⊕), sub-Jovians (3.5–6.0 R ⊕), and Jovians (6–14.3 R ⊕) based on their planet sizes, and “hot,” “warm,” and “cold” based on the incident stellar flux. We then calculate planet occurrence rates within these boundaries for different kinds of exoplanets, η planet, using the community coordinated results of NASA’s Exoplanet Program Analysis Group’s Science Analysis Group-13 (SAG-13). These occurrence rate estimates are in turn used to estimate the expected exoplanet yields for direct imaging missions of different telescope diameters.
Estimation of genetic parameters of test day fat and protein yields in ...
African Journals Online (AJOL)
This study was aimed to estimate variance components and genetic parameters for daily fat and protein yields of Brazilian Holstein cattle, using an autoregressive test day multiple lactations (AR) animal model. Data consisted of test day (TD) records produced by Holstein cows under milk recording supervised by the ...
Directory of Open Access Journals (Sweden)
Daniel S. Grohs
2009-03-01
Full Text Available Áreas com diferentes potenciais de rendimento dentro de uma lavoura necessitam ser manejadas separadamente, para fins de aplicação da adubação nitrogenada em cobertura. O equipamento baseado em sensoriamento remoto terrestre (GreenSeeker é um dos instrumentos utilizados para separar diferentes zonas de manejo. Para fazer isso, o sensor permite a definição de classes para estimar o potencial produtivo de forma ágil, precisa e em tempo real. Com o instrumento, foi desenvolvido um modelo para estimativa do potencial produtivo em trigo e cevada, correlacionando o Índice de Vegetação por Diferença Normalizada (NDVI com a biomassa seca acumulada na parte aérea, por ocasião da emissão da sexta folha do colmo principal. A base do modelo foi a formação de classes de potencial produtivo correspondentes a zonas específicas de manejo da lavoura. Essas classes não necessitam ser específicas para diferentes cultivares e/ou espécies, visto que não se detectaram diferenças que justificassem a formação de grupos para elas. As superfícies de fundo (resíduos de restevas de soja e milho tiveram efeitos significativos nas leituras do sensor. O modelo continua válido mesmo se as leituras de NDVI forem feitas antes ou após o período recomendado para tal, podendo ser ajustado com sub ou superestimação. As análises de variabilidade espacial, futuramente, podem avaliar se, as zonas de potencial produtivo estimadas pelas classes de NDVI propostas pelo modelo, correspondem à flutuação espacial da biomassa, doses de N aplicadas e rendimento de grãos.Areas with different yield potential within a field need to be managed separately as for nitrogen application in small grain cereals. Terrestrial remote sensing-based equipment such as the GreenSeeker sensor is one of the tools available to handle different management zones. To do this, the sensor allows the definition of classes to estimate yield potential. A model which correlated the
Heritability estimates for yield and related traits in bread wheat
International Nuclear Information System (INIS)
Din, R.; Jehan, S.; Ibraullah, A.
2009-01-01
A set of 22 experimental wheat lines along with four check cultivars were evaluated in in-irrigated and unirrgated environments with objectives to determine genetic and phenotypic variation and heritability estimates for yield and its traits- The two environments were statistically at par for physiological maturity, plant height, spikes m/sub -2/. spike lets spike/sup -1/ and 1000-grain weight. Highly significant genetic variability existed among wheat lines (P < 0.0 I) in the combined analysis across two test environments for traits except 1000- grain weight. Genotypes x environment interactions were non-significant for traits indicating consistent performance of lines in two test environments. However lines and check cultivars were two to five days early in maturity under unirrigated environment. Plant height, spikes m/sup -2/ and 1000-grain weight also reduced under unirrigated environments. Genetic variances were greater than Environmental variances for most of traits- Heritability estimates were of higher magnitude (0.74 to 0.96) for plant height, medium (0.31 to 0.56) for physiological maturity. spikelets spike/sup -1/ (unirrigated) and 1000-grain weight, and low for spikes m/sup -2/. (author)
Estimation of the yield of poplars in plantations of fast-growing species within current results
Directory of Open Access Journals (Sweden)
Martin Fajman
2009-01-01
Full Text Available Current results are presented of allometric yield estimates of the poplar short rotation coppice. According to a literature review it is obvious that yield estimates, based on measurable quantities of a growing stand, depend not only on the selected tree specie or its clone, but also on the site location. The Jap-105 poplar clone (P. nigra x P. maximowiczii allometric relations were analyzed by regression methods aimed at the creation of the yield estimation methodology at a testing site in Domanínek. Altogether, the twelve polynomial dependences of particular measured quantities approved the high empirical data conformity with the tested regression model (correlation index from 0.9033 to 0.9967. Within the forward stepwise regression, factors were selected, which explain best examined estimates of the total biomass DM; i.e. d.b.h. and stem height. Furthermore, the KESTEMONT’s (1971 model was verified with a satisfying conformity as well. Approving presented yield estimation methods, the presented models will be checked in a large-scale field trial.
Battude, Marjorie; Bitar, Ahmad Al; Brut, Aurore; Cros, Jérôme; Dejoux, Jean-François; Huc, Mireille; Marais Sicre, Claire; Tallec, Tiphaine; Demarez, Valérie
2016-04-01
Water resources are under increasing pressure as a result of global change and of a raising competition among the different users (agriculture, industry, urban). It is therefore important to develop tools able to estimate accurately crop water requirements in order to optimize irrigation while maintaining acceptable production. In this context, remote sensing is a valuable tool to monitor vegetation development and water demand. This work aims at developing a robust and generic methodology mainly based on high resolution remote sensing data to provide accurate estimates of maize yield and water needs at the watershed scale. Evapotranspiration (ETR) and dry aboveground biomass (DAM) of maize crops were modeled using time series of GAI images used to drive a simple agro-meteorological crop model (SAFYE, Duchemin et al., 2005). This model is based on a leaf partitioning function (Maas, 1993) for the simulation of crop biomass and on the FAO-56 methodology for the ETR simulation. The model also contains a module to simulate irrigation. This study takes advantage of the SPOT4 and SPOT5 Take5 experiments initiated by CNES (http://www.cesbio.ups-tlse.fr/multitemp/). They provide optical images over the watershed from February to May 2013 and from April to August 2015 respectively, with a temporal and spatial resolution similar to future images from the Sentinel-2 and VENμS missions. This dataset was completed with LandSat8 and Deimos1 images in order to cover the whole growing season while reducing the gaps in remote sensing time series. Radiometric, geometric and atmospheric corrections were achieved by the THEIA land data center, and the KALIDEOS processing chain. The temporal dynamics of the green area index (GAI) plays a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Consistent seasonal dynamics of the remotely sensed GAI was estimated by applying a radiative transfer model based on artificial neural networks (BVNET, Baret
Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran.
Bannayan, M; Mansoori, H; Rezaei, E Eyshi
2014-04-01
Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm(-1)) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.
Using normalized difference vegetation index (NDVI) to estimate sugarcane yield and yield components
Sugarcane (Saccharum spp.) yield and yield components are important traits for growers and scientists to evaluate and select cultivars. Collection of these yield data would be labor intensive and time consuming in the early selection stages of sugarcane breeding cultivar development programs with a ...
Remote Estimation of Vegetation Fraction and Yield in Oilseed Rape with Unmanned Aerial Vehicle Data
Peng, Y.; Fang, S.; Liu, K.; Gong, Y.
2017-12-01
This study developed an approach for remote estimation of Vegetation Fraction (VF) and yield in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV) when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI) vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate Flower Fraction (FF) in oilseed rape. Based on FF estimates, rape yield can be estimated using canopy reflectance data. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with estimation error below 6% and predict yield with estimation error below 20%.
Directory of Open Access Journals (Sweden)
Dirceu Agostinetto
2004-09-01
Full Text Available Os objetivos deste trabalho foram comparar modelos matemáticos e identificar, entre variáveis morfológicas, a de melhor ajuste na previsão de perdas de produtividade em arroz irrigado por interferência da cultivar EEA 406, simuladora de arroz-vermelho. Foram realizados quatro experimentos, sendo um no campo e os demais em casa de vegetação. Três cultivares de arroz, BRS-38 Ligeirinho, IRGA 417 e BR-IRGA 409, foram estudadas no campo, com espaçamento entrelinhas de 15 e 25 cm, além de populações da cultivar competidora (dez níveis. Em casa de vegetação, realizaram-se experimentos em monocultivos e em série de substituição. A análise dos dados foi realizada com aplicação de modelos lineares e não lineares de regressão. O melhor ajuste dos dados de perdas de produtividade em arroz foi encontrado com o modelo de dois parâmetros. Área foliar e cobertura do solo estimaram melhor as perdas de produtividade de grãos do que a massa seca da cultivar simuladora. Os modelos testados indicam que a redução do espaçamento entrelinhas aumenta a habilidade competitiva das cultivares de arroz em relação à cultivar concorrente.The objectives of this work were to compare mathematical models and identify, among morphologic variables, the one better adjusted to rice grain yield losses by interference of EEA 406 cultivar, simulating red rice. Four experiments were carried out, one in the field and the others in a greenhouse. Rice cultivars BRS-38 Ligeirinho, IRGA 417, and BR-IRGA 409, were studied in the field in row widths of 15 and 25 cm, and populations (ten levels of concurrent cultivar. In greenhouse, tests in monocultures were carried out in a replacement series model. Data analysis were accomplished with application of linear and non linear regression models. The best adjustment of rice grain yield losses data was attained using the model with two parameters. Leaf area and soil coverage estimated better grain yield loss than dry
Regional Crop Gross Primary Productivity and Yield Estimation Using Fused Landsat-MODIS Data
Directory of Open Access Journals (Sweden)
Mingzhu He
2018-02-01
Full Text Available Accurate crop yield assessments using satellite remote sensing-based methods are of interest for regional monitoring and the design of policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations is generally too coarse to capture cropland heterogeneity. The fusion of data from different sensors can provide enhanced information and overcome many of the limitations of individual sensors. In thitables study, we estimate annual crop yields for seven important crop types across Montana in the continental USA from 2008–2015, including alfalfa, barley, maize, peas, durum wheat, spring wheat and winter wheat. We used a satellite data-driven light use efficiency (LUE model to estimate gross primary productivity (GPP over croplands at 30-m spatial resolution and eight-day time steps using a fused NDVI dataset constructed by blending Landsat (5 or 7 and Terra MODIS reflectance data. The fused 30-m NDVI record showed good consistency with the original Landsat and MODIS data, but provides better spatiotemporal delineations of cropland vegetation growth. Crop yields were estimated at 30-m resolution as the product of estimated GPP accumulated over the growing season and a crop-specific harvest index (HIGPP. The resulting GPP estimates capture characteristic cropland productivity patterns and seasonal variations, while the estimated annual crop production results correspond favorably with reported county-level crop production data (r = 0.96, relative RMSE = 37.0%, p < 0.05 from the U.S. Department of Agriculture (USDA. The performance of estimated crop yields at a finer (field scale was generally lower, but still meaningful (r = 0.42, relative RMSE = 50.8%, p < 0.05. Our methods and results are suitable for operational applications of crop yield monitoring at regional scales, suggesting the potential of using global satellite observations to
Use of Vegetation Health Data for Estimation of Aus Rice Yield in Bangladesh
Directory of Open Access Journals (Sweden)
Mohammad Nizamuddin
2009-04-01
Full Text Available Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH Indices [Vegetation Condition Index (VCI, Temperature Condition Index (TCI and Vegetation Health Index (VHI] computed from Advanced Very High Resolution Radiometer (AVHRR data covering a period of 15 years (1991–2005. A strong correlation was found between aus rice yield and VCI and VHI during the critical period of aus rice development that occurs during March-April (weeks 8–13 of the year, several months in advance of the rice harvest. Stepwise principal component regression (PCR was used to construct a model to predict yield as a function of critical-period VHI. The model reduced the yield prediction error variance by 62% compared with a prediction of average yield for each year. Remote sensing is a valuable tool for estimating rice yields well in advance of harvest and at a low cost.
Directory of Open Access Journals (Sweden)
Kehinde Anthony Mogaji
2016-07-01
Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.
Modelling crop yield in Iberia under drought conditions
Ribeiro, Andreia; Páscoa, Patrícia; Russo, Ana; Gouveia, Célia
2017-04-01
The improved assessment of the cereal yield and crop loss under drought conditions are essential to meet the increasing economy demands. The growing frequency and severity of the extreme drought conditions in the Iberian Peninsula (IP) has been likely responsible for negative impacts on agriculture, namely on crop yield losses. Therefore, a continuous monitoring of vegetation activity and a reliable estimation of drought impacts is crucial to contribute for the agricultural drought management and development of suitable information tools. This works aims to assess the influence of drought conditions in agricultural yields over the IP, considering cereal yields from mainly rainfed agriculture for the provinces with higher productivity. The main target is to develop a strategy to model drought risk on agriculture for wheat yield at a province level. In order to achieve this goal a combined assessment was made using a drought indicator (Standardized Precipitation Evapotranspiration Index, SPEI) to evaluate drought conditions together with a widely used vegetation index (Normalized Difference Vegetation Index, NDVI) to monitor vegetation activity. A correlation analysis between detrended wheat yield and SPEI was performed in order to assess the vegetation response to each time scale of drought occurrence and also identify the moment of the vegetative cycle when the crop yields are more vulnerable to drought conditions. The time scales and months of SPEI, together with the months of NDVI, better related with wheat yield were chosen to perform a multivariate regression analysis to simulate crop yield. Model results are satisfactory and highlighted the usefulness of such analysis in the framework of developing a drought risk model for crop yields. In terms of an operational point of view, the results aim to contribute to an improved understanding of crop yield management under dry conditions, particularly adding substantial information on the advantages of combining
Couralt, D.; Hadria, R.; Ruget, F.; Duchemin, B.; Hagolle, O.
2009-09-01
This study focused on the feasibility of using remote sensing data acquired at high spatial and temporal resolution (FORMOSAT-2 images(http://www.spotimage.fr/web/en/977--formosat-2-images.php) for crop monitoring at regional scale. The monitoring of agricultural practices such as grassland mowing and irrigation is essential to simulate accurately all processes related to crop system. This information is needed for example in crop simulation models to estimate production, water and fertilizer consumption and can thus serve to better understand the interactions between agriculture and climate. The analysis of these interactions is especially important in Mediterranean region where the effects of climate changes and crop management modifications are increasingly marked. In this context, an experiment was conducted in 2006 in Crau region in the South-Eastern France. In this area, permanent grassland represents 67 % of the usable agricultural area, and it is often used with irrigation (47 % of the permanent grassland). A time series of 36 FORMOSAT-2 images was acquired with a three days frequency from March to October 2006. Information concerning grassland mowing and irrigation was collected through a survey over 120 fields. The high FORMOSAT-2 revisit frequency allowed replicating the dynamics of Leaf Area index (LAI), and detecting to some extents cultural practices like vegetation cut. Simple automatic algorithms were developed to obtain daily values of LAI for each grasslands field linked with the main agricultural practices performed (cut and irrigation dates). This information was then used in a crop model called STICS (http://147.100.66.194/stics/) to estimate the spatial variability of evapotranspiration and drainage associated with the aerial biomass productions. Comparisons between simulated and observed yields gave satisfactory results. The great spatial variations of evapotranspiration were strongly related to the crop and water management. Such
Directory of Open Access Journals (Sweden)
Patrick D. SHAW
2010-08-01
Full Text Available Runoff or water yield is an important input to the Steady-State Water Chemistry (SSWC model for estimating critical loads of acidity. Herein, we present site-specific water yield estimates for a large number of lakes (779 across three provinces of western Canada (Manitoba, Saskatchewan, and British Columbia using an isotope mass balance (IMB approach. We explore the impact of applying site-specific hydrology as compared to use of regional runoff estimates derived from gridded datasets in assessing critical loads of acidity to these lakes. In general, the average water yield derived from IMB is similar to the long-term average runoff; however, IMB results suggest a much larger range in hydrological settings of the lakes, attributed to spatial heterogeneity in watershed characteristics and landcover. The comparison of critical loads estimates from the two methods suggests that use of average regional runoff data in the SSWC model may overestimate critical loads for the majority of lakes due to systematic skewness in the actual runoff distributions. Implications for use of site-specific hydrology in regional critical loads assessments across western Canada are discussed.
Buffalos milk yield analysis using random regression models
Directory of Open Access Journals (Sweden)
A.S. Schierholt
2010-02-01
Full Text Available Data comprising 1,719 milk yield records from 357 females (predominantly Murrah breed, daughters of 110 sires, with births from 1974 to 2004, obtained from the Programa de Melhoramento Genético de Bubalinos (PROMEBUL and from records of EMBRAPA Amazônia Oriental - EAO herd, located in Belém, Pará, Brazil, were used to compare random regression models for estimating variance components and predicting breeding values of the sires. The data were analyzed by different models using the Legendre’s polynomial functions from second to fourth orders. The random regression models included the effects of herd-year, month of parity date of the control; regression coefficients for age of females (in order to describe the fixed part of the lactation curve and random regression coefficients related to the direct genetic and permanent environment effects. The comparisons among the models were based on the Akaike Infromation Criterion. The random effects regression model using third order Legendre’s polynomials with four classes of the environmental effect were the one that best described the additive genetic variation in milk yield. The heritability estimates varied from 0.08 to 0.40. The genetic correlation between milk yields in younger ages was close to the unit, but in older ages it was low.
Estimation of Better Parent and Economic Heterosis for Yield and ...
African Journals Online (AJOL)
The extent of better parent heterosis for yield ranged from -31.14% (Dimtu x Tabor) to 114.1% (MAM-41 x Tabor). The maximum economic heterosis (60.58 %) was observed from the hybrid MAM-41 x Tabor .Significant (P<0.05 or P<0.01) better parent heterosis was also observed for yield-associated traits. Conclusions and ...
Similar estimates of temperature impacts on global wheat yield by three independent methods
DEFF Research Database (Denmark)
Liu, Bing; Asseng, Senthold; Müller, Christoph
2016-01-01
The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce......-method ensemble, it was possible to quantify ‘method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security....
Yield models for commercial willow biomass plantations in Sweden
Energy Technology Data Exchange (ETDEWEB)
Mola-Yudego, Blas [Faculty of Forestry, University of Joensuu, P.O. Box 111, FI-801 01 Joensuu (Finland); Aronsson, Paer [Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7016, S-750 07 Uppsala (Sweden)
2008-09-15
A yield model for willow plantations for bioenergy production in Sweden was developed based on recorded production of 2082 commercial plantations during the period 1989-2005. The model predicts yield for the first, second and third harvest using oats (avena) production as agro-climatic index. The mean annual yields were 2.6, 4.2 and 4.5 oven dry tonnes (odt) per hectare during the first, second and third cutting cycles, respectively. The yield correlated inversely with the length of the cutting cycle. The results of the study show significant differences between growers, which suggest the importance of proper management in the establishment and tending of the plantations. Model estimates for 25% of the best growers vary from 4.0 to 6.3 odt ha{sup -1} yr{sup -1} in 5-year-rotation plantations during the first cutting cycle, and from 5.4 to 7.1 odt ha{sup -1} yr{sup -1} in 4-year-rotations for the second cutting cycle. The proposed model can be applied in policy making and for management planning. (author)
Comparative Evaluation of Some Crop Yield Prediction Models ...
African Journals Online (AJOL)
(1982) to calibrate and test three of the existing yield prediction models using tropical cowpea yieldÐweather data. The models tested were Hanks Model (first and second versions). Stewart Model (first and second versions) and HallÐButcher Model. Three sets of cowpea yield-water use and weather data were collected.
Performance of a procedure for yield estimation in fruit orchards
DEFF Research Database (Denmark)
Aravena Zamora, Felipe; Potin, Camila; Wulfsohn, Dvora-Laio
. At harvest in the Fall, the fruit were counted to obtain the true yield. Yields ranged from lows of several thousand (grape bunches), to highs of more than 40 thousand fruit (apples, kiwis). In 11 orchards, true errors less than 10% were obtained. In two highly variable orchards we obtained absolute true...... errors of about 20%. An analysis based on systematic sub-sampling of sample data across each sampling stage was used to determine how to distribute sampling effort to acheive the desired precision....
Smith, T.; McLaughlin, D.
2017-12-01
Growing more crops to provide a secure food supply to an increasing global population will further stress land and water resources that have already been significantly altered by agriculture. The connection between production and resource use depends on crop yields and unit evapotranspiration (UET) rates that vary greatly, over both time and space. For regional and global analyses of food security it is appropriate to treat yield and UET as uncertain variables conditioned on climatic and soil properties. This study describes how probability distributions of these variables can be estimated by combining remotely sensed land use and evapotranspiration data with in situ agronomic and soils data, all available at different resolutions and coverages. The results reveal the influence of water and temperature stress on crop yield at large spatial scales. They also provide a basis for stochastic modeling and optimization procedures that explicitly account for uncertainty in the environmental factors that affect food production.
Estimation of heterosis for yield and quality components in chilli ...
African Journals Online (AJOL)
Ten genotypes including five lines (Kashi Anmol, Pant C-1, Japani Longi, Kashi Sinduri and Pusa Jwala) and five testers (R-Line, VR-339, AKC-89/38, DC-16 and Punjab Lal) of chilli were crossed to derive 25 F1 hybrids. The 35 genotypes (10 parents and 25 F1 hybrids) were evaluated for yield and quality (capsaicin and ...
Calculational estimations of neutron yield from ADS target
International Nuclear Information System (INIS)
Degtyarev, I.I.; Liashenko, O.A.; Yazynin, I.A.; Belyakov-Bodin, V.I.; Blokhin, A.I.
2002-01-01
Results of computational studies of high power spallation thick ADS (Accelerator-Driven System) targets with 0.8-1.2 GeV proton beams are given. Comparisons of experiments and calculations of double differential and integral n/p yield are also described. (author)
Sesame (Sesamum indicum L.) yield loss estimation with common ...
African Journals Online (AJOL)
ajl yemi
2011-11-14
Nov 14, 2011 ... 424 kg ha-1 at the 7 plant m-1 crop row of common cocklebur density in 2005 and 2006, respectively. Common cocklebur dry biomass per plant decreased as the weed density increased, while total weed dry biomass per meter of crop row increased with the weed density. The sesame yield was adversely.
Estimates of carrying capacity and production from herbage yields ...
African Journals Online (AJOL)
In a trial comprising 27 treatment combinations of fertilization and stocking rate under two systems of grazing, it appeared that animal production per unit area can be predicted from herbage yields and from grazing days. It was apparent, however, that the method, and consequent intensity, of utilization influenced the angle ...
Quantum molecular dynamics approach to estimate spallation yield ...
Indian Academy of Sciences (India)
Production of radioactive gases like tritium and other long-lived radiotoxic elements may require special radiation safety provisions. An important quantity in the design of a spallation source is the neutron cost, which involves the neutron yield and the running cost of the accelerator. This cost is inversely proportional to the ...
Location effect on heritability estimates of yield traits in mungbean ...
African Journals Online (AJOL)
Yomi
2011-12-21
Dec 21, 2011 ... More number of clusters plant-1 is an important yield component in mungbean breeding program. Combined analysis exhibited highly significant (P≤0.01) differences among the genotypes and locations; however, G×L interaction was significant (P≤0.05) for clusters plant-1. (Table 2). Analysis of variance ...
Experimental validation of in silico estimated biomass yields of Pseudomonas putida KT2440.
Hintermayer, Sarah Beate; Weuster-Botz, Dirk
2017-06-01
Pseudomonas putida is rapidly becoming a microbial cell platform for biotechnological applications. In order to understand genotype-phenotype relationships genome scale models represent helpful tools. However, the validation of in silico predictions of genome scale models is a task that is rarely performed. In this study the theoretical biomass yields of Pseudomonas putida KT2440 were estimated for 57 different carbon sources based on a genome scale stoichiometric model applying flux balance analysis. The batch growth of P. putida KT2440 with six individual carbon sources covering the range of maximal to minimal in silico biomass yields (acetate, glycerol, citrate, succinate, malate and methanol, respectively) was studied in a defined mineral medium in a fully controlled stirred-tank bioreactor on a 3 L scale. The highest growth rate of P. putida KT2440 was measured with succinate as carbon source (0.51 h -1 ). Among the 57 carbon sources tested, glycerol resulted in the highest estimated biomass yield (0.61 molC Biomass molC -1 Glycerol ) which was experimentally confirmed. The comparison of experimental determined biomass yields with a modified version of the model iJP815 showed deviations of only up to 10%. The experimental data generated in this study can also be used in future studies to further improve the genome scale models of P. putida KT2440. Improved models will then help to gain deeper insights in genotype-phenotype relationships. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimation of heterosis for yield and quality components in chilli ...
African Journals Online (AJOL)
Shashank
2013-11-20
Nov 20, 2013 ... Ten genotypes including five lines (Kashi Anmol, Pant C-1, Japani Longi, Kashi Sinduri and Pusa Jwala) and five testers (R-Line, VR-339, AKC-89/38, DC-16 and Punjab Lal) of chilli were crossed to derive 25 F1 hybrids. The 35 genotypes (10 parents and 25 F1 hybrids) were evaluated for yield and quality ...
Estimating agricultural yield gap in Africa using MODIS NDVI dataset
Luan, Y.; Zhu, W.; Luo, X.; Liu, J.; Cui, X.
2013-12-01
Global agriculture has undergone a period of rapid intensification characterized as 'Green Revolution', except for Africa, which is the region most affected by unreliable food access and undernourishment. Increasing crop production will be one of the most challenges and most effectual way to mitigate food insecurity there, as Africa's agricultural yield is on a much lower level comparing to global average. In this study we characterize cropland vegetation phenology in Africa based on MODIS NDVI time series between 2000 and 2012. Cumulated NDVI is a proxy for net primary productivity and used as an indicator for evaluating the potential yield gap in Africa. It is achieved via translating the gap between optimum attainable productivity level in each classification of cropping systems and actual productivity level by the relationship of cumulated NDVI and cereal-equivalent production. The results show most of cropland area in Africa have decreasing trend in cumulated NDVI, distributing in the Nile Delta, Eastern Africa and central of semi-arid to arid savanna area, except significant positive cumulated NDVI trends are mainly found between Senegal and Benin. Using cumulated NDVI and statistics of cereal equivalent production, we find remarkable potential yield gap at the Horn of East Africa (especially in Somalia), Northern Africa (Morocco, Algeria and Tunisia). Meanwhile, countries locating at the savanna area near Sahel desert and South Africa also show significant potential, though they already have a relatively high level of productivity. Our results can help provide policy recommendation for local government or NGO to tackle food security problems by identifying zones with high potential of yield improvement.
Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods
Liu, Bing; Asseng, Senthold; Muller, Christoph; Ewart, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.;
2016-01-01
The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.
Estimation of Better Parent and Economic Heterosis for Yield and ...
African Journals Online (AJOL)
SARAH
2013-11-30
Nov 30, 2013 ... ABSTRACT. Objective: A study to estimate better parent and economic heterosis in an 8x8 diallel crosses of common beans. (Phaseolus Vulgaris L.) was undertaken at Mandura, North Western Ethiopia. Methodology and Results: Eight parents and their 28 F1 diallel crosses were grown in a randomized ...
Soybean yield modeling using bootstrap methods for small samples
Energy Technology Data Exchange (ETDEWEB)
Dalposso, G.A.; Uribe-Opazo, M.A.; Johann, J.A.
2016-11-01
One of the problems that occur when working with regression models is regarding the sample size; once the statistical methods used in inferential analyzes are asymptotic if the sample is small the analysis may be compromised because the estimates will be biased. An alternative is to use the bootstrap methodology, which in its non-parametric version does not need to guess or know the probability distribution that generated the original sample. In this work we used a set of soybean yield data and physical and chemical soil properties formed with fewer samples to determine a multiple linear regression model. Bootstrap methods were used for variable selection, identification of influential points and for determination of confidence intervals of the model parameters. The results showed that the bootstrap methods enabled us to select the physical and chemical soil properties, which were significant in the construction of the soybean yield regression model, construct the confidence intervals of the parameters and identify the points that had great influence on the estimated parameters. (Author)
Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee.
Directory of Open Access Journals (Sweden)
Rolando Cerda
Full Text Available The assessment of crop yield losses is needed for the improvement of production systems that contribute to the incomes of rural families and food security worldwide. However, efforts to quantify yield losses and identify their causes are still limited, especially for perennial crops. Our objectives were to quantify primary yield losses (incurred in the current year of production and secondary yield losses (resulting from negative impacts of the previous year of coffee due to pests and diseases, and to identify the most important predictors of coffee yields and yield losses. We established an experimental coffee parcel with full-sun exposure that consisted of six treatments, which were defined as different sequences of pesticide applications. The trial lasted three years (2013-2015 and yield components, dead productive branches, and foliar pests and diseases were assessed as predictors of yield. First, we calculated yield losses by comparing actual yields of specific treatments with the estimated attainable yield obtained in plots which always had chemical protection. Second, we used structural equation modeling to identify the most important predictors. Results showed that pests and diseases led to high primary yield losses (26% and even higher secondary yield losses (38%. We identified the fruiting nodes and the dead productive branches as the most important and useful predictors of yields and yield losses. These predictors could be added in existing mechanistic models of coffee, or can be used to develop new linear mixed models to estimate yield losses. Estimated yield losses can then be related to production factors to identify corrective actions that farmers can implement to reduce losses. The experimental and modeling approaches of this study could also be applied in other perennial crops to assess yield losses.
Automatically determining lag phase in grapes to assist yield estimation practices
Estimating grapevine yield is an important though often difficult task. Accurate yield projections ensure that enough physical infrastructure is available to process fruit that cannot be stored for later handling. Crop estimation is based on recording cluster numbers and cluster weights of represent...
Directory of Open Access Journals (Sweden)
M. Kargar
2014-12-01
Full Text Available Soil erosion and sediment production are among most important problems in developing countries including Iran. In this study it has been endeavored that applicability of four (AOF, MUSLE-S, MUSLT and USLE-M models is investigated in Srfiddasht Research Site, Semnan province, at event scale to estimate the sediment. For this, all required variables and inputs of the model have been calculated in the watershed and the estimations from considering statistical models with measured sediments of 15 cloudbursts have been compared. The results for t-student correlation test showed that there is no significant difference (at 1% between MUSLT, MUSLE-S models and measured sediment. Based on these, it can be said that in this study, the results from these two models have higher accuracies to estimate the sediment from cloudbursts than other methods. Also, the results of evaluation and efficiency of the model using Nash-Suttcliffe criterion and root relative mean squared error (RRMSE statistic showed that MUSLE-S and MUSLT models have higher efficiencies than other models and inefficiencies of USLE-M and AOF models to estimate sediments from cloudburst have been confirmed in the studied research station in this study.
Directory of Open Access Journals (Sweden)
Xiaojun Liu
2017-10-01
Full Text Available Canopy chlorophyll density (Chl has a pivotal role in diagnosing crop growth and nutrition status. The purpose of this study was to develop Chl based models for estimating N status and predicting grain yield of rice (Oryza sativa L. with Leaf area index (LAI and Chlorophyll concentration of the upper leaves. Six field experiments were conducted in Jiangsu Province of East China during 2007, 2008, 2009, 2013, and 2014. Different N rates were applied to generate contrasting conditions of N availability in six Japonica cultivars (9915, 27123, Wuxiangjing 14, Wuyunjing 19, Yongyou 8, and Wuyunjing 24 and two Indica cultivars (Liangyoupei 9, YLiangyou 1. The SPAD values of the four uppermost leaves and LAI were measured from tillering to flowering growth stages. Two N indicators, leaf N accumulation (LNA and plant N accumulation (PNA were measured. The LAI estimated by LAI-2000 and LI-3050C were compared and calibrated with a conversion equation. A linear regression analysis showed significant relationships between Chl value and N indicators, the equations were as follows: PNA = (0.092 × Chl − 1.179 (R2 = 0.94, P < 0.001, relative root mean square error (RRMSE = 0.196, LNA = (0.052 × Chl − 0.269 (R2 = 0.93, P < 0.001, RRMSE = 0.185. Standardized method was used to quantity the correlation between Chl value and grain yield, normalized yield = (0.601 × normalized Chl + 0.400 (R2 = 0.81, P < 0.001, RRMSE = 0.078. Independent experimental data also validated the use of Chl value to accurately estimate rice N status and predict grain yield.
Directory of Open Access Journals (Sweden)
Michele Meroni
2013-01-01
Full Text Available Multitemporal optical remote sensing constitutes a useful, cost efficient method for crop status monitoring over large areas. Modelers interested in yield monitoring can rely on past and recent observations of crop reflectance to estimate aboveground biomass and infer the likely yield. Therefore, in a framework constrained by information availability, remote sensing data to yield conversion parameters are to be estimated. Statistical models are suitable for this purpose, given their ability to deal with statistical errors. This paper explores the performance in yield estimation of various remote sensing indicators based on varying degrees of bio-physical insight, in interaction with statistical methods (linear regressions that rely on different hypotheses. Performances in estimating the temporal and spatial variability of yield, and implications of data scarcity in both dimensions are investigated. Jackknifed results (leave one year out are presented for the case of wheat yield regional estimation in Tunisia using the SPOT-VEGETATION instrument. Best performances, up to 0.8 of R2, are achieved using the most physiologically sound remote sensing indicator, in conjunction with statistical specifications allowing for parsimonious spatial adjustment of the parameters.
Rahayu, A. P.; Hartatik, T.; Purnomoadi, A.; Kurnianto, E.
2018-02-01
The aims of this study were to estimate 305 day first lactation milk yield of Indonesian Holstein cattle from cumulative monthly and bimonthly test day records and to analyze its accuracy.The first lactation records of 258 dairy cows from 2006 to 2014 consisted of 2571 monthly (MTDY) and 1281 bimonthly test day yield (BTDY) records were used. Milk yields were estimated by regression method. Correlation coefficients between actual and estimated milk yield by cumulative MTDY were 0.70, 0.78, 0.83, 0.86, 0.89, 0.92, 0.94 and 0.96 for 2-9 months, respectively, meanwhile by cumulative BTDY were 0.69, 0.81, 0.87 and 0.92 for 2, 4, 6 and 8 months, respectively. The accuracy of fitting regression models (R2) increased with the increasing in the number of cumulative test day used. The used of 5 cumulative MTDY was considered sufficient for estimating 305 day first lactation milk yield with 80.6% accuracy and 7% error percentage of estimation. The estimated milk yield from MTDY was more accurate than BTDY by 1.1 to 2% less error percentage in the same time.
Comparative Evaluation of Some Crop Yield Prediction Models ...
African Journals Online (AJOL)
A computer program was adopted from the work of Hill et al. (1982) to calibrate and test three of the existing yield prediction models using tropical cowpea yieldÐweather data. The models tested were Hanks Model (first and second versions). Stewart Model (first and second versions) and HallÐButcher Model. Three sets of ...
Estimates of fission yields in nuclear criticality excursions
International Nuclear Information System (INIS)
Choi, J.S.; Thompson, J.W.; Reed, R.
1995-06-01
There is a need for computer simulation of hypothetical criticality excursions involving significant quantities of fissionable materials, especially in fissile aqueous system. The need arises due to the requirements for the emergency planning of facilities where the fissionable materials are handled, processed, or stored; and the regulatory requirements associated with facility operation or conversion. It is proposed here that a data base of fission yeilds for critical experiments and known accidents (both aqueous and solid) should be generated by using existing or new computer codes. The success in compiling this data base would provide useful source-terms for criticality excursions, realistic estimates of emergency-response boundary, as well as a replacement for the ''rule-of-thumb'' or ''bounding'' method. 10 refs
Crop yield, genetic parameter estimation and selection of sacha inchi in central Amazon
Directory of Open Access Journals (Sweden)
Mágno Sávio Ferreira Valente
2017-06-01
Full Text Available In Brazil, sacha inchi oil is produced by hand from plant materials with no breeding or detailed information about the chemical composition of seeds. In addition, most of the current information on the agronomic traits of this species originates from research carried out in the Peruvian Amazon. In order to promote the research and cultivation of sacha inchi in the Brazilian territory, this study aimed to analyze, in the central Amazon region, different accessions of this oilseed for characteristics of production and quality of fruits and seeds, as well as to estimate genetic parameters, through mixed models, with identification of superior accessions, for breeding purposes. A total of 37 non-domesticated accessions were evaluated in a randomized block design, with five replications and two plants per plot. The average oil content in seeds was 29.07 % and unsaturated fatty acids amounted to 91.5 % of the total fat content. For the yield traits, the estimates of individual broad-sense heritability were moderate (~0.33, while the heritability based on the average of progenies resulted in a selective accuracy of approximately 0.85. The use of the selection index provided simultaneous gains for yield traits (> 40 % and oil yield. A high genetic variability was observed for the main traits of commercial interest for the species, as well as promising perspectives for the development of superior varieties for agro-industrial use.
Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates
Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe;
2017-01-01
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
Mathematical optimization approach for estimating the quantum yield distribution of a photochromic reaction in a polymer
Directory of Open Access Journals (Sweden)
Mirai Tanaka
2017-01-01
Full Text Available The convolution of a series of events is often observed for a variety of phenomena such as the oscillation of a string. A photochemical reaction of a molecule is characterized by a time constant, but materials in the real world contain several molecules with different time constants. Therefore, the kinetics of photochemical reactions of the materials are usually observed with a complexity comparable with those of theoretical kinetic equations. Analysis of the components of the kinetics is quite important for the development of advanced materials. However, with a limited number of exceptions, deconvolution of the observed kinetics has not yet been mathematically solved. In this study, we propose a mathematical optimization approach for estimating the quantum yield distribution of a photochromic reaction in a polymer. In the proposed approach, time-series data of absorbances are acquired and an estimate of the quantum yield distribution is obtained. To estimate the distribution, we solve a mathematical optimization problem to minimize the difference between the input data and a model. This optimization problem involves a differential equation constrained on a functional space as the variable lies in the space of probability distribution functions and the constraints arise from reaction rate equations. This problem can be reformulated as a convex quadratic optimization problem and can be efficiently solved by discretization. Numerical results are also reported here, and they verify the effectiveness of our approach.
Hodrius, M.; Migdall, S.; Bach, H.; Hank, T.
2015-04-01
Yield Maps are a basic information source for site-specific farming. For sugar beet they are not available as in-situ measurements. This gap of information can be filled with Earth Observation (EO) data in combination with a plant growth model (PROMET) to improve farming and harvest management. The estimation of yield based on optical satellite imagery and crop growth modelling is more challenging for sugar beet than for other crop types since the plants' roots are harvested. These are not directly visible from EO. In this study, the impact of multi-sensor data assimilation on the yield estimation for sugar beet is evaluated. Yield and plant growth are modelled with PROMET. This multi-physics, raster-based model calculates photosynthesis and crop growth based on the physiological processes in the plant, including the distribution of biomass into the different plant organs (roots, stem, leaves and fruit) at different phenological stages. The crop variable used in the assimilation is the green (photosynthetically active) leaf area, which is derived as spatially heterogeneous input from optical satellite imagery with the radiative transfer model SLC (Soil-Leaf-Canopy). Leaf area index was retrieved from RapidEye, Landsat 8 OLI and Landsat 7 ETM+ data. It could be shown that the used methods are very suitable to derive plant parameters time-series with different sensors. The LAI retrievals from different sensors are quantitatively compared to each other. Results for sugar beet yield estimation are shown for a test-site in Southern Germany. The validation of the yield estimation for the years 2012 to 2014 shows that the approach reproduced the measured yield on field level with high accuracy. Finally, it is demonstrated through comparison of different spatial resolutions that small-scale in-field variety is modelled with adequate results at 20 m raster size, but the results could be improved by recalculating the assimilation at a finer spatial resolution of 5 m.
Directory of Open Access Journals (Sweden)
Davinia Font
2015-04-01
Full Text Available This paper presents a method for vineyard yield estimation based on the analysis of high-resolution images obtained with artificial illumination at night. First, this paper assesses different pixel-based segmentation methods in order to detect reddish grapes: threshold based, Mahalanobis distance, Bayesian classifier, linear color model segmentation and histogram segmentation, in order to obtain the best estimation of the area of the clusters of grapes in this illumination conditions. The color spaces tested were the original RGB and the Hue-Saturation-Value (HSV. The best segmentation method in the case of a non-occluded reddish table-grape variety was the threshold segmentation applied to the H layer, with an estimation error in the area of 13.55%, improved up to 10.01% by morphological filtering. Secondly, after segmentation, two procedures for yield estimation based on a previous calibration procedure have been proposed: (1 the number of pixels corresponding to a cluster of grapes is computed and converted directly into a yield estimate; and (2 the area of a cluster of grapes is converted into a volume by means of a solid of revolution, and this volume is converted into a yield estimate; the yield errors obtained were 16% and −17%, respectively.
Font, Davinia; Tresanchez, Marcel; Martínez, Dani; Moreno, Javier; Clotet, Eduard; Palacín, Jordi
2015-01-01
This paper presents a method for vineyard yield estimation based on the analysis of high-resolution images obtained with artificial illumination at night. First, this paper assesses different pixel-based segmentation methods in order to detect reddish grapes: threshold based, Mahalanobis distance, Bayesian classifier, linear color model segmentation and histogram segmentation, in order to obtain the best estimation of the area of the clusters of grapes in this illumination conditions. The color spaces tested were the original RGB and the Hue-Saturation-Value (HSV). The best segmentation method in the case of a non-occluded reddish table-grape variety was the threshold segmentation applied to the H layer, with an estimation error in the area of 13.55%, improved up to 10.01% by morphological filtering. Secondly, after segmentation, two procedures for yield estimation based on a previous calibration procedure have been proposed: (1) the number of pixels corresponding to a cluster of grapes is computed and converted directly into a yield estimate; and (2) the area of a cluster of grapes is converted into a volume by means of a solid of revolution, and this volume is converted into a yield estimate; the yield errors obtained were 16% and −17%, respectively. PMID:25860071
Verbyla, Klara L; Verbyla, Arunas P
2009-11-05
For dairy producers, a reliable description of lactation curves is a valuable tool for management and selection. From a breeding and production viewpoint, milk yield persistency and total milk yield are important traits. Understanding the genetic drivers for the phenotypic variation of both these traits could provide a means for improving these traits in commercial production. It has been shown that Natural Cubic Smoothing Splines (NCSS) can model the features of lactation curves with greater flexibility than the traditional parametric methods. NCSS were used to model the sire effect on the lactation curves of cows. The sire solutions for persistency and total milk yield were derived using NCSS and a whole-genome approach based on a hierarchical model was developed for a large association study using single nucleotide polymorphisms (SNP). Estimated sire breeding values (EBV) for persistency and milk yield were calculated using NCSS. Persistency EBV were correlated with peak yield but not with total milk yield. Several SNP were found to be associated with both traits and these were used to identify candidate genes for further investigation. NCSS can be used to estimate EBV for lactation persistency and total milk yield, which in turn can be used in whole-genome association studies.
Directory of Open Access Journals (Sweden)
S. M. Hsu
2012-06-01
Full Text Available A comprehensive approach estimating sediment yield from a watershed is needed to develop better measures for mitigating sediment disasters and assessing downstream impacts. In the present study, an attempt has been made to develop an integrated method, considering sediment supplies associated with soil erosion, shallow landslide and debris flow to estimate sediment yield from a debris-flow-prone watershed on a storm event basis. The integrated method is based on the HSPF and TRIGRS models for predicting soil erosion and shallow landslide sediment yield, and the FLO-2D model for calculating debris flow sediment yield. The proposed method was applied to potential debris-flow watersheds located in the Sioulin Township of Hualien County. The available data such as hourly rainfall data, historical streamflow and sediment records as well as event-based landslide inventory maps have been used for model calibration and validation. Results for simulating sediment yield have been confirmed by comparisons of observed data from several typhoon events. The verified method employed a 24-h design hyetograph with the 100-yr return period to simulate sediment yield within the study area. The results revealed that the influence of shallow landslides on sediment supply as compared with soil erosion was significant. The estimate of landslide transport capacity into a main channel indicated the sediment delivery ratio on a typhoon event basis was approximately 38.4%. In addition, a comparison of sediment yields computed from occurrence and non-occurrence of debris flow scenarios showed that the sediment yield from an occurrence condition was found to be increasing at about 14.2 times more than estimated under a non-occurrence condition. This implied watershed sediment hazard induced by debris flow may cause severe consequences.
Validation of crop weather models for crop assessment arid yield ...
African Journals Online (AJOL)
IRSIS and CRPSM models were used in this study to see how closely they could predict grain yields for selected stations in Tanzania. Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, ...
Experimental formulas and curves for estimating reactivity loss and radio-isotope yields on HWRR
International Nuclear Information System (INIS)
Liu Xi Zhi; Zhu HuanNan
1999-01-01
Based on the elemental conception of reactor physics and experiments on HWRR for years. A set of experimental formulas and curves has been got, which can be used to estimate reactivity loss and radio isotopes yield. (author)
Methods of statistical model estimation
Hilbe, Joseph
2013-01-01
Methods of Statistical Model Estimation examines the most important and popular methods used to estimate parameters for statistical models and provide informative model summary statistics. Designed for R users, the book is also ideal for anyone wanting to better understand the algorithms used for statistical model fitting. The text presents algorithms for the estimation of a variety of regression procedures using maximum likelihood estimation, iteratively reweighted least squares regression, the EM algorithm, and MCMC sampling. Fully developed, working R code is constructed for each method. Th
Yield trend estimation in the presence of non-constant technological change and weather effects
Conradt, S.; Bokusheva, R.; Finger, R.; Kussaiynov, T.
2012-01-01
The application of yield time series in risk analysis prerequisites the estimation of technological trend which might be present in the data. In this paper, we show that in presence of highly volatile yield time series and non-constant technology, the consideration of the weather effect in the trend
A Model for Quantifying Sources of Variation in Test-day Milk Yield ...
African Journals Online (AJOL)
A cow's test-day milk yield is influenced by several systematic environmental effects, which have to be removed when estimating the genetic potential of an animal. The present study quantified the variation due to test date and month of test in test-day lactation yield records using full and reduced models. The data consisted ...
Patel, Parul; Srivastava, Hari Shanker; Navalgund, Ranganath R.
2006-12-01
In this paper an attempt to model wheat yield is made by exploiting characteristic interaction of cross-polarised SAR with wheat crop. SAR backscatter from a crop field is affected by the density, structure, volume and the moisture content of various components of plant (viz. head, stem, leaf) alongwith soil moisture. Hence, to effectively handle the influence of each of these components of the plant on SAR backscatter, a plant parameter, termed as Interaction Factor (IF) is conceptualised by combining volume, moisture, height for each of the component and density of plant. For this purpose, detailed experiment over farmers' fields was carried out in synchrony with SAR acquisition involving in-depth measurements on volume, moisture content and height of various components of wheat plant, number of grains, plant density and soil moisture. Stepwise regression analysis revealed that IF Head significantly affects the shallow incidence angle, cross-polarised C-band SAR backscatter. IF Head is also highly correlated to the number of grains. This is attributed to the fact that parameters of the wheat head from which IF Head is calculated, namely moisture, volume and height, determine eventual number of grains. The study offers an approach for estimating wheat yield by retrieving number of grains from shallow incidence angle cross-polarised SAR data.
Estimates of the relative specific yield of aquifers from geo-electrical ...
African Journals Online (AJOL)
This paper discusses a method of estimating aquifer specific yield based on surface resistivity sounding measurements supplemented with data on water conductivity. The practical aim of the method is to suggest a parallel low cost method of estimating aquifer properties. The starting point is the Archie's law, which relates ...
Johnson, D. M.; Dorn, M. F.; Crawford, C.
2015-12-01
Since the dawn of earth observation imagery, particularly from systems like Landsat and the Advanced Very High Resolution Radiometer, there has been an overarching desire to regionally estimate crop production remotely. Research efforts integrating space-based imagery into yield models to achieve this need have indeed paralleled these systems through the years, yet development of a truly useful crop production monitoring system has been arguably mediocre in coming. As a result, relatively few organizations have yet to operationalize the concept, and this is most acute in regions of the globe where there are not even alternative sources of crop production data being collected. However, the National Agricultural Statistics Service (NASS) has continued to push for this type of data source as a means to complement its long-standing, traditional crop production survey efforts which are financially costly to the government and create undue respondent burden on farmers. Corn and soybeans, the two largest field crops in the United States, have been the focus of satellite-based production monitoring by NASS for the past decade. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been seen as the most pragmatic input source for modeling yields primarily based on its daily revisit capabilities and reasonable ground sample resolution. The research methods presented here will be broad but provides a summary of what is useful and adoptable with satellite imagery in terms of crop yield estimation. Corn and soybeans will be of particular focus but other major staple crops like wheat and rice will also be presented. NASS will demonstrate that while MODIS provides a slew of vegetation related products, the traditional normalized difference vegetation index (NDVI) is still ideal. Results using land surface temperature products, also generated from MODIS, will also be shown. Beyond the MODIS data itself, NASS research has also focused efforts on understanding a
DEFF Research Database (Denmark)
Diouf, Abdoul Aziz; Hiernaux, Pierre; Brandt, Martin Stefan
2016-01-01
Quantitative estimates of forage availability at the end of the growing season in rangelands are helpful for pastoral livestock managers and for local, national and regional stakeholders in natural resource management. For this reason, remote sensing data such as the Fraction of Absorbed Photosyn......Quantitative estimates of forage availability at the end of the growing season in rangelands are helpful for pastoral livestock managers and for local, national and regional stakeholders in natural resource management. For this reason, remote sensing data such as the Fraction of Absorbed...... evapotranspiration satellite gridded data to estimate the annual herbaceous yield in the semi-arid areas of Senegal. It showed that a machine-learning model combining FAPAR seasonal metrics with various agrometeorological data provided better estimations of the in situ annual herbaceous yield (R2 = 0.69; RMSE = 483...
ZNJPrice/Earnings Ratio Model through Dividend Yield and Required Yield Above Expected Inflation
Directory of Open Access Journals (Sweden)
Emil Mihalina
2010-07-01
Full Text Available Price/earnings ratio is the most popular and most widespread evaluation model used to assess relative capital asset value on financial markets. In functional terms, company earnings in the very long term can be described with high significance. Empirically, it is visible from long-term statistics that the demanded (required yield on capital markets has certain regularity. Thus, investors first require a yield above the stable inflation rate and then a dividend yield and a capital increase caused by the growth of earnings that influence the price, with the assumption that the P/E ratio is stable. By combining the Gordon model for current dividend value, the model of market capitalization of earnings (price/earnings ratio and bearing in mind the influence of the general price levels on company earnings, it is possible to adjust the price/earnings ratio by deriving a function of the required yield on capital markets measured by a market index through dividend yield and inflation rate above the stable inflation rate increased by profit growth. The S&P 500 index for example, has in the last 100 years grown by exactly the inflation rate above the stable inflation rate increased by profit growth. The comparison of two series of price/earnings ratios, a modelled one and an average 7-year ratio, shows a notable correlation in the movement of two series of variables, with a three year deviation. Therefore, it could be hypothesized that three years of the expected inflation level, dividend yield and profit growth rate of the market index are discounted in the current market prices. The conclusion is that, at the present time, the relationship between the adjusted average price/earnings ratio and its effect on the market index on one hand and the modelled price/earnings ratio on the other can clearly show the expected dynamics and course in the following period.
Carlos A. Gonzalez-Benecke; Salvador A. Gezan; Daniel J. Leduc; Timothy A. Martin; Wendell P. Cropper Jr; Lisa J Samuelson
2012-01-01
Longleaf pine (Pinus palustris Mill.) is an important tree species of the southeast U.S. Currently there is no comprehensive stand-level growth and yield model for the species. The model system described here estimates site index (SI) if dominant height (Hdom) and stand age are known (inversely, the model can project H
Modelling of seed yield and its components in tall fescue ( Festuca ...
African Journals Online (AJOL)
Ridge regression analysis was used to derive a steady algorithmic model that related Z to the five components; Y1 to Y5. This model can estimate Z precisely from the values of these components. Furthermore, an approach based on the exponents of the algorithmic model could be applied to the selection for high seed yield ...
International Nuclear Information System (INIS)
Liang Tao; Jia Xinzhang
2012-01-01
The problem of yield estimation merely from performance test data of qualified semiconductor devices is studied. An empirical formula is presented to calculate the yield directly by the sample mean and standard deviation of singly truncated normal samples based on the theoretical relation between process capability indices and the yield. Firstly, we compare four commonly used normality tests under different conditions, and simulation results show that the Shapiro—Wilk test is the most powerful test in recognizing singly truncated normal samples. Secondly, the maximum likelihood estimation method and the empirical formula are compared by Monte Carlo simulation. The results show that the simple empirical formulas can achieve almost the same accuracy as the maximum likelihood estimation method but with a much lower amount of calculations when estimating yield from singly truncated normal samples. In addition, the empirical formula can also be used for doubly truncated normal samples when some specific conditions are met. Practical examples of yield estimation from academic and IC test data are given to verify the effectiveness of the proposed method. (semiconductor integrated circuits)
Directory of Open Access Journals (Sweden)
C. Adati
2006-01-01
Full Text Available As plantas daninhas acarretam reduções no rendimento das culturas agrícolas. Os modelos matemáticos de estimativa de perda de rendimento na cultura devido à interferência dessas plantas podem ser instrumentos úteis à tomada de decisão de manejo. Se for possível prever as perdas de rendimento, será possível decidir se é viável ou não a aplicação de uma medida de controle. Há na literatura vários modelos matemáticos empíricos de regressão lineares, não-lineares e polinomiais usados para estimar as perdas de rendimento devido às plantas daninhas. O presente trabalho teve como objetivo apresentar uma análise dos modelos matemáticos presentes na literatura utilizados para estimar as perdas de rendimento que as plantas daninhas acarretam à cultura, considerando o ajuste matemático às observações e a descrição biológica do comportamento dessas perdas.The presence of weeds in any production system involving plants causes crop yield losses. Mathematical models for crop yield loss estimation due to the interference of weeds can be useful tools for decision-making management strategies. If it is possible to predict crop yield loss, it will be possible to decide whether it is viable to apply control measures. There are several empirical models in the literature used to estimate crop yield loss due to the presence of weeds, which are linear, non linear and polynomial. The goal of this work is to present an analysis of the existing mathematical models used to estimate crop yield loss due to weeds by considering both their mathematical fit and biological behavior.
Asymptotic Optimality of Estimating Function Estimator for CHARN Model
Directory of Open Access Journals (Sweden)
Tomoyuki Amano
2012-01-01
Full Text Available CHARN model is a famous and important model in the finance, which includes many financial time series models and can be assumed as the return processes of assets. One of the most fundamental estimators for financial time series models is the conditional least squares (CL estimator. However, recently, it was shown that the optimal estimating function estimator (G estimator is better than CL estimator for some time series models in the sense of efficiency. In this paper, we examine efficiencies of CL and G estimators for CHARN model and derive the condition that G estimator is asymptotically optimal.
Predicting the Yield Stress of SCC using Materials Modelling
DEFF Research Database (Denmark)
Thrane, Lars Nyholm; Hasholt, Marianne Tange; Pade, Claus
2005-01-01
A conceptual model for predicting the Bingham rheological parameter yield stress of SCC has been established. The model used here is inspired by previous work of Oh et al. (1), predicting that the yield stress of concrete relative to the yield stress of paste is a function of the relative thickne...... and distribution were varied between SCC types. The results indicate that yield stress of SCC may be predicted using the model.......A conceptual model for predicting the Bingham rheological parameter yield stress of SCC has been established. The model used here is inspired by previous work of Oh et al. (1), predicting that the yield stress of concrete relative to the yield stress of paste is a function of the relative thickness...... of excess paste around the aggregate. The thickness of excess paste is itself a function of particle shape, particle size distribution, and particle packing. Seven types of SCC were tested at four different excess paste contents in order to verify the conceptual model. Paste composition and aggregate shape...
Regional crop gross primary production and yield estimation using fused Landsat-MODIS data
He, M.; Kimball, J. S.; Maneta, M. P.; Maxwell, B. D.; Moreno, A.
2017-12-01
Accurate crop yield assessments using satellite-based remote sensing are of interest for the design of regional policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations are generally too coarse to capture cropland heterogeneity. Merging information from sensors with reciprocal spatial and temporal resolution can improve the accuracy of these retrievals. In this study, we estimate annual crop yields for seven important crop types -alfalfa, barley, corn, durum wheat, peas, spring wheat and winter wheat over Montana, United States (U.S.) from 2008 to 2015. Yields are estimated as the product of gross primary production (GPP) and a crop-specific harvest index (HI) at 30 m spatial resolution. To calculate GPP we used a modified form of the MOD17 LUE algorithm driven by a 30 m 8-day fused NDVI dataset constructed by blending Landsat (5 or 7) and MODIS Terra reflectance data. The fused 30-m NDVI record shows good consistency with the original Landsat and MODIS data, but provides better spatiotemporal information on cropland vegetation growth. The resulting GPP estimates capture characteristic cropland patterns and seasonal variations, while the estimated annual 30 m crop yield results correspond favorably with county-level crop yield data (r=0.96, p<0.05). The estimated crop yield performance was generally lower, but still favorable in relation to field-scale crop yield surveys (r=0.42, p<0.01). Our methods and results are suitable for operational applications at regional scales.
Top ten models constrained by b {yields} s{gamma}
Energy Technology Data Exchange (ETDEWEB)
Hewett, J.L. [Stanford Univ., CA (United States)
1994-12-01
The radiative decay b {yields} s{gamma} is examined in the Standard Model and in nine classes of models which contain physics beyond the Standard Model. The constraints which may be placed on these models from the recent results of the CLEO Collaboration on both inclusive and exclusive radiative B decays is summarized. Reasonable bounds are found for the parameters in some cases.
Graphical user interface for yield and dose estimations for cyclotron-produced technetium
Hou, X.; Vuckovic, M.; Buckley, K.; Bénard, F.; Schaffer, P.; Ruth, T.; Celler, A.
2014-07-01
The cyclotron-based 100Mo(p,2n)99mTc reaction has been proposed as an alternative method for solving the shortage of 99mTc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with 99mTc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced 99mTc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.
Multilevel systematic sampling to estimate total fruit number for yield forecasts
DEFF Research Database (Denmark)
Wulfsohn, Dvora-Laio; Zamora, Felipe Aravena; Tellez, Camilla Potin
2012-01-01
procedure for unbiased estimation of fruit number for yield forecasts. In the Spring of 2009 we estimated the total number of fruit in several rows of each of 14 commercial fruit orchards growing apple (11 groves), kiwifruit (two groves), and table grapes (one grove) in central Chile. Survey times were 10......-100 min for apples (depending on vigour), 85 min for the table grapes, and 85 and 150 min for the kiwifruit. During harvest in the Fall, the fruit were counted to obtain the true number. Yields ranged from lows of several thousand (grape bunches), to highs of more than 40 000 fruit (apples, kiwifruit...
Directory of Open Access Journals (Sweden)
Jianping Qian
Full Text Available ABSTRACT: Apple yield estimation using a smartphone with image processing technology offers advantages such as low cost, quick access and simple operation. This article proposes distribution framework consisting of the acquisition of fruit tree images, yield prediction in smarphone client, data processing and model calculation in server client for estimating the potential fruit yield. An image processing method was designed including the core steps of image segmentation with R/B value combined with V value and circle-fitting using curvature analysis. This method enabled four parameters to be obtained, namely, total identified pixel area (TP, fitting circle amount (FC, average radius of the fitting circle (RC and small polygon pixel area (SP. A individual tree yield estimation model on an ANN (Artificial Neural Network was developed with three layers, four input parameters, 14 hidden neurons, and one output parameter. The system was used on an experimental Fuji apple (Malus domestica Borkh. cv. Red Fuji orchard. Twenty-six tree samples were selected from a total of 80 trees according to the multiples of the number three for the establishment model, whereby 21 groups of data were trained and 5 groups o data were validated. The R2 value for the training datasets was 0.996 and the relative root mean squared error (RRMSE value 0.063. The RRMSE value for the validation dataset was 0.284 Furthermore, a yield map with 80 apple trees was generated, and the space distribution o the yield was identified. It provided appreciable decision support for site-specific management.
Directory of Open Access Journals (Sweden)
Roderick HAZEWINKEL
2010-08-01
Full Text Available Stable isotopes of water were applied to estimate water yield to fifty lakes in northeastern Alberta as part of an acid sensitivity study underway since 2002 in the Athabasca Oil Sands Region (AOSR. Herein, we apply site-specific water yields for each lake to calculate critical loads of acidity using water chemistry data and a steady-state water chemistry model. The main goal of this research was to improve site-specific critical load estimates and to understand the sensitivity to hydrologic variability across a Boreal Plains region under significant oil sands development pressure. Overall, catchment water yields were found to vary significantly over the seven year monitoring period, with distinct variations among lakes and between different regions, overprinted by inter-annual climate-driven shifts. Analysis of critical load estimates based on site-specific water yields suggests that caution must be applied to establish hydrologic conditions and define extremes at specific sites in order to protect more sensitive ecosystems. In general, lakes with low (high water yield tended to be more (less acid sensitive but were typically less (more affected by interannual hydrological variations. While it has been customary to use long-term water yields to define a static critical load for lakes, we find that spatial and temporal variability in water yield may limit effectiveness of this type of assessment in areas of the Boreal Plain characterized by heterogeneous runoff and without a long-term lake-gauging network. Implications for predicting acidification risk are discussed for the AOSR.
Modeling the effects of ozone on soybean growth and yield.
Kobayashi, K; Miller, J E; Flagler, R B; Heck, W W
1990-01-01
A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.
Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials
Barghouty, Abdulmasser F.; Adams, James H., Jr.
2008-01-01
At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.
Top ten models constrained by b {yields} s{gamma}
Energy Technology Data Exchange (ETDEWEB)
Hewett, J.L.
1994-05-01
The radiative decay b {yields} s{gamma} is examined in the Standard Model and in nine classes of models which contain physics beyond the Standard Model. The constraints which may be placed on these models from the recent results of the CLEO Collaboration on both inclusive and exclusive radiative B decays is summarized. Reasonable bounds are found the parameters in some of the models.
Performance evaluation of selected crop yield-water use models for wheat crop
Directory of Open Access Journals (Sweden)
H. E. Igbadun
2001-10-01
Full Text Available Crop yield-water use models that provide useful information about the exact form of crop response to different amounts of water used by the crop throughout its growth stages and those that provide adequate information for decisions on optimal use of water in the farm were evaluated. Three crop yield models: Jensen (1968, Minhas et al., (1974 and Bras and Cordova (1981 additive type models were studied. Wheat (Triticum aestivum was planted at the Institute for Agricultural Research Farm during the 1995/96 and 1996/97 irrigation seasons of November to March. The data collected from the field experiments during the 1995/96 planting season were used to calibrate the models and their stress sensitivity factors estimated for four selected growth stages of the wheat crop. The ability of the model to predict grain yield of wheat with the estimated stress sensitivity factors was evaluated by comparing predicted grain yields by each model with those obtained in the field during the 1996/97 season. The three models performed fairly well in predicting grain yields, as the predicted results were not significantly different from the field measured grain yield at 5% level of significance.
French, V. (Principal Investigator)
1982-01-01
An evaluation was made of Thompson-Type models which use trend terms (as a surrogate for technology), meteorological variables based on monthly average temperature, and total precipitation to forecast and estimate corn yields in Iowa, Illinois, and Indiana. Pooled and unpooled Thompson-type models were compared. Neither was found to be consistently superior to the other. Yield reliability indicators show that the models are of limited use for large area yield estimation. The models are objective and consistent with scientific knowledge. Timely yield forecasts and estimates can be made during the growing season by using normals or long range weather forecasts. The models are not costly to operate and are easy to use and understand. The model standard errors of prediction do not provide a useful current measure of modeled yield reliability.
Kouadio, Louis; Duveiller, Grégory; Djaby, Bakary; El Jarroudi, Moussa; Defourny, Pierre; Tychon, Bernard
2012-08-01
Earth observation data, owing to their synoptic, timely and repetitive coverage, have been recognized as a valuable tool for crop monitoring at different levels. At the field level, the close correlation between green leaf area (GLA) during maturation and grain yield in wheat revealed that the onset and rate of senescence appeared to be important factors for determining wheat grain yield. Our study sought to explore a simple approach for wheat yield forecasting at the regional level, based on metrics derived from the senescence phase of the green area index (GAI) retrieved from remote sensing data. This study took advantage of recent methodological improvements in which imagery with high revisit frequency but coarse spatial resolution can be exploited to derive crop-specific GAI time series by selecting pixels whose ground-projected instantaneous field of view is dominated by the target crop: winter wheat. A logistic function was used to characterize the GAI senescence phase and derive the metrics of this phase. Four regression-based models involving these metrics (i.e., the maximum GAI value, the senescence rate and the thermal time taken to reach 50% of the green surface in the senescent phase) were related to official wheat yield data. The performances of such models at this regional scale showed that final yield could be estimated with an RMSE of 0.57 ton ha-1, representing about 7% as relative RMSE. Such an approach may be considered as a first yield estimate that could be performed in order to provide better integrated yield assessments in operational systems.
An analytical model of nonproportional scintillator light yield in terms of recombination rates
International Nuclear Information System (INIS)
Bizarri, G.; Moses, W. W.; Singh, J.; Vasil'ev, A. N.; Williams, R. T.
2009-01-01
Analytical expressions for the local light yield as a function of the local deposited energy (-dE/dx) and total scintillation yield integrated over the track of an electron of initial energy E are derived from radiative and/or nonradiative rates of first through third order in density of electronic excitations. The model is formulated in terms of rate constants, some of which can be determined independently from time-resolved spectroscopy and others estimated from measured light yield efficiency as a constraint assumed to apply in each kinetic order. The rates and parameters are used in the theory to calculate scintillation yield versus primary electron energy for comparison to published experimental results on four scintillators. Influence of the track radius on the yield is also discussed. Results are found to be qualitatively consistent with the observed scintillation light yield. The theory can be applied to any scintillator if the rates of the radiative and nonradiative processes are known
Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.
2012-01-01
Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.
Estimated yield of double-strand breaks from internal exposure to tritium
Energy Technology Data Exchange (ETDEWEB)
Chen, Jing [Health Canada, Radiation Protection Bureau, Ottawa, ON (Canada)
2012-08-15
Internal exposure to tritium may result in DNA lesions. Of those, DNA double-strand breaks (DSBs) are believed to be important. However, experimental and computational data of DSBs induction by tritium are very limited. In this study, microdosimetric characteristics of uniformly distributed tritium were determined in dimensions of critical significance in DNA DSBs. Those characteristics were used to identify other particles comparable to tritium in terms of microscopic energy deposition. The yield of DSBs could be strongly dependent on biological systems and cellular environments. After reviewing theoretically predicted and experimentally determined DSB yields available in the literature for low-energy electrons and high-energy protons of comparable microdosimetric characteristics to tritium in the dimensions relevant to DSBs, it is estimated that the average DSB yields of 2.7 x 10{sup -11}, 0.93 x 10{sup -11}, 2.4 x 10{sup -11} and 1.6 x 10{sup -11} DSBs Gy{sup -1} Da{sup -1} could be reasonable estimates for tritium in plasmid DNAs, yeast cells, Chinese hamster V79 cells and human fibroblasts, respectively. If a biological system is not specified, the DSB yield from tritium exposure can be estimated as (2.3 ± 0.7) x 10{sup -11} DSBs Gy{sup -1} Da{sup -1}, which is a simple average over experimentally determined yields of DSBs for low-energy electrons in various biological systems without considerations of variations caused by different techniques used and obvious differences among different biological systems where the DSB yield was measured. (orig.)
Estimated yield of double-strand breaks from internal exposure to tritium.
Chen, Jing
2012-08-01
Internal exposure to tritium may result in DNA lesions. Of those, DNA double-strand breaks (DSBs) are believed to be important. However, experimental and computational data of DSBs induction by tritium are very limited. In this study, microdosimetric characteristics of uniformly distributed tritium were determined in dimensions of critical significance in DNA DSBs. Those characteristics were used to identify other particles comparable to tritium in terms of microscopic energy deposition. The yield of DSBs could be strongly dependent on biological systems and cellular environments. After reviewing theoretically predicted and experimentally determined DSB yields available in the literature for low-energy electrons and high-energy protons of comparable microdosimetric characteristics to tritium in the dimensions relevant to DSBs, it is estimated that the average DSB yields of 2.7 × 10(-11), 0.93 × 10(-11), 2.4 × 10(-11) and 1.6 × 10(-11) DSBs Gy(-1) Da(-1) could be reasonable estimates for tritium in plasmid DNAs, yeast cells, Chinese hamster V79 cells and human fibroblasts, respectively. If a biological system is not specified, the DSB yield from tritium exposure can be estimated as (2.3 ± 0.7) × 10(-11) DSBs Gy(-1) Da(-1), which is a simple average over experimentally determined yields of DSBs for low-energy electrons in various biological systems without considerations of variations caused by different techniques used and obvious differences among different biological systems where the DSB yield was measured.
Modeling temporal and spatial variability of crop yield
Bonetti, S.; Manoli, G.; Scudiero, E.; Morari, F.; Putti, M.; Teatini, P.
2014-12-01
In a world of increasing food insecurity the development of modeling tools capable of supporting on-farm decision making processes is highly needed to formulate sustainable irrigation practices in order to preserve water resources while maintaining adequate crop yield. The design of these practices starts from the accurate modeling of soil-plant-atmosphere interaction. We present an innovative 3D Soil-Plant model that couples 3D hydrological soil dynamics with a mechanistic description of plant transpiration and photosynthesis, including a crop growth module. Because of its intrinsically three dimensional nature, the model is able to capture spatial and temporal patterns of crop yield over large scales and under various climate and environmental factors. The model is applied to a 25 ha corn field in the Venice coastland, Italy, that has been continuously monitored over the years 2010 and 2012 in terms of both hydrological dynamics and yield mapping. The model results satisfactorily reproduce the large variability observed in maize yield (from 2 to 15 ton/ha). This variability is shown to be connected to the spatial heterogeneities of the farmland, which is characterized by several sandy paleo-channels crossing organic-rich silty soils. Salt contamination of soils and groundwater in a large portion of the area strongly affects the crop yield, especially outside the paleo-channels, where measured salt concentrations are lower than the surroundings. The developed model includes a simplified description of the effects of salt concentration in soil water on transpiration. The results seem to capture accurately the effects of salt concentration and the variability of the climatic conditions occurred during the three years of measurements. This innovative modeling framework paves the way to future large scale simulations of farmland dynamics.
Canaza-Cayo, Ali William; Lopes, Paulo Sávio; da Silva, Marcos Vinicius Gualberto Barbosa; de Almeida Torres, Robledo; Martins, Marta Fonseca; Arbex, Wagner Antonio; Cobuci, Jaime Araujo
2015-01-01
A total of 32,817 test-day milk yield (TDMY) records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM) using Legendre’s polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield (PSi) and the genetic trend of 305-day milk yield (305MY) were evaluated. The fit quality criteria used in...
A crop model-based approach for sunflower yields
Directory of Open Access Journals (Sweden)
João Guilherme Dal Belo Leite
2014-10-01
Full Text Available Pushed by the Brazilian biodiesel policy, sunflower (Helianthus annuus L. production is becoming increasingly regarded as an option to boost farmers' income, particularly under semi-arid conditions. Biodiesel related opportunities increase the demand for decision-making information at different levels, which could be met by simulation models. This study aimed to evaluate the performance of the crop model OILCROP-SUN to simulate sunflower development and growth under Brazilian conditions and to explore sunflower water- and nitrogen-limited, water-limited and potential yield and yield variability over an array of sowing dates in the northern region of the state of Minas Gerais, Brazil. For model calibration, an experiment was conducted in which two sunflower genotypes (H358 and E122 were cultivated in a clayey soil. Growth components (leaf area index, above ground biomass, grain yield and development stages (crop phenology were measured. A database composed of 27 sunflower experiments from five Brazilian regions was used for model evaluation. The spatial yield distribution of sunflower was mapped using ordinary kriging in ArcGIS. The model simulated sunflower grain productivity satisfactorily (Root Mean Square Error ≈ 13 %. Simulated yields were relatively high (1,750 to 4,250 kg ha-1 and the sowing window was fairly wide (Oct to Feb for northwestern locations, where sunflower could be cultivated as a second crop (double cropping at the end of the rainy season. The hybrid H358 had higher yields for all simulated sowing dates, growth conditions and selected locations.
OCO-2 Solar-induced Fluorescence Data Portal and Applications to Crop Yield Estimation
Zhai, A. J.; Jiang, J. H.; Frankenberg, C.; Yung, Y. L.; Choi, Y. S.
2016-12-01
Solar-induced fluorescence (SIF) is a direct byproduct of photosynthesis and is an index that can represent overall plant productivity level of any region around the globe. Recently, in 2014, NASA launched the Orbiting Carbon Observatory 2 (OCO-2) satellite, which collects SIF measurements at a higher spatial resolution than any previous instrument has. We have first assembled a web-based data portal, which can be easily utilized by both farmers and researchers, to allow convenient access to the SIF data from OCO-2. One possible use of SIF is to estimate agricultural status of crop fields anywhere in the world. We are using OCO-2 level 2 measurements in conjunction with the USDA's Cropland Data Layer and reported crop yield data to study how effectively SIF can estimate agricultural yield on various types of landscape and various species of crops. Results, methods, and future implications will be presented.
Remote Sensing and GIS Based wheat Crop Acreage and Yield Estimation of District Hyderabad, Pakistan
Directory of Open Access Journals (Sweden)
Altaf Ali Siyal
2015-01-01
Full Text Available Pre-harvest reliable and timely yield forecast and area estimates of cropped area is vital to planners and policy makers for making important and timely decisions with respect to food security in a country. The present study was conducted to estimate the wheat cropped area and crop yield in Hyderabad District, Pakistan from the Landsat 8 satellite imagery for Rabi 2013-14 and ground trothing. The required imagery of district Hyderabad was acquired from GLOVIS and was classified with maximum likelihood algorithm using ArcGIS 10.1. The classified image revealed that in district Hyderabad wheat covered 10,210 hectares (9.74% of total area during Rabi season 2013-14 against 15,000 hectares (14.3% of total area reported by Crop reporting Services (CRS, Sindh which is 30% less than that of reported by CRS. A positive linear relation between the wheat crop yield and the peak NDVI with coefficient of determination R2 = 0.91 was observed. Crop area and yield forecast through remote sensing is easy, cost effective, quick and reliable hence this technology needs to be introduced and propagated in the concerned government departments of Pakistan
Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.
2018-03-07
The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.
Gribovszki, Zoltán
2017-11-01
Methods that use diurnal groundwater-level fluctuations are commonly used for shallow water-table environments to estimate evapotranspiration (ET) and recharge. The key element needed to obtain reliable estimates is the specific yield (Sy), a soil-water storage parameter that depends on unsaturated soil-moisture and water-table fluxes, among others. Soil-moisture profile measurement down to the water table, along with water-table-depth measurements, can provide a good opportunity to calculate Sy values even on a sub-daily scale. These values were compared with Sy estimates derived by traditional techniques, and it was found that slug-test-based Sy values gave the most similar results in a sandy soil environment. Therefore, slug-test methods, which are relatively cheap and require little time, were most suited to estimate Sy using diurnal fluctuations. The reason for this is that the timeframe of the slug-test measurement is very similar to the dynamic of the diurnal signal. The dynamic characteristic of Sy was also analyzed on a sub-daily scale (depending mostly on the speed of drainage from the soil profile) and a remarkable difference was found in Sy with respect to the rate of change of the water table. When comparing constant and sub-daily (dynamic) Sy values for ET estimation, the sub-daily Sy application yielded higher correlation, but only a slightly smaller deviation from the control ET method, compared with the usage of constant Sy.
Estimating the Impact and Spillover Effect of Climate Change on Crop Yield in Northern Ghana.
Botchway, E.
2016-12-01
In tropical regions of the world human-induced climate change is likely to impact negatively on crop yields. To investigate the impact of climate change and its spillover effect on mean and variance of crop yields in northern Ghana, the Just and Pope stochastic production function and the Spatial Durbin model were adopted. Surprisingly, the results suggest that both precipitation and average temperature have positive effects on mean crop yield during the wet season. Wet season average temperature has a significant spillover effect in the region, whereas precipitation during the wet season has only one significant spillover effect on maize yield. Wet season precipitation does not have a strong significant effect on crop yield despite the rainfed nature of agriculture in the region. Thus, even if there are losers and winners as a result of future climate change at the regional level, future crop yield would largely depend on future technological development in agriculture, which may improve yields over time despite the changing climate. We argue, therefore, that technical improvement in farm management such as improved seeds and fertilizers, conservation tillage and better pest control, may have a more significant role in increasing observed crop productivity levels over time. So investigating the relative importance of non-climatic factors on crop yield may shed more light on where appropriate interventions can help in improving crop yields. Climate change, also, needs to be urgently assessed at the level of the household, so that poor and vulnerable people dependent on agriculture can be appropriately targeted in research and development activities whose object is poverty alleviation.
Sulistyo, A.; Purwantoro; Sari, K. P.
2018-01-01
Selection is a routine activity in plant breeding programs that must be done by plant breeders in obtaining superior plant genotypes. The use of appropriate selection criteria will determine the effectiveness of selection activities. The purpose of this study was to analysis the inheritable agronomic traits that contribute to soybean yield. A total of 91 soybean lines were planted in Muneng Experimental Station, Probolinggo District, East Java Province, Indonesia in 2016. All soybean lines were arranged in randomized complete block design with two replicates. Correlation analysis, path analysis and heritability estimation were performed on days to flowering, days to maturing, plant height, number of branches, number of fertile nodes, number of filled pods, weight of 100 seeds, and yield to determine selection criteria on soybean breeding program. The results showed that the heritability value of almost all agronomic traits observed is high except for the number of fertile nodes with low heritability. The result of correlation analysis shows that days to flowering, plant height and number of fertile nodes have positive correlation with seed yield per plot (0.056, 0.444, and 0.100, respectively). In addition, path analysis showed that plant height and number of fertile nodes have highest positive direct effect on soybean yield. Based on this result, plant height can be selected as one of selection criteria in soybean breeding program to obtain high yielding soybean variety.
Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland
Energy Technology Data Exchange (ETDEWEB)
Keesstra, S. D.; Schoorl, J.; Temme, A. J. A. M.
2009-07-01
For management purposes it is important to be able to assess the sediment yield of a catchment. however, at this moment models designed for estimating sediment yield are only capable to give either very detailed storm-based information or year averages. The storm-based models require input data that are not available for most catchment. However, models that estimate yearly averages, ignore a lot of other detailed information, like daily discharge and precipitation data. There are currently no models available that model sediment yield on the temporal scale of one day and the spatial scale of a meso-scale catchment, without making use of very detailed input data. To fill this scientific and management gap, landscape evolution model LAPSUS has been adapted to model sediment yield on a daily basis. This model has the water balance as a base. To allow calibration with the discharge at the outlet, a subsurface flow module has been added to the model. (Author) 12 refs.
Simultaneous growth and yield models for Eucalyptus grandis (Hill ...
African Journals Online (AJOL)
Simultaneous stand-level growth and yield models for Eucalyptus grandis in Zimbabwe were developed from Correlated Curve Trend (CCT) and Nelder wheel experiments replicated on five different sites. Nonlinear three-stage least squares method was used to simultaneously fit prediction and projection equations for ...
Growth and yield models for Eucalyptus grandis grown in Swaziland ...
African Journals Online (AJOL)
The aim of this study was to develop a stand-level growth and yield model for short-rotationEucalyptus grandis grown for pulp wood production at Piggs Peak in Swaziland. The data were derived from a Nelder 1a spacing trial established with E. grandis clonal cuttings in 1998 and terminated in 2005. Planting density ...
Biomass yield and modeling of logging residues of Terminalia ...
African Journals Online (AJOL)
The use of Dbh as an independent variable in the prediction of models for estimating the biomass residues of the tree species was adjudged best because it performed well. The validation results showed that the selected models satisfied the assumptions of regression analysis. The practical implication of the models is that ...
Local yield stress statistics in model amorphous solids
Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain
2018-03-01
We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.
Setyowati, H. A.; S, S. H. Murti B.; Widyatmanti, W.
2016-06-01
Oil palm plantations consist of diverse plant density level that influence the appearance of soil surface or commonly in remote sensing terms called as soil background. Choosing the right density coefficient of vegetation transformation can decrease the noise of soil background for estimating oil palm yield. This research aims 1) to examine the accuracy of SPOT-6 to identify the oil palm l plant growth level and to estimate their yield 2) to know the variation of oil palm yield based on SAVI index vegetation using different density coefficient; and 3) to determine the best density coefficient to estimate the yield of oil palm. This research was held in part of Air Molek, Indragiri Hulu Regency, Riau, one of the largest oil palm plantations in Indonesia. This research method utilises SAVI transformation with density coefficient L-0, L-0.5, and L-1, and regression statistics analysis. The land-cover primary data is derived from SPOT-6 imagery archived in 13rd June 2013. The field survey was conducted in the same month of image's acquisition time and 120 sample areas were taken during that time. Two steps of regression analyses were applied to see the correlation between, first, vegetation index value and oil palm plant; and second, oil palm plant, vegetation index values, and oil palm yield from field observation. These steps produced a model to estimate the oil palm yield based on the index values of yield and vegetation, and the productivity estimation. The result shows that SPOT-6 imagery has 96% accuracy level which is considered high for identifying the oil palm variation. The R value for L-0 density coefficient is 0.8, for L-5 is 0.81 whereas for L-1 is 0.82. The best plant's density coefficient for estimating oil palm yield/yield is L-0 with yield estimation accuracy of 83.33%.
Directory of Open Access Journals (Sweden)
E. Parlato
2010-02-01
Full Text Available This study was carried out to estimate multiplicative and additive age adjustment factors for milk yield for the Mediterranean Italian Buffalo Breed for a mature age base (55 months, parity 2 with a mixed model procedure. Fixed effects of age-parity classes and random effects of contemporary group, genetic and permanent environmental effects of cows were included in the model. Two data sets were formed: Data Set I consisted of 83,810 lactation records and was used to develop the age factors. Data Set II consisted of 115,242 lactation records and was used for validation of the age factors estimated from Data Set I. Additive and multiplicative factors followed the same trend within the three parities (parity 1, parity 2, and parity ≥ 3. Averages of milk yield by age class for Data Set II pre-adjusted with multiplicative and additive factors from Data Set I were similar and tended to follow a straight line as expected. However, multiplicative factors might be preferred to additive factors because they would be affected less by an increase of the average milk yield due to selection or management. Age factors were smoothed to reduce differences among factors for similar age-parity classes. The smoothed age factors showed only slight differences among averages for similar age-parity classes, which suggests that the smoothed age factors may be more appropriate than the original factors.
Directory of Open Access Journals (Sweden)
Erlei Melo Reis
2008-09-01
Full Text Available Em experimentos conduzidos no campo, nas safras agrícolas de 1995 e 1996, gerou-se o gradiente da intensidade da ferrugem da folha da aveia branca, cultivar UPF 13, pela aplicação nos órgãos aéreos de doses crescentes do fungicida triadimenol. As equações das funções de dano foram obtidas pela correlação entre o rendimento de grãos e a incidência da doença em diferentes estádios fenológicos da cultura. Na safra de 1995 as equações obtidas foram R= 2.103,5 - 17,983I e R= 2.404,6 - 12,832I, respectivamente para alongamento e emborrachamento, e em 1996, R= 3.889,2 - 27,871I e R= 5.366,4 - 20,999I, respectivamente para emborrachamento e floração (R= rendimento de grãos e I= incidência foliar. Estas equações, contendo o coeficiente de dano, permitem calcular o limiar de dano econômico (LDE tomado como critério indicador do momento para o início do controle químico da ferrugem da folha da aveia. As reduções no rendimento de grãos, no peso do hectolitro e no peso de mil sementes, atingiram, respectivamente 57,13%, 16,64% e 21,49% na safra 1995 e 19,79%, 13,39% e 16,33%, na safra 1996.In field experiments carried out in the 1995 and 1996 growing seasons, the gradient of leaf rust intensity on the white oat cultivar UPF 13 was generated by spraying the above ground plant parts of the crop with different rates of the fungicide triadimenol. Damage equations were obtained relating grain yield and disease incidence at different growing stages. In the 1995 growing season the equations were: R= 2,103.5 -17.983I and R= 2,404.6 - 12.832I, for elongation and boot stage, respectively, and for 1996, R= 3,889.2 - 27.871I and R= 5,366.4 - 20.999I (where R= grain yield; I= disease as foliar incidence, for booting and flowering stages respectively. These equations, having the damage coefficient, may be used to calculate the economic damage threshold (LDE as a criterion to indicate the moment for the fungicide application to control leaf
Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C
2014-12-01
Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.
Estimating the effect of urease inhibitor on rice yield based on NDVI at key growth stages
Directory of Open Access Journals (Sweden)
Kailou LIU,Yazhen LI,Huiwen HU
2014-06-01
Full Text Available The effect of the urease inhibitor, N-(n-butyl thiophosphoric triamide (NBPT at a range of application rates on rice production was examined in a field experiment at Jinxian County, Jiangxi Province, China. The normalized difference vegetation index (NDVI was measured at key growth stages in both early and late rice. The results showed that the grain yield increased significantly when urea was applied with NBPT, with the highest yield observed at 1.00% NBPT (wt/wt. NDVI differed with the growth stage of rice; it remained steady from the heading to the filling stage. Rice yield could be predicted from the NDVI taken at key rice growing stages, with R2 ranging from 0.34 to 0.69 in early rice and 0.49 to 0.70 in late rice. The validation test showed that RMSE (t·hm-2 values were 0.77 and 0.87 in early and late rice, respectively. Therefore, it was feasible to estimate rice yield for different amounts of urease inhibitor using NDVI.
Yield estimation is a critical task in crop management. A number of traditional methods are available for crop yield estimation but they are costly, time-consuming and difficult to expand to a relatively large field. Remote sensing provides techniques to develop quick coverage over a field at any sc...
De la Torre, Daniel; Sierra, Maria Jose
2007-01-01
The approach developed by Fuhrer in 1995 to estimate wheat yield losses induced by ozone and modulated by the soil water content (SWC) was applied to the data on Catalonian wheat yields. The aim of our work was to apply this approach and adjust it to Mediterranean environmental conditions by means of the necessary corrections. The main objective pursued was to prove the importance of soil water availability in the estimation of relative wheat yield losses as a factor that modifies the effects...
Yield stress of duplex stainless steel specimens estimated using a compound Hall–Petch equation
Directory of Open Access Journals (Sweden)
Noriaki Hirota, Fuxing Yin, Tsukasa Azuma and Tadanobu Inoue
2010-01-01
Full Text Available In this study, the 0.2% yield stress of duplex stainless steel was evaluated using a compound Hall–Petch equation. The compound Hall–Petch equation was derived from four types of duplex stainless steel, which contained 0.2–64.4 wt% δ-ferrite phase, had different chemical compositions and were annealed at different temperatures. Intragranular yield stress was measured with an ultra-microhardness tester and evaluated with the yield stress model proposed by Dao et al. Grain size, volume fraction and texture were monitored by electron backscattering diffraction measurement. The kγ constant in the compound equation for duplex stainless steel agrees well with that for γ-phase SUS316L steel in the temperature range of 1323–1473 K. The derived compound Hall–Petch equation predicts that the yield stress will be in good agreement with the experimental results for the Cr, Mn, Si, Ni and N solid-solution states. We find that the intragranular yield stress of the δ-phase of duplex stainless steel is rather sensitive to the chemical composition and annealing conditions, which is attributed to the size misfit parameter.
A GUIDED SWAT MODEL APPLICATION ON SEDIMENT YIELD MODELING IN PANGANI RIVER BASIN: LESSONS LEARNT
Directory of Open Access Journals (Sweden)
Preksedis Marco Ndomba
2008-12-01
Full Text Available The overall objective of this paper is to report on the lessons learnt from applying Soil and Water Assessment Tool (SWAT in a well guided sediment yield modelling study. The study area is the upstream of Pangani River Basin (PRB, the Nyumba Ya Mungu (NYM reservoir catchment, located in the North Eastern part of Tanzania. It should be noted that, previous modeling exercises in the region applied SWAT with preassumption that inter-rill or sheet erosion was the dominant erosion type. In contrast, in this study SWAT model application was guided by results of analysis of high temporal resolution of sediment flow data and hydro-meteorological data. The runoff component of the SWAT model was calibrated from six-years (i.e. 1977–1982 of historical daily streamflow data. The sediment component of the model was calibrated using one-year (1977–1988 daily sediment loads estimated from one hydrological year sampling programme (between March and November, 2005 rating curve. A long-term period over 37 years (i.e. 1969–2005 simulation results of the SWAT model was validated to downstream NYM reservoir sediment accumulation information. The SWAT model captured 56 percent of the variance (CE and underestimated the observed daily sediment loads by 0.9 percent according to Total Mass Control (TMC performance indices during a normal wet hydrological year, i.e., between November 1, 1977 and October 31, 1978, as the calibration period. SWAT model predicted satisfactorily the long-term sediment catchment yield with a relative error of 2.6 percent. Also, the model has identified erosion sources spatially and has replicated some erosion processes as determined in other studies and field observations in the PRB. This result suggests that for catchments where sheet erosion is dominant SWAT model may substitute the sediment-rating curve. However, the SWAT model could not capture the dynamics of sediment load delivery in some seasons to the catchment outlet.
A GUIDED SWAT MODEL APPLICATION ON SEDIMENT YIELD MODELING IN PANGANI RIVER BASIN: LESSONS LEARNT
Directory of Open Access Journals (Sweden)
Preksedis M. Ndomba
2008-01-01
Full Text Available The overall objective of this paper is to report on the lessons learnt from applying Soil and Water Assessment Tool (SWAT in a well guided sediment yield modelling study. The study area is the upstream of Pangani River Basin (PRB, the Nyumba Ya Mungu (NYM reservoir catchment, located in the North Eastern part of Tanzania. It should be noted that, previous modeling exercises in the region applied SWAT with preassumption that inter-rill or sheet erosion was the dominant erosion type. In contrast, in this study SWAT model application was guided by results of analysis of high temporal resolution of sediment flow data and hydro-meteorological data. The runoff component of the SWAT model was calibrated from six-years (i.e. 1977¿1982 of historical daily streamflow data. The sediment component of the model was calibrated using one-year (1977-1988 daily sediment loads estimated from one hydrological year sampling programme (between March and November, 2005 rating curve. A long-term period over 37 years (i.e. 1969-2005 simulation results of the SWAT model was validated to downstream NYM reservoir sediment accumulation information. The SWAT model captured 56 percent of the variance (CE and underestimated the observed daily sediment loads by 0.9 percent according to Total Mass Control (TMC performance indices during a normal wet hydrological year, i.e., between November 1, 1977 and October 31, 1978, as the calibration period. SWAT model predicted satisfactorily the long-term sediment catchment yield with a relative error of 2.6 percent. Also, the model has identified erosion sources spatially and has replicated some erosion processes as determined in other studies and field observations in the PRB. This result suggests that for catchments where sheet erosion is dominant SWAT model may substitute the sediment-rating curve. However, the SWAT model could not capture the dynamics of sediment load delivery in some seasons to the catchment outlet.
DEFF Research Database (Denmark)
Guo, Gang; Lund, Mogens Sandø; Zhang, Y
2010-01-01
This study compared genomic predictions using conventional estimated breeding values (EBV) and daughter yield deviations (DYD) as response variables based on simulated data. Eight scenarios were simulated in regard to heritability (0.05 and 0.30), number of daughters per sire (30, 100, and unequal...... genotype. Moreover, the results showed that the correlation between GEBV and conventional parent average (PA) was lower (corresponding to a relatively larger gain by including PA) when using the DYD approach than when using the EBV approach. Consequently, the two approaches led to similar reliability...
Directory of Open Access Journals (Sweden)
H. Tonhati
2010-02-01
Full Text Available The aim of this study was analyze the (covariance components and genetic and phenotypic relationships in the following traits: accumulated milk yield at 270 days (MY270, observed until 305 days of lactation; accumulated milk yield at 270 days (MY270/ A and at 305 days (MY305, observed until 335 days of lactation; mozzarella cheese yield (MCY and fat (FP and protein (PP percentage, observed until 335 days of lactation. The (covariance components were estimated by Restricted Maximum Likelihood methodology in analyses single, two and three-traits using animal models. Heritability estimated for MY270, MY270/A, MY305, MCY, FP and PP were 0.22; 0.24, 0.25, 0.14, 0.29 and 0.40 respectively. The genetic correlations between MCY and the variables MY270, MY270/A, MY305, PP and FP was: 0.85; 1.00; 0.89; 0.14 and 0.06, respectively. This way, the selection for the production of milk in long period should increase MCY. However, in the search of animals that produce milk with quality, the genetic parameters suggest that another index should be composed allying these studied traits.
Model for traffic emissions estimation
Alexopoulos, A.; Assimacopoulos, D.; Mitsoulis, E.
A model is developed for the spatial and temporal evaluation of traffic emissions in metropolitan areas based on sparse measurements. All traffic data available are fully employed and the pollutant emissions are determined with the highest precision possible. The main roads are regarded as line sources of constant traffic parameters in the time interval considered. The method is flexible and allows for the estimation of distributed small traffic sources (non-line/area sources). The emissions from the latter are assumed to be proportional to the local population density as well as to the traffic density leading to local main arteries. The contribution of moving vehicles to air pollution in the Greater Athens Area for the period 1986-1988 is analyzed using the proposed model. Emissions and other related parameters are evaluated. Emissions from area sources were found to have a noticeable share of the overall air pollution.
Milk yield persistency in Brazilian Gyr cattle based on a random regression model.
Pereira, R J; Verneque, R S; Lopes, P S; Santana, M L; Lagrotta, M R; Torres, R A; Vercesi Filho, A E; Machado, M A
2012-06-15
With the objective of evaluating measures of milk yield persistency, 27,000 test-day milk yield records from 3362 first lactations of Brazilian Gyr cows that calved between 1990 and 2007 were analyzed with a random regression model. Random, additive genetic and permanent environmental effects were modeled using Legendre polynomials of order 4 and 5, respectively. Residual variance was modeled using five classes. The average lactation curve was modeled using a fourth-order Legendre polynomial. Heritability estimates for measures of persistency ranged from 0.10 to 0.25. Genetic correlations between measures of persistency and 305-day milk yield (Y305) ranged from -0.52 to 0.03. At high selection intensities for persistency measures and Y305, few animals were selected in common. As the selection intensity for the two traits decreased, a higher percentage of animals were selected in common. The average predicted breeding values for Y305 according to year of birth of the cows had a substantial annual genetic gain. In contrast, no improvement in the average persistency breeding value was observed. We conclude that selection for total milk yield during lactation does not identify bulls or cows that are genetically superior in terms of milk yield persistency. A measure of persistency represented by the sum of deviations of estimated breeding value for days 31 to 280 in relation to estimated breeding value for day 30 should be preferred in genetic evaluations of this trait in the Gyr breed, since this measure showed a medium heritability and a genetic correlation with 305-day milk yield close to zero. In addition, this measure is more adequate at the time of peak lactation, which occurs between days 25 and 30 after calving in this breed.
Predictive models of prolonged mechanical ventilation yield moderate accuracy.
Figueroa-Casas, Juan B; Dwivedi, Alok K; Connery, Sean M; Quansah, Raphael; Ellerbrook, Lowell; Galvis, Juan
2015-06-01
To develop a model to predict prolonged mechanical ventilation within 48 hours of its initiation. In 282 general intensive care unit patients, multiple variables from the first 2 days on mechanical ventilation and their total ventilation duration were prospectively collected. Three models accounting for early deaths were developed using different analyses: (a) multinomial logistic regression to predict duration > 7 days vs duration ≤ 7 days alive vs duration ≤ 7 days death; (b) binary logistic regression to predict duration > 7 days for the entire cohort and for survivors only, separately; and (c) Cox regression to predict time to being free of mechanical ventilation alive. Positive end-expiratory pressure, postoperative state (negatively), and Sequential Organ Failure Assessment score were independently associated with prolonged mechanical ventilation. The multinomial regression model yielded an accuracy (95% confidence interval) of 60% (53%-64%). The binary regression models yielded accuracies of 67% (61%-72%) and 69% (63%-75%) for the entire cohort and for survivors, respectively. The Cox regression model showed an equivalent to area under the curve of 0.67 (0.62-0.71). Different predictive models of prolonged mechanical ventilation in general intensive care unit patients achieve a moderate level of overall accuracy, likely insufficient to assist in clinical decisions. Copyright © 2015 Elsevier Inc. All rights reserved.
Study on the Method of Grass Yield Model in the Source Region of Three Rivers with Multivariate Data
International Nuclear Information System (INIS)
You, Haoyan; Luo, Chengfeng; Liu, Zhengjun; Wang, Jiao
2014-01-01
This paper uses remote sensing and GIS technology to analyse the Source Region of Three Rivers (SRTR) to establish a grass yield estimation model during 2010 with remote sensing data, meteorological data, grassland type data and ground measured data. Analysis of the correlation between ground measured data, vegetation index based HJ-1A/B satellite data, meteorological data and grassland type data were used to establish the grass yield model. The grass yield model was studied by several statistical methods, such as multiple linear regression and Geographically Weighted Regression (GWR). The model's precision was validated. Finally, the best model to estimate the grass yield of Maduo County in SRTR was contrasted with the TM degraded grassland interpretation image of Maduo County from 2009. The result shows that: (1) Comparing with the multiple linear regression model, the GWR model gave a much better fitting result with the quality of fit increasing significantly from less than 0.3 to more than 0.8; (2) The most sensitive factors affecting the grass yield in SRTR were precipitation from May to August and drought index from May to August. From calculation of the five vegetation indices, MSAVI fitted the best; (3) The Maduo County grass yield estimated by the optimal model was consistent with the TM degraded grassland interpretation image, the spatial distribution of grass yield in Maduo County for 2010 showed a ''high south and low north'' pattern
Gitterman, Y.; Hofstetter, R.
2014-03-01
yield estimator. The delay data of the 2009 shot with IMI explosives, characterized by much higher detonation velocity, are clearly separated from ANFO data, thus indicating a dependence on explosive type. This unique dual Sayarim explosion experiment (August 2009/January 2011), with the strongest GT0 sources since the establishment of the IMS network, clearly demonstrated the most favorable westward/eastward infrasound propagation up to 3,400/6,250 km according to appropriate summer/winter weather pattern and stratospheric wind directions, respectively, and thus verified empirically common models of infrasound propagation in the atmosphere.
Rueda Ayala, Victor Patricio
2015-01-01
Yield estimation for the maize crop (Zea mays L.) is required in Ecuador for decision making on imports and commercialization. In the literature many yield predictive models have been developed for different crops, but they need to be adapted to the local conditions. In this study, machine learning techniques and statistical tools such as simple, logistic and polynomial regression were applied in order to develop yield predictive algorithms. Spectral information was gathered from ...
Dynamic modelling of pectin extraction describing yield and functional characteristics
DEFF Research Database (Denmark)
Andersen, Nina Marianne; Cognet, T.; Santacoloma, P. A.
2017-01-01
A dynamic model of pectin extraction is proposed that describes pectin yield, degree of esterification and intrinsic viscosity. The dynamic model is one dimensional in the peel geometry and includes mass transport of pectin by diffusion and reaction kinetics of hydrolysis, degradation and de......-esterification. The model takes into account the effects of the process conditions such as temperature and acid concentration on extraction kinetics. It is shown that the model describes pectin bulk solution concentration, degree of esterification and intrinsic viscosity in pilot scale extractions from lime peel...... at different temperatures (60 °C, 70 °C, 80 °C) and pH (1.5, 2.3, 3.1) values....
DEFF Research Database (Denmark)
Hagnestam-Nielsen, Christel; Østergaard, Søren
2009-01-01
reflects the fact that in different stages of lactation, CM gives rise to different yield-loss patterns or postulates just one type of yield-loss pattern irrespective of when, during lactation, CM occurs. A dynamic and stochastic simulation model, SimHerd, was used to study the effects of CM in a herd...... a single yield-loss pattern irrespective of when, during the lactation period, the cow develops CM - was compared with a new modelling strategy in which CM was assumed to affect production differently depending on its lactational timing. The effect of the choice of reference level when estimating yield...
Puledda, A; Gaspa, G; Manca, M G; Serdino, J; Urgeghe, P P; Dimauro, C; Negrini, R; Macciotta, N P P
2017-06-01
Objective of this study was to estimate genetic parameters of milk coagulation properties (MCPs) and individual laboratory cheese yield (ILCY) in a sample of 1018 Sarda breed ewes farmed in 47 flocks. Rennet coagulation time (RCT), curd-firming time (k 20) and curd firmness (a 30) were measured using Formagraph instrument, whereas ILCY were determined by a micromanufacturing protocol. About 10% of the milk samples did not coagulate within 30 min and 13% had zero value for k 20. The average ILCY was 36%. (Co)variance components of considered traits were estimated by fitting both single- and multiple-trait animal models. Flock-test date explained from 13% to 28% of the phenotypic variance for MCPs and 26% for ILCY, respectively. The largest value of heritability was estimated for RCT (0.23±0.10), whereas it was about 0.15 for the other traits. Negative genetic correlations between RCT and a 30 (-0.80±0.12), a 30 and k 20 (-0.91±0.09), and a 30 and ILCY (-0.67±0.08) were observed. Interesting genetic correlations between MCPs and milk composition (r G>0.40) were estimated for pH, NaCl and casein. Results of the present study suggest to use only one out of three MCPs to measure milk renneting ability, due to high genetic correlations among them. Moreover, negative correlations between ILCY and MCPs suggest that great care should be taken when using these methods to estimate cheese yield from small milk samples.
Yield Stress Model for Molten Composition B-3
Davis, Stephen; Zerkle, David
2017-06-01
Composition B-3 (Comp B-3) is a melt-castable explosive composed of 60/40 wt% RDX/TNT (hexahydro-1,3,5-trinitro-1,3,5-triazine/2,4,6-trinitrotoluene). During casting operations thermal conditions are controlled which along with the low melting point of TNT and the insensitivity of the mixture to external stimuli leading to safe use. Outside these standard operating conditions a more rigorous model of Comp B-3 rheological properties is necessary to model thermal transport as Comp B-3 evolves from quiescent solid through vaporization/decomposition upon heating. One particular rheological phenomena of interest is Bingham plasticity, where a material behaves as a quiescent solid unless a sufficient load is applied, resulting in fluid flow. In this study falling ball viscometer data is used to model the change in Bingham plastic yield stresses as a function of RDX particle volume fraction; a function of temperature. Results show the yield stress of Comp B-3 (τy) follows the expression τy = B ϕ -ϕc N , where Φ and Φc are the volume fraction of RDX and a critical volume fraction, respectively and B and N are experimentally evaluated constants.
Models for predicting water use and crop yields - A Cuban experience
International Nuclear Information System (INIS)
Ruiz, M.E.; Utset, A.
2004-01-01
Modelling has come into agriculture because of several reasons: 1) More comprehension about the processes that take place at the soil water atmosphere continuum SWAC, 2) Specialists from different fields come to work together, 3) Different and more efficient codes for obtaining the solutions of complex equations were introduced, 4) Amazing development of hardware and supporting softwares, 5) Large data banks coming from a lot of years of experimental laboratory and field work (mainly at the developed countries) and 6) Desires to put together as much SWAC processes as possible to get a better comprehension of such a complex system. Here we briefly present some of the results obtained in Cuba using simulation model SWACROP for estimating water use and yields in potato and model SWAP for sugar cane yields. The relationship between estimated and measured soil moisture contents for two different irrigation treatments for potato in a Rhodic Ferralsol is shown. Simulated values matched better the measured values for the higher water level. Estimated and measured potato yields are shown. A determination coefficient of 0.69 was obtained for a 95 % of confidence limit. Although this value could be considered somewhat low, it should be remembered that the soil hydraulic properties used for the simulation were taken from the results of Ruiz and Utset (1992) for this kind of soil, but not determined at the same location where potato yields were measured. Moreover, all the data considering the different irrigation treatments were considered. For sugar cane, a calibration was made for a Rhodic Ferralsol. Later the model was tested for another location. The data of crop yields, seeding dates corresponding to three different soils were used for comparing with simulation results. The SWAP simulations agree with the measured data. However, when averaged values for the input parameters are used in the model, a determination coefficient between simulated and measured output was only 0
This is a presentation titled Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures that was given for the National Center for Environmental Economics
Ozaki, Vitor A.; Ghosh, Sujit K.; Goodwin, Barry K.; Shirota, Ricardo
2009-01-01
This article presents a statistical model of agricultural yield data based on a set of hierarchical Bayesian models that allows joint modeling of temporal and spatial autocorrelation. This method captures a comprehensive range of the various uncertainties involved in predicting crop insurance premium rates as opposed to the more traditional ad hoc, two-stage methods that are typically based on independent estimation and prediction. A panel data set of county-average yield data was analyzed for 290 counties in the State of Paraná (Brazil) for the period of 1990 through 2002. Posterior predictive criteria are used to evaluate different model specifications. This article provides substantial improvements in the statistical and actuarial methods often applied to the calculation of insurance premium rates. These improvements are especially relevant to situations where data are limited. PMID:19890450
Energy Technology Data Exchange (ETDEWEB)
Leng, Guoyong
2017-12-01
The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota, Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated
Leng, Guoyong
2017-12-31
The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota, Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated
BioSTAR, a New Biomass and Yield Modeling Software
Kappas, M.; Degener, J.; Bauboeck, R.
2013-12-01
, sorghum, sunflower and, sugar beet. Calibrations for rye grass, cup plant, poplar and willow still need to be performed. A Comparison of simulated and observed biomass yields for sites in Lower Saxony has rendered good results with errors (RMSE) ranging from below 10% (winter wheat, n= 102) and 18.6 % (sunflower, n=8) (Bauböck, unpublished). Because simulations can be made with limited soil data (soil type or texture class) and a limited climate data set (smallest set can be either monthly means of precipitation, temperature and, radiation or precipitation, temperature and, humidity) and the software is capable of processing large datasets, the model appears to be a promising tool for mid or large scale biomass and yield predictions. Up to now the model has only been used for yield predictions with current state climate and climate change scenarios in Lower Saxony, but comparisons with output data of the model AquaCrop (Steduto, et al., 2009) have shown good performance in arid and semi-arid climates (Bauböck, 2013).
Impact of parameter representation in gas-particle partitioning on aerosol yield model prediction
Kelly, Janya L.
A kinetic box model is used to highlight the importance of parameter representation in predicting the formation of secondary organic aerosol (SOA) from the photo-oxidation of toluene through a subset of the University of Leeds Master Chemical Mechanism (MCM) version 3.1, and a kinetically based gas-particle partitioning approach. The model provides a prediction of the total aerosol yield and a tentative speciation of aerosols initialized from experimental data from York University's indoor smog chamber. A series of model sensitivity experiments were performed to study the relative importance of different parameters in SOA formation, with emphasis on vapour pressure, accommodation coefficient and NOx conditions. Early sensitivity experiments indicate vapour pressure to be a critical parameter in the partitioning and final aerosol yield. Current estimation methods are highly sensitive to boiling point temperature and can lead to the propagation of errors in the model. Of concern is the estimation of vapour pressure for compounds containing organic nitrates (major contributors to the aerosol speciation in this study). Results indicate that approximately +/- 80% error can be expected in the final aerosol mass from errors in the boiling point temperature and vapour pressure estimation methods, and, that for most experiments, this error alone cannot account for a general under prediction in the aerosol mass. Current experimental conditions dictate a very high initial NOx environment and a much higher final aerosol yield compared to other smog chamber studies, leading to the question of whether the model results arise from unique experimental conditions (relative to other chambers), from using different pathways in MCMv3.1 leading to different aerosol speciation (from the high NOx conditions), or from the physical representation of partitioning in the model. Results show that the choice of isopropyl nitrite as the hydroxyl radical oxidation source may be contributing to
A toy model for the yield of a tamped fission bomb
Reed, B. Cameron
2018-02-01
A simple expression is developed for estimating the yield of a tamped fission bomb, that is, a basic nuclear weapon comprising a fissile core jacketed by a surrounding neutron-reflecting tamper. This expression is based on modeling the nuclear chain reaction as a geometric progression in combination with a previously published expression for the threshold-criticality condition for such a core. The derivation is especially straightforward, as it requires no knowledge of diffusion theory and should be accessible to students of both physics and policy. The calculation can be set up as a single page spreadsheet. Application to the Little Boy and Fat Man bombs of World War II gives results in reasonable accord with published yield estimates for these weapons.
Assessing disease stress and modeling yield losses in alfalfa
Guan, Jie
weight, percentage reflectance (810 nm), and green leaf area index (GLAI). Percentage reflectance (810 nm) assessments had a stronger relationship with dry weight and green leaf area index than percentage defoliation assessments. Our research conclusively demonstrates that percentage reflectance measurements can be used to nondestructively assess green leaf area index which is a direct measure of plant health and an indirect measure of productivity. This research conclusively demonstrates that remote sensing is superior to visual assessment method to assess alfalfa stress and to model yield and GLAI in the alfalfa foliar disease pathosystem.
Directory of Open Access Journals (Sweden)
D. K. Henze
2008-05-01
Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO or hydroperoxy radical (HO_{2} to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO_{2}] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO_{2}] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO_{2}] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2–12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for
Henze, D. K.; Seinfeld, J. H.; Ng, N. L.; Kroll, J. H.; Fu, T.-M.; Jacob, D. J.; Heald, C. L.
2008-05-01
Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO) or hydroperoxy radical (HO2) to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2-12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for production of anthropogenic SOA still exist beyond those accounted
Attribute Selection Impact on Linear and Nonlinear Regression Models for Crop Yield Prediction
Directory of Open Access Journals (Sweden)
Alberto Gonzalez-Sanchez
2014-01-01
Full Text Available Efficient cropping requires yield estimation for each involved crop, where data-driven models are commonly applied. In recent years, some data-driven modeling technique comparisons have been made, looking for the best model to yield prediction. However, attributes are usually selected based on expertise assessment or in dimensionality reduction algorithms. A fairer comparison should include the best subset of features for each regression technique; an evaluation including several crops is preferred. This paper evaluates the most common data-driven modeling techniques applied to yield prediction, using a complete method to define the best attribute subset for each model. Multiple linear regression, stepwise linear regression, M5′ regression trees, and artificial neural networks (ANN were ranked. The models were built using real data of eight crops sowed in an irrigation module of Mexico. To validate the models, three accuracy metrics were used: the root relative square error (RRSE, relative mean absolute error (RMAE, and correlation factor (R. The results show that ANNs are more consistent in the best attribute subset composition between the learning and the training stages, obtaining the lowest average RRSE (86.04%, lowest average RMAE (8.75%, and the highest average correlation factor (0.63.
Application of Bayesian Model Selection for Metal Yield Models using ALEGRA and Dakota.
Energy Technology Data Exchange (ETDEWEB)
Portone, Teresa; Niederhaus, John Henry; Sanchez, Jason James; Swiler, Laura Painton
2018-02-01
This report introduces the concepts of Bayesian model selection, which provides a systematic means of calibrating and selecting an optimal model to represent a phenomenon. This has many potential applications, including for comparing constitutive models. The ideas described herein are applied to a model selection problem between different yield models for hardened steel under extreme loading conditions.
Rymszewicz, A; Bruen, M; O'Sullivan, J J; Turner, J N; Lawler, D M; Harrington, J R; Conroy, E; Kelly-Quinn, M
2018-04-01
Estimates of sediment yield are important for ecological and geomorphological assessment of fluvial systems and for assessment of soil erosion within a catchment. Many regulatory frameworks, such as the Convention for the Protection of the Marine Environment of the North-East Atlantic, derived from the Oslo and Paris Commissions (OSPAR) require reporting of annual sediment fluxes. While they may be measured in large rivers, sediment flux is rarely measured in smaller rivers. Measurements of sediment transport at a national scale can be also challenging and therefore, sediment yield models are often utilised by water resource managers for the predictions of sediment yields in the ungauged catchments. Regression based models, calibrated to field measurements, can offer an advantage over complex and computational models due to their simplicity, easy access to input data and due to the additional insights into factors controlling sediment export in the study sites. While traditionally calibrated to long-term average values of sediment yields such predictions cannot represent temporal variations. This study addresses this issue in a novel way by taking account of the variation from year to year in hydrological variables in the developed models (using annual mean runoff, annual mean flow, flows exceeded in five percentage of the time (Q5) and seasonal rainfall estimated separately for each year of observations). Other parameters included in the models represent spatial differences influenced by factors such as soil properties (% poorly drained soils and % peaty soils), land-use (% pasture or % arable lands), channel slope (S1085) and drainage network properties (drainage density). Catchment descriptors together with year-specific hydrological variables can explain both spatial differences and inter-annual variability of suspended sediment yields. The methodology is demonstrated by deriving equations from Irish data-sets (compiled in this study) with the best model
Climate driven crop planting date in the ACME Land Model (ALM): Impacts on productivity and yield
Drewniak, B.
2017-12-01
Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical
Yin, X.; Belay, D.; Putten, van der P.E.L.; Struik, P.C.
2014-01-01
Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (UCO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
Canaza-Cayo, Ali William; Lopes, Paulo Sávio; da Silva, Marcos Vinicius Gualberto Barbosa; de Almeida Torres, Robledo; Martins, Marta Fonseca; Arbex, Wagner Antonio; Cobuci, Jaime Araujo
2015-10-01
A total of 32,817 test-day milk yield (TDMY) records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM) using Legendre's polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield (PSi) and the genetic trend of 305-day milk yield (305MY) were evaluated. The fit quality criteria used indicated RRM employing the Legendre's polynomial of orders 3 and 5 for fitting the genetic additive and permanent environment effects, respectively, as the best model. The heritability and genetic correlation for TDMY throughout the lactation, obtained with the best model, varied from 0.18 to 0.23 and from -0.03 to 1.00, respectively. The heritability and genetic correlation for persistency and 305MY varied from 0.10 to 0.33 and from -0.98 to 1.00, respectively. The use of PS7 would be the most suitable option for the evaluation of Girolando cattle. The estimated breeding values for 305MY of sires and cows showed significant and positive genetic trends. Thus, the use of selection indices would be indicated in the genetic evaluation of Girolando cattle for both traits.
Directory of Open Access Journals (Sweden)
Ali William Canaza-Cayo
2015-10-01
Full Text Available A total of 32,817 test-day milk yield (TDMY records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM using Legendre’s polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield (PSi and the genetic trend of 305-day milk yield (305MY were evaluated. The fit quality criteria used indicated RRM employing the Legendre’s polynomial of orders 3 and 5 for fitting the genetic additive and permanent environment effects, respectively, as the best model. The heritability and genetic correlation for TDMY throughout the lactation, obtained with the best model, varied from 0.18 to 0.23 and from −0.03 to 1.00, respectively. The heritability and genetic correlation for persistency and 305MY varied from 0.10 to 0.33 and from −0.98 to 1.00, respectively. The use of PS7 would be the most suitable option for the evaluation of Girolando cattle. The estimated breeding values for 305MY of sires and cows showed significant and positive genetic trends. Thus, the use of selection indices would be indicated in the genetic evaluation of Girolando cattle for both traits.
Multilevel models improve precision and speed of IC50 estimates.
Vis, Daniel J; Bombardelli, Lorenzo; Lightfoot, Howard; Iorio, Francesco; Garnett, Mathew J; Wessels, Lodewyk Fa
2016-05-01
Experimental variation in dose-response data of drugs tested on cell lines result in inaccuracies in the estimate of a key drug sensitivity characteristic: the IC50. We aim to improve the precision of the half-limiting dose (IC50) estimates by simultaneously employing all dose-responses across all cell lines and drugs, rather than using a single drug-cell line response. We propose a multilevel mixed effects model that takes advantage of all available dose-response data. The new estimates are highly concordant with the currently used Bayesian model when the data are well behaved. Otherwise, the multilevel model is clearly superior. The multilevel model yields a significant reduction of extreme IC50 estimates, an increase in precision and it runs orders of magnitude faster.
Using operational data to estimate the reliable yields of water-supply wells
Misstear, Bruce D. R.; Beeson, Sarah
The reliable yield of a water-supply well depends on many different factors, including the properties of the well and the aquifer; the capacities of the pumps, raw-water mains, and treatment works; the interference effects from other wells; and the constraints imposed by ion licences, water quality, and environmental issues. A relatively simple methodology for estimating reliable yields has been developed that takes into account all of these factors. The methodology is based mainly on an analysis of water-level and source-output data, where such data are available. Good operational data are especially important when dealing with wells in shallow, unconfined, fissure-flow aquifers, where actual well performance may vary considerably from that predicted using a more analytical approach. Key issues in the yield-assessment process are the identification of a deepest advisable pumping water level, and the collection of the appropriate well, aquifer, and operational data. Although developed for water-supply operators in the United Kingdom, this approach to estimating the reliable yields of water-supply wells using operational data should be applicable to a wide range of hydrogeological conditions elsewhere. Résumé La productivité d'un puits capté pour l'adduction d'eau potable dépend de différents facteurs, parmi lesquels les propriétés du puits et de l'aquifère, la puissance des pompes, le traitement des eaux brutes, les effets d'interférences avec d'autres puits et les contraintes imposées par les autorisations d'exploitation, par la qualité des eaux et par les conditions environnementales. Une méthodologie relativement simple d'estimation de la productivité qui prenne en compte tous ces facteurs a été mise au point. Cette méthodologie est basée surtout sur une analyse des données concernant le niveau piézométrique et le débit de prélèvement, quand ces données sont disponibles. De bonnes données opérationnelles sont particuli
Directory of Open Access Journals (Sweden)
Julien Morel
2014-07-01
Full Text Available Estimating sugarcane biomass is difficult to achieve when working with highly variable spatial distributions of growing conditions, like on Reunion Island. We used a dataset of in-farm fields with contrasted climatic conditions and farming practices to compare three methods of yield estimation based on remote sensing: (1 an empirical relationship method with a growing season-integrated Normalized Difference Vegetation Index NDVI, (2 the Kumar-Monteith efficiency model, and (3 a forced-coupling method with a sugarcane crop model (MOSICAS and satellite-derived fraction of absorbed photosynthetically active radiation. These models were compared with the crop model alone and discussed to provide recommendations for a satellite-based system for the estimation of yield at the field scale. Results showed that the linear empirical model produced the best results (RMSE = 10.4 t∙ha−1. Because this method is also the simplest to set up and requires less input data, it appears that it is the most suitable for performing operational estimations and forecasts of sugarcane yield at the field scale. The main limitation is the acquisition of a minimum of five satellite images. The upcoming open-access Sentinel-2 Earth observation system should overcome this limitation because it will provide 10-m resolution satellite images with a 5-day frequency.
Discrete Choice Models - Estimation of Passenger Traffic
DEFF Research Database (Denmark)
Sørensen, Majken Vildrik
2003-01-01
model, data and estimation are described, with a focus of possibilities/limitations of different techniques. Two special issues of modelling are addressed in further detail, namely data segmentation and estimation of Mixed Logit models. Both issues are concerned with whether individuals can be assumed...... for estimation of choice models). For application of the method an algorithm is provided with a case. Also for the second issue, estimation of Mixed Logit models, a method was proposed. The most commonly used approach to estimate Mixed Logit models, is to employ the Maximum Simulated Likelihood estimation (MSL...... distribution of coefficients were found. All the shapes of distributions found, complied with sound knowledge in terms of which should be uni-modal, sign specific and/or skewed distributions....
Nonparametric estimation in models for unobservable heterogeneity
Hohmann, Daniel
2014-01-01
Nonparametric models which allow for data with unobservable heterogeneity are studied. The first publication introduces new estimators and their asymptotic properties for conditional mixture models. The second publication considers estimation of a function from noisy observations of its Radon transform in a Gaussian white noise model.
MCMC estimation of multidimensional IRT models
Beguin, Anton; Glas, Cornelis A.W.
1998-01-01
A Bayesian procedure to estimate the three-parameter normal ogive model and a generalization to a model with multidimensional ability parameters are discussed. The procedure is a generalization of a procedure by J. Albert (1992) for estimating the two-parameter normal ogive model. The procedure will
ExEP yield modeling tool and validation test results
Morgan, Rhonda; Turmon, Michael; Delacroix, Christian; Savransky, Dmitry; Garrett, Daniel; Lowrance, Patrick; Liu, Xiang Cate; Nunez, Paul
2017-09-01
EXOSIMS is an open-source simulation tool for parametric modeling of the detection yield and characterization of exoplanets. EXOSIMS has been adopted by the Exoplanet Exploration Programs Standards Definition and Evaluation Team (ExSDET) as a common mechanism for comparison of exoplanet mission concept studies. To ensure trustworthiness of the tool, we developed a validation test plan that leverages the Python-language unit-test framework, utilizes integration tests for selected module interactions, and performs end-to-end crossvalidation with other yield tools. This paper presents the test methods and results, with the physics-based tests such as photometry and integration time calculation treated in detail and the functional tests treated summarily. The test case utilized a 4m unobscured telescope with an idealized coronagraph and an exoplanet population from the IPAC radial velocity (RV) exoplanet catalog. The known RV planets were set at quadrature to allow deterministic validation of the calculation of physical parameters, such as working angle, photon counts and integration time. The observing keepout region was tested by generating plots and movies of the targets and the keepout zone over a year. Although the keepout integration test required the interpretation of a user, the test revealed problems in the L2 halo orbit and the parameterization of keepout applied to some solar system bodies, which the development team was able to address. The validation testing of EXOSIMS was performed iteratively with the developers of EXOSIMS and resulted in a more robust, stable, and trustworthy tool that the exoplanet community can use to simulate exoplanet direct-detection missions from probe class, to WFIRST, up to large mission concepts such as HabEx and LUVOIR.
Directory of Open Access Journals (Sweden)
R Deihimfard
2015-12-01
Full Text Available Introduction Crop productivity is highly constrained by water and nitrogen limitations in many areas of the world (Kalra et al., 2007. Therefore, there is a need to investigate more on nitrogen and water management to achieve higher production as well as quality. Irrigated sugar beet in the cropping systems of Khorasan province in northeastern of Iran accounts for about 34% of the land area under sugar beet production (~115,000 ha with an average yield of around 36 t.ha-1 (Anonymous, 2009. However, there is a huge yield gap (the difference between potential and water and nitrogen-limited yield mainly due to biotic and abiotic factors causing major reduction in farmers’ yield. Accordingly, yield gap analysis should be carried out to reduce the yield reduction and reach the farmer’s yield to the potential yield. The current study aimed to simulate potential yield as well as yield gap related to water and nitrogen shortage in the major sugar beet-growing areas of Khorasan province of Iran. Materials and methods This study was carried out in 6 locations across Khorasan province, which is located in the northeast of Iran. Long term weather data for 1986 to 2009 were obtained from Iran Meteorological Organization for 6 selected locations. The weather data included daily sunshine hours (h, daily maximum and minimum temperatures (◦C, and daily rainfall (mm. Daily solar radiation was estimated using the Goudriaan (1993 method. The validated SUCROSBEET model (Deihimfard, 2011; Deihimfard et al., 2011 was then used to estimate potential, water and nitrogen-limited yield and yield gap of sugar beet for 6 selected locations across the Khorasan province in the northeast of Iran. This model simulates the impacts of weather, genotype and management factors on crop growth and development, soil water and nitrogen balance on a daily basis and finally it predicts crop yield. The model requires input data, including local weather and soil conditions, cultivar
Improved diagnostic model for estimating wind energy
Energy Technology Data Exchange (ETDEWEB)
Endlich, R.M.; Lee, J.D.
1983-03-01
Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.
On parameter estimation in deformable models
DEFF Research Database (Denmark)
Fisker, Rune; Carstensen, Jens Michael
1998-01-01
Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...
Modeling and estimating system availability
International Nuclear Information System (INIS)
Gaver, D.P.; Chu, B.B.
1976-11-01
Mathematical models to infer the availability of various types of more or less complicated systems are described. The analyses presented are probabilistic in nature and consist of three parts: a presentation of various analytic models for availability; a means of deriving approximate probability limits on system availability; and a means of statistical inference of system availability from sparse data, using a jackknife procedure. Various low-order redundant systems are used as examples, but extension to more complex systems is not difficult
Mix, A.C.; Morey, A.E.; Pisias, N.G.; Hostetler, S.W.
1999-01-01
The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5??to 6??C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.
Planting data and wheat yield models. [Kansas, South Dakota, and U.S.S.R.
Feyerherm, A. M. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A variable date starter model for spring wheat depending on temperature was more precise than a fixed date model. The same conclusions for fall-planted wheat were not reached. If the largest and smallest of eight temperatures were used to estimate daily maximum and minimum temperatures; respectively, a 1-4 F bias would be introduced into these extremes. For Kansas, a reduction of 0.5 bushels/acre in the root-mean-square-error between model and SRS yields was achieved by a six fold increase (7 to 42) in the density of weather stations. An additional reduction of 0.3 b/A was achieved by incorporating losses due to rusts in the model.
Large-scale crop monitoring and yield estimation are important for both scientific research and practical applications. Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in data-sparse regions that lack reliable ground observations and rep...
Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel
Directory of Open Access Journals (Sweden)
Gil Choong-Sup
2017-01-01
Full Text Available Fission yields data with the ENDF-6 format of 235U, 239Pu, and several actinides dependent on incident neutron energies have been generated using the GEF code. In addition, fission yields data libraries of ORIGEN-S, -ARP modules in the SCALE code, have been generated with the new data. The decay heats by ORIGEN-S using the new fission yields data have been calculated and compared with the measured data for validation in this study. The fission yields data ORIGEN-S libraries based on ENDF/B-VII.1, JEFF-3.1.1, and JENDL/FPY-2011 have also been generated, and decay heats were calculated using the ORIGEN-S libraries for analyses and comparisons.
Directory of Open Access Journals (Sweden)
Dariya K. Sydykova
2017-05-01
Full Text Available Site-specific evolutionary rates can be estimated from codon sequences or from amino-acid sequences. For codon sequences, the most popular methods use some variation of the dN∕dS ratio. For amino-acid sequences, one widely-used method is called Rate4Site, and it assigns a relative conservation score to each site in an alignment. How site-wise dN∕dS values relate to Rate4Site scores is not known. Here we elucidate the relationship between these two rate measurements. We simulate sequences with known dN∕dS, using either dN∕dS models or mutation–selection models for simulation. We then infer Rate4Site scores on the simulated alignments, and we compare those scores to either true or inferred dN∕dS values on the same alignments. We find that Rate4Site scores generally correlate well with true dN∕dS, and the correlation strengths increase in alignments with greater sequence divergence and more taxa. Moreover, Rate4Site scores correlate very well with inferred (as opposed to true dN∕dS values, even for small alignments with little divergence. Finally, we verify this relationship between Rate4Site and dN∕dS in a variety of empirical datasets. We conclude that codon-level and amino-acid-level analysis frameworks are directly comparable and yield very similar inferences.
Fieuzal, R.; Marais Sicre, C.; Baup, F.
2017-05-01
The yield forecasting of corn constitutes a key issue in agricultural management, particularly in the context of demographic pressure and climate change. This study presents two methods to estimate yields using artificial neural networks: a diagnostic approach based on all the satellite data acquired throughout the agricultural season, and a real-time approach, where estimates are updated after each image was acquired in the microwave and optical domains (Formosat-2, Spot-4/5, TerraSAR-X, and Radarsat-2) throughout the crop cycle. The results are based on the Multispectral Crop Monitoring experimental campaign conducted by the CESBIO (Centre d'Études de la BIOsphère) laboratory in 2010 over an agricultural region in southwestern France. Among the tested sensor configurations (multi-frequency, multi-polarization or multi-source data), the best yield estimation performance (using the diagnostic approach) is obtained with reflectance acquired in the red wavelength region, with a coefficient of determination of 0.77 and an RMSE of 6.6 q ha-1. In the real-time approach the combination of red reflectance and CHH backscattering coefficients provides the best compromise between the accuracy and earliness of the yield estimate (more than 3 months before the harvest), with an R2 of 0.69 and an RMSE of 7.0 q ha-1 during the development of the central stem. The two best yield estimates are similar in most cases (for more than 80% of the monitored fields), and the differences are related to discrepancies in the crop growth cycle and/or the consequences of pests.
Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins.
Vigiak, Olga; Malagó, Anna; Bouraoui, Fayçal; Vanmaercke, Matthias; Poesen, Jean
2015-12-15
The Soil and Water Assessment Tool (SWAT) is used worldwide for water quality assessment and planning. This paper aimed to assess and adapt SWAT hillslope sediment yield model (Modified Universal Soil Loss Equation, MUSLE) for applications in large basins, i.e. when spatial data is coarse and model units are large; and to develop a robust sediment calibration method for large regions. The Upper Danube Basin (132,000km(2)) was used as case study representative of large European Basins. The MUSLE was modified to reduce sensitivity of sediment yields to the Hydrologic Response Unit (HRU) size, and to identify appropriate algorithms for estimating hillslope length (L) and slope-length factor (LS). HRUs gross erosion was broadly calibrated against plot data and soil erosion map estimates. Next, mean annual SWAT suspended sediment concentrations (SSC, mg/L) were calibrated and validated against SSC data at 55 gauging stations (622 station-years). SWAT annual specific sediment yields in subbasin reaches (RSSY, t/km(2)/year) were compared to yields measured at 33 gauging stations (87station-years). The best SWAT configuration combined a MUSLE equation modified by the introduction of a threshold area of 0.01km(2) where L and LS were estimated with flow accumulation algorithms. For this configuration, the SSC residual interquartile was less than +/-15mg/L both for the calibration (1995-2004) and the validation (2005-2009) periods. The mean SSC percent bias for 1995-2009 was 24%. RSSY residual interquartile was within +/-10t/km(2)/year, with a mean RSSY percent bias of 12%. Residuals showed no bias with respect to drainage area, slope, or spatial distribution. The use of multiple data types at multiple sites enabled robust simulation of sediment concentrations and yields of the region. The MUSLE modifications are recommended for use in large basins. Based on SWAT simulations, we present a sediment budget for the Upper Danube Basin. Copyright © 2015. Published by Elsevier B.V.
Multilevel Autoregressive Mediation Models: Specification, Estimation, and Applications.
Zhang, Qian; Wang, Lijuan; Bergeman, C S
2017-11-27
In the current study, extending from the cross-lagged panel models (CLPMs) in Cole and Maxwell (2003), we proposed the multilevel autoregressive mediation models (MAMMs) by allowing the coefficients to differ across individuals. In addition, Level-2 covariates can be included to explain the interindividual differences of mediation effects. Given the complexity of the proposed models, Bayesian estimation was used. Both a CLPM and an unconditional MAMM were fitted to daily diary data. The 2 models yielded different statistical conclusions regarding the average mediation effect. A simulation study was conducted to examine the estimation accuracy of Bayesian estimation for MAMMs and consequences of model mis-specifications. Factors considered included the sample size (N), number of time points (T), fixed indirect and direct effect sizes, and Level-2 variances and covariances. Results indicated that the fixed effect estimates for the indirect effect components (a and b) and the fixed effects of Level-2 covariates were accurate when N ≥ 50 and T ≥ 5. For estimating Level-2 variances and covariances, they were accurate provided a sufficiently large N and T (e.g., N ≥ 500 and T ≥ 50). Estimates of the average mediation effect were generally accurate when N ≥ 100 and T ≥ 10, or N ≥ 50 and T ≥ 20. Furthermore, we found that when Level-2 variances were zero, MAMMs yielded valid inferences about the fixed effects, whereas when random effects existed, CLPMs had low coverage rates for fixed effects. DIC can be used for model selection. Limitations and future directions were discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Directory of Open Access Journals (Sweden)
L.R. Schaeffer
2010-04-01
Full Text Available The shape of individual deviations of milk yield for dairy cattle from the fixed part of a random regression test day model (RRTDM was investigated. Data were 53,217 TD records for milk yield of 6,229 first lactation Canadian Holsteins in Ontario. Data were fitted with a model that included the fixed effects of herd-testdate, DIM interval nested within age and season of calving. Residuals of the model were then fitted with the following functions: Ali and Schaeffer 5 parameter model, fourth-order Legendre Polynomials, and cubic spline with three, four or five knots. Result confirm the great variability of shape that can be found when individual lactation are modeled. Cubic splines gave better fitting pe4rformances although together with a marked tendency to yield aberrant estimates at the edge of the lactation trajectory.
Efficiently adapting graphical models for selectivity estimation
DEFF Research Database (Denmark)
Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian S.
2013-01-01
in estimation accuracy. We show how to efficiently construct such a graphical model from the database using only two-way join queries, and we show how to perform selectivity estimation in a highly efficient manner. We integrate our algorithms into the PostgreSQL DBMS. Experimental results indicate...
Estimation in autoregressive models with Markov regime
Ríos, Ricardo; Rodríguez, Luis
2005-01-01
In this paper we derive the consistency of the penalized likelihood method for the number state of the hidden Markov chain in autoregressive models with Markov regimen. Using a SAEM type algorithm to estimate the models parameters. We test the null hypothesis of hidden Markov Model against an autoregressive process with Markov regime.
Modelling and water yield assessment of Lake Sibhayi | Smithers ...
African Journals Online (AJOL)
A yield analysis of simulated results with historical developments in the catchment for the 65-year period of observed climate record was undertaken using both a fixed minimum allowable lake level or a maximum drop from a reference lake level as criteria for system failure. Results from simulating lake levels using the ...
Maneuver Estimation Model for Geostationary Orbit Determination
National Research Council Canada - National Science Library
Hirsch, Brian J
2006-01-01
.... The Clohessy-Wiltshire equations were used to model the relative motion of a geostationary satellite about its intended location, and a nonlinear least squares algorithm was developed to estimate the satellite trajectories.
Directory of Open Access Journals (Sweden)
Luis Gabriel González Herrera
2008-09-01
of Gyr cows calving between 1990 and 2005 were used to estimate genetic parameters of monthly test-day milk yield (TDMY. Records were analyzed by random regression models (MRA that included the additive genetic and permanent environmental random effects and the contemporary group, age of cow at calving (linear and quadratic components and the average trend of the population as fixed effects. Random trajectories were fitted by Wilmink's (WIL and Ali & Schaeffer's (AS parametric functions. Residual variances were fitted by step functions with 1, 4, 6 or 10 classes. The contemporary group was defined by herd-year-season of test-day and included at least three animals. Models were compared by Akaike's and Schwarz's Bayesian (BIC information criterion. The AS function used for modeling the additive genetic and permanent environmental effects with heterogeneous residual variances adjusted with a step function with four classes was the best fitted model. Heritability estimates ranged from 0.21 to 0.33 for the AS function and from 0.17 to 0.30 for WIL function and were larger in the first half of the lactation period. Genetic correlations between TDMY were high and positive for adjacent test-days and decreased as days between records increased. Predicted breeding values for total 305-day milk yield (MRA305 and specific periods of lactation (obtained by the mean of all breeding values in the periods using the AS function were compared with that predicted by a standard model using accumulated 305-day milk yield (PTA305 by rank correlation. The magnitude of correlations suggested differences may be observed in ranking animals by using the different criteria which were compared in this study.
Semi-parametric estimation for ARCH models
Directory of Open Access Journals (Sweden)
Raed Alzghool
2018-03-01
Full Text Available In this paper, we conduct semi-parametric estimation for autoregressive conditional heteroscedasticity (ARCH model with Quasi likelihood (QL and Asymptotic Quasi-likelihood (AQL estimation methods. The QL approach relaxes the distributional assumptions of ARCH processes. The AQL technique is obtained from the QL method when the process conditional variance is unknown. We present an application of the methods to a daily exchange rate series. Keywords: ARCH model, Quasi likelihood (QL, Asymptotic Quasi-likelihood (AQL, Martingale difference, Kernel estimator
Availability and estimation of crop by-product yields for small ...
African Journals Online (AJOL)
A study was carried out in some Local Government Areas of Cross River State of Nigeria to identify and ascertain the availability, level of production and the yields of crop by-products derived from commonly cultivated crops that can serve as feed for small ruminants. The results show that the various staple crops commonly ...
Similar estimates of temperature impacts on global wheat yield by three independent methods
Liu, Bing; Asseng, Senthold; Müller, Christoph; Ewert, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Supit, Iwan; Wolf, Joost
2016-01-01
The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO 2 fertilization effects,
Estimating impact on clover-grass yield caused by traffic intensities
DEFF Research Database (Denmark)
Jørgensen, Rasmus Nyholm; Sørensen, Claus Grøn; Green, Ole
2009-01-01
Traffic intensities have a significant influence on a range of crop and soil parameters (Hamza & Anderson, 2005; Raper, 2005). For grass and especially clover, the yield response is negative as a function of traffic intensity (e.g. Frost, 1988). During the growing season, conventional grass-clov...
Balderama, O. F.
2013-12-01
Peanut is a major upland crop in Cagayan Valley and a leguminous crop that requires less water and therefore, considered an important crop in improving productivity of upland and rainfed areas. However, little information is available on the potential productivity of the crop and analysis on the production constraints including climate change sensitivity. This study was aimed to determine yield potential and production constraints of peanut crop in Cagayan Valley through the use of Decision Support System for Agrotechnology Transfer (DSSAT) simulation modeling; analyze yield gaps between simulated and actual yield levels and to provide decision support to further optimize peanut production under climate change condition. Site of experiment for model calibration and validation was located on-station at Isabela State University, Echague, Isabela. Rainfall and other climatic variables were monitored using a HOBO weather station (Automatic Weather Station) which is strategically installed inside experimental zone.The inputs required to run the CSM model include information on soil and weather conditions, crop management practices and cultivar specific genetic coefficients. In the first step,a model calibration was conducted to determine the cultivar coefficients for certain peanut cultivar that are normally grown in Cagayan Valley. Crop growth and yield simulation modeling was undertaken using the Decision Support System for Agro-Technology Transfer (DSSAT) for small seeded peanut (Pn9). An evaluation of the CSM-CROPGRO-peanut model was performed with data sets from peanut experiment conducted from December 2011 to April 2012. The model was evaluated in the estimation of potential yield of peanut under rainfed condition and low-nitrogen application. Yield potential for peanut limited only by temperature and solar radiation and no-water and nutrient stress, ranged from 3274 to 4805 kg per hectare for six planting dates (October 1, October 15, November 1, November 15
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei
2013-09-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Towards Better Simulation of US Maize Yield Responses to Climate in the Community Earth System Model
Peng, B.; Guan, K.; Chen, M.; Lawrence, D. M.; Jin, Z.; Bernacchi, C.; Ainsworth, E. A.; DeLucia, E. H.; Lombardozzi, D. L.; Lu, Y.
2017-12-01
Global food security is undergoing continuing pressure from increased population and climate change despites the potential advancement in breeding and management technologies. Earth system models (ESMs) are essential tools to study the impacts of historical and future climate on regional and global food production, as well as to assess the effectiveness of possible adaptations and their potential feedback to climate. Here we developed an improved maize representation within the Community Earth System Model (CESM) by combining the strengths of both the Community Land Model version 4.5 (CLM4.5) and the Agricultural Production Systems sIMulator (APSIM) models. Specifically, we modified the maize planting scheme, incorporated the phenology scheme adopted from the APSIM model, added a new carbon allocation scheme into CLM4.5, and improved the estimation of canopy structure parameters including leaf area index (LAI) and canopy height. Unique features of the new model (CLM-APSIM) include more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses (including nitrogen, water, temperature and heat stresses) on maize phenology and carbon allocation, as well as an explicit simulation of grain number and grain size. We conducted a regional simulation of this new model over the US Corn Belt during 1990 to 2010. The simulated maize yield as well as its responses to climate (growing season mean temperature and precipitation) are benchmarked with data from UADA NASS statistics. Our results show that the CLM-APSIM model outperforms the CLM4.5 in simulating county-level maize yield production and reproduces more realistic yield responses to climate variations than CLM4.5. However, some critical processes (such as crop failure due to frost and inundation and suboptimal growth condition due to biotic stresses) are still missing in both CLM-APSIM and CLM4.5, making the simulated yield responses to climate slightly deviate from the
Development of a remote sensing-based rice yield forecasting model
Energy Technology Data Exchange (ETDEWEB)
Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H.
2016-11-01
This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh. (Author)
Torres, F E; Teodoro, P E; Rodrigues, E V; Santos, A; Corrêa, A M; Ceccon, G
2016-04-29
The aim of this study was to select erect cowpea (Vigna unguiculata L.) genotypes simultaneously for high adaptability, stability, and yield grain in Mato Grosso do Sul, Brazil using mixed models. We conducted six trials of different cowpea genotypes in 2005 and 2006 in Aquidauana, Chapadão do Sul, Dourados, and Primavera do Leste. The experimental design was randomized complete blocks with four replications and 20 genotypes. Genetic parameters were estimated by restricted maximum likelihood/best linear unbiased prediction, and selection was based on the harmonic mean of the relative performance of genetic values method using three strategies: selection based on the predicted breeding value, having considered the performance mean of the genotypes in all environments (no interaction effect); the performance in each environment (with an interaction effect); and the simultaneous selection for grain yield, stability, and adaptability. The MNC99542F-5 and MNC99-537F-4 genotypes could be grown in various environments, as they exhibited high grain yield, adaptability, and stability. The average heritability of the genotypes was moderate to high and the selective accuracy was 82%, indicating an excellent potential for selection.
Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates
DEFF Research Database (Denmark)
Frøslev, Tobias Guldberg; Kjøller, Rasmus; Bruun, Hans Henrik
2017-01-01
DNA metabarcoding is promising for cost-effective biodiversity monitoring, but reliable diversity estimates are difficult to achieve and validate. Here we present and validate a method, called LULU, for removing erroneous molecular operational taxonomic units (OTUs) from community data derived...... soil from 130 sites in Denmark spanning major environmental gradients. OTU tables are produced with several different OTU definition algorithms and subsequently curated with LULU, and validated against field survey data. LULU curation consistently improves α-diversity estimates and other biodiversity...... metrics, and does not require a sequence reference database; thus, it represents a promising method for reliable biodiversity estimation....
FUZZY MODELING BY SUCCESSIVE ESTIMATION OF RULES ...
African Journals Online (AJOL)
This paper presents an algorithm for automatically deriving fuzzy rules directly from a set of input-output data of a process for the purpose of modeling. The rules are extracted by a method termed successive estimation. This method is used to generate a model without truncating the number of fired rules, to within user ...
Modelling and parameter estimation of dynamic systems
Raol, JR; Singh, J
2004-01-01
Parameter estimation is the process of using observations from a system to develop mathematical models that adequately represent the system dynamics. The assumed model consists of a finite set of parameters, the values of which are calculated using estimation techniques. Most of the techniques that exist are based on least-square minimization of error between the model response and actual system response. However, with the proliferation of high speed digital computers, elegant and innovative techniques like filter error method, H-infinity and Artificial Neural Networks are finding more and mor
Teodoro, P E; Bhering, L L; Costa, R D; Rocha, R B; Laviola, B G
2016-08-19
The aim of this study was to estimate genetic parameters via mixed models and simultaneously to select Jatropha progenies grown in three regions of Brazil that meet high adaptability and stability. From a previous phenotypic selection, three progeny tests were installed in 2008 in the municipalities of Planaltina-DF (Midwest), Nova Porteirinha-MG (Southeast), and Pelotas-RS (South). We evaluated 18 families of half-sib in a randomized block design with three replications. Genetic parameters were estimated using restricted maximum likelihood/best linear unbiased prediction. Selection was based on the harmonic mean of the relative performance of genetic values method in three strategies considering: 1) performance in each environment (with interaction effect); 2) performance in each environment (with interaction effect); and 3) simultaneous selection for grain yield, stability and adaptability. Accuracy obtained (91%) reveals excellent experimental quality and consequently safety and credibility in the selection of superior progenies for grain yield. The gain with the selection of the best five progenies was more than 20%, regardless of the selection strategy. Thus, based on the three selection strategies used in this study, the progenies 4, 11, and 3 (selected in all environments and the mean environment and by adaptability and phenotypic stability methods) are the most suitable for growing in the three regions evaluated.
Li, T.; Hasegawa, T.; Yin, X.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; Gaydon, D.; Marcaida III, M.; Nakagawa, H.; Oriol, P.; Ruane, A.C.; Ruget, F.; Singh, B.; Singh, U.; Tang, L.; Yoshida, H.; Zhang, Z.; Bouman, B.
2015-01-01
Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We
WFIRST: Integrated Coronagraph Design and Scientific Yield Modeling
Eldorado Riggs, A. J.; Nemati, Bijan; Gersh-Range, Jessica; Kasdin, Jeremy; Balasubramanian, Kunjithapatham; Krist, John; Ruane, Garreth; Sidick, Erkin
2018-01-01
The WFIRST Coronagraph Instrument (CGI) will be the first instrument to directly image cool gas giant exoplanets. To achieve its scientific goals of exoplanet imaging, exoplanet characterization, and circumstellar debris disk imaging, the CGI will carry both the shaped pupil coronagraph and hybrid Lyot coronagraph. Ongoing design work is focused on increasing the expected scientific yield by improving coronagraph performance (e.g., throughput or starlight suppression), robustness to observatory dynamics, and robustness to polarization aberrations. We present the design methodology, updated designs, and the evaluation process for choosing the designs with the highest scientific returns.
Mean size estimation yields left-side bias: Role of attention on perceptual averaging.
Li, Kuei-An; Yeh, Su-Ling
2017-11-01
The human visual system can estimate mean size of a set of items effectively; however, little is known about whether information on each visual field contributes equally to the mean size estimation. In this study, we examined whether a left-side bias (LSB)-perceptual judgment tends to depend more heavily on left visual field's inputs-affects mean size estimation. Participants were instructed to estimate the mean size of 16 spots. In half of the trials, the mean size of the spots on the left side was larger than that on the right side (the left-larger condition) and vice versa (the right-larger condition). Our results illustrated an LSB: A larger estimated mean size was found in the left-larger condition than in the right-larger condition (Experiment 1), and the LSB vanished when participants' attention was effectively cued to the right side (Experiment 2b). Furthermore, the magnitude of LSB increased with stimulus-onset asynchrony (SOA), when spots on the left side were presented earlier than the right side. In contrast, the LSB vanished and then induced a reversed effect with SOA when spots on the right side were presented earlier (Experiment 3). This study offers the first piece of evidence suggesting that LSB does have a significant influence on mean size estimation of a group of items, which is induced by a leftward attentional bias that enhances the prior entry effect on the left side.
Xu, Xiangying; Gao, Ping; Zhu, Xinkai; Guo, Wenshan; Ding, Jinfeng; Li, Chunyan
2018-01-01
Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI). The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen's Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June) had a closer linkage to the yields than in the seedling stage (October-November) and the over-wintering stage (December-February). Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu.
Directory of Open Access Journals (Sweden)
Xiangying Xu
Full Text Available Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI. The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen's Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June had a closer linkage to the yields than in the seedling stage (October-November and the over-wintering stage (December-February. Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu.
Modelling of the parametric yield in decananometer SRAM-Arrays
Directory of Open Access Journals (Sweden)
Th. Fischer
2006-01-01
Full Text Available In today's decananometer (90 nm, 65 nm, ..., CMOS technologies variations of device parameters play an ever more important role. Due to the demand for low leakage systems, supply voltage is decreased on one hand and the transistor threshold voltage is increased on the other hand. This reduces the overdrive voltage of the transistors and leads to decreasing read and write security margins in static memories (SRAM. In addition, smaller dimensions of the devices lead to increasing variations of the device parameters, thus mismatch effects increase. It can be shown that local variations of the transistor parameters limit the functionality of circuits stronger than variations on a global scale or hard defects. We show a method to predict the yield for a large number of SRAM devices without time consuming Monte Carlo simulations in dependence of various parameters (Vdd, temperature, technology options, transistor dimensions, .... This helps the designer to predict the yield for various system options and transistor dimensions, to choose the optimal solution for a specific product.
Directory of Open Access Journals (Sweden)
G. Bussi
2013-08-01
Full Text Available Soil loss and sediment transport in Mediterranean areas are driven by complex non-linear processes which have been only partially understood. Distributed models can be very helpful tools for understanding the catchment-scale phenomena which lead to soil erosion and sediment transport. In this study, a modelling approach is proposed to reproduce and evaluate erosion and sediment yield processes in a Mediterranean catchment (Rambla del Poyo, Valencia, Spain. Due to the lack of sediment transport records for model calibration and validation, a detailed description of the alluvial stratigraphy infilling a check dam that drains a 12.9 km2 sub-catchment was used as indirect information of sediment yield data. These dam infill sediments showed evidences of at least 15 depositional events (floods over the time period 1990–2009. The TETIS model, a distributed conceptual hydrological and sediment model, was coupled to the Sediment Trap Efficiency for Small Ponds (STEP model for reproducing reservoir retention, and it was calibrated and validated using the sedimentation volume estimated for the depositional units associated with discrete runoff events. The results show relatively low net erosion rates compared to other Mediterranean catchments (0.136 Mg ha−1 yr−1, probably due to the extensive outcrops of limestone bedrock, thin soils and rather homogeneous vegetation cover. The simulated sediment production and transport rates offer model satisfactory results, further supported by in-site palaeohydrological evidences and spatial validation using additional check dams, showing the great potential of the presented data assimilation methodology for the quantitative analysis of sediment dynamics in ungauged Mediterranean basins.
Estimating radiation and temperature data for crop simulation model
International Nuclear Information System (INIS)
Ferrer, A.B.; Centeno, H.G.S.; Sheehy, J.E.
1996-01-01
Weather (radiation and temperature) and crop characteristics determine the potential production of an irrigated rice crop. Daily weather data are important inputs to ORYZA 1, an eco-physiological crop model. However, in most cases, missing values occur and sometimes daily weather data are not readily available. More than 20 years of historic daily weather data had been collected from six stations in the Philippines -- Albay, Butuan, Munoz, Batac, Aborlan, and Los Banos. Methods to estimate daily weather data values were made by deriving long-term monthly means and (1) using the same value per month, (2) linearly interpolating between months, and (3) using SIMMETEO weather generator. A validated ORYZA 1 was run using actual daily weather data. The model was run again using weather data obtained from each estimation procedure and the predicted yields from the different simulation runs were compared. The yield predicted using the different weather data sets for each site difference by as much as 20 percent. Among the three estimation procedures used, the interpolated monthly mean values of weather data gave results comparable with those of model runs using actual weather data
Estimation and uncertainty of reversible Markov models.
Trendelkamp-Schroer, Benjamin; Wu, Hao; Paul, Fabian; Noé, Frank
2015-11-07
Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software--http://pyemma.org--as of version 2.0.
Error estimation and adaptive chemical transport modeling
Directory of Open Access Journals (Sweden)
Malte Braack
2014-09-01
Full Text Available We present a numerical method to use several chemical transport models of increasing accuracy and complexity in an adaptive way. In largest parts of the domain, a simplified chemical model may be used, whereas in certain regions a more complex model is needed for accuracy reasons. A mathematically derived error estimator measures the modeling error and provides information where to use more accurate models. The error is measured in terms of output functionals. Therefore, one has to consider adjoint problems which carry sensitivity information. This concept is demonstrated by means of ozone formation and pollution emission.
Estimating impact on clover-grass yield caused by traffic intensities
DEFF Research Database (Denmark)
Jørgensen, Rasmus Nyholm; Sørensen, Claus Grøn; Green, Ole
2009-01-01
the growth season. In this way, the track impacts formed by the machines will influence the grass and clover growth and yield differently. As clover is known to have a higher feed value[1], the evaluation of the quantitative and qualitative affects on the combined clover-grass entity, the individual......Steer and a 15 m3 Kimadan slurry tanker on two axels, was used to perform the simulated traffic treatment on the parcels. The different traffic intensities are combinations of different tire pressure (1,0 and 2,5 bar), tire load (3000 and 6000 kg), time of year and number of passes (variating from 0 to 8...
Using hardness to model yield and tensile strength
Energy Technology Data Exchange (ETDEWEB)
Hawk, Jeffrey A.; Dogan, Omer N.; Schrems, Karol K.
2005-02-01
The current direction in hardness research is towards smaller and smaller loads as nano-scale materials are developed. There remains, however, a need to investigate the mechanical behavior of complex alloys for severe environment service. In many instances this entails casting large ingots and making numerous tensile samples as the bounds of the operating environment are explored. It is possible to gain an understanding of the tensile strength of these alloys using room and elevated temperature hardness in conjunction with selected tensile tests. The approach outlined here has its roots in the work done by Tabor for metals and low alloy and carbon steels. This research seeks to extend the work to elevated temperatures for multi-phase, complex alloys. A review of the approach will be given after which the experimental data will be examined. In particular, the yield stress and tensile strength will be compared to their corresponding hardness based values.
Energy Technology Data Exchange (ETDEWEB)
Barreiro, S.; Rua, J.; Tomé, M.
2016-07-01
Aim of the study. To introduce and describe FlorNExT®, a free cloud computing application to estimate growth and yield of maritime pine (Pinus pinaster Ait.) even-aged stands in the Northeast of Portugal (NE Portugal). Area of study: NE Portugal. Material and methods: FlorNExT® implements a dynamic growth and yield modelling framework which integrates transition functions for dominant height (site index curves) and basal area, as well as output functions for tree and stand volume, biomass, and carbon content. Main results: FlorNExT® is freely available from any device with an Internet connection at: http://flornext.esa.ipb.pt/. Research highlights: This application has been designed to make it possible for any stakeholder to easily estimate standing volume, biomass, and carbon content in maritime pine stands from stand data, as well as to estimate growth and yield based on four stand variables: age, density, dominant height, and basal area. FlorNExT® allows planning thinning treatments. FlorNExT® is a fundamental tool to support forest mobilization at local and regional scales in NE Portugal. (Author)
Parameter Estimation for Thurstone Choice Models
Energy Technology Data Exchange (ETDEWEB)
Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-04-24
We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.
A single model procedure for estimating tank calibration equations
International Nuclear Information System (INIS)
Liebetrau, A.M.
1997-10-01
A fundamental component of any accountability system for nuclear materials is a tank calibration equation that relates the height of liquid in a tank to its volume. Tank volume calibration equations are typically determined from pairs of height and volume measurements taken in a series of calibration runs. After raw calibration data are standardized to a fixed set of reference conditions, the calibration equation is typically fit by dividing the data into several segments--corresponding to regions in the tank--and independently fitting the data for each segment. The estimates obtained for individual segments must then be combined to obtain an estimate of the entire calibration function. This process is tedious and time-consuming. Moreover, uncertainty estimates may be misleading because it is difficult to properly model run-to-run variability and between-segment correlation. In this paper, the authors describe a model whose parameters can be estimated simultaneously for all segments of the calibration data, thereby eliminating the need for segment-by-segment estimation. The essence of the proposed model is to define a suitable polynomial to fit to each segment and then extend its definition to the domain of the entire calibration function, so that it (the entire calibration function) can be expressed as the sum of these extended polynomials. The model provides defensible estimates of between-run variability and yields a proper treatment of between-segment correlations. A portable software package, called TANCS, has been developed to facilitate the acquisition, standardization, and analysis of tank calibration data. The TANCS package was used for the calculations in an example presented to illustrate the unified modeling approach described in this paper. With TANCS, a trial calibration function can be estimated and evaluated in a matter of minutes
Raymond, G. M.; Bassingthwaighte, J. B.
2016-01-01
This is a practical example of a powerful research strategy: putting together data from studies covering a diversity of conditions can yield a scientifically sound grasp of the phenomenon when the individual observations failed to provide definitive understanding. The rationale is that defining a realistic, quantitative, explanatory hypothesis for the whole set of studies, brings about a “consilience” of the often competing hypotheses considered for individual data sets. An internally consistent conjecture linking multiple data sets simultaneously provides stronger evidence on the characteristics of a system than does analysis of individual data sets limited to narrow ranges of conditions. Our example examines three very different data sets on the clearance of salicylic acid from humans: a high concentration set from aspirin overdoses; a set with medium concentrations from a research study on the influences of the route of administration and of sex on the clearance kinetics, and a set on low dose aspirin for cardiovascular health. Three models were tested: (1) a first order reaction, (2) a Michaelis-Menten (M-M) approach, and (3) an enzyme kinetic model with forward and backward reactions. The reaction rates found from model 1 were distinctly different for the three data sets, having no commonality. The M-M model 2 fitted each of the three data sets but gave a reliable estimates of the Michaelis constant only for the medium level data (Km = 24±5.4 mg/L); analyzing the three data sets together with model 2 gave Km = 18±2.6 mg/L. (Estimating parameters using larger numbers of data points in an optimization increases the degrees of freedom, constraining the range of the estimates). Using the enzyme kinetic model (3) increased the number of free parameters but nevertheless improved the goodness of fit to the combined data sets, giving tighter constraints, and a lower estimated Km = 14.6±2.9 mg/L, demonstrating that fitting diverse data sets with a single model
Raymond, G M; Bassingthwaighte, J B
This is a practical example of a powerful research strategy: putting together data from studies covering a diversity of conditions can yield a scientifically sound grasp of the phenomenon when the individual observations failed to provide definitive understanding. The rationale is that defining a realistic, quantitative, explanatory hypothesis for the whole set of studies, brings about a "consilience" of the often competing hypotheses considered for individual data sets. An internally consistent conjecture linking multiple data sets simultaneously provides stronger evidence on the characteristics of a system than does analysis of individual data sets limited to narrow ranges of conditions. Our example examines three very different data sets on the clearance of salicylic acid from humans: a high concentration set from aspirin overdoses; a set with medium concentrations from a research study on the influences of the route of administration and of sex on the clearance kinetics, and a set on low dose aspirin for cardiovascular health. Three models were tested: (1) a first order reaction, (2) a Michaelis-Menten (M-M) approach, and (3) an enzyme kinetic model with forward and backward reactions. The reaction rates found from model 1 were distinctly different for the three data sets, having no commonality. The M-M model 2 fitted each of the three data sets but gave a reliable estimates of the Michaelis constant only for the medium level data (K m = 24±5.4 mg/L); analyzing the three data sets together with model 2 gave K m = 18±2.6 mg/L. (Estimating parameters using larger numbers of data points in an optimization increases the degrees of freedom, constraining the range of the estimates). Using the enzyme kinetic model (3) increased the number of free parameters but nevertheless improved the goodness of fit to the combined data sets, giving tighter constraints, and a lower estimated K m = 14.6±2.9 mg/L, demonstrating that fitting diverse data sets with a single model
Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates
DEFF Research Database (Denmark)
Froslev, Tobias Guldberg; Kjoller, Rasmus; Bruun, Hans Henrik
2017-01-01
DNA metabarcoding is promising for cost-effective biodiversity monitoring, but reliable diversity estimates are difficult to achieve and validate. Here we present and validate a method, called LULU, for removing erroneous molecular operational taxonomic units (OTUs) from community data derived by...
Alvares, R C; Silva, F C; Melo, L C; Melo, P G S; Pereira, H S
2016-11-21
Slow seed coat darkening is desirable in common bean cultivars and genetic parameters are important to define breeding strategies. The aims of this study were to estimate genetic parameters for plant architecture, grain yield, grain size, and seed-coat darkening in common bean; identify any genetic association among these traits; and select lines that associate desirable phenotypes for these traits. Three experiments were set up in the winter 2012 growing season, in Santo Antônio de Goiás and Brasília, Brazil, including 220 lines obtained from four segregating populations and five parents. A triple lattice 15 x 15 experimental design was used. The traits evaluated were plant architecture, grain yield, grain size, and seed-coat darkening. Analyses of variance were carried out and genetic parameters such as heritability, gain expected from selection, and correlations, were estimated. For selection of superior lines, a "weight-free and parameter-free" index was used. The estimates of genetic variance, heritability, and gain expected from selection were high, indicating good possibility for success in selection of the four traits. The genotype x environment interaction was proportionally more important for yield than for the other traits. There was no strong genetic correlation observed among the four traits, which indicates the possibility of selection of superior lines with many traits. Considering simultaneous selection, it was not possible to join high genetic gains for the four traits. Forty-four lines that combined high yield, more upright plant architecture, slow darkening grains, and commercial grade size were selected.
Model prediction of maize yield responses to climate change in ...
African Journals Online (AJOL)
Observed data of the last three decades (1971 to 2000) from several climatological stations in north-eastern Zimbabwe and outputs from several global climate models were used. The downscaled model simulations consistently predicted a warming of between 1 and 2 ºC above the baseline period (1971-2000) at most of ...
Modeling of secondary organic aerosol yields from laboratory chamber data
Directory of Open Access Journals (Sweden)
M. N. Chan
2009-08-01
Full Text Available Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA formation. Current models fall into three categories: empirical two-product (Odum, product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NO_{x} conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C and hydrogen-to-carbon (H/C ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice.
Parameter and Uncertainty Estimation in Groundwater Modelling
DEFF Research Database (Denmark)
Jensen, Jacob Birk
The data basis on which groundwater models are constructed is in general very incomplete, and this leads to uncertainty in model outcome. Groundwater models form the basis for many, often costly decisions and if these are to be made on solid grounds, the uncertainty attached to model results must...... be quantified. This study was motivated by the need to estimate the uncertainty involved in groundwater models.Chapter 2 presents an integrated surface/subsurface unstructured finite difference model that was developed and applied to a synthetic case study.The following two chapters concern calibration...... was applied.Capture zone modelling was conducted on a synthetic stationary 3-dimensional flow problem involving river, surface and groundwater flow. Simulated capture zones were illustrated as likelihood maps and compared with a deterministic capture zones derived from a reference model. The results showed...
Directory of Open Access Journals (Sweden)
M.H. Gharineh
2016-05-01
Full Text Available By application of climatic zoning methods, it is possible to study different agricultural aspects and then with harmony this aspects, determined similar states in a zone. Today, simulation models are widely used around the world in agricultural research and education and cropland management. Due to the vast extent of the agricultural activities in Iran, application of such models seems to be quite necessary for optimization objectives. The primary focus of this research was climatic zoning of Khouzestan region based on the results from wheat yield potential by means of WOFOST model. First, model performance and the accuracy of its results were evaluated. The findings showed that WOFOST model can adequately simulate phenological phases and grain and dry matter yields. The calculated Root Mean Square Error (RMSE values from blooming and physiologic maturity of crop were 1.97 per day and for seed and dry matter performances 810 and 810 kg ha-1, respectively. Also, one-to-one linear regression values for these stages were 0.96, 0.97, 0.93 and 0.91, respectively. The results of simulations indicated that the potentials of crop yield and the actual yield of farmlands are considerably different. Determination of the yield potentials of crop and its restricting factors were considered as the first step toward higher yield of crop. The results emphasized the fact that maximum and minimum yield potentials were found near the cities of Izeh (9247 kg. ha-1 and Shushtar (7538 kg. ha-1. A comparison of potential and actual crop yield trends revealed that the latter has been decreased might be due to the global warming phenomena resulting from green gases release into atmosphere while the increase of the farmer has been related to genetic modification of crop and management strategic. The results also showed that the poor yield of Mahshahr croplands (65.8% was because of unsuitable soil and high level ground water resources. The lowest performance was found in
Extreme gust wind estimation using mesoscale modeling
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Kruger, Andries
2014-01-01
Currently, the existing estimation of the extreme gust wind, e.g. the 50-year winds of 3 s values, in the IEC standard, is based on a statistical model to convert the 1:50-year wind values from the 10 min resolution. This statistical model assumes a Gaussian process that satisfies the classical...... through turbulent eddies. This process is modeled using the mesoscale Weather Forecasting and Research (WRF) model. The gust at the surface is calculated as the largest winds over a layer where the averaged turbulence kinetic energy is greater than the averaged buoyancy force. The experiments have been...
Rhodes, Julia; Hyder, Joseph A.; Peruski, Leonard F.; Fisher, Cindy; Jorakate, Possawat; Kaewpan, Anek; Dejsirilert, Surang; Thamthitiwat, Somsak; Olsen, Sonja J.; Dowell, Scott F.; Chantra, Somrak; Tanwisaid, Kittisak; Maloney, Susan A.; Baggett, Henry C.
2010-01-01
No studies have quantified the impact of pre-culture antibiotic use on the recovery of individual blood-borne pathogens or on population-level incidence estimates for Streptococcus pneumoniae. We conducted bloodstream infection surveillance in Thailand during November 2005?June 2008. Pre-culture antibiotic use was assessed by reported use and by serum antimicrobial activity. Of 35,639 patient blood cultures, 27% had reported pre-culture antibiotic use and 24% (of 24,538 tested) had serum anti...
Modeling the yield potential of dryland canola under current and future climates in California
George, N.; Kaffka, S.; Beeck, C.; Bucaram, S.; Zhang, J.
2012-12-01
Models predict that the climate of California will become hotter, drier and more variable under future climate change scenarios. This will lead to both increased irrigation demand and reduced irrigation water availability. In addition, it is predicted that most common Californian crops will suffer a concomitant decline in productivity. To remain productive and economically viable, future agricultural systems will need to have greater water use efficiency, tolerance of high temperatures, and tolerance of more erratic temperature and rainfall patterns. Canola (Brassica napus) is the third most important oilseed globally, supporting large and well-established agricultural industries in Canada, Europe and Australia. It is an agronomically useful and economically valuable crop, with multiple end markets, that can be grown in California as a dryland winter rotation with little to no irrigation demand. This gives canola great potential as a new crop for Californian farmers both now and as the climate changes. Given practical and financial limitations it is not always possible to immediately or widely evaluate a crop in a new region. Crop production models are therefore valuable tools for assessing the potential of new crops, better targeting further field research, and refining research questions. APSIM is a modular modeling framework developed by the Agricultural Production Systems Research Unit in Australia, it combines biophysical and management modules to simulate cropping systems. This study was undertaken to examine the yield potential of Australian canola varieties having different water requirements and maturity classes in California using APSIM. The objective of the work was to identify the agricultural regions of California most ideally suited to the production of Australian cultivars of canola and to simulate the production of canola in these regions to estimate yield-potential. This will establish whether the introduction and in-field evaluation of better
Robust estimation procedure in panel data model
Energy Technology Data Exchange (ETDEWEB)
Shariff, Nurul Sima Mohamad [Faculty of Science of Technology, Universiti Sains Islam Malaysia (USIM), 71800, Nilai, Negeri Sembilan (Malaysia); Hamzah, Nor Aishah [Institute of Mathematical Sciences, Universiti Malaya, 50630, Kuala Lumpur (Malaysia)
2014-06-19
The panel data modeling has received a great attention in econometric research recently. This is due to the availability of data sources and the interest to study cross sections of individuals observed over time. However, the problems may arise in modeling the panel in the presence of cross sectional dependence and outliers. Even though there are few methods that take into consideration the presence of cross sectional dependence in the panel, the methods may provide inconsistent parameter estimates and inferences when outliers occur in the panel. As such, an alternative method that is robust to outliers and cross sectional dependence is introduced in this paper. The properties and construction of the confidence interval for the parameter estimates are also considered in this paper. The robustness of the procedure is investigated and comparisons are made to the existing method via simulation studies. Our results have shown that robust approach is able to produce an accurate and reliable parameter estimates under the condition considered.
Development on electromagnetic impedance function modeling and its estimation
International Nuclear Information System (INIS)
Sutarno, D.
2015-01-01
Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition
Development on electromagnetic impedance function modeling and its estimation
Energy Technology Data Exchange (ETDEWEB)
Sutarno, D., E-mail: Sutarno@fi.itb.ac.id [Earth Physics and Complex System Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (Indonesia)
2015-09-30
Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition
Miller, Cherie V.; Gutierrez-Magness, Angelica L.; Feit Majedi, Brenda L.; Foster, Gregory D.
2007-01-01
concentrations of total phosphorus and total nitrogen had lower values of multiple R2 than suspended sediment, but the estimated bias for all the models was similar. The models for total nitrogen and total phosphorus tended to under-predict high concentrations and to over-predict low concentrations as compared to measured values. Annual yields (loads per square area in kilograms per year per square kilometer) were estimated for suspended sediment, total nitrogen, and total phosphorus using the U.S. Geological Survey models ESTIMATOR and LOADEST. The model LOADEST used hourly time steps and allowed the use of turbidity, which is strongly correlated to concentrations of suspended sediment, as a predictor variable. Annual yields for total nitrogen and total phosphorus were slightly higher but similar to previous estimates for other watersheds of the Chesapeake Bay, but annual yields for suspended sediment were higher by an order of magnitude for the two Anacostia River stations. Annual yields of suspended sediment at the two Anacostia River stations ranged from 131,000 to 248,000 kilograms per year per square kilometer for 2004 and 2005. LOADEST estimates were similar to those determined with ESTIMATOR, but had reduced errors associated with the estimates.
Cecchinato, A; Penasa, M; De Marchi, M; Gallo, L; Bittante, G; Carnier, P
2011-08-01
The aim of this study was to estimate heritabilities of rennet coagulation time (RCT) and curd firmness (a(30)) and their genetic correlations with test-day milk yield, composition (fat, protein, and casein content), somatic cell score, and acidity (pH and titratable acidity) using coagulating and noncoagulating (NC) milk information. Data were from 1,025 Holstein-Friesian (HF) and 1,234 Brown Swiss (BS) cows, which were progeny of 54 HF and 58 BS artificial insemination sires, respectively. Milk coagulation properties (MCP) of each cow were measured once using a computerized renneting meter and samples not exhibiting coagulation within 31 min after rennet addition were classified as NC milk. For NC samples, RCT was unobserved. Multivariate analyses, using Bayesian methodology, were performed to estimate the genetic relationships of RCT or a(30) with the other traits and statistical inference was based on the marginal posterior distributions of parameters of concern. For analyses involving RCT, a right-censored Gaussian linear model was used and records of NC milk samples, being censored records, were included as unknown parameters in the model implementing a data augmentation procedure. Rennet coagulation time was more heritable [heritability (h(2))=0.240 and h(2)=0.210 for HF and BS, respectively] than a(30) (h(2)=0.148 and h(2)=0.168 for HF and BS, respectively). Milk coagulation properties were more heritable than a single test-day milk yield (h(2)=0.103 and h(2)=0.097 for HF and BS, respectively) and less heritable than milk composition traits whose heritability ranged from 0.275 to 0.275, with the only exception of fat content of BS milk (h(2)=0.108). A negative genetic correlation, lower than -0.85, was estimated between RCT and a(30) for both breeds. Genetic relationships of MCP with yield and composition were low or moderate and favorable. The genetic correlation of somatic cell score with RCT in BS cows was large and positive and even more positive were
Model-Based Optimizing Control and Estimation Using Modelica Model
Directory of Open Access Journals (Sweden)
L. Imsland
2010-07-01
Full Text Available This paper reports on experiences from case studies in using Modelica/Dymola models interfaced to control and optimization software, as process models in real time process control applications. Possible applications of the integrated models are in state- and parameter estimation and nonlinear model predictive control. It was found that this approach is clearly possible, providing many advantages over modeling in low-level programming languages. However, some effort is required in making the Modelica models accessible to NMPC software.
Estimating Stochastic Volatility Models using Prediction-based Estimating Functions
DEFF Research Database (Denmark)
Lunde, Asger; Brix, Anne Floor
to the performance of the GMM estimator based on conditional moments of integrated volatility from Bollerslev and Zhou (2002). The case where the observed log-price process is contaminated by i.i.d. market microstructure (MMS) noise is also investigated. First, the impact of MMS noise on the parameter estimates from...... the two estimation methods without noise correction are studied. Second, a noise robust GMM estimator is constructed by approximating integrated volatility by a realized kernel instead of realized variance. The PBEFs are also recalculated in the noise setting, and the two estimation methods ability...
Estimating the yield of NHS Health Checks in England: a population-based cohort study.
Forster, Alice S; Dodhia, Hiten; Booth, Helen; Dregan, Alex; Fuller, Frances; Miller, Jane; Burgess, Caroline; McDermott, Lisa; Gulliford, Martin C
2015-06-01
This study aimed to evaluate the yield of the NHS Health Checks programme. A cohort study, conducted in the Clinical Practice Research Datalink in England. Electronic health records were analysed for patients aged 40-74 receiving an NHS Health Check between 2010 and 2013. There were 65 324 men and 75 032 women receiving a health check. For every 1000 men assessed, there were 205 smokers (95% confidence interval 195-215), 355 (340-369) with hypertension (≥140/90 mmHg) and 633 (607-658) with elevated cholesterol (≥5 mmol/l). Among 1000 women, there were 161 (151-171) smokers, 247 (238-257) with hypertension and 668 (646-689) with elevated cholesterol. In the 12 months following the check, statins were prescribed to 18% of men and 21% of women with ≥20% cardiovascular risk and antihypertensive drugs to 11% of men and 16% of women with ≥20% cardiovascular risk. Slight reductions in risk factor values were observed in the minority of participants with follow-up values recorded in the 15 months following the check. A universal primary prevention programme identifies substantial risk factor burden in a population without known cardiovascular disease. Research is needed to monitor interventions, and intermediate- and long-term outcomes, in those identified at high risk. © The Author 2014. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Operational semi-physical spectral-spatial wheat yield model development
Tripathy, R.; Chaudhary, K. N.; Nigam, R.; Manjunath, K. R.; Chauhan, P.; Ray, S. S.; Parihar, J. S.
2014-11-01
Spectral yield models based on Vegetation Index (VI) and the mechanistic crop simulation models are being widely used for crop yield prediction. However, past experience has shown that the empirical nature of the VI based models and the intensive data requirement of the complex mechanistic models has limited their use for regional and spatial crop yield prediction especially for operational use. The present study was aimed at development of an intermediate method based on the use of remote sensing and the physiological concepts such as the photo-synthetically active solar radiation (PAR) and the fraction of PAR absorbed by the crop (fAPAR) in Monteith's radiation use efficiency based equation (Monteith, 1977) for operational wheat yield forecasting by the Department of Agriculture (DoA). Net Primary Product (NPP) has been computed using the Monteith model and stress has been applied to convert the potential NPP to actual NPP. Wheat grain yield has been computed using the actual NPP and Harvest index. Kalpana-VHRR insolation has been used for deriving the PAR. Maximum radiation use efficiency has been collected from literature and wheat crop mask was derived at MNCFC, New Delhi using RS2-AWiFS data. Water stress has been derived from the Land Surface Water Index (LSWI) which has been derived periodically from the MODIS surface reflectance data (NIR and SWIR1). Temperature stress has been derived from the interpolated daily mean temperature. Results indicated that this model underestimated the yield by 3.45 % as compared to the reported yield at state level and hence can be used to predict wheat yield at state level. This study will be able to provide the spatial wheat yield map, as well as the district-wise and state level aggregated wheat yield forecast. It is possible to operationalize this remote sensing based modified Monteith's efficiency model for future yield forecasting with around 0.15 t ha-1 RMSE at state level.
Taheri Tizro, A.; Voudouris, K.; Basami, Y.
2012-08-01
SummaryVertical Electric Soundings (VESs) with a Schlumberger electrode configuration were recorded in the Mahidashat plain, Kermanshah province, located in the western part of Iran, in order to estimate the hydraulic parameters of the aquifer system. The geological formations surrounding the plain are mainly cretaceous limestones and plagioclases with regular layering of Miocene age. The northwestern part of plain is composed of red marls of Eocene age. In order to ascertain the subsurface geological framework the general distribution of resistivity response of the geological formations was obtained. Geoelectrical sections along a number of lines have been prepared. Probable lithological patterns from these sections have been identified. In the present study, an attempt to estimate porosity and specific yield from resistivity data has been made for alluvial aquifers in Mahidashat plain. The results indicated that the porosity varies from 0.18 to 0.66 and the average specific yield is 0.15. The estimated data are compared with field real data and their credibility was calculated by using the paired t-test method.
Assessing sediment yield in Kalaya gauged watershed (Northern Morocco using GIS and SWAT model
Directory of Open Access Journals (Sweden)
Hamza Briak
2016-09-01
Full Text Available An efficient design for erosion-control structures of any watershed in the world is entrusted with the delicate forecasting of sediment yields. These outlook yields are usually inferred by extrapolations from past observations. Because runoff, as the transporting vehicle, is more closely correlated with sediment yields than any other variable. So, calibration as well as validation of process-based hydrological models are two major processes while estimating the sediment yield in watershed. The actual survey is fulfilled with the aim of developing a trustworthy hydrologic model simulating stream flow discharge and sediment concentration with least uncertainty among the parameters picked out for calibration so as to verify the effect of the scenarios on the spatial distribution of sediment yield (sediments transported from sub-basins to the main channel during the step of time. Soil and Water Assessment Tool (SWAT, version 2012 model integrated with Geographic Information System (GIS, version 10.1 was used to simulate the stream flow and sediment concentration of Kalaya catchment situated in north of Morocco for the period from 1971 to 1993. Model calibration and validation were performed for monthly time periods using Sequential Uncertainty Fitting 2 (SUFI-2, version 2 within SWAT-CUP using 16 parameters. Our calibration outputs for monthly simulation for the period from 1976 to 1984 showed a good model performance for flow rates with NSE and PBIAS values of 0.76 and −11.80, respectively; also a good model performance for sediment concentration with NSE and PBIAS values of 0.69 and 7.12, respectively. Nonetheless, during validation period (1985–1993 for monthly time step, the NSE and PBIAS values were 0.67 and −14.44, respectively for flow rates and these statistical values were 0.70 and 15.51, respectively for sediment concentration; which also means a good model performance for both. Following calibration, the inclusive effect of each
High-dimensional model estimation and model selection
CERN. Geneva
2015-01-01
I will review concepts and algorithms from high-dimensional statistics for linear model estimation and model selection. I will particularly focus on the so-called p>>n setting where the number of variables p is much larger than the number of samples n. I will focus mostly on regularized statistical estimators that produce sparse models. Important examples include the LASSO and its matrix extension, the Graphical LASSO, and more recent non-convex methods such as the TREX. I will show the applicability of these estimators in a diverse range of scientific applications, such as sparse interaction graph recovery and high-dimensional classification and regression problems in genomics.
Nuclear reaction rate uncertainties and astrophysical modeling: Carbon yields from low-mass giants
International Nuclear Information System (INIS)
Herwig, Falk; Austin, Sam M.; Lattanzio, John C.
2006-01-01
Calculations that demonstrate the influence of three key nuclear reaction rates on the evolution of asymptotic giant branch stars have been carried out. We study the case of a star with an initial mass of 2 M · and a metallicity of Z=0.01, somewhat less than the solar metallicity. The dredge-up of nuclear processed material from the interior of the star and the yield predictions for carbon are sensitive to the rate of the 14 N(p,γ) 15 O and triple-α reactions. These reactions dominate the H- and He-burning shells of stars in this late evolutionary phase. Published uncertainty estimates for each of these two rates propagated through stellar evolution calculations cause uncertainties in carbon enrichment and yield predictions of about a factor of 2. The other important He-burning reaction, 12 C(α,γ) 16 O, although associated with the largest uncertainty in our study, does not have a significant influence on the abundance evolution compared with other modeling uncertainties. This finding remains valid when the entire evolution from the main sequence to the tip of the asymptotic giant branch is considered. We discuss the experimental sources of the rate uncertainties addressed here and give some outlooks for future work
Extreme Earthquake Risk Estimation by Hybrid Modeling
Chavez, M.; Cabrera, E.; Ashworth, M.; Garcia, S.; Emerson, D.; Perea, N.; Salazar, A.; Moulinec, C.
2012-12-01
The estimation of the hazard and the economical consequences i.e. the risk associated to the occurrence of extreme magnitude earthquakes in the neighborhood of urban or lifeline infrastructure, such as the 11 March 2011 Mw 9, Tohoku, Japan, represents a complex challenge as it involves the propagation of seismic waves in large volumes of the earth crust, from unusually large seismic source ruptures up to the infrastructure location. The large number of casualties and huge economic losses observed for those earthquakes, some of which have a frequency of occurrence of hundreds or thousands of years, calls for the development of new paradigms and methodologies in order to generate better estimates, both of the seismic hazard, as well as of its consequences, and if possible, to estimate the probability distributions of their ground intensities and of their economical impacts (direct and indirect losses), this in order to implement technological and economical policies to mitigate and reduce, as much as possible, the mentioned consequences. Herewith, we propose a hybrid modeling which uses 3D seismic wave propagation (3DWP) and neural network (NN) modeling in order to estimate the seismic risk of extreme earthquakes. The 3DWP modeling is achieved by using a 3D finite difference code run in the ~100 thousands cores Blue Gene Q supercomputer of the STFC Daresbury Laboratory of UK, combined with empirical Green function (EGF) techniques and NN algorithms. In particular the 3DWP is used to generate broadband samples of the 3D wave propagation of extreme earthquakes (plausible) scenarios corresponding to synthetic seismic sources and to enlarge those samples by using feed-forward NN. We present the results of the validation of the proposed hybrid modeling for Mw 8 subduction events, and show examples of its application for the estimation of the hazard and the economical consequences, for extreme Mw 8.5 subduction earthquake scenarios with seismic sources in the Mexican
Creatinine measurements often yielded false estimates of progression in chronic renal failure
International Nuclear Information System (INIS)
Walser, M.; Drew, H.H.; LaFrance, N.D.
1988-01-01
In 9 of 22 observation periods (lasting an average of 15 months) in 17 patients with moderate to severe chronic renal failure (GFR 4 to 23 ml/min), rates of progression as estimated from the linear regression on time of 24-hour creatinine clearance (b1) differed significantly from rates of progression as estimated from the regression on time of urinary clearance of 99mTc-DTPA (b2), during all or part of the period of observation. b1 exceeded b2 in four cases and was less than b2 in the other five. Thus there were gradual changes in the fractional tubular secretion of creatinine in individual patients, in both directions. Owing to these changes, measurements of creatinine clearance gave erroneous impressions of the rate or existence of progression during all or a portion of the period of observation in nearly half of these patients. In the 22 studies as a group, using the entire periods of observation, b1 indicated significantly more rapid progression (by 0.18 +/- 0.06 ml/min/month, P less than 0.01) than did b2, and had a significantly greater variance. Measurements of progression based on the rate of change of reciprocal plasma creatinine (multiplied by an average rate of urinary creatinine excretion in each study) were equally misleading, even though less variable. We conclude that sequential creatinine measurements are often misleading as measures of progression and should, when feasible, be replaced by urinary clearance of isotopes in following patients with chronic renal failure
DEFF Research Database (Denmark)
Pedersen, Marie; Siroux, Valérie; Pin, Isabelle
2013-01-01
also enhance the potential for confounding. We aimed to discuss some analytical approaches to handle this trade-off. METHODS: We modeled NO2 and PM10 concentrations at the home addresses of 1082 pregnant mothers from EDEN cohort living in and around urban areas, using ADMS dispersion model. Simulations......: Simulations indicated that adjustment for area limited the bias due to unmeasured confounders varying with area at the costs of a slight decrease in statistical power. In our cohort, rural and urban areas differed for air pollution levels and for many factors associated with respiratory health and exposure......BACKGROUND: Spatially-resolved air pollution models can be developed in large areas. The resulting increased exposure contrasts and population size offer opportunities to better characterize the effect of atmospheric pollutants on respiratory health. However the heterogeneity of these areas may...
Mrg: A Magnitude Scale for 1 s Rayleigh Waves at Local Distances with Focus on Yield Estimation
2016-08-23
Bache, T. (1982), Estimating the yield of underground nuclear explosions, Bull. Seism . Soc. Am., 72, pp. S131-S168. Cho, K. H., R. B. Herrmann, C. J...Ammon, and K. Lee (2007), Imaging the upper crust of the Korean peninsula by surface-wave tomography, Bull. Seism . Soc. Am., 97, pp. 198-207. Denny...Monitoring the earthquake source process in North America, Bull. Seism . Soc. Am., 101, pp. 2609-2625. Kennett, B.L.N., E. R. Engdahl, and R. Buland
Directory of Open Access Journals (Sweden)
H. Khalilzade
2016-02-01
Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment
Decimative Spectral Estimation with Unconstrained Model Order
Directory of Open Access Journals (Sweden)
Stavroula-Evita Fotinea
2012-01-01
Full Text Available This paper presents a new state-space method for spectral estimation that performs decimation by any factor, it makes use of the full set of data and brings further apart the poles under consideration, while imposing almost no constraints to the size of the Hankel matrix (model order, as decimation increases. It is compared against two previously proposed techniques for spectral estimation (along with derived decimative versions, that lie among the most promising methods in the field of spectroscopy, where accuracy of parameter estimation is of utmost importance. Moreover, it is compared against a state-of-the-art purely decimative method proposed in literature. Experiments performed on simulated NMR signals prove the new method to be more robust, especially for low signal-to-noise ratio.
Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso
Wolf, J.; Quattara, K.; Supit, I.
2015-01-01
To reduce the dependence on local expert knowledge, which is important for large-scale crop modelling studies, we analyzed sowing dates and rules for maize (Zea mays L.) and sorghum (Sorghum bicolor (L.)) at three locations in Burkina Faso with strongly decreasing rainfall amounts from south to
Estimating Coastal Digital Elevation Model (DEM) Uncertainty
Amante, C.; Mesick, S.
2017-12-01
Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.
Directory of Open Access Journals (Sweden)
Lynch J.P.
2017-09-01
Full Text Available Although Irish winter wheat yields are among the highest globally, increases in the profitability of this crop are required to maintain its economic viability. However, in order to determine if efforts to further increase Irish wheat yields are likely to be successful, an accurate estimation of the yield potential is required for different regions within Ireland. A winter wheat yield potential model (WWYPM was developed, which estimates the maximum water-limited yield achievable, within the confines of current genetic resources and technologies, using parameters for winter wheat growth and development observed recently in Ireland and a minor amount of daily meteorological input (maximum and minimum daily temperature, total daily rainfall and total daily incident radiation. The WWYPM is composed of three processes: (i an estimation of potential green area index, (ii an estimation of light interception and biomass accumulation and (iii an estimation of biomass partitioning to grain yield. Model validation indicated that WWYPM estimations of water-limited yield potential (YPw were significantly related to maximum yields recorded in variety evaluation trials as well as regional average and maximum farm yields, reflecting the model’s sensitivity to alterations in the climatic environment with spatial and seasonal variations. Simulations of YPw for long-term average weather data at 12 sites located at spatially contrasting regions of Ireland indicated that the typical YPw varied between 15.6 and 17.9 t/ha, with a mean of 16.7 t/ha at 15% moisture content. These results indicate that the majority of sites in Ireland have the potential to grow high-yielding crops of winter wheat when the effects of very high rainfall and other stresses such as disease incidence and nutrient deficits are not considered.
Consistent Estimation of Partition Markov Models
Directory of Open Access Journals (Sweden)
Jesús E. García
2017-04-01
Full Text Available The Partition Markov Model characterizes the process by a partition L of the state space, where the elements in each part of L share the same transition probability to an arbitrary element in the alphabet. This model aims to answer the following questions: what is the minimal number of parameters needed to specify a Markov chain and how to estimate these parameters. In order to answer these questions, we build a consistent strategy for model selection which consist of: giving a size n realization of the process, finding a model within the Partition Markov class, with a minimal number of parts to represent the process law. From the strategy, we derive a measure that establishes a metric in the state space. In addition, we show that if the law of the process is Markovian, then, eventually, when n goes to infinity, L will be retrieved. We show an application to model internet navigation patterns.
Los Alamos Waste Management Cost Estimation Model
International Nuclear Information System (INIS)
Matysiak, L.M.; Burns, M.L.
1994-03-01
This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs
Pervin, Lia; Islam, Md Saiful
2015-02-01
The aim of this study was to develop a system dynamics model for computation of yields and to investigate the dependency of yields on some major climatic parameters, i.e. temperature and rainfall, for Beta vulgaris subsp. (sugar beet crops) under future climate change scenarios. A system dynamics model was developed which takes account of the effects of rainfall and temperature on sugar beet yields under limited irrigation conditions. A relationship was also developed between the seasonal evapotranspiration and seasonal growing degree days for sugar beet crops. The proposed model was set to run for the present time period of 1993-2012 and for the future period 2013-2040 for Lethbridge region (Alberta, Canada). The model provides sugar beet yields on a yearly basis which are comparable to the present field data. It was found that the future average yield will be increased at about 14% with respect to the present average yield. The proposed model can help to improve the understanding of soil water conditions and irrigation water requirements of an area under certain climatic conditions and can be used for future prediction of yields for any crops in any region (with the required information to be provided). The developed system dynamics model can be used as a supporting tool for decision making, for improvement of agricultural management practice of any region. © 2014 Society of Chemical Industry.
Kaneko, Daijiro; Yang, Peng; Kumakura, Toshiro
2009-08-01
The authors have developed a photosynthesis crop model for grain production under the background of climate change and Asian economic growth in developing countries. This paper presents an application of the model to grain fields of paddy rice, winter wheat, and maize in China and Southeast Asia. The carbon hydrate in grains has the same chemical formula as that of cellulose in grain vegetation. The partitioning of carbon in grain plants can validate fixation amounts of computed carbon using a satellite-based photosynthesis model. The model estimates the photosynthesis fixation of rice reasonably in Japan and China. Results were validated through examination of carbon in grains, but the model tends to underestimate results for winter wheat and maize. This study also provides daily distributions of the PSN, which is the CO2 fixation in Asian areas combined with a land-cover distribution classified from MODIS data, NDVI from SPOT VEGETATION, and meteorological re-analysis data by European Centre for Medium-Range Forecasts (ECMWF). The mean CO2 and carbon fixation rates in paddy areas were 25.92 (t CO2/ha) and 5.28 (t/ha) in Japan, respectively. The method is based on routine observation data, enabling automated monitoring of crop yields.
Directory of Open Access Journals (Sweden)
O. NIEMELÄINEN
2008-12-01
Full Text Available The dry matter yields of cultivar trials (from 1976 to 1998 at 15 sites in Finland of perennial grass sward (meadow fescue (Festuca pratensis cv. Boris, annual grass sward (Italian ryegrass (Lolium multiflorum, cv. Barmultra and Mitos, spring barley (Hordeum vulgare cv. Otra, Arra, Arve and oat (Avena sativa cv. Veli were used to estimate metabolisable energy yields (MEY by using the feeds metabolisable energy concentration values (MJ/kg DM from ruminant feed tables. Harvest index (HI of barley and oat was set to 50%, and straw yields and whole crop cereal silage (WCCS yields were generated from grain yields accordingly. The MEY in the third year of perennial grass (81.4 GJ/ha was significantly lower than that in the first (90.0 GJ/ha and second years (90.7 GJ/ha. However, on average, the one to three year old perennial grass-swards had significantly higher MEY than the annual grass swards (87.7 vs. 83.3 GJ/ha, respectively. The MEYs of perennial and annual grass swards were substantially higher than the MEY of barley grain (52.7 GJ/ha and oat grain (47. 8 GJ/ha. When the total herbage of cereals, i.e. straw and grain, was used in the calculations, at a ME value of 6.0 MJ/ kg dry matter (DM for straw, the MEY of barley rose to 75.8 GJ/ha and that of oat to 72.6 GJ/ha. Additionally, the MEY of barley was estimated in the WCCS production situation by converting total herbage to MEY by using ME value 9.9 MJ/kg DM. The MEY of barley in the WCCS calculations was 77.4 GJ/ha, which was significantly lower than the MEY of annual and perennial grass swards. The MEY of barley was a 60%, b 86%, and c 88% of the average MEY of one to three year old perennial grass sward when the MEY of barley was calculated according to a grain, b grain + straw, and c whole crop cereal silage. Perennial grass sward was the most productive of the studied crops in metabolisable energy production for ruminants.
Assessments of Maize Yield Potential in the Korean Peninsula Using Multiple Crop Models
Kim, S. H.; Myoung, B.; Lim, C. H.; Lee, S. G.; Lee, W. K.; Kafatos, M.
2015-12-01
The Korean Peninsular has unique agricultural environments due to the differences in the political and socio-economical systems between the Republic of Korea (SK, hereafter) and the Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering from the lack of food supplies caused by natural disasters, land degradation and failed political system. The neighboring developed country SK has a better agricultural system but very low food self-sufficiency rate (around 1% of maize). Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we have utilized multiple process-based crop models capable of regional-scale assessments to evaluate maize Yp over the Korean Peninsula - the GIS version of EPIC model (GEPIC) and APSIM model that can be expanded to regional scales (APSIM regions). First we evaluated model performance and skill for 20 years from 1991 to 2010 using reanalysis data (Local Data Assimilation and Prediction System (LDAPS); 1.5km resolution) and observed data. Each model's performances were compared over different regions within the Korean Peninsula of different regional climate characteristics. To quantify the major influence of individual climate variables, we also conducted a sensitivity test using 20 years of climatology. Lastly, a multi-model ensemble analysis was performed to reduce crop model uncertainties. The results will provide valuable information for estimating the climate change or variability impacts on Yp over the Korean Peninsula.
Conditional shape models for cardiac motion estimation
DEFF Research Database (Denmark)
Metz, Coert; Baka, Nora; Kirisli, Hortense
2010-01-01
We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...... alignment of pre-operative CTA data with intra-operative X-ray imaging. Due to a trend towards prospective electrocardiogram gating techniques, 4D imaging data, from which motion information could be extracted, is not commonly available. The prediction of motion from shape information is thus relevant...
Software Cost Estimating Models: A Comparative Study of What the Models Estimate
1993-09-01
generate good cost estimates. One model developer best summed up this sentiment by stating: Estimation is not a mechanical process. Art, skill, and...Allocation Perc.uinta~es for SASEY Development Phases Sysieni Conce~pt 7.5% yseS/W Requ~irements Anlysis _________%__ S/W Raq;iirements Analysis 9.0
Tsai, Jui-Pin; Yeh, Tian-Chyi Jim; Cheng, Ching-Chung; Zha, Yuanyuan; Chang, Liang-Cheng; Hwang, Cheinway; Wang, Yu-Li; Hao, Yonghong
2017-10-01
Hydraulic conductivity >(K>) and specific yield (Sy) are important aquifer parameters, pertinent to groundwater resources management and protection. These parameters are commonly estimated through a traditional cross-well pumping test. Employing the traditional approach to obtain detailed spatial distributions of the parameters over a large area is generally formidable. For this reason, this study proposes a stochastic method that integrates hydraulic head and time-lapse gravity based on hydraulic tomography (HT) to efficiently derive the spatial distribution of K and Sy over a large area. This method is demonstrated using several synthetic experiments. Results of these experiments show that the K and Sy fields estimated by joint inversion of the gravity and head data set from sequential injection tests in unconfined aquifers are superior to those from the HT based on head data alone. We attribute this advantage to the mass constraint imposed on HT by gravity measurements. Besides, we find that gravity measurement can detect the change of aquifer's groundwater storage at kilometer scale, as such they can extend HT's effectiveness over greater volumes of the aquifer. Furthermore, we find that the accuracy of the estimated fields is improved as the number of the gravity stations is increased. The gravity station's location, however, has minor effects on the estimates if its effective gravity integration radius covers the well field.
Schrön, M.; Fersch, B.; Jagdhuber, T.
2017-12-01
The representative determination of soil moisture across different spatial ranges and scales is still an important challenge in hydrology. While in situ measurements are trusted methods at the profile- or point-scale, cosmic-ray neutron sensors (CRNS) are renowned for providing volume averages for several hectares and tens of decimeters depth. On the other hand, airborne remote-sensing enables the coverage of regional scales, however limited to the top few centimeters of the soil.Common to all of these methods is a challenging data processing part, often requiring calibration with independent data. We investigated the performance and potential of three complementary observational methods for the determination of soil moisture below grassland in an alpine front-range river catchment (Rott, 55 km2) of southern Germany.We employ the TERENO preAlpine soil moisture monitoring network, along with additional soil samples taken throughout the catchment. Spatial soil moisture products have been generated using surveys of a car-mounted mobile CRNS (rover), and an aerial acquisition of the polarimetric synthetic aperture radar (F-SAR) of DLR.The study assesses (1) the viability of the different methods to estimate soil moisture for their respective scales and extents, and (2) how either method could support an improvement of the others. We found that in situ data can provide valuable information to calibrate the CRNS rover and to train the vegetation removal part of the polarimetric SAR (PolSAR) retrieval algorithm. Vegetation correction is mandatory to obtain the sub-canopy soil moisture patterns. While CRNS rover surveys can be used to evaluate the F-SAR product across scales, vegetation-related PolSAR products in turn can support the spatial correction of CRNS products for biomass water. Despite the different physical principles, the synthesis of the methods can provide reasonable soil moisture information by integrating from the plot to the landscape scale. The
Sparse estimation of model-based diffuse thermal dust emission
Irfan, Melis O.; Bobin, Jérôme
2018-03-01
Component separation for the Planck High Frequency Instrument (HFI) data is primarily concerned with the estimation of thermal dust emission, which requires the separation of thermal dust from the cosmic infrared background (CIB). For that purpose, current estimation methods rely on filtering techniques to decouple thermal dust emission from CIB anisotropies, which tend to yield a smooth, low-resolution, estimation of the dust emission. In this paper, we present a new parameter estimation method, premise: Parameter Recovery Exploiting Model Informed Sparse Estimates. This method exploits the sparse nature of thermal dust emission to calculate all-sky maps of thermal dust temperature, spectral index, and optical depth at 353 GHz. premise is evaluated and validated on full-sky simulated data. We find the percentage difference between the premise results and the true values to be 2.8, 5.7, and 7.2 per cent at the 1σ level across the full sky for thermal dust temperature, spectral index, and optical depth at 353 GHz, respectively. A comparison between premise and a GNILC-like method over selected regions of our sky simulation reveals that both methods perform comparably within high signal-to-noise regions. However, outside of the Galactic plane, premise is seen to outperform the GNILC-like method with increasing success as the signal-to-noise ratio worsens.
Zhu, Shou-Dong; Huang, Lu-Qi; Guo, Lan-Ping; Ma, Xing-Tian; Hao, Qing-Xiu; Le, Zhi-Yong; Zhang, Xiao-Bo; Yang, Guang; Zhang, Yan; Chen, Mei-Lan
2017-04-01
Cordyceps sinensis is a Chinese unique precious herbal material, its genuine producing areas covering Naqu, Changdu in Qinghai Tibet Plateau, Yushu in Qinghai province and other regions. In recent 10 years, C. sinensis resources is decreasing as a result of the blindly and excessively perennial dug. How to rationally protect, develop and utilize of the valuable resources of C. sinensis has been referred to an important field of research on C. sinensis. The ecological environment and climate change trend of Qinghai Tibet plateau happens prior to other regions, which means that the distribution and evolution of C. sinensis are more obvious and intense than those of the other populations. Based on RS (remote sensing)/GIS(geographic information system) technology, this paper utilized the relationship between the snowline elevation, the average temperature, precipitation and sunshine hours in harvest period (April and may) of C. sinensis and the actual production of C. sinensis to establish a weighted geometric mean model. The model's prediction accuracy can reach 82.16% at least in forecasting C. sinensis year yield in Naqu area in every early June. This study can provide basic datum and information for supporting the C. sinensis industry healthful, sustainable development. Copyright© by the Chinese Pharmaceutical Association.
Estimating Structural Models of Corporate Bond Prices in Indonesian Corporations
Directory of Open Access Journals (Sweden)
Lenny Suardi
2014-08-01
Full Text Available This paper applies the maximum likelihood (ML approaches to implementing the structural model of corporate bond, as suggested by Li and Wong (2008, in Indonesian corporations. Two structural models, extended Merton and Longstaff & Schwartz (LS models, are used in determining these prices, yields, yield spreads and probabilities of default. ML estimation is used to determine the volatility of irm value. Since irm value is unobserved variable, Duan (1994 suggested that the irst step of ML estimation is to derive the likelihood function for equity as the option on the irm value. The second step is to ind parameters such as the drift and volatility of irm value, that maximizing this function. The irm value itself is extracted by equating the pricing formula to the observed equity prices. Equity, total liabilities, bond prices data and the irm's parameters (irm value, volatility of irm value, and default barrier are substituted to extended Merton and LS bond pricing formula in order to valuate the corporate bond.These models are implemented to a sample of 24 bond prices in Indonesian corporation during period of 2001-2005, based on criteria of Eom, Helwege and Huang (2004. The equity and bond prices data were obtained from Indonesia Stock Exchange for irms that issued equity and provided regular inancial statement within this period. The result shows that both models, in average, underestimate the bond prices and overestimate the yields and yield spread. ";} // -->activate javascript
Nonparametric model assisted model calibrated estimation in two ...
African Journals Online (AJOL)
Nonparametric model assisted model calibrated estimation in two stage survey sampling. RO Otieno, PN Mwita, PN Kihara. Abstract. No Abstract > East African Journal of Statistics Vol. 1 (3) 2007: pp.261-281. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.
Modeling long-term yield trends of Miscanthusxgiganteus using experimental data from across Europe
DEFF Research Database (Denmark)
Lesur, Claire; Jeuffroy, Marie-Hélène; Makowski, David
2013-01-01
. giganteus is known to have an establishment phase during which annual yields increased as a function of crop age, followed by a ceiling phase, the duration of which is unknown. We built a database including 16 European long-term experiments (i) to describe the yield evolution during the establishment...... and the ceiling phases and (ii) to determine whether M. giganteus ceiling phase is followed by a decline phase where yields decrease across years. Data were analyzed through comparisons between a set of statistical growth models. The model that best fitted the experimental data included a decline phase...
Maro, G.P.; Mrema, J.P.; Msanya, B.M.; Janssen, B.H.; Teri, J.M.
2014-01-01
The aim of this study was to develop a simple and quantitative system for coffee yield estimation and nutrient input advice, so as to address the problem of declining annual coffee production in Tanzania (particularly in its Northern coffee zone), which is related to declining soil fertility. The
Parameter estimation in fractional diffusion models
Kubilius, Kęstutis; Ralchenko, Kostiantyn
2017-01-01
This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...
Wit, de A.J.W.; Duveiller, G.; Defourny, P.
2012-01-01
Here, we describe and test a method for optimising winter wheat green area index (GAI) simulated with the WOFOST crop model using MODIS estimates of GAI in the Walloon region of Belgium. Detailed crop type maps during the period of 2000–2009 were used to derive time series of crop-specific GAI by
International Nuclear Information System (INIS)
Flores, P.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Habraken, A.M.; Duchene, L.; Bael, A. van; He, S.; Duflou, J.
2005-01-01
The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing
Flores, P.; Duchêne, L.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Van Bael, A.; He, S.; Duflou, J.; Habraken, A. M.
2005-08-01
The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.
Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco;
2017-01-01
Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the
Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction.
Im, Sangjun; Brannan, Kevin M; Mostaghimi, Saied; Kim, Sang Min
2007-09-01
A watershed model can be used to better understand the relationship between land use activities and hydrologic/water quality processes that occur within a watershed. The physically based, distributed parameter model (SWAT) and a conceptual, lumped parameter model (HSPF), were selected and their performance were compared in simulating runoff and sediment yields from the Polecat Creek watershed in Virginia, which is 12,048 ha in size. A monitoring project was conducted in Polecat Creek watershed during the period of October 1994 to June 2000. The observed data (stream flow and sediment yield) from the monitoring project was used in the calibration/validations of the models. The period of September 1996 to June 2000 was used for the calibration and October 1994 to December 1995 was used for the validation of the models. The outputs from the models were compared to the observed data at several sub-watershed outlets and at the watershed outlet of the Polecat Creek watershed. The results indicated that both models were generally able to simulate stream flow and sediment yields well during both the calibration/validation periods. For annual and monthly loads, HSPF simulated hydrologic and sediment yield more accurately than SWAT at all monitoring sites within the watershed. The results of this study indicate that both the SWAT and HSPF watershed models performed sufficiently well in the simulation of stream flow and sediment yield with HSPF performing moderately better than SWAT for simulation time-steps greater than a month.
Measurement and Estimation of the 99Mo Production Yield by 100Mo(n,2n)99Mo
Minato, Futoshi; Tsukada, Kazuaki; Sato, Nozomi; Watanabe, Satoshi; Saeki, Hideya; Kawabata, Masako; Hashimoto, Shintaro; Nagai, Yasuki
2017-11-01
We, for the first time, measured the yield of 99Mo, the mother nuclide of 99mTc used in nuclear medicine diagnostic procedures, produced by the 100Mo(n,2n)99Mo reaction with accelerator neutrons. The neutrons with a continuous energy spectrum from the thermal energy up to about 40 MeV were provided by the C(d,n) reaction with 40 MeV deuteron beams. It was proved that the 99Mo yield agrees with that estimated by using the latest data on neutrons from the C(d,n) reaction and the evaluated cross section of the 100Mo(n,2n)99Mo reaction given in the Japanese Evaluated Nuclear Data Library. On the basis of the agreement, a systematic calculation was carried out to search for an optimum condition that enables us to produce as much 99Mo as possible with a good 99Mo/100Mo value from an economical point of view. The calculated 99Mo yield from a 150 g 100MoO3 sample indicated that about 30% of the demand for 99Mo in Japan can be met with a single accelerator capable of 40 MeV, 2 mA deuteron beams. Here, by referring to an existing 18F-fluorodeoxyglucose (FDG) distribution system we assumed that 99mTc radiopharmaceuticals formed after separating 99mTc from 99Mo can be delivered to hospitals from a radiopharmaceutical company within 6 h. The elution of 99mTc from 99Mo twice a day would meet about 50% of the demand for 99Mo.
Energy Technology Data Exchange (ETDEWEB)
Schmitz, Martin
2011-05-17
A study of the expected sensitivity of the ATLAS experiment to discover the Standard Model Higgs boson produced via vector boson fusion (VBF) and its decay to H{yields} {tau}{tau}{yields} ll+4{nu} is presented. The study is based on simulated proton-proton collisions at a centre-of-mass energy of 14 TeV. For the first time the discovery potential is evaluated in the presence of additional proton-proton interactions (pile-up) to the process of interest in a complete and consistent way. Special emphasis is placed on the development of background estimation techniques to extract the main background processes Z{yields}{tau}{tau} and t anti t production using data. The t anti t background is estimated using a control sample selected with the VBF analysis cuts and the inverted b-jet veto. The dominant background process Z{yields}{tau}{tau} is estimated using Z{yields}{mu}{mu} events. Replacing the muons of the Z{yields}{mu}{mu} event with simulated {tau}-leptons, Z{yields}{tau}{tau} events are modelled to high precision. For the replacement of the Z boson decay products a dedicated method based on tracks and calorimeter cells is developed. Without pile-up a discovery potential of 3{sigma} to 3.4{sigma} in the mass range 115 GeV
Morton, Michael J; Williams, David L; Hjorth, Heather B; Smith, Jennifer H
2010-04-01
This paper explores using the intensity of the stain on the end of the filter ("filter color") as a vehicle for estimating cigarette tar yield, both by instrument reading of the filter color and by visual comparison to a template. The correlation of machine-measured tar yield to filter color measured with a colorimeter was reasonably strong and was relatively unaffected by different puff volumes or different tobacco moistures. However, the correlation of filter color to machine-measured nicotine yield was affected by the moisture content of the cigarette. Filter color, as measured by a colorimeter, was generally comparable to filter extraction of either nicotine or solanesol in its correlation to machine-smoked tar yields. It was found that the color of the tar stain changes over time. Panelists could generally correctly order the filters from machine-smoked cigarettes by tar yield using the intensity of the tar stain. However, there was considerable variation in the panelist-to-panelist tar yield estimates. The wide person-to-person variation in tar yield estimates, and other factors discussed in the text could severely limit the usefulness and practicality of this approach for visually estimating the tar yield of machine-smoked cigarettes. Copyright 2009 Elsevier Inc. All rights reserved.
Estimation of Several Turbulent Fluctuation Quantities Using an Approximate Pulsatile Flow Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
Turbulent fluctuation behavior is approximately modeled using a pulsatile flow model analogy.. This model follows as an extension to the turbulent laminar sublayer model developed by Sternberg (1962) to be valid for a fully turbulent flow domain. Here unsteady turbulent behavior is modeled via a sinusoidal pulsatile approach. While the individual modes of the turbulent flow fluctuation behavior are rather crudely modeled, approximate temporal integration yields plausible estimates for Root Mean Square (RMS) velocity fluctuations. RMS pressure fluctuations and spectra are of particular interest and are estimated via the pressure Poisson expression. Both RMS and Power Spectral Density (PSD), i.e. spectra are developed. Comparison with available measurements suggests reasonable agreement. An additional fluctuating quantity, i.e. RMS wall shear fluctuation is also estimated, yielding reasonable agreement with measurement.
ÇAKMAKÇI, Sadık; AYDINOĞLU, Bilal; ARSLAN, Mehmet
2014-01-01
This research was conducted to study the effects of artificial sowing with various plant species and different sowing dates on forage yield, grazing capacity and estimated carcass weight in rangelands under continental dry conditions. Artificial rangelands were established on Akpınar plateau near Kemer-Burdur 1675 m above sea level using 4 different plant species sown at 5 different sowing dates. Later, grazing capacity and carcass weight were estimated in terms of forage yield. The results s...
Directory of Open Access Journals (Sweden)
Mańkowski Dariusz R.
2016-06-01
Full Text Available The aim of this study was to describe and characterize the relationships between yielding factors and grain yield per doubled haploid (DH plant of spring barley as well as relation between yield components and duration of each stage of plant development. To describe these relations structure equation modeling was used. The study included plants of doubled haploid spring barley lines (Hordeum vulgare L. derived from two-rowed form of Scarlett cultivar. The SAS® system was used to analyze the model of relationships between grain yield per plant and yield components. Our results indicate that the number of spikes per plant and grain yield per spike had a direct and decisive influence on the grain yield of the investigated DH plants of spring barley. Based on the path model analysis it was found that the most important factor determining grain yield per DH plants of spring barley was the number of spikes per plant and the duration of tillering and shooting stages.
Directory of Open Access Journals (Sweden)
M. Sarai Tabrizi
2016-10-01
Full Text Available Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil response to salinity and to evaluate the effectiveness of available mathematical models for the yield estimation of the Basil . Materials and Methods: The extensive experiments were conducted with 13 natural saline water treatments including 1.2, 1.8, 2, 2.2, 2.5, 2.8, 3, 3.5, 4, 5, 6, 8, and 10 dSm-1. Water salinity treatments were prepared by mixing Shoor River water with fresh water. In order to quantify the salinity effect on Basil yield, seven mathematical models including Maas and Hoffman (1977, van Genuchten and Hoffman (1984, Dirksen and Augustijn (1988, and Homaee et al., (2002 were used. One of the relatively recent methods for soil water content measurements is theta probes instrument. Theta probes instrument consists of four probes with 60 mm long and 3 mm diameter, a water proof container (probe structure, and a cable that links input and output signals to the data logger display. The advantages that have been attributed to this method are high precision and direct and rapid measurements in the field and greenhouse. The range of measurements is not limited like tensiometer and is from saturation to wilting point. In this study, Theta probes instrument was calibrated by weighing method for exact irrigation scheduling. Relative transpiration was calculated using daily soil water content changes. A coarse sand layer with 2 centimeters thick was used to decrease evaporation from the surface soil of the pots. Quantity comparison of the used models was done
Modelling Bambara Groundnut Yield in Southern Africa: Towards a Climate-Resilient Future
Karunaratne, A. S.; Walker, S.; Ruane, A. C.
2015-01-01
Current agriculture depends on a few major species grown as monocultures that are supported by global research underpinning current productivity. However, many hundreds of alternative crops have the potential to meet real world challenges by sustaining humanity, diversifying agricultural systems for food and nutritional security, and especially responding to climate change through their resilience to certain climate conditions. Bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilised African legume, is an exemplar crop for climate resilience. Predicted yield performances of Bambara groundnut by AquaCrop (a crop-water productivity model) were evaluated for baseline (1980-2009) and mid-century climates (2040-2069) under 20 downscaled Global Climate Models (CMIP5-RCP8.5), as well as for climate sensitivities (AgMIPC3MP) across 3 locations in Southern Africa (Botswana, South Africa, Namibia). Different land - races of Bambara groundnut originating from various semi-arid African locations showed diverse yield performances with diverse sensitivities to climate. S19 originating from hot-dry conditions in Namibia has greater future yield potential compared to the Swaziland landrace Uniswa Red-UN across study sites. South Africa has the lowest yield under the current climate, indicating positive future yield trends. Namibia reported the highest baseline yield at optimum current temperatures, indicating less yield potential in future climates. Bambara groundnut shows positive yield potential at temperatures of up to 31degC, with further warming pushing yields down. Thus, many regions in Southern Africa can utilize Bambara groundnut successfully in the coming decades. This modelling exercise supports decisions on genotypic suitability for present and future climates at specific locations.
Chahbi, A.; Zribi, M.; Lili-Chabaane, Z.; Duchemin, B.; Shabou, M.; Mougenot, B.; Boulet, G.
2012-04-01
In semi-arid region and especially in irrigated areas, agriculture represents a major contribution to food security. These areas significantly contribute to the increase of global production. A challenging objective is thus to ensure food security. Therefore an operational forecasting system for the grain yields is required and could help decision-makers to make early decisions and plan annual imports. In this context, remote sensing is a very interesting tool for giving information on the development of vegetation. The main objective is to analyze and predict the average grain yield, based on different indices measured or modelled during the growing season. Thus, we used three lines of research: the first is based on analysing a relationship between normalized vegetation index (NDVI) which is determined from optical satellite imagery and the leaf area index (LAI) measured in situ. The second axis is based on the estimation of the relation between wheat yields and normalized vegetation index NDVI. The third axis is based on the application of a growth model SAFY « Simple Algorithm For Yield Estimate » developed to simulate LAI, dry aboveground phytomass (DAM) and the grain yield (GY). For the first axis, we used optical data at high resolution. A series of 7 SPOT / HRV during the 2010-2011 agricultural seasons was acquired in the Merguellil catchment (Tunisia). At the same time we realised experimental measurements made on 27 test plots of dry or irrigated cereals carried out in study area. These measurements are mainly: the water content of the vegetation, the vegetation height, wheat density and leaf area index LAI (estimated using a hemispherical camera). From satellite data, a profile of the normalized difference vegetation index (NDVI) was generated for each pixel. For both types of cereal, a relationship is established between NDVI and leaf area index LAI. This relationship is exponential and it allows connecting the satellite observations with a variable
A meteorologically-driven yield reduction model for spring and winter wheat
Ravet, F. W.; Cremins, W. J.; Taylor, T. W.; Ashburn, P.; Smika, D.; Aaronson, A. (Principal Investigator)
1983-01-01
A yield reduction model for spring and winter wheat was developed for large-area crop condition assessment. Reductions are expressed in percentage from a base yield and are calculated on a daily basis. The algorithm contains two integral components: a two-layer soil water budget model and a crop calendar routine. Yield reductions associated with hot, dry winds (Sukhovey) and soil moisture stress are determined. Input variables include evapotranspiration, maximum temperature and precipitation; subsequently crop-stage, available water holding percentage and stress duration are evaluated. No specific base yield is required and may be selected by the user; however, it may be generally characterized as the maximum likely to be produced commercially at a location.
Determinants of the Government Bond Yield in Spain: A Loanable Funds Model
Directory of Open Access Journals (Sweden)
Yu Hsing
2015-07-01
Full Text Available This paper applies demand and supply analysis to examine the government bond yield in Spain. The sample ranges from 1999.Q1 to 2014.Q2. The EGARCH model is employed in empirical work. The Spanish government bond yield is positively associated with the government debt/GDP ratio, the short-term Treasury bill rate, the expected inflation rate, the U.S. 10 year government bond yield and a dummy variable representing the debt crisis and negatively affected by the GDP growth rate and the expected nominal effective exchange rate.
Moore, Frances C.; Baldos, Uris Lantz C.; Hertel, Thomas
2017-06-01
A large number of studies have been published examining the implications of climate change for agricultural productivity that, broadly speaking, can be divided into process-based modeling and statistical approaches. Despite a general perception that results from these methods differ substantially, there have been few direct comparisons. Here we use a data-base of yield impact studies compiled for the IPCC Fifth Assessment Report (Porter et al 2014) to systematically compare results from process-based and empirical studies. Controlling for differences in representation of CO2 fertilization between the two methods, we find little evidence for differences in the yield response to warming. The magnitude of CO2 fertilization is instead a much larger source of uncertainty. Based on this set of impact results, we find a very limited potential for on-farm adaptation to reduce yield impacts. We use the Global Trade Analysis Project (GTAP) global economic model to estimate welfare consequences of yield changes and find negligible welfare changes for warming of 1 °C-2 °C if CO2 fertilization is included and large negative effects on welfare without CO2. Uncertainty bounds on welfare changes are highly asymmetric, showing substantial probability of large declines in welfare for warming of 2 °C-3 °C even including the CO2 fertilization effect.
Model of Yield Response of Corn to Plant Population and Absorption of Solar Energy
Overman, Allen R.; Scholtz, Richard V.
2011-01-01
Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1) and g plant(-1)) on plant population (plants m(-2)). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model ...
Robust estimation of hydrological model parameters
Directory of Open Access Journals (Sweden)
A. Bárdossy
2008-11-01
Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.
Zhou, Mengzi; Wang, Huijun; Huo, Zhiguo
2017-04-01
Accurate estimations of grain output in the agriculturally important region of Northeast China are of great strategic significance for guaranteeing food security. New prediction models for maize and rice yields are built in this paper based on the spring North Atlantic Oscillation index and the Bering Sea ice cover index. The year-to-year increment is first forecasted and then the original yield value is obtained by adding the historical yield of the previous year. The multivariate linear prediction model of maize shows good predictive ability, with a low normalized root-mean-square error (NRMSE) of 13.9%, and the simulated yield accounts for 81% of the total variance of the observation. To improve the performance of the multivariate linear model, a combined forecasting model of rice is built by considering the weight of the predictors. The NRMSE of the model is 12.9% and the predicted rice yield explains 71% of the total variance. The corresponding cross-validation test and independent samples test further demonstrate the efficiency of the models. It is inferred that the statistical models established here by applying year-to-year increment approach could make rational prediction for the maize and rice yield in Northeast China before harvest. The present study may shed new light on yield prediction in advance by use of antecedent large-scale climate signals adequately.
Directory of Open Access Journals (Sweden)
Maryam Baharizadeh
2012-10-01
Full Text Available Buffalo milk yield records were obtained from monthly records of the Animal Breeding Organization of Iran from 1992 to 2009 in 33 herds raised in the Khuzestan province. Variance components, heritability and repeatability were estimated for milk yield, fat yield, fat percentage, protein yield and protein percentage. These estimates were carried out through single trait animal model using DFREML program. Herd-year-season was considered as fixed effect in the model. For milk production traits, age at calving was fitted as a covariate. The additive genetic and permanent environmental effects were also included in the model. The mean values (±SD for milk yield, fat yield, fat percentage, protein yield and protein percentage were 2285.08±762.47 kg, 144.35±54.86 kg, 6.25±0.90%, 97.30±26.73 kg and 4.19±0.27%, respectively. The heritability (±SE of milk yield, fat yield, fat percentage, protein yield and protein percentage were 0.093±0.08, 0.054±0.06, 0.043±0.05, 0.093±0.16 and zero, respectively. These estimates for repeatability were 0.272, 0.132, 0.043, 0.674 and 0.0002, respectively. Lower values of genetic parameter estimates require more data and reliable pedigree records.
Pazhanivelan, S.; Kannan, P.; Nirmala Mary, P. Christy; Subramanian, E.; Jeyaraman, S.; Nelson, A.; Setiyono, T.; Holecz, F.; Barbieri, M.; Yadav, M.
2015-04-01
Rice is the most important cereal crop governing food security in Asia. Reliable and regular information on the area under rice production is the basis of policy decisions related to imports, exports and prices which directly affect food security. Recent and planned launches of SAR sensors coupled with automated processing can provide sustainable solutions to the challenges on mapping and monitoring rice systems. High resolution (3m) Synthetic Aperture Radar (SAR) imageries were used to map and monitor rice growing areas in selected three sites in TamilNadu, India to determine rice cropping extent, track rice growth and estimate yields. A simple, robust, rule-based classification for mapping rice area with multi-temporal, X-band, HH polarized SAR imagery from COSMO Skymed and TerraSAR X and site specific parameters were used. The robustness of the approach is demonstrated on a very large dataset involving 30 images across 3 footprints obtained during 2013-14. A total of 318 in-season site visits were conducted across 60 monitoring locations for rice classification and 432 field observations were made for accuracy assessment. Rice area and Start of Season (SoS) maps were generated with classification accuracies ranging from 87- 92 per cent. Using ORYZA2000, a weather driven process based crop growth simulation model; yield estimates were made with the inclusion of rice crop parameters derived from the remote sensing products viz., seasonal rice area, SoS and backscatter time series. Yield Simulation accuracy levels of 87 per cent at district level and 85- 96 per cent at block level demonstrated the suitability of remote sensing products for policy decisions ensuring food security and reducing vulnerability of farmers in India.
Estimators for longitudinal latent exposure models: examining measurement model assumptions.
Sánchez, Brisa N; Kim, Sehee; Sammel, Mary D
2017-06-15
Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can accommodate a variety of assumptions but, at the same time, present the user with many choices for model specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental development, where assumptions of the measurement model for the time-changing longitudinal exposure have appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV structure on the repeated multivariate exposure measures could result in high efficiency gains for the exposure-disease association. We examine the biases of maximum likelihood estimators when assumptions about the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estimators to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a time-changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Directory of Open Access Journals (Sweden)
Branislava Lalić
2014-12-01
Full Text Available The impact of adverse weather conditions (AWCs on crop production is random in both time and space and depends on factors such as severity, previous agrometeorological conditions, and plant vulnerability at a specific crop development stage. Any exclusion or improper treatment of any of these factors can cause crop models to produce significant under- or overestimates of yield. The analysis presented in this paper focuses on a range of agrometeorological indices (AMI related to AWCs that might affect real yield as well as simulated yield. For this purpose, the analysis addressed four indicators of extreme temperatures and three indicators of dry conditions during the growth period of maize and winter wheat in Austria, Croatia, Serbia, Slovakia, and Sweden. It is shown that increases in the number and intensity of AWCs cannot be unambiguously associated with increased deviations in simulated yields. The identified correlations indicate an increase in modeling uncertainty. This finding represents important information for the crop modeling community. Additionally, it opens a window of opportunity for a statistical (“event scenario” approach based on correlations between agrometeorological indices of AWCs and crop yield data series. This approach can provide scenarios for certain locations, crop types, and AWC patterns and, therefore, improve yield forecasting in the presence of AWCs.
Robust estimation of errors-in-variables models using M-estimators
Guo, Cuiping; Peng, Junhuan
2017-07-01
The traditional Errors-in-variables (EIV) models are widely adopted in applied sciences. The EIV model estimators, however, can be highly biased by gross error. This paper focuses on robust estimation in EIV models. A new class of robust estimators, called robust weighted total least squared estimators (RWTLS), is introduced. Robust estimators of the parameters of the EIV models are derived from M-estimators and Lagrange multiplier method. A simulated example is carried out to demonstrate the performance of the presented RWTLS. The result shows that the RWTLS algorithm can indeed resist gross error to achieve a reliable solution.
Directory of Open Access Journals (Sweden)
Corrado Dimauro
2010-11-01
Full Text Available Test day records for milk yield of 57,390 first lactation Canadian Holsteins were analyzed with a linear model that included the fixed effects of herd-test date and days in milk (DIM interval nested within age and calving season. Residuals from this model were analyzed as a new variable and fitted with a five parameter model, fourth-order Legendre polynomials, with linear, quadratic and cubic spline models with three knots. The fit of the models was rather poor, with about 30-40% of the curves showing an adjusted R-square lower than 0.20 across all models. Results underline a great difficulty in modelling individual deviations around the mean curve for milk yield. However, the Ali and Schaeffer (5 parameter model and the fourth-order Legendre polynomials were able to detect two basic shapes of individual deviations among the mean curve. Quadratic and, especially, cubic spline functions had better fitting performances but a poor predictive ability due to their great flexibility that results in an abrupt change of the estimated curve when data are missing. Parametric and orthogonal polynomials seem to be robust and affordable under this standpoint.
Monroe, Scott; Cai, Li
2014-01-01
In Ramsay curve item response theory (RC-IRT) modeling, the shape of the latent trait distribution is estimated simultaneously with the item parameters. In its original implementation, RC-IRT is estimated via Bock and Aitkin's EM algorithm, which yields maximum marginal likelihood estimates. This method, however, does not produce the…
Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model
Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.
2012-12-01
uptake of water (root profile), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients). We find that the optimal carboxylation rate and optimal photosynthesis temperature parameters contribute most to the uncertainty in NPP and GPP simulations whereas stomatal conductance is the most sensitive parameter controlling SH, followed by optimal photosynthesis temperature and optimal carboxylation rate. The spatial variation of the ranked correlation between input parameters and output variables is well explained by rain and temperature drivers, suggesting that climate mediated regionally different sensitivities of modeled sugarcane yield to the model parameters, for Australia and Brazil.
Brazilian Soybean Yields and Yield Gaps Vary with Farm Size
Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.
2017-12-01
Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.
Archfield, Stacey A.; Vogel, Richard M.; Steeves, Peter A.; Brandt, Sara L.; Weiskel, Peter K.; Garabedian, Stephen P.
2010-01-01
Federal, State and local water-resource managers require a variety of data and modeling tools to better understand water resources. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a statewide, interactive decision-support tool to meet this need. The decision-support tool, referred to as the Massachusetts Sustainable-Yield Estimator (MA SYE) provides screening-level estimates of the sustainable yield of a basin, defined as the difference between the unregulated streamflow and some user-specified quantity of water that must remain in the stream to support such functions as recreational activities or aquatic habitat. The MA SYE tool was designed, in part, because the quantity of surface water available in a basin is a time-varying quantity subject to competing demands for water. To compute sustainable yield, the MA SYE tool estimates a daily time series of unregulated, daily mean streamflow for a 44-year period of record spanning October 1, 1960, through September 30, 2004. Selected streamflow quantiles from an unregulated, daily flow-duration curve are estimated by solving six regression equations that are a function of physical and climate basin characteristics at an ungaged site on a stream of interest. Streamflow is then interpolated between the estimated quantiles to obtain a continuous daily flow-duration curve. A time series of unregulated daily streamflow subsequently is created by transferring the timing of the daily streamflow at a reference streamgage to the ungaged site by equating exceedence probabilities of contemporaneous flow at the two locations. One of 66 reference streamgages is selected by kriging, a geostatistical method, which is used to map the spatial relation among correlations between the time series of the logarithm of daily streamflows at each reference streamgage and the ungaged site. Estimated unregulated, daily mean streamflows show good agreement with observed
Elshall, A. S.; Ye, M.; Niu, G. Y.; Barron-Gafford, G.
2016-12-01
Bayesian multimodel inference is increasingly being used in hydrology. Estimating Bayesian model evidence (BME) is of central importance in many Bayesian multimodel analysis such as Bayesian model averaging and model selection. BME is the overall probability of the model in reproducing the data, accounting for the trade-off between the goodness-of-fit and the model complexity. Yet estimating BME is challenging, especially for high dimensional problems with complex sampling space. Estimating BME using the Monte Carlo numerical methods is preferred, as the methods yield higher accuracy than semi-analytical solutions (e.g. Laplace approximations, BIC, KIC, etc.). However, numerical methods are prone the numerical demons arising from underflow of round off errors. Although few studies alluded to this issue, to our knowledge this is the first study that illustrates these numerical demons. We show that the precision arithmetic can become a threshold on likelihood values and Metropolis acceptance ratio, which results in trimming parameter regions (when likelihood function is less than the smallest floating point number that a computer can represent) and corrupting of the empirical measures of the random states of the MCMC sampler (when using log-likelihood function). We consider two of the most powerful numerical estimators of BME that are the path sampling method of thermodynamic integration (TI) and the importance sampling method of steppingstone sampling (SS). We also consider the two most widely used numerical estimators, which are the prior sampling arithmetic mean (AS) and posterior sampling harmonic mean (HM). We investigate the vulnerability of these four estimators to the numerical demons. Interesting, the most biased estimator, namely the HM, turned out to be the least vulnerable. While it is generally assumed that AM is a bias-free estimator that will always approximate the true BME by investing in computational effort, we show that arithmetic underflow can
Directory of Open Access Journals (Sweden)
Piotr Tompalski
2018-02-01
Full Text Available The increasing availability of highly detailed three-dimensional remotely-sensed data depicting forests, including airborne laser scanning (ALS and digital aerial photogrammetric (DAP approaches, provides a means for improving stand dynamics information. The availability of data from ALS and DAP has stimulated attempts to link these datasets with conventional forestry growth and yield models. In this study, we demonstrated an approach whereby two three-dimensional point cloud datasets (one from ALS and one from DAP, acquired over the same forest stands, at two points in time (circa 2008 and 2015, were used to derive forest inventory information. The area-based approach (ABA was used to predict top height (H, basal area (BA, total volume (V, and stem density (N for Time 1 and Time 2 (T1, T2. We assigned individual yield curves to 20 × 20 m grid cells for two scenarios. The first scenario used T1 estimates only (approach 1, single date, while the second scenario combined T1 and T2 estimates (approach 2, multi-date. Yield curves were matched by comparing the predicted cell-level attributes with a yield curve template database generated using an existing growth simulator. Results indicated that the yield curves using the multi-date data of approach 2 were matched with slightly higher accuracy; however, projections derived using approach 1 and 2 were not significantly different. The accuracy of curve matching was dependent on the ABA prediction error. The relative root mean squared error of curve matching in approach 2 for H, BA, V, and N, was 18.4, 11.5, 25.6, and 27.53% for observed (plot data, and 13.2, 44.6, 50.4 and 112.3% for predicted data, respectively. The approach presented in this study provides additional detail on sub-stand level growth projections that enhances the information available to inform long-term, sustainable forest planning and management.
The Forecasting Power of the Yield Curve, a Supervised Factor Model Approach
DEFF Research Database (Denmark)
Boldrini, Lorenzo; Hillebrand, Eric Tobias
We study the forecast power of the yield curve for macroeconomic time series, such as consumer price index, personal consumption expenditures, producer price index, real disposable income, unemployment rate, and industrial production. We employ a state-space model in which the forecasting objective...... is included in the state vector. This amounts to an augmented dynamic factor model in which the factors (level, slope, and curvature of the yield curve) are supervised for the macroeconomic forecast target. In other words, the factors are informed about the dynamics of the forecast objective. The factor...... loadings have the Nelson and Siegel (1987) structure and we consider one forecast target at a time. We compare the forecasting performance of our specification to benchmark models such as principal components regression, partial least squares, and ARMA(p,q) processes. We use the yield curve data from G...
MODELING OF YIELD AND QUALITY OF TABLE ROOT CROPS WITH THE USE OF DIFFERENT AGROTECHNICAL METHODS
Directory of Open Access Journals (Sweden)
S. M. Nadezhkin
2017-01-01
Full Text Available The effects of different fertilizer rates, irrigation, sowing rate for carrot and red beet were studied in the field condition in food-hills zone of Chechen Republic. The use of N40-80P40-80K40-80 caused the increase in yield from 22.8 to 30.8-33.2 t/ha or by 35-46%, when cultivating a carrot crop. Under irrigation the yield increases by 30-33%. Application of N40P40K40 and maintenance of soil moisture at 70% of moisture rate provoked the improvement in value, market and biochemical characteristics of roots; where the increased contents of dry matter, total sugar and vitamins were observed. The mathematical modeling for the process of yielding abilities and root quality in carrot and red beet showed that highest productivity can be achieved on chernozem soil at Central Pre-Caucasus zone when the level of mineral plant nutrition was N40-60P40-60K40-60. The further increment in fertilizer doses does not bring an improvement to yields and leads to decrease in quality of yields. The increased level of antecedent soil water moisture 70-75% of moisture rates does not raise the yield, on the contrary decreasing at the same time the root quality. The use of mathematical modeling enables to rationally define the fertilizer rates depending on application of irrigation and sowing rates in cultivation of carrot and red beet.
A Modified Strip-Yield-Saturation-Induction Model Solution for Cracked Piezoelectromagnetic Plate
Directory of Open Access Journals (Sweden)
R. R. Bhargava
2014-01-01
Full Text Available A strip-yield-saturation-induction model is proposed for an impermeable crack embedded in piezoelectromagnetic plate. The developed slide-yield, saturation, and induction zones are arrested by distributing, respectively, mechanical, electrical, and magnetic loads over their rims. Two cases are considered: when saturation zone exceeds induction zone and vice-versa. It is assumed that developed slide-yield zone is the smallest because of the brittle nature of piezoelectromagnetic material. Fourier integral transform technique is employed to obtain the solution. Closed form analytic expressions are derived for developed zones lengths, crack sliding displacement, crack opening potential drop, crack opening induction drop, and energy release rate. Case study presented for BaTiO3–CoFe2O4 shows that crack arrest is possible under small-scale mechanical, electrical, and magnetic yielding.
Lloyd, Simon J; Kovats, R Sari; Chalabi, Zaid
2011-12-01
Global climate change is anticipated to reduce future cereal yields and threaten food security, thus potentially increasing the risk of undernutrition. The causation of undernutrition is complex, and there is a need to develop models that better quantify the potential impacts of climate change on population health. We developed a model for estimating future undernutrition that accounts for food and nonfood (socioeconomic) causes and can be linked to available regional scenario data. We estimated child stunting attributable to climate change in five regions in South Asia and sub-Saharan Africa (SSA) in 2050. We used current national food availability and undernutrition data to parameterize and validate a global model, using a process-driven approach based on estimations of the physiological relationship between a lack of food and stunting. We estimated stunting in 2050 using published modeled national calorie availability under two climate scenarios and a reference scenario (no climate change). We estimated that climate change will lead to a relative increase in moderate stunting of 1-29% in 2050 compared with a future without climate change. Climate change will have a greater impact on rates of severe stunting, which we estimated will increase by 23% (central SSA) to 62% (South Asia). Climate change is likely to impair future efforts to reduce child malnutrition in South Asia and SSA, even when economic growth is taken into account. Our model suggests that to reduce and prevent future undernutrition, it is necessary to both increase food access and improve socioeconomic conditions, as well as reduce greenhouse gas emissions.
Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae
Directory of Open Access Journals (Sweden)
Leonard Effendi
2011-06-01
Full Text Available Abstract Background The robustness of Saccharomyces cerevisiae in facilitating industrial-scale production of ethanol extends its utilization as a platform to synthesize other metabolites. Metabolic engineering strategies, typically via pathway overexpression and deletion, continue to play a key role for optimizing the conversion efficiency of substrates into the desired products. However, chemical production titer or yield remains difficult to predict based on reaction stoichiometry and mass balance. We sampled a large space of data of chemical production from S. cerevisiae, and developed a statistics-based model to calculate production yield using input variables that represent the number of enzymatic steps in the key biosynthetic pathway of interest, metabolic modifications, cultivation modes, nutrition and oxygen availability. Results Based on the production data of about 40 chemicals produced from S. cerevisiae, metabolic engineering methods, nutrient supplementation, and fermentation conditions described therein, we generated mathematical models with numerical and categorical variables to predict production yield. Statistically, the models showed that: 1. Chemical production from central metabolic precursors decreased exponentially with increasing number of enzymatic steps for biosynthesis (>30% loss of yield per enzymatic step, P-value = 0; 2. Categorical variables of gene overexpression and knockout improved product yield by 2~4 folds (P-value Saccharomyces cerevisiae has historically evolved for robust alcohol fermentation. Conclusions We generated simple mathematical models for first-order approximation of chemical production yield from S. cerevisiae. These linear models provide empirical insights to the effects of strain engineering and cultivation conditions toward biosynthetic efficiency. These models may not only provide guidelines for metabolic engineers to synthesize desired products, but also be useful to compare the
AMEM-ADL Polymer Migration Estimation Model User's Guide
The user's guide of the Arthur D. Little Polymer Migration Estimation Model (AMEM) provides the information on how the model estimates the fraction of a chemical additive that diffuses through polymeric matrices.
Benefit Estimation Model for Tourist Spaceflights
Goehlich, Robert A.
2003-01-01
It is believed that the only potential means for significant reduction of the recurrent launch cost, which results in a stimulation of human space colonization, is to make the launcher reusable, to increase its reliability, and to make it suitable for new markets such as mass space tourism. But such space projects, that have long range aspects are very difficult to finance, because even politicians would like to see a reasonable benefit during their term in office, because they want to be able to explain this investment to the taxpayer. This forces planners to use benefit models instead of intuitive judgement to convince sceptical decision-makers to support new investments in space. Benefit models provide insights into complex relationships and force a better definition of goals. A new approach is introduced in the paper that allows to estimate the benefits to be expected from a new space venture. The main objective why humans should explore space is determined in this study to ``improve the quality of life''. This main objective is broken down in sub objectives, which can be analysed with respect to different interest groups. Such interest groups are the operator of a space transportation system, the passenger, and the government. For example, the operator is strongly interested in profit, while the passenger is mainly interested in amusement, while the government is primarily interested in self-esteem and prestige. This leads to different individual satisfactory levels, which are usable for the optimisation process of reusable launch vehicles.
DEFF Research Database (Denmark)
Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine
2014-01-01
In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte...... Carlo simulations with SHIELD-HIT10A reasonably matched the most abundant PET isotopes 11C and 15O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10A and measurement. Improved modeling requires more accurate measurements of cross-section values....
Yield curve event tree construction for multi stage stochastic programming models
DEFF Research Database (Denmark)
Rasmussen, Kourosh Marjani; Poulsen, Rolf
Dynamic stochastic programming (DSP) provides an intuitive framework for modelling of financial portfolio choice problems where market frictions are present and dynamic re--balancing has a significant effect on initial decisions. The application of these models in practice, however, is limited by...... of yield curves. Such trees may then be used to represent the underlying uncertainty in DSP models of fixed income risk and portfolio management....
Remote Sensing Protocols for Parameterizing an Individual, Tree-Based, Forest Growth and Yield Model
2014-09-01
Penelope Morgan. 2006. “Regression Modeling and Mapping of Coniferous Forest Basal Area and Tree Density from Discrete- Return LIDAR and... Basal Area Relationships of Open-Grown Southern Pines for Modeling Competition and Growth.” Canadian Journal of of Forest Research 22: 341–347... Forest Growth and Yield Model Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Scott A. Tweddale, Patrick J. Guertin, and
Energy Technology Data Exchange (ETDEWEB)
Studnicki, M.; Mądry, W.; Noras, K.; Wójcik-Gront, E.; Gacek, E.
2016-11-01
The main objectives of multi-environmental trials (METs) are to assess cultivar adaptation patterns under different environmental conditions and to investigate genotype by environment (G×E) interactions. Linear mixed models (LMMs) with more complex variance-covariance structures have become recognized and widely used for analyzing METs data. Best practice in METs analysis is to carry out a comparison of competing models with different variance-covariance structures. Improperly chosen variance-covariance structures may lead to biased estimation of means resulting in incorrect conclusions. In this work we focused on adaptive response of cultivars on the environments modeled by the LMMs with different variance-covariance structures. We identified possible limitations of inference when using an inadequate variance-covariance structure. In the presented study we used the dataset on grain yield for 63 winter wheat cultivars, evaluated across 18 locations, during three growing seasons (2008/2009-2010/2011) from the Polish Post-registration Variety Testing System. For the evaluation of variance-covariance structures and the description of cultivars adaptation to environments, we calculated adjusted means for the combination of cultivar and location in models with different variance-covariance structures. We concluded that in order to fully describe cultivars adaptive patterns modelers should use the unrestricted variance-covariance structure. The restricted compound symmetry structure may interfere with proper interpretation of cultivars adaptive patterns. We found, that the factor-analytic structure is also a good tool to describe cultivars reaction on environments, and it can be successfully used in METs data after determining the optimal component number for each dataset. (Author)
Directory of Open Access Journals (Sweden)
Marcin Studnicki
2016-06-01
Full Text Available The main objectives of multi-environmental trials (METs are to assess cultivar adaptation patterns under different environmental conditions and to investigate genotype by environment (G×E interactions. Linear mixed models (LMMs with more complex variance-covariance structures have become recognized and widely used for analyzing METs data. Best practice in METs analysis is to carry out a comparison of competing models with different variance-covariance structures. Improperly chosen variance-covariance structures may lead to biased estimation of means resulting in incorrect conclusions. In this work we focused on adaptive response of cultivars on the environments modeled by the LMMs with different variance-covariance structures. We identified possible limitations of inference when using an inadequate variance-covariance structure. In the presented study we used the dataset on grain yield for 63 winter wheat cultivars, evaluated across 18 locations, during three growing seasons (2008/2009-2010/2011 from the Polish Post-registration Variety Testing System. For the evaluation of variance-covariance structures and the description of cultivars adaptation to environments, we calculated adjusted means for the combination of cultivar and location in models with different variance-covariance structures. We concluded that in order to fully describe cultivars adaptive patterns modelers should use the unrestricted variance-covariance structure. The restricted compound symmetry structure may interfere with proper interpretation of cultivars adaptive patterns. We found, that the factor-analytic structure is also a good tool to describe cultivars reaction on environments, and it can be successfully used in METs data after determining the optimal component number for each dataset.
Model of yield response of corn to plant population and absorption of solar energy.
Overman, Allen R; Scholtz, Richard V
2011-01-31
Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1) and g plant(-1)) on plant population (plants m(-2)). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m) (Mg ha(-1)) for maximum yield at high plant population and c (m(2) plant(-1)) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c) = 1/c (plants m(-2)). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c) were very similar for the three field studies with the same crop species.
Model of yield response of corn to plant population and absorption of solar energy.
Directory of Open Access Journals (Sweden)
Allen R Overman
Full Text Available Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1 and g plant(-1 on plant population (plants m(-2. Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L. grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m (Mg ha(-1 for maximum yield at high plant population and c (m(2 plant(-1 for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c = 1/c (plants m(-2. The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c were very similar for the three field studies with the same crop species.
Groundwater temperature estimation and modeling using hydrogeophysics.
Nguyen, F.; Lesparre, N.; Hermans, T.; Dassargues, A.; Klepikova, M.; Kemna, A.; Caers, J.
2017-12-01
Groundwater temperature may be of use as a state variable proxy for aquifer heat storage, highlighting preferential flow paths, or contaminant remediation monitoring. However, its estimation often relies on scarce temperature data collected in boreholes. Hydrogeophysical methods such as electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) may provide more exhaustive spatial information of the bulk properties of interest than samples from boreholes. If a properly calibrated DTS reading provides direct measurements of the groundwater temperature in the well, ERT requires one to determine the fractional change per degree Celsius. One advantage of this petrophysical relationship is its relative simplicity: the fractional change is often found to be around 0.02 per degree Celcius, and represents mainly the variation of electrical resistivity due to the viscosity effect. However, in presence of chemical and kinetics effects, the variation may also depend on the duration of the test and may neglect reactions occurring between the pore water and the solid matrix. Such effects are not expected to be important for low temperature systems (<30 °C), at least for short experiments. In this contribution, we use different field experiments under natural and forced flow conditions to review developments for the joint use of DTS and ERT to map and monitor the temperature distribution within aquifers, to characterize aquifers in terms of heterogeneity and to better understand processes. We show how temperature time-series measurements might be used to constraint the ERT inverse problem in space and time and how combined ERT-derived and DTS estimation of temperature may be used together with hydrogeological modeling to provide predictions of the groundwater temperature field.
Allometric Models for Estimating Tree Volume and Aboveground Biomass in Lowland Forests of Tanzania
Directory of Open Access Journals (Sweden)
Wilson Ancelm Mugasha
2016-01-01
Full Text Available Models to assist management of lowland forests in Tanzania are in most cases lacking. Using a sample of 60 trees which were destructively harvested from both dry and wet lowland forests of Dindili in Morogoro Region (30 trees and Rondo in Lindi Region (30 trees, respectively, this study developed site specific and general models for estimating total tree volume and aboveground biomass. Specifically the study developed (i height-diameter (ht-dbh models for trees found in the two sites, (ii total, merchantable, and branches volume models, and (iii total and sectional aboveground biomass models of trees found in the two study sites. The findings show that site specific ht-dbh model appears to be suitable in estimating tree height since the tree allometry was found to differ significantly between studied forests. The developed general volume models yielded unbiased mean prediction error and hence can adequately be applied to estimate tree volume in dry and wet lowland forests in Tanzania. General aboveground biomass model appears to yield biased estimates; hence, it is not suitable when accurate results are required. In this case, site specific biomass allometric models are recommended. Biomass allometric models which include basic wood density are highly recommended for improved estimates accuracy when such information is available.
Soil Erosion and Sediment Yield Modelling in the Pra River Basin of ...
African Journals Online (AJOL)
Parameters of the model were formatted as raster layers and multiplied using the raster calculator module in ArcGIS to produce a soil erosion map. The concept of sediment delivery ratio (SDR) was used to determine the annual sediment yield of the catchment by integrating a raster SDR layer with that of the soil erosion ...
Development of Models for Predicting the Yield and Quality of Soymilk
African Journals Online (AJOL)
Models were developed to predict the yield and quality of soymilk, one of soybean products. The quality characteristics investigated were total solids, protein content and fat content. The processing parameters considered were Amount of water added during grinding per Kg of dry seed, AW; Blanching time, BT and Heating ...
Crop growth modelling and crop yield forecasting using satellite derived meteorological inputs
Wit, de A.J.W.; Diepen, van K.
2006-01-01
One of the key challenges for operational crop monitoring and yield forecasting using crop models is to find spatially representative meteorological input data. Currently, weather inputs are often interpolated from low density networks of weather stations or derived from output from coarse (0.5
Mark H. Eisenbies; M.B. Adams; W. Michael Aust; James A. Burger
2007-01-01
Floods continue to cause significant damage in the United States and elsewhere, and questions about the causes of flooding continue to be debated. A significant amount of research has been conducted on the relationship between forest management activities and water yield, peak flows, and flooding; somewhat less research has been conducted on the modeling of these...
Soil Erosion and Sediment Yield Modelling in the Pra River Basin of ...
African Journals Online (AJOL)
kusimi
are applicable at catchment scale; event based; and continuous models of spatially and temporally distribution (i.e., 2D) (e.g., Amore et al., 2004; Fistikoglu ..... the integration of RUSLE into GIS give a vivid spatial dimension in soil erosion and sediment yield in the Pra Basin. Given the elements and processes prevailing in ...
Climate Impacts on Chinese Corn Yields: A Fractional Polynomial Regression Model
Kooten, van G.C.; Sun, Baojing
2012-01-01
In this study, we examine the effect of climate on corn yields in northern China using data from ten districts in Inner Mongolia and two in Shaanxi province. A regression model with a flexible functional form is specified, with explanatory variables that include seasonal growing degree days,
Wit, de A.J.W.; Diepen, van C.A.
2007-01-01
Uncertainty in spatial and temporal distribution of rainfall in regional crop yield simulations comprises a major fraction of the error on crop model simulation results. In this paper we used an Ensemble Kalman filter (EnKF) to assimilate coarse resolution satellite microwave sensor derived soil
Dynamic Diffusion Estimation in Exponential Family Models
Czech Academy of Sciences Publication Activity Database
Dedecius, Kamil; Sečkárová, Vladimíra
2013-01-01
Roč. 20, č. 11 (2013), s. 1114-1117 ISSN 1070-9908 R&D Projects: GA MŠk 7D12004; GA ČR GA13-13502S Keywords : diffusion estimation * distributed estimation * paremeter estimation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.639, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0396518.pdf
UAV State Estimation Modeling Techniques in AHRS
Razali, Shikin; Zhahir, Amzari
2017-11-01
Autonomous unmanned aerial vehicle (UAV) system is depending on state estimation feedback to control flight operation. Estimation on the correct state improves navigation accuracy and achieves flight mission safely. One of the sensors configuration used in UAV state is Attitude Heading and Reference System (AHRS) with application of Extended Kalman Filter (EKF) or feedback controller. The results of these two different techniques in estimating UAV states in AHRS configuration are displayed through position and attitude graphs.
Energy Technology Data Exchange (ETDEWEB)
Cazaux, J [LASSI/UTAP, Faculte des Sciences, BP1039, 51687 Reims Cedex 2 (France)
2005-07-21
A new analytical model for the secondary electron (SE) emission yield, {delta}, is applied to polymers. It involves a parameter k, k = z{sub C}/R, between the most probable energy dissipation depth, z{sub C}, of primary electrons (PE) and their range R, where k ranges from 0.5 and 0.45 for low-density, low atomic-weight materials. Reduced yield curves (RYC), {delta}/{delta}{sub (max)} versus E{sup 0}/E{sup 0}{sub (max)}, and normal yield curves, {delta} versus E{sup 0}, obtained from published experimental data on a wide variety of polymers (polystyrene, PET, polyimide; Kapton; PTFE; Teflon, PMMA, nylon, polyurethane) are compared with the calculated change of {delta} with PE energy, E{sup 0}. In contrast to the use of the conventional constant loss model where the best fit requires an empirical change in the exponent 'n' in the power law expression of the PE range, R versus E{sup 0}, the present approach is based on the usual choice for n, n = 1.35, and on a choice for k governed by physical arguments. This physical basis then enables one to predict the RYC of other polymers. Finally, values of the SE escape probability and SE attenuation length are estimated for the polymers of interest and a new mechanism is suggested for the contrast reversal in scanning electron microscopy.
International Nuclear Information System (INIS)
Cazaux, J
2005-01-01
A new analytical model for the secondary electron (SE) emission yield, δ, is applied to polymers. It involves a parameter k, k = z C /R, between the most probable energy dissipation depth, z C , of primary electrons (PE) and their range R, where k ranges from 0.5 and 0.45 for low-density, low atomic-weight materials. Reduced yield curves (RYC), δ/δ (max) versus E 0 /E 0 (max) , and normal yield curves, δ versus E 0 , obtained from published experimental data on a wide variety of polymers (polystyrene, PET, polyimide; Kapton; PTFE; Teflon, PMMA, nylon, polyurethane) are compared with the calculated change of δ with PE energy, E 0 . In contrast to the use of the conventional constant loss model where the best fit requires an empirical change in the exponent 'n' in the power law expression of the PE range, R versus E 0 , the present approach is based on the usual choice for n, n = 1.35, and on a choice for k governed by physical arguments. This physical basis then enables one to predict the RYC of other polymers. Finally, values of the SE escape probability and SE attenuation length are estimated for the polymers of interest and a new mechanism is suggested for the contrast reversal in scanning electron microscopy
Getting water right: A case study in water yield modelling based on precipitation data.
Pessacg, Natalia; Flaherty, Silvia; Brandizi, Laura; Solman, Silvina; Pascual, Miguel
2015-12-15
Water yield is a key ecosystem service in river basins and especially in dry regions around the World. In this study we carry out a modelling analysis of water yields in the Chubut River basin, located in one of the driest districts of Patagonia, Argentina. We focus on the uncertainty around precipitation data, a driver of paramount importance for water yield. The objectives of this study are to: i) explore the spatial and numeric differences among six widely used global precipitation datasets for this region, ii) test them against data from independent ground stations, and iii) explore the effects of precipitation data uncertainty on simulations of water yield. The simulations were performed using the ecosystem services model InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) with each of the six different precipitation datasets as input. Our results show marked differences among datasets for the Chubut watershed region, both in the magnitude of precipitations and their spatial arrangement. Five of the precipitation databases overestimate the precipitation over the basin by 50% or more, particularly over the more humid western range. Meanwhile, the remaining dataset (Tropical Rainfall Measuring Mission - TRMM), based on satellite measurements, adjusts well to the observed rainfall in different stations throughout the watershed and provides a better representation of the precipitation gradient characteristic of the rain shadow of the Andes. The observed differences among datasets in the representation of the rainfall gradient translate into large differences in water yield simulations. Errors in precipitation of +30% (-30%) amplify to water yield errors ranging from 50 to 150% (-45 to -60%) in some sub-basins. These results highlight the importance of assessing uncertainties in main input data when quantifying and mapping ecosystem services with biophysical models and cautions about the undisputed use of global environmental datasets. Copyright
International Nuclear Information System (INIS)
Brenner, D.J.; Miller, J.H.; Ritchie, R.H.; Bichsel, H.
1985-01-01
An insulator model with four experimental energy bands was used to fit the optical properties of liquid water and to extend these data to non-zero momentum transfer. Inelastic mean free paths derived from this dielectric response function provided the basic information necessary to degrade high energy electrons to the subexcitation energy domain. Two approaches for the transport of subexcitation electrons were investigated. (i) Gas phase cross sections were used to degrade subexcitation electrons to thermal energy and the thermalization lengths were scaled to unit density. (ii) Thermalization lengths were estimated by age-diffusion theory with a stopping power deduced from the data on liquid water and transport cross sections derived from elastic scattering in water vapor. Theoretical ranges were compared to recent experimental results. A stochastic model was used to calculate the rapid diffusion and reaction of hydrated electrons with other radiolysis products. The sensitivity of the calculated yields to the model assumptions and comparison with experimental data are discussed
Water deficit effects on maize yields modeled under current and greenhouse climates
International Nuclear Information System (INIS)
Muchow, R.C.; Sinclair, T.R.
1991-01-01
The availability of water imposes one of the major limits on rainfed maize (Zea mays L.) productivity. This analysis was undertaken in an attempt to quantify the effects of limited water on maize growth and yield by extending a simple, mechanistic model in which temperature regulates crop development and intercepted solar radiation is used to calculate crop biomass accumulation. A soil water budget was incorporated into the model by accounting for inputs from rainfall and irrigation, and water use by soil evaporation and crop transpiration. The response functions of leaf area development and crop gas exchange to the soil water budget were developed from experimental studies. The model was used to interpret a range of field experiments using observed daily values of temperature, solar radiation, and rainfall or irrigation, where water deficits of varying durations developed at different stages of growth. The relative simplicity of the model and its robustness in simulating maize yields under a range of water-availability conditions allows the model to be readily used for studies of crop performance under alternate conditions. One such study, presented here, was a yield assessment for rainfed maize under possible greenhouse climates where temperature and atmospheric CO 2 concentration were increased. An increase in temperature combined with decreased rainfall lowered grain yield, although the increase in crop water use efficiency associated with elevated CO 2 concentration ameliorated the response to the greenhouse climate. Grain yields for the greenhouse climates as compared to current conditions increased, or decreased only slightly, except when the greenhouse climate was assumed to result in severly decreased rainfall
Determining Rheological Parameters of Generalized Yield-Power-Law Fluid Model
Directory of Open Access Journals (Sweden)
Stryczek Stanislaw
2004-09-01
Full Text Available The principles of determining rheological parameters of drilling muds described by a generalized yield-power-law are presented in the paper. Functions between tangent stresses and shear rate are given. The conditions of laboratory measurements of rheological parameters of generalized yield-power-law fluids are described and necessary mathematical relations for rheological model parameters given. With the block diagrams, the methodics of numerical solution of these relations has been presented. Rheological parameters of an exemplary drilling mud have been calculated with the use of this numerical program.
Efficient estimation of an additive quantile regression model
Cheng, Y.; de Gooijer, J.G.; Zerom, D.
2011-01-01
In this paper, two non-parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel-based approaches. The second estimator
Performances of some estimators of linear model with ...
African Journals Online (AJOL)
The estimators are compared by examing the finite properties of estimators namely; sum of biases, sum of absolute biases, sum of variances and sum of the mean squared error of the estimated parameter of the model. Results show that when the autocorrelation level is small (ρ=0.4), the MLGD estimator is best except when ...
Wang, Haijun; Liang, Xiaomin; Wang, Hongzhu
2017-07-01
Next to excessive nutrient loading, intensive aquaculture is one of the major anthropogenic impacts threatening lake ecosystems. In China, particularly in the shallow lakes of mid-lower Changjiang (Yangtze) River, continuous overstocking of the Chinese mitten crab ( Eriocheir sinensis) could deteriorate water quality and exhaust natural resources. A series of crab yield models and a general optimum-stocking rate model have been established, which seek to benefit both crab culture and the environment. In this research, independent investigations were carried out to evaluate the crab yield models and modify the optimum-stocking model. Low percentage errors (average 47%, median 36%) between observed and calculated crab yields were obtained. Specific values were defined for adult crab body mass (135 g/ind.) and recapture rate (18% and 30% in lakes with submerged macrophyte biomass above and below 1 000 g/m2) to modify the optimum-stocking model. Analysis based on the modified optimum-stocking model indicated that the actual stocking rates in most lakes were much higher than the calculated optimum-stocking rates. This implies that, for most lakes, the current stocking rates should be greatly reduced to maintain healthy lake ecosystems.
On population size estimators in the Poisson mixture model.
Mao, Chang Xuan; Yang, Nan; Zhong, Jinhua
2013-09-01
Estimating population sizes via capture-recapture experiments has enormous applications. The Poisson mixture model can be adopted for those applications with a single list in which individuals appear one or more times. We compare several nonparametric estimators, including the Chao estimator, the Zelterman estimator, two jackknife estimators and the bootstrap estimator. The target parameter of the Chao estimator is a lower bound of the population size. Those of the other four estimators are not lower bounds, and they may produce lower confidence limits for the population size with poor coverage probabilities. A simulation study is reported and two examples are investigated. © 2013, The International Biometric Society.
Humbird, Kelli; Peterson, J. Luc; Brandon, Scott; Field, John; Nora, Ryan; Spears, Brian
2016-10-01
Next-generation supercomputer architecture and in-transit data analysis have been used to create a large collection of 2-D ICF capsule implosion simulations. The database includes metrics for approximately 60,000 implosions, with x-ray images and detailed physics parameters available for over 20,000 simulations. To map and explore this large database, surrogate models for numerous quantities of interest are built using supervised machine learning algorithms. Response surfaces constructed using the predictive capabilities of the surrogates allow for continuous exploration of parameter space without requiring additional simulations. High performing regions of the input space are identified to guide the design of future experiments. In particular, a model for the yield built using a random forest regression algorithm has a cross validation score of 94.3% and is consistently conservative for high yield predictions. The model is used to search for robust volumes of parameter space where high yields are expected, even given variations in other input parameters. Surrogates for additional quantities of interest relevant to ignition are used to further characterize the high yield regions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. LLNL-ABS-697277.
Dewar, Roderick C.; McMurtrie, Ross E.
1996-01-01
We used an existing analytical model of stemwood growth in relation to nitrogen supply, which we describe in an accompanying paper, to examine the long-term effects of harvesting and fire on tree growth. Our analysis takes into account the balance between nitrogen additions from deposition, fixation, and fertilizer applications, and nitrogen losses from stemwood harvesting, regeneration burning, leaching and gaseous emissions. Using a plausible set of parameter values for Eucalyptus, we conclude that nitrogen loss through fire is the main factor limiting sustainable yield, defined as the maximum mean annual stemwood volume increment obtained in the steady state, if management practices are continued indefinitely. The sustainable yield is 30 m(3) ha(-1) year(-1) with harvesting only, 15 m(3) ha(-1) year(-1) with harvesting and regeneration burning, and 13 m(3) ha(-1) year(-1) with harvesting, fire, leaching and gaseous emissions combined. Our approach uses a simple graphical analysis that provides a useful framework for examining the factors affecting sustainable yield. The graphical analysis is also useful for extending the application of the present model to the effects of climate change on sustainable yield, or for interpreting the behavior of other models of sustainable forest growth.
Directory of Open Access Journals (Sweden)
Kristen L. Kump
2010-11-01
Full Text Available Data generated for initial quantitative trait loci (QTL mapping using recombinant inbred line (RIL populations are usually ignored during subsequent fine-mapping using near-isogenic lines (NILs. Combining both datasets would increase the number of recombination events sampled and generate better position and effect estimates. Previously, several QTL for resistance to southern leaf blight of maize were mapped in two RIL populations, each independently derived from a cross between the lines B73 and Mo17. In each case the largest QTL was in bin 3.04. Here, two NIL pairs differing for this QTL were derived and used to create two distinct F family populations that were assessed for southern leaf blight (SLB resistance. By accounting for segregation of the other QTL in the original RIL data, we were able to combine these data with the new genotypic and phenotypic data from the F families. Joint analysis yielded a narrower QTL support interval compared to that derived from analysis of any one of the data sets alone, resulting in the localization of the QTL to a less than 0.5 cM interval. Candidate genes identified within this interval are discussed. This methodology allows combined QTL analysis in which data from RIL populations is combined with data derived from NIL populations segregating for the same pair of alleles. It improves mapping resolution over the conventional approach with virtually no additional resources. Because data sets of this type are commonly produced, this approach is likely to prove widely applicable.
Wang, Qianfeng; Wu, Jianjun; Li, Xiaohan; Zhou, Hongkui; Yang, Jianhua; Geng, Guangpo; An, Xueli; Liu, Leizhen; Tang, Zhenghong
2017-04-01
The quantitative evaluation of the impact of drought on crop yield is one of the most important aspects in agricultural water resource management. To assess the impact of drought on wheat yield, the Environmental Policy Integrated Climate (EPIC) crop growth model and daily Standardized Precipitation Evapotranspiration Index (SPEI), which is based on daily meteorological data, are adopted in the Huang Huai Hai Plain. The winter wheat crop yields are estimated at 28 stations, after calibrating the cultivar coefficients based on the experimental site data, and SPEI data was taken 11 times across the growth season from 1981 to 2010. The relationship between estimated yield and multi-scale SPEI were analyzed. The optimum time scale SPEI to monitor drought during the crop growth period was determined. The reference yield was determined by averaging the yields from numerous non-drought years. From this data, we propose a comprehensive quantitative method which can be used to predict the impact of drought on wheat yields by combining the daily multi-scale SPEI and crop growth process model. This method was tested in the Huang Huai Hai Plain. The results suggested that estimation of calibrated EPIC was a good predictor of crop yield in the Huang Huai Hai Plain, with lower RMSE (15.4 %) between estimated yield and observed yield at six agrometeorological stations. The soil moisture at planting time was affected by the precipitation and evapotranspiration during the previous 90 days (about 3 months) in the Huang Huai Hai Plain. SPEIG90 was adopted as the optimum time scale SPEI to identify the drought and non-drought years, and identified a drought year in 2000. The water deficit in the year 2000 was significant, and the rate of crop yield reduction did not completely correspond with the volume of water deficit. Our proposed comprehensive method which quantitatively evaluates the impact of drought on crop yield is reliable. The results of this study further our understanding
A Derivative Based Estimator for Semiparametric Index Models
Donkers, A.C.D.; Schafgans, M.
2003-01-01
This paper proposes a semiparametric estimator for single- and multiple index models.It provides an extension of the average derivative estimator to the multiple index model setting.The estimator uses the average of the outer product of derivatives and is shown to be root-N consistent and
Estimation of Stochastic Volatility Models by Nonparametric Filtering
DEFF Research Database (Denmark)
Kanaya, Shin; Kristensen, Dennis
2016-01-01
/estimated volatility process replacing the latent process. Our estimation strategy is applicable to both parametric and nonparametric stochastic volatility models, and can handle both jumps and market microstructure noise. The resulting estimators of the stochastic volatility model will carry additional biases...
Radiation risk estimation based on measurement error models
Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya
2017-01-01
This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.
Efficient estimation of semiparametric copula models for bivariate survival data
Cheng, Guang
2014-01-01
A semiparametric copula model for bivariate survival data is characterized by a parametric copula model of dependence and nonparametric models of two marginal survival functions. Efficient estimation for the semiparametric copula model has been recently studied for the complete data case. When the survival data are censored, semiparametric efficient estimation has only been considered for some specific copula models such as the Gaussian copulas. In this paper, we obtain the semiparametric efficiency bound and efficient estimation for general semiparametric copula models for possibly censored data. We construct an approximate maximum likelihood estimator by approximating the log baseline hazard functions with spline functions. We show that our estimates of the copula dependence parameter and the survival functions are asymptotically normal and efficient. Simple consistent covariance estimators are also provided. Numerical results are used to illustrate the finite sample performance of the proposed estimators. © 2013 Elsevier Inc.
A model independent determination of the B{yields}X{sub s}{gamma} decay rate
Energy Technology Data Exchange (ETDEWEB)
Bernlochner, Florian U. [Victoria Univ., BC (Canada); Lacker, Heiko [Humboldt-Universitaet, Berlin (Germany); Ligeti, Zoltan [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley National Laboratory; Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J.; Tackmann, Kerstin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-03-15
The goal of the SIMBA collaboration is to provide a global fit to the available measurements of inclusive B{yields}X{sub s}{gamma} and B{yields}X{sub u}l{nu} decays. By performing a global fit one is able to simultaneously determine the relevant normalizations, i.e. the total B{yields}X{sub s}{gamma} rate and the CKM-matrix element vertical stroke Vub vertical stroke, together with the required hadronic parameters, most importantly the b-quark mass and the b-quark distribution function in the B-meson, called the shape function. In this talk, the current status on the model-independent determination of the shape function and vertical stroke C{sub 7}{sup incl}V{sub tb}V{sub ts}{sup *} vertical stroke, which parametrizes the total B{yields}X{sub s}{gamma} rate, from a global fit to the available B{yields}X{sub s}{gamma} measurements from Babar and Belle is presented. In particular, the theoretical uncertainties originating from variations of the different factorization scales are evaluated.
Mathematical model of transmission network static state estimation
Directory of Open Access Journals (Sweden)
Ivanov Aleksandar
2012-01-01
Full Text Available In this paper the characteristics and capabilities of the power transmission network static state estimator are presented. The solving process of the mathematical model containing the measurement errors and their processing is developed. To evaluate difference between the general model of state estimation and the fast decoupled state estimation model, the both models are applied to an example, and so derived results are compared.
Directory of Open Access Journals (Sweden)
Pierre Coenraets
1997-01-01
Full Text Available Comparison of computation time between single-trait and multiple-trait evaluations showed that with the use of the canonicat transformation associated with multiple diagonalization of (covariance matrices, multiple-trait analysis for milk, fat and protein yields is not more expensive than three single-trait analyzes. Rank correlations between breeding values for 54,820 cows with records (for their 1,406 sires estimated with the single-trait and multiple-trait models were over .98 (.99 in fat yield and over .99 (.99 in milk and protein yields. The relative gain expressed as reduction in mean prediction error variance was 3% (1% in milk yield, 6% (3% in fat yield, and .4% (.2% in protein yield for cows (for sires. Relative genetic gains were 3% (1%, 6% (2% and .5% (.2% respectively in milk, fat and protein yields for cows (for sires. The use of multiple-trait models bas therefore the advantages of improved precision and reduced selection bics. Multiple-trait analysis could be extended for the analyzes of test-day records. Results show that this or similar multiple-trait animal model could be implemented immediately in Belgium at low computing cost, using the proposed algorithme and could be the first step to new, more advanced evaluation methods.
Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models
Energy Technology Data Exchange (ETDEWEB)
Andrews, Brett H. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A., E-mail: andrewsb@pitt.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)
2017-02-01
Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.
Estimation of distribution overlap of urn models.
Hampton, Jerrad; Lladser, Manuel E
2012-01-01
A classical problem in statistics is estimating the expected coverage of a sample, which has had applications in gene expression, microbial ecology, optimization, and even numismatics. Here we consider a related extension of this problem to random samples of two discrete distributions. Specifically, we estimate what we call the dissimilarity probability of a sample, i.e., the probability of a draw from one distribution not being observed in [Formula: see text] draws from another distribution. We show our estimator of dissimilarity to be a [Formula: see text]-statistic and a uniformly minimum variance unbiased estimator of dissimilarity over the largest appropriate range of [Formula: see text]. Furthermore, despite the non-Markovian nature of our estimator when applied sequentially over [Formula: see text], we show it converges uniformly in probability to the dissimilarity parameter, and we present criteria when it is approximately normally distributed and admits a consistent jackknife estimator of its variance. As proof of concept, we analyze V35 16S rRNA data to discern between various microbial environments. Other potential applications concern any situation where dissimilarity of two discrete distributions may be of interest. For instance, in SELEX experiments, each urn could represent a random RNA pool and each draw a possible solution to a particular binding site problem over that pool. The dissimilarity of these pools is then related to the probability of finding binding site solutions in one pool that are absent in the other.
Estimation Risk Modeling in Optimal Portfolio Selection: An Empirical Study from Emerging Markets
Directory of Open Access Journals (Sweden)
Sarayut Nathaphan
2010-01-01
Full Text Available Efficient portfolio is a portfolio that yields maximum expected return given a level of risk or has a minimum level of risk given a level of expected return. However, the optimal portfolios do not seem to be as efficient as intended. Especially during financial crisis period, optimal portfolio is not an optimal investment as it does not yield maximum return given a specific level of risk, and vice versa. One possible explanation for an unimpressive performance of the seemingly efficient portfolio is incorrectness in parameter estimates called “estimation risk in parameter estimates”. Six different estimating strategies are employed to explore ex-post-portfolio performance when estimation risk is incorporated. These strategies are traditional Mean-Variance (EV, Adjusted Beta (AB approach, Resampled Efficient Frontier (REF, Capital Asset Pricing Model (CAPM, Single Index Model (SIM, and Single Index Model incorporating shrinkage Bayesian factor namely, Bayesian Single Index Model (BSIM. Among the six alternative strategies, shrinkage estimators incorporating the single index model outperform other traditional portfolio selection strategies. Allowing for asset mispricing and applying Bayesian shrinkage adjusted factor to each asset's alpha, a single factor namely, excess market return is adequate in alleviating estimation uncertainty.
Perkins, S.P.; Sophocleous, M.
1999-01-01
We developed a model code to simulate a watershed's hydrology and the hydraulic response of an interconnected stream-aquifer system, and applied the model code to the Lower Republican River Basin in Kansas. The model code links two well-known computer programs: MODFLOW (modular 3-D flow model), which simulates ground water flow and stream-aquifer interaction; and SWAT (soil water assessment tool), a soil water budget simulator for an agricultural watershed. SWAT represents a basin as a collection of subbasins in terms of soil, land use, and weather data, and simulates each subbasin on a daily basis to determine runoff, percolation, evaporation, irrigation, pond seepages and crop growth. Because SWAT applies a lumped hydrologic model to each subbasin, spatial heterogeneities with respect to factors such as soil type and land use are not resolved geographically, but can instead be represented statistically. For the Republican River Basin model, each combination of six soil types and three land uses, referred to as a hydrologic response unit (HRU), was simulated with a separate execution of SWAT. A spatially weighted average was then taken over these results for each hydrologic flux and time step by a separate program, SWBAVG. We wrote a package for MOD-FLOW to associate each subbasin with a subset of aquifer grid cells and stream reaches, and to distribute the hydrologic fluxes given for each subbasin by SWAT and SWBAVG over MODFLOW's stream-aquifer grid to represent tributary flow, surface and ground water diversions, ground water recharge, and evapotranspiration from ground water. The Lower Republican River Basin model was calibrated with respect to measured ground water levels, streamflow, and reported irrigation water use. The model was used to examine the relative contributions of stream yield components and the impact on stream yield and base flow of administrative measures to restrict irrigation water use during droughts. Model results indicate that tributary
International Nuclear Information System (INIS)
Barnett, C.S.
1991-01-01
The Double Contingency Principle (DCP) is widely applied to criticality safety practice in the United States. Most practitioners base their application of the principle on qualitative, intuitive assessments. The recent trend toward probabilistic safety assessments provides a motive to search for a quantitative, probabilistic foundation for the DCP. A Markov model is tractable and leads to relatively simple results. The model yields estimates of mean time to simultaneous collapse of two contingencies as a function of estimates of mean failure times and mean recovery times of two independent contingencies. The model is a tool that can be used to supplement the qualitative methods now used to assess effectiveness of the DCP. (Author)
Models and tests of optimal density and maximal yield for crop plants.
Deng, Jianming; Ran, Jinzhi; Wang, Zhiqiang; Fan, Zhexuan; Wang, Genxuan; Ji, Mingfei; Liu, Jing; Wang, Yun; Liu, Jianquan; Brown, James H
2012-09-25
We introduce a theoretical framework that predicts the optimum planting density and maximal yield for an annual crop plant. Two critical parameters determine the trajectory of plant growth and the optimal density, N(opt), where canopies of growing plants just come into contact, and competition: (i) maximal size at maturity, M(max), which differs among varieties due to artificial selection for different usable products; and (ii) intrinsic growth rate, g, which may vary with variety and environmental conditions. The model predicts (i) when planting density is less than N(opt), all plants of a crop mature at the same maximal size, M(max), and biomass yield per area increases linearly with density; and (ii) when planting density is greater than N(opt), size at maturity and yield decrease with -4/3 and -1/3 powers of density, respectively. Field data from China show that most annual crops, regardless of variety and life form, exhibit similar scaling relations, with maximal size at maturity, M(max), accounting for most of the variation in optimal density, maximal yield, and energy use per area. Crops provide elegantly simple empirical model systems to study basic processes that determine the performance of plants in agricultural and less managed ecosystems.
Crop model sensitivity to the estimated daily global solar radiation data
Directory of Open Access Journals (Sweden)
Pavel Kapler
2006-01-01
Full Text Available The results of the previous studies have suggested that the estimated RG values are loaded with an error, which might compromise the precision of the subsequent crop model applications. Therefore a detailed analysis of the error propagation was made using two crop models i.e. CERES-Barley and CERES-Wheat. Database of meteorological data originating from 8 stations in Austria and Czech Republic was used in order to carry out the analysis. It has been found that even application of the method based on sunshine duration that yield the lowest bias in RG estimates significantly influences number of key crop model outputs. It has been also noted that in 5–6 seasons out of 100 cases the deviation greater than ±10 % is to be expected whilst the occurrence of ±25% could not be also ruled out. The precision of the yield estimates and other crop model outputs is lower then expected but still acceptable for most application with mean bias error in range of 2.0–4.1% when estimates based on the diurnal temperature range and cloud cover are used. In this case yield deviations over ±10% occurred in about 20% cases (depending on the crop whilst the probability of significant yield departure (±25% doubled of that found for the previous method. The methods based on the diurnal temperature range and daily precipitation sum showed an increase of the systematic bias of yield of winter wheat and considerably higher number of seasons with yield departures over ±25%. Utilisation of the methods based on the diurnal temperature range only for the purposes of seasonal yield forecasting or climate change impact assessment is questionable as the probability of significant yield departure is very high (as well as the systematic error. These findings should act as an incentive to the further research aimed at development of more precise and widely applicable methods of estimating daily RG based more on the underlying physical principles and/or remote sensing approach
Semiparametric Efficient Adaptive Estimation of the PTTGARCH model
Ciccarelli, Nicola
2016-01-01
Financial data sets exhibit conditional heteroskedasticity and asymmetric volatility. In this paper we derive a semiparametric efficient adaptive estimator of a conditional heteroskedasticity and asymmetric volatility GARCH-type model (i.e., the PTTGARCH(1,1) model). Via kernel density estimation of the unknown density function of the innovation and via the Newton-Raphson technique applied on the root-n-consistent quasi-maximum likelihood estimator, we construct a more efficient estimator tha...
Hoffmann, M.; Castaneda Vera, A.; Wijk, van M.T.; Giller, K.E.; Oberthür, T.; Donough, C.; Whitbread, A.M.
2014-01-01
Reducing the gap between water-limited potential yield and actual yield in oil palm production systems through intensification is seen as an important option for sustainably increasing palm oil production. Simulation models can play an important role in quantifying water-limited potential yield, and
Directory of Open Access Journals (Sweden)
Omar Vergara-Diaz
2015-06-01
Full Text Available The biotrophic fungus Puccinia striiformis f. sp. tritici is the causal agent of the yellow rust in wheat. Between the years 2010–2013 a new strain of this pathogen (Warrior/Ambition, against which the present cultivated wheat varieties have no resistance, appeared and spread rapidly. It threatens cereal production in most of Europe. The search for sources of resistance to this strain is proposed as the most efficient and safe solution to ensure high grain production. This will be helped by the development of high performance and low cost techniques for field phenotyping. In this study we analyzed vegetation indices in the Red, Green, Blue (RGB images of crop canopies under field conditions. We evaluated their accuracy in predicting grain yield and assessing disease severity in comparison to other field measurements including the Normalized Difference Vegetation Index (NDVI, leaf chlorophyll content, stomatal conductance, and canopy temperature. We also discuss yield components and agronomic parameters in relation to grain yield and disease severity. RGB-based indices proved to be accurate predictors of grain yield and grain yield losses associated with yellow rust (R2 = 0.581 and R2 = 0.536, respectively, far surpassing the predictive ability of NDVI (R2 = 0.118 and R2 = 0.128, respectively. In comparison to potential yield, we found the presence of disease to be correlated with reductions in the number of grains per spike, grains per square meter, kernel weight and harvest index. Grain yield losses in the presence of yellow rust were also greater in later heading varieties. The combination of RGB-based indices and days to heading together explained 70.9% of the variability in grain yield and 62.7% of the yield losses.
Development of simple kinetic models and parameter estimation for ...
African Journals Online (AJOL)
PANCHIGA
2016-09-28
Sep 28, 2016 ... by methanol. In this study, the unstructured models based on growth kinetic equation, fed-batch mass balance and constancy of cell and protein yields were developed and constructed following the substrates, glycerol and methanol. The growth model on glycerol is mostly published while the growth model ...
Are satellite based rainfall estimates accurate enough for crop modelling under Sahelian climate?
Ramarohetra, J.; Sultan, B.
2012-04-01
Agriculture is considered as the most climate dependant human activity. In West Africa and especially in the sudano-sahelian zone, rain-fed agriculture - that represents 93% of cultivated areas and is the means of support of 70% of the active population - is highly vulnerable to precipitation variability. To better understand and anticipate climate impacts on agriculture, crop models - that estimate crop yield from climate information (e.g rainfall, temperature, insolation, humidity) - have been developed. These crop models are useful (i) in ex ante analysis to quantify the impact of different strategies implementation - crop management (e.g. choice of varieties, sowing date), crop insurance or medium-range weather forecast - on yields, (ii) for early warning systems and to (iii) assess future food security. Yet, the successful application of these models depends on the accuracy of their climatic drivers. In the sudano-sahelian zone , the quality of precipitation estimations is then a key factor to understand and anticipate climate impacts on agriculture via crop modelling and yield estimations. Different kinds of precipitation estimations can be used. Ground measurements have long-time series but an insufficient network density, a large proportion of missing values, delay in reporting time, and they have limited availability. An answer to these shortcomings may lie in the field of remote sensing that provides satellite-based precipitation estimations. However, satellite-based rainfall estimates (SRFE) are not a direct measurement but rather an estimation of precipitation. Used as an input for crop models, it determines the performance of the simulated yield, hence SRFE require validation. The SARRAH crop model is used to model three different varieties of pearl millet (HKP, MTDO, Souna3) in a square degree centred on 13.5°N and 2.5°E, in Niger. Eight satellite-based rainfall daily products (PERSIANN, CMORPH, TRMM 3b42-RT, GSMAP MKV+, GPCP, TRMM 3b42v6, RFEv2 and
Volatility estimation using a rational GARCH model
Directory of Open Access Journals (Sweden)
Tetsuya Takaishi
2018-03-01
Full Text Available The rational GARCH (RGARCH model has been proposed as an alternative GARCHmodel that captures the asymmetric property of volatility. In addition to the previously proposedRGARCH model, we propose an alternative RGARCH model called the RGARCH-Exp model thatis more stable when dealing with outliers. We measure the performance of the volatility estimationby a loss function calculated using realized volatility as a proxy for true volatility and compare theRGARCH-type models with other asymmetric type models such as the EGARCH and GJR models.We conduct empirical studies of six stocks on the Tokyo Stock Exchange and find that a volatilityestimation using the RGARCH-type models outperforms the GARCH model and is comparable toother asymmetric GARCH models.
Directory of Open Access Journals (Sweden)
Rafia Mumtaz
2017-10-01
Full Text Available Land management for crop production is an essential human activity that supports life on Earth. The main challenge to be faced by the agriculture sector in coming years is to feed the rapidly growing population while maintaining the key resources such as soil fertility, efficient land use, and water. Climate change is also a critical factor that impacts agricultural production. Among others, a major effect of climate change is the potential alterations in the growth cycle of crops which would likely lead to a decline in the agricultural output. Due to the increasing demand for proper agricultural management, this study explores the effects of meteorological variation on wheat yield in Chakwal and Faisalabad districts of Punjab, Pakistan and used normalised difference vegetation index (NDVI as a predictor for yield estimates. For NDVI data (2001-14, the NDVI product of Moderate Resolution Imaging spectrometer (MODIS 16-day composites data has been used. The crop area mapping has been realised by classifying the satellite data into different land use/land covers using iterative self-organising (ISO data clustering. The land cover for the wheat crop was mapped using a crop calendar. The relation of crop yield with NDVI and the impact of meteorological parameters on wheat growth and its yield has been analysed at various development stages. A strong correlation of rainfall and temperature was found with NDVI data, which determined NDVI as a strong predictor of yield estimation. The wheat yield estimates were obtained by linearly regressing the reported crop yield against the time series of MODIS NDVI profiles. The wheat NDVI profiles have shown a parabolic pattern across the growing season, therefore parabolic least square fit (LSF has been applied prior to linear regression. The coefficients of determination (R2 between the reported and estimated yield was found to be 0.88 and 0.73, respectively, for Chakwal and Faisalabad. This indicates that the
Comparison of two intelligent models to estimate the instantaneous ...
Indian Academy of Sciences (India)
Mostafa Zamani Mohiabadi
2017-07-25
Jul 25, 2017 ... 2014) has combined empirical models and a Bayesian neural network (BNN) model to estimate daily global solar radiation on a horizon- tal surface in Ghardaıa, Algeria. In their model, the maximum and minimum air temperatures of the year 2006 have been used to estimate the coefficients of the empirical ...
A Contingent Trip Model for Estimating Rail-trail Demand
Carter J. Betz; John C. Bergstrom; J. Michael Bowker
2003-01-01
The authors develop a contingent trip model to estimate the recreation demand for and value of a potential rail-trail site in north-east Georgia. The contingent trip model is an alternative to travel cost modelling useful for ex ante evaluation of proposed recreation resources or management alternatives. The authors estimate the empirical demand for trips using a...
A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...
Butler, J. J., Jr.; Whittemore, D. O.; Wilson, B. B.; Bohling, G.
2017-12-01
Many large regional aquifers supporting irrigated agriculture are experiencing high rates of water-level decline. The primary means of moderating these rates is to reduce pumping. The key question is what percent pumping reduction will significantly impact decline rates. We have recently developed a water-balance approach to address this question for subareas (100s to 1000s km2 in size) of seasonally pumped aquifers (Butler et al., GRL, 2016). This approach also provides an estimate of specific yield (Sy), which has been difficult to estimate from field data at the scale of modeling analyses. When applied to subareas of the High Plains aquifer in Kansas, this approach reveals that the Sy estimate is much lower (as much as a factor of five or more) than expected for an unconsolidated aquifer. One explanation is that the aquifer is heterogeneous with considerable amounts of fine material, whereas field data, such as drillers' logs, are often biased towards coarser intervals. An additional explanation, which appears to have received little attention, is the impact of entrapped air. In seasonally pumped systems, water levels pass through the same aquifer intervals multiple times, giving ample opportunity for air to be entrapped. This entrapped air imbues the aquifer with a specific yield that is considerably lower than what would be expected from lithology. If unrecognized, a larger-than-actual Sy value is input into the aquifer model. This can lead to the inadvertent use of the same-year recharge assumption, which may not be appropriate for many conditions (e.g., large depths to water), and can also result in artificially low estimates of net inflow for a depleting aquifer. Moreover, failure to recognize this condition can bedevil efforts to model conservation-based water use reductions. In that case, models will leave the range of conditions for which they have been calibrated and can become more vulnerable to parameter errors. Conservation-based water use reductions
Simulating and Predicting Cereal Crop Yields in Ethiopia: Model Calibration and Verification
Yang, M.; Wang, G.; Ahmed, K. F.; Eggen, M.; Adugna, B.; Anagnostou, E. N.
2017-12-01
Agriculture in developing countries are extremely vulnerable to climate variability and changes. In East Africa, most people live in the rural areas with outdated agriculture techniques and infrastructure. Smallholder agriculture continues to play a key role in this area, and the rate of irrigation is among the lowest of the world. As a result, seasonal and inter-annual weather patterns play an important role in the spatiotemporal variability of crop yields. This study investigates how various climate variables (e.g., temperature, precipitation, sunshine) and agricultural practice (e.g., fertilization, irrigation, planting date) influence cereal crop yields using a process-based model (DSSAT) and statistical analysis, and focuses on the Blue Nile Basin of Ethiopia. The DSSAT model is driven with meteorological forcing from the ECMWF's latest reanalysis product that cover the past 35 years; the statistical model will be developed by linking the same meteorological reanalysis data with harvest data at the woreda level from the Ethiopian national dataset. Results from this study will set the stage for the development of a seasonal prediction system for weather and crop yields in Ethiopia, which will serve multiple sectors in coping with the agricultural impact of climate variability.
International Nuclear Information System (INIS)
Song, Weize; Jia, Haifeng; Liang, Shidong; Wang, Zheng; Liu, Shujie; Hao, Lizhuang; Chai, Shatuo
2014-01-01
Estimating forage biomass yield remotely from space is still challenging nowadays. Field experiments were conducted and ground measurements correlated to remote sensing data to estimate the forage biomass yield of Alpine-cold meadow grassland during the grass and grass-withering period in Sanjiangyuan area in Yushu county. Both Shapiro-Wilk and Kolmogorov-Smirnov two-tailed tests showed that the field training samples are normally distributed, the Spearman coefficient indicated that the parametric correlation analysis had significant differences. The optimal regression models were developed based on the Landsat Thematic Mapper Normalized Difference Vegetation Index (TM-NDVI) and the forage biomass field data during the grass and the grass-withering periods, respectively. Then an integration model was used to predict forage biomass yield of alpine-cold meadow in the grass-withering period. The model showed good prediction accuracy and reliability. It was found that this approach can not only estimate forage yield in large scale efficiently but also overcome the seasonal limitation of remote sensing inversion. This technique can provides valuable guidance to animal husbandry to resource more efficiently in winter
A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.
Ashraf, M Irfan; Meng, Fan-Rui; Bourque, Charles P-A; MacLean, David A
2015-01-01
Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2) 5-year(-1) and volume: 0.0008 m(3) 5-year(-1)). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm(2) 5-year(-1) and 0.0393 m(3) 5-year(-1) in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology
A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.
Directory of Open Access Journals (Sweden)
M Irfan Ashraf
Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence
International Nuclear Information System (INIS)
Sarwar, M.
2013-01-01
Field trials were carried out to estimate resistance along with paddy yield in 55 rice germplasm lines (35 aromatic and 20 non-aromatic genotypes) for rice stem borers (Pyralidae: Lepidoptera) to expose their potential in pest management approach. The results expressed significant differences for pest damage build-up and paddy yield among the rice germplasm lines. The findings clearly portrayed that based upon the percentage of pest invasions (dead hearts and white heads damage), no genotype was exclusively resistant to stem borers damage under field conditions. Two aromatic genotypes, Jajai-15A/97 and Basmati-Cr-34, exhibited least borers prevalence and amplified paddy yield while Sonehri Sugdasi (P) and Sada Gulab (P) pointed out a peak pest invasion and declined paddy yield. The estimation of pest incidence build-up and paddy productivity within non-aromatic genotypes confirmed that IR8 (P), IR6-15-2 and IR6 (P) were mainly proficient for bearing condensed pest invasion and augmented paddy yield. IR8-2.5-4, IR6-15-10 and IR6-20-9 demonstrated elevated pest susceptibility and gave poor yield. Rest of the germplasms appeared to be least tolerant or vulnerable to pest build-up and reduced paddy production. The tolerant and high yielding genotypes should be popularised in rice borers endemic areas and can be used in varietals resistance breeding strategy. The outcome of current studies necessitates the integration of existing host plant tolerance along with other management strategies to accomplish a suitable control of rice stem borers and enhance paddy yield. (author)
Directory of Open Access Journals (Sweden)
Alessandro Tanferna
Full Text Available BACKGROUND: Migration research is in rapid expansion and increasingly based on sophisticated satellite-tracking devices subject to constant technological refinement, but is still ripe with descriptive studies and in need of meta-analyses looking for emergent generalisations. In particular, coexistence of studies and devices with different frequency of location sampling and spatial accuracy generates doubts of data compatibility, potentially preventing meta-analyses. We used satellite-tracking data on a migratory raptor to: (1 test whether data based on different location sampling frequencies and on different position subsampling approaches are compatible, and (2 seek potential solutions that enhance compatibility and enable eventual meta-analyses. METHODOLOGY/PRINCIPAL FINDINGS: We used linear mixed models to analyse the differences in the speed and route length of the migration tracks of 36 Black kites (Milvus migrans satellite-tagged with two different types of devices (Argos vs GPS tags, entailing different regimes of position sampling frequency. We show that different location sampling frequencies and data subsampling approaches generate large (up to 33% differences in the estimates of route length and migration speed of this migratory bird. CONCLUSIONS/SIGNIFICANCE: Our results show that the abundance of locations available for analysis affects the tortuosity and realism of the estimated migration path. To avoid flaws in future meta-analyses or unnecessary loss of data, we urge researchers to reach an agreement on a common protocol of data presentation, and to recognize that all transmitter-based studies are likely to underestimate the actual distance traveled by the marked animal. As ecological research becomes increasingly technological, new technologies should be matched with improvements in analytical capacity that guarantee data compatibility.
Tanferna, Alessandro; López-Jiménez, Lidia; Blas, Julio; Hiraldo, Fernando; Sergio, Fabrizio
2012-01-01
Migration research is in rapid expansion and increasingly based on sophisticated satellite-tracking devices subject to constant technological refinement, but is still ripe with descriptive studies and in need of meta-analyses looking for emergent generalisations. In particular, coexistence of studies and devices with different frequency of location sampling and spatial accuracy generates doubts of data compatibility, potentially preventing meta-analyses. We used satellite-tracking data on a migratory raptor to: (1) test whether data based on different location sampling frequencies and on different position subsampling approaches are compatible, and (2) seek potential solutions that enhance compatibility and enable eventual meta-analyses. We used linear mixed models to analyse the differences in the speed and route length of the migration tracks of 36 Black kites (Milvus migrans) satellite-tagged with two different types of devices (Argos vs GPS tags), entailing different regimes of position sampling frequency. We show that different location sampling frequencies and data subsampling approaches generate large (up to 33%) differences in the estimates of route length and migration speed of this migratory bird. Our results show that the abundance of locations available for analysis affects the tortuosity and realism of the estimated migration path. To avoid flaws in future meta-analyses or unnecessary loss of data, we urge researchers to reach an agreement on a common protocol of data presentation, and to recognize that all transmitter-based studies are likely to underestimate the actual distance traveled by the marked animal. As ecological research becomes increasingly technological, new technologies should be matched with improvements in analytical capacity that guarantee data compatibility.
NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...
African Journals Online (AJOL)
Air temperature of monthly mean minimum temperature, maximum temperature and relative humidity obtained from Nigerian Meteorological Agency (NIMET) were used as inputs to the ANFIS model and monthly mean global solar radiation was used as out of the model. Statistical evaluation of the model was done based on ...
Lag space estimation in time series modelling
DEFF Research Database (Denmark)
Goutte, Cyril
1997-01-01
The purpose of this article is to investigate some techniques for finding the relevant lag-space, i.e. input information, for time series modelling. This is an important aspect of time series modelling, as it conditions the design of the model through the regressor vector a.k.a. the input layer...
Bittante, G; Cipolat-Gotet, C; Pazzola, M; Dettori, M L; Vacca, G M; Cecchinato, A
2017-01-01
Sheep milk is an important source of food, especially in Mediterranean countries, and is used in large part for cheese production. Milk technological traits are important for the sheep dairy industry, but research is lacking into the genetic variation of such traits. Therefore the aim of this study was to estimate the heritability of traditional milk coagulation properties and curd firmness modeled on time t (CF t ) parameters, and their genetic relationships with test-day milk yield, composition (fat, protein, and casein content), and acidity in Sarda dairy sheep. Milk samples from 1,121 Sarda ewes from 23 flocks were analyzed for 5 traditional coagulation properties by lactodynamographic tests conducted for up to 60min: rennet coagulation time (min), curd-firming time (k 20 , min), and 3measures of curd firmness (a 30 , a 45 , and a 60 , mm). The 240 curd firmness observations (1 every 15 s) from each milk sample were recorded, and 4 parameters for each individual sample equation were estimated: rennet coagulation time estimated from the equation (RCT eq ), the asymptotic potential curd firmness (CF P ), the curd firming instant rate constant (k CF ), and the syneresis instant rate constant (k SR ). Two other derived traits were also calculated (CF max , the maximum curd firmness value; and t max , the attainment time). Multivariate analyses using Bayesian methodology were performed to estimate the genetic relationships of milk coagulation properties and CF t with the other traits; statistical inference was based on the marginal posterior distributions of the parameters of concern. The marginal posterior distribution of heritability estimates of milk yield (0.16±0.07) and composition (0.21±0.11 to 0.28±0.10) of Sarda ewes was similar to those often obtained for bovine species. The heritability of rennet coagulation time as a single point trait was also similar to that frequently obtained for cow milk (0.19±0.09), whereas the same trait calculated as an
Influence of Different Yield Loci on Failure Prediction with Damage Models
Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.
2017-09-01
Advanced high strength steels are widely used in the automotive industry to simultaneously improve crash performance and reduce the car body weight. A drawback of these multiphase steels is their sensitivity to damage effects and thus the reduction of ductility. For that reason the Forming Limit Curve is only partially suitable for this class of steels. An improvement in failure prediction can be obtained by using damage mechanics. The objective of this paper is to comparatively review the phenomenological damage model GISSMO and the Enhanced Lemaitre Damage Model. GISSMO is combined with three different yield loci, namely von Mises, Hill48 and Barlat2000 to investigate the influence of the choice of the plasticity description on damage modelling. The Enhanced Lemaitre Model is used with Hill48. An inverse parameter identification strategy for a DP1000 based on stress-strain curves and optical strain measurements of shear, uniaxial, notch and (equi-)biaxial tension tests is applied to calibrate the models. A strong dependency of fracture strains on the choice of yield locus can be observed. The identified models are validated on a cross-die cup showing ductile fracture with slight necking.
Energy Technology Data Exchange (ETDEWEB)
Tan, Zeli [Pacific Northwest National Laboratory, Richland WA USA; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland WA USA; Li, Hongyi [Montana State University, Bozeman MT USA; Tesfa, Teklu [Pacific Northwest National Laboratory, Richland WA USA; Vanmaercke, Matthias [Département de Géographie, Université de Liège, Liege Belgium; Poesen, Jean [Department of Earth and Environmental Sciences, Division of Geography, KU Leuven, Leuven Belgium; Zhang, Xuesong [Pacific Northwest National Laboratory, Richland WA USA; Lu, Hui [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing China; Hartmann, Jens [Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg Germany
2017-12-01
Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1081 and 38 small catchments (0.1-200 km27 ), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important for SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.
Tan, Zeli; Leung, L. Ruby; Li, Hongyi; Tesfa, Teklu; Vanmaercke, Matthias; Poesen, Jean; Zhang, Xuesong; Lu, Hui; Hartmann, Jens
2017-12-01
Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1,081 and 38 small catchments (0.1-200 km2), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important for SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.
Nevison, C. D.; Andrews, A. E.; Thoning, K. W.; Dlugokencky, E. J.; Sweeney, C.; Saikawa, E.; Miller, S. M.; Benmergui, J. S.; Fischer, M. L.
2017-12-01
North American nitrous oxide (N2O) emissions of 1.5 ± 0.2 Tg N/yr over 2008-2013 are estimated using the Carbon Tracker-Lagrange (CT-L) regional inversion framework. The estimated N2O emissions are largely consistent with the EDGAR global inventory and with the results of global atmospheric inversions, but offer more spatial and temporal detail and improved uncertainty quantification over North America. Emissions are strongest from the Midwestern corn/soybean belt, which accounts for about one fourth of the total North American N2O source. The emissions are maximum in spring/early summer, consistent with a nitrogen fertilizer-driven source, but also show a late winter spike suggestive of freeze-thaw effects. Interannual variability in emissions across the primary months of fertilizer application is positively correlated to mean soil moisture and precipitation. The inversion results, in combination with gridded N fertilizer datasets, are used to estimate the fraction of synthetic N fertilizer that is released as N2O. The estimated N2O flux from the Midwestern corn/soybean belt and the more northerly U.S./Canadian wheat belt corresponds to 3.6-4.5% and 1.4-3.5%, respectively, of total synthetic + organic N fertilizer applied to those regions. Consideration of additional N inputs from soybean N2 fixation reduces the N2O yield from the Midwestern corn/soybean belt to 2-2.6% of total N inputs. Figure 1. Posterior N2O flux integrated over the central Midwestern Corn/Soybean belt (38° to 43°N, 102° to 80°W, in grids where 5% or more of land area was planted in corn and/or soybean). Cases 1 (red) and 2 (blue) are defined based on different covariance matrix parameters, representing alternative scenarios of tighter prior/looser model-data mismatch and looser prior/tighter model-data mismatch. Both cases use a standard prior derived from a coarser resolution global inversion. Triangles show the approximate day when soil temperature climbs above 0°C and drops below 10
Kaneko, D.
2017-12-01
Climate change initiates abnormal meteorological disasters. Drought causes climate instability, thus producing poor harvests because of low rates of photosynthesis and sterile pollination. This research evaluates drought indices regarding precipitation and includes this data in global geophysical crop models that concern with evaporation, stomata opening, advection-effects from sea surface temperature anomalies, photosynthesis, carbon partitioning, crop yields, and crop production. Standard precipitation index (SPI) is a useful tool because of related variable not used in the stomata model. However, SPI is not an adequate tool for drought in irrigated fields. Contrary to expectations, the global comparisons of spatial characteristics between stomata opening/evapotranspiration and SPI for monitoring continental crop extremes produced serious defects and obvious differences between evapotranspiration and the small stomata-opening phenomena. The reason for this is that SPI does not include surface air temperature in its analysis. The Penman equation (Epen) describes potential evaporation better than SPI for recent hot droughts caused by climate change. However, the distribution of precipitation is a necessary condition for crop monitoring because it affirms the trend of the dry results computed by crop models. Consequently, the author uses global precipitation data observed by microwave passive sensors on TRMM and GCOM-W satellites. This remote sensing data conveniently supplies spatial distributions of global and seasonal precipitation. The author has designed a model to measure the effects of drought on crop yield and the degree of stomata closure related to the photosynthesis rate. To determine yield effects, the drought injury function is defined by integrating stomata closure during the two seasons from flowering to pollination. The stomata, defined by ratio between Epen and Eac, reflect the effects of drought and irrigation. Stomata-closure model includes the
Aspects of modeling regarding the contribution of nitrogen to the formation of grape yields
Blidariu, Cosmin; Boldea, Marius; Sala, Florin
2013-10-01
The research focused on determining the influence of organic fertilization equivalent to 150, 200 and 250 kg ha-1 nitrogen, on the productivity indices that participate in the formation of the grape yield: grape berry weight, number of grape berries, rachis weight. Quality indices of grapes were also analyzed: structure index, berry index, as well as yield quality, through dry matter. The distribution analysis of the experimental data revealed that production increase dy/dx increases dramatically with the total fertilizer dose (x + x0), it being proportional to the saturation deficit (a-y), where a is the biologically maximum yield (asymptote). Constants a, b and x0 for each parameter were determined by confrontation with the experimental data, through the least square method, and they were used in modeling the contribution of nitrogen to the formation of grape yields. Although the equivalent quantity of nitrogen in the soil is 150 units, its use is different in the proposed model, depending on the parameter under study. When the focus is on grape berry weight, the enhancement of this parameter is at the level of 97 units, whereas the enhancement of dry matter is 300 units. Analysis of the experimental data revealed that productive parameters are in positive correlation with different intensity levels. Regression analysis, Stuart, A., 1987, facilitated prediction models for the productive characters under study, with high to very high degree of certainty ((Gb = f(Nb):r2 = 0.880;p<0.01;Gs = f(NrB):r2 = 0.852;p<0.01).
Directory of Open Access Journals (Sweden)
2007-01-01
Full Text Available The SHETRAN model for simulating the sediment yield arising from shallow landslides at the scale of a river catchment was applied to the 45-km2 Ijuez catchment in the central Spanish Pyrenees, to investigate the effect of loss of forest cover on landslide and debris flow incidence and on catchment sediment yield. The application demonstrated how such a model, with a large number of parameters to be evaluated, can be used even when directly measured data are not available: rainfall and discharge time series were generated by reference to other local records and data providing the basis for a soil map were obtained by a short field campaign. Uncertainty bounds for the outputs were determined as a function of the uncertainty in the values of key model parameters. For a four-year period and for the existing forested state of the catchment, a good ability to simulate the observed long term spatial distribution of debris flows (represented by a 45-year inventory and to determine catchment sediment yield within the range of regional observations was demonstrated. The lower uncertainty bound on simulated landslide occurrence approximated the observed annual rate of landsliding and suggests that landslides provide a relatively minor proportion of the total sediment yield, at least in drier years. A scenario simulation in which the forest cover was replaced by grassland indicated an increase in landsliding but a decrease in the number of landslides which evolve into debris flows and, at least for drier years, a reduction in sediment delivery to the channel network.
Simulation of potato yield in temperate condition by the AquaCrop model
DEFF Research Database (Denmark)
Razzaghi, Fatemeh; Zhenjiang, Zhou; Andersen, Mathias Neumann
2017-01-01
Potato production ranks fourth in the world after rice, wheat, and maize and it is highly sensitive to water stress. It is thus very important to implement irrigation management strategies to minimize the effects of water stress under different climate conditions. The use of modelling tools...... to calculate the soil water balance on a daily basis has become widespread in the last decades. Therefore, this study was performed to simulate potato yield, dry matter and soil water content under different water stress condition using the AquaCrop model. Three levels of irrigation comprising full irrigated...... was simulated using the AquaCrop model. Data from full irrigated treatment of 2014 was used for model calibration and data from 2013 (If, Id, and I0 treatments), 2014 (Id, and I0 treatments) and 2015 (If, Id, and I0 treatments) were used for model validation. The sensitivity analysis of different parameters...
Efficient estimation of an additive quantile regression model
Cheng, Y.; de Gooijer, J.G.; Zerom, D.
2009-01-01
In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By
Efficient estimation of an additive quantile regression model
Cheng, Y.; de Gooijer, J.G.; Zerom, D.
2010-01-01
In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By
Probability density estimation in stochastic environmental models using reverse representations
Van den Berg, E.; Heemink, A.W.; Lin, H.X.; Schoenmakers, J.G.M.
2003-01-01
The estimation of probability densities of variables described by systems of stochastic dierential equations has long been done using forward time estimators, which rely on the generation of realizations of the model, forward in time. Recently, an estimator based on the combination of forward and
Performances Of Estimators Of Linear Models With Autocorrelated ...
African Journals Online (AJOL)
The performances of five estimators of linear models with Autocorrelated error terms are compared when the independent variable is autoregressive. The results reveal that the properties of the estimators when the sample size is finite is quite similar to the properties of the estimators when the sample size is infinite although ...
Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier
2012-06-01
Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s. Copyright © 2012 Elsevier Ltd. All rights reserved.
TPmsm: Estimation of the Transition Probabilities in 3-State Models
Directory of Open Access Journals (Sweden)
Artur Araújo
2014-12-01
Full Text Available One major goal in clinical applications of multi-state models is the estimation of transition probabilities. The usual nonparametric estimator of the transition matrix for non-homogeneous Markov processes is the Aalen-Johansen estimator (Aalen and Johansen 1978. However, two problems may arise from using this estimator: first, its standard error may be large in heavy censored scenarios; second, the estimator may be inconsistent if the process is non-Markovian. The development of the R package TPmsm has been motivated by several recent contributions that account for these estimation problems. Estimation and statistical inference for transition probabilities can be performed using TPmsm. The TPmsm package provides seven different approaches to three-state illness-death modeling. In two of these approaches the transition probabilities are estimated conditionally on current or past covariate measures. Two real data examples are included for illustration of software usage.
Modeling and Parameter Estimation of a Small Wind Generation System
Directory of Open Access Journals (Sweden)
Carlos A. Ramírez Gómez
2013-11-01
Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.
Energy Technology Data Exchange (ETDEWEB)
Rostampour, Malihe [Department of Physics, Arak University, P.O. Box: 38156, Arak (Iran, Islamic Republic of); Sadeghi, Mahdi, E-mail: msadeghi@nrcam.org [Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box: 14155-6183, Tehran (Iran, Islamic Republic of); Aboudzadeh, Mohammadreza [Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of); Hamidi, Saeid [Department of Physics, Arak University, P.O. Box: 38156, Arak (Iran, Islamic Republic of); Hosseini, Seyedeh Fatemeh [Department of Physics, Payame Noor University, P.O. Box: 19395-3697, Tehran (Iran, Islamic Republic of)
2017-03-01
A useful approach to optimize of radioisotope production is the use of Monte Carlo simulations prior to experimentation. In this paper, the GEANT4 code was employed to calculate the saturation yields of {sup 62,63}Zn from proton-induced reactions of natural copper, enriched {sup 63}Cu and {sup 65}Cu. In addition, the saturation yields of the investigated radio-nuclides were calculated using the stopping power from the SRIM-2013 and reported experimental data for cross sections. The simulated saturation yields were compared with experimental values. Good agreement between the experimental and corresponding simulated data demonstrated that GEANT4 provides a suitable tool for radionuclide simulation production using proton irradiation.
A nonparametric mixture model for cure rate estimation.
Peng, Y; Dear, K B
2000-03-01
Nonparametric methods have attracted less attention than their parametric counterparts for cure rate analysis. In this paper, we study a general nonparametric mixture model. The proportional hazards assumption is employed in modeling the effect of covariates on the failure time of patients who are not cured. The EM algorithm, the marginal likelihood approach, and multiple imputations are employed to estimate parameters of interest in the model. This model extends models and improves estimation methods proposed by other researchers. It also extends Cox's proportional hazards regression model by allowing a proportion of event-free patients and investigating covariate effects on that proportion. The model and its estimation method are investigated by simulations. An application to breast cancer data, including comparisons with previous analyses using a parametric model and an existing nonparametric model by other researchers, confirms the conclusions from the parametric model but not those from the existing nonparametric model.
Estimation methods for nonlinear state-space models in ecology
DEFF Research Database (Denmark)
Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro
2011-01-01
The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...
A simulation of water pollution model parameter estimation
Kibler, J. F.
1976-01-01
A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.
Relevance of the Lin's and Host hydropedological models to predict grape yield and wine quality
Directory of Open Access Journals (Sweden)
E. A. C. Costantini
2009-09-01
Full Text Available The adoption of precision agriculture in viticulture could be greatly enhanced by the diffusion of straightforward and easy to be applied hydropedological models, able to predict the spatial variability of available soil water. The Lin's and Host hydropedological models were applied to standard soil series descriptions and hillslope position, to predict the distribution of hydrological functional units in two vineyard and their relevance for grape yield and wine quality. A three-years trial was carried out in Chianti (Central Italy on Sangiovese. The soils of the vineyards differentiated in structure, porosity and related hydropedological characteristics, as well as in salinity. Soil spatial variability was deeply affected by earth movement carried out before vine plantation. Six plots were selected in the different hydrological functional units of the two vineyards, that is, at summit, backslope and footslope morphological positions, to monitor soil hydrology, grape production and wine quality. Plot selection was based upon a cluster analysis of local slope, topographic wetness index (TWI, and cumulative moisture up to the root limiting layer, appreciated by means of a detailed combined geophysical survey. Water content, redox processes and temperature were monitored, as well as yield, phenological phases, and chemical analysis of grapes. The isotopic ratio δ^{13}C was measured in the wine ethanol upon harvesting to evaluate the degree of stress suffered by vines. The grapes in each plot were collected for wine making in small barrels. The wines obtained were analysed and submitted to a blind organoleptic testing.
The results demonstrated that the combined application of the two hydropedological models can be used for the prevision of the moisture status of soils cultivated with grape during summertime in Mediterranean climate. As correctly foreseen by the models, the amount of mean daily transpirable soil water (TSW during
Optimal covariance selection for estimation using graphical models
Vichik, Sergey; Oshman, Yaakov
2011-01-01
We consider a problem encountered when trying to estimate a Gaussian random field using a distributed estimation approach based on Gaussian graphical models. Because of constraints imposed by estimation tools used in Gaussian graphical models, the a priori covariance of the random field is constrained to embed conditional independence constraints among a significant number of variables. The problem is, then: given the (unconstrained) a priori covariance of the random field, and the conditiona...
Temporal rainfall estimation using input data reduction and model inversion
Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.
2016-12-01
Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a
Estimating a Noncompensatory IRT Model Using Metropolis within Gibbs Sampling
Babcock, Ben
2011-01-01
Relatively little research has been conducted with the noncompensatory class of multidimensional item response theory (MIRT) models. A Monte Carlo simulation study was conducted exploring the estimation of a two-parameter noncompensatory item response theory (IRT) model. The estimation method used was a Metropolis-Hastings within Gibbs algorithm…
Estimated Frequency Domain Model Uncertainties used in Robust Controller Design
DEFF Research Database (Denmark)
Tøffner-Clausen, S.; Andersen, Palle; Stoustrup, Jakob
1994-01-01
This paper deals with the combination of system identification and robust controller design. Recent results on estimation of frequency domain model uncertainty are......This paper deals with the combination of system identification and robust controller design. Recent results on estimation of frequency domain model uncertainty are...
Estimating Lead (Pb) Bioavailability In A Mouse Model
Children are exposed to Pb through ingestion of Pb-contaminated soil. Soil Pb bioavailability is estimated using animal models or with chemically defined in vitro assays that measure bioaccessibility. However, bioavailability estimates in a large animal model (e.g., swine) can be...
ESTIMATION DU MODELE LINEAIRE GENERALISE ET APPLICATION
Directory of Open Access Journals (Sweden)
Malika CHIKHI
2012-06-01
Full Text Available Cet article présente le modèle linéaire généralisé englobant les techniques de modélisation telles que la régression linéaire, la régression logistique, la régression log linéaire et la régression de Poisson . On Commence par la présentation des modèles des lois exponentielles pour ensuite estimer les paramètres du modèle par la méthode du maximum de vraisemblance. Par la suite on teste les coefficients du modèle pour voir leurs significations et leurs intervalles de confiances, en utilisant le test de Wald qui porte sur la signification de la vraie valeur du paramètre basé sur l'estimation de l'échantillon.
Jaszczuk, Marek; Pawlikowski, Arkadiusz
2017-12-01
units giving consideration to the load of the caving shield, a model of support unit was used that allows for unequivocal determination of the yielding capacity of the support with consideration given to the height of the unit in use and the change in the inclination of the canopy resulting from the displacement of the roof of the longwall. The yielding capacity of the support unit and its point of application on the canopy was determined using the method of units which allows for the internal forces to be manifested. The weight of the rock mass depends on the geological and mining conditions, for which the shape and dimensions of the rock mass affecting the support unit are determined. The resultant force of the pressure of gob on the gob shield was calculated by assuming that the load may be understood as a pressure of ground on a wall. This required the specification of the volume of the fallen rocks that affect the unit of powered roof supports (Fig. 2). To determine the support of the roof rock mass by the coal seam, experience of the Australian mining industry was used. Experiments regarding the strength properties of coal have exhibited that vertical deformation, at which the highest seam reaction occurs while supporting the roof rock mass, amounts to 0.5% of the longwall's height. The measure of the width of the contact area between the rock mass and the seam is the width of the additional uncovering of the face roof due to spalling of seam topcorners da (Fig. 2). With the above parameters and the value of the modulus of elasticity of coal in mind, the value of the seam's reaction may be estimated using the dependence (2). The vertical component of the goafs' reaction may be determined based on the strength characteristics of the fallen roof, the contact area of the rock mass with the fallen roof and the mean strain of the fallen roof at the area of contact. In the work by Pawlikowski (2014), a research procedure was proposed which encompasses model tests and
Seo, Seongwon; Hwang, Yongwoo
1999-08-01
Construction and demolition (C&D) debris is generated at the site of various construction activities. However, the amount of the debris is usually so large that it is necessary to estimate the amount of C&D debris as accurately as possible for effective waste management and control in urban areas. In this paper, an effective estimation method using a statistical model was proposed. The estimation process was composed of five steps: estimation of the life span of buildings; estimation of the floor area of buildings to be constructed and demolished; calculation of individual intensity units of C&D debris; and estimation of the future C&D debris production. This method was also applied in the city of Seoul as an actual case, and the estimated amount of C&D debris in Seoul in 2021 was approximately 24 million tons. Of this total amount, 98% was generated by demolition, and the main components of debris were concrete and brick.
Vieilledent, G; Vaudry, R; Andriamanohisoa, S F D; Rakotonarivo, O S; Randrianasolo, H Z; Razafindrabe, H N; Rakotoarivony, C Bidaud; Ebeling, J; Rasamoelina, M
2012-03-01
Allometric equations allow aboveground tree biomass and carbon stock to be estimated from tree size. The allometric scaling theory suggests the existence of a universal power-law relationship between tree biomass and tree diameter with a fixed scaling exponent close to 8/3. In addition, generic empirical models, like Chave's or Brown's models, have been proposed for tropical forests in America and Asia. These generic models have been used to estimate forest biomass and carbon worldwide. However, tree allometry depends on environmental and genetic factors that vary from region to region. Consequently, theoretical models that include too few ecological explicative variables or empirical generic models that have been calibrated at particular sites are unlikely to yield accurate tree biomass estimates at other sites. In this study, we based our analysis on a destructive sample of 481 trees in Madagascar spiny dry and moist forests characterized by a high rate of endemism (> 95%). We show that, among the available generic allometric models, Chave's model including diameter, height, and wood specific gravity as explicative variables for a particular forest type (dry, moist, or wet tropical forest) was the only one that gave accurate tree biomass estimates for Madagascar (R2 > 83%, bias allometric models. When biomass allometric models are not available for a given forest site, this result shows that a simple height-diameter allometry is needed to accurately estimate biomass and carbon stock from plot inventories.
Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen
2018-02-07
The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small
Incremental parameter estimation of kinetic metabolic network models
Directory of Open Access Journals (Sweden)
Jia Gengjie
2012-11-01
Full Text Available Abstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE. Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified. Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates exceeds that of metabolites (chemical species. Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.
Estimation of some stochastic models used in reliability engineering
International Nuclear Information System (INIS)
Huovinen, T.
1989-04-01
The work aims to study the estimation of some stochastic models used in reliability engineering. In reliability engineering continuous probability distributions have been used as models for the lifetime of technical components. We consider here the following distributions: exponential, 2-mixture exponential, conditional exponential, Weibull, lognormal and gamma. Maximum likelihood method is used to estimate distributions from observed data which may be either complete or censored. We consider models based on homogeneous Poisson processes such as gamma-poisson and lognormal-poisson models for analysis of failure intensity. We study also a beta-binomial model for analysis of failure probability. The estimators of the parameters for three models are estimated by the matching moments method and in the case of gamma-poisson and beta-binomial models also by maximum likelihood method. A great deal of mathematical or statistical problems that arise in reliability engineering can be solved by utilizing point processes. Here we consider the statistical analysis of non-homogeneous Poisson processes to describe the failing phenomena of a set of components with a Weibull intensity function. We use the method of maximum likelihood to estimate the parameters of the Weibull model. A common cause failure can seriously reduce the reliability of a system. We consider a binomial failure rate (BFR) model as an application of the marked point processes for modelling common cause failure in a system. The parameters of the binomial failure rate model are estimated with the maximum likelihood method
Krauth, David; Anglemyer, Andrew; Philipps, Rose; Bero, Lisa
2014-01-01
Industry-sponsored clinical drug studies are associated with publication of outcomes that favor the sponsor, even when controlling for potential bias in the methods used. However, the influence of sponsorship bias has not been examined in preclinical animal studies. We performed a meta-analysis of preclinical statin studies to determine whether industry sponsorship is associated with either increased effect sizes of efficacy outcomes and/or risks of bias in a cohort of published preclinical statin studies. We searched Medline (January 1966-April 2012) and identified 63 studies evaluating the effects of statins on atherosclerosis outcomes in animals. Two coders independently extracted study design criteria aimed at reducing bias, results for all relevant outcomes, sponsorship source, and investigator financial ties. The I(2) statistic was used to examine heterogeneity. We calculated the standardized mean difference (SMD) for each outcome and pooled data across studies to estimate the pooled average SMD using random effects models. In a priori subgroup analyses, we assessed statin efficacy by outcome measured, sponsorship source, presence or absence of financial conflict information, use of an optimal time window for outcome assessment, accounting for all animals, inclusion criteria, blinding, and randomization. The effect of statins was significantly larger for studies sponsored by nonindustry sources (-1.99; 95% CI -2.68, -1.31) versus studies sponsored by industry (-0.73; 95% CI -1.00, -0.47) (p valuefinancial conflict information, use of an optimal time window for outcome assessment, accounting for all animals, inclusion criteria, blinding, and randomization. Possible reasons for the differences between nonindustry- and industry-sponsored studies, such as selective reporting of outcomes, require further study.
Energy Technology Data Exchange (ETDEWEB)
Celler, A; Hou, X [University of British Columbia, Vancouver, BC, Canada, (Canada); Benard, F; Ruth, T, E-mail: aceller@physics.ubc.ca, E-mail: xinchi@phas.ubc.ca, E-mail: fbenard@bccrc.ca, E-mail: truth@triumf.ca [BC Cancer Agency, Vancouver, BC (Canada)
2011-09-07
Recent acute shortage of medical radioisotopes prompted investigations into alternative methods of production and the use of a cyclotron and {sup 100}Mo(p,2n){sup 99m}Tc reaction has been considered. In this context, the production yields of {sup 99m}Tc and various other radioactive and stable isotopes which will be created in the process have to be investigated, as these may affect the diagnostic outcome and radiation dosimetry in human studies. Reaction conditions (beam and target characteristics, and irradiation and cooling times) need to be optimized in order to maximize the amount of {sup 99m}Tc and minimize impurities. Although ultimately careful experimental verification of these conditions must be performed, theoretical calculations can provide the initial guidance allowing for extensive investigations at little cost. We report the results of theoretically determined reaction yields for {sup 99m}Tc and other radioactive isotopes created when natural and enriched molybdenum targets are irradiated by protons. The cross-section calculations were performed using a computer program EMPIRE for the proton energy range 6-30 MeV. A computer graphical user interface for automatic calculation of production yields taking into account various reaction channels leading to the same final product has been created. The proposed approach allows us to theoretically estimate the amount of {sup 99m}Tc and its ratio relative to {sup 99g}Tc and other radioisotopes which must be considered reaction contaminants, potentially contributing to additional patient dose in diagnostic studies.
Ballistic model to estimate microsprinkler droplet distribution
Directory of Open Access Journals (Sweden)
Conceição Marco Antônio Fonseca
2003-01-01
Full Text Available Experimental determination of microsprinkler droplets is difficult and time-consuming. This determination, however, could be achieved using ballistic models. The present study aimed to compare simulated and measured values of microsprinkler droplet diameters. Experimental measurements were made using the flour method, and simulations using a ballistic model adopted by the SIRIAS computational software. Drop diameters quantified in the experiment varied between 0.30 mm and 1.30 mm, while the simulated between 0.28 mm and 1.06 mm. The greatest differences between simulated and measured values were registered at the highest radial distance from the emitter. The model presented a performance classified as excellent for simulating microsprinkler drop distribution.
A Dynamic Travel Time Estimation Model Based on Connected Vehicles
Directory of Open Access Journals (Sweden)
Daxin Tian
2015-01-01
Full Text Available With advances in connected vehicle technology, dynamic vehicle route guidance models gradually become indispensable equipment for drivers. Traditional route guidance models are designed to direct a vehicle along the shortest path from the origin to the destination without considering the dynamic traffic information. In this paper a dynamic travel time estimation model is presented which can collect and distribute traffic data based on the connected vehicles. To estimate the real-time travel time more accurately, a road link dynamic dividing algorithm is proposed. The efficiency of the model is confirmed by simulations, and the experiment results prove the effectiveness of the travel time estimation method.
Weibull Parameters Estimation Based on Physics of Failure Model
DEFF Research Database (Denmark)
Kostandyan, Erik; Sørensen, John Dalsgaard
2012-01-01
Reliability estimation procedures are discussed for the example of fatigue development in solder joints using a physics of failure model. The accumulated damage is estimated based on a physics of failure model, the Rainflow counting algorithm and the Miner’s rule. A threshold model is used...... for degradation modeling and failure criteria determination. The time dependent accumulated damage is assumed linearly proportional to the time dependent degradation level. It is observed that the deterministic accumulated damage at the level of unity closely estimates the characteristic fatigue life of Weibull...
Cokriging model for estimation of water table elevation
International Nuclear Information System (INIS)
Hoeksema, R.J.; Clapp, R.B.; Thomas, A.L.; Hunley, A.E.; Farrow, N.D.; Dearstone, K.C.
1989-01-01
In geological settings where the water table is a subdued replica of the ground surface, cokriging can be used to estimate the water table elevation at unsampled locations on the basis of values of water table elevation and ground surface elevation measured at wells and at points along flowing streams. The ground surface elevation at the estimation point must also be determined. In the proposed method, separate models are generated for the spatial variability of the water table and ground surface elevation and for the dependence between these variables. After the models have been validated, cokriging or minimum variance unbiased estimation is used to obtain the estimated water table elevations and their estimation variances. For the Pits and Trenches area (formerly a liquid radioactive waste disposal facility) near Oak Ridge National Laboratory, water table estimation along a linear section, both with and without the inclusion of ground surface elevation as a statistical predictor, illustrate the advantages of the cokriging model
Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami
2017-06-01
A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.
Comparison of Estimation Procedures for Multilevel AR(1 Models
Directory of Open Access Journals (Sweden)
Tanja eKrone
2016-04-01
Full Text Available To estimate a time series model for multiple individuals, a multilevel model may be used.In this paper we compare two estimation methods for the autocorrelation in Multilevel AR(1 models, namely Maximum Likelihood Estimation (MLE and Bayesian Markov Chain Monte Carlo.Furthermore, we examine the difference between modeling fixed and random individual parameters.To this end, we perform a simulation study with a fully crossed design, in which we vary the length of the time series (10 or 25, the number of individuals per sample (10 or 25, the mean of the autocorrelation (-0.6 to 0.6 inclusive, in steps of 0.3 and the standard deviation of the autocorrelation (0.25 or 0.40.We found that the random estimators of the population autocorrelation show less bias and higher power, compared to the fixed estimators. As expected, the random estimators profit strongly from a higher number of individuals, while this effect is small for the fixed estimators.The fixed estimators profit slightly more from a higher number of time points than the random estimators.When possible, random estimation is preferred to fixed estimation.The difference between MLE and Bayesian estimation is nearly negligible. The Bayesian estimation shows a smaller bias, but MLE shows a smaller variability (i.e., standard deviation of the parameter estimates.Finally, better results are found for a higher number of individuals and time points, and for a lower individual variability of the autocorrelation. The effect of the size of the autocorrelation differs between outcome measures.
Linear Regression Models for Estimating True Subsurface ...
Indian Academy of Sciences (India)
47
The objective is to minimize the processing time and computer memory required .... Survey. 65 time to acquire extra GPR or seismic data for large sites and picking the first arrival time. 66 to provide the needed datasets for the joint inversion are also .... The data utilized for the regression modelling was acquired from ground.
Linear Regression Models for Estimating True Subsurface ...
Indian Academy of Sciences (India)
47
of the processing time and memory space required to carry out the inversion with the. 29. SCLS algorithm. ... consumption of time and memory space for the iterative computations to converge at. 54 minimum data ..... colour scale and blanking as the observed true resistivity models, for visual assessment. 163. The accuracy ...
Energy Technology Data Exchange (ETDEWEB)
Dewar, R. C.; McMurtrie, R. E. [New South Wales Univ., Sydney, NSW (Australia)
1996-01-01
An existing analytical model of stemwood growth in relation to nitrogen supply was used to examine the long-term effects of harvesting and fire on tree growth. Balance between nitrogen additions from a variety of sources, such as from deposition, fixation and fertilizer applications, and nitrogen losses from harvesting, regeneration burning, leaching and gaseous emissions, have been considered. Using a hypothetical set of parameters for Eucalyptus, it was concluded that nitrogen loss through fire is the main factor limiting sustainable yield. The analysis technique and the model can also be applied to a simulation of the effects of climate change, or to verifying results of sustainable forest growth obtained by using other models. 24 refs., 5 figs.
Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe.
Fraga, Helder; García de Cortázar Atauri, Iñaki; Malheiro, Aureliano C; Santos, João A
2016-11-01
Viticulture is a key socio-economic sector in Europe. Owing to the strong sensitivity of grapevines to atmospheric factors, climate change may represent an important challenge for this sector. This study analyses viticultural suitability, yield, phenology, and water and nitrogen stress indices in Europe, for present climates (1980-2005) and future (2041-2070) climate change scenarios (RCP4.5 and 8.5). The STICS crop model is coupled with climate, soil and terrain databases, also taking into account CO 2 physiological effects, and simulations are validated against observational data sets. A clear agreement between simulated and observed phenology, leaf area index, yield and water and nitrogen stress indices, including the spatial differences throughout Europe, is shown. The projected changes highlight an extension of the climatic suitability for grapevines up to 55°N, which may represent the emergence of new winemaking regions. Despite strong regional heterogeneity, mean phenological timings (budburst, flowering, veraison and harvest) are projected to undergo significant advancements (e.g. budburst/harvest can be >1 month earlier), with implications also in the corresponding phenophase intervals. Enhanced dryness throughout Europe is also projected, with severe water stress over several regions in southern regions (e.g. southern Iberia and Italy), locally reducing yield and leaf area. Increased atmospheric CO 2 partially offsets dryness effects, promoting yield and leaf area index increases in central/northern Europe. Future biomass changes may lead to modifications in nitrogen demands, with higher stress in northern/central Europe and weaker stress in southern Europe. These findings are critical decision support systems for stakeholders from the European winemaking sector. © 2016 John Wiley & Sons Ltd.
A distribution-free newsvendor model with balking penalty and random yield
Directory of Open Access Journals (Sweden)
Chongfeng Lan
2015-05-01
Full Text Available Purpose: The purpose of this paper is to extend the analysis of the distribution-free newsvendor problem in an environment of customer balking, which occurs when customers are reluctant to buy a product if its available inventory falls below a threshold level. Design/methodology/approach: We provide a new tradeoff tool as a replacement of the traditional one to weigh the holding cost and the goodwill costs segment: in addition to the shortage penalty, we also introduce the balking penalty. Furthermore, we extend our model to the case of random yield. Findings: A model is presented for determining both an optimal order quantity and a lower bound on the profit under the worst possible distribution of the demand. We also study the effects of shortage penalty and the balking penalty on the optimal order quantity, which have been largely bypassed in the existing distribution free single period models with balking. Numerical examples are presented to illustrate the result. Originality/value: The incorporation of balking penalty and random yield represents an important improvement in inventory policy performance for distribution-free newsvendor problem when customer balking occurs and the distributional form of demand is unknown.
Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations.
Directory of Open Access Journals (Sweden)
Rebeca González-Cabaleiro
Full Text Available The fermentation of glucose using microbial mixed cultures is of great interest given its potential to convert wastes into valuable products at low cost, however, the difficulties associated with the control of the process still pose important challenges for its industrial implementation. A deeper understanding of the fermentation process involving metabolic and biochemical principles is very necessary to overcome these difficulties. In this work a novel metabolic energy based model is presented that accurately predicts for the first time the experimentally observed changes in product spectrum with pH. The model predicts the observed shift towards formate production at high pH, accompanied with ethanol and acetate production. Acetate (accompanied with a more reduced product and butyrate are predicted main products at low pH. The production of propionate between pH 6 and 8 is also predicted. These results are mechanistically explained for the first time considering the impact that variable proton motive potential and active transport energy costs have in terms of energy harvest over different products yielding. The model results, in line with numerous reported experiments, validate the mechanistic and bioenergetics hypotheses that fermentative mixed cultures products yielding appears to be controlled by the principle of maximum energy harvest and the necessity of balancing the redox equivalents in absence of external electron acceptors.
Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations.
González-Cabaleiro, Rebeca; Lema, Juan M; Rodríguez, Jorge
2015-01-01
The fermentation of glucose using microbial mixed cultures is of great interest given its potential to convert wastes into valuable products at low cost, however, the difficulties associated with the control of the process still pose important challenges for its industrial implementation. A deeper understanding of the fermentation process involving metabolic and biochemical principles is very necessary to overcome these difficulties. In this work a novel metabolic energy based model is presented that accurately predicts for the first time the experimentally observed changes in product spectrum with pH. The model predicts the observed shift towards formate production at high pH, accompanied with ethanol and acetate production. Acetate (accompanied with a more reduced product) and butyrate are predicted main products at low pH. The production of propionate between pH 6 and 8 is also predicted. These results are mechanistically explained for the first time considering the impact that variable proton motive potential and active transport energy costs have in terms of energy harvest over different products yielding. The model results, in line with numerous reported experiments, validate the mechanistic and bioenergetics hypotheses that fermentative mixed cultures products yielding appears to be controlled by the principle of maximum energy harvest and the necessity of balancing the redox equivalents in absence of external electron acceptors.
Genetic Prediction Models and Heritability Estimates for Functional ...
African Journals Online (AJOL)
This paper discusses these methodologies and their advantages and disadvantages. Heritability estimates obtained from these models are also reviewed. Linear methodologies can model binary and actual longevity, while RR and TM methodologies model binary survival. PH procedures model the hazard function of a cow ...
Schoups, Gerrit; Vrugt, Jasper A.
2010-05-01
Estimation of parameter and predictive uncertainty of hydrologic models usually relies on the assumption of additive residual errors that are independent and identically distributed according to a normal distribution with a mean of zero and a constant variance. Here, we investigate to what extent estimates of parameter and predictive uncertainty are affected when these assumptions are relaxed. Parameter and predictive uncertainty are estimated by Monte Carlo Markov Chain sampling from a generalized likelihood function that accounts for correlation, heteroscedasticity, and non-normality of residual errors. Application to rainfall-runoff modeling using daily data from a humid basin reveals that: (i) residual errors are much better described by a heteroscedastic, first-order auto-correlated error model with a Laplacian density characterized by heavier tails than a Gaussian density, and (ii) proper representation of the statistical distribution of residual errors yields tighter predictive uncertainty bands and more physically realistic parameter estimates that are less sensitive to the particular time period used for inference. The latter is especially useful for regionalization and extrapolation of parameter values to ungauged basins. Application to daily rainfall-runoff data from a semi-arid basin shows that allowing skew in the error distribution yields improved estimates of predictive uncertainty when flows are close to zero.
Effect of Estimated Daily Global Solar Radiation Data on the Results of Crop Growth Models.
Trnka, Miroslav; Eitzinger, Josef; Kapler, Pavel; Dubrovský, Martin; Semerádová, Daniela; Žalud, Zdeněk; Formayer, Herbert
2007-10-16
The results of previous studies have suggested that estimated daily globalradiation (R G ) values contain an error that could compromise the precision of subsequentcrop model applications. The following study presents a detailed site and spatial analysis ofthe R G error propagation in CERES and WOFOST crop growth models in Central Europeanclimate conditions. The research was conducted i) at the eight individual sites in Austria andthe Czech Republic where measured daily R G values were available as a reference, withseven methods for R G estimation being tested, and ii) for the agricultural areas of the CzechRepublic using daily data from 52 weather stations, with five R G estimation methods. In thelatter case the R G values estimated from the hours of sunshine using the ångström-Prescottformula were used as the standard method because of the lack of measured R G data. At thesite level we found that even the use of methods based on hours of sunshine, which showedthe lowest bias in R G estimates, led to a significant distortion of the key crop model outputs.When the ångström-Prescott method was used to estimate R G , for example, deviationsgreater than ±10 per cent in winter wheat and spring barley yields were noted in 5 to 6 percent of cases. The precision of the yield estimates and other crop model outputs was lowerwhen R G estimates based on the diurnal temperature range and cloud cover were used (mean bias error 2.0 to 4.1 per cent). The methods for estimating R G from the diurnal temperature range produced a wheat yield bias of more than 25 per cent in 12 to 16 per cent of the seasons. Such uncertainty in the crop model outputs makes the reliability of any seasonal yield forecasts or climate change impact assessments questionable if they are based on this type of data. The spatial assessment of the R G data uncertainty propagation over the winter wheat yields also revealed significant differences within the study area. We found that R G estimates based on
Effect of Estimated Daily Global Solar Radiation Data on the Results of Crop Growth Models
Directory of Open Access Journals (Sweden)
Herbert Formayer
2007-10-01
Full Text Available The results of previous studies have suggested that estimated daily globalradiation (RG values contain an error that could compromise the precision of subsequentcrop model applications. The following study presents a detailed site and spatial analysis ofthe RG error propagation in CERES and WOFOST crop growth models in Central Europeanclimate conditions. The research was conducted i at the eight individual sites in Austria andthe Czech Republic where measured daily RG values were available as a reference, withseven methods for RG estimation being tested, and ii for the agricultural areas of the CzechRepublic using daily data from 52 weather stations, with five RG estimation methods. In thelatter case the RG values estimated from the hours of sunshine using the ÃƒÂ¥ngstrÃƒÂ¶m-Prescottformula were used as the standard method because of the lack of measured RG data. At thesite level we found that even the use of methods based on hours of sunshine, which showedthe lowest bias in RG estimates, led to a significant distortion of the key crop model outputs.When the ÃƒÂ¥ngstrÃƒÂ¶m-Prescott method was used to estimate RG, for example, deviationsgreater than Ã‚Â±10 per cent in winter wheat and spring barley yields were noted in 5 to 6 percent of cases. The precision of the yield estimates and other crop model outputs was lowerwhen RG estimates based on the diurnal temperature range and cloud cover were used (mean bias error 2.0 to 4.1 per cent. The methods for estimating RG from the diurnal temperature range produced a wheat yield bias of more than 25 per cent in 12 to 16 per cent of the seasons. Such uncertainty in the crop model outputs makes the reliability of any seasonal yield forecasts or climate change impact assessments questionable if they are based on this type of data. The spatial assessment of the RG data uncertainty propagation over the winter wheat yields also revealed significant differences within the study area. We
Directory of Open Access Journals (Sweden)
S. Meseret
2015-09-01
Full Text Available The development of effective genetic evaluations and selection of sires requires accurate estimates of genetic parameters for all economically important traits in the breeding goal. The main objective of this study was to assess the relative performance of the traditional lactation average model (LAM against the random regression test-day model (RRM in the estimation of genetic parameters and prediction of breeding values for Holstein Friesian herds in Ethiopia. The data used consisted of 6,500 test-day (TD records from 800 first-lactation Holstein Friesian cows that calved between 1997 and 2013. Co-variance components were estimated using the average information restricted maximum likelihood method under single trait animal model. The estimate of heritability for first-lactation milk yield was 0.30 from LAM whilst estimates from the RRM model ranged from 0.17 to 0.29 for the different stages of lactation. Genetic correlations between different TDs in first-lactation Holstein Friesian ranged from 0.37 to 0.99. The observed genetic correlation was less than unity between milk yields at different TDs, which indicated that the assumption of LAM may not be optimal for accurate evaluation of the genetic merit of animals. A close look at estimated breeding values from both models showed that RRM had higher standard deviation compared to LAM indicating that the TD model makes efficient utilization of TD information. Correlations of breeding values between models ranged from 0.90 to 0.96 for different group of sires and cows and marked re-rankings were observed in top sires and cows in moving from the traditional LAM to RRM evaluations.
An individual reproduction model sensitive to milk yield and body condition in Holstein dairy cows.
Brun-Lafleur, L; Cutullic, E; Faverdin, P; Delaby, L; Disenhaus, C
2013-08-01
To simulate the consequences of management in dairy herds, the use of individual-based herd models is very useful and has become common. Reproduction is a key driver of milk production and herd dynamics, whose influence has been magnified by the decrease in reproductive performance over the last decades. Moreover, feeding management influences milk yield (MY) and body reserves, which in turn influence reproductive performance. Therefore, our objective was to build an up-to-date animal reproduction model sensitive to both MY and body condition score (BCS). A dynamic and stochastic individual reproduction model was built mainly from data of a single recent long-term experiment. This model covers the whole reproductive process and is composed of a succession of discrete stochastic events, mainly calving, ovulations, conception and embryonic loss. Each reproductive step is sensitive to MY or BCS levels or changes. The model takes into account recent evolutions of reproductive performance, particularly concerning calving-to-first ovulation interval, cyclicity (normal cycle length, prevalence of prolonged luteal phase), oestrus expression and pregnancy (conception, early and late embryonic loss). A sensitivity analysis of the model to MY and BCS at calving was performed. The simulated performance was compared with observed data from the database used to build the model and from the bibliography to validate the model. Despite comprising a whole series of reproductive steps, the model made it possible to simulate realistic global reproduction outputs. It was able to well simulate the overall reproductive performance observed in farms in terms of both success rate (recalving rate) and reproduction delays (calving interval). This model has the purpose to be integrated in herd simulation models to usefully test the impact of management strategies on herd reproductive performance, and thus on calving patterns and culling rates.
Directory of Open Access Journals (Sweden)
Nader Naifar
2016-09-01
Full Text Available The aim of this paper is to investigate the dependence structure between sukuk (Islamic bonds yields and stock market (returns and volatility in the case of Saudi Arabia. We consider three Archimedean copula models with different tail dependence structures namely Gumbel, Clayton, and Frank. This study shows that the sukuk yields exhibit significant dependence only with stock market volatility. In addition, the dependence structure between sukuk yields and stock market volatility are symmetric and linked with the same intensity.
Fu, A.; Xue, Y.
2017-12-01
Corn is one of most important agricultural production in China. Research on the simulation of corn yields and the impacts of climate change and agricultural management practices on corn yields is important in maintaining the stable corn production. After climatic data including daily temperature, precipitation, solar radiation, relative humidity, and wind speed from 1948 to 2010, soil properties, observed corn yields, and farmland management information were collected, corn yields grown in humidity and hot environment (Sichuang province) and cold and dry environment (Hebei province) in China in the past 63 years were simulated by Daycent, and the results was evaluated based on published yield record. The relationship between regional climate change, global warming and corn yield were analyzed, the uncertainties of simulation derived from agricultural management practices by changing fertilization levels, land fertilizer maintenance and tillage methods were reported. The results showed that: (1) Daycent model is capable to simulate corn yields under the different climatic background in China. (2) When studying the relationship between regional climate change and corn yields, it has been found that observed and simulated corn yields increased along with total regional climate change. (3) When studying the relationship between the global warming and corn yields, It was discovered that newly-simulated corn yields after removing the global warming trend of original temperature data were lower than before.
Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.
2013-01-01
Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283
International Nuclear Information System (INIS)
Manjunatha, H.C.; Sowmya, N.
2013-01-01
X-rays may be produced following the excitation of target atoms induced by an energetic incident ion beam of protons. Proton induced X-ray emission (PIXE) analysis has been used for many years for the determination of elemental composition of materials using X-rays. Recent interest in the proton induced X-ray emission cross section has arisen due to their importance in the rapidly expanding field of PIXE analysis. One of the steps in the analysis is to fit the measured X-ray spectrum with theoretical spectrum. The theoretical cross section and yields are essential for the evaluation of spectrum. We have theoretically evaluated the PIXE