WorldWideScience

Sample records for model xenon ion

  1. NASA's Evolutionary Xenon Thruster (NEXT) Prototype Model 1R (PM1R) Ion Thruster and Propellant Management System Wear Test Results

    Science.gov (United States)

    VanNoord, Jonathan L.; Soulas, George C.; Sovey, James S.

    2010-01-01

    The results of the NEXT wear test are presented. This test was conducted with a 36-cm ion engine (designated PM1R) and an engineering model propellant management system. The thruster operated with beam extraction for a total of 1680 hr and processed 30.5 kg of xenon during the wear test, which included performance testing and some operation with an engineering model power processing unit. A total of 1312 hr was accumulated at full power, 277 hr at low power, and the remainder was at intermediate throttle levels. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The propellant management system performed without incident during the wear test. The ion engine and propellant management system were also inspected following the test with no indication of anomalous hardware degradation from operation.

  2. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  3. NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary

    Science.gov (United States)

    Pencil, Eirc S.; Benson, Scott W.

    2008-01-01

    This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.

  4. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)

    Science.gov (United States)

    Monheiser, Jeff; Polk, Jay; Randolph, Tom

    2004-01-01

    In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.

  5. A Linear RFQ Ion Trap for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Flatt, B.; Green, M.; Wodin, J.; DeVoe, R.; Fierlinger, P.; Gratta, G.; LePort, F.; Montero Diez, M.; Neilson, R.; O' Sullivan, K.; Pocar, A.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank Jr., W.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; Hauger, M.; Hodgson, J.; /Stanford U., Phys. Dept. /Neuchatel U. /SLAC /Colorado State U. /Laurentian U. /Carleton U. /Alabama U.

    2008-01-14

    The design, construction, and performance of a linear radio-frequency ion trap (RFQ) intended for use in the Enriched Xenon Observatory (EXO) are described. EXO aims to detect the neutrinoless double-beta decay of {sup 136}Xe to {sup 136}Ba. To suppress possible backgrounds EXO will complement the measurement of decay energy and, to some extent, topology of candidate events in a Xe filled detector with the identification of the daughter nucleus ({sup 136}Ba). The ion trap described here is capable of accepting, cooling, and confining individual Ba ions extracted from the site of the candidate double-beta decay event. A single trapped ion can then be identified, with a large signal-to-noise ratio, via laser spectroscopy.

  6. Modeling Pulse Characteristics in Xenon with NEST

    CERN Document Server

    Mock, Jeremy; Kazkaz, Kareem; Szydagis, Matthew; Tripathi, Mani; Uvarov, Sergey; Woods, Michael; Walsh, Nicholas

    2013-01-01

    A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, effects such as the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are incorporated into the model. In a two phase time projection chamber, when simulating the pulse caused by electroluminescence light, parameters such as ionization electron mean free path in gas, the drift velocity, singlet and triplet decay times, diffusion constants, and the electron trapping time, have been implemented. This modeling has been incorporated into a complete software package, which realistically simulates the expected pulse shapes for these types of detectors.

  7. Monte Carlo model for electron degradation in xenon gas

    CERN Document Server

    Mukundan, Vrinda

    2016-01-01

    We have developed a Monte Carlo model for studying the local degradation of electrons in the energy range 9-10000 eV in xenon gas. Analytically fitted form of electron impact cross sections for elastic and various inelastic processes are fed as input data to the model. Two dimensional numerical yield spectrum, which gives information on the number of energy loss events occurring in a particular energy interval, is obtained as output of the model. Numerical yield spectrum is fitted analytically, thus obtaining analytical yield spectrum. The analytical yield spectrum can be used to calculate electron fluxes, which can be further employed for the calculation of volume production rates. Using yield spectrum, mean energy per ion pair and efficiencies of inelastic processes are calculated. The value for mean energy per ion pair for Xe is 22 eV at 10 keV. Ionization dominates for incident energies greater than 50 eV and is found to have an efficiency of 65% at 10 keV. The efficiency for the excitation process is 30%...

  8. High resolution EUV spectroscopy of xenon ions with a compact electron beam ion trap

    Science.gov (United States)

    Ali, Safdar; Nakamura, Nobuyuki

    2017-09-01

    We performed high resolution extreme ultraviolet (EUV) spectroscopy measurements of highly charged xenon ions with a compact electron beam ion trap. The spectra were recorded with a flat-field grazing incidence spectrometer while varying the electron beam energy between 200 and 890 eV. We measured the wavelengths for several lines of Rh-like Xe9+ - Cd-like Xe6+ and Cu-like Xe25+- Se-like Xe20+ in the range of 150-200 Å with an uncertainty of 0.05 Å. Previously, most of these lines have been reported from EBITs with a wavelength uncertainty of 0.2 Å. Additionally, based on the electron beam energy dependence of the observed spectra we tentatively identified three new lines, which were reported as unidentified lines in the previous studies.

  9. Mesoscale Backtracking by Means of Atmospheric Transport Modeling of Xenon Plumes Measured by Radionuclide Gas Stations

    Science.gov (United States)

    Armand, P. P.; Achim, P.; Taffary, T.

    2006-12-01

    The monitoring of atmospheric radioactive xenon concentration is performed for nuclear safety regulatory requirements. It is also planned to be used for the detection of hypothetical nuclear tests in the framework of the Comprehensive nuclear-Test-Ban Treaty (CTBT). In this context, the French Atomic Energy Commission designed a high sensitive and automated fieldable station, named SPALAX, to measure the activity concentrations of xenon isotopes in the atmosphere. SPALAX stations were set up in Western Europe and have been operated quite continuously for three years or more, detecting principally xenon-133 and more scarcely xenon-135, xenon-133m and xenon-131m. There are around 150 nuclear power plants in the European Union, research reactors, reprocessing plants, medical production and application facilities releasing radioactive xenon in normal or incidental operations. A numerical study was carried out aiming to explain the SPALAX measurements. The mesoscale Atmospheric Transport Modelling involves the MM5 suite (PSU- NCAR) to predict the wind fields on nested domains, and FLEXPART, a 3D Lagrangian particle dispersion code, used to simulate the backward transport of xenon plumes detected by the SPALAX. For every event of detection, at least one potential xenon source has a significant efficiency of emission. The identified likely sources are located quite close to the SPALAX stations (some tens of kilometres), or situated farther (a few hundreds of kilometres). A base line of some mBq per cubic meter in xenon-133 is generated by the nuclear power plants. Peaks of xenon-133 ranging from tens to hundreds of mBq per cubic meter originate from a radioisotope production facility. The calculated xenon source terms required to obtain the SPALAX measurements are discussed and seem consistent with realistic emissions from the xenon sources in Western Europe.

  10. NASA's Evolutionary Xenon Thruster: The NEXT Ion Propulsion System for Solar System Exploration

    Science.gov (United States)

    Pencil, Eric J.; Benson, Scott W.

    2008-01-01

    This viewgraph presentation reviews NASA s Evolutionary Xenon Thruster (NEXT) Ion Propulsion system. The NEXT project is developing a solar electric ion propulsion system. The NEXT project is advancing the capability of ion propulsion to meet NASA robotic science mission needs. The NEXT system is planned to significantly improve performance over the state of the art electric propulsion systems, such as NASA Solar Electric Propulsion Technology Application Readiness (NSTAR). The status of NEXT development is reviewed, including information on the NEXT Thruster, the power processing unit, the propellant management system (PMS), the digital control interface unit, and the gimbal. Block diagrams NEXT system are presented. Also a review of the lessons learned from the Dawn and NSTAR systems is provided. In summary the NEXT project activities through 2007 have brought next-generation ion propulsion technology to a sufficient maturity level.

  11. Heterogeneous Nuclear Reactor Models for Optimal Xenon Control.

    Science.gov (United States)

    Gondal, Ishtiaq Ahmad

    Nuclear reactors are generally modeled as homogeneous mixtures of fuel, control, and other materials while in reality they are heterogeneous-homogeneous configurations comprised of fuel and control rods along with other materials. Similarly, for space-time studies of a nuclear reactor, homogeneous, usually one-group diffusion theory, models are used, and the system equations are solved by either nodal or modal expansion approximations. Study of xenon-induced problems has also been carried out using similar models and with the help of dynamic programming or classical calculus of variations or the minimum principle. In this study a thermal nuclear reactor is modeled as a two-dimensional lattice of fuel and control rods placed in an infinite-moderator in plane geometry. The two-group diffusion theory approximation is used for neutron transport. Space -time neutron balance equations are written for two groups and reduced to one space-time algebraic equation by using the two-dimensional Fourier transform. This equation is written at all fuel and control rod locations. Iodine -xenon and promethium-samarium dynamic equations are also written at fuel rod locations only. These equations are then linearized about an equilibrium point which is determined from the steady-state form of the original nonlinear system equations. After studying poisonless criticality, with and without control, and the stability of the open-loop system and after checking its controllability, a performance criterion is defined for the xenon-induced spatial flux oscillation problem in the form of a functional to be minimized. Linear -quadratic optimal control theory is then applied to solve the problem. To perform a variety of different additional useful studies, this formulation has potential for various extensions and variations; for example, different geometry of the problem, with possible extension to three dimensions, heterogeneous -homogeneous formulation to include, for example, homogeneously

  12. Computer controlled operation of a two-engine xenon ion propulsion system

    Science.gov (United States)

    Brophy, John R.

    1987-01-01

    The development and testing of a computer control system for a two-engine xenon ion propulsion module is described. The computer system controls all aspects of the propulsion module operation including: start-up, steady-state operation, throttling and shutdown of the engines; start-up, operation and shutdown of the central neutralizer subsystem; control of the gimbal system for each engine; and operation of the valves in the propellant storage and distribution system. The most important engine control algorithms are described in detail. These control algorithms provide flexibility in the operation and throttling of ion engines which has never before been possible. This flexibility is made possible in large part through the use of flow controllers which maintain the total flow rate of propellant into the engine at the proper level. Data demonstrating the throttle capabilities of the engine and control system are presented.

  13. NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon

    CERN Document Server

    Szydagis, M; Kazkaz, K; Mock, J; Stolp, D; Sweany, M; Tripathi, M; Uvarov, S; Walsh, N; Woods, M

    2011-01-01

    A comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This results in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should be simple. We use a quasi-empirical approach, with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Tech...

  14. An improved measurement of electron-ion recombination in high-pressure xenon gas

    CERN Document Server

    Serra, L; Álvarez, V; Borges, F I G; Camargo, M; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Esteve, R; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Goldschmidt, A; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Labarga, L; Laing, A; Liubarsky, I; Lopez-March, N; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez-Lema, G; Martínez, A; Miller, T; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; Nebot-Guinot, M; Nygren, D; Oliveira, C A B; Pérez, J; Aparicio, J L Pérez; Querol, M; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Shuman, D; Simón, A; Sofka, C; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R; White, J T; Yahlali, N

    2014-01-01

    We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electron-ion recombination in the gas, with correlation coeffcients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8 % FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be $0.561\\pm 0.045$, translating into an average energy to produce a primary s...

  15. The x-ray emission spectra of multicharged xenon ions in a gas puff laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Skobelev, I.Yu.; Dyakin, V.M.; Faenov, A.Ya. [Multicharged Ion Spectra Data Center, VNIIFTRI, Mendeleevo (Russian Federation); Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, Warsaw (Poland); Biemont, E. [Institut de Physique Nucleaire Experimentale, Universite de Liege, Liege (Belgium); Astrophysique et Spectroscopie, Universite de Mons-Hainaut, Mons (Belgium); Quinet, P. [Astrophysique et Spectroscopie, Universite de Mons-Hainaut, Mons (Belgium); Nilsen, J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Behar, E.; Doron, R.; Mandelbaum, P.; Schwob, J.L. [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem (Israel)

    1999-01-14

    Emission spectra of multicharged xenon ions produced by a laser gas puff are observed with high spectral resolution in the 8.5-9.5 and 17-19 A wavelength ranges. Three different theoretical methods are employed to obtain 3l-n'l'(n' = 4 to 10) wavelengths and Einstein coefficients for Ni-like Xe{sup 26+}. For the 3d-4p transitions, very good agreement is found between the experimental wavelengths and the various theoretical wavelengths. These accurate energy level measurements can be useful for studying the Ni-like xenon x-ray laser scheme. On the other hand, several intense spectral lines could not be identified as 3l-n'l' lines of Ni-like xenon, despite the very good agreement between the wavelengths and Einstein coefficients calculated for these transitions using the three different methods. (author)

  16. The Investigation Of Carbon Contamination And Sputtering Effects Of Xenon Ion Thrusters

    Science.gov (United States)

    Prak, Moline K.

    2004-01-01

    The Electro-Physics Branch of the NASA Glenn Research Center investigates the effect of atomic oxygen, environmental durability of high performance power materials and surfaces, and low earth orbit. One of its current projects involves the analysis of ion thrusters. Ion thrusters are devices that initiate a beam of ions to a target area. The type of ion thruster that I have been working with this Summer of 2004 emits positively charged Xenon (Xe(+)) atoms through two grids, the screen grid and the accelerator grid, after it enters an ionization chamber. Insulators are used to mechanically hold and separate these two grids. A propellant isolator, an instrument that closely resembles insulators, is placed in front of the ionization chamber. Both the insulator and isolator are made with a ceramic compound and filled with insulating beads. The main difference between the two devices is that the propellant isolator allows gas to flow through, in this case, the gas is Xe(+) and the insulators do not. In order to avoid carbon deposits and other contaminating chemicals to settle on the insulators and propellant isolator, a metal shadow shield is placed around them. These shadow shields function as a protectant and can be shaped in numerous configurations. Part of my job responsibility this summer is to investigate the effectiveness of different shadow shields that are utilized on three different ion engines: the NSTAR (NASA Solar Electric Propulsion Technology Application Readiness), JIMO (Jupiter Icy Moons Orbiter), and NEXIS (Nuclear Electric Xenon Ion System). Using calculus and other mathematical tactics, I was asked to find the total flux of carbon contamination that was able to pass the protectant shadow shield. I familiarized myself with the software program, MathCad2004, to help perform some mathematical computations such as complex integration. Another method of studying the probability of contamination is by experimental simulation. After attaining the precise

  17. Assessments of Hollow Cathode Wear in the Xenon Ion Propulsion System (XIPs(c)) by Numerical Analyses and Wear Tests

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.

    2008-01-01

    The standard approach presently followed by NASA to qualify electric propulsion for the required mission throughput has been based largely on life tests, which can be costly and time consuming. Revised electric propulsion lifequalification approaches are being formulated that combine analytical and/or computational methods with (shorter-duration) wear tests. As a model case, a wear test is being performed at JPL to assess the lifetime of the discharge hollow cathode in the Xenon Ion Propulsion System (XIPS(c)), a 25-cm ion engine developed by L-3 Communications Electron Technologies, Inc. for commercial applications. Wear and plasma data accumulated throughout this life-assessment program are being used to validate the existing 2-D hollow cathode code OrCa2D. We find that the OrCa2D steady-state solution predicts very well the time-averaged plasma data and the keeper voltage after 5500 hrs of operation in high-power mode. When the wave motion that occurs naturally in these devices is accounted for, based on an estimate of the maximum wave amplitude, the molybdenum-keeper erosion profile observed in the XIPS(c) discharge cathode is also reproduced within a factor of two of the observation. When the same model is applied to predict the erosion of a tantalum keeper we find that erosion is reduced by more than two orders of magnitude compared to the molybdenum keeper due the significantly lower sputtering yield of tantalum. A tantalum keeper would therefore allow keeper lifetimes that greatly exceed the present requirements for deep-space robotic missions considered by NASA. Moreover, such large reduction of the erosion renders the largest uncertainties in the models, which are associated with the wave amplitude estimates and the electron transport model, negligible.

  18. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    Science.gov (United States)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  19. Modeling of a DC glow discharge in a neon-xenon gas mixture at low pressure and with metastable atom densities

    Science.gov (United States)

    Bouchikhi, A.

    2017-09-01

    The physical properties of Ne-Xe DC glow discharges at low pressure are reported for a gap length of 1 cm for the first time in the literature. The model deals specifically with the first three moments of Boltzmann’s equation and includes the radiation processes and metastable atom densities. The spatio-temporal distributions of the electron and neon and xenon ion densities, the neon and xenon metastable atom densities, the electric potential and the electric field as well as the mean electron energy are presented at 1.5 Torr and 250 V. The current-voltage characteristic is shown at 3 Torr, and it is compared with previous work for pure neon gas. The model is validated theoretically and experimentally in the case of pure gas.

  20. Modeling Integrated High-Yield IFE Target Explosions in Xenon Filled Chambers

    Science.gov (United States)

    Fatenejad, Milad; Moses, Gregory

    2010-11-01

    We will present the results of several radiation-hydrodynamics simulations which model the aftermath of an exploding high yield (200 MJ) indirect drive target in a xenon filled reactor chamber. The goal is to determine the radial extent to which debris from the target and hohlraum expands into the target chamber. The 1D radiation-hydrodynamics code BUCKY is used to perform integrated simulations of the target explosion beginning from ignition and includes interactions between the chamber gas and tungsten first wall. The 3D radiation-hydrodynamics code Cooper will be used to model the growth of fluid instabilities as the target material expands into the xenon gas. Cooper will also be used to investigate the early-time interaction between the burning target and hohlraum shortly after ignition.

  1. Crossover Equation of State Models Applied to the Critical Behavior of Xenon

    Science.gov (United States)

    Garrabos, Y.; Lecoutre, C.; Marre, S.; Guillaument, R.; Beysens, D.; Hahn, I.

    2015-03-01

    The turbidity () measurements of Güttinger and Cannell (Phys Rev A 24:3188-3201, 1981) in the temperature range along the critical isochore of homogeneous xenon are reanalyzed. The singular behaviors of the isothermal compressibility () and the correlation length () predicted from the master crossover functions are introduced in the turbidity functional form derived by Puglielli and Ford (Phys Rev Lett 25:143-146, 1970). We show that the turbidity data are thus well represented by the Ornstein-Zernike approximant, within 1 % precision. We also introduce a new crossover master model (CMM) of the parametric equation of state for a simple fluid system with no adjustable parameter. The CMM model and the phenomenological crossover parametric model are compared with the turbidity data and the coexisting liquid-gas density difference (). The excellent agreement observed for , , , and in a finite temperature range well beyond the Ising-like preasymptotic domain confirms that the Ising-like critical crossover behavior of xenon can be described in conformity with the universal features estimated by the renormalization-group methods. Only 4 critical coordinates of the vapor-liquid critical point are needed in the (pressure, temperature, molecular volume) phase surface of xenon.

  2. Use of Xenon Difluoride to Clean Hazardous By-Products in Ion Implanter Source Housings, Turbo Pumps, and Fore-Lines

    Science.gov (United States)

    Despres, J.; Chambers, B.; Bishop, S.; Kaim, R.; Letaj, S.; Sergi, S.; Sweeney, J.; Tang, Y.; Wilson, S.; Yedave, S.

    2011-01-01

    This paper describes the use of xenon difluoride to clean deposits in the source housing, source turbo pump, and source turbo pump fore-line of ion implanters. Xenon difluoride has previously been shown to be effective in increasing the lifetime of the ion source1,2 and this paper presents an extension of the technology to other areas within the tool. Process by-products that are deposited in the source housing, turbo pump, and turbo pump fore-line can not only pose productivity issues, in the case of coatings on insulators, but can also be flammable and toxic in the case of deposits formed within the turbo pump and fore-line. The results presented in this paper detail the initial successful examples of using xenon difluoride to clean these deposits. ATMI has shown that xenon difluoride is capable of cleaning an insulator in an ion implanter. Typically during use an insulator will become increasingly coated with deposits that could lead to productivity problems. By introducing xenon difluoride into the source housing the insulator residues were effectively cleaned in-situ, thereby extending the maintenance interval and resulting in significant consumable savings. Similar deposits that form in the turbo pump and fore-line could not only lead to production problems due to turbo pump failure or fore-line build-up, but pose significant health risks during the ex-situ cleaning process. Through internal testing ATMI has shown that xenon difluoride is able to clean phosphorus and germanium deposits located within a turbo pump. Additionally, testing has demonstrated that the turbo pump fore-line can be cleaned in-situ without the need to remove these components, thereby virtually eliminating the possibility of fires. The cleaning reaction progress and by-products were monitored using FTIR spectrometry and thermocouples. In order to efficiently clean the source housing, turbo pump, and turbo pump fore-line xenon difluoride delivery must be optimized. This paper also details

  3. Comparison of Medium Power Hall Effect Thruster Ion Acceleration for Krypton and Xenon Propellants

    Science.gov (United States)

    2016-09-14

    industrial demand for items such as high efficiency lighting and windows, as well as plasma based micro-fabrication, has produced wide price swings in the...past decade. Xenon prices have varied by as much as factor of ten in the past five years alone. For missions that benefit from higher specific impulse...Concentration ppb 87 1000 Stable Isotopes 9 6 Odd Isotopes 2 1 Critical Pressure MPa 5.84 5.50 Critical Temperature K 290 209 Boiling Point (1 atm) K 161 120

  4. Measurements of the ion fraction and mobility of alpha and beta decay products in liquid xenon using EXO-200

    CERN Document Server

    Albert, J B; Barbeau, P S; Beck, D; Belov, V; Breidenbach, M; Brunner, T; Burenkov, A; Cao, G F; Chambers, C; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Danilov, M; Daugherty, S J; Davis, C G; Davis, J; Delaquis, S; Der Mesrobian-Kabakian, A; DeVoe, R; Didberidze, T; Dolgolenko, A; Dolinski, M J; Dunford, M; Fairbank, W; Farine, J; Feldmeier, W; Fierlinger, P; Fudenberg, D; Gornea, R; Graham, K; Gratta, G; Hall, C; Hughes, M; Jewell, M J; Jiang, X S; Johnson, A; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Kuchenkov, A; Kumar, K S; Leonard, D S; Licciardi, C; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Mong, B; Moore, D; Nelson, R; O'Sullivan, K; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Prescott, C Y; Robinson, A; Rowson, P C; Russell, J J; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Tsang, R; Twelker, K; Vuilleumier, J -L; Waite, A; Walton, J; Walton, T; Weber, M; Wen, L J; Wichoski, U; Wright, J D; Wood, J; Yang, L; Yen, Y -R; Zeldovich, O Ya

    2015-01-01

    Alpha decays in the EXO-200 detector are used to measure the fraction of charged $^{218}\\mathrm{Po}$ and $^{214}\\mathrm{Bi}$ daughters created from alpha and beta decays, respectively. $^{222}\\mathrm{Rn}$ alpha decays in liquid xenon (LXe) are found to produce $^{218}\\mathrm{Po}^{+}$ ions $50.3 \\pm 3.0\\%$ of the time, while the remainder of the $^{218}\\mathrm{Po}$ atoms are neutral. The fraction of $^{214}\\mathrm{Bi}^{+}$ from $^{214}\\mathrm{Pb}$ beta decays in LXe is found to be $76.4 \\pm 5.7\\%$, inferred from the relative rates of $^{218}\\mathrm{Po}$ and $^{214}\\mathrm{Po}$ alpha decays in the LXe. The average velocity of $^{218}\\mathrm{Po}$ ions is observed to decrease for longer drift times. Initially the ions have a mobility of $0.390 \\pm 0.006~\\mathrm{cm}^2/(\\mathrm{kV}~\\mathrm{s})$, and at long drift times the mobility is $0.219 \\pm 0.004~\\mathrm{cm}^2/(\\mathrm{kV}~\\mathrm{s})$. Time constants associated with the change in mobility during drift of the $^{218}\\mathrm{Po}^{+}$ ions are found to be propor...

  5. Potential and Kinetic Electron Emissions from HOPG Surface Irradiated by Highly Charged Xenon and Neon Ions

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Yu; ZHAO Yong-Tao; SUN Jian-Rong; LI De-Hui; QAYYUM Abdul; LI Jin-Yu; WANG Ping-Zhi; XIAO Guo-Qing

    2011-01-01

    Highly charged 129 Xeq+ (q =10-30) and 40Neq+ (q =4-8) ion-induced secondary electron emissions on the surface of highly oriented pyrolytic graphite (HOPG) are reported. The total secondary electron yield is measured as a function of the potential energy of incident ions. The experimental data are used to separate contributions of kinetic and potential electron yields. Our results show that about 4.5% and 13.2% of ion's potential energies are consumed in potential electron emission due to different Xeq+-HOPG and Neq+-HOPG combinations. A simple formula is introduced to estimate the fraction of ion's potential energy for potential electron emission.%@@ Highly charged 129 Xeq+(q =10-30) and 40Neq+(q =4-8) ion-induced secondary electron emissions on the surface of highly oriented pyrolytic graphite(HOPG) are reported.The total secondary electron yield is measured as a function of the potential energy of incident ions.The experimental data are used to separate contributions of kinetic and potential electron yields.Our results show that about 4.5% and 13.2% of ion's potential energies are consumed in potential electron emission due to different Xeq+-HOPG and Neq+-HOPG combinations.A simple formula is introduced to estimate the fraction of ion's potential energy for potential electron emission.

  6. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    Science.gov (United States)

    Novaković, M.; Zhang, K.; Popović, M.; Bibić, N.; Hofsäss, H.; Lieb, K. P.

    2011-05-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe + ions at fluences of up to 3 × 10 16 cm -2. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 °C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δ σ2/ Φ = 3.0(4) nm 4, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 °C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co 2Si → CoSi → CoSi 2.

  7. Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (lambda~172 nm)

    Science.gov (United States)

    Carman, R. J.; Mildren, R. P.

    2003-01-01

    A detailed rate-equation analysis has been used to simulate the plasma kinetics in a pulsed-excited dielectric barrier discharge in xenon, under operating conditions where the discharge structure is spatially homogeneous. The one-dimensional model, incorporating 14 species and 70 reaction processes, predicts results that are in good agreement with experimental measurements of the electrical characteristics, and optical (vaccum-ultraviolet (VUV) and visible) pulse shapes. The model reveals that electrical breakdown of the discharge gap occurs via a fast-moving ionization/excitation wavefront that starts close to the anode dielectric and propagates towards the cathode at ~3×105 m s-1. The wavefront appears as a result of successive avalanches of electrons that propagate across the discharge gap after release from the cathode dielectric. During breakdown, the mean electron energy in the bulk plasma is close to optimum for preferential excitation of the Xeast 1s4,5 states that feed the VUV emitting Xe2ast excimer states. Calculations suggest that the overall conversion efficiency from electrical energy to VUV output in the plasma is greater than 60%, with >99% of the light output emitted in the VUV. Parasitic processes that act to reduce the key Xeast 1s4,5 and Xe2ast populations are found to be essentially negligible. For pulsed excitation, the longer-term spatio-temporal behaviour of the electron/ions during the afterglow or inter-pulse period is important, resulting in a remnant `pre-pulse' ion density of ~1015 m-3 close to the cathode dielectric. These ions bombard the cathode during the subsequent excitation period to release the secondary (seed) electrons required to achieve electrical breakdown.

  8. Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp ({lambda} {approx} 172 nm)

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R J; Mildren, R P [Department of Physics, Macquarie University, North Ryde, Sydney NSW (Australia)

    2003-01-07

    A detailed rate-equation analysis has been used to simulate the plasma kinetics in a pulsed-excited dielectric barrier discharge in xenon, under operating conditions where the discharge structure is spatially homogeneous. The one-dimensional model, incorporating 14 species and 70 reaction processes, predicts results that are in good agreement with experimental measurements of the electrical characteristics, and optical (vacuum-ultraviolet (VUV) and visible) pulse shapes. The model reveals that electrical breakdown of the discharge gap occurs via a fast-moving ionization/excitation wavefront that starts close to the anode dielectric and propagates towards the cathode at {approx} 3x10{sup 5} m s{sup -1}. The wavefront appears as a result of successive avalanches of electrons that propagate across the discharge gap after release from the cathode dielectric. During breakdown, the mean electron energy in the bulk plasma is close to optimum for preferential excitation of the Xe* 1s{sub 4,5} states that feed the VUV emitting Xe{sub 2}* excimer states. Calculations suggest that the overall conversion efficiency from electrical energy to VUV output in the plasma is greater than 60%, with >99% of the light output emitted in the VUV. Parasitic processes that act to reduce the key Xe* 1s{sub 4,5} and Xe{sub 2}* populations are found to be essentially negligible. For pulsed excitation, the longer-term spatio-temporal behaviour of the electron/ions during the afterglow or inter-pulse period is important, resulting in a remnant 'pre-pulse' ion density of {approx} 10{sup 15} m{sup -3} close to the cathode dielectric. These ions bombard the cathode during the subsequent excitation period to release the secondary (seed) electrons required to achieve electrical breakdown.

  9. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    Science.gov (United States)

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ.

  10. Preparation and Analysis of Atom Probe Tips by Xenon Focused Ion Beam Milling.

    Science.gov (United States)

    Estivill, Robert; Audoit, Guillaume; Barnes, Jean-Paul; Grenier, Adeline; Blavette, Didier

    2016-06-01

    The damage and ion distribution induced in Si by an inductively coupled plasma Xe focused ion beam was investigated by atom probe tomography. By using predefined patterns it was possible to prepare the atom probe tips with a sub 50 nm end radius in the ion beam microscope. The atom probe reconstruction shows good agreement with simulated implantation profiles and interplanar distances extracted from spatial distribution maps. The elemental profiles of O and C indicate co-implantation during the milling process. The presence of small disc-shaped Xe clusters are also found in the three-dimensional reconstruction. These are attributed to the presence of Xe nanocrystals or bubbles that open during the evaporation process. The expected accumulated dose points to a loss of >95% of the Xe during analysis, which escapes undetected.

  11. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M. [VINCA Institute of Nuclear Sciences, 11001 Belgrade (Serbia); II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Zhang, K. [II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Popovic, M.; Bibic, N. [VINCA Institute of Nuclear Sciences, 11001 Belgrade (Serbia); II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Hofsaess, H. [II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Lieb, K.P., E-mail: plieb@gwdg.d [II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2011-05-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe{sup +} ions at fluences of up to 3 x 10{sup 16} cm{sup -2}. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 {sup o}C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, {Delta}{sigma}{sup 2}/{Phi} = 3.0(4) nm{sup 4}, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 {sup o}C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co{sub 2}Si {yields} CoSi {yields} CoSi{sub 2}.

  12. Soft X-ray Emission Optimization Studies with Krypton and Xenon Gases in Plasma Focus Using Lee Model

    Science.gov (United States)

    Akel, Mohamad

    2013-10-01

    The X-ray emission properties of krypton and xenon plasmas are numerically investigated using corona plasma equilibrium model. Numerical experiments have been investigated on various low energy plasma focus devices with Kr and Xe filling gases using Lee model. The Lee model was applied to characterize and to find the optimum combination of soft X-ray yields (Ysxr) for krypton (~4 Å) and xenon (~3 Å) plasma focus. These combinations give Ysxr = 0.018 J for krypton, and Ysxr = 0.5 J for xenon. Scaling laws on Kr and Xe soft X-ray yields, in terms of storage energies E0, peak discharge current Ipeak and focus pinch current Ipinch were found over the range from 2.8 to 900 kJ. Soft X-ray yields scaling laws in terms of storage energies were found to be as and for Kr and Xe, respectively, (E0 in kJ and Ysxr in J) with the scaling showing gradual deterioration as E0 rises over the range. The maximum soft X-ray yields are found to be about 0.5 and 27 J from krypton and xenon, respectively, for storage energy of 900 kJ. The optimum efficiencies for soft X-ray yields (0.0002 % for Kr) and (0.0047 % for Xe) are with capacitor bank energies of 67.5 and 225 kJ, respectively.

  13. Modelling the behaviour of microbulk Micromegas in Xenon/trimethylamine gas

    CERN Document Server

    Ruiz-Choliz, E; Diago, A; Castel, J; Dafni, T; Herrera, D C; Iguaz, F J; Irastorza, I G; Luzon, G; Mirallas, H; Sahin,  O; Veenhof, R

    2015-01-01

    We model the response of a state of the art micro-hole single-stage charge amplication device (`microbulk' Micromegas) in a gaseous atmosphere consisting of Xenon/trimethylamine at various concentrations and pressures. The amplifying structure, made with photo-lithographic techniques similar to those followed in the fabrication of gas electron multipliers (GEMs), consisted of a 100 um-side equilateral-triangle pattern with 50 um-diameter holes placed at its vertexes. Once the primary electrons are guided into the holes by virtue of an optimized field configuration, avalanches develop along the 50 um-height channels etched out of the original doubly copper-clad polyimide foil. In order to properly account for the strong field gradients at the holes' entrance as well as for the fluctuations of the avalanche process (that ultimately determine the achievable energy resolution), we abandoned the hydrodynamic framework, resorting to a purely microscopic description of the electron trajectories as obtained from elem...

  14. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    Science.gov (United States)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  15. Surface morphology and microstructure evolution of IG-110 graphite after xenon ion irradiation and subsequent annealing

    Science.gov (United States)

    Huang, Qing; Li, Jianjian; Liu, Renduo; Yan, Long; Huang, Hefei

    2017-08-01

    IG-110 graphite samples were polished and irradiated with Xe ions at various fluences, then annealed at high temperatures up to 1100 °C. After irradiation, small hills were found on the polished surfaces, indicating an anisotropic swelling induced by irradiation. Around 30% swelling at a fluence of 2 × 1015 ions/cm2 was characterized using atomic force microscopy. Severe swelling of the graphite crystallites caused stresses between adjacent crystallites, but leaved no intergranular cracks on the polished surface, which was ascribed to irradiation-induced creep of graphite. The pore morphology was affected by the anisotropic swelling. We found many contracted pores but only one expanded pore, indicating a decreased porosity induced by irradiation. After annealing at 1100 °C, TEM characterization showed clearly increased lattice order and decreased width of the (002) diffraction arc, indicating the annihilation of dislocations and recovery of basal plane rotations. Annealing-induced recrystallization of damaged graphite led to recovery of the crystallites' swelling and many small cracks appearing on the samples' surfaces.

  16. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    CERN Document Server

    Akerib, D S; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Beltrame, P; Bernard, E P; Bernstein, A; Biesiadzinski, T P; Boulton, E M; Bramante, R; Brás, P; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chiller, A A; Chiller, C; Currie, A; Cutter, J E; Davison, T J R; Dobi, A; Dobson, J E Y; Druszkiewicz, E; Edwards, B N; Faham, C H; Fiorucci, S; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C R; Hanhardt, M; Haselschwardt, S J; Hertel, S A; Hogan, D P; Horn, M; Huang, D Q; Ignarra, C M; Ihm, M; Jacobsen, R G; Ji, W; Kamdin, K; Kazkaz, K; Khaitan, D; Knoche, R; Larsen, N A; Lee, C; Lenardo, B G; Lesko, K T; Lindote, A; Lopes, M I; Manalaysay, A; Mannino, R L; Marzioni, M F; McKinsey, D N; Mei, D -M; Mock, J; Moongweluwan, M; Morad, J A; Murphy, A St J; Nehrkorn, C; Nelson, H N; Neves, F; O'Sullivan, K; Oliver-Mallory, K C; Palladino, K J; Pease, E K; Phelps, P; Reichhart, L; Rhyne, C; Shaw, S; Shutt, T A; Silva, C; Solmaz, M; Solovov, V N; Sorensen, P; Stephenson, S; Sumner, T J; Szydagis, M; Taylor, D J; Taylor, W C; Tennyson, B P; Terman, P A; Tiedt, D R; To, W H; Tripathi, M; Tvrznikova, L; Uvarov, S; Verbus, J R; Webb, R C; White, J T; Whitis, T J; Witherell, M S; Wolfs, F L H; Xu, J; Yazdani, K; Young, S K; Zhang, C

    2016-01-01

    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon re- combination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2-16 keV with $^3$H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured...

  17. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-01-01

    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.

  18. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M. Daniel [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  19. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  20. Monte Carlo calculation of ion, electron, and photon spectra of xenon atoms in x-ray free-electron laser pulses

    CERN Document Server

    Son, Sang-Kil; 10.1103/PhysRevA.85.063415

    2013-01-01

    When atoms and molecules are irradiated by an x-ray free-electron laser (XFEL), they are highly ionized via a sequence of one-photon ionization and relaxation processes. To describe the ionization dynamics during XFEL pulses, a rate equation model has been employed. Even though this model is straightforward for the case of light atoms, it generates a huge number of coupled rate equations for heavy atoms like xenon, which are not trivial to solve directly. Here, we employ the Monte Carlo method to address this problem and we investigate ionization dynamics of xenon atoms induced by XFEL pulses at a photon energy of 4500 eV. Charge state distributions, photo-/Auger electron spectra, and fluorescence spectra are presented for x-ray fluences of up to $10^{13}$ photons/$\\mu$m$^2$. With the photon energy of 4500 eV, xenon atoms can be ionized up to +44 through multiphoton absorption characterized by sequential one-photon single-electron interactions.

  1. Modelling the behaviour of microbulk Micromegas in xenon/trimethylamine gas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Choliz, E. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza (Spain); Laboratorio Subterráneo de Canfranc, Canfranc (Spain); González-Díaz, D., E-mail: diegogon@cern.ch [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza (Spain); Laboratorio Subterráneo de Canfranc, Canfranc (Spain); CERN, Geneva (Switzerland); Diago, A.; Castel, J.; Dafni, T.; Herrera, D.C.; Iguaz, F.J.; Irastorza, I.G.; Luzón, G.; Mirallas, H. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza (Spain); Laboratorio Subterráneo de Canfranc, Canfranc (Spain); Şahin, Ö. [Department of Physics, Uludağ University, Bursa (Turkey); Veenhof, R. [Department of Physics, Uludağ University, Bursa (Turkey); CERN, Geneva (Switzerland)

    2015-11-01

    We model the response of a state of the art micro-hole single-stage charge amplification device (‘microbulk’ Micromegas) in a gaseous atmosphere consisting of xenon/trimethylamine at various concentrations and pressures. The amplifying structure, made with photo-lithographic techniques similar to those followed in the fabrication of gas electron multipliers (GEMs), consisted of a 100 μm-side equilateral-triangle pattern with 50 μm-diameter holes placed at its vertexes. Once the primary electrons are guided into the holes by virtue of an optimized field configuration, avalanches develop along the 50 μm-height channels etched out of the original doubly copper-clad polyimide foil. In order to properly account for the strong field gradients at the holes' entrance as well as for the fluctuations of the avalanche process (that ultimately determine the achievable energy resolution), we abandoned the hydrodynamic framework, resorting to a purely microscopic description of the electron trajectories as obtained from elementary cross-sections. We show that achieving a satisfactory description needs additional assumptions about atom–molecule (Penning) transfer reactions and charge recombination to be made.

  2. Invisible Higgs decay in the LRTH model confronted with latest LHC, XENON100 and LUX date

    CERN Document Server

    Liu, Yao-Bei

    2014-01-01

    In the left-right twin Higgs (LRTH) model, the neutral $\\hat{S}$ is a candidate for weakly interacting massive particle (WIMP) dark matter. If its mass is lighter than half of the SM-like Higgs boson, the SM-like Higgs boson $h$ can have new invisible decay $h\\rightarrow \\hat{S}\\hat{S}$ which consequently suppress the diphoton signal rates at the LHC. In this paper, we examine the status of a light dark matter ($\\hat{S}$) under current experimental constraints including the latest LHC Higgs data, the XENON100 and LUX limit on the dark matter scattering off the nucleon. The following observations have been obtained: (i) The current ATLAS (CMS) measurements $R_{\\gamma\\gamma}$ can exclude the invisible Higgs branching ratio ${\\rm Br}_{\\rm inv}$ about 34% (48%) at $2\\sigma$ level; (ii) Global fits to the latest LHC and Tevatron Higgs data provide a strong constraint on ${\\rm Br}_{\\rm inv}<20%(30%)$ at $2(3)\\sigma$ level, which can be tested at the 14 TeV LHC experiment; (iii) For the spin-independent scatterin...

  3. A Comparison of Ion Acceleration Characteristics for Krypton and Xenon Propellants within a 600 Watt Hall Thruster

    Science.gov (United States)

    2012-07-20

    Cs) were the propellants of choice.1 Although xenon is a noble gas, it is the heaviest, and due to its non -ideal gas behav- ior, it is possible to...thermal mo- tion, characterized by the atomic, or ionic, kinetic temperature, Tkin. When the absorbing species ve- locity distribution is Maxwellian in...measurements were performed in Cham- ber 6 of the Air Force Research Laboratory (AFRL) Electric Propulsion Laboratory at Edwards AFB, CA. Chamber 6 is a non

  4. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.

    2015-01-01

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our

  5. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.

    2015-01-01

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our e

  6. Retinal endoilluminator toxicity of xenon and light-emitting diode (LED) light source: rabbit model.

    Science.gov (United States)

    Aydin, Bahri; Dinç, Erdem; Yilmaz, S Necat; Altiparmak, U Emrah; Yülek, Fatma; Ertekin, Sevda; Yilmaz, Mustafa; Yakın, Mehmet

    2014-09-01

    This study evaluates retinal toxicity due to endoillumination with the light-emitting diode (LED) light source in comparison to endoillumination with xenon light source. Twenty-five eyes of 14 New Zealand pigmented rabbits were used in the study. The LED light (Omesis Medical Systems, Turkey) group was composed of 7 right eyes, while the other 7 right eyes constituted the xenon group (420 nm filter, 357mW/cm(2)) (Bright Star; DORC, Zuidland, Netherlands). Eleven untreated left eyes composed the control group. Twenty gauge pars plana incision 1.5 mm behind the limbus was performed in the right eyes. Twenty gauge bullet type fiberoptic endoilluminator was inserted into the eye from the incision without any pars plana vitrectomy. Fiberoptic endoilluminator was placed in such a way that it was directed toward visual streak of the rabbit retina with a 5 mm distance to retinal surface. Endoillumination was then applied for 20 min with a maximum light intensity for LED and xenon light. In left control eyes, no surgical procedure and no endoillumination were performed. One week after the endoillumination procedure, both eyes of the rabbits were enucleated following electroretinography. Sections stained with hematoxylin and eosin to evaluate morphologic changes. Retina tissues were assessed by active caspase-3 staining. There was no difference in the shape of the waveforms recorded in the eyes endoilluminated with LED light and xenon light sources compared to control eyes both before and after endoillumination application (p > 0.05). Microscopic evaluation of the retinas with hematoxylin and eosin staining demonstrated that all study groups have normal histologic properties similar to control group. No apoptosis positive cells were found within all sections in all groups. When the LED light source is used with maximum power and limited duration for endoillumination in rabbit eyes it does not produce phototoxic effects that may be detectable by electrophysiology

  7. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    CERN Document Server

    Álvarez, V; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Egorov, M; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Gil, A; Goldschmidt, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Miller, T; Moiseenko, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Segui, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Vázquez, D; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2012-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the transport properties of ionization electrons, and the mechanism of electron-ion recombination, in xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. Our electron drift velocity and longitudinal diffusion results are similar to expectations based on available electron scattering cross sections on pure xenon, favoring low-diffusion models. In addition, two types of measurements addressing the connection between the ionization and scintillation yields were performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similarly to what has already bee...

  8. Xenon and sevoflurane provide analgesia during labor and fetal brain protection in a perinatal rat model of hypoxia-ischemia.

    Directory of Open Access Journals (Sweden)

    Ting Yang

    Full Text Available It is not possible to identify all pregnancies at risk of neonatal hypoxic-ischemic encephalopathy (HIE. Many women use some form of analgesia during childbirth and some anesthetic agents have been shown to be neuroprotective when used as analgesics at subanesthetic concentrations. In this study we sought to understand the effects of two anesthetic agents with presumptive analgesic activity and known preconditioning-neuroprotective properties (sevoflurane or xenon, in reducing hypoxia-induced brain damage in a model of intrauterine perinatal asphyxia. The analgesic and neuroprotective effects at subanesthetic levels of sevoflurane (0.35% or xenon (35% were tested in a rat model of intrauterine perinatal asphyxia. Analgesic effects were measured by assessing maternal behavior and spinal cord dorsal horn neuronal activation using c-Fos. In separate experiments, intrauterine fetal asphyxia was induced four hours after gas exposure; on post-insult day 3 apoptotic cell death was measured by caspase-3 immunostaining in hippocampal neurons and correlated with the number of viable neurons on postnatal day (PND 7. A separate cohort of pups was nurtured by a surrogate mother for 50 days when cognitive testing with Morris water maze was performed. Both anesthetic agents provided analgesia as reflected by a reduction in the number of stretching movements and decreased c-Fos expression in the dorsal horn of the spinal cord. Both agents also reduced the number of caspase-3 positive (apoptotic neurons and increased cell viability in the hippocampus at PND7. These acute histological changes were mirrored by improved cognitive function measured remotely after birth on PND 50 compared to control group. Subanesthetic doses of sevoflurane or xenon provided both analgesia and neuroprotection in this model of intrauterine perinatal asphyxia. These data suggest that anesthetic agents with neuroprotective properties may be effective in preventing HIE and should be

  9. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  10. Charge States of Krypton and Xenon in the Solar Wind

    Science.gov (United States)

    Bochsler, Peter; Fludra, Andrzej; Giunta, Alessandra

    2017-09-01

    We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.

  11. Two-dimensional model of an AC plasma display panel cell in a neon-xenon mixture

    Energy Technology Data Exchange (ETDEWEB)

    Boeuf, J.P.; Pitchford, L.C. [Universite Paul Sabatier, Toulouse (France)

    1995-12-31

    We present a 2-D fluid model of an AC plasma display panel cell. Plasma Display Panels (PDP) are flat display devices where the light of each picture element is emitted from a plasma created by an electric discharge. In the simplest electrode configuration, AC plasma display panels consist of two glass plates, each with parallel electrodes deposited on their surfaces. The electrodes are covered with a dielectric film above which a protective MgO layer is deposited. The plates are sealed together with their electrodes at right angles, and the cap between the plates is filled with a rare gas mixture. An electric discharge can be initiated in the gas cap by applying a voltage pulse between a line electrode and a column electrode. This discharge is transient due to the dielectric layers covering the electrode: the charges deposited on the dielectric surfaces induce in the gas cap a voltage which opposes the electrode voltage. Since the electrode voltage is AC (frequency in the 10-100 kHz range), a discharge is initiated each time the electrode voltage changes sign (the voltage across the dielectric layers adds to the electrode voltage when it changes sign). The {open_quotes}ON{close_quotes} state of a picture element is therefore a succession of transient discharges. In color displays, the UV light of the discharge is used to excite phosphors in the three fundamental colors (at least three discharge cells are used for one pixel of the screen). Neon-xenon or helium-xenon mixtures are generally used in color displays where photons emitted by excited atomic (147 nm) and molecular (150 nm and 173 nm) xenon are used to excite the phosphors.

  12. Observation of Visible and Infrared Luminescence of Xenon Cluster Ions: Role of Radiative Processes in the Formation of Cluster Ions and their Size and Temperature Dependence

    Science.gov (United States)

    Kanaev, A. V.; Castex, M. C.; Museur, L.; von Pietrowski, R.; Möller, T.

    1995-10-01

    Observations of continuous luminescence bands in the visible and infrared spectral ranges of Xe+N cluster ions ( N = 10-2200) are reported. Based on measured luminescence excitation yields, they are assigned to radiative transitions related to the 2P1/2-->2P3/2 transition of atomic Xe ions. The transition energy of one band at ~1.9 eV shows a very unusual spectral shift which is proportional to the logarithm of the cluster size, and which can be explained using the Frenkel exciton model. The implications of the size and temperature dependencies for the relaxation processes in ionized clusters are discussed.

  13. Evidence for an ultrafast breakdown of the BeO band structure due to swift argon and xenon ions.

    Science.gov (United States)

    Schiwietz, G; Czerski, K; Roth, M; Grande, P L; Koteski, V; Staufenbiel, F

    2010-10-29

    Auger-electron spectra associated with Be atoms in the pure metal lattice and in the stoichiometric oxide have been investigated for different incident charged particles. For fast incident electrons, for Ar7+ and Ar15+ ions as well as Xe15+ and Xe31+ ions at velocities of 6% to 10% the speed of light, there are strong differences in the corresponding spectral distributions of Be-K Auger lines. These differences are related to changes in the local electronic band structure of BeO on a femtosecond time scale after the passage of highly charged heavy ions.

  14. Stepwise contraction of the nf Rydberg shells in the 3d photoionization of multiply-charged xenon ions

    CERN Document Server

    Schippers, S; Buhr, T; Hellhund, J; Holste, K; Kilcoyne, A L D; Klumpp, S; Martins, M; Müller, A; Ricz, S; Fritzsche, S

    2014-01-01

    Triple photoionization of Xe3+, Xe4+ and Xe5+ ions has been studied in the energy range 670-750 eV, including the 3d ionization threshold. The photon-ion merged-beam technique was used at a synchrotron light source to measure the absolute photoionization cross sections. These cross sections exhibit a progressively larger number of sharp resonances as the ion charge state is increased. This clearly visualizes the re-ordering of the $\\epsilon$f continuum into a regular series of (bound) Rydberg orbitals as the ionic core becomes more attractive. The energies and strengths of the resonances are extracted from the experimental data and are further analyzed by relativistic atomic-structure calculations.

  15. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    Science.gov (United States)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  16. Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (lambda approx 172 nm)

    CERN Document Server

    Carman, R J

    2003-01-01

    A detailed rate-equation analysis has been used to simulate the plasma kinetics in a pulsed-excited dielectric barrier discharge in xenon, under operating conditions where the discharge structure is spatially homogeneous. The one-dimensional model, incorporating 14 species and 70 reaction processes, predicts results that are in good agreement with experimental measurements of the electrical characteristics, and optical (vacuum-ultraviolet (VUV) and visible) pulse shapes. The model reveals that electrical breakdown of the discharge gap occurs via a fast-moving ionization/excitation wavefront that starts close to the anode dielectric and propagates towards the cathode at approx 3x10 sup 5 m s sup - sup 1. The wavefront appears as a result of successive avalanches of electrons that propagate across the discharge gap after release from the cathode dielectric. During breakdown, the mean electron energy in the bulk plasma is close to optimum for preferential excitation of the Xe* 1s sub 4 sub , sub 5 states that fe...

  17. Collateral ventilation quantification using xenon-enhanced dynamic dual-energy CT: Differences between canine and swine models of bronchial occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Chang Hyun; Park, Chng Min [Dept. of Radiology, Seoul National University College of Medicine and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of)

    2015-06-15

    The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 +/- 5.0 Hounsfield units [HU] vs. -2.8 +/- 7.1 HU, p = 0.001; normalized percentage difference, -79.8 +/- 1.8% vs. -5.4 +/- 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction.

  18. Performance Evaluation of the Prototype Model NEXT Ion Thruster

    Science.gov (United States)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.

  19. Xenon impairs reconsolidation of fear memories in a rat model of post-traumatic stress disorder (PTSD.

    Directory of Open Access Journals (Sweden)

    Edward G Meloni

    Full Text Available Xenon (Xe is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD. Because glutamate receptors also have been shown to play a role in fear memory reconsolidation--a state in which recalled memories become susceptible to modification--we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory.

  20. Xenon impairs reconsolidation of fear memories in a rat model of post-traumatic stress disorder (PTSD).

    Science.gov (United States)

    Meloni, Edward G; Gillis, Timothy E; Manoukian, Jasmine; Kaufman, Marc J

    2014-01-01

    Xenon (Xe) is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA) receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD). Because glutamate receptors also have been shown to play a role in fear memory reconsolidation--a state in which recalled memories become susceptible to modification--we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing) in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr) on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory.

  1. Xenon poisoning calculation code for miniature neutron source reactor (MNSR)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In line with the actual requirements and based upon the specific char acteristics of MNSR, a revised point-reactor model was adopted to model MNSR's xenon poisoning. The corresponding calculation code, MNSRXPCC (Xenon Poison ing Calculation Code for MNSR), was developed and tested by the Shanghai MNSR data.

  2. Scalability study of solid xenon

    CERN Document Server

    Yoo, J; Jaskierny, W F; Markley, D; Pahlka, R B; Balakishiyeva, D; Saab, T; Filipenko, M

    2015-01-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  3. Scalability study of solid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  4. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  5. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  6. Requirements for Xenon International

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, James C.; Ely, James H.

    2013-09-26

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  7. Requirements for Xenon International

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, James C.; Ely, James H.; Haas, Derek A.; Harper, Warren W.; Heimbigner, Tom R.; Hubbard, Charles W.; Humble, Paul H.; Madison, Jill C.; Morris, Scott J.; Panisko, Mark E.; Ripplinger, Mike D.; Stewart, Timothy L.

    2015-12-30

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  8. Cation location in microporous zeolite, SSZ-13, probed with xenon adsorption measurement and 129Xe NMR spectrum.

    Science.gov (United States)

    Shin, Na Ra; Kim, Su Hyun; Shin, Hye Sun; Jang, Ik Jun; Cho, Sung June

    2013-06-01

    The location of metal ion, Ag2+, Ca2+, Cu2+ and Y3+ in the SSZ-13 has been investigated with xenon adsorption measurement and 129Xe NMR spectrum. It was referred that the location of the metal ion varies depending on the corresponding charge. The ion-exchanged Ag ion was located in the alpha-cage to interact directly with xenon. Others multivalent cation contributed little with xenon because these were present near the six membered rings where xenon cannot access.

  9. Effects of xenon and hypothermia on cerebrovascular pressure reactivity in newborn global hypoxic-ischemic pig model.

    Science.gov (United States)

    Chakkarapani, Elavazhagan; Dingley, John; Aquilina, Kristian; Osredkar, Damjan; Liu, Xun; Thoresen, Marianne

    2013-11-01

    Autoregulation of cerebral perfusion is impaired in hypoxic-ischemic encephalopathy. We investigated whether cerebrovascular pressure reactivity (PRx), an element of cerebral autoregulation that is calculated as a moving correlation coefficient between averages of intracranial and mean arterial blood pressure (MABP) with values between -1 and +1, is impaired during and after a hypoxic-ischemic insult (HI) in newborn pigs. Associations between end-tidal CO2, seizures, neuropathology, and PRx were investigated. The effect of hypothermia (HT) and Xenon (Xe) on PRx was studied. Pigs were randomized to Sham, and after HI to normothermia (NT), HT, Xe or xenon hypothermia (XeHT). We defined PRx >0.2 as peak and negative PRx as preserved. Neuropathology scores after 72 hours of survival was grouped as 'severe' or 'mild.' Secondary PRx peak during recovery, predictive of severe neuropathology and associated with insult severity (P=0.05), was delayed in HT (11.5 hours) than in NT (6.5 hours) groups. Seizures were associated with impaired PRx in NT pigs (P=0.0002), but not in the HT/XeHT pigs. PRx was preserved during normocapnia and impaired during hypocapnia. Xenon abolished the secondary PRx peak, increased (mean (95% confidence interval (CI)) MABP (6.5 (3.8, 9.4) mm Hg) and cerebral perfusion pressure (5.9 (2.9, 8.9) mm Hg) and preserved the PRx (regression coefficient, -0.098 (95% CI (-0.18, -0.01)), independent of the insult severity.

  10. Xenon Fractionation, Hydrogen Escape, and the Oxidation of the Earth

    Science.gov (United States)

    Zahnle, K. J.; Catling, D. C.

    2014-12-01

    Xenon in Earth's atmosphere is severely mass fractionated and depleted compared to any plausible solar system source material, yet Kr is unfractionated. These observations seem to imply that Xe has escaped from Earth. Vigorous hydrodynamic hydrogen escape can produce mass fractionation in heavy gases. The required hydrogen flux is very high but within the range permitted by solar EUV heating when Earth was 100 Myrs old or younger. However this model cannot explain why Xe escapes but Kr does not. Recently, what appears to be ancient atmospheric xenon has been recovered from several very ancient (3-3.5 Ga) terrestrial hydrothermal barites and cherts (Pujol 2011, 2013). What is eye-catching about this ancient Xe is that it is less fractionated that Xe in modern air. In other words, it appears that a process was active on Earth some 3 to 3.5 billion years ago that caused xenon to fractionate. By this time the Sun was no longer the EUV source that it used to be. If xenon was being fractionated by escape — currently the only viable hypothesis — it had to be in Earth's Archean atmosphere and under rather modest levels of EUV forcing. It should be possible for Xe, but not Kr, to escape from Earth as an ion. In a hydrodynamically escaping hydrogen wind the hydrogen is partially ionized. The key concepts are that ions are much more strongly coupled to the escaping flow than are neutrals (so that a relatively modest flow of H and H+ to space could carry Xe+ along with it, the flux can be small enough to be consistent with diffusion-limited flux), and that Xe alone among the noble gases is more easily ionized than hydrogen. This sort of escape is possible along the polar field lines, although a weak or absent magnetic field would likely work as well. The extended history of hydrogen escape implicit in Xe escape in the Archean is consistent with other suggestions that hydrogen escape in the Archean was considerable. Hydrogen escape plausibly played the key role in creating

  11. Vaporization wave model for ion-ion central collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M.; Giansiracusa, G.; Piccitto, G. (Catania Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Catania (Italy))

    1983-09-24

    We propose a simple model for central or nearly central ion-ion collisions at intermediate energies. It is based on the ''vaporization wave model'' developed by Bennett for macroscopic objects. The model offers a simple explanation of the observed deuteron/proton abundancy ratio as a function of the beam energy.

  12. Vaporization wave model for ion-ion central collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M.; Giansiracusa, G.; Piccitto, G. (Catania Univ. (Italy). Ist. di Fisica)

    1983-09-24

    A simple model for central or nearly central ion-ion collisions at intermediate energies is proposed. It is based on the ''vaporization wave model'' developed by Bennet for macroscopic objects. The model offers a simple explanation of the observed deuteron/proton abundancy ratio as a function of the beam energy.

  13. Reliability and error analysis on xenon/CT CBF

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. [Diversified Diagnostic Products, Inc., Houston, TX (United States)

    2000-02-01

    This article provides a quantitative error analysis of a simulation model of xenon/CT CBF in order to investigate the behavior and effect of different types of errors such as CT noise, motion artifacts, lower percentage of xenon supply, lower tissue enhancements, etc. A mathematical model is built to simulate these errors. By adjusting the initial parameters of the simulation model, we can scale the Gaussian noise, control the percentage of xenon supply, and change the tissue enhancement with different kVp settings. The motion artifact will be treated separately by geometrically shifting the sequential CT images. The input function is chosen from an end-tidal xenon curve of a practical study. Four kinds of cerebral blood flow, 10, 20, 50, and 80 cc/100 g/min, are examined under different error environments and the corresponding CT images are generated following the currently popular timing protocol. The simulated studies will be fed to a regular xenon/CT CBF system for calculation and evaluation. A quantitative comparison is given to reveal the behavior and effect of individual error resources. Mixed error testing is also provided to inspect the combination effect of errors. The experiment shows that CT noise is still a major error resource. The motion artifact affects the CBF results more geometrically than quantitatively. Lower xenon supply has a lesser effect on the results, but will reduce the signal/noise ratio. The lower xenon enhancement will lower the flow values in all areas of brain. (author)

  14. Xenon and iodine reveal multiple distinct exotic xenon components in Efremovka "nanodiamonds"

    Science.gov (United States)

    Gilmour, J. D.; Holland, G.; Verchovsky, A. B.; Fisenko, A. V.; Crowther, S. A.; Turner, G.

    2016-03-01

    We identify new xenon components in a nanodiamond-rich residue from the reduced CV3 chondrite Efremovka. We demonstrate for the first time that these, and the previously identified xenon components Xe-P3 and Xe-P6, are associated with elevated I/Xe ratios. The 129I/127I ratio associated with xenon loss from these presolar compositions during processing on planetesimals in the early solar system was (0.369 ± 0.019) × 10-4, a factor of 3-4 lower than the canonical value. This suggests either incorporation of iodine into carbonaceous grains before the last input of freshly synthesized 129I to the solar system's precursor material, or loss of noble gases during processing of planetesimals around 30 Myr after solar system formation. The xenon/iodine ratios and model closure ages were revealed by laser step pyrolysis analysis of a neutron-irradiated, coarse-grained nanodiamond separate. Three distinct low temperature compositions are identified by characteristic I/Xe ratios and 136Xe/132Xe ratios. There is some evidence of multiple compositions with distinct I/Xe ratios in the higher temperature releases associated with Xe-P6. The presence of iodine alongside Q-Xe and these components in nanodiamonds constrains the pathway by which extreme volatiles entered the solid phase and may facilitate the identification of their carriers. There is no detectable iodine contribution to the presolar Xe-HL component, which is released at intermediate temperatures; this suggests a distinct trapping process. Releases associated with the other components all include significant contributions of 128Xe produced from iodine by neutron capture during reactor irradiation. We propose a revised model relating the origin of Xe-P3 (which exhibits an s-process deficit) through a ;Q-process; to the Q component (which makes the dominant contribution to the heavy noble gas budget of primitive material). The Q-process incorporates noble gases and iodine into specific carbonaceous phases with mass

  15. 2D simulations of short-pulsed dielectric barrier discharge xenon excimer lamp

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, E.A.; Kudryavtsev, A.A. [St. Petersburg State University, St. Petersburg (Russian Federation); Arslanbekov, R.R. [CFD Research Corporation, Huntsville (United States)

    2006-07-01

    Self-consistent two-dimensional (2D) simulations of short-pulsed dielectric barrier discharge (DBD) in pure xenon have been performed. It is shown that during short current pulse the traversal inhomogeneity of the plasma parameters can be important only at the end of the current pulse as an edge effect close to the side walls. During the current pulse, the gap voltage drops until the ionization wave reaches the cathode so the current in the cathode sheath is the displacement current. This means that almost all of the absorbed power is deposited into excitation of xenon atoms and not to the ion heating in the cathode sheath as in the traditional glow discharges. This fact is one of the reasons of high efficiency of short-pulsed DBD. The developed model allows one to estimate the temporal position of the plasma-sheath boundary. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Xenon migration in UO2 under irradiation studied by SIMS profilometry

    Science.gov (United States)

    Marchand, B.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Garnier, C.; Raimbault, L.; Sainsot, P.; Epicier, T.; Delafoy, C.; Fraczkiewicz, M.; Gaillard, C.; Toulhoat, N.; Perrat-Mabilon, A.; Peaucelle, C.

    2013-09-01

    mechanism. Consequently, only one set of parameters can allow a correct fit of the final profile.This method was applied for the sample irradiated at 1000 °C and the fitted spectrum is presented in Fig. 6. The obtained values are respectively: D=9.5×10-16 cm s, v=3.1×10-10 cm s and k=2.5×10-5 s. The deduced apparent diffusion coefficient (9.5 × 10-16 cm2 s-1) is one order of magnitude higher than the one given by Turnbull [25] who studied the fission gas release of in-pile irradiated UO2 pellets and who found around 1 × 10-16 cm2 s-1 at 1000 °C.The differences between our results and Turnbull results could be mainly explained by the fact that Turnbull deduced his results from in-pile experiments whereas we performed irradiation on UO2 samples implanted with Xenon. More precisely, Turnbull experiments were made with a neutron flux of 4 × 1016 m-2 s-1 generating fission products with a wide energy range up to 110 MeV. In our experiments, irradiation was performed with Iodine ions of a single energy (186 MeV) with a pretty high flux of 5 × 1019 I m-2 s-1.Moreover, Turnbull measured Xe release and had to use the Booth model to determine Xe diffusion coefficient. In this last model, several hypotheses are made, the major ones being a spherical shape of grains and no possible accumulation of Xenon at the grain surface. Our diffusion coefficient is obtained after solving the Fick's equation without any hypothesis on the grain geometry.

  17. Relativistic multireference many-body perturbation theory calculations on F-, Ne-, Na-, Mg-, Al-, Si-, and P-like xenon ions

    Energy Technology Data Exchange (ETDEWEB)

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2005-12-22

    Many-Body Perturbation Theory (MBPT) has been employed to calculate with high wavelength accuracy the extreme ultraviolet (EUV) spectra of F-like to P-like Xe ions. They discuss the reliability of the new calculations using the example of EUV beam-foil spectra of Xe, in which n = 3, {Delta}n = 0 transitions of Na-, Mg-, Al-like, and Si-like ions have been found to dominate. A further comparison is made with spectra from an electron beam ion trap, that is, from a device with a very different (low density) excitation balance.

  18. XENON1T radon assay

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, Stefan [MPIK, Heidelberg (Germany); Collaboration: XENON-Collaboration

    2016-07-01

    The radioactive isotope {sup 222}Rn is one of the most dominant intrinsic background sources for experiments dealing with a low event rate like the XENON1T Dark Matter detector. Being part of the primordial decay chain of {sup 238}U the noble gas {sup 222}Rn permanently emanates from almost all materials. Therefore, it is crucial to determine the radon emanation rate of those detector components that will be in contact with the xenon target. The technique of the radon emanation measurements, making use of ultra low background proportional counters is presented as well as selected results for XENON1T.

  19. Fully variational average atom model with ion-ion correlations.

    Science.gov (United States)

    Starrett, C E; Saumon, D

    2012-02-01

    An average atom model for dense ionized fluids that includes ion correlations is presented. The model assumes spherical symmetry and is based on density functional theory, the integral equations for uniform fluids, and a variational principle applied to the grand potential. Starting from density functional theory for a mixture of classical ions and quantum mechanical electrons, an approximate grand potential is developed, with an external field being created by a central nucleus fixed at the origin. Minimization of this grand potential with respect to electron and ion densities is carried out, resulting in equations for effective interaction potentials. A third condition resulting from minimizing the grand potential with respect to the average ion charge determines the noninteracting electron chemical potential. This system is coupled to a system of point ions and electrons with an ion fixed at the origin, and a closed set of equations is obtained. Solution of these equations results in a self-consistent electronic and ionic structure for the plasma as well as the average ionization, which is continuous as a function of temperature and density. Other average atom models are recovered by application of simplifying assumptions.

  20. Direct WIMP searches with XENON100 and XENON1T

    Directory of Open Access Journals (Sweden)

    Davide Ferella Alfredo

    2015-01-01

    Full Text Available The XENON100 experiment is the second phase of the XENON direct Dark Matter search program. It consists of an ultra-low background double phase (liquid-gas xenon filled time projection chamber with a total mass of 161 kg (62 in the target region and 99 in the active shield, installed at the Laboratori Nazionali del Gran Sasso (LNGS. Here the results from the 224.6 live days of data taken between March 2011 and April 2012 are reported. The experiment set one of the most stringent limits on the WIMP-nucleon spin-independent cross section to date (2 × 10−45 cm2 for a 55 Gev/c2 WIMP mass at 90 % confidence level and the most stringent on the spin-dependent WIMP-neutron interaction (3.5 × 10−40 for a 45 GeV/c2 WIMP mass. With the same dataset, XENON100 excludes also solar axion coupling to electrons at gAe > 7.7 × 10−12 for a mass of mAxion 1 × 10−12 at a mass range of mAxion = 5−10 keV/c2 (both 90 % C.L.. Moreover an absolute spectral comparison between simulated and measured nuclear recoil distributions of light and charge signals from a 241AmBe source demonstrates a high level of detector and systematics understanding. Finally, the third generation of the XENON experiments, XENON1T, is the first tonne scale direct WIMP search experiment currently under construction. The commissioning phase of XENON1T is expected to start in early 2015 followed, a few months after, by the first science run. The experiment will reach sensitivities on the WIMP-nucleon spin-independent cross section down to 2 ×10−47 cm2 after two years of data taking.

  1. Time-resolved soft-x-ray spectroscopy of a magnetic octupole transition in nickel-like xenon, cesium, and barium ions

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E; Beiersdorfer, P; Brown, G V; Boyce, K; Kelley, R L; Kilbourne, C A; Porter, F S; Szymkowiak, A

    2005-11-11

    A microcalorimeter with event mode capability for time-resolved soft-x-ray spectroscopy, and a high-resolution flat-field EUV spectrometer have been employed at the Livermore EBIT-I electron beam ion trap for observations and wavelength measurements of M1, E2, and M3 decays of long-lived levels in the Ni-like ions Xe{sup 26+}, Cs{sup 27+}, and Ba{sup 28+}. Of particular interest is the lowest excited level, 3d{sup 9}4s {sup 3}D{sub 3}, which can only decay via a magnetic octupole (M3) transition. For this level in Xe an excitation energy of (590.40 {+-} 0.03eV) and a level lifetime of (11.5 {+-} 0.5 ms) have been determined.

  2. Development of a functionalized Xenon biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Spence, Megan M.; Ruiz, E. Janette; Rubin, Seth M.; Lowery, Thomas J.; Winssinger, Nicolas; Schultz, Peter G.; Wemmer, David E.; Pines, Alexander

    2004-03-25

    NMR-based biosensors that utilize laser-polarized xenon offer potential advantages beyond current sensing technologies. These advantages include the capacity to simultaneously detect multiple analytes, the applicability to in vivo spectroscopy and imaging, and the possibility of remote amplified detection. Here we present a detailed NMR characterization of the binding of a biotin-derivatized caged-xenon sensor to avidin. Binding of functionalized xenon to avidin leads to a change in the chemical shift of the encapsulated xenon in addition to a broadening of the resonance, both of which serve as NMR markers of ligand-target interaction. A control experiment in which the biotin-binding site of avidin was blocked with native biotin showed no such spectral changes, confirming that only specific binding, rather than nonspecific contact, between avidin and functionalized xenon leads to the effects on the xenon NMR spectrum. The exchange rate of xenon (between solution and cage) and the xenon spin-lattice relaxation rate were not changed significantly upon binding. We describe two methods for enhancing the signal from functionalized xenon by exploiting the laser-polarized xenon magnetization reservoir. We also show that the xenon chemical shifts are distinct for xenon encapsulated in different diastereomeric cage molecules. This demonstrates the potential for tuning the encapsulated xenon chemical shift, which is a key requirement for being able to multiplex the biosensor.

  3. Development of a functionalized Xenon biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Spence, Megan M.; Ruiz, E. Janette; Rubin, Seth M.; Lowery, Thomas J.; Winssinger, Nicolas; Schultz, Peter G.; Wemmer, David E.; Pines, Alexander

    2004-03-25

    NMR-based biosensors that utilize laser-polarized xenon offer potential advantages beyond current sensing technologies. These advantages include the capacity to simultaneously detect multiple analytes, the applicability to in vivo spectroscopy and imaging, and the possibility of remote amplified detection. Here we present a detailed NMR characterization of the binding of a biotin-derivatized caged-xenon sensor to avidin. Binding of functionalized xenon to avidin leads to a change in the chemical shift of the encapsulated xenon in addition to a broadening of the resonance, both of which serve as NMR markers of ligand-target interaction. A control experiment in which the biotin-binding site of avidin was blocked with native biotin showed no such spectral changes, confirming that only specific binding, rather than nonspecific contact, between avidin and functionalized xenon leads to the effects on the xenon NMR spectrum. The exchange rate of xenon (between solution and cage) and the xenon spin-lattice relaxation rate were not changed significantly upon binding. We describe two methods for enhancing the signal from functionalized xenon by exploiting the laser-polarized xenon magnetization reservoir. We also show that the xenon chemical shifts are distinct for xenon encapsulated in different diastereomeric cage molecules. This demonstrates the potential for tuning the encapsulated xenon chemical shift, which is a key requirement for being able to multiplex the biosensor.

  4. Metal Ion Modeling Using Classical Mechanics.

    Science.gov (United States)

    Li, Pengfei; Merz, Kenneth M

    2017-02-08

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.

  5. Metal Ion Modeling Using Classical Mechanics

    Science.gov (United States)

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  6. Xenon-based anesthesia: theory and practice

    OpenAIRE

    Jan-Hinrich Baumert

    2009-01-01

    Jan-Hinrich BaumertDept of Anaesthesiology, UMC St Radboud, Nijmegen, NetherlandsAbstract: Xenon has been in use as an anesthetic for more than 50 years. Although it exhibits some of the properties of an ideal anesthetic, the technical complexity of xenon equipment and the high cost of the gas have prevented widespread use of xenon anesthesia. The main beneficial features of xenon anesthesia are fast induction and emergence because of low solubility in blood and tissues, along with remarkably...

  7. Xenon-enhanced CT imaging of local pulmonary ventilation

    Science.gov (United States)

    Tajik, Jehangir K.; Tran, Binh Q.; Hoffman, Eric A.

    1996-04-01

    We are using the unique features of electron beam CT (EBCT) in conjunction with respiratory and cardiac gating to explore the use of non-radioactive xenon gas as a pulmonary ventilation contrast agent. The goal is to construct accurate and quantitative high-resolution maps of local pulmonary ventilation in humans. We are evaluating xenon-enhanced computed tomography in the pig model with dynamic tracer washout/dilution and single breath inhalation imaging protocols. Scanning is done via an EBCT scanner which offers 50 msec scan aperture speeds. CT attenuation coefficients (image gray scale value) show a linear increase with xenon concentration (r equals 0.99). We measure a 1.55 Hounsfield Unit (HU) enhancement (kV equals 130, mA equals 623) per percentage increase in xenon gas concentration giving an approximately 155 HU enhancement with 100% xenon gas concentration as measured in a plexiglass super-syringe. Early results indicate that a single breath (from functional residual capacity to total lung capacity) of 100% xenon gas provides an average 32 +/- 1.85 (SE) HU enhancement in the lung parenchyma (maximum 50 HU) and should not encounter unwanted xenon side effects. However, changes in lung density occurring during even short breath holds (as short as 10 seconds) may limit using a single breath technique to synchronous volumetric scanning, currently possible only with EBCT. Preliminary results indicate close agreement between measured regional xenon concentration-time curves and theoretical predictions for the same sample. More than 10 breaths with inspirations to as high as 25 cmH2O airway pressure were needed to clear tracer from all lung regions and some regions had nearly linear rather than mono-exponential clearance curves. When regional parenchymal xenon concentration-time curves were analyzed, vertical gradients in ventilation and redistribution of ventilation at higher inspiratory flow rates were consistent with known pulmonary physiology. We present

  8. Average radiation widths of levels in natural xenon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Noguere, G., E-mail: gilles.noguere@cea.fr [CEA, DEN, Cadarache, F-13108 Saint Paul les Durance (France); Litaize, O.; Archier, P.; De Saint Jean, C. [CEA, DEN, Cadarache, F-13108 Saint Paul les Durance (France); Mutti, P. [Institut Laue-Langevin, F-38042 Grenoble (France)

    2011-11-15

    Average radiation widths <{Gamma}{sub {gamma}>} for the stable xenon isotopes have been estimated using neutron resonance spectroscopic information deduced from high-resolution capture and transmission data measured at the electron linear accelerator GELINA of the Institute for Reference Materials and Measurements (IRMM) in Geel, Belgium. The combination of conventional Neutron Resonance Shape Analysis techniques (NRSA) with high-energy model calculations in a simple Bayesian learning method permit to calculate a consistent local systematic in the xenon's mass region (Z=54) from A=124 to A=136.

  9. Shock-tube measurements of the excitational cross-section in xenon-hydrogen mixture

    Energy Technology Data Exchange (ETDEWEB)

    Ezumi, Hiromichi (Hiroshima Denki Inst. of Tech. (Japan)); Kawamura, Masahiko; Gohda, Noriaki

    1984-02-01

    The Ionization relaxation and radiative-cooling processes behind shock wave in xenon with or without a small amount of hydrogen have been investigated using a quadrature interferometer technique at shock Mach numbers Msub(s)--13 and the initial pressure P/sub 1/=2.0 Torr. By adding a small amount of hydrogen (--0.5% of the initial pressure) to xenon, the ionization relaxation time was drastically reduced to about one-third of its pure xenon value. From the comparison between theoretical values based on the two-step ionization model and experimental data, the slope constants of excitational cross-section against relative kinetic energy between xenon atom-atom collisions and xenon-hydrogen atom-atom collisions were determined to be 1.8x10/sup -19/ cm/sup 2//eV and 9.0x10/sup -19/ cm/sup 2//eV, respectively.

  10. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  11. Fast Quantum Rabi Model with Trapped Ions

    Science.gov (United States)

    Moya-Cessa, Héctor M.

    2016-12-01

    We show how to produce a fast quantum Rabi model with trapped ions. Its importance resides not only in the acceleration of the phenomena that may be achieved with these systems, from quantum gates to the generation of nonclassical states of the vibrational motion of the ion, but also in reducing unwanted effects such as the decay of coherences that may appear in such systems.

  12. On the spin-dependent sensitivity of XENON100

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2012-11-15

    The latest XENON100 data severely constrains dark matter elastic scattering off nuclei, leading to impressive upper limits on the spin-independent cross-section. The main goal of this paper is to stress that the same data set has also an excellent spin-dependent sensitivity, which is of utmost importance in probing dark matter models. We show in particular that the constraints set by XENON100 on the spin-dependent neutron cross-section are by far the best at present, whereas the corresponding spin-dependent proton limits lag behind other direct detection results. The effect of nuclear uncertainties on the structure functions of xenon isotopes is analysed in detail and found to lessen the robustness of the constraints, especially for spin-dependent proton couplings. Notwith-standing, the spin-dependent neutron prospects for XENON1T and DARWIN are very encouraging. We apply our constraints to well-motivated dark matter models and demonstrate that in both mass-degenerate scenarios and the minimal supersymmetric standard model the spin-dependent neutron limits can actually override the spin-independent limits. This opens the possibility of probing additional unexplored regions of the dark matter parameter space with the next generation of ton-scale direct detection experiments.

  13. RESULTS FROM THE XENON100 EXPERIMENT

    Directory of Open Access Journals (Sweden)

    Rino Persiani

    2013-12-01

    Full Text Available The XENON program consists in operating and developing double-phase time projection chambers using liquid xenon as the target material. It aims to directly detect dark matter in the form of WIMPs via their elastic scattering off xenon nuclei. The current phase is XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS, with a 62 kg liquid xenon target. We present the 100.9 live days of data, acquired between January and June 2010, with no evidence of dark matter, as well as the new results of the last scientific run, with about 225 live days. The next phase, XENON1T, will increase the sensitivity by two orders of magnitude.

  14. IR-LAS Measurements of a Pulsed Xenon Discharge Plasma

    Science.gov (United States)

    Jinno, Masafumi; Wada, Ryota; Motomura, Hideki; Aono, Masaharu

    As a first step to understand the processes taking place in a pulsed xenon discharge, the temporal behavior of the radial metastable atom distribution in a xenon lamp was measured by IR laser absorption spectroscopy. During the first 10μs after starting the discharge, high electron density and the depletion of the ground state atoms at the center of the discharge brought about an almost flat distribution of the metastable atoms within the half-radius area. Following that, the metastable atom density became higher at the center than outside because of recombination between electrons and ions. After the metastable density increase and following voltage cut off, the metastable density decreases again. Considering the diffusion equation alongside these results, it becomes clear that the decrease of the metastable density is caused by quenching to the resonace level from the metastable level or three-body collisions forming excimers.

  15. Xenon Fractionation and Archean Hydrogen Escape

    Science.gov (United States)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  16. Modeling of direct conversion of the uranium fission product kinetic energy to laser radiation energy in an argon–xenon dusty plasma with uranium nanoparticles

    Directory of Open Access Journals (Sweden)

    M.N. Slyunyaev

    2015-12-01

    It is the first time that amplifying properties of a laser-active spatially heterogeneous nuclear-excited moving argon–xenon medium, containing uranium nanoparticles and irradiated by neutrons, have been studied. As shown by the investigation results, the LR intensity amplification may be sevenfold and more in steady-state conditions. Such a high value makes it possible to state that this medium can be used not only in a nuclear-pumped laser but also in the mode of a single-pass nuclear-pumped laser amplifier.

  17. Ohmic model for electrodeposition of metallic ions

    Energy Technology Data Exchange (ETDEWEB)

    Gliozzi, A.S. [Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 29, 10129 Torino (Italy); Alexe-Ionescu, A.L. [Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 29, 10129 Torino (Italy); Department of Physics, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest (Romania); Barbero, G., E-mail: giovanni.barbero@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 29, 10129 Torino (Italy)

    2015-10-23

    An ohmic model to describe the electrodeposition of metallic ions on the electrodes is proposed. We assume that the ionic distribution is homogeneous across the electrolytic cell, and that the ionic current is due to the bulk electric field. The nucleation in the electrodeposition is supposed to be well described by a kinetic equation at the electrode, taking into account the neutralization of metallic ions on the electrodes. Two cases are considered. In the first case the characteristic time describing the neutralization of the ions is supposed to be negligible with respect to the flight time of the ions across the cell. In this framework the bulk electric field coincides with the external electric field, and our analysis gives analytical formulae for the surface density of deposited ions and for the electric current in the external circuit. The case where the two characteristic times are comparable, and the effective electric field in the bulk depends on the surface deposition, is considered too. In this case the ordinary differential equations describing the ionic distribution and the adsorption phenomenon have to be solved numerically. The agreement between the presented model and the experimental results published by several groups is reasonably good.

  18. SPEEDUP{trademark} ion exchange column model

    Energy Technology Data Exchange (ETDEWEB)

    Hang, T.

    2000-03-06

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUp{trademark} software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process. The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLig{trademark} ion exchange resins, once the experimental data are complete.

  19. Xenon instability study of large core Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanova, E.V. [National Research Nuclear University ' MEPHi' , Moscow (Russian Federation); Gorodkov, S.S.

    2016-09-15

    One of the goals of neutronic calculations of large cores may be self-consistent distribution of equilibrium xenon through the reactor core. In deterministic calculations such self consistency is relatively simply achieved with the help of additional outer iterations by xenon, which can increase several times solution run time. But in stochastic calculation of large cores such increase is utterly undesirable, since even without these outer iterations it demands modeling of billion of histories, which in case of complicated large core may take about a day of 100 processors work. In addition the unavoidable statistical uncertainty here plays role of transient process, which excites xenon oscillations. In this work the rise of such oscillations and the way of their overcoming with the help of hybrid stochastic/deterministic calculation is studied. It is proposed to make at first single static Monte Carlo calculation of given core and to receive multi-group mesh cell characteristics for future use in operative code. This one will evaluate xenon distribution through the core, which will be equilibrium for deterministic solution and substantially close to equilibrium Monte Carlo solution, paid with enormous computing cost.

  20. Modeling the ion channel structure of cecropin.

    OpenAIRE

    Durell, S R; Raghunathan, G.; Guy, H R

    1992-01-01

    Atomic-scale computer models were developed for how cecropin peptides may assemble in membranes to form two types of ion channels. The models are based on experimental data and physiochemical principles. Initially, cecropin peptides, in a helix-bend-helix motif, were arranged as antiparallel dimers to position conserved residues of adjacent monomers in contact. The dimers were postulated to bind to the membrane with the NH2-terminal helices sunken into the head-group layer and the COOH-termin...

  1. Modeling of ion conductivity in Nafion membranes

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen; PENG Xiaofeng; WANG Buxuan; LEE Duujong; DUAN Yuanyuan

    2007-01-01

    A theoretical investigation was conducted to describe the ion transport behavior in a Nafion Membrane of proton exchange membrane fuel cells (PEMFC).By analyzing the surface energy configuration of the ionic clusters in a Nafion membrane,an equivalent field intensity,Ee,was introduced to facilitate the analysis of surface resistance against ion conduction in the central region of clusters.An expression was derived for ionic conductivity incorporating the influence of surface resistance.A face-centered cubic (FCC)lattice model for a spatial cluster distribution was used to modify the effect of water content on ionic conductivity in the polymeric matrix,i.e.,the regions between clusters.Compared with the available empirical correlations,the new expression showed much better agreement with the available experimental results,which indicates the rationality to consider the structural influence on ion conduction in water-swollen Nation membranes.

  2. Hopping models for ion conduction in noncrystals

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    2007-01-01

    Ion conduction in noncrystals (glasses, polymers, etc) has a number of properties in common. In fact, from a purely phenomenological point of view, these properties are even more widely observed: ion conduction behaves much like electronic conduction in disordered materials (e.g., amorphous...... semiconductors). These universalities are subject of much current interest, for instance interpreted in the context of simple hopping models. In the present paper we first discuss the temperature dependence of the dc conductivity in hopping models and the importance of the percolation phenomenon. Next......, the experimental (quasi)universality of the ac conductivity is discussed. It is shown that hopping models are able to reproduce the experimental finding that the response obeys time-temperature superposition, while at the same time a broad range of activation energies is involved in the conduction process. Again...

  3. Electrostatic ion thrusters - towards predictive modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)

    2014-02-15

    The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

    Science.gov (United States)

    Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien

    2017-08-01

    We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1-3 electrons, we include for the first time events corresponding to about 4-7 electrons. Assuming the scattering is momentum independent (FDM=1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4-50 electrons, and leads to a constraint that is comparable to the XENON10 bound above 50 MeV for FDM=1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data ("S2") data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.

  5. Wimp Detection Using Liquid Xenon (dark Matter)

    CERN Document Server

    Wang, H

    1998-01-01

    The missing mass "Dark Matter" problem of the Universe is one of the most important questions facing the moden physics and astronomy. This thesis work developed the Liquid Xenon technology to detect the SUSY ark matter. The background rejection principle was tested and many technical problem are studied, including the purification of the liquid xenon to yield both long electron lifetime and long xenon scintillation light attenuation length, and xenon recoil scintillation efficiency measurement. The detector design and construction are studied. Finally a two phase xenon detector was realized for the future dark matter experiment. The key working principle is the use of proportional scintillation and electro-luminescence to detector the ionization components, which is different between background and recoil signals. The two phase test results shown that a detector energy threshold as low as 10keV can be achieved.

  6. Direct Dark Matter Search with the XENON100 Experiment

    Science.gov (United States)

    Mei, Yuan

    Dark matter, a non-luminous, non-baryonic matter, is thought to constitute 23 % of the matter-energy components in the universe today. Except for its gravitational effects, the existence of dark matter has never been confirmed by any other means and its nature remains unknown. If a hypothetical Weakly Interacting Massive Particle (WIMP) were in thermal equilibrium in the early universe, it could have a relic abundance close to that of dark matter today, which provides a promising particle candidate of dark matter. Minimal Super-Symmetric extensions to the standard model predicts a stable particle with mass in the range 10 GeV/c2 to 1000 GeV/c2, and spin-independent cross-section with ordinary matter nucleon sigmax power of liquid xenon, as well as a 99 kg liquid xenon active veto, the electromagnetic radiation background is greatly suppressed. By utilizing the difference of (S2/S1) between electronic recoil and nuclear recoil, the expected WIMP signature, a small nuclear recoil energy deposition, could be discriminated from electronic recoil background with high efficiency. XENON100 achieved the lowest background rate (< 2.2 x 10--2 events/kg/day/keV) in the dark matter search region (< 40 keV) among all direct dark matter detectors. With 11.2 days of data, XENON100 already sets the world's best spin-independent WIMP-nucleon cross-section limit of 2.7 x 10--44 cm2 at WIMP mass 50 GeV/c 2. With 100.9 days of data, XENON100 excludes WIMP-nucleon cross-section above 7.0 x 10--45 cm2 for a WIMP mass of 50 GeV/c2 at 90% confidence level.

  7. Xenon Gamma Detector Project Support

    Energy Technology Data Exchange (ETDEWEB)

    Vanier,P.E.; Forman, L.

    2008-04-01

    This project provided funding of $48,500 for part of one year to support the development of compressed xenon spectrometers at BNL. This report describes upgrades that were made to the existing detector system electronics during that period, as well as subsequent testing with check sources and Special Nuclear Materials. Previous testing of the equipment extended only up to the energy of 1.3 MeV, and did not include a spectrum of Pu-239. The new electronics allowed one-button activation of the high voltage ramp that was previously controlled by manual adjustments. Mechanical relays of the charging circuit were replaced by a tera-ohm resistor chain and an optical switch. The preamplifier and shaping amplifier were replaced by more modern custom designs. We found that the xenon purity had not been degraded since the chamber was filled 10 years earlier. The resulting spectra showed significantly better resolution than sodium iodide spectra, and could be analyzed quite effectively by methods using peak area templates.

  8. Dynamical Properties of Potassium Ion Channels with a Hierarchical Model

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yong; AN Hai-Long; YU Hui; ZHANG Su-Hua; HAN Ying-Rong

    2006-01-01

    @@ It is well known that potassium ion channels have higher permeability than K ions, and the permeable rate of a single K ion channel is about 108 ions per second. We develop a hierarchical model of potassium ion channel permeation involving ab initio quantum calculations and Brownian dynamics simulations, which can consistently explain a range of channel dynamics. The results show that the average velocity of K ions, the mean permeable time of K ions and the permeable rate of single channel are about 0.92nm/ns, 4.35ns and 2.30×108 ions/s,respectively.

  9. Modeling and Optimizing RF Multipole Ion Traps

    Science.gov (United States)

    Fanghaenel, Sven; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    Radio frequency (rf) ion traps are very well suited for spectroscopy experiments thanks to the long time storage of the species of interest in a well defined volume. The electrical potential of the ion trap is determined by the geometry of its electrodes and the applied voltages. In order to understand the behavior of trapped ions in realistic multipole traps it is necessary to characterize these trapping potentials. Commercial programs like SIMION or COMSOL, employing the finite difference and/or finite element method, are often used to model the electrical fields of the trap in order to design traps for various purposes, e.g. introducing light from a laser into the trap volume. For a controlled trapping of ions, e.g. for low temperature trapping, the time dependent electrical fields need to be known to high accuracy especially at the minimum of the effective (mechanical) potential. The commercial programs are not optimized for these applications and suffer from a number of limitations. Therefore, in our approach the boundary element method (BEM) has been employed in home-built programs to generate numerical solutions of real trap geometries, e.g. from CAD drawings. In addition the resulting fields are described by appropriate multipole expansions. As a consequence, the quality of a trap can be characterized by a small set of multipole parameters which are used to optimize the trap design. In this presentation a few example calculations will be discussed. In particular the accuracy of the method and the benefits of describing the trapping potentials via multipole expansions will be illustrated. As one important application heating effects of cold ions arising from non-ideal multipole fields can now be understood as a consequence of imperfect field configurations.

  10. Structures of xenon oxides at high pressures

    Science.gov (United States)

    Worth, Nicholas; Pickard, Chris; Needs, Richard; Dewaele, Agnes; Loubeyre, Paul; Mezouar, Mohamed

    2014-03-01

    For many years, it was believed that noble gases such as xenon were entirely inert. It was only in 1962 that Bartlett first synthesized a compound of xenon. Since then, a number of other xenon compounds, including oxides, have been synthesized. Xenon oxides are unstable under ambient conditions but have been predicted to stabilize under high pressure. Here we present the results of a combined theoretical and experimental study of xenon oxides at pressures of 80-100 GPa. We have synthesized new xenon oxides at these pressures and they have been characterized with X-ray diffraction and Raman spectroscopy. Calculations were performed with a density-functional theory framework. We have used the ab-initio random structure searching (AIRSS) method together with a data-mining technique to determine the stable compounds in the xenon-oxygen system in this pressure range. We have calculated structural and optical properties of these phases, and a good match between theoretical and experimental results has been obtained. Funding for computational research provided by the engineering and physical sciences research council (EPSRC; UK). Computing resources provided by Cambridge HPC and HECToR. X-ray diffraction experiments performed at ESRF.

  11. Study of Static Adsorption Capacity of ACF for Xenon at 201 K

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The static adsorption performances of a series of active carbon fiber (ACF)for xenon at 201 K were measured with a model ASAP2010M specific surface area and aperture distribution instrument by changing the working gas of instrument from N2 to Xenon. Compared with grain active carbon(GAC): (1) the adsorption performance of Viscose-based ACF(VACF) adsorbents is better than that of GAC; (2) owing to the difference of aperture distribution, the adsorption performance of ACF with different radicales is different under the same experiment conditions though the specific surface area is similar; (3) there is no definite relationship between adsorption performance and specific surface area; (4) the VACF-A2 is the superior xenon adsorbent at the experimental temperature.Keyworls Active carbon fiber, CTBT, Xenon, Static adsorption, Adsorptive capacity, Adsorptive velocity

  12. Track structure modelling for ion radiotherapy

    CERN Document Server

    Korcyl, Marta

    2014-01-01

    In its broadest terms, doctoral dissertation entitled "Track structure modelling for ion radiotherapy" is part of the supporting research background in the development of the ambitious proton radiotherapy project currently under way at the Institute of Nuclear Physics PAN in Krak\\'ow. Another broad motivation was the desire to become directly involved in research on a topical and challenging subject of possibly developing a therapy planning system for carbon beam radiotherapy, based in its radiobiological part on the Track Structure model developed by prof. Robert Katz over 50 years ago. Thus, the general aim of this work was, firstly, to recapitulate the Track Structure model and to propose an updated and complete formulation of this model by incorporating advances made by several authors who had contributed to its development in the past. Secondly, the updated and amended (if necessary) formulation of the model was presented in a form applicable for use in computer codes which would constitute the "radiobio...

  13. Radon screening for XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Sebastian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2015-07-01

    Radon with its isotope {sup 222}Rn is one of the dominant sources of internal background in liquid xenon detectors searching for low energetic rare events like WIMP-nucleon scattering. In my talk I briefly review the problem posed by {sup 222}Rn and motivate the screening strategy followed by XENON1T. I introduce the radon emanation technique making use of ultra low background proportional counters and present selected results obtained during the design and construction phases of XENON1T. Finally, I sketch advances in radon emanation assay techniques and give a short outlook on upcoming measurements.

  14. A Comprehensive Study of Low-Energy Response for Xenon-Based Dark Matter Experiments

    CERN Document Server

    Wang, L

    2016-01-01

    We report a comprehensive study of the energy response to low-energy recoils in dual-phase xenon-based dark matter experiments. The average energy expended per electron-ion (e-ion) pair ($W_{i}$-value), quenching factors, and recombination involving energy response are extracted through the physics mechanisms behind each process. We derive the variation of the $W_{i}$-value using the exciton-to-ion ratio ($\\frac{N_{ex}}{N_{i}}$) as a function of recoil energy with the mean ionization potential. We show the scintillation quenching follows the form of Birks' law for electronic recoils at zero field. A recombination model is developed to explain the recombination probability as a function of recoil energy at zero field and non-zero field. The role of e-ion recombination is discussed for both parent recombination and volume recombination. We find that the volume recombination under non-zero field is constrained by a plasma effect, which is caused by a high density of charge carriers along the ionization track for...

  15. Ventilation imaging of the paranasal sinuses using xenon-enhanced dynamic single-energy CT and dual-energy CT: a feasibility study in a nasal cast

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Helck, Andreas D.; Reiser, Maximilian F.; Johnson, Thorsten R.C. [Ludwig Maximilians University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Moeller, Winfried; Eickelberg, Oliver [Institute for Lung Biology and Disease (iLBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Muenchen, Neuherberg, Munich (Germany); Becker, Sven [Ludwig-Maximilians-Universitaet, Department of Otorhinolaryngology - Head and Neck Surgery, Munich (Germany); Schuschnig, Uwe [Pari Pharma GmbH, Graefelfing (Germany)

    2012-10-15

    To show the feasibility of dual-energy CT (DECT) and dynamic CT for ventilation imaging of the paranasal sinuses in a nasal cast. In a first trial, xenon gas was administered to a nasal cast with a laminar flow of 7 L/min. Dynamic CT acquisitions of the nasal cavity and the sinuses were performed. This procedure was repeated with pulsating xenon flow. Local xenon concentrations in the different compartments of the model were determined on the basis of the enhancement levels. In a second trial, DECT measurements were performed both during laminar and pulsating xenon administration and the xenon concentrations were quantified directly. Neither with dynamic CT nor DECT could xenon-related enhancement be detected in the sinuses during laminar airflow. Using pulsating flow, dynamic imaging showed a xenon wash-in and wash-out in the sinuses that followed a mono-exponential function with time constants of a few seconds. Accordingly, DECT revealed xenon enhancement in the sinuses only after pulsating xenon administration. The feasibility of xenon-enhanced DECT for ventilation imaging was proven in a nasal cast. The superiority of pulsating gas flow for the administration of gas or aerosolised drugs to the paranasal sinuses was demonstrated. (orig.)

  16. Transition from linear to nonlinear sputtering of solid xenon

    DEFF Research Database (Denmark)

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen;

    1995-01-01

    Self-sputtering of solid xenon has been studied with molecular dynamics simulations as a model system for the transition from dominantly linear to strongly nonlinear effects. The simulation covered the projectile energy range from 20 to 750 eV. Within a relatively narrow range from 30 to 250 eV, ......V, nonlinear features such as high collision densities in the sputtering volume, amorphization of the crystalline structure, and an enhanced emission of low-energy atoms occur gradually....

  17. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅱ)-XENON ADSORPTION PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of xenon from air has an interest in the monitoring of nuclear explosion oraccident, or in the treatment of nuclear waste gas. In this paper, the pore structure of several series ofactivated carbon fibers has been characterized. The adsorption properties of xenon on theseactivated carbon fibers under different temperatures have been studied in details. The results showthat the xenon adsorption amount on activated carbon fibers do not increase with specific surfacearea of adsorbents, but are closely related to their pore size distribution. Pores whose radius equal toor narrow than 0.4nm would be more advantageous to the adsorption of xenon.

  18. An investigation of the enhancement effect of caesium on the production of H{sup -} in a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Steen, P.G

    1997-09-01

    The effect of addition of small quantities of xenon and caesium to a small, spatially filtered tandem multicusp negative hydrogen ion source has been investigated. Langmuir probe, H{sup -} ion photodetachment, visible and VUV spectroscopy and surface work function measurements have been made. When running in pure hydrogen the electron density, electron temperature and plasma potential measurements have been shown to be extremely reproducible in both the driver and extraction regions of the source over its ten year lifetime. It has been observed that xenon seeding of a hydrogen plasma results in similar trends with increasing discharge current and pressure compared to a pure hydrogen plasma. However much higher electron densities and plasma potentials were observed. These increases can be explained by the much larger mass of the xenon ions. A simple model has been developed to predict the electron and H{sup -} ion density both for pure hydrogen and also when additives have been seeded into the source. It has been shown that there is excellent agreement between the model predictions and the experimental measurements for a source running in pure hydrogen and when small percentages of xenon are added. When caesium was added to the ion source an increase in the H{sup -} ion percentage was observed. However the most surprising result with caesium seeding was the observed decrease in the electron density while the plasma potential increased compared to the pure hydrogen case. If caesium was present in the volume of the ion source similar trends to those for xenon seeding would have been expected. Investigation of the inner surface of the walls of the chamber by using a work function measurement technique resulted in the conclusion that caesium was present on the surface. Correlation with H{sup -} percentage proved that caesium coverage of the surface was the main factor in H{sup -} ion enhancement with caesium seeding. (author)

  19. An investigation of the enhancement effect of caesium on the production of H(-)in a multicusp ion source

    Science.gov (United States)

    Steen, Philip Gordon

    The effect of addition of small quantities of xenon and caesium to a small, spatially filtered tandem multicusp negative hydrogen ion source has been investigated. Langmuir probe, H/sp- ion photodetachment, visible and VUV spectroscopy and surface work function measurements have been made. When running in pure hydrogen the electron density, electron temperature and plasma potential measurements have been shown to be extremely reproducible in both the driver and extraction regions of the source over its ten year lifetime. It has been observed that xenon seeding of a hydrogen plasma results in similar trends with increasing discharge current and pressure compared to a pure hydrogen plasma. However much higher electron densities and plasma potentials were observed. These increases can be explained by the much larger mass of the xenon ions. A simple model has been developed to predict the electron and H/sp- ion density both for pure hydrogen and also when additives have been seeded into the source. It has been shown that there is excellent agreement between the model predictions and the experimental measurements for a source running in pure hydrogen and when small percentages of xenon are added. When caesium was added to the ion source an increase in the H/sp- ion percentage was observed. However the most surprising result with caesium seeding was the observed decrease in the electron density while the plasma potential increased compared to the pure hydrogen case. If caesium was present in the volume of the ion source similar trends to those for xenon seeding would have been expected. Investigation of the inner surface of the walls of the chamber by using a work function measurement technique resulted in the conclusion that caesium was present on the surface. Correlation with H/sp- percentage proved that caesium coverage of the surface was the main factor in H/sp- ion enhancement with caesium seeding.

  20. Computational modeling of Li-ion batteries

    Science.gov (United States)

    Grazioli, D.; Magri, M.; Salvadori, A.

    2016-08-01

    This review focuses on energy storage materials modeling, with particular emphasis on Li-ion batteries. Theoretical and computational analyses not only provide a better understanding of the intimate behavior of actual batteries under operational and extreme conditions, but they may tailor new materials and shape new architectures in a complementary way to experimental approaches. Modeling can therefore play a very valuable role in the design and lifetime prediction of energy storage materials and devices. Batteries are inherently multi-scale, in space and time. The macro-structural characteristic lengths (the thickness of a single cell, for instance) are order of magnitudes larger than the particles that form the microstructure of the porous electrodes, which in turn are scale-separated from interface layers at which atomistic intercalations occur. Multi-physics modeling concepts, methodologies, and simulations at different scales, as well as scale transition strategies proposed in the recent literature are here revised. Finally, computational challenges toward the next generation of Li-ion batteries are discussed.

  1. Computational modeling of Li-ion batteries

    Science.gov (United States)

    Grazioli, D.; Magri, M.; Salvadori, A.

    2016-12-01

    This review focuses on energy storage materials modeling, with particular emphasis on Li-ion batteries. Theoretical and computational analyses not only provide a better understanding of the intimate behavior of actual batteries under operational and extreme conditions, but they may tailor new materials and shape new architectures in a complementary way to experimental approaches. Modeling can therefore play a very valuable role in the design and lifetime prediction of energy storage materials and devices. Batteries are inherently multi-scale, in space and time. The macro-structural characteristic lengths (the thickness of a single cell, for instance) are order of magnitudes larger than the particles that form the microstructure of the porous electrodes, which in turn are scale-separated from interface layers at which atomistic intercalations occur. Multi-physics modeling concepts, methodologies, and simulations at different scales, as well as scale transition strategies proposed in the recent literature are here revised. Finally, computational challenges toward the next generation of Li-ion batteries are discussed.

  2. NEXT: R and D towards a xenon high pressure TPC

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Thorsten [Universitat Autonoma de Barcelona, Barcelona (Spain); Sanchez, Federico [IFAE, Barcelona (Spain); Gomez-Cadenas, J.J.; Martin-Albo, Justo; Ball, Markus; Novella, Pau; Monrabal, Francesc; Cervera, Anselmo [IFIC, Valencia (Spain); Garcia Irastorza, Igor [Universidad de Zaragoza, Zaragoza (Spain)

    2008-07-01

    An open question within the Standard Model is the nature of the neutrino. Is it a Majorana or a Dirac particle? The only way to answer this, is the search for neutrino-less double beta decays. Various experimental approaches are investigated for this reason e.g. diodes, bolometers, liquid Xenon. The key points for all of them is the high requirements on the energy resolution to distinguish between the decay with two neutrinos and the neutrino-less decay and the external background suppression. Recently some Spanish groups started a R and D program to investigate the possibility to use a pressurized Xenon TPC with MPGD readout (MM, LEM (GEM)). In the presentation the choice of gaseous Xe is motivated and an overview about the R and D plans is given.

  3. Transportable Xenon Laboratory (TXL-1) Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Robert C.; Stewart, Timothy L.; Willett, Jesse A.; Woods, Vincent T.

    2011-03-07

    The Transportable Xenon Laboratory Operations Manual is a guide to set up and shut down TXL, a fully contained laboratory made up of instruments to identify and measure concentrations of the radioactive isotopes of xenon by taking air samples and analyzing them. The TXL is housed in a standard-sized shipping container. TXL can be shipped to and function in any country in the world.

  4. Global model of an iodine gridded plasma thruster

    Science.gov (United States)

    Grondein, P.; Lafleur, T.; Chabert, P.; Aanesland, A.

    2016-03-01

    Most state-of-the-art electric space propulsion systems such as gridded and Hall effect thrusters use xenon as the propellant gas. However, xenon is very rare, expensive to produce, and used in a number of competing industrial applications. Alternatives to xenon are currently being investigated, and iodine has emerged as a potential candidate. Its lower cost and larger availability, its solid state at standard temperature and pressure, its low vapour pressure and its low ionization potential make it an attractive option. In this work, we compare the performances of a gridded ion thruster operating separately with iodine and xenon, under otherwise identical conditions using a global model. The thruster discharge properties such as neutral, ion, and electron densities and electron temperature are calculated, as well as the thruster performance parameters such as thrust, specific impulse, and system efficiencies. For similar operating conditions, representative of realistic thrusters, the model predicts similar thrust levels and performances for both iodine and xenon. The thruster efficiency is however slightly higher for iodine compared with xenon, due to its lower ionization potential. This demonstrates that iodine could be a viable alternative propellant for gridded plasma thrusters.

  5. Modeling ion sensing in molecular electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Caroline J.; Smeu, Manuel, E-mail: manuel.smeu@northwestern.edu; Ratner, Mark A., E-mail: ratner@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2014-02-07

    We examine the ability of molecules to sense ions by measuring the change in molecular conductance in the presence of such charged species. The detection of protons (H{sup +}), alkali metal cations (M{sup +}), calcium ions (Ca{sup 2+}), and hydronium ions (H{sub 3}O{sup +}) is considered. Density functional theory (DFT) is used within the Keldysh non-equilibrium Green's function framework (NEGF) to model electron transport properties of quinolinedithiol (QDT, C{sub 9}H{sub 7}NS{sub 2}), bridging Al electrodes. The geometry of the transport region is relaxed with DFT. The transport properties of the device are modeled with NEGF-DFT to determine if this device can distinguish among the M{sup +} + QDT species containing monovalent cations, where M{sup +} = H{sup +}, Li{sup +}, Na{sup +}, or K{sup +}. Because of the asymmetry of QDT in between the two electrodes, both positive and negative biases are considered. The electron transmission function and conductance properties are simulated for electrode biases in the range from −0.5 V to 0.5 V at increments of 0.1 V. Scattering state analysis is used to determine the molecular orbitals that are the main contributors to the peaks in the transmission function near the Fermi level of the electrodes, and current-voltage relationships are obtained. The results show that QDT can be used as a proton detector by measuring transport through it and can conceivably act as a pH sensor in solutions. In addition, QDT may be able to distinguish among different monovalent species. This work suggests an approach to design modern molecular electronic conductance sensors with high sensitivity and specificity using well-established quantum chemistry.

  6. Xenon recovery from molybdenum-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T. [Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37931 (United States); Paviet, P.D.; Bresee, J.C. [U.S. Department of Energy,1000 Independence Ave, S.W., Washington DC, 20585-1290 (United States)

    2016-07-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) sponsors research and development on the recycle of used commercial nuclear fuel as an option for future nuclear fuel cycles that offers increased use of uranium and thorium resources and a possible reduction in the overall cost of nuclear waste management. The two alternatives, direct disposal of used fuel and fuel recycle, are broadly referred to as open and closed fuel cycles. One requirement of a closed fuel cycle is the safe management of radioactive off-gases, which includes {sup 14}C, radioiodine and the noble gases, including radio-xenon. The longest lived relevant radio-xenon isotope is {sup 127}Xe; with a half-life of just 36.35 days it is feasible to trap and hold the radio-xenon to allow for decay to safe environmental levels. However, the very weak chemical bonds of noble gases, in this case xenon, make them difficult to trap, which led to an extensive DOE-NE study of noble gas adsorption on various molecular sieves as an alternative to costly cryogenics processes. Preliminary results indicate that xenon adsorption at near room temperature on molecular sieves, both synthetic and natural, may have both cost and efficiency advantages over cryogenic processes. These results appear to have direct application in helping achieve the United Nations Security Council goal of reducing xenon emissions from medical isotope producers.

  7. Xenon behavior in TiN: A coupled XAS/TEM study

    Science.gov (United States)

    Bès, R.; Gaillard, C.; Millard-Pinard, N.; Gavarini, S.; Martin, P.; Cardinal, S.; Esnouf, C.; Malchère, A.; Perrat-Mabilon, A.

    2013-03-01

    Titanium nitride is a refractory material that is being considered as an inert matrix in future Generation IV nuclear reactors, in particular in relation to the Gas-cooled Fast Reactor. The main role of this matrix would be to act as a barrier against the release of fission products, in particular gaseous ones like xenon. This release phenomenon will be enhanced by high temperatures expected in the fuel vicinity: 1200 °C under normal conditions, and up to 1800 °C under accidental conditions. It is therefore necessary to investigate the behavior of volatile fission products in TiN under high temperature and irradiation. Indeed, these basic data are very useful to predict the volatile fission products released under these extreme conditions. Our previous work has shown that Xe introduced by ion implantation in sintered TiN tends to be released as a result of annealing, due to a transport mechanism towards the sample surface. The aim of the present work is to determine under which physical state Xe is in TiN. Xenon was first introduced using ion implantation at 800 keV in TiN samples obtained by hot pressing at several concentrations ranging from 0.4 to 8 at.%. Secondly, samples were annealed at high temperature, from 1000 °C to 1500 °C. Xe was then characterized by X-ray Absorption Spectroscopy and Transmission Electron Microscopy. The formation of intragranular xenon bubbles was demonstrated, and the xenon concentration which is sufficient to form bubbles is found to be lower than 0.4 at.% under our experimental conditions. These bubbles were found unpressurised at 15 K. Their size increases with the temperature and the local xenon concentration. For the highest xenon concentrations, a mechanism involving the formation of a Xe interconnected bubble network is proposed to explain Xe massive release observed by Rutherford Backscattering Spectrometry experiments.

  8. Na+ Cl- ion pair association in water-DMSO mixtures: Effect of ion pair model potentials

    Indian Academy of Sciences (India)

    ATANU SARKAR; ANUPAM CHATTERJEE; S C TIWARI; B L TEMBE

    2016-06-01

    Potentials of Mean Force (PMF) for the Na+ Cl- ion pair in water–dimethyl sulfoxide (DMSO)mixtures for three DMSO mole fractions have been computed using constrained Molecular Dynamics (MD)simulations and confirmed by dynamical trajectories and residence times of the ion pair at various inter-ionicseparations. The three ion-ion direct potentials used are 12-6-1, exp-6-1 and exp-8-6-1. The physical picturethat emerges is that there is a strong contact ion pair (CIP) and strong to moderate solvent separated ion pair(SSIP) in these solutions. Analysis of local ion clusters shows that ions are dominantly solvated by watermolecules. The 12-6-1 potential model predicts running coordination numbers closest to experimental data.

  9. Neutrino physics with multi-ton scale liquid xenon detectors

    CERN Document Server

    Baudis, L; Kish, A; Manalaysay, A; Undagoitia, T Marrodan; Schumann, M

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2-30 keV, where the sensitivity to solar pp and 7-Be neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2x10^-48 cm^2 and WIMP masses around 50 GeV, for an assumed 99.5% rejectio...

  10. Intermittent exposure to xenon protects against gentamicin-induced nephrotoxicity.

    Directory of Open Access Journals (Sweden)

    Ping Jia

    Full Text Available Aminoglycoside antibiotics, especially gentamicin, are widely used to treat Gram-negative infections due to their efficacy and low cost. Nevertheless the use of gentamicin is limited by its major side effect, nephrotoxicity. Xenon (Xe provided substantial organoprotective effects in acute injury of the brain and the heart and protected against renal ischemic-reperfusion injury. In this study, we investigated whether xenon could protect against gentamicin-induced nephrotoxicity. Male Wistar rats were intermittently exposed to either 70% xenon or 70% nitrogen (N2 balanced with 30% oxygen before and during gentamicin administration at a dose of 100 mg/kg for 7 days to model gentamicin-induced kidney injury. We observed that intermittent exposure to Xe provided morphological and functional renoprotection, which was characterized by attenuation of renal tubular damage, apoptosis, and oxidative stress, but not a reduction in inflammation. We also found that Xe pretreatment upregulated hypoxia-inducible factor 2α (HIF-2α and its downstream effector vascular endothelial growth factor, but not HIF-1α. With regard to the three HIF prolyl hydroxylases, Xe pretreatment upregulated prolyl hydroxylase domain-containing protein-2 (PHD2, suppressed PHD1, and had no influence on PHD3 in the rat kidneys. Pretreatment with Xe also increased the expression of miR-21, a microRNA known to have anti-apoptotic effects. These results support Xe renoprotection against gentamicin-induced nephrotoxicity.

  11. Ventilation imaging of the paranasal sinuses using xenon-enhanced dynamic single-energy CT and dual-energy CT: a feasibility study in a nasal cast.

    Science.gov (United States)

    Thieme, Sven F; Möller, Winfried; Becker, Sven; Schuschnig, Uwe; Eickelberg, Oliver; Helck, Andreas D; Reiser, Maximilian F; Johnson, Thorsten R C

    2012-10-01

    To show the feasibility of dual-energy CT (DECT) and dynamic CT for ventilation imaging of the paranasal sinuses in a nasal cast. In a first trial, xenon gas was administered to a nasal cast with a laminar flow of 7 L/min. Dynamic CT acquisitions of the nasal cavity and the sinuses were performed. This procedure was repeated with pulsating xenon flow. Local xenon concentrations in the different compartments of the model were determined on the basis of the enhancement levels. In a second trial, DECT measurements were performed both during laminar and pulsating xenon administration and the xenon concentrations were quantified directly. Neither with dynamic CT nor DECT could xenon-related enhancement be detected in the sinuses during laminar airflow. Using pulsating flow, dynamic imaging showed a xenon wash-in and wash-out in the sinuses that followed a mono-exponential function with time constants of a few seconds. Accordingly, DECT revealed xenon enhancement in the sinuses only after pulsating xenon administration. The feasibility of xenon-enhanced DECT for ventilation imaging was proven in a nasal cast. The superiority of pulsating gas flow for the administration of gas or aerosolised drugs to the paranasal sinuses was demonstrated. • Ventilation of the paranasal sinuses is poorly understood. • Dual-energy CT ventilation imaging has been explored using phantom simulation. • Xenon can be seen in the paranasal sinuses using pulsating xenon flow. • Dual-energy CT uses a lower radiation dose compared with dynamic ventilation CT.

  12. Models for Cometary Comae Containing Negative Ions

    Science.gov (United States)

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry.

  13. Diffusion NMR methods applied to xenon gas for materials study

    Science.gov (United States)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  14. An ion species model for positive ion sources - part I description of the model

    CERN Document Server

    Surrey, E

    2014-01-01

    A one dimensional model of the magnetic multipole volume plasma source has been developed for use in intense ion/neutral atom beam injectors. The model uses plasma transport coefficients for particle and energy flow to create a detailed description of the plasma parameters along an axis parallel to that of the extracted beam. Primarily constructed for applications to neutral beam injection systems on fusion devices, the model concentrates on the hydrogenic isotopes but can be extended to any gas by substitution of the relevant masses, cross sections and rate coefficients. The model considers the flow of fast ionizing electrons that create the ratios of the three hydrogenic isotope ion species, H+, H2 +, H3 + (and similarly for deuterium and tritium) as they flow towards the beam extraction electrode, together with the production of negative hydrogenic ions through volume processes. The use of detailed energy balance in the discharge allows the determination of the fraction of the gas density that is in an ato...

  15. Direct Dark Matter search with XENON100

    Directory of Open Access Journals (Sweden)

    Orrigo S.E.A.

    2016-01-01

    Full Text Available The XENON100 experiment is the second phase of the XENON program for the direct detection of the dark matter in the universe. The XENON100 detector is a two-phase Time Projection Chamber filled with 161 kg of ultra pure liquid xenon. The results from 224.6 live days of dark matter search with XENON100 are presented. No evidence for dark matter in the form of WIMPs is found, excluding spin-independent WIMP-nucleon scattering cross sections above 2 × 10−45 cm2 for a 55 GeV/c2 WIMP at 90% confidence level (C.L.. The most stringent limit is established on the spin-dependent WIMP-neutron interaction for WIMP masses above 6 GeV/c2, with a minimum cross section of 3.5 × 10−40 cm2 (90% C.L. for a 45 GeV/c2 WIMP. The same dataset is used to search for axions and axion-like-particles. The best limits to date are set on the axion-electron coupling constant for solar axions, gAe < 7.7 × 10−12 (90% C.L., and for axion-like-particles, gAe < 1 × 10−12 (90% C.L. for masses between 5 and 10 keV/c2.

  16. Cosmogenic activation of xenon and copper

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, Laura; Kish, Alexander; Piastra, Francesco [University of Zuerich, Department of Physics, Zuerich (Switzerland); Schumann, Marc [University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland)

    2015-10-15

    Rare event search experiments using liquid xenon as target and detection medium require ultra-low background levels to fully exploit their physics potential. Cosmic ray induced activation of the detector components and, even more importantly, of the xenon itself during production, transportation and storage at the Earth's surface, might result in the production of radioactive isotopes with long half-lives, with a possible impact on the expected background. We present the first dedicated study on the cosmogenic activation of xenon after 345 days of exposure to cosmic rays at the Jungfraujoch research station at 3470 m above sea level, complemented by a study of copper which has been activated simultaneously. We have directly observed the production of {sup 7}Be, {sup 101}Rh, {sup 125}Sb, {sup 126}I and {sup 127}Xe in xenon, out of which only {sup 125}Sb could potentially lead to background for a multi-ton scale dark matter search. The production rates for five out of eight studied radioactive isotopes in copper are in agreement with the only existing dedicated activation measurement, while we observe lower rates for the remaining ones. The specific saturation activities for both samples are also compared to predictions obtained with commonly used software packages, where we observe some underpredictions, especially for xenon activation. (orig.)

  17. Behaviour of ion velocity distributions for a simple collision model

    Science.gov (United States)

    St-Maurice, J.-P.; Schunk, R. W.

    1974-01-01

    Calculation of the ion velocity distributions for a weakly ionized plasma subjected to crossed electric and magnetic fields. An exact solution to Boltzmann's equation has been obtained by replacing the Boltzmann collision integral with a simple relaxation model. At altitudes above about 150 km, where the ion collision frequency is much less than the ion cyclotron frequency, the ion distribution takes the shape of a torus in velocity space for electric fields greater than 40 mV/m. This shape persists for one to two hours after application of the electric field. At altitudes where the ion collision and cyclotron frequencies are approximately equal (about 120 km), the ion velocity distribution is shaped like a bean for large electric field strengths. This bean-shaped distribution persists throughout the lifetime of ionospheric electric fields. These highly non-Maxwellian ion velocity distributions may have an appreciable affect on the interpretation of ion temperature measurements.

  18. Influence of Triply-Charged Ions and Ionization Cross-Sections in a Hybrid-PIC Model of a Hall Thruster Discharge

    Science.gov (United States)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani

    2014-01-01

    The sensitivity of xenon ionization rates to collision cross-sections is studied within the framework of a hybrid-PIC model of a Hall thruster discharge. A revised curve fit based on the Drawin form is proposed and is shown to better reproduce the measured crosssections at high electron energies, with differences in the integrated rate coefficients being on the order of 10% for electron temperatures between 20 eV and 30 eV. The revised fit is implemented into HPHall and the updated model is used to simulate NASA's HiVHAc EDU2 Hall thruster at discharge voltages of 300, 400, and 500 V. For all three operating points, the revised cross-sections result in an increase in the predicted thrust and anode efficiency, reducing the error relative to experimental performance measurements. Electron temperature and ionization reaction rates are shown to follow the trends expected based on the integrated rate coefficients. The effects of triply-charged xenon are also assessed. The predicted thruster performance is found to have little or no dependence on the presence of triply-charged ions. The fraction of ion current carried by triply-charged ions is found to be on the order of 1% and increases slightly with increasing discharge voltage. The reaction rates for the 0?III, I?III, and II?III ionization reactions are found to be of similar order of magnitude and are about one order of magnitude smaller than the rate of 0?II ionization in the discharge channel.

  19. XMASS experiment, dark matter search with liquid xenon detector

    Energy Technology Data Exchange (ETDEWEB)

    Minamino, Akihiro, E-mail: minamino@scphys.kyoto-u.ac.j [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan)

    2010-11-01

    The XMASS Collaboration is developing liquid xenon detector for the purpose of direct detection of dark matter in the universe. A prototype detector was developed at Kamioka Observatory to test the basic performance of single phase liquid xenon detector. With the detector, the physical properties of liquid xenon were measured, and the performance of vertex and energy reconstruction and the self-shielding power of liquid xenon for background {gamma}-rays were confirmed.

  20. XENON ANESTHESIA IN CHILDREN: BIS-MONITORING

    Directory of Open Access Journals (Sweden)

    V. G. Bagaev

    2013-01-01

    Full Text Available We conducted 60 low-flow xenon anesthesias in children of 1-18 years of age. We measured the sedation level using bispectral (BIS index and clinically on the stage of induction, xenon anesthesia maintenance and during recovery. The trial showed that, according to the clinical and BIS-monitoring data, sevoflurane inhalational induction in children of 1-5 years of age and propofol intravenous induction in children of 6-18 years of age provides children with the required sedation level. BIS index objectively reflects intensity of the sedative component of an anesthesia both in the junior and the senior age groups on the stages of xenon anesthesia maintenance and during recovery.

  1. Status of the 2D Bayesian analysis of XENON100 data

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Stefan [JGU, Staudingerweg 7, 55128 Mainz (Germany)

    2015-07-01

    The XENON100 experiment is located in the underground laboratory at LNGS in Italy. Since Dark Matter particles will only interact very rarely with normal matter, an environment with ultra low background, which is shielded from cosmic radiation is needed. The standard analysis of XENON100 data has made use of the profile likelihood method (a most frequent approach) and still provides one of the most sensitive exclusion limits to WIMP Dark Matter. Here we present work towards a Bayesian approach to the analysis of XENON100 data, where we attempt to include the measured primary (S1) and secondary (S2) scintillation signals in a more complete way. The background and signal models in the S1-S2 space have to be defined and a corresponding likelihood function, describing these models, has to be constructed.

  2. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Via Graziella, I-89100 Reggio Calabria (Italy); Sorbello, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania (Italy)

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  3. Transdermal diffusion of xenon in vitro using diffusion cells

    Science.gov (United States)

    Verkhovsky, A.; Petrov, E.

    2015-11-01

    The aim of this research was to study the diffusion rate of xenon through guinea pig skin and how viscosity of cosmetic component capryl/capric triglyceride (CCT) facilitates to deliver xenon to surface of skin patches. They were placed in Franz cell for 24 hours and diffusion rate and permeability of xenon were calculated. Thus diffusion rate was 0.031 mg/hour*cm2 and permeability was 0.003 cm/hour. Using Brookfield viscometer it was shown that viscosity of CCT decreased upon increasing xenon concentration. Obtained results can be utilized in developing of new xenon containing drugs for topical administration.

  4. Barium Tagging in Liquid Xenon for the nEXO Experiment

    Science.gov (United States)

    Kravitz, Scott; nEXO Collaboration

    2016-09-01

    nEXO is a next-generation experiment designed to search for neutrinoless double beta decay of xenon-136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the neutrino to be a MAJORANA particle, as well as measure the absolute neutrino mass scale. In order to greatly reduce background contributions to this search, the collaboration is developing several ``barium tagging'' techniques to recover and identify the decay daughter, barium-136. Barium tagging may be available for a second phase of nEXO operation, allowing for neutrino mass sensitivity beyond the inverted mass hierarchy. Tagging methods for this phase include barium-ion capture on a probe with identification by resonance ionization laser spectroscopy. Inclusion of an argon ion gun in this system allows for improved cleaning and preparation of the barium deposition substrate, with recent results reported in this presentation.

  5. Distillation of Liquid Xenon to Remove Krypton

    CERN Document Server

    Abe, K; Iida, T; Ikeda, M; Kobayashi, K; Koshio, Y; Minamino, A; Miura, M; Moriyama, S; Nakahata, M; Nakajima, Y; Namba, T; Ogawa, H; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takeuchi, Y; Ueshima, K; Yamashita, M; Kaneyuki, K; Ebizuka, Y; Kikuchi, J; Ota, A; Suzuki, S; Takahashi, T; Hagiwara, H; Kamei, T; Miyamoto, K; Nagase, T; Nakamura, S; Ozaki, Y; Sato, T; Fukuda, Y; Sato, T; Nishijima, K; Sakurai, M; Maruyama, T; Motoki, D; Itow, Y; Ohsumi, H; Tasaka, S; Kim, S B; Kim, Y D; Lee, J I; Moon, S H; Urakawa, Y; Uchino, M; Kamioka, Y

    2008-01-01

    A high performance distillation system to remove krypton from xenon was constructed, and a purity level of Kr/Xe = $\\sim 3 \\times 10^{-12}$ was achieved. This development is crucial in facilitating high sensitivity low background experiments such as the search for dark matter in the universe.

  6. Absolute Electron Extraction Efficiency of Liquid Xenon

    Science.gov (United States)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  7. Cosmogenic activation of xenon and copper

    CERN Document Server

    Baudis, Laura; Piastra, Francesco; Schumann, Marc

    2015-01-01

    Rare event search experiments using liquid xenon as target and detection medium require ultra-low background levels to fully exploit their physics potential. Cosmic ray induced activation of the detector components and, even more importantly, of the xenon itself during production, transportation and storage at the Earth's surface, might result in the production of radioactive isotopes with long half-lives, with a possible impact on the expected background. We present the first dedicated study on the cosmogenic activation of xenon after 345 days of exposure to cosmic rays at the Jungfraujoch research station at 3470m above sea level, complemented by a study of copper which has been activated simultaneously. We have directly observed the production of 7Be, 101Rh, 125Sb, 126I and 127Xe in xenon, out of which only 125Sb could potentially lead to background for a multi-ton scale dark matter search. The production rates for five out of eight studied radioactive isotopes in copper are in agreement with the only exis...

  8. High-power atomic xenon laser

    NARCIS (Netherlands)

    Witteman, W.J.; Peters, P.J.M.; Botma, H.; Botma, H.; Tskhai, S.N.; Udalov, Yu.B.; Mei, Q.C.; Mei, Qi-Chu; Ochkin, V.N.

    1995-01-01

    The high pressure atomic xenon laser is becoming the most promising light source in the wavelength region of a few microns. The merits are high efficiency (so far up to 8 percent), high output energies (15 J/liter at 9 bar), high continuous output power (more than 200 W/liter), no gas dissociation a

  9. Relative scintillation efficiency of liquid xenon in the XENON10 direct dark matter search

    Science.gov (United States)

    Manzur, Angel

    There is almost universal agreement that most of the mass in the Universe consists of dark matter. Many lines of reasoning suggest that the dark matter consists of a weakly interactive massive particle (WIMP) with mass ranging from 10 GeV/c 2 to a few TeV/c 2 . Today, numerous experiments aim for direct or indirect dark matter detection. XENON10 is a direct detection experiment using a xenon dual phase time projection chamber. Particles interacting with xenon will create a scintillation signal ( S 1) and ionization. The charge produced is extracted into the gas phase and converted into a proportional scintillation light ( S 2), with an external electric field. The dominant background, b particles and g rays, will undergo an electron recoil (ER) interaction, while WIMPs and neutrons will undergo a nuclear recoil (NR) interaction. Event-by-event discrimination of background signals is based on log 10 ( S 2/ S 1) NR review the requirements for a dark matter search. In particular I discuss the XENON10 detector, deployment, operation, calibrations, analysis and WIMP-nucleon cross- section limits. Finally, I present our latest results for the relative scintillation efficiency ([Special characters omitted.] ) for nuclear recoils in liquid xenon, which was the biggest source of uncertainty in the XENON10 limit. This quantity is essential to determine the nuclear energy scale and to determine the WIMP-nucleon cross sections.

  10. Spectroscopy of Ba and Ba$^+$ deposits in solid xenon for barium tagging in nEXO

    OpenAIRE

    Mong, B.; Cook, S; Walton, T.; Chambers, C.; Craycraft, A.; Benitez-Medina, C.; Hall, K.; Fairbank Jr., W.; Albert, J. B.; Auty, D. J.; Barbeau, P. S.; Basque, V.; Beck, D.; Breidenbach, M.; Brunner, T.

    2014-01-01

    Progress on a method of barium tagging for the nEXO double beta decay experiment is reported. Absorption and emission spectra for deposits of barium atoms and ions in solid xenon matrices are presented. Excitation spectra for prominent emission lines, temperature dependence and bleaching of the fluorescence reveal the existence of different matrix sites. A regular series of sharp lines observed in Ba$^+$ deposits is identified with some type of barium hydride molecule. Lower limits for the fl...

  11. Numerical simulation and experiment of optothermal response of biological tissue irradiated by continuous xenon lamp

    Institute of Scientific and Technical Information of China (English)

    Meizhen Huang; Yaxing Tong

    2012-01-01

    A finite element method computation model for analyzing optothermal interaction of polychromatic light and biology tissue is proposed and proven by experiment.A continuous xenon lamp is employed as an example.First,the spectral energy distribution of the xenon lamp is measured and found to be equivalent to a series of quasi-chromatic light with different central wavelengths,different energies,and certain bandwidth.Next,according to the reported thermal and optical parameters of porcine skin and porcine liver,the temporal temperature distributions of these tissues irradiated by each quasi-chromatic light are simulated.Then,the thermal effect is superimposed to obtain the whole optothermal temporal temperature distribution.Moreover,the optothermal response experiments of fresh porcine skin and porcine liver tissues irradiated by continuous xenon lamp are carried out.The results of the simulation and experiment are analyzed and compared,and are found to be commendably matched.

  12. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, P; Dahl, C E

    2011-02-14

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  13. Lithium ion transport in a model of amorphous polyethylene oxide.

    Energy Technology Data Exchange (ETDEWEB)

    Boinske, P. T.; Curtiss, L.; Halley, J. W.; Lin, B.; Sutjianto, A.; Chemical Engineering; Univ. of Minnesota

    1996-01-01

    We have made a molecular dynamics study of transport of a single lithium ion in a previously reported model of amorphous polyethylene oxide. New ab initio calculations of the interaction of the lithium ion with 1,2-dimethoxyethane and with dimethyl ether are reported which are used to determine force fields for the simulation. We report preliminary calculations of solvation energies and hopping barriers and a calculation of the ionic conductivity which is independent of any assumptions about the mechanism of ion transport. We also report some details of a study of transport of the trapped lithium ion on intermediate time and length scales.

  14. Unified Ion-chemical Model for the Middle Atmosphere

    Science.gov (United States)

    Kamsali, Nagaraja; Kamsali, Nagaraja; Datta, Jayati; Prasad, Bsn

    The importance of ion-chemical model studies in our understanding of middle atmospheric regions needs no special emphasis. Present day knowledge of middle atmosphere (0-100 km) has come from two distinct experimental developments: first, in situ measurements of ion composition by balloons and sounding rockets and second, laboratory investigations on ionchemical reactions of importance at these heights, determination of reaction rate coefficients and their temperature dependence. Model studies act as an interface between these, to generate theoretical estimates of ion composition and their derivatives (e.g. electrical conductivity) by using as input the laboratory data on reaction rate coefficients and the data on neutral species density, ionization flux, temperature etc. Free electrons exist only in the mesosphere. Positive molecular ions dominate the upper mesospheric heights and heavy positive and negative cluster ions appearing at the lower mesospheric heights continue to dominate in strato and troposphere. The equilibrium density of electrons and ionic species is governed by: a) ionization of the atmospheric constituents producing electron-positive ion pair b)gas-phase ion-chemical reactions that convert the electrons and primary positive ions into heavy cluster ions of both polarity c)heterogeneous ion-chemical reactions for producing aerosol ions and d) loss mechanisms for small ions and aerosol ions through recombination of oppositely charged species. Physical entities that control the ion production and loss processes are not the same and vary vastly both in nature and magnitude in the middle atmosphere X-rays, Lymann-alpha and precipitating electrons are the dominant ionizing agents at the mesospheric heights. Cosmic ray ionization that is not so significant in the mesosphere is the sole ionizing agent at stratosphere and troposphere. At the ground level and up to a few tens of meters above the earth's surface, natural radioactivity induced ionization is

  15. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bricker, T.

    1994-07-27

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

  16. Numerical model of electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2015-12-01

    Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  17. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  18. Evaluation of ion current density distribution on an extraction electrode of a radio frequency ion thruster

    Science.gov (United States)

    Masherov, P.; Riaby, V.; Abgaryan, V.

    2017-01-01

    The radial distributions of ion current density on an ion extracting electrode of a radio frequency (RF) ion thruster (RIT) with an inductive plasma source were obtained using probe diagnostics of the RF xenon plasma. Measurements were carried out using a plane wall probe simulator and the VGPS-12 Probe System of Plasma Sensors Co. At xenon flow rate q  =  2 sccm plasma pressure was 2 · 10-3 Torr, incident RF generator power varied in the range P g  =  50-250 W with RF power absorbed by plasma up to P p  =  220 W. Ion current densities were determined using semi- and double-logarithmic probe characteristics by linear extrapolations of their ion branches to probe floating potentials. The same parameters were also measured in undisturbed plasma by a classic cylindrical probe. They exceeded plane probe data by more than two times, showing the effectiveness of plasma sheath reproduction of the RIT ion extracting electrode by the plane wall probe simulator. Slight non-uniformity of the resulting plasma distributions and simplified RIT model design showed that the studied device with flat antenna coil and ferrite core could be considered as a promising prospect for RITs of new generation.

  19. A Simulation Model for the Toroidal Ion Temperature Gradient Instability with Fully Kinetic Ions

    Science.gov (United States)

    Sturdevant, Benjamin; Parker, Scott; Chen, Yang

    2016-10-01

    A simulation model for the toroidal ITG mode in which the ions follow the primitive Lorentz force equations of motion is presented. Such a model can provide an important validation tool or replacement for gyrokinetic ion models in applications where higher order terms may be important. A number of multiple-scale simulation techniques are employed in this work, based on the previous success in slab geometry with an implicit orbit averaged and sub-cycled δf model. For the toroidal geometry model, we have derived a particle integration scheme based on variational principles, which is demonstrated to produce stable and accurate ion trajectories on long time scales. Orbit averaging and sub-cycling will be implemented with the variational integration scheme. The inclusion of equilibrium gradients in the fully kinetic δf formulation is achieved through the use of a guiding center coordinate transformation of the weight equation. Simulation results for the fully kinetic ion model will be presented for the cyclone base case and comparisons will be made with gyrokinetic ion models.

  20. Simulating thermo-mechanical interaction between a xenon gas-filled chamber and tungsten first-wall armor for the LIFE reactor design using the BUCKY 1-D radiation hydrodynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Heltemes, T A; Prochaska, A E; Moses, G A, E-mail: taheltemes@wisc.ed [Fusion Technology Institute, University of Wisconsin - Madison, 1500 Engineering Dr., Madison WI 53706 (United States)

    2010-08-01

    The BUCKY 1-D radiation hydrodynamics code has been used to simulate the dynamic thermo-mechanical interaction between a xenon gas-filled chamber and tungsten first-wall armor with an indirect-drive laser fusion target for the LIFE reactor design. Two classes of simulations were performed: (1) short-time (0-2 ms) simulations to fully capture the hydrodynamic effects of the introduction of the LIFE indirect-drive target x-ray and ion threat spectra and (2) long-time (2-70 ms) simulations starting with quiescent chamber conditions characteristic of those at 2 ms to estimate xenon plasma cooling between target implosions at 13 Hz. The short-time simulation results reported are: (1) the plasma hydrodynamics of the xenon in the chamber, (2) dynamic overpressure on the tungsten armor, and (3) time-dependent temperatures in the tungsten armor. The ramifications of local thermodynamic equilibrium (LTE) vs. non-LTE opacity models are also addressed.

  1. ELECTROSTATIC ION THRUSTERS - TOWARDS PREDICTIVE MODELING

    Directory of Open Access Journals (Sweden)

    Julia Duras

    2015-02-01

    Full Text Available For satellite missions, thrusters have to be qualified in large vacuum vessels to simulate space environment. One caveat of these experiments is the possible  modification of the beam properties due to the interaction of the energetic ions with the  vessel walls. Impinging ions can produce sputtered impurities or secondary  electrons from the wall. These can stream back into the acceleration channel of the  thruster and produce co-deposited layers. Over the long operation time of thousands  of hours, such layers can modify the optimized geometry and induce changes of the ion beam properties, e.g. broadening of the angular distribution and thrust reduction. To study such effects, a Monte Carlo code for the simulation of the interaction of ion thruster beams with vessel  walls was developed. Strategies to overcome sputter limitations by additional baffles are  studied with the help of this Monte-Carlo erosion code.

  2. Modeling radial flow ion exchange performance for condensate polisher conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shallcross, D. [University of Melbourne, Melbourne, VIC (Australia). Department of Chemical Engineering; Renouf, P.

    2001-11-01

    A theoretical model is developed which simulates ion exchange performance within an annular resin bed. Flow within the mixed ion exchange bed is diverging, with the solution flowing outwards away from the bed's axis. The model is used to simulate performance of a mixed annular bed operating under condensate polisher conditions. The simulation predictions are used to develop design envelope curves for practical radial flow beds and to estimate potential cost savings flowing from less expensive polisher vessels. (orig.)

  3. The Large Underground Xenon (LUX) Experiment

    CERN Document Server

    Akerib, D S; Bedikian, S; Bernard, E; Bernstein, A; Bolozdynya, A; Bradley, A; Byram, D; Cahn, S B; Camp, C; Carmona-Benitez, M C; Carr, D; Chapman, J J; Chiller, A; Chiller, C; Clark, K; Classen, T; Coffey, T; Curioni, A; Dahl, E; Dazeley, S; de Viveiros, L; Dobi, A; Dragowsky, E; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Gaitskell, R J; Gibson, K R; Gilchriese, M; Hall, C; Hanhardt, M; Holbrook, B; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Knoche, R; Kyre, S; Kwong, J; Lander, R; Larsen, N A; Lee, C; Leonard, D S; Lesko, K T; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; Marquez, Z; McKinsey, D N; Mei, D -M; Mock, J; Moongweluwan, M; Morii, M; Nelson, H; Neves, F; Nikkel, J A; Pangilinan, M; Parker, P D; Pease, E K; Pech, K; Phelps, P; Rodionov, A; Roberts, P; Shei, A; Shutt, T; Silva, C; Skulski, W; Solovov, V N; Sofka, C J; Sorensen, P; Spaans, J; Stiegler, T; Stolp, D; Svoboda, R; Sweany, M; Szydagis, M; Taylor, D; Thomson, J; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, D; White, J T; Whitis, T J; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2012-01-01

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles(WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of $2\\times 10^{-46}$ cm$^{2}$, equivalent to $\\sim$1 event/100 kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have $<$1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector.

  4. Measurement of cerebral blood flow by intravenous xenon-133 technique and a mobile system. Reproducibility using the Obrist model compared to total curve analysis

    DEFF Research Database (Denmark)

    Schroeder, T; Holstein, P; Lassen, N A

    1986-01-01

    and side-to-side asymmetry. Data were analysed according to the Obrist model and the results compared with those obtained using a model correcting for the air passage artifact. Reproducibility was of the same order of magnitude as reported using stationary equipment. The side-to-side CBF asymmetry...... differences, but in low flow situations the artifact model yielded significantly more stable results. The present apparatus, equipped with 3-5 detectors covering each hemisphere, offers the opportunity of performing serial CBF measurements in situations not otherwise feasible....

  5. Optically enhanced production of metastable xenon

    CERN Document Server

    Hickman, G T; Pittman, T B

    2016-01-01

    Metastable states of noble gas atoms are typically produced by electrical discharge techniques or "all-optical" excitation methods. Here we combine electrical discharges with optical pumping to demonstrate "optically enhanced" production of metastable xenon (Xe*). We experimentally measure large increases in Xe* density with relatively small optical control field powers. This technique may have applications in systems where large metastable state densities are desirable.

  6. Chromatographic separation of radioactive noble gases from xenon

    CERN Document Server

    Akerib, D S; Bai, X; Bailey, A J; Balajthy, J; Beltrame, P; Bernard, E P; Bernstein, A; Biesiadzinski, T P; Boulton, E M; Bramante, R; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chiller, A A; Chiller, C; Coffey, T; Currie, A; Cutter, J E; Davison, T J R; Dobi, A; Dobson, J E Y; Druszkiewicz, E; Edwards, B N; Faham, C H; Fiorucci, S; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C R; Hanhardt, M; Haselschwardt, S J; Hertel, S A; Hogan, D P; Horn, M; Huang, D Q; Ignarra, C M; Ihm, M; Jacobsen, R G; Ji, W; Kamdin, K; Kazkaz, K; Khaitan, D; Knoche, R; Larsen, N A; Lee, C; Lenardo, B G; Lesko, K T; Lindote, A; Lopes, M I; Manalaysay, A; Mannino, R L; Marzioni, M F; McKinsey, D N; Mei, D -M; Mock, J; Moongweluwan, M; Morad, J A; Murphy, A St J; Nehrkorn, C; Nelson, H N; Neves, F; O'Sullivan, K; Oliver-Mallory, K C; Palladino, K J; Pease, E K; Pech, K; Phelps, P; Reichhart, L; Rhyne, C; Shaw, S; Shutt, T A; Silva, C; Solovov, V N; Sorensen, P; Stephenson, S; Sumner, T J; Szydagis, M; Taylor, D J; Taylor, W; Tennyson, B P; Terman, P A; Tiedt, D R; To, W H; Tripathi, M; Tvrznikova, L; Uvarov, S; Verbus, J R; Webb, R C; White, J T; Whitis, T J; Witherell, M S; Wolfs, F L H; Yazdani, K; Young, S K; Zhang, C

    2016-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes $^{85}$Kr and $^{39}$Ar that are not removed by the {\\em in situ} gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search exmperiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400\\,kg of xenon was processed, reducing the average concentration of krypton from 130\\,ppb to 3.5\\,ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  7. Relaxation channels of multi-photon excited xenon clusters

    Energy Technology Data Exchange (ETDEWEB)

    Serdobintsev, P. Yu.; Melnikov, A. S. [Institute of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Department of Physics, St. Petersburg State University, Saint Petersburg 198904 (Russian Federation); Rakcheeva, L. P., E-mail: lida@nanobio.spbstu.ru; Murashov, S. V.; Khodorkovskii, M. A. [Institute of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Lyubchik, S. [REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516 (Portugal); Timofeev, N. A.; Pastor, A. A. [Department of Physics, St. Petersburg State University, Saint Petersburg 198904 (Russian Federation)

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  8. Poisson-Fermi Model of Single Ion Activities

    CERN Document Server

    Liu, Jinn-Liang

    2015-01-01

    A Poisson-Fermi model is proposed for calculating activity coefficients of single ions in strong electrolyte solutions based on the experimental Born radii and hydration shells of ions in aqueous solutions. The steric effect of water molecules and interstitial voids in the first and second hydration shells play an important role in our model. The screening and polarization effects of water are also included in the model that can thus describe spatial variations of dielectric permittivity, water density, void volume, and ionic concentration. The activity coefficients obtained by the Poisson-Fermi model with only one adjustable parameter are shown to agree with experimental data, which vary nonmonotonically with salt concentrations.

  9. Electron impact ionization of tungsten ions in a statistical model

    Science.gov (United States)

    Demura, A. V.; Kadomtsev, M. B.; Lisitsa, V. S.; Shurygin, V. A.

    2015-01-01

    The statistical model for calculations of the electron impact ionization cross sections of multielectron ions is developed for the first time. The model is based on the idea of collective excitations of atomic electrons with the local plasma frequency, while the Thomas-Fermi model is used for atomic electrons density distribution. The electron impact ionization cross sections and related ionization rates of tungsten ions from W+ up to W63+ are calculated and then compared with the vast collection of modern experimental and modeling results. The reasonable correspondence between experimental and theoretical data demonstrates the universal nature of statistical approach to the description of atomic processes in multielectron systems.

  10. Generalized Manning Condensation Model Captures the RNA Ion Atmosphere

    Science.gov (United States)

    Hayes, Ryan L.; Noel, Jeffrey K.; Mandic, Ana; Whitford, Paul C.; Sanbonmatsu, Karissa Y.; Mohanty, Udayan; Onuchic, José N.

    2016-01-01

    RNA is highly sensitive to the ionic environment, and typically requires Mg2+ to form compact structures. There is a need for models capable of describing the ion atmosphere surrounding RNA with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-grained molecular dynamics simulation. The model treats Mg2+ ions explicitly to account for ion-ion correlations neglected by mean field theories. Since mean-field theories capture KCl well, it is treated implicitly by a generalized Manning counterion condensation model. The model extends Manning condensation to deal with arbitrary RNA conformations, non-limiting KCl concentrations, and the ion inaccessible volume of RNA. The model is tested against experimental measurements of the excess Mg2+ associated with the RNA, Γ2+, because Γ2+ is directly related to the Mg2+-RNA interaction free energy. The excellent agreement with experiment demonstrates the model captures the ionic dependence of the RNA free energy landscape. PMID:26197147

  11. Spectroscopy of Ba and Ba$^+$ deposits in solid xenon for barium tagging in nEXO

    CERN Document Server

    Mong, B; Walton, T; Chambers, C; Craycraft, A; Benitez-Medina, C; Hall, K; Fairbank, W; Albert, J B; Auty, D J; Barbeau, P S; Basque, V; Beck, D; Breidenbach, M; Brunner, T; Cao, G F; Cleveland, B; Coon, M; Daniels, T; Daugherty, S J; DeVoe, R; Didberidze, T; Dilling, J; Dolinski, M J; Dunford, M; Fabris, L; Farine, J; Feldmeier, W; Fierlinger, P; Fudenberg, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Heffner, M; Hughes, M; Jiang, X S; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Krucken, R; Kuchenkov, A; Kumar, K S; Leonard, D S; Licciardi, C; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Moore, D; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Retiere, F; Rowson, P C; Rozo, M P; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Twelker, K; Vuilleumier, J -L; Walton, J; Weber, M; Wen, L J; Wichoski, U; Yang, L; Yen, Y -R; Zhao, Y B

    2014-01-01

    Progress on a method of barium tagging for the nEXO double beta decay experiment is reported. Absorption and emission spectra for deposits of barium atoms and ions in solid xenon matrices are presented. Excitation spectra for prominent emission lines, temperature dependence and bleaching of the fluorescence reveal the existence of different matrix sites. A regular series of sharp lines observed in Ba$^+$ deposits is identified with some type of barium hydride molecule. Lower limits for the fluorescence quantum efficiency of the principal Ba emission transition are reported. Under current conditions, an image of $\\le10^4$ Ba atoms can be obtained. Prospects for imaging single Ba atoms in solid xenon are discussed.

  12. Trapped ions in optical lattices for probing oscillator chain models

    CERN Document Server

    Pruttivarasin, Thaned; Talukdar, Ishan; Kreuter, Axel; Haeffner, Hartmut

    2011-01-01

    We show that a chain of trapped ions embedded in microtraps generated by an optical lattice can be used to study oscillator models related to dry friction and energy transport. Numerical calculations with realistic experimental parameters demonstrate that both static and dynamic properties of the ion chain change significantly as the optical lattice power is varied. Finally, we lay out an experimental scheme to use the spin degree of freedom to probe the phase space structure and quantum critical behavior of the ion chain.

  13. Etch rate modeling for ion-irradiated nitrocellulose

    Energy Technology Data Exchange (ETDEWEB)

    Merhari, L.; Belorgeot, C.; Moliton, J.P. (Laboratoire d' electronique des Polymeres sous Faisceaux Ioniques, 123, Avenue Albert Thomas, 87060 Limoges Cedex (France))

    1990-12-24

    The self-developing mechanism of nitrocellulose when used as an ion beam resist is described by a model predicting the evolution of the etch rate versus irradiation time. Fundamentals of the model based on ion energy deposition dependent ablative development along with related mathematical derivations are given and briefly discussed. Comparison between theoretical results and experimental data available for protons at 20 keV and Ne{sup +}, Ar{sup +}, Kr{sup +} ions at 150 keV is made and shows a good agreement. This result clearly does not conflict with our assumption that the nitrocellulose etch rate is dependent on the total ion deposited energy no matter how the energy is deposited.

  14. Alternative modeling methods for plasma-based Rf ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com; Beckwith, Kristian R. C., E-mail: beckwith@txcorp.com [Tech-X Corporation, Boulder, Colorado 80303 (United States)

    2016-02-15

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two

  15. Alternative modeling methods for plasma-based Rf ion sources

    Science.gov (United States)

    Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models

  16. Ion spectroscopy for improvement of the physical beam model for therapy planning in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Arico, Giulia

    2016-11-23

    Helium and carbon ions enable a more conformal dose distribution, narrower penumbra and higher relative biological effectiveness than photon and proton radiotherapy. However, they may undergo nuclear fragmentation in the patient tissues and the arising secondary fragments affect the delivered biological dose distributions. Currently there is a lack of data regarding ion nuclear fragmentation. One reason is the large size (up to some meters) of the experimental setups required for the investigations. In this thesis a new method is presented, which makes use of versatile pixelated semiconductor detectors (Timepix). This method is based on tracking of single particles and pattern recognition of their signals in the detectors. Measurements were performed at the HIT facility. The mixed radiation field arising from 430 MeV/u carbon ion beams and 221 MeV/u helium ion beams in water and in PMMA targets was investigated. The amounts of primary (carbon or helium) ions detected behind targets with the same water equivalent thickness (WET) were found to be in agreement within the statistical uncertainties. However, more fragments (differences up to 20% in case of H) and narrower lateral particle distributions were measured behind the PMMA than the water targets. The spectra of ions behind tissue surrogates and corresponding water targets with the same WET were analysed. The results obtained with adipose and inner bone surrogates and with the equivalent water phantoms were found to be consistent within the uncertainties. Significant differences in the results were observed in the case of lung and cortical bone surrogates when compared to the water phantoms. The experimental results were compared to FLUKA Monte Carlo simulations. This comparison could contribute to enhance the ion interaction models currently implemented for {sup 12}C and {sup 4}He ion beams.

  17. Investigation of the lithium ion mobility in cyclic model compounds and their ion conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Joerg

    2011-07-27

    In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. Steps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of immobilizing ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with propylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length. All model compounds were fully characterized, pure and thermally stable up to at least 235 C, covering the requested broad range of glass transition temperatures from -78.1 C up to +6.2 C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity {sigma}{sub dc} and thus indicating comparable salt dissociation and rather independent motion of cations and ions. In general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in

  18. Absolute cross sections for charge capture from Rydberg targets by slow highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    DePaola, B.D.; Huang, M.; Winecki, S.; Stoeckli, M.P.; Kanai, Y. [J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506 (United States); Lundeen, S.R.; Fehrenbach, C.W.; Arko, S.A. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)

    1995-09-01

    A crossed beam experiment has been used to measure absolute charge capture cross sections in collisions of slow highly charged xenon ions with laser excited Rydberg atoms. The cross sections were measured for scaled projectile velocities {ital nv}{sub {ital p}} from 1.0 to 6.0, for projectile charges of 8, 16, 32, and 40, where {ital n} is the principal quantum number of the target electron. Experimental cross sections are compared with predictions of classical models.

  19. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.

    Science.gov (United States)

    Chen, Duan

    2016-08-01

    In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.

  20. Ferroelectric active models of ion channels in biomembranes.

    Science.gov (United States)

    Bystrov, V S; Lakhno, V D; Molchanov, M

    1994-06-21

    Ferroactive models of ion channels in the theory of biological membranes are presented. The main equations are derived and their possible solutions are shown. The estimates of some experimentally measured parameters are given. Possible physical consequences of the suggested models are listed and the possibility of their experimental finding is discussed. The functioning of the biomembrane's ion channel is qualitatively described on the basis of the suggested ferroactive models. The main directions and prospects for development of the ferroactive approach to the theory of biological membranes and their structures are indicated.

  1. Computational stochastic model of ions implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zmievskaya, Galina I., E-mail: zmi@gmail.ru; Bondareva, Anna L., E-mail: bal310775@yandex.ru [M.V. Keldysh Institute of Applied Mathematics RAS, 4,Miusskaya sq., 125047 Moscow (Russian Federation); Levchenko, Tatiana V., E-mail: tatlevchenko@mail.ru [VNII Geosystem Russian Federal Center, Varshavskoye roadway, 8, Moscow (Russian Federation); Maino, Giuseppe, E-mail: giuseppe.maino@enea.it [Scuola di Lettere e BeniCulturali, University di Bologna, sede di Ravenna, via Mariani 5, 48100 Ravenna (Italy)

    2015-03-10

    Implantation flux ions into crystal leads to phase transition /PT/ 1-st kind. Damaging lattice is associated with processes clustering vacancies and gaseous bubbles as well their brownian motion. System of stochastic differential equations /SDEs/ Ito for evolution stochastic dynamical variables corresponds to the superposition Wiener processes. The kinetic equations in partial derivatives /KE/, Kolmogorov-Feller and Einstein-Smolukhovskii, were formulated for nucleation into lattice of weakly soluble gases. According theory, coefficients of stochastic and kinetic equations uniquely related. Radiation stimulated phase transition are characterized by kinetic distribution functions /DFs/ of implanted clusters versus their sizes and depth of gas penetration into lattice. Macroscopic parameters of kinetics such as the porosity and stress calculated in thin layers metal/dielectric due to Xe{sup ++} irradiation are attracted as example. Predictions of porosity, important for validation accumulation stresses in surfaces, can be applied at restoring of objects the cultural heritage.

  2. Bistable dynamics underlying excitability of ion homeostasis in neuron models.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2014-05-01

    Full Text Available When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long-term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin-Huxley (HH formalism extended to include time-dependent ion concentrations inside and outside the cell and metabolic energy-driven pumps. We reveal the basic mechanism of a state of free energy-starvation (FES with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long-lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial-vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the Na⁺/K⁺ pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator-inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, Na⁺/K⁺ pumps, and other proteins that regulate ion homeostasis.

  3. Stydy on the Model of Ion Exchange Kinetics

    Institute of Scientific and Technical Information of China (English)

    ChenFengrong; JiangZhixin

    1994-01-01

    In this paper, a macrokinetics model equation describing the characteristics of the solid-liquid mass transfer has been proposed.The qualitative analysis and experimental verification have been done for this mode equation.The model equation can explain the ion exchange process considerably well.

  4. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    Science.gov (United States)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; Owen, T.; Pavlov, A. A.; Wiens, R. C.; Wong, M. H.; Mahaffy, P. R.

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  5. Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)

    Science.gov (United States)

    Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.

  6. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  7. Radial dose distribution around an energetic heavy ion and an ion track structure model

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ohno, Shin-ichi; Namba, Hideki; Taguchi, Mitsumasa; Watanabe, Ritsuko

    1997-03-01

    Ionization currents produced in a small wall-less ionization chamber located at varying distance from the 200 MeV Ni{sup 12+} ion`path traversing Ar gas were measured and utilized to construct a track structure model. Using the LET value of 200 MeV Ni{sup 12+} and G(Fe{sup 3+}) in Fricke solutions (= 15.4) for fast electrons, we estimate G(Fe{sup 3+}) for this ion to be 5.0. (author)

  8. Tests of the improved Weiland ion temperature gradient transport model

    Energy Technology Data Exchange (ETDEWEB)

    Kinsey, J.E.; Bateman, G.; Kritz, A.H. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1996-12-31

    The Weiland theoretically derived transport model for ion temperature gradient and trapped electron modes has been improved to include the effects of parallel ion motion, finite beta, and collisionality. The model also includes the effects of impurities, fast ions, unequal ion and electron temperatures, and finite Larmor radius. This new model has been implemented in our time-dependent transport code and is used in conjunction with pressure-driven modes and neoclassical theory to predict the radial particle and thermal transport in tokamak plasmas. Simulations of TFTR, DIII-D, and JET L-mode plasmas have been conducted to test how the new effects change the predicted density and temperature profiles. Comparisons are made with results obtained using the previous version of the model which was successful in reproducing experimental data from a wide variety of tokamak plasmas. Specifically, the older model has been benchmarked against over 50 discharges from at least 7 different tokamaks including L-mode scans in current, heating power, density, and dimensionless scans in normalized gyro-radius, collisionality, and beta. We have also investigated the non-diffusive elements included in the Weiland model, particularly the particle pinch in order to characterize its behavior. This is partly motivated by recent simulations of ITER. In those simulations, the older Weiland model predicted a particle pinch and ignition was more easily obtained.

  9. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  10. Statistical 3D damage accumulation model for ion implant simulators

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Mangas, J.M. E-mail: jesman@ele.uva.es; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M

    2003-04-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  11. Scintillation light, ionization yield and scintillation decay times in high pressure xenon and xenon methane

    NARCIS (Netherlands)

    Pushkin, K. N.; Akimov, D. Y.; Burenkov, A. A.; Dmitrenko, V. V.; Kovalenko, A. G.; Lebedenko, V. N.; Kuznetsov, I. S.; Stekhanov, V. N.; Tezuka, C.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2007-01-01

    Scintillation light, ionization yield and scintillation decay times have been measured in xenon and in its mixture with a 0.05% concentration of methane as a function of the reduced electric field (E/N)-the ratio of the electric field strength to the number density of gas-at a pressure of 21 atm. Th

  12. Phase behavior of mixed submonolayer films of krypton and xenon on graphite

    Science.gov (United States)

    Patrykiejew, A.; Sokołowski, S.

    2012-04-01

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√{3}× √{3})R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  13. An ion species model for positive ion sources - part II analysis of hydrogen isotope effects

    CERN Document Server

    Surrey, E

    2014-01-01

    A one dimensional model of the magnetic multipole volume plasma source has been developed for application to intense ion/neutral atom beam injectors. The model uses plasma transport coefficients for particle and energy flow to create a detailed description of the plasma parameters along an axis parallel to that of the extracted beam. In this paper the isotopic modelling of positive hydrogenic ions is considered and compared with experimental data from the neutral beam injectors of the Joint European Torus. The use of the code to gain insights into the processes contributing to the ratios of the ionic species is demonstrated and the conclusion is drawn that 75% of the atomic ion species arises from ionization of dissociated molecules and 25% from dissociation of the molecular ions. However whilst the former process is independent of the filter field, the latter is sensitive to the change in distribution of fast and thermal electrons produced by the magnetic filter field and an optimum combination of field stre...

  14. Ion-acoustic shocks with reflected ions: modeling and PIC simulations

    CERN Document Server

    Liseykina, T; Vshivkov, V; Malkov, M

    2015-01-01

    Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles remains incomplete. We present here the results of numerical modeling of an ion-acoustic collisionless shock based on one-dimensional (1D) kinetic approximation both for electrons and ions with a real mass ratio. Special emphasis is made on the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.

  15. First axion results from the XENON100 experiment

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.

    2014-01-01

    We present the first results of searches for axions and axionlike particles with the XENON100 experiment. The axion-electron coupling constant, gAe, has been probed by exploiting the axioelectric effect in liquid xenon. A profile likelihood analysis of 224.6 live days × 34-kg exposure has shown no e

  16. Analysis of the XENON100 dark matter search data

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Decowski, M.P.

    2014-01-01

    The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This pap

  17. The XENON1T Dark Matter Search Experiment

    CERN Document Server

    Aprile, Elena

    2012-01-01

    The worldwide race towards direct dark matter detection in the form of Weakly Interacting Massive Particles (WIMPs) has been dramatically accelerated by the remarkable progress and evolution of liquid xenon time projection chambers (LXeTPCs). With a realistic discovery potential, XENON100 has already reached a sensitivity of $7\\times10^{-45}\\,\

  18. Rank-based model selection for multiple ions quantum tomography

    Science.gov (United States)

    Guţă, Mădălin; Kypraios, Theodore; Dryden, Ian

    2012-10-01

    The statistical analysis of measurement data has become a key component of many quantum engineering experiments. As standard full state tomography becomes unfeasible for large dimensional quantum systems, one needs to exploit prior information and the ‘sparsity’ properties of the experimental state in order to reduce the dimensionality of the estimation problem. In this paper we propose model selection as a general principle for finding the simplest, or most parsimonious explanation of the data, by fitting different models and choosing the estimator with the best trade-off between likelihood fit and model complexity. We apply two well established model selection methods—the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)—two models consisting of states of fixed rank and datasets such as are currently produced in multiple ions experiments. We test the performance of AIC and BIC on randomly chosen low rank states of four ions, and study the dependence of the selected rank with the number of measurement repetitions for one ion states. We then apply the methods to real data from a four ions experiment aimed at creating a Smolin state of rank 4. By applying the two methods together with the Pearson χ2 test we conclude that the data can be suitably described with a model whose rank is between 7 and 9. Additionally we find that the mean square error of the maximum likelihood estimator for pure states is close to that of the optimal over all possible measurements.

  19. Solubilities of krypton and xenon in dichlorodifluoromethane

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, J.H.; Shockley, W.E.; Greene, C.W.

    1984-07-01

    The solubility behavior of krypton and xenon in dichlorodifluoromethane was investigated for the Consolidated Fuel Reprocessing Program (CFRP) in support of the fluorocarbon absorption process. The solubility data derived from solute radioisotopes had uncertainties of approx. 0.1%. Values for Henry's law constants were initially determined under equilibrium conditions at infinite solute dilution. Based on these results, the study was extended to finite solute concentrations. Nonidealities in the two binary systems were expressed as gas phase fugacity coefficients for each solute at 10/sup 0/ intervals over the range -30 to +50/sup 0/C. 22 references, 4 figures, 2 tables.

  20. A xenon gas purity monitor for EXO

    CERN Document Server

    Dobi, A; Herrin, S; Odian, A; Prescott, C Y; Rowson, P C; Ackerman, N; Aharmin, B; Auger, M; Barbeau, P S; Barry, K; Benitez-Medina, C; Breidenbach, M; Cook, S; Counts, I; Daniels, T; DeVoe, R; Dolinski, M J; Donato, K; Fairbank, W; Farine, J; Giroux, G; Gornea, R; Graham, K; Gratta, G; Green, M; Hagemann, C; Hall, K; Hallman, D; Hargrove, C; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K; Lacey, J; Leonard, D S; LePort, F; Mackay, D; MacLellan, R; Mong, B; Diez, M Montero; Muller, A R; Neilson, R; Niner, E; O'Sullivan, K; Piepke, A; Pocar, A; Pushkin, K; Rollin, E; Sinclair, D; Slutsky, S; Stekhanov, V; Twelker, K; Voskanian, N; Vuilleumier, J -L; Wichoski, U; Wodin, J; Yang, L; Yen, Y -R

    2011-01-01

    We discuss the design, operation, and calibration of two versions of a xenon gas purity monitor (GPM) developed for the EXO double beta decay program. The devices are sensitive to concentrations of oxygen well below 1 ppb at an ambient gas pressure of one atmosphere or more. The theory of operation of the GPM is discussed along with the interactions of oxygen and other impurities with the GPM's tungsten filament. Lab tests and experiences in commissioning the EXO-200 double beta decay experiment are described. These devices can also be used on other noble gases.

  1. Liquid Xenon Detectors for Positron Emission Tomography

    CERN Document Server

    Miceli, A; Benard, F; Bryman, D A; Kurchaninov, L; Martin, J P; Muennich, A; Retiere, F; Ruth, T J; Sossi, V; Stoessl, A J

    2011-01-01

    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated performance shows that an energy resolution of <10% (FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate position resolution <1 mm (FWHM).

  2. A pulse generator for xenon lamps

    CERN Document Server

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  3. A pulse generator for xenon lamps

    Science.gov (United States)

    Janata, E.

    2002-10-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within ±0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 μs. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  4. Electron drift in a large scale solid xenon

    CERN Document Server

    Yoo, J

    2015-01-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7\\,cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163\\,K), the drift speed is 0.193 $\\pm$ 0.003 cm/$\\mu$s while the drift speed in the solid phase (157\\,K) is 0.397 $\\pm$ 0.006 cm/$\\mu$s at 900 V/cm over 8.0\\,cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  5. Coarse grained model for calculating the ion mobility of hydrocarbons

    Science.gov (United States)

    Kuroboshi, Y.; Takemura, K.

    2016-12-01

    Hydrocarbons are widely used as insulating compounds. However, their fundamental characteristics in conduction phenomena are not completely understood. A great deal of effort is required to determine reasonable ionic behavior from experiments because of their complicated procedures and tight controls of the temperature and the purity of the liquids. In order to understand the conduction phenomena, we have theoretically calculated the ion mobilities of hydrocarbons and investigated their characteristics using the coarse grained model in molecular dynamics simulations. We assumed a molecule of hydrocarbons to be a bead and simulated its dependence on the viscosity, electric field, and temperature. Furthermore, we verified the suitability of the conformation, scale size, and long-range interactions for the ion mobility. The results of the simulations show that the ion mobility values agree reasonably well with the values from Walden's rule and depend on the viscosity but not on the electric field. The ion mobility and self-diffusion coefficient exponentially increase with increasing temperature, while the activation energy decreases with increasing molecular size. These values and characteristics of the ion mobility are in reasonable agreement with experimental results. In the future, we can understand not only the ion mobilies of hydrocarbons in conduction, but also we can predict general phenomena in electrochemistry with molecular dynamics simulations.

  6. Lithium-ion batteries modeling involving fractional differentiation

    Science.gov (United States)

    Sabatier, Jocelyn; Merveillaut, Mathieu; Francisco, Junior Mbala; Guillemard, Franck; Porcelatto, Denis

    2014-09-01

    With hybrid and electric vehicles development, automobile battery monitoring systems (BMS) have to meet the new requirements. These systems have to give information on state of health, state of charge, available power. To get this information, BMS often implement battery models. Accuracy of the information manipulated by the BMS thus depends on the model accuracy. This paper is within this framework and addresses lithium-ion battery modeling. The proposed fractional model is based on simplifications of an electrochemical model and on resolution of some partial differential equations used in its description. Such an approach permits to get a simple model in which electrochemical variables and parameters still appear.

  7. Electron motion enhanced high harmonic generation in xenon clusters

    CERN Document Server

    Li, Na; Bai, Ya; Peng, Peng; Li, Ruxin; Xu, Zhizhan

    2016-01-01

    Atomic clusters presents an isolated system that models the bulk materials whose mechanism of HHG remains uncertain, and a promising medium to produce HHG beyond the limited conversion efficiency for gaseous atoms. Here we reveal that the oscillation of collective electron motion within clusters develops after the interaction of intense laser fields, and it significantly enhances the harmonic dipole and increases the quantum phase of the harmonics. Experimentally, the phase matching conditions of HHG from nanometer xenon clusters and atoms are distinguished, which confirms the enhanced internal field that was proposed theoretically a decade ago. The separation of HHG from atoms and clusters allows the determination of the amplitude of the HHG for clusters to be 5 orders higher, corresponding to 4 times higher conversion efficiency for atomic response. The finding provides an insight on the HHG mechanism of bulk materials and a means by which an efficient coherent X-ray source can be developed.

  8. Investigation of many-body forces in krypton and xenon

    Science.gov (United States)

    Salacuse, J. J.; Egelstaff, P. A.

    1988-10-01

    The simplicity of the state dependence at relatively high temperatures of the many-body potential contribution to the pressure and energy has been pointed out previously [J. Ram and P. A. Egelstaff, J. Phys. Chem. Liq. 14, 29 (1984); A. Teitsima and P. A. Egelstaff, Phys. Rev. A 21, 367 (1980)]. In this paper, we investigate how far these many-body potential terms may be represented by simple models in the case of krypton on the 423-, 273-, 190-, and 150-K isotherms, and xenon on the 170-, 210-, and 270-K isotherms. At the higher temperatures the best agreement is found for the mean-field type of theory, and some consequences are pointed out. On the lower isotherms a state point is found where the many-body energy vanishes, and large departures from mean-field behavior are observed. This is attributed to the influence of short-ranged many-body forces.

  9. Ion transport from plasma ion source at ISOLTRAP

    CERN Document Server

    Steinsberger, Timo Pascal

    2017-01-01

    In this report, my work as CERN Summer Student at the ISOLTRAP experiment at ISOLDE is described. A new plasma ion source used as oine source for calibration and implemented before my arrival was commissioned and transportation settings for the produced ions to the ion traps were found. The cyclotron frequencies of 40Ar and the xenon isotopes 129-132Xe were measured using time-of-flight and phase-imaging ion-cyclotron-resonance mass spectroscopy.

  10. Perovskites with the Framework-Forming Xenon.

    Science.gov (United States)

    Britvin, Sergey N; Kashtanov, Sergei A; Krzhizhanovskaya, Maria G; Gurinov, Andrey A; Glumov, Oleg V; Strekopytov, Stanislav; Kretser, Yury L; Zaitsev, Anatoly N; Chukanov, Nikita V; Krivovichev, Sergey V

    2015-11-23

    The Group 18 elements (noble gases) were the last ones in the periodic system to have not been encountered in perovskite structures. We herein report the synthesis of a new group of double perovskites KM(XeNaO6) (M = Ca, Sr, Ba) containing framework-forming xenon. The structures of the new compounds, like other double perovskites, are built up of the alternating sequence of corner-sharing (XeO6) and (NaO6) octahedra arranged in a three-dimensional rocksalt order. The fact that xenon can be incorporated into the perovskite structure provides new insights into the problem of Xe depletion in the atmosphere. Since octahedrally coordinated Xe(VIII) and Si(IV) exhibit close values of ionic radii (0.48 and 0.40 Å, respectively), one could assume that Xe(VIII) can be incorporated into hyperbaric frameworks such as MgSiO3 perovskite. The ability of Xe to form stable inorganic frameworks can further extend the rich and still enigmatic chemistry of this noble gas.

  11. Numerical modeling of the SNS H- ion source

    Science.gov (United States)

    Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan; Stoltz, Peter H.

    2015-04-01

    Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved in order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report

  12. Molecular modeling of mechanosensory ion channel structural and functional features.

    Science.gov (United States)

    Gessmann, Renate; Kourtis, Nikos; Petratos, Kyriacos; Tavernarakis, Nektarios

    2010-09-16

    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  13. Molecular modeling of mechanosensory ion channel structural and functional features.

    Directory of Open Access Journals (Sweden)

    Renate Gessmann

    Full Text Available The DEG/ENaC (Degenerin/Epithelial Sodium Channel protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1. MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  14. Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure

    Science.gov (United States)

    Dewaele, Agnès; Worth, Nicholas; Pickard, Chris J.; Needs, Richard J.; Pascarelli, Sakura; Mathon, Olivier; Mezouar, Mohamed; Irifune, Tetsuo

    2016-08-01

    The noble gases are the most inert group of the periodic table, but their reactivity increases with pressure. Diamond-anvil-cell experiments and ab initio modelling have been used to investigate a possible direct reaction between xenon and oxygen at high pressures. We have now synthesized two oxides below 100 GPa (Xe2O5 under oxygen-rich conditions, and Xe3O2 under oxygen-poor conditions), which shows that xenon is more reactive under pressure than predicted previously. Xe2O5 was observed using X-ray diffraction methods, its structure identified through ab initio random structure searching and confirmed using X-ray absorption and Raman spectroscopies. The experiments confirm the recent prediction of Xe3O2 as a stable xenon oxide under high pressure. Xenon atoms adopt mixed oxidation states of 0 and +4 in Xe3O2 and +4 and +6 in Xe2O5. Xe3O2 and Xe2O5 form extended networks that incorporate oxygen-sharing XeO4 squares, and Xe2O5 additionally incorporates oxygen-sharing XeO5 pyramids. Other xenon oxides (XeO2, XeO3) are expected to form at higher pressures.

  15. Predictive Models of Li-ion Battery Lifetime (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

    2014-09-01

    Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

  16. An integrated systems model for heavy ion drivers

    Energy Technology Data Exchange (ETDEWEB)

    Bangerter, R O; Faltens, A; Meier, W R

    1998-09-02

    A source-to-target computer model for an induction linac driver for heavy ion fusion has been developed and used to define a reference case driver that meets the requirements of one current target design. Key features of the model are discussed, and the design parameters of the reference case design are described. Examples of the systems analyses leading to the point design are given, and directions for future work are noted.

  17. Quantum Model for the Selectivity Filter in K$^{+}$ Ion Channel

    CERN Document Server

    Cifuentes, A A

    2013-01-01

    In this work, we present a quantum transport model for the selectivity filter in the KcsA potassium ion channel. This model is fully consistent with the fact that two conduction pathways are involved in the translocation of ions thorough the filter, and we show that the presence of a second path may actually bring advantages for the filter as a result of quantum interference. To highlight interferences and resonances in the model, we consider the selectivity filter to be driven by a controlled time-dependent external field which changes the free energy scenario and consequently the conduction of the ions. In particular, we demonstrate that the two-pathway conduction mechanism is more advantageous for the filter when dephasing in the transient configurations is lower than in the main configurations. As a matter of fact, K$^+$ ions in the main configurations are highly coordinated by oxygen atoms of the filter backbone and this increases noise. Moreover, we also show that, for a wide range of driving frequencie...

  18. Markov modeling of ion channels: implications for understanding disease.

    Science.gov (United States)

    Lampert, Angelika; Korngreen, Alon

    2014-01-01

    Ion channels are the bridge between the biochemical and electrical domains of our life. These membrane crossing proteins use the electric energy stored in transmembrane ion gradients, which are produced by biochemical activity to generate ionic currents. Each ion channel can be imagined as a small power plant similar to a hydroelectric power station, in which potential energy is converted into electric current. This current drives basically all physiological mechanisms of our body. It is clear that a functional blueprint of these amazing cellular power plants is essential for understanding the principle of all aspects of physiology, particularly neurophysiology. The golden path toward this blueprint starts with the biophysical investigation of ion channel activity and continues through detailed numerical modeling of these channels that will eventually lead to a full system-level description of cellular and organ physiology. Here, we discuss the first two stages of this process focusing on voltage-gated channels, particularly the voltage-gated sodium channel which is neurologically and pathologically important. We first detail the correlations between the known structure of the channel and its activity and describe some pathologies. We then provide a hands-on description of Markov modeling for voltage-gated channels. These two sections of the chapter highlight the dichotomy between the vast amounts of electrophysiological data available on voltage-gated channels and the relatively meager number of physiologically relevant models for these channels.

  19. PIC modeling of negative ion sources for fusion

    Science.gov (United States)

    Taccogna, F.; Minelli, P.

    2017-01-01

    This work represents the first attempt to model the full-size ITER negative ion source prototype including expansion, extraction and part of the acceleration regions keeping the resolution fine enough to resolve every single aperture of the extraction grid. The model consists of a 2.5-dimensional Particle-in-Cell/Monte Carlo Collision representation of the plane perpendicular to the filter field lines. Both the magnetic filter and electron deflection fields have been included. A negative ion current density of {j}{H-}=500 {{A}} {{{m}}}-2 produced by neutral conversion from the plasma grid is used as fixed parameter, while negative ions produced by electron dissociative attachment of vibrationally excited molecules and by ionic conversion on plasma grid are self-consistently simulated. Results show the non-ambipolar character of the transport in the expansion region driven by electron magnetic drifts in the plane perpendicular to the filter field. It induces a top-bottom asymmetry detected up to the extraction grid which in turn leads to a tilted positive ion flow hitting the plasma grid and a tilted negative ion flow emitted from the plasma grid. As a consequence, the plasma structure is not uniform around the single aperture: the meniscus assumes a form of asymmetric lobe and a deeper potential well is detected from one side of the aperture relative to the other side. Therefore, the surface-produced contribution to the negative ion extraction is not equally distributed between both the sides around the aperture but it come mainly from the lower side of the grid giving an asymmetrical current distribution in the single beamlet.

  20. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Iodine and Xenon

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, R D; Dietrich, F S; Bauer, R; Kelley, K; Mustafa, M

    2004-09-20

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of iodine and xenon (52 {<=} Z {<=} 54, 71 {<=} N {<=} 76).

  1. A neuro-fuzzy controller for xenon spatial oscillations in load-following operation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Man Gyun [Chosun University, Kwangju (Korea, Republic of); Upadhyaya, Belle R. [The University of Tennessee, Knoxville (United States)

    1997-12-31

    A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent method. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very responses to a step or a ramp change of target axial offest without any residual flux oscillations. 9 refs., 5 figs. (Author)

  2. Variational Assimilation for Xenon Dynamical Forecasts in Neutronic using Advanced Background Error Covariance Matrix

    CERN Document Server

    Ponçot, Angélique; Bouriquet, Bertrand; Erhard, Patrick; Gratton, Serge; Thual, Olivier

    2013-01-01

    Data assimilation method consists in combining all available pieces of information about a system to obtain optimal estimates of initial states. The different sources of information are weighted according to their accuracy by the means of error covariance matrices. Our purpose here is to evaluate the efficiency of variational data assimilation for the xenon induced oscillations forecasts in nuclear cores. In this paper we focus on the comparison between 3DVAR schemes with optimised background error covariance matrix B and a 4DVAR scheme. Tests were made in twin experiments using a simulation code which implements a mono-dimensional coupled model of xenon dynamics, thermal, and thermal-hydraulic processes. We enlighten the very good efficiency of the 4DVAR scheme as well as good results with the 3DVAR one using a careful multivariate modelling of B.

  3. Search for solar axions in XMASS, a large liquid-xenon detector

    CERN Document Server

    Abe, K; Hiraide, K; Hirano, S; Kishimoto, Y; Kobayashi, K; Moriyama, S; Nakagawa, K; Nakahata, M; Ogawa, H; Oka, N; Sekiya, H; Suzuki, A Shinozaki Y; Takeda, A; Takachio, O; Ueshima, K; Umemoto, D; Yamashita, M; Yang, B S; Tasaka, S; Liu, J; Martens, K; Hosokawa, K; Miuchi, K; Murata, A; Onishi, Y; Otsuka, Y; Takeuchi, Y; Kim, Y H; Lee, K B; Lee, M K; Lee, J S; Fukuda, Y; Itow, Y; Masuda, K; Nishitani, Y; Takiya, H; Uchida, H; Kim, N Y; Kim, Y D; Kusaba, F; Motoki, D; Nishijima, K; Fujii, K; Murayama, I; Nakamura, S

    2012-01-01

    XMASS, a low-background, large liquid-xenon detector, was used to search for solar axions that would be produced by bremsstrahlung and Compton effects in the Sun. With an exposure of 5.6ton days of liquid xenon, the model-independent limit on the coupling for mass $\\ll$ 1keV is $|g_{aee}|< 5.4\\times 10^{-11}$ (90% C.L.), which is a factor of two stronger than the existing experimental limit. The bounds on the axion masses for the DFSZ and KSVZ axion models are 1.9 and 250eV, respectively. In the mass range of 10-40keV, this study produced the most stringent limit, which is better than that previously derived from astrophysical arguments regarding the Sun to date.

  4. Search for solar axions in XMASS, a large liquid-xenon detector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hieda, K. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Hiraide, K. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hirano, S. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kishimoto, Y.; Kobayashi, K.; Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nakagawa, K. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M.; Ogawa, H. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Oka, N. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Sekiya, H. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); and others

    2013-07-09

    XMASS, a low-background, large liquid-xenon detector, was used to search for solar axions that would be produced by bremsstrahlung and Compton effects in the Sun. With an exposure of 5.6 ton days of liquid xenon, the model-independent limit on the coupling for mass ≪1 keV is |g{sub aee}|<5.4×10{sup −11} (90% C.L.), which is a factor of two stronger than the existing experimental limit. The bounds on the axion masses for the DFSZ and KSVZ axion models are 1.9 and 250 eV, respectively. In the mass range of 10–40 keV, this study produced the most stringent limit, which is better than that previously derived from astrophysical arguments regarding the Sun to date.

  5. Optical properties of xenon implanted CuInSe{sub 2} by photoacoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Satour, F.Z. [Laboratoire: Croissance et Caracterisation de Nouveaux Semiconducteurs, Departement d' Electronique, Faculte de Technologie, Universite Ferhat Abbas-Setif, 19000 Setif (Algeria); Zegadi, A., E-mail: ameur_zegadi@yahoo.fr [Laboratoire: Croissance et Caracterisation de Nouveaux Semiconducteurs, Departement d' Electronique, Faculte de Technologie, Universite Ferhat Abbas-Setif, 19000 Setif (Algeria)

    2012-07-15

    A theoretical relation is derived for the normalized photoacoustic amplitude signal of a gas-coupled cell for the case of double-layer solid samples with particular application given to ion implanted semiconductors. Numerical estimates for a solar cell of the type CdS/CuInSe{sub 2} based on experimental measured data of these compounds are given to illustrate the photoacoustic effect originating from double-layer samples. In application to ion implanted semiconductors, we show that the absorption coefficient of the implanted layer can be very easily extracted by photoacoustic spectroscopy if the absorption coefficient of the untreated substrate is known. We also present the optical properties results obtained from the analysis of the effect of xenon implantation into CuInSe{sub 2} single crystals with the energy of 40 keV and a dose of 5 Multiplication-Sign 10{sup 16} ions/cm{sup 2}. - Highlights: Black-Right-Pointing-Pointer A derived theoretical relation for photoacoustic study of implanted solids. Black-Right-Pointing-Pointer Optical analysis of the effect of xenon implantation into CuInSe{sub 2}. Black-Right-Pointing-Pointer Impurity defect states analysis following the introduction of Xe into CuInSe{sub 2}. Black-Right-Pointing-Pointer Comparison between results obtained and existing literature.

  6. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  7. A Xenon Condenser with a Remote Liquid Storage Vessel

    CERN Document Server

    Slutsky, S; Breuer, H; Dobi, A; Hall, C; Langford, T; Leonard, D; Kaufman, L J; Strickland, V; Voskanian, N

    2009-01-01

    We describe the design and operation of a system for xenon liquefaction in which the condenser is separated from the liquid storage vessel. The condenser is cooled by a pulse tube cryocooler, while the vessel is cooled only by the liquid xenon itself. This arrangement facilitates liquid particle detector research by allowing easy access to the upper and lower flanges of the vessel. We find that an external xenon gas pump is useful for increasing the rate at which cooling power is delivered to the vessel, and we present measurements of the power and efficiency of the apparatus.

  8. Ionization and scintillation of nuclear recoils in gaseous xenon

    CERN Document Server

    Renner, J; Goldschmidt, A; Matis, H S; Miller, T; Nakajima, Y; Nygren, D; Oliveira, C A B; Shuman, D; Álvarez, V; Borges, F I G; Cárcel, S; Castel, J; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gil, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Iguaz, F J; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez, A; Moiseenko, A; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot-Guinot, M; Palma, R; Pérez, J; Aparicio, J L Pérez; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R C; White, J; Yahlali, N

    2014-01-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $\\alpha$-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  9. Liquid xenon scintillators for imaging of positron emitters.

    Science.gov (United States)

    Lavoie, L

    The current understanding of xenon scintillation physics is summarized and keyed to the use of xenon as a gamma-ray detector in medical radioisotope imaging systems. Liquid xenon has a short scintillation pulse (approximately 10(8) sec) and high gamma-ray absorption and scintillation efficiencies. The fast pulse may facilitate imaging in vivo distributions of hot positron sources and allow recovery of additional spatial information by time-of-flight techniques. We begin by describing our own study of the feasibility of making a practical positron scanning system, and consider the problems of scintillation decay time, linearity, efficiency, purity, and electricfield amplifcation. The prospects for a practical instrument are considered.

  10. Radon depletion in xenon boil-off gas

    OpenAIRE

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2016-01-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of $^{222}$Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of $\\gtrsim 4$ for the $^{222}$Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based $\\alpha$-detector and miniaturized proportional counters are used to detect the radon. As the rado...

  11. An integrative model of ion regulation in yeast.

    Science.gov (United States)

    Ke, Ruian; Ingram, Piers J; Haynes, Ken

    2013-01-01

    Yeast cells are able to tolerate and adapt to a variety of environmental stresses. An essential aspect of stress adaptation is the regulation of monovalent ion concentrations. Ion regulation determines many fundamental physiological parameters, such as cell volume, membrane potential, and intracellular pH. It is achieved through the concerted activities of multiple cellular components, including ion transporters and signaling molecules, on both short and long time scales. Although each component has been studied in detail previously, it remains unclear how the physiological parameters are maintained and regulated by the concerted action of all components under a diverse range of stress conditions. In this study, we have constructed an integrated mathematical model of ion regulation in Saccharomyces cerevisiae to understand this coordinated adaptation process. Using this model, we first predict that the interaction between phosphorylated Hog1p and Tok1p at the plasma membrane inhibits Tok1p activity and consequently reduces Na(+) influx under NaCl stress. We further characterize the impacts of NaCl, sorbitol, KCl and alkaline pH stresses on the cellular physiology and the differences between the cellular responses to these stresses. We predict that the calcineurin pathway is essential for maintaining a non-toxic level of intracellular Na(+) in the long-term adaptation to NaCl stress, but that its activation is not required for maintaining a low level of Na(+) under other stresses investigated. We provide evidence that, in addition to extrusion of toxic ions, Ena1p plays an important role, in some cases alongside Nha1p, in re-establishing membrane potential after stress perturbation. To conclude, this model serves as a powerful tool for both understanding the complex system-level properties of the highly coordinated adaptation process and generating further hypotheses for experimental investigation.

  12. An integrative model of ion regulation in yeast.

    Directory of Open Access Journals (Sweden)

    Ruian Ke

    Full Text Available Yeast cells are able to tolerate and adapt to a variety of environmental stresses. An essential aspect of stress adaptation is the regulation of monovalent ion concentrations. Ion regulation determines many fundamental physiological parameters, such as cell volume, membrane potential, and intracellular pH. It is achieved through the concerted activities of multiple cellular components, including ion transporters and signaling molecules, on both short and long time scales. Although each component has been studied in detail previously, it remains unclear how the physiological parameters are maintained and regulated by the concerted action of all components under a diverse range of stress conditions. In this study, we have constructed an integrated mathematical model of ion regulation in Saccharomyces cerevisiae to understand this coordinated adaptation process. Using this model, we first predict that the interaction between phosphorylated Hog1p and Tok1p at the plasma membrane inhibits Tok1p activity and consequently reduces Na(+ influx under NaCl stress. We further characterize the impacts of NaCl, sorbitol, KCl and alkaline pH stresses on the cellular physiology and the differences between the cellular responses to these stresses. We predict that the calcineurin pathway is essential for maintaining a non-toxic level of intracellular Na(+ in the long-term adaptation to NaCl stress, but that its activation is not required for maintaining a low level of Na(+ under other stresses investigated. We provide evidence that, in addition to extrusion of toxic ions, Ena1p plays an important role, in some cases alongside Nha1p, in re-establishing membrane potential after stress perturbation. To conclude, this model serves as a powerful tool for both understanding the complex system-level properties of the highly coordinated adaptation process and generating further hypotheses for experimental investigation.

  13. Control Valve for Miniature Xenon Ion Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is continuing its development of electric propulsion engines for various applications. Efforts have been directed toward both large and small thrusters,...

  14. Viscoelasticity of Xenon near the Critical Point

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    Using a novel, overdamped, oscillator flown aboard the Space Shuttle, we measured the viscosity of xenon near the liquid-vapor critical point in the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz. The measured viscosity divergence is characterized by the exponent z(sub eta) = 0.0690 +/- 0.0006, in agreement with the value z(sub eta) = 0.067 +/- 0.002 calculated from a two-loop perturbation expansion. Viscoelastic behavior was evident when t = (T - T(sub c))/T(sub c) less than 10(exp -5) and dominant when t less than 10(exp -6), further from T(sub c) than predicted. Viscoelastic behavior scales as Af(tau) where tau is the fluctuation decay time. The measured value of A is 2.0 +/- 0.3 times the result of a one-loop calculation. (Uncertainties stated are one standard uncertainty.)

  15. Modeling for mean ion activity coefficient of strong electrolyte system with new boundary conditions and ion-size parameters

    Institute of Scientific and Technical Information of China (English)

    Miyi Li; Tao Fang

    2015-01-01

    A rigorous approach is proposed to model the mean ion activity coefficient for strong electrolyte systems using the Poisson–Boltzmann equation. An effective screening radius similar to the Debye decay length is introduced to define the local composition and new boundary conditions for the central ion. The crystallographic ion size is also considered in the activity coefficient expressions derived and non-electrostatic contributions are neglected. The model is presented for aqueous strong electrolytes and compared with the classical Debye–Hückel (DH) limiting law for dilute solutions. The radial distribution function is compared with the DH and Monte Carlo studies. The mean ion activity coefficients are calculated for 1:1 aqueous solutions containing strong electrolytes composed of alkali halides. The individual ion activity coefficients and mean ion activity coefficients in mixed sol-vents are predicted with the new equations.

  16. Modelling interaction cross sections for intermediate and low energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B

    2002-07-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  17. Modelling interaction cross sections for intermediate and low energy ions.

    Science.gov (United States)

    Toburen, L H; Shinpaugh, J L; Justiniano, E L B

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes that can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured ejected electron energy spectra.

  18. Two models with rescattering for high energy heavy ion collisions

    Science.gov (United States)

    Bøggild, H.; Hansen, Ole; Humanic, T. J.

    2006-12-01

    The effects of hadronic rescattering in high energy relativistic Au+Au collisions are studied using two very different models to describe the early stages of the collision. One model is based on a hadronic thermal picture and the other on a superposition of parton-parton collisions. Operationally, the output hadrons from each of these models are used as input to a hadronic rescattering calculation. The results of the rescattering calculations from each model are then compared with rapidity and transverse momentum distributions from the BNL Relativistic Heavy Ion Collider BRAHMS experiment. In spite of the different points of view of the two models of the initial stage, after rescattering, the observed differences between the models are mostly “washed out” and both models give observables that agree roughly with each other and with experimental data.

  19. Iodine-xenon studies and the relax mass spectrometer

    Science.gov (United States)

    Gilmour, J. D.; Ash, R. D.; Lyon, I. C.; Johnston, W. A.; Hutchison, R.; Bridges, J. C.; Turner, G.

    1994-07-01

    RELAX combines a resonance ionization ion source with a cryogenic sample concentrator to achieve ultrasensitivity. Gas is extracted from samples using either a continuous wave laser microprobe based on an argon-ion laser or a filament microfurnace. Recent refinements in the operating procedure have resulted in optimum sensitivities such that detection rates of 1 cps are achieved from fewer than 500 atoms. A Xe-128 spike reservoir has also been added and characterized, allowing accurate determinations of absolute amounts of gas. We have completed a preliminary study of the iodine-xenon system in samples from the Bjurbole and Parnallee meteorites. Bjurbole chondrules ranging in mass from 5.45 mg to 260 micrograms were analyzed by laser microprobe. The results from these samples are consistent with an effectively uniform formation age, suggesting that the use of Bjurbole chondrules for calibration of this chronometer can be extended to samples in this size range. Samples from two chondrules from the Parnallee meteorite have been analyzed to date. An alpha-cristobalite-bearing chondrule (designated CB1) was found to have a formation age 4.62 +/- 0.44 Ma after Bjurboele, while a porphyritic olivine macrochondrule appears to have been reset after the decay of I-129(t1/2 17 Ma). Consideration of these results alongside Ar-Ar data from the macrochondrule and whole rock samples suggests that Parnallee has a complex history: The macrochondrule underwent an early postcrystallization degassing event but appears to have been essentially unaffected by the later (1.9 Ga) partial resetting of the bulk meteorite.

  20. Heavy ion tracks in polycarbonate. Comparison with a heavy ion irradiated model compound (diphenyl carbonate)

    Science.gov (United States)

    Ferain, E.; Legras, R.

    1993-09-01

    The chemical modifications induced by energetic heavy ion irradiation of polycarbonate (PC) film are determined by GPC, HPLC, ESR, TGA, IR and UV spectrophotometry. The main results of the irradiation are creation of radicals, chain scission, cross-linking and appearance of new chemical groups in the main polymer chain. As far as the creation of new groups is concerned, they are determined by means of a model compound of PC: the diphenyl carbonate (DPC). The following compounds are identified after energetic heavy ion irradiation of DPC: salicylic acid, phenol, 4,4'-biphenol, 2,4'-biphenol, 2,2'-biphenol, 4-phenoxyphenol, 2-phenoxyphenol, phenyl ether, phenyl benzoate, phenyl salicylate, 2-phenylphenol and 2-phenoxyphenyl benzoate. A similarity between the heavy ion irradiation and a heat treatment has also been established with DPC. On the basis of these results, we try to give an explanation of the preferential attack along the tracks of the irradiated film. Also, an explanation of the well-known beneficial effect of an UV exposition of the irradiated film on the selectivity of this preferential chemical attack is suggested.

  1. Predictive Models of Li-ion Battery Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler; Wood, Eric; Santhanagopalan, Shriram; Kim, Gi-heon; Shi, Ying; Pesaran, Ahmad

    2015-06-15

    It remains an open question how best to predict real-world battery lifetime based on accelerated calendar and cycle aging data from the laboratory. Multiple degradation mechanisms due to (electro)chemical, thermal, and mechanical coupled phenomena influence Li-ion battery lifetime, each with different dependence on time, cycling and thermal environment. The standardization of life predictive models would benefit the industry by reducing test time and streamlining development of system controls.

  2. Monte Carlo modeling of ion beam induced secondary electrons

    Energy Technology Data Exchange (ETDEWEB)

    Huh, U., E-mail: uhuh@vols.utk.edu [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Cho, W. [Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996-2100 (United States); Joy, D.C. [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-09-15

    Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100 keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10–100 keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. - Highlights: • The Universal ASTAR Yield Curve was derived from data recently published by NIST. • IONiSE incorporated with the Curve will predict iSE yield for elements and compounds. • This approach can also handle other ion beams by changing basic scattering profile.

  3. Radon depletion in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T.M.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-03-15

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of {sup 222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of >or similar 4 for the {sup 222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10{sup -15} mol/mol level. (orig.)

  4. Radon depletion in xenon boil-off gas

    CERN Document Server

    Bruenner, S; Lindemann, S; Undagoitia, T Marrodán; Simgen, H

    2016-01-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of $^{222}$Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of $\\gtrsim 4$ for the $^{222}$Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based $\\alpha$-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the $10^{-15}\\,$mol/mol level.

  5. MPGDs in Compton imaging with liquid-xenon

    CERN Document Server

    Samuel, Duval; Herve, Carduner; Jean-Pierre, Cussonneau; Jacob, Lamblin; Patrick, Le Ray; Eric, Morteau; Tugdual, Oger; Jean-Sebastien, Stutzmann; Dominique, Thers

    2009-01-01

    The interaction of radiation with liquid xenon, inducing both scintillation and ionization signals, is of particular interest for Compton-sequences reconstruction. We report on the development and recent results of a liquid-xenon time-projection chamber, dedicated to a novel nuclear imaging technique named "3 gamma imaging". In a first prototype, the scintillation is detected by a vacuum photomultiplier tube and the charges are collected with a MICROMEGAS structure; both are fully immersed in liquid xenon. In view of the final large-area detector, and with the aim of minimizing dead-zones, we are investigating a gaseous photomultiplier for recording the UV scintillation photons. The prototype concept is presented as well as preliminary results in liquid xenon. We also present soft x-rays test results of a gaseous photomultiplier prototype made of a double Thick Gaseous Electron Multiplier (THGEM) at normal temperature and pressure conditions.

  6. Radon depletion in xenon boil-off gas

    Science.gov (United States)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  7. Plutonium-244 fission xenon in the most primitive meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, P.K.; Myers, W.A. (Dept. of Chemical Engineering, Univ. Arkansas, Fayetteville, AR (United States))

    1994-01-01

    The plutonium-244/xenon-136 ages of the Murchison, Murray and Orgueil meteorites have been calculated from the existing xenon isotope data and the uranium contents. The CI carbonaceous chondrite Orgueil, which is considered to be among the most primitive - in the sense of the least altered - sample of the solar system known to man, appears to have started to retain its xenon more than 5,000 million years ago, when the ratio of [sup 244]Pu to [sup 238]U in the solar system was as high as (0.5 [+-] 0.1) (atom/atom) and the CM carbonaceous chondrites Murchison and Murray started to retain their xenon about 4,940 million years ago, when the [sup 244]Pu to [sup 238]U ratio was about 0.17 (atom/atom). (orig.)

  8. Radon removal from gaseous xenon with activated charcoal

    Science.gov (United States)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y.; Liu, J.; Martens, K.; Moriyama, S.; Nakahata, M.; Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A.; Suzuki, Y.; Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D.; Yamashita, M.; Hosokawa, K.; Murata, A.; Otsuka, K.; Takeuchi, Y.; Kusaba, F.; Motoki, D.; Nishijima, K.; Tasaka, S.; Fujii, K.; Murayama, I.; Nakamura, S.; Fukuda, Y.; Itow, Y.; Masuda, K.; Nishitani, Y.; Takiya, H.; Uchida, H.; Kim, Y. D.; Kim, Y. H.; Lee, K. B.; Lee, M. K.; Lee, J. S.; Xmass Collaboration

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity vRn of radon and vXe of xenon in the trap with vRn/vXe=(0.96±0.10)×10-3 at -85 °C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  9. Mirror dark matter will be confirmed or excluded by XENON1T

    CERN Document Server

    Clarke, J D

    2016-01-01

    Mirror dark matter, where dark matter resides in a hidden sector exactly isomorphic to the standard model, can be probed via direct detection experiments by both nuclear and electron recoils if the kinetic mixing interaction exists. In fact, the kinetic mixing interaction appears to be a prerequisite for consistent small scale structure: Mirror dark matter halos around spiral galaxies are dissipative - losing energy via dark photon emission. This ongoing energy loss requires a substantial energy input, which can be sourced from ordinary supernovae via kinetic mixing induced processes in the supernova's core. Astrophysical considerations thereby give a lower limit on the kinetic mixing strength, and indeed lower limits on both nuclear and electron recoil rates in direct detection experiments can be estimated. We show here that these lower limits are expected to be surpassed by both nuclear recoil and electron recoil searches in forthcoming XENON experiments including LUX and XENON1T. Thus, we anticipate that t...

  10. Mirror dark matter will be confirmed or excluded by XENON1T

    Science.gov (United States)

    Clarke, J. D.; Foot, R.

    2017-03-01

    Mirror dark matter, where dark matter resides in a hidden sector exactly isomorphic to the standard model, can be probed via direct detection experiments by both nuclear and electron recoils if the kinetic mixing interaction exists. In fact, the kinetic mixing interaction appears to be a prerequisite for consistent small scale structure: Mirror dark matter halos around spiral galaxies are dissipative - losing energy via dark photon emission. This ongoing energy loss requires a substantial energy input, which can be sourced from ordinary supernovae via kinetic mixing induced processes in the supernova's core. Astrophysical considerations thereby give a lower limit on the kinetic mixing strength, and indeed lower limits on both nuclear and electron recoil rates in direct detection experiments can be estimated. We show here that potentially all of the viable parameter space will be probed in forthcoming XENON experiments including LUX and XENON1T. Thus, we anticipate that these experiments will provide a definitive test of the mirror dark matter hypothesis.

  11. Ab initio electron scattering cross-sections and transport in liquid xenon

    Science.gov (United States)

    Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.

    2016-09-01

    Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10-4-1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.

  12. Multi-ion conduction bands in a simple model of calcium ion channels

    CERN Document Server

    Kaufman, I; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2012-01-01

    We report self-consistent Brownian dynamics simulations of a simple electrostatic model of the selectivity filters (SF) of calcium ion channels. They reveal regular structure in the conductance and selectivity as functions of the fixed negative charge Qf at the SF. This structure comprises distinct regions of high conductance (conduction bands) M0, M1, M2 separated by regions of zero-conductance (stop-bands). Two of these conduction bands, M1 and M2, demonstrate high calcium selectivity and prominent anomalous mole fraction effects and can be identified with the L-type and RyR calcium channels.

  13. Highly Accelerated Aging Method for Poly(ethylene terephthalate Film Using Xenon Lamp with Heating System

    Directory of Open Access Journals (Sweden)

    Masahiro Funabashi

    2016-01-01

    Full Text Available PET films were degraded at temperature higher than 100°C with steam and xenon light by using the newly developed system. Degradation products obtained using the proposed and conventional systems were essentially the same, as indicated by the similar increase in the intensity of the carbonyl peak near 1685 cm−1 in the FT-IR spectra of irradiated specimens and spectrum of original PET film. Elastic moduli derived from the stress-strain (SS curves obtained in tensile tests were almost the same in the case of the proposed and conventional systems and were independent of the heating temperature, light intensity, and irradiation time. Tensile strength of degraded PET films decreases with increasing heating temperature. Tensile strengths of PET films degraded at same temperature decrease linearly with increasing intensity of xenon light. The lifetime at 90% strength of PET films was calculated. Attempts were made to express this lifetime as functions of the light intensity and the reciprocal of the absolute temperature by using the Eyring model. Estimated lifetime 15.9 h of tensile test using Eyring model for PET film agreed with the lifetime 22.7 h derived from data measured using the xenon weather meter.

  14. The health of SUSY after the Higgs discovery and the XENON100 data

    CERN Document Server

    Cabrera, Maria Eugenia; de Austri, Roberto Ruiz

    2012-01-01

    We analyze the implications for the status and prospects of supersymmetry of the Higgs discovery and the last XENON data. We focus mainly, but not only, on the CMSSM and NUHM models. Using a Bayesian approach we determine the distribution of probability in the parameter space of these scenarios. This shows that, most probably, they are now beyond the LHC reach. This negative chances increase further (at more than 95% c.l.) if one includes dark matter constraints in the analysis, in particular the last XENON100 data. However, the models would be probed completely by XENON1T. The mass of the LSP neutralino gets essentially fixed around 1 TeV. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises automatically from the careful Bayesian analysis itself, and allows to scan the whole parameter space. In this way, we can explain and resolve the apparent discrepancies between the previous results in the literature. Although SUSY has become hard to detec...

  15. Evaluation of hemodynamic effects of xenon in dogs undergoing hemorrhagic shock

    Directory of Open Access Journals (Sweden)

    Ruben C. Franceschi

    2013-01-01

    Full Text Available OBJECTIVES: The anesthetic gas xenon is reported to preserve hemodynamic stability during general anesthesia. However, the effects of the gas during shock are unclear. The objective of this study was to evaluate the effect of Xe on hemodynamic stability and tissue perfusion in a canine model of hemorrhagic shock. METHOD: Twenty-six dogs, mechanically ventilated with a fraction of inspired oxygen of 21% and anesthetized with etomidate and vecuronium, were randomized into Xenon (Xe; n = 13 or Control (C; n = 13 groups. Following hemodynamic monitoring, a pressure-driven shock was induced to reach an arterial pressure of 40 mmHg. Hemodynamic data and blood samples were collected prior to bleeding, immediately after bleeding and 5, 20 and 40 minutes following shock. The Xe group was treated with 79% Xe diluted in ambient air, inhaled for 20 minutes after shock. RESULT: The mean bleeding volume was 44 mL.kg-1 in the C group and 40 mL.kg-1 in the Xe group. Hemorrhage promoted a decrease in both the cardiac index (p<0.001 and mean arterial pressure (p<0.001. These changes were associated with an increase in lactate levels and worsening of oxygen transport variables in both groups (p<0.05. Inhalation of xenon did not cause further worsening of hemodynamics or tissue perfusion markers. CONCLUSIONS: Xenon did not alter hemodynamic stability or tissue perfusion in an experimentally controlled hemorrhagic shock model. However, further studies are necessary to validate this drug in other contexts.

  16. Measuring radon reduction in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, Stefan; Cichon, Dominick; Lindemann, Sebastian; Marrodan Undagoitia, Teresa; Simgen, Hardy [MPIK, Heidelberg (Germany)

    2016-07-01

    {sup 222}Rn, which originates from the decay of primordial {sup 238}U, is one of the major background sources for ultra-low background noble gas detectors. One of them is XENON1T, which is a dark matter direct detection experiment looking for hypothetical weakly interacting massive particles (WIMPs). It uses liquid xenon (LXe) as a detection medium and aims to be sensitive to spin-independent WIMP-nucleon cross-sections of σ∝2.10{sup -47} cm{sup 2} at a WIMP mass of ∝50 GeV/c{sup 2}. To achieve this goal, radon activity inside the detector must be limited to a few mBq/kg. One possible way for reducing the concentration of {sup 222}Rn inside such an LXe detector is using the so-called ''boil-off method''. It takes advantage of the fact, that the radon concentration in boil-off xenon is smaller compared to the concentration in the liquid xenon from which the boil-off xenon evaporated. This can be understood by the different vapor pressures of radon and xenon. In this talk, tests conducted at the MPIK are outlined which probe the feasibility and effectiveness of the boil-off method. The results prove, that a reduction of the radon concentration can indeed be achieved. In addition, an outlook for possible future applications of this technique is given.

  17. Scintillation luminescence for high-pressure xenon gas

    Science.gov (United States)

    Kobayashi, S.; Hasebe, N.; Igarashi, T.; Kobayashi, M.-N.; Miyachi, T.; Miyajima, M.; Okada, H.; Okudaira, O.; Tezuka, C.; Yokoyama, E.; Doke, T.; Shibamura, E.; Dmitrenko, V. V.; Ulin, S. E.; Vlasik, K. F.

    2004-09-01

    Scintillation and ionization yields in xenon gas for 5.49MeV alpha-particles were measured in the range of pressure from 0.35 to 3.7MPa and the electric field strength (E) over the number density of xenon atoms (N), E/N from 0 to 5×10-18Vcm2. When our data are normalized at the data point measured by Saito et al., the number of scintillation photons is 2.3×105 while the number of ionization electrons is 2.0×105 at 2.6MPa and at 3.7×10-18Vcm2. The scintillation and ionization yields of xenon doped with 0.2% hydrogen, High-Pressure Xenon gas[H2-0.2%], at 2.6MPa was also measured. Scintillation yield of the Xe-H2 mixture gas is 80% as high as that of pure xenon. It is found that the scintillation yield is luminous enough to generate a trigger pulse of the high-pressure xenon time projection chamber, which is expected as a promising MeV Compton gamma-ray camera.

  18. Review of xenon-133 production and related problems; Estudio bibliografico de la produccion de xenon-133 y problemas afines

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, M.; Ropero, M.

    1980-07-01

    A literature survey is given on the production methods of fission xenon-133 and related problems, such as purification, metrological and dosimetric aspects, preparation of isotopic solutions, recycling, etc. 127 references are included. (Author) 127 refs.

  19. Novel Parametric Circuit Modeling for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Ximing Cheng

    2016-07-01

    Full Text Available Because of their simplicity and dynamic response, current pulse series are often used to extract parameters for equivalent electrical circuit modeling of Li-ion batteries. These models are then applied for performance simulation, state estimation, and thermal analysis in electric vehicles. However, these methods have two problems: The assumption of linear dependence of the matrix columns and negative parameters estimated from discrete-time equations and least-squares methods. In this paper, continuous-time equations are exploited to construct a linearly independent data matrix and parameterize the circuit model by the combination of non-negative least squares and genetic algorithm, which constrains the model parameters to be positive. Trigonometric functions are then developed to fit the parameter curves. The developed model parameterization methodology was applied and assessed by a standard driving cycle.

  20. Interferences in Photodetachment of a Negative Molecular Ion Model

    Institute of Scientific and Technical Information of China (English)

    A. Afaq; DU Meng-Li

    2008-01-01

    By employing a two-center model, the total and differential cross sections in the photodetachment of "a negative molecular ion" are studied theoretically and obtained for the case of light polarization parallel to the molecular axis. We find that in contrast to the smooth behavior of the total cross section for perpendicular polarized light, the cross section for parallel polarized light shows an interesting oscillatory structure. The oscillations in the total cross section may provide a method to determine the distance between the two centers. We explain the oscillation in the total cross section as an interference effect using closed-orbit theory. We also calculated the detached-electron flux distributions on a screen placed at a large distance from the negative molecular ion. The distributions display multiple-ring-like interference patterns. Such interference patterns are similar to those in the photodetachment microscopy experiments.

  1. Model of wet chemical etching of swift heavy ions tracks

    Science.gov (United States)

    Gorbunov, S. A.; Malakhov, A. I.; Rymzhanov, R. A.; Volkov, A. E.

    2017-10-01

    A model of wet chemical etching of tracks of swift heavy ions (SHI) decelerated in solids in the electronic stopping regime is presented. This model takes into account both possible etching modes: etching controlled by diffusion of etchant molecules to the etching front, and etching controlled by the rate of a reaction of an etchant with a material. Olivine ((Mg0.88Fe0.12)2SiO4) crystals were chosen as a system for modeling. Two mechanisms of chemical activation of olivine around the SHI trajectory are considered. The first mechanism is activation stimulated by structural transformations in a nanometric track core, while the second one results from neutralization of metallic atoms by generated electrons spreading over micrometric distances. Monte-Carlo simulations (TREKIS code) form the basis for the description of excitations of the electronic subsystem and the lattice of olivine in an SHI track at times up to 100 fs after the projectile passage. Molecular dynamics supplies the initial conditions for modeling of lattice relaxation for longer times. These simulations enable us to estimate the effects of the chemical activation of olivine governed by both mechanisms. The developed model was applied to describe chemical activation and the etching kinetics of tracks of Au 2.1 GeV ions in olivine. The estimated lengthwise etching rate (38 µm · h‑1) is in reasonable agreement with that detected in the experiments (24 µm · h‑1).

  2. Removal of noble gases out of xenon by a cryogenic distillation column for the XENON1T experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fieguth, Alexander; Murra, Michael; Rosendahl, Stephan; Bruno, Gianmarco; Schneider, Sergej; Weinheimer, Christian; Huhmann, Christian [Institut fuer Kernphysik, WWU Muenster (Germany)

    2015-07-01

    The upcoming XENON1T experiment is the next step for the dark matter particle search. It will surpass current limits on the WIMP-nucleon cross section set by liquid xenon detectors as LUX and XENON100 by more than an order of magnitude, which leads to an expected sensitivity of 2.0.10{sup -47} cm{sup 2} for WIMPs with a mass of 50 GeV/c{sup 2} after a 2.2 ton-year live-time. For achieving new sensitivity limits the reduction of internal background sources as {sup 85}Kr and {sup 222}Rn is of crucial importance. Taking advantage of the different boiling points of these noble gas impurities and xenon, they can be separated by a cryogenic distillation column in different steps. The improvement of the krypton removal by distillation for the XENON1T experiment and a first test setup on radon distillation at the XENON100 experiment are presented.

  3. Removal of noble gases out of xenon by a cryogenic distillation column for the XENON1T experiment

    Energy Technology Data Exchange (ETDEWEB)

    Murra, Michael; Bruno, Gianmarco; Fieguth, Alexander; Huhmann, Christian; Rosendahl, Stephan; Schneider, Sergej; Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische-Wilhelms Universitaet Muenster (Germany)

    2015-07-01

    The XENON1T experiment is the next generation experiment for the direct detection of dark matter in the form of Weakly Interacting Massive Particles (WIMPS). With its 3.3 tons of liquid xenon XENON1T will increase the sensitivity on the WIMP-nucleon cross section down to 2.0 x 10{sup -47} cm{sup 2}, which is more than one order of magnitude better than the current best limits by LUX and XENON100. A key requirement to reach this sensitivity is the reduction of radioactive backgrounds such as {sup 85}Kr and {sup 222}Rn. Because of different boiling points of Kr and Xe both components can be separated by a cryogenic distillation column, which has been constructed and characterized for XENON1T, where a reduction factor greater 120000 has been confirmed. Based on the same principle, the separation of Rn and Xe by cryogenic distillation is currently being tested at XENON100, using the system as radon source and detector at the same time. The cryogenic distillation column, the krypton removal measurements as well as the radon removal tests are presented.

  4. NEXT Long-Duration Test Plume and Wear Characteristics after 16,550 h of Operation and 337 kg of Xenon Processed

    Science.gov (United States)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2009-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art. The NEXT ion propulsion system provides improved mission capabilities for future NASA science missions to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to validate and qualify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the mission-derived throughput requirement of 300 kg. This wear test is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of June 25, 2008, the thruster has accumulated 16,550 h of operation: the first 13,042 h at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. Operation since 13,042 h, i.e., the most recent 3,508 h, has been at an input power of 4.7 kW with 3.52 A beam current and 1180 V beam power supply voltage. The thruster has processed 337 kg of xenon (Xe) surpassing the NSTAR propellant throughput demonstrated during the extended life testing of the Deep Space 1 flight spare. The NEXT LDT has demonstrated a total impulse of 13.3 106 N s; the highest total impulse ever demonstrated by an ion thruster. Thruster plume diagnostics and erosion measurements are obtained periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Observed thruster component erosion rates are consistent with predictions and the thruster service life assessment. There have not been any observed anomalous erosion and all erosion estimates indicate a thruster throughput capability that exceeds 750 kg of Xe, an equivalent of 36,500 h of continuous operation at the full-power operating condition. This paper presents the erosion measurements and plume

  5. Molecular dynamics simulations of water within models of ion channels.

    Science.gov (United States)

    Breed, J; Sankararamakrishnan, R; Kerr, I D; Sansom, M S

    1996-04-01

    The transbilayer pores formed by ion channel proteins contain extended columns of water molecules. The dynamic properties of such waters have been suggested to differ from those of water in its bulk state. Molecular dynamics simulations of ion channel models solvated within and at the mouths of their pores are used to investigate the dynamics and structure of intra-pore water. Three classes of channel model are investigated: a) parallel bundles of hydrophobic (Ala20) alpha-helices; b) eight-stranded hydrophobic (Ala10) antiparallel beta-barrels; and c) parallel bundles of amphipathic alpha-helices (namely, delta-toxin, alamethicin, and nicotinic acetylcholine receptor M2 helix). The self-diffusion coefficients of water molecules within the pores are reduced significantly relative to bulk water in all of the models. Water rotational reorientation rates are also reduced within the pores, particularly in those pores formed by alpha-helix bundles. In the narrowest pore (that of the Ala20 pentameric helix bundle) self-diffusion coefficients and reorientation rates of intra-pore waters are reduced by approximately an order of magnitude relative to bulk solvent. In Ala20 helix bundles the water dipoles orient antiparallel to the helix dipoles. Such dipole/dipole interaction between water and pore may explain how water-filled ion channels may be formed by hydrophobic helices. In the bundles of amphipathic helices the orientation of water dipoles is modulated by the presence of charged side chains. No preferential orientation of water dipoles relative to the pore axis is observed in the hydrophobic beta-barrel models.

  6. Ab-initio electron scattering cross-sections and transport in liquid xenon

    CERN Document Server

    Boyle, Greg; Cocks, Daniel; Brunger, Michael; Buckman, Steve; Dujko, Sasa; White, Ron

    2016-01-01

    Ab-initio electron - liquid phase xenon fully differential cross-sections for electrons scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework [1] which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann's equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10^{-4} to 1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to transform highly accurate gas-phase cross-sections to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculatio...

  7. Progress in characterization of the Photomultiplier Tubes for XENON1T Dark Matter Experiment

    CERN Document Server

    Lyashenko, Alexey

    2015-01-01

    We report on the progress in characterization of the Hamamatsu model R11410-21 Photomultiplier tubes (PMTs) for XENON1T dark matter experiment. The absolute quantum efficiency (QE) of the PMT was measured at low temperatures down to -110 $^0$C (a typical the PMT operation temperature in liquid xenon detectors) in a spectral range from 154.5 nm to 400 nm. At -110 $^0$C the absolute QE increased by 10-15\\% at 175 nm compared to that measured at room temperature. A new low power consumption, low radioactivity voltage divider for the PMTs is being developed. The measurement results showed that the PMT with the current version of the divider demonstrated a linear response (within 5\\%) down to 5$\\cdot$10$^4$ photoelectrons at a rate of 200 Hz. The radioactive contamination induced by the PMT and the PMT voltage divider materials satisfies the requirements for XENON1T detector not to exceed a total radioactive contamination in the detector of 0.5 evts/year/1tonn. Most of the PMTs received from the manufacturer showe...

  8. Limits on GeV-scale WIMPs using charge signals in XENON100

    Science.gov (United States)

    Wall, Richard

    2014-03-01

    Various theoretical models and recent experimental results have led to growing interest in the search for WIMP-like dark matter in the mass range of a few GeV. One important class of detector used in this study is based on the liquid-gas, dual-phase Xenon time projection chamber (as in XENON100 and LUX). These detectors nominally use both scintillation (S1) and ionization (S2) signals to localize collision events in their sensitive volumes and thus reject background events, but it is known that the efficiency for detecting small S1 signals (such as are expected from a GeV-scale WIMP interaction) is much smaller than the efficiency for detecting an S2 from the same recoil. By removing the requirement of an observed S1 signal, one can thus effectively lower the energy threshold of the detector, and study GeV-scale WIMPs with greater sensitivity. With this in mind, we measure the rate of WIMP candidates in 225 live days of XENON100 data in events with small S2 signals (with or without an accompanying S1) and which pass other simple selection cuts optimized for GeV-scale WIMPs. This rate is then used to set a limit on the WIMP-nucleon cross-section for the mass range 1-10 GeV.

  9. Supernova neutrino physics with xenon dark matter detectors: A timely perspective

    CERN Document Server

    Lang, Rafael F; Reichard, Shayne; Selvi, Marco; Tamborra, Irene

    2016-01-01

    Dark matter detectors that utilize liquid xenon have now achieved tonne-scale targets, giving them sensitivity to all flavours of supernova neutrinos via coherent elastic neutrino-nucleus scattering. Considering for the first time a realistic detector model, we simulate the expected supernova neutrino signal for different progenitor masses and nuclear equations of state in existing and upcoming dual-phase liquid xenon experiments. We show that the proportional scintillation signal (S2) of a dual-phase detector allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the backgrounds are rendered negligible during the supernova burst. XENON1T (XENONnT and LZ; DARWIN) experiments will be sensitive to a supernova burst up to 25 (35; 65) kpc from Earth at a significance of more than 5 sigma, observing approximately 35 (123; 704) events from a 27 solar-mass supernova progenitor at 10 kpc. Moreover, it will be possible to measure the average neutrino energy of a...

  10. A Simple Model of Wings in Heavy-Ion Collisions

    CERN Document Server

    Parikh, Aditya

    2015-01-01

    We create a simple model of heavy ion collisions independent of any generators as a way of investigating a possible source of the wings seen in data. As a first test, we reproduce a standard correlations plot to verify the integrity of the model. We then proceed to test whether an η dependent v2 could be a source of the wings and take projections along multiple Δφ intervals and compare with data. Other variations of the model are tested by having dN/dφ and v2 depend on η as well as including pions and protons into the model to make it more realistic. Comparisons with data seem to indicate that an η dependent v2 is not the main source of the wings.

  11. Comprehensive modeling of ion-implant amorphization in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mok, K.R.C. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain) and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore)]. E-mail: g0202446@nus.edu.sg; Jaraiz, M. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Martin-Bragado, I. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Synopsys, Karl-Hammerschmidt Strasse 34, D-85609 Aschheim/Dornach (Germany); Rubio, J.E. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Castrillo, P. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Pinacho, R. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Srinivasan, M.P. [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore); Benistant, F. [Chartered Semiconductor Manufacturing. 60 Woodlands Industrial Park D, Street 2, Singapore 738406 (Singapore)

    2005-12-05

    A physically based model has been developed to simulate the ion-implant induced damage accumulation up to amorphization in silicon. Based on damage structures known as amorphous pockets (AP), which are three-dimensional, irregularly shaped agglomerates of interstitials (I) and vacancies (V) surrounded by crystalline silicon, the model is able to reproduce a wide range of experimental observations of damage accumulation and amorphization with interdependent implantation parameters. Instead of recrystallizing the I's and V's instantaneously, the recrystallization rate of an AP containing nI and mV is a function of its effective size, defined as min(n, m), irrespective of its internal spatial configuration. The parameters used in the model were calibrated using the experimental silicon amorphous-crystalline transition temperature as a function of dose rate for C, Si, and Ge. The model is able to show the superlinear damage build-up with dose, the extent of amorphous layer and the superadditivity effect of polyatomic ions.

  12. Modelling the ion-exchange equilibrium in nanoporous materials

    Directory of Open Access Journals (Sweden)

    M. Lukšič

    2012-06-01

    Full Text Available Distribution of a two component electrolyte mixture between the model adsorbent and a bulk aqueous electrolyte solution was studied using the replica Ornstein-Zernike theory and the grand canonical Monte Carlo method. The electrolyte components were modelled to mimic the HCl/NaCl and HCl/CaCl2 mixtures, respectively. The matrix, invaded by the primitive model electrolyte mixture, was formed from monovalent negatively charged spherical obstacles. The solution was treated as a continuous dielectric with the properties of pure water. Comparison of the pair distribution functions (obtained by the two methods between the various ionic species indicated a good agreement between the replica Ornstein-Zernike results and machine calculations. Among thermodynamic properties, the mean activity coefficient of the invaded electrolyte components was calculated. Simple model for the ion-exchange resin was proposed. The selectivity calculations yielded qualitative agreement with the following experimental observations: (i selectivity increases with the increasing capacity of the adsorbent (matrix concentration, (ii the adsorbent is more selective for the ion having higher charge density if its fraction in mixture is smaller.

  13. Independent-particle models for light negative atomic ions

    Science.gov (United States)

    Ganas, P. S.; Talman, J. D.; Green, A. E. S.

    1980-01-01

    For the purposes of astrophysical, aeronomical, and laboratory application, a precise independent-particle model for electrons in negative atomic ions of the second and third period is discussed. The optimum-potential model (OPM) of Talman et al. (1979) is first used to generate numerical potentials for eight of these ions. Results for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the OPM and HF electron affinities both depart significantly from experimental affinities. For this reason, two analytic potentials are developed whose inner energy levels are very close to the OPM and HF levels but whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These models are: (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter potential model of the Green, Sellin, Zachor type. The system O(-) or e-O, which is important in upper atmospheric physics is examined in some detail.

  14. Ion size effect on colloidal forces within the primitive model

    Directory of Open Access Journals (Sweden)

    J.Wu

    2005-01-01

    Full Text Available The effect of ion size on the mean force between a pair of isolated charged particles in an electrolyte solution is investigated using Monte Carlo simulations within the framework of the primitive model where both colloidal particles and small ions are represented by charged hard spheres and the solvent is treated as a dielectric continuum. It is found that the short-ranged attraction between like-charged macroions diminishes as the diameter of the intermediating divalent counterions and coions increases and the maximum attractive force is approximately a linear function of the counterion diameter. This size effect contradicts the prediction of the Asakura-Oosawa theory suggesting that an increase in the excluded volume of small ions would lead to a stronger depletion between colloidal particles. Interestingly, the simulation results indicate that both the hard-sphere collision and the electrostatic contributions to the mean force are insensitive to the size disparity of colloidal particles with the same average diameter.

  15. Modeling ion interpenetration, stagnation, and thermalization in colliding plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.E.; Winske, D.; Goldman, S.R.; Kopp, R.A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rogatchev, V.G.; Belkov, S.A.; Gasparyan, P.D.; Dolgoleva, G.V.; Zhidkov, N.V.; Ivanov, N.V.; Kochubej, Y.K.; Nasyrov, G.F.; Pavlovskii, V.A.; Smirnov, V.V.; Romanov, Y.A. [All Russian Scientific Research Institute of Experimental Physics, Sarov (Arzamas 16), Nizhniy Novgorod Region, 607200 (Russia)

    1996-03-01

    Ion interpenetration, stagnation, and energization processes are studied in colliding laser-produced plasma configurations relevant to Trident [R. G. Watt, Rev. Sci. Instrum. {bold 64}, 1770 (1993)] experiments using four different numerical methods: one-dimensional Monte Carlo and Lagrangian multifluid codes, and one- and two-dimensional hybrid (particle ions, fluid electrons) and single-fluid Lagrangian codes. Results from the four methodologies are compared for plasmas generated with gold and deuterated polyethylene (CD{sub 2}) targets. Overall, the various codes give similar results concerning the initial expansion of the plasmas and their collisional interaction, the degree of stagnation, stagnation time, and amount of ion thermalization for gold targets, while multispecies techniques indicate a much softer stagnation for CD{sub 2} plasmas than the single-fluid model. Variations in the results of the calculations due to somewhat different initializations and parameters, as well as to different physics in the codes, are discussed. {copyright} {ital 1996 American Institute of Physics.}

  16. Fast and selective MRI of xenon biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Doepfert, Joerg; Kunth, Martin; Witte, Christopher; Rossella, Federica; Schroeder, Leif [Leibniz-Institut fuer Molekulare Pharmakologie (FMP), Berlin (Germany)

    2012-07-01

    Due to its excellent chemical shift sensitivity and because its magnetization can be easily amplified by hyperpolarization, the use of xenon as a functionalized solution-state contrast agent (by trapping it in molecular cages such as cryptophane-A (CrA)) shows great promise. To further increase the signal, we detect Xe inside the cages indirectly by chemical exchange saturation transfer (Hyper-CEST). However, imaging of the hyperpolarized nuclei remains challenging, since each excitation pulse followed by readout gradients depletes the hyperpolarization. Here, we employ single-shot echo-planar imaging (EPI) to encode a whole image with only one excitation. We prepared a phantom consisting of two compartments containing CrA molecules (concentration: 10 {mu}M) with a chemical shift separation of 1.2 ppm and imaged it by EPI combined with CEST presaturation (acquisition time: 19 ms, saturation time: 4 s). By setting the frequency of the saturation pulse to either of the two cage frequencies, we were able to distinguish the two CrA resonances and separately image their spatial distribution. The total acquisition time for one image was drastically reduced compared to the original approach using chemical shift imaging. The proposed method demonstrates the possibility of fast and selective imaging of highly specific functionalized agents in the micro molar regime.

  17. Cerebral blood flow tomography with xenon-133

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.

  18. Breakdown characteristics of xenon HID Lamps

    Science.gov (United States)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  19. Ethane-xenon mixtures under shock conditions

    Science.gov (United States)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  20. Modeling the ion abundances in Saturn's inner magnetosphere

    Science.gov (United States)

    Fleshman, B. L.; Bagenal, F.; Delamere, P. A.

    2011-12-01

    Water ejected from Enceladus's plumes provides much of the material that fills both the dense H2O torus centered on Enceladus's orbit, as well as Saturn's neutral clouds which extend at least four times farther from Saturn. Photo- and impact ionization transforms a few percent of these neutrals into the ions co-rotating with Saturn's magnetosphere, and charge exchange is responsible for a substantial redistribution among the hydrogen and water-group ions, though it does not alter the overall plasma density. In this paper, we explore ion abundances at Saturn with a chemistry model developed to include all of these processes. Building on our earlier attempts, we now include a source of neutrals from a neutral cloud model, so as to advance our description to include radial and latitudinal variations. At the same time, we now prescribe a radially-varying plasma diffusion coefficient to study the magnetosphere's inability to contain centrifigually-unstable plasma. We also are interested in the effect of hot electrons (102-103 eV) beamed along field lines into the equatorial region chiefly of interest. Our parameter study of radial diffusion and hot-electron flux is anchored to available Cassini CAPS water-group and proton abundances. Preliminary results suggest an injection of ~10 MW by hot electrons, and reveal promising radial trends in the water-group abundances that agree well with Sittler et al. (2008). We can also simulate an Enceladus torus dominated H3O+ -- a result not obtainable prior to coupling the chemistry and neutral cloud models.

  1. Spectral and Atomic Physics Analysis of Xenon L-Shell Emission From High Energy Laser Produced Plasmas

    Science.gov (United States)

    Thorn, Daniel; Kemp, G. E.; Widmann, K.; Benjamin, R. D.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Fournier, K. B.; Liedahl, D.; Moore, A. S.; Blue, B. E.

    2016-10-01

    The spectrum of the L-shell (n =2) radiation in mid to high-Z ions is useful for probing plasma conditions in the multi-keV temperature range. Xenon in particular with its L-shell radiation centered around 4.5 keV is copiously produced from plasmas with electron temperatures in the 5-10 keV range. We report on a series of time-resolved L-shell Xe spectra measured with the NIF X-ray Spectrometer (NXS) in high-energy long-pulse (>10 ns) laser produced plasmas at the National Ignition Facility. The resolving power of the NXS is sufficiently high (E/ ∂E >100) in the 4-5 keV spectral band that the emission from different charge states is observed. An analysis of the time resolved L-shell spectrum of Xe is presented along with spectral modeling by detailed radiation transport and atomic physics from the SCRAM code and comparison with predictions from HYDRA a radiation-hydrodynamics code with inline atomic-physics from CRETIN. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  2. Modeling magnetosensitive ion channels in viscoelastic environment of living cells

    CERN Document Server

    Goychuk, Igor

    2015-01-01

    We propose and study a model of hypothetical magnetosensitive ionic channels which are long thought to be a possible candidate to explain the influence of weak magnetic fields on living organisms ranging from magnetotactic bacteria to fishes, birds, rats, bats and other mammals including humans. The core of the model is provided by a short chain of magnetosomes serving as a sensor which is coupled by elastic linkers to the gating elements of ion channels forming a small cluster in the cell membrane. The magnetic sensor is fixed by one end on cytoskeleton elements attached to the membrane and is exposed to viscoelastic cytosol. Its free end can reorient stochastically and subdiffusively in viscoelastic cytosol responding to external magnetic field changes and open the gates of coupled ion channels. The sensor dynamics is generally bistable due to bistability of the gates which can be in two states with probabilities which depend on the sensor orientation. For realistic parameters, it is shown that this model c...

  3. Model for hypernucleus production in heavy ion collisions

    CERN Document Server

    Pop, V Topor

    2010-01-01

    We estimate the production cross sections of hypernuclei in projectile like fragment (PLF) in heavy ion collisions. The discussed scenario for the formation cross section of hypernucleus is: (a) Lambda particles are produced in the participant region but have a considerable rapidity spread and (b) Lambda with rapidity close to that of the PLF and total momentum (in the rest system of PLF) up to Fermi motion can then be trapped and produce hypernuclei. The process (a) is considered here within Heavy Ion Jet Interacting Generator HIJING-BBbar model and the process (b) in the canonical thermodynamic model (CTM). We estimate the production cross-sections for light hypernuclei for C + C at 3.7 GeV total nucleon-nucleon center of mass energy and for Ne+Ne and Ar+Ar collisions at 5.0 GeV. By taking into account explicitly the impact parameter dependence of the colliding systems, it is found that the cross section is different from that predicted by the coalescence model and large discrepancy is obtained for 6_He and...

  4. Electrochemical model based charge optimization for lithium-ion batteries

    Science.gov (United States)

    Pramanik, Sourav; Anwar, Sohel

    2016-05-01

    In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.

  5. Modeling Fast Ion Transport in TAE Avalanches in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E D; Bell, R E; Darrow, D; Gorelenkov, N N; Kramer, G; Kubota, S; Levinton, F M; Liu, D; Medley, S S; Podesta, M; Tritz, K

    2009-08-17

    Experiments on the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557 ] have found strong bursts of Toroidal Alfven Eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA [C. Z. Cheng, Phys. Reports 211, 1-51 (1992)] and ORBIT [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE were modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE were then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate. While these results represent our best attempts to find agreement, we believe that further refinements in both the simulation of the TAE structure and in the modeling of the fast ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.

  6. Model-based condition monitoring for lithium-ion batteries

    Science.gov (United States)

    Kim, Taesic; Wang, Yebin; Fang, Huazhen; Sahinoglu, Zafer; Wada, Toshihiro; Hara, Satoshi; Qiao, Wei

    2015-11-01

    Condition monitoring for batteries involves tracking changes in physical parameters and operational states such as state of health (SOH) and state of charge (SOC), and is fundamentally important for building high-performance and safety-critical battery systems. A model-based condition monitoring strategy is developed in this paper for Lithium-ion batteries on the basis of an electrical circuit model incorporating hysteresis effect. It systematically integrates 1) a fast upper-triangular and diagonal recursive least squares algorithm for parameter identification of the battery model, 2) a smooth variable structure filter for the SOC estimation, and 3) a recursive total least squares algorithm for estimating the maximum capacity, which indicates the SOH. The proposed solution enjoys advantages including high accuracy, low computational cost, and simple implementation, and therefore is suitable for deployment and use in real-time embedded battery management systems (BMSs). Simulations and experiments validate effectiveness of the proposed strategy.

  7. RF Plasma modeling of the Linac4 H− ion source

    CERN Document Server

    Mattei, S; Hatayama, A; Lettry, J; Kawamura, Y; Yasumoto, M; Schmitzer, C

    2013-01-01

    This study focuses on the modelling of the ICP RF-plasma in the Linac4 H− ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The use of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.

  8. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    Energy Technology Data Exchange (ETDEWEB)

    Oboh, I., E-mail: innocentoboh@uniuyo.edu.ng [Department of Chemical and Petroleum Engineering, University of Uyo, Uyo (Nigeria); Aluyor, E.; Audu, T. [Department of Chemical Engineering, University of Uyo, BeninCity, BeninCity (Nigeria)

    2015-03-30

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.

  9. A Device Model for Polymer Light-Emitting Diodes with Mobile Ions

    NARCIS (Netherlands)

    Jong, M.J.M. de; Blom, P.W.M.

    1996-01-01

    A model is presented for the device operation of a polymer light-emitting diode (PLED) with mobile ions. It is calculated that the low efficiency of a PLED with a high injection barrier increases as the ions migrate.

  10. A New Wide-Range Equation of State for Xenon

    Science.gov (United States)

    Carpenter, John H.

    2011-06-01

    We describe the development of a new wide-range equation of state (EOS) for xenon. Three different prior EOS models predicted significant variations in behavior along the high pressure Hugoniot from an initial liquid state at 163.5 K and 2.97 g/cm3, which is near the triple point. Experimental measurements on Sandia's Z machine as well as density functional theory based molecular dynamics calculations both invalidate the prior EOS models in the pressure range from 200 to 840 GPa. The reason behind these EOS model disagreements is found to lie in the contribution from the thermal electronic models. A new EOS, based upon the standard separation of the Helmholtz free energy into ionic and electronic components, is constructed by combining the successful parts of prior models with a semi-empirical electronic model. Both the fluid and fcc solid phases are combined in a wide-range, multi-phase table. The new EOS is tabulated on a fine temperature and density grid, to preserve phase boundary information, and is available as table number 5191 in the LANL SESAME database. Improvements over prior EOS models are found not only along the Hugoniot, but also along the melting curve and in the region of the liquid-vapor critical point. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Thermal stability and modeling of lithium ion batteries

    Science.gov (United States)

    Botte, Gerardine Gabriela

    2000-10-01

    First-principles mathematical models were developed to examine the effect of the lithium-lithium ion interactions inside the anode particles on the performance of a lithium foil cell. Two different models were developed: the chemical potential model (CPM) that includes the lithium-lithium ion interactions inside the anode particles and the diffusion model (DIM) that does not include the interactions. Significant differences in the thermal and electrochemical performance of the cell were observed between the two approaches. The temperature of the cell predicted by the DFM is higher than the one predicted by the CPM at a given capacity. The discharge time of the cell predicted by the DFM is shorter than the one predicted by the CPM. The results indicate that the cell needs to be modeled using the CPM approach especially at high discharge rates. An evaluation of the numerical techniques, control volume formulation (CVF) and finite difference method (FDM), used for the models was performed. It is shown that the truncation error is the same for both methods when the boundary conditions are of the Dirichlet type, the system of equations are linear and represented in Cartesian coordinates. A new technique to analyze the accuracy of the methods is presented. The only disadvantage of the FDM is that it failed to conserve mass for a small number of nodes when both boundary conditions include a derivative term whereas the CVF did conserve mass for these cases. However, for a large number of nodes the FDM provides mass conservation. It is important to note that the CVF has only (DeltaX) order of accuracy for a Neumann type boundary condition whereas the FDM has (DeltaX) 2 order. The second topic of this dissertation presents a study of the thermal stability of LiPF6 EC:EMC electrolyte for lithium ion batteries. A differential scanning calorimeter (DSC) was used to perform the study of the electrolyte. For first time, the effect of different variables on its thermal stability

  12. Xenon Anesthesia Improves Respiratory Gas Exchanges in Morbidly Obese Patients

    Directory of Open Access Journals (Sweden)

    Antonio Abramo

    2010-01-01

    Full Text Available Background. Xenon-in-oxygen is a high density gas mixture and may improve PaO2/FiO2 ratio in morbidly obese patients uniforming distribution of ventilation during anesthesia. Methods. We compared xenon versus sevoflurane anesthesia in twenty adult morbidly obese patients (BMI>35 candidate for roux-en-Y laparoscopic gastric bypass and assessed PaO2/FiO2 ratio at baseline, at 15 min from induction of anaesthesia and every 60 min during surgery. Differences in intraoperative and postoperative data including heart rate, systolic and diastolic pressure, oxygen saturation, plateau pressure, eyes opening and extubation time, Aldrete score on arrival to the PACU were compared by the Mann-Whitney test and were considered as secondary aims. Moreover the occurrence of side effects and postoperative analgesic demand were assessed. Results. In xenon group PaO2-FiO2 ratio was significantly higher after 60 min and 120 min from induction of anesthesia; heart rate and overall remifentanil consumption were lower; the eyes opening time and the extubation time were shorter; morphine consumption at 72 hours was lower; postoperative nausea was more common. Conclusions. Xenon anesthesia improved PaO2/FiO2 ratio and maintained its distinctive rapid recovery times and cardiovascular stability. A reduction of opioid consumption during and after surgery and an increased incidence of PONV were also observed in xenon group.

  13. Emergence in Elderly Patient Undergoing General Anesthesia with Xenon

    Directory of Open Access Journals (Sweden)

    Maria Sanfilippo

    2013-01-01

    Full Text Available Introduction. It is a consensus that the postoperative cognitive function is impaired in elderly patients after general anaesthesia, and such category patient takes more time to recover. Xenon is a noble gas with anesthetic properties mediated by antagonism of N-methyl-D-aspartate receptors. With a minimum alveolar concentration of 0.63, xenon is intended for maintaining hypnosis with 30% oxygen. The fast recovery after xenon anaesthesia was hypothesized to be advantageous in this scenario. Case Presentation. We report the case of 99-year-old woman who underwent sigmoid colon carcinoma resection with colorectal anastomosis. We carried out the induction phase by propofol, oxygen, fentanil, and rocuronium bromide, and then we proceeded to a rapid sequence endotracheal intubation consequently. The patient was monitored by IBP, NIBP, ECG, cardiac frequency, respiratory rate, capnometry, TOF Guard, blood gas analysis, and BIS. For maintenance we administrated oxygen, remifentanil, rocuronium bromide, and xenon gas 60–65%. Shortly after the end of surgery the patients started an autonomous respiratory activity, and a high BIS level was also recorded. Decision was made by our team to proceed into the emergence phase. The residual neuromuscular block was antagonized by sugammadex, modified Aldrete score was implicated, and we got our patient fully awake without any cognitive dysfunction or delirium. Conclusion. The rapid emergence to full orientation in very elderly patient who had been anesthetized by xenon shows concordance to the high BIS values and the clinical signs of the depth of anesthesia.

  14. Surface analysis of Li-ion battery model anodes

    Energy Technology Data Exchange (ETDEWEB)

    Seemayer, Andreas; Bach, Philipp; Renner, Frank Uwe [Max Planck Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)

    2011-07-01

    Lithium ion batteries are the most promising power source for future electromobility applications. Research on the battery systems aims to achieve higher rate capability, cycle life, or better safety. To achieve necessary further improvements a better understanding of the basic processes is needed. Following a surface science approach we focus on the investigation of simple model systems (like single crystals or thin film electrodes) of relevant anode materials. We report investigations of the electrochemical insertion of lithium in Au, Ag, Al, Mg and Si model surfaces, i.e. alloying and dealloying of lithium alloys. As electrolyte we use the ionic liquid 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesolfonyl)imide (PYR14TFSI) with 0.3M LiTFSI. The electrochemical characterisation is performed by cyclic voltammetry (CV). The surface and film characterisation regarding its geometrical structure is investigated by means of scanning electron microscopy (SEM) and Atomic Force Microscopy (AFM). The chemical composition is characterised ex-situ by photoelectron spectroscopy (PES) and secondary ion mass spectrometry (SIMS).

  15. Xenon Recovery at Room Temperature using Metal-Organic Frameworks.

    Science.gov (United States)

    Elsaidi, Sameh K; Ongari, Daniele; Xu, Wenqian; Mohamed, Mona H; Haranczyk, Maciej; Thallapally, Praveen K

    2017-08-10

    Xenon is known to be a very efficient anesthetic gas, but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycling from anesthetic gas mixtures can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low-temperature distillation to recover Xe; this method is expensive to use in medical facilities. Herein, we propose a much simpler and more efficient system to recover and recycle Xe from exhaled anesthetic gas mixtures at room temperature using metal-organic frameworks (MOFs). Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity and Xe/O2 , Xe/N2 and Xe/CO2 selectivity at room temperature. The in situ synchrotron measurements suggest that Xe is occupies the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An Ultra-Low Background PMT for Liquid Xenon Detectors

    CERN Document Server

    Akerib, D S; Bernard, E; Bernstein, A; Bradley, A; Byram, D; Cahn, S B; Carmona-Benitez, M C; Carr, D; Chapman, J J; Chan, Y-D; Clark, K; Coffey, T; deViveiros, L; Dragowsky, M; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Gaitskell, R J; Gibson, K R; Hall, C; Hanhardt, M; Holbrook, B; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Larsen, N; Lee, C; Lesko, K; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; McKinsey, D; Mei, D; Mock, J; Morii, M; Nelson, H; Neves, F; Nikkel, J A; Pangilinan, M; Pech, K; Phelps, P; Shutt, T; Silva, C; Skulski, W; Solovov, V N; Sorensen, P; Spaans, J; Stiegler, T; Sweany, M; Szydagis, M; Taylor, D; Thomson, J; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, J T; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2012-01-01

    Results are presented from radioactivity screening of two models of photomultiplier tubes designed for use in current and future liquid xenon experiments. The Hamamatsu 5.6 cm diameter R8778 PMT, used in the LUX dark matter experiment, has yielded a positive detection of four common radioactive isotopes: 238U, 232Th, 40K, and 60Co. Screening of LUX materials has rendered backgrounds from other detector materials subdominant to the R8778 contribution. A prototype Hamamatsu 7.6 cm diameter R11410 MOD PMT has also been screened, with benchmark isotope counts measured at <0.4 238 U / <0.3 232 Th / <8.3 40 K / 2.0+-0.2 60 Co mBq/PMT. This represents a large reduction, equal to a change of \\times 1/24 238U / \\times 1/9 232Th / \\times 1/8 40K per PMT, between R8778 and R11410 MOD, concurrent with a doubling of the photocathode surface area (4.5 cm to 6.4 cm diameter). 60Co measurements are comparable between the PMTs, but can be significantly reduced in future R11410 MOD units through further material selec...

  17. The next generation dark matter hunter: XENON1T status and perspective

    Directory of Open Access Journals (Sweden)

    Rizzo A.

    2016-01-01

    Full Text Available The XENON Dark Matter Experiment has been ongoing at LNGS since 2005 with the goal of searching for dark matter WIMPs with liquid xenon as target and detector material. With detectors of increasing target mass and decreasing background, the XENON program has achieved competitive limits on WIMP-nucleon interaction couplings, but also on axions and axion like particles. With the start of the next generation experiment, XENON1T expected in 2015, XENON Dark Matter Experiment will continue to lead field of dark matter direct detection. XENON1T will be the first experiment to use multi-tons of liquid xenon in a time projection chamber and is designed to achieve two orders of magnitude higher sensitivity than the current best limits. I will review the status of construction and the scientific goals of XENON1T.

  18. Xenon and isoflurane improved biventricular function during right ventricular ischemia and reperfusion.

    NARCIS (Netherlands)

    Hein, M.; Roehl, A.B.; Baumert, J.H.; Bleilevens, C.; Fischer, S.; Steendijk, P.; Rossaint, R.

    2010-01-01

    BACKGROUND: Although anesthetics have some cardioprotective properties, these benefits are often counterbalanced by their negative inotropic effects. Xenon, on the other hand, does not influence myocardial contractility. Thus, xenon may be a superior treatment for the maintenance of global hemodynam

  19. Modeling ion exchange in clinoptilolite using the EQ3/6 geochemical modeling code

    Energy Technology Data Exchange (ETDEWEB)

    Viani, B.E.; Bruton, C.J.

    1992-06-01

    Assessing the suitability of Yucca Mtn., NV as a potential repository for high-level nuclear waste requires the means to simulate ion-exchange behavior of zeolites. Vanselow and Gapon convention cation-exchange models have been added to geochemical modeling codes EQ3NR/EQ6, allowing exchange to be modeled for up to three exchangers or a single exchanger with three independent sites. Solid-solution models that are numerically equivalent to the ion-exchange models were derived and also implemented in the code. The Gapon model is inconsistent with experimental adsorption isotherms of trace components in clinoptilolite. A one-site Vanselow model can describe adsorption of Cs or Sr on clinoptilolite, but a two-site Vanselow exchange model is necessary to describe K contents of natural clinoptilolites.

  20. Modeling ion exchange in clinoptilolite using the EQ3/6 geochemical modeling code

    Energy Technology Data Exchange (ETDEWEB)

    Viani, B.E.; Bruton, C.J. [Lawrence Livermore National Lab., CA (United States)

    1992-12-31

    Potential disposal of high-level nuclear waste at Yucca Mtn., Nevada requires the means to simulate ion-exchange behavior of clays and zeolites. Vanselow and Gapon convention cation-exchange models have been added to geochemical modeling codes EQ3NR/EQ6, allowing exchange to be modeled for up to three exchangers or a single exchanger with three independent sites. Solid-solution models that are numerically equivalent to the ion-exchange models were derived and also implemented in the code. The Gapon model is inconsistent with experimental adsorption isotherms of trace components in clinoptilolite. A one-site Vanselow model can describe adsorption of Cs and Sr on clinoptilolite, but a two-site Vanselow exchange model is necessary to describe K contents of natural clinoptilolites. 15 refs., 5 figs., 1 tab.

  1. Heavy Ions Collision evolution modeling with ECHO-QGP

    CERN Document Server

    Rolando, Valentina; Beraudo, Andrea; Del Zanna, Luca; Becattini, Francesco; Chandra, Vinod; De Pace, Arturo; Nardi, Marzia

    2014-01-01

    We present a numerical code modeling the evolution of the medium formed in relativistic heavy ion collisions, ECHO-QGP. The code solves relativistic hydrodynamics in $(3+1)-$D, with dissipative terms included within the framework of Israel-Stewart theory; it can work both in Minkowskian and in Bjorken coordinates. Initial conditions are provided through an implementation of the Glauber model (both Optical and Monte Carlo), while freezeout and particle generation are based on the Cooper-Frye prescription. The code is validated against several test problems and shows remarkable stability and accuracy with the combination of a conservative (shock-capturing) approach and the high-order methods employed. In particular it beautifully agrees with the semi-analytic solution known as Gubser flow, both in the ideal and in the viscous Israel-Stewart case, up to very large times and without any ad hoc tuning of the algorithm.

  2. Modeling Crabbing Dynamics in an Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Castilla, Alejandro [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Univ. de Guanajuato (DCI-UG), Leon (Mexico); Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Satogata, Todd J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Delayen, Jean R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)

    2015-09-01

    A local crabbing scheme requires π/2 (mod π) horizontal betatron phase advances from an interaction point (IP) to the crab cavities on each side of it. However, realistic phase advances generated by sets of quadrupoles, or Final Focusing Blocks (FFB), between the crab cavities located in the expanded beam regions and the IP differ slightly from π/2. To understand the effect of crabbing on the beam dynamics in this case, a simple model of the optics of the Medium Energy Electron-Ion Collider (MEIC) including local crabbing was developed using linear matrices and then studied numerically over multiple turns (1000 passes) of both electron and proton bunches. The same model was applied to both local and global crabbing schemes to determine the linear-order dynamical effects of the synchro-betatron coupling induced by crabbing.

  3. Influence of the Oxygen content on the thermal migration of Xenon in ZrC{sub x}O{sub 1−x}

    Energy Technology Data Exchange (ETDEWEB)

    Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon - IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR 5822, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Institut Universitaire de Technologie - IUT, Université de Lyon, Université Lyon 1, 94 Bd. Niels Bohr, 69622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon - IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR 5822, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Commissariat à l’Energie Atomique CEA/DEN, Centre de Saclay, 91191 Gif sur Yvette Cedex (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon - IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR 5822, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Gutierrez, G. [Institut d’Électronique du Solide et des Systèmes - InESS, 23, rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2 Strasbourg (France); Maître, A.; Gendre, M. [Laboratoire Science des Procédés Céramiques et Traitements de Surface, UMR CNRS 6638, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges Cedex (France)

    2013-09-15

    Zirconium carbide (ZrC) is a refractory ceramic presenting interesting properties such as a high melting point, a very high hardness and a good thermal stability. For these reasons, this material is considered as a candidate for fuel coating for fourth-generation reactors in particular for the Gas cooled Fast Reactors (GFR). The ceramic temperature could reach 1200 °C in normal reactor operation and reach 1700 °C in accidental conditions. It is therefore important to assess the ZrC thermal retention capacity regarding abundant and/or volatile fission products. This paper deals with the behavior of Xenon which is the major gaseous fission product created during fission. Previous studies have shown that Xenon remained motionless in an “Oxygen-poor” matrix such as ZrC{sub 0.95}O{sub 0.05}, up to temperatures of 1800 °C. However, Zirconium oxycarbides are known to be very sensitive to oxidation. This study aims therefore at studying the behavior of Xenon in Zirconium oxycarbide samples with different Oxygen contents. Xenon is introduced by ion implantation and the samples are annealed in secondary vacuum in the temperature range 1400 °C–1800 °C. The Oxygen profiles are determined by using the {sup 16}O({sup 4}He, {sup 4}He){sup 16}O nuclear reaction at 7.5 MeV and the concentration profiles of Xenon are measured by Rutherford Backscattering Spectrometry at each step of the treatment. The results show that the behavior of the material during annealing with respect to oxidation is strongly related to its initial Oxygen content. More generally, the higher the initial Oxygen content, the more important is the oxidation. Consequently, the Xenon migration is enhanced in Oxygen rich Zirconium carbides.

  4. Hypersatellite and satellite transitions in xenon atoms

    Science.gov (United States)

    Ilakovac, K.; Vesković, M.; Horvat, V.; Kauić, S.

    1990-10-01

    Decay of double-K-shell-vacancy states in xenon atoms, created in the decay of 131Cs, was investigated. The measurements were performed with a pair of germanium detectors, a fast-slow coincidence system, and a three-parameter pulse-height analyzer. In the analysis of the two-dimensional E1-E2 spectrum, improved least-squares routines were applied. The following results were derived: the probability of creation of a double K-shell vacancy per 131Cs decay, PKK=(1.48+/-0.35)×10-5 the hypersatellite energy shifts Δh(Kα)=(653+/-20) eV, Δh(Kβ1)=(834+/-39) eV, and Δh(Kβ2)=(903+/-81) eV; the average values of the satellite energy shifts due to the presence of an L3- or L2-shell spectator vacancy Δs(KαL-1)=(80+/-15) eV, Δs(Kβ1L-1)=(169+/-34) eV, and Δs(Kβ2L-1)=(261+/-81) eV; the intensity ratios of the hypersatellite transitions, I(Kαh2)/I(Kαh1)=0.94+/-0.18, I(Kβh1)/I(Kαh1)=0.36+/-0.06, and I(Kβh2)/ I(Kαh1)=0.09+/-0.04 the intensity ratios of the satellite transitions I(Kα2L-1)/I(Kα1L-1)=0.44+/-0.10 and 0.44+/-0.09 for an L3 and L2 spectator vacancy, respectively; and the intensity ratios of some other satellite transitions.

  5. Surface vacancy channels through ion channeling

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, Alex; Standop, Sebastian; Michely, Thomas [II. Physikalisches Institut, Universitaet Koeln, Zuelpicher Strasse 77, 50937 Koeln (Germany); Rosandi, Yudi; Urbassek, Herbert M. [Fachbereich Physik, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2009-07-01

    Damage patterns of single ion impacts on Pt(111) have been studied by scanning tunneling microscopy (STM) and molecular dynamics simulations (MD). Low temperature experiments, where surface diffusion is absent, have been performed for argon and xenon ions with energies between 1 keV and 15 keV at an angle of incidence of 86 {sup circle} measured with respect to the surface normal. Ions hitting preexisting illuminated step edges penetrate into the crystal and are guided in open crystallographic directions, one or more layers underneath the surface (subsurface channeling). In the case of argon channeling the resulting surface damage consists of adatom and vacancy pairs aligned in ion beam direction. After xenon channeling thin surface vacancy trenches along the ion trajectories - surface vacancy channels - are observed. They result from very efficient sputtering and adatom production along the ion trajectory. This phenomena is well reproduced in molecular dynamics simulations of single ion impacts at 0 K. The damage patterns of Argon and Xenon impacts can be traced back to the different energy losses of the particles in the channel. Channeling distances exceeding 1000 A for 15 keV xenon impacts are observed.

  6. Direct observation of bubble-assisted electroluminescence in liquid xenon

    CERN Document Server

    Erdal, E; Chepel, V; Rappaport, M L; Vartsky, D; Breskin, A

    2015-01-01

    Bubble formation in liquid xenon underneath a Thick Gaseous Electron Multiplier (THGEM) electrode immersed in liquid xenon was observed with a CCD camera. With voltage across the THGEM, the appearance of bubbles was correlated with that of electroluminescence signals induced by ionization electrons from alpha-particle tracks. This confirms recent indirect evidence that the observed photons are due to electroluminescence within a xenon vapor layer trapped under the electrode. The bubbles seem to emerge spontaneously due to heat flow from 300K into the liquid, or in a controlled manner, by locally boiling the liquid with resistive wires. Controlled bubble formation resulted in energy resolution of {\\sigma}/E~7.5% for ~6,000 ionization electrons. The phenomenon could pave ways towards the conception of large-volume 'local dual-phase' noble-liquid TPCs.

  7. Liquid Hole Multipliers: bubble-assisted electroluminescence in liquid xenon

    CERN Document Server

    Arazi, L; Coimbra, A E C; Rappaport, M L; Vartsky, D; Chepel, V; Breskin, A

    2015-01-01

    In this work we discuss the mechanism behind the large electroluminescence signals observed at relatively low electric fields in the holes of a Thick Gas Electron Multiplier (THGEM) electrode immersed in liquid xenon. We present strong evidence that the scintillation light is generated in xenon bubbles trapped below the THGEM holes. The process is shown to be remarkably stable over months of operation, providing - under specific thermodynamic conditions - energy resolution similar to that of present dual-phase liquid xenon experiments. The observed mechanism may serve as the basis for the development of Liquid Hole Multipliers (LHMs), capable of producing local charge-induced electroluminescence signals in large-volume single-phase noble-liquid detectors for dark matter and neutrino physics experiments.

  8. Calibration of a Liquid Xenon Detector with Kr-83m

    CERN Document Server

    Kastens, L W; Manzur, A; McKinsey, D N

    2009-01-01

    We report the preparation of a Kr-83m source and its subsequent use in calibrating a liquid xenon detector. Kr-83m atoms were produced through the decay of Rb-83 atoms trapped in zeolite molecular sieve and were then introduced into liquid xenon. Decaying Kr-83m nuclei were detected through liquid xenon scintillation. Conversion electrons with energies of 9.4 keV and 32.1 keV from the decay of Kr-83m were both observed. This calibration source will allow the characterization of the scintillation and ionization response of noble liquid detectors at low energies, highly valuable for the search for WIMP dark matter. Kr-83m may also be useful for measuring fluid flow dynamics, both to understand purification in noble liquid-based particle detectors, as well as for studies of classical and quantum turbulence in superfluid helium.

  9. Liquid xenon purification, de-radonation (and de-kryptonation)

    Energy Technology Data Exchange (ETDEWEB)

    Pocar, Andrea, E-mail: pocar@umass.edu [Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-08-17

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon are addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.

  10. Observation and applications of single-electron charge signals in the XENON100 experiment

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.

    2014-01-01

    The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are no

  11. Xenon for the prevention of postoperative delirium in cardiac surgery: study protocol for a randomized controlled clinical trial.

    Science.gov (United States)

    Al Tmimi, Layth; Van de Velde, Marc; Herijgers, Paul; Meyns, Bart; Meyfroidt, Geert; Milisen, Koen; Fieuws, Steffen; Coburn, Mark; Poesen, Koen; Rex, Steffen

    2015-10-09

    Postoperative delirium (POD) is a manifestation of acute postoperative brain dysfunction that is frequently observed after cardiac surgery. POD is associated with short-term complications such as an increase in mortality, morbidity, costs and length of stay, but can also have long-term sequelae, including persistent cognitive deficits, loss of independence, and increased mortality for up to 2 years. The noble gas xenon has been demonstrated in various models of neuronal injury to exhibit remarkable neuroprotective properties. We therefore hypothesize that xenon anesthesia reduces the incidence of POD in elderly patients undergoing cardiac surgery with the use of cardiopulmonary bypass. One hundred and ninety patients, older than 65 years, and scheduled for elective cardiac surgery, will be enrolled in this prospective, randomized, controlled trial. Patients will be randomized to receive general anesthesia with either xenon or sevoflurane. Primary outcome parameter will be the incidence of POD in the first 5 postoperative days. The occurrence of POD will be assessed by trained research personnel, blinded to study group, with the validated 3-minute Diagnostic Confusion Assessment Method (3D-CAM) (on the intensive care unit in its version specifically adapted for the ICU), in addition to chart review and the results of delirium screening tools that will be performed by the bedside nurses). Secondary outcome parameters include duration and severity of POD, and postoperative cognitive function as assessed with the Mini-Mental State Examination. Older patients undergoing cardiac surgery are at particular risk to develop POD. Xenon provides remarkable hemodynamic stability and has been suggested in preclinical studies to exhibit neuroprotective properties. The present trial will assess whether the promising profile of xenon can be translated into a better outcome in the geriatric population. EudraCT Identifier: 2014-005370-11 (13 May 2015).

  12. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    B Mathew; G A Adebayo

    2011-12-01

    We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at = 3.32 Å. It was observed that the attraction of the molecules in the liquid surface which produces a resistance to penetration decreases with temperature. This may be attributed to the greater average separation of molecules at higher temperature.

  13. Electric dipole moment searches using the isotope 129-xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Florian

    2014-11-13

    Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.

  14. Xenon purity analysis for EXO-200 via mass spectrometry

    CERN Document Server

    Dobi, A; Slutsky, S; Yen, Y -R; Aharmin, B; Auger, M; Barbeau, P S; Benitez-Medina, C; Breidenbach, M; Cleveland, B; Conley, R; Cook, J; Cook, S; Counts, I; Craddock, W; Daniels, T; Davis, C G; Davis, J; deVoe, R; Dixit, M; Dolinski, M J; Donato, K; Fairbank, W; Farine, J; Fierlinger, P; Franco, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Green, C; Hagemann, C; Hall, K; Hallman, D; Hargrove, C; Herrin, S; Hughes, M; Hodgson, J; Juget, F; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K; Leonard, D S; Lutter, G; Mackay, D; MacLellan, R; Marino, M; Mong, B; Díez, M Montero; Morgan, P; Müller, A R; Neilson, R; Odian, A; O'Sullivan, K; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rivas, A; Rollin, E; Rowson, P C; Sabourov, A; Sinclair, D; Skarpaas, K; Stekhanov, V; Strickland, V; Swift, M; Twelker, K; Vuilleumier, J -L; Vuilleumier, J -M; Weber, M; Wichoski, U; Wodin, J; Wright, J D; Yang, L

    2011-01-01

    We describe purity measurements of the natural and enriched xenon stockpiles used by the EXO-200 double beta decay experiment based on a mass spectrometry technique. The sensitivity of the spectrometer is enhanced by several orders of magnitude by the presence of a liquid nitrogen cold trap, and many impurity species of interest can be detected at the level of one part-per-billion or better. We have used the technique to screen the EXO-200 xenon before, during, and after its use in our detector, and these measurements have proven useful. This is the first application of the cold trap mass spectrometry technique to an operating physics experiment.

  15. Scintillation yield of liquid xenon at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ueshima, K. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan)], E-mail: ueshima@suketto.icrr.u-tokyo.ac.jp; Abe, K.; Iida, T.; Ikeda, M.; Kobayashi, K.; Koshio, Y.; Minamino, A.; Miura, M.; Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nakajima, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takeda, A.; Takeuchi, Y.; Yamashita, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Kaneyuki, K. [Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Doke, T. [Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8555 (Japan)] (and others)

    2008-09-01

    The intensity of scintillation light emission from liquid xenon at room temperature was measured. The scintillation light yield at 1{sup 0}C was measured to be 0.64{+-}0.02 (stat.) {+-}0.06 (sys.) of that at -100{sup 0}C. Using the reported light yield at -100{sup 0}C (46 photons/keV), the measured light yield at 1{sup 0}C corresponds to 29 photons/keV. This result shows that liquid xenon scintillator provides high light yield even at room temperature.

  16. Lithium-ion battery models: a comparative study and a model-based powerline communication

    Science.gov (United States)

    Saidani, Fida; Hutter, Franz X.; Scurtu, Rares-George; Braunwarth, Wolfgang; Burghartz, Joachim N.

    2017-09-01

    In this work, various Lithium-ion (Li-ion) battery models are evaluated according to their accuracy, complexity and physical interpretability. An initial classification into physical, empirical and abstract models is introduced. Also known as white, black and grey boxes, respectively, the nature and characteristics of these model types are compared. Since the Li-ion battery cell is a thermo-electro-chemical system, the models are either in the thermal or in the electrochemical state-space. Physical models attempt to capture key features of the physical process inside the cell. Empirical models describe the system with empirical parameters offering poor analytical, whereas abstract models provide an alternative representation. In addition, a model selection guideline is proposed based on applications and design requirements. A complex model with a detailed analytical insight is of use for battery designers but impractical for real-time applications and in situ diagnosis. In automotive applications, an abstract model reproducing the battery behavior in an equivalent but more practical form, mainly as an equivalent circuit diagram, is recommended for the purpose of battery management. As a general rule, a trade-off should be reached between the high fidelity and the computational feasibility. Especially if the model is embedded in a real-time monitoring unit such as a microprocessor or a FPGA, the calculation time and memory requirements rise dramatically with a higher number of parameters. Moreover, examples of equivalent circuit models of Lithium-ion batteries are covered. Equivalent circuit topologies are introduced and compared according to the previously introduced criteria. An experimental sequence to model a 20 Ah cell is presented and the results are used for the purposes of powerline communication.

  17. Lithium-ion battery models: a comparative study and a model-based powerline communication

    Directory of Open Access Journals (Sweden)

    F. Saidani

    2017-09-01

    Full Text Available In this work, various Lithium-ion (Li-ion battery models are evaluated according to their accuracy, complexity and physical interpretability. An initial classification into physical, empirical and abstract models is introduced. Also known as white, black and grey boxes, respectively, the nature and characteristics of these model types are compared. Since the Li-ion battery cell is a thermo-electro-chemical system, the models are either in the thermal or in the electrochemical state-space. Physical models attempt to capture key features of the physical process inside the cell. Empirical models describe the system with empirical parameters offering poor analytical, whereas abstract models provide an alternative representation. In addition, a model selection guideline is proposed based on applications and design requirements. A complex model with a detailed analytical insight is of use for battery designers but impractical for real-time applications and in situ diagnosis. In automotive applications, an abstract model reproducing the battery behavior in an equivalent but more practical form, mainly as an equivalent circuit diagram, is recommended for the purpose of battery management. As a general rule, a trade-off should be reached between the high fidelity and the computational feasibility. Especially if the model is embedded in a real-time monitoring unit such as a microprocessor or a FPGA, the calculation time and memory requirements rise dramatically with a higher number of parameters. Moreover, examples of equivalent circuit models of Lithium-ion batteries are covered. Equivalent circuit topologies are introduced and compared according to the previously introduced criteria. An experimental sequence to model a 20 Ah cell is presented and the results are used for the purposes of powerline communication.

  18. Modelling early stages of relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Ruggieri M.

    2016-01-01

    Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.

  19. A high charge state multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; Keller, R. (Accelerator and Fusion Research Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (US))

    1990-01-01

    Attempts have been made to generate high charge state ion beams by employing a multicusp plasma source. Three experimental investigations have been performed at Lawrence Berkeley Laboratory (LBL) and at Gesellschaft fuer Schwerionenforschung, Darmstadt (GSI) to study the charge state distributions and the emittance of the extracted beam. Results demonstrate that charge state as high as +7 can be obtained with argon or xenon plasmas. The brightness of a 11-mA xenon ion beam is found to be 26 A/({pi} mm mrad){sup 2}.

  20. ModFossa: A library for modeling ion channels using Python.

    Science.gov (United States)

    Ferneyhough, Gareth B; Thibealut, Corey M; Dascalu, Sergiu M; Harris, Frederick C

    2016-06-01

    The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.

  1. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    Science.gov (United States)

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; DeBoef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality. PMID:28106110

  2. Non-Michaelis-Menten kinetics model for conductance of low-conductance potassium ion channels.

    Science.gov (United States)

    Tolokh, Igor S; Tolokh, Illya I; Cho, Hee Cheol; D'Avanzo, Nazzareno; Backx, Peter H; Goldman, Saul; Gray, C G

    2005-02-01

    A reduced kinetics model is proposed for ion permeation in low-conductance potassium ion channels with zero net electrical charge in the selectivity filter region. The selectivity filter is assumed to be the only conductance-determining part of the channel. Ion entry and exit rate constants depend on the occupancy of the filter due to ion-ion interactions. The corresponding rates are assumed slow relative to the rates of ion motion between binding sites inside the filter, allowing a reduction of the kinetics model of the filter by averaging the entry and exit rate constants over the states with a particular occupancy number. The reduced kinetics model for low-conductance channels is described by only three states and two sets of effective rate constants characterizing transitions between these states. An explicit expression for the channel conductance as a function of symmetrical external ion concentration is derived under the assumption that the average electrical mobility of ions in the selectivity filter region in a limited range of ion concentrations does not depend on these concentrations. The simplified conductance model is shown to provide a good description of the experimentally observed conductance-concentration curve for the low-conductance potassium channel Kir2.1, and also predicts the mean occupancy of the selectivity filter of this channel. We find that at physiological external ion concentrations this occupancy is much lower than the value of two ions observed for one of the high-conductance potassium channels, KcsA.

  3. Recent enhancements in MCNPX: Heavy-ion transport and the LAQGSM physics model

    Energy Technology Data Exchange (ETDEWEB)

    James, Michael R. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States)]. E-mail: mrjames@lanl.gov; McKinney, G.W. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States); Hendricks, John S. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States); Moyers, Michael [Loma Linda University Medical Center, 11234 Anderson St., PO Box 2000, Loma Linda, CA 92354 (United States)

    2006-06-23

    Calculations involving the transport of energetic heavy ions have recently received more attention from projects such as the Rare Isotope Accelerator (RIA) and from areas such as space radiation shielding. In these areas, the transport and reactions must be calculated for heavy ions such as {sup 56}Fe or {sup 238}U traveling at energies of {>=}1 GeV/nucleon. To serve these needs, recent upgrades to the particle transport code MCNPX have expanded the previously useful ion transport capability from a small suite of light ions (deuterons, tritons, {sup 3}He, and alpha particles) to a nearly complete list of those heavy and light ions that span the Table of Isotopes. To enable nuclear spallation from energetic collisions of these ions and targets, the LAQGSM physics model has been integrated into the MCNPX code. This physics model supplements the existing physics models already contained in the code, only one of which, ISABEL, could handle heavy-ion collisions (and then only over a limited range of masses and energies). The implementation of these new features now greatly expands the usefulness of MCNPX in energetic ion transport. The heavy-ion transport feature also allows the transport of residuals from all nuclear reactions that occur in the physics model regime, even when initiated by non-heavy ions. The implementation and use of heavy ions in MCNPX is explained. Also, computations with MCNPX are compared with benchmark experiments to show agreement with results.

  4. A semi-holographic model for heavy-ion collisions

    CERN Document Server

    Iancu, Edmond

    2014-01-01

    We develop a semi-holographic model for the out-of-equilibrium dynamics during the partonic stages of an ultrarelativistic heavy-ion collision. The model combines a weakly-coupled hard sector, involving gluon modes with energy and momenta of the order of the saturation momentum and relatively large occupation numbers, with a strongly-coupled soft sector, which physically represents the soft gluons radiated by the hard partons. The hard sector is described by perturbative QCD, more precisely, by its semi-classical approximation (the classical Yang-Mills equations) which becomes appropriate when the occupation numbers are large. The soft sector is described by a marginally deformed conformal field theory, which in turn admits a holographic description in terms of classical Einstein's equations in $AdS_5$ with a minimally coupled massless `dilaton'. The model involve two free parameters which characterize the gauge-invariant couplings between the hard and soft sectors. Via these couplings, the hard modes provide...

  5. Modeling the electromobility of ions in a target tissue.

    Science.gov (United States)

    Hickey, Joseph D; Gilbert, Richard

    2003-12-01

    Electroporation is a clinical and laboratory technique for the delivery of molecules to cells. This method imposes electric fields onto cells or tissues through the use of electrodes and a set of electrical parameters to ultimately incorporate molecules into the cells. Clinical applications may include using directional fields to bring therapeutics to the target tissues before triggering an electroporation event. The choice of applicator may also have a significant influence on this molecular flow. Modeling ionic flow in tissues will yield insight into selecting the appropriate parameters or electroporation signature for a desired target application. In this paper, the motion of tissue injected ions was modeled for two common electroporation applicator configurations-the parallel plate, and the four needle electrodes. This electric field induced fluid flow model predicts that the parallel plate applicator ultimately directs the movement of an ionic therapeutic in a forward manner with side motion due only to obstruction, while the four-needle applicator directs anisotropic flow within the field ultimately forcing the therapeutic into a mound at the fringes of the induced electric field.

  6. An electrochemical modeling of lithium-ion battery nail penetration

    Science.gov (United States)

    Chiu, Kuan-Cheng; Lin, Chi-Hao; Yeh, Sheng-Fa; Lin, Yu-Han; Chen, Kuo-Ching

    2014-04-01

    Nail penetration into a battery pack, resulting in a state of short-circuit and thus burning, is likely to occur in electric car collisions. To demonstrate the behavior of a specific battery when subject to such incidents, a standard nail penetration test is usually performed; however, conducting such an experiment is money consuming. The purpose of this study is to propose a numerical electrochemical model that can simulate the test accurately. This simulation makes two accurate predictions. First, we are able to model short-circuited lithium-ion batteries (LIBs) via electrochemical governing equations so that the mass and charge transfer effect could be considered. Second, the temperature variation of the cell during and after nail penetration is accurately predicted with the help of simulating the temperature distribution of thermal runaway cells by thermal abuse equations. According to this nail penetration model, both the onset of battery thermal runaway and the cell temperature profile of the test are obtained, both of which are well fitted with our experimental results.

  7. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  8. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Küchler, D. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland)

    2016-02-15

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  9. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Science.gov (United States)

    Toivanen, V.; Küchler, D.

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  10. Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion

    OpenAIRE

    2016-01-01

    In this paper, advanced equivalent circuit models (ECMs) were developed to model large format and high energy nickel manganese cobalt (NMC) lithium-ion 20 Ah battery cells. Different temperatures conditions, cell characterization test (Normal and Advanced Tests), ECM topologies (1st and 2nd Order Thévenin model), state of charge (SoC) estimation techniques (Coulomb counting and extended Kalman filtering) and validation profiles (dynamic discharge pulse test (DDPT) and world harmonized light v...

  11. Evaluation of influence of surface barrier in solid on ion reflection by bipartition model of ion transport

    Institute of Scientific and Technical Information of China (English)

    YANG Dai-Lun; WU Zhang-Wen

    2004-01-01

    The influence of surface barrier of solid upon ion reflection was studied in a few papers of other authors by using the Monte-Carlo simulation. Based on the bipartition model of ion transport, a new analytical theory has been developed instead of the MC simulation, due to important implication of the effect for fusion research. In the present paper we have calculated the number reflection coefficients of H+, D+, He and T+ normally incident on C,Al and Cu for ion energy from several eV to one hundred keV respectively. Our computational results accorded with the MC simulation. The results have shown that the effect of surface barrier on ion reflection becomes evident when the energy of incident ions is lower than one keV. In particular, for the ion energy from several eV to one hun dred eV, the discrepancies of number reflection coefficients can increase up to 0.1~0.3, showing this influence to be very important.

  12. PWR core stablity aganst xenon-induced spatial power oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H.J.; Han, K.I. (Korea Advanced Energy Research Inst., Seoul (Republic of Korea))

    1982-06-01

    Stability of a PWR core against xenon-induced axial power oscillation is studied using one-dimensional xenon transient analysis code, DD1D, that has been developed and verified at KAERI. Analyzed by DD1D utilizing the Kori Unit 1 design and operating data is the sensitivity of axial stability in a PWR core to the changes in core physical parameters including core power level, moderator temperature coefficient, core inlet temperature, doppler power coefficient and core average burnup. Through the sensitivity study the Kori Unit 1 core is found to be stable against axial xenon oscillation at the beginning of cycle 1. But, it becomes less stable as burnup progresses, and unstable at the end of cycle. Such a decrease in stability is mainly due to combined effect of changes in axial power distribution, moderator temperature coefficient and doppler power coefficient as core burnup progresses. It is concluded from the stability analysis of the Kori Unit 1 core that design of a large PWR with high power density and increased dimension can not avoid xenon-induced axial power instabilites to some extents, especially at the end of cycle.

  13. Radon removal from gaseous xenon with activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Liu, J.; Martens, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); and others

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity v{sub Rn} of radon and v{sub Xe} of xenon in the trap with v{sub Rn}/v{sub Xe}=(0.96{+-}0.10) Multiplication-Sign 10{sup -3} at -85 Degree-Sign C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  14. Static Adsorption of Xenon on ACF at 257 K

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The static adsorption of xenon on active carbon fiber (ACF) at 257 K was measured with ASAP2010 specific surface area and pore diameter distribution instrument by changing the working gas from nitrogen to xenon. Compared with grain activated carbon (GAC), the results were as follows: (1) The adsorption performance of Viscose-based ACF (VACF-As) was the best among all absorbents tested. VACF-A3 was the superior xenon absorbent. The performance of pitch-based ACF (PACF-Cs) approached that of GAC, (2) Due to the difference of aperture distribution, the adsorption performances of ACF with different radics were different under the same experiment conditions even though the specific surface area was similar, (3) There were some differences of adsorptive capacity among ACF absorbents which had the same radic, however there was not definite relationship between their specific surface area and adsorptive capacity, (4) The adsorption of xenon on all kinds of ACF agrees with Langmuir equation, (5) The adsorptive curves can be fitted with a binomial equation.

  15. On the behavior of solutions of xenon in liquid n-alkanes: solubility of xenon in n-pentane and n-hexane.

    Science.gov (United States)

    Bonifácio, Rui P M F; Martins, Luís F G; McCabe, Clare; Filipe, Eduardo J M

    2010-12-09

    The solubility of xenon in liquid n-pentane and n-hexane has been studied experimentally, theoretically, and by computer simulation. Measurements of the solubility are reported for xenon + n-pentane as a function of temperature from 254 to 305 K. The uncertainty in the experimental data is less than 0.15%. The thermodynamic functions of solvation such as the standard Gibbs energy, enthalpy, and entropy of solvation have been calculated from Henry's law coefficients for xenon + n-pentane solutions and also for xenon + n-hexane, which were reported in previous work. The results provide a further example of the similarity between the xenon + n-alkane interaction and the n-alkane + n-alkane interactions. Using the SAFT-VR approach we were able to quantitatively predict the experimental solubility for xenon in n-pentane and semiquantitatively that of xenon in n-hexane using simple Lorentz-Berthelot combining rules to describe the unlikely interaction. Henry's constants at infinite dilution for xenon + n-pentane and xenon + n-hexane were also calculated by Monte Carlo simulation using a united atom force field to describe the n-alkane and the Widom test particle insertion method.

  16. Detection of Internal Short Circuit in Lithium Ion Battery Using Model-Based Switching Model Method

    Directory of Open Access Journals (Sweden)

    Minhwan Seo

    2017-01-01

    Full Text Available Early detection of an internal short circuit (ISCr in a Li-ion battery can prevent it from undergoing thermal runaway, and thereby ensure battery safety. In this paper, a model-based switching model method (SMM is proposed to detect the ISCr in the Li-ion battery. The SMM updates the model of the Li-ion battery with ISCr to improve the accuracy of ISCr resistance R I S C f estimates. The open circuit voltage (OCV and the state of charge (SOC are estimated by applying the equivalent circuit model, and by using the recursive least squares algorithm and the relation between OCV and SOC. As a fault index, the R I S C f is estimated from the estimated OCVs and SOCs to detect the ISCr, and used to update the model; this process yields accurate estimates of OCV and R I S C f . Then the next R I S C f is estimated and used to update the model iteratively. Simulation data from a MATLAB/Simulink model and experimental data verify that this algorithm shows high accuracy of R I S C f estimates to detect the ISCr, thereby helping the battery management system to fulfill early detection of the ISCr.

  17. Measurement of the transverse diffusion coefficient of charge in liquid xenon

    CERN Document Server

    Chen, W -T; Cussonneau, J -P; Donnard, J; Duval, S; Mohamad-Hadi, A -F; Lamblin, J; Lemaire, O; Ray, P Le; Morteau, E; Oger, T; Scotto-Lavina, L; Stutzmann, J -S; Thers, D

    2011-01-01

    Liquid xenon (LXe) is a very attractive material as a detection medium for ionization detectors due to its high density, high atomic number, and low energy required to produce electron-ion pairs. Therefore it has been used in several applications, like {\\gamma} detection or direct detection of dark matter. Now Subatech is working on the R & D of LXe Compton telescope for 3{\\gamma} medical imaging, which can make precise tridimensional localization of a ({\\beta}+, {\\gamma}) radioisotope emitter. The diffusion of charge carriers will directly affect the spatial resolution of LXe ionization signal. We will report how we measure the transverse diffusion coefficient for different electric field (0.5 ~ 1.2 kV/cm) by observing the spray of charge carriers on drift length varying until 12cm. With very-low-noise front-end electronics and complete Monte-Carlo simulation of the experiment, the values of transverse diffusion coefficient are measured precisely.

  18. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  19. Multiscale modeling of lithium ion batteries: thermal aspects

    Directory of Open Access Journals (Sweden)

    Arnulf Latz

    2015-04-01

    Full Text Available The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory.

  20. Multiscale modeling of lithium ion batteries: thermal aspects.

    Science.gov (United States)

    Latz, Arnulf; Zausch, Jochen

    2015-01-01

    The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory.

  1. Ion energetics at Saturn's magnetosphere using Cassini/MIMI measurements: A simple model for the energetic ion integral moments

    Science.gov (United States)

    Dialynas, K.; Paranicas, C.; Roussos, E.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.

    2015-12-01

    We present a composite analysis (H+ and O+) of energetic ion spectra and kappa distribution fits, using combined ion measurements from Charge Energy Mass Spectrometer (CHEMS, 3 to 236 keV/e), Low Energy Magnetospheric Measurements System (LEMMS, 0.024 220 keV for H+). The modeled expressions of these energetic ion distributions are then used to obtain the four integral particle moments (from zeroth to 3rd moment: n, In, P, IE, i.e. Density, Integral number intensity, Pressure, Integral energy intensity) as well as the characteristic energy (EC=IE/In) of these ions as a function of Local Time and L-Shell. We find that a) protons dominate the energetic ion (>30 keV) integral number and energy intensity at all radial distances (L>5 Rs) and local times, while the H+ and O+ partial pressures and densities are comparable; b) the 12Skinner [2000] model in both local time and L-shell. Roelof, E. C., and A. J. Skinner (2000), Space Sci. Rev., 91, 437-459.

  2. RELAX Update: Recent Developments in the Resonance Ionization Mass Spectrometry of Xenon

    Science.gov (United States)

    Gilmour, J. D.; Johnston, W. A.; Lyon, I. C.; Turner, G.

    1993-07-01

    Refrigerator Enhanced Laser Analyser for Xenon (RELAX) [1] is an ultrasensitive mass spectrometer designed for the analysis of xenon from meteorites. It combines a selective laser resonance ionization ion source using a Nd:YAG based laser system for the generation of UV light pulses at 10Hz with a low volume (400cc) time-of-flight mass spectrometer. A cryogenic sample concentrator is used to increase sensitivity to the point where one count per second is produced from a sample of 1000 atoms, and this, combined with the continuous measurement of all isotopes and baselines implicit in the time-of-flight technique gives an effective sensitivity 2 orders of magnitude in excess of conventional, single-collector, magnetic sector instruments. In the past year the data acquisition system has been radically altered by the addition of discrimination against electronic noise and the development of a pulse counting system for small quantities of gas (light isotopes ^124Xe and ^126Xe. Precisions of close to 10% are achievable in under 10 minutes in calibration aliquots that contain approximately 600 atoms of ^124Xe. Gas can be released from samples using either an argon ion laser microprobe or a tantalum filament microfurnace while being observed through the laser port via a video monitoring system. The blank from the sample extraction chamber in which either the filament furnace or the laser microprobe sample mount can be fitted is not measurably higher than the dynamic blank of the spectrometer (10^-15ccSTP xenon total) however, at high filament temperatures (~1000 degrees C) the filament furnace produces a larger blank (up to 5 x 10^-15ccSTP) over the 5 minute duration of a typical sample extraction. No corresponding increase in blank has been noted when the laser microprobe is in use. High resolution stepped pyrolysis analyses of acid residues from the Murchison meteorite have been performed using the filament furnace in preference to the laser probe because of the greater

  3. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions

    Science.gov (United States)

    Donahue, William; Newhauser, Wayne D.; Ziegler, James F.

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  4. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.

    Science.gov (United States)

    Donahue, William; Newhauser, Wayne D; Ziegler, James F

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  5. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    Science.gov (United States)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which

  6. Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps

    Science.gov (United States)

    Belasri, A.; Harrache, Z.

    2010-12-01

    A pulsed dielectric-barrier discharge in xenon has been simulated for operating conditions typical to excimer lamps, in which the discharge is considered spatially homogeneous. The computer model developed is based on the xenon plasma chemistry, the circuit, and the Boltzmann equations. First, the validity of the physical model was checked and compared to experimental and theoretical works, and then the model is applied in the case of a sinusoidal voltage at period frequencies in the range of 50 kHz-2 MHz. The results obtained with the present description are in good agreement with experimental measurements and one-dimensional fluid prediction in terms of electrical characteristics and vacuum ultraviolet (vuv) emission. The effect of operation voltage, power source frequency, dielectric capacitance, as well as gas pressure on the discharge efficiency and the 172, 150, and 147 nm photon generation, under the typical experimental operating conditions and for the case of a sinusoidal applied voltage, have been investigated and discussed. Calculations suggest that the overall conversion efficiency from electrical energy to vuv emission in the lamp is greater than 38%, and it will be very affected at high power source frequency and high gas pressure with a significant dependence on the dielectric capacitance.

  7. Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider

    Indian Academy of Sciences (India)

    Subrata Pal

    2015-05-01

    We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of hadron yields at high transverse momentum, provide exciting new information on the properties of the plasma formed.

  8. Small-angle fragmentation of carbon ions at 0.6 GeV/n: a comparison with models of ion-ion interactions

    Directory of Open Access Journals (Sweden)

    Krutenkova A.P.

    2015-01-01

    Full Text Available Momentum distributions of hydrogen and helium isotopes from 12C fragmentation at 3.5° were measured at 0.6 GeV/nucleon in the FRAGM experiment at ITEP TWA heavy ion accelerator. The fragments were selected by correlated time of flight and dE/dx measurements with a magnetic spectrometer with scintillation counters. The main attention was drawn to the high momentum region where the fragment velocity exceeds the velocity of the projectile nucleus. The momentum spectra of fragments span the region of the fragmentation peak as well as the cumulative region. The differential cross sections cover six orders of magnitude. The distributions measured are compared to the predictions of three ion-ion interaction models: BC, QMD and LAQGSM03.03. The kinetic energy spectra of fragments in the projectile rest frame have an exponential shape with two temperatures, being defined by their slope parameters.

  9. The interactions of high-energy, highly charged Xe ions with buckyballs

    Energy Technology Data Exchange (ETDEWEB)

    Ali, R.; Berry, H.G.; Cheng, S. [and others

    1994-12-31

    Ionization and fragmentation have been measured for C{sub 60} molecules bombarded by highly charged (up to 35+) xenon ions with energies ranging up to 625 MeV. The observed mass distribution of positively charged fragments is explained in terms of a theoretical model indicating that the total interaction cross section contains roughly equal contributions from (a) excitation of the giant plasmon resonance, and (b) large-energy-transfer processes that lead to multiple fragmentation of the molecule. Preliminary results of measurements on VUV photons emitted in these interactions are also presented.

  10. Relativistic evaluation of the two-photon decay of the metastable 1 s22 s 2 p 3P0 state in berylliumlike ions with an effective-potential model

    Science.gov (United States)

    Amaro, Pedro; Fratini, Filippo; Safari, Laleh; Machado, Jorge; Guerra, Mauro; Indelicato, Paul; Santos, José Paulo

    2016-03-01

    The two-photon 1 s22 s 2 p 3P0→1 s2s21S0 transition in berylliumlike ions is investigated theoretically within a fully relativistic framework and a second-order perturbation theory. We focus our analysis on how electron correlation, as well as the negative-energy spectrum, can affect the forbidden E 1 M 1 decay rate. For this purpose, we include the electronic correlation via an effective local potential and within a single-configuration-state model. Due to its experimental interest, evaluations of decay rates are performed for berylliumlike xenon and uranium. We find that the negative-energy contribution can be neglected at the present level of accuracy in the evaluation of the decay rate. On the other hand, if contributions of electronic correlation are not carefully taken into account, it may change the lifetime of the metastable state by up to 20%. By performing a fully relativistic j j -coupling calculation, we find a decrease of the decay rate by two orders of magnitude compared to nonrelativistic L S -coupling calculations, for the selected heavy ions.

  11. Conceptual design of first toroidal electron cyclotron resonance ion source and modeling of ion extraction from it

    CERN Document Server

    Caliri, C; Volpe, F A

    2015-01-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) progressed to higher and higher ion currents and charge states by adopting stronger magnetic fields (beneficial for confinement) and proportionally higher ECR frequencies. Further improvements would require the attainment of "triple products" of density, temperature and confinement time comparable with major fusion experiments. For this, we propose a new, toroidal rather than linear, ECRIS geometry, which would at the same time improve confinement and make better use of the magnetic field. Ion extraction is more complicated than from a linear device, but feasible, as our modelling suggests: single-particle tracings showed successful extraction by at least two techniques, making use respectively of a magnetic extractor and of ExB drifts. Additional techniques are briefly discussed.

  12. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    CERN Document Server

    Sun, Yifeng; Li, Feng

    2016-01-01

    Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).

  13. Effects of energetic electrons on ion acceleration in a quasi-static model

    Science.gov (United States)

    Bahache, Abdelkadrer; Bennaceur-Doumaz, Djamila; Djebli, Mourad

    2017-08-01

    Based on the Passoni-Lontano model [M. Lontano and M. Passoni, Phys. Plasmas 13(4), 042102 (2006)], the expansion of an intense laser produced plasma into vacuum is analyzed, assuming that hot and energetic electrons responsible for ion acceleration, in the framework of a TNSA mechanism, are nonthermal and modelled by the Cairns distribution function. Due to the presence of energetic nonthermal electron population, the electric potential, electrical field, ion maximum energy, and ion spectrum energy are enhanced during the ion acceleration process.

  14. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon

    Science.gov (United States)

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results. Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon–oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images. Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects. Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images

  15. Titan Tholin Production Through Ion-Neutral Chemistry: Data and Model

    Science.gov (United States)

    Westlake, J. H.; Waite, J. H.; Crary, F. J.; Magee, B. A.; Mandt, K. E.; Young, D. T.

    2009-12-01

    Ion-neutral chemistry in Titan’s upper atmosphere produces a plethora of positive ions with masses up to about 350 amu and negative ions with much larger masses. The Cassini Plasma Spectrometer Ion Beam Spectrometer (CAPS-IBS), the Ion and Neutral Mass Spectrometer (INMS), and the CAPS Electron Spectrometer (CAPS-ELS) measure positive ions up to ~350 amu, positive ions and neutrals up to 100 amu, and negative ions to greater than 10,000 amu respectively. High-mass (greater than 100 Da.) spectral peaks lie in the region expected for polycyclic aromatic hydrocarbons and heterocyclic compounds. Coupled CAPS-IBS and INMS measurements provide ion densities through an iterative fitting process that are consistent with those measured by the Langmuir probe on Cassini. General properties of the high-mass positive ions are presented including scale height and day-night distribution. An ion-neutral model is presented which replicates the structure, primary peaks, and densities of the high mass ions observed. This model utilizes reactions studied within the context of Titan’s ionosphere, cold interstellar environments, and sooting flames as well as calculated reaction rates based on theoretical pathways. The primary ion-neutral reaction pathways are found to be acetylene addition, hydrogen cyanide insertion, and protonation. These processes are shown to reproduce the CAPS-IBS spectral peaks with good accuracy. We assess the possibility of heterocyclic compound production through ion-neutral chemistry in which nitrogen substituted aromatics, produced through reactions with HCN and HC3N, participate in associative reactions. Heterocyclic compounds, such as purine and pyrimidine, form the basic structural units of nucleotides.

  16. Single electron emission in two-phase xenon with application to the detection of coherent neutrino-nucleus scattering

    CERN Document Server

    Santos, E; Chepel, V; Araujo, H M; Akimov, D Yu; Barnes, E J; Belov, V A; Burenkov, A A; Currie, A; DeViveiros, L; Ghag, C; Hollingsworth, A; Horn, M; Kalmus, G E; Kobyakin, A S; Kovalenko, A G; Lebedenko, V N; Lindote, A; Lopes, M I; Luscher, R; Majewski, P; Murphy, A StJ; Neves, F; Paling, S M; da Cunha, J Pinto; Preece, R; Quenby, J J; Reichhart, L; Scovell, P R; Silva, C; Solovov, V N; Smith, N J T; Smith, P F; Stekhanov, V N; Sumner, T J; Thorne, C; Walker, R J

    2011-01-01

    We present an experimental study of single electron emission in ZEPLIN-III, a two-phase xenon experiment built to search for dark matter WIMPs, and discuss applications enabled by the excellent signal-to-noise ratio achieved in detecting this signature. Firstly, we demonstrate a practical method for precise measurement of the free electron lifetime in liquid xenon during normal operation of these detectors. Then, using a realistic detector response model and backgrounds, we assess the feasibility of deploying such an instrument for measuring coherent neutrino-nucleus elastic scattering using the ionisation channel in the few-electron regime. We conclude that it should be possible to measure this elusive neutrino signature above an ionisation threshold of $\\sim$3 electrons both at a stopped pion source and at a nuclear reactor. Detectable signal rates are larger in the reactor case, but the triggered measurement and harder recoil energy spectrum afforded by the accelerator source enable lower overall backgroun...

  17. Modeling and computer simulation of ion beam synthesis of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, M.

    1999-11-01

    The following topics were dealt with: ion beam synthesis of nanoclusters, kinetic three dimensional lattice Monte Carlo method, Ostwald ripening, redistribution of implanted impurities, buried layer formation, comparisation to experimental results.

  18. Influence of the Oxygen content on the thermal migration of Xenon in ZrCxO1-x

    Science.gov (United States)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Gutierrez, G.; Maître, A.; Gendre, M.

    2013-09-01

    Zirconium carbide (ZrC) is a refractory ceramic presenting interesting properties such as a high melting point, a very high hardness and a good thermal stability. For these reasons, this material is considered as a candidate for fuel coating for fourth-generation reactors in particular for the Gas cooled Fast Reactors (GFR). The ceramic temperature could reach 1200 °C in normal reactor operation and reach 1700 °C in accidental conditions. It is therefore important to assess the ZrC thermal retention capacity regarding abundant and/or volatile fission products. This paper deals with the behavior of Xenon which is the major gaseous fission product created during fission. Previous studies have shown that Xenon remained motionless in an "Oxygen-poor" matrix such as ZrC0.95O0.05, up to temperatures of 1800 °C. However, Zirconium oxycarbides are known to be very sensitive to oxidation. This study aims therefore at studying the behavior of Xenon in Zirconium oxycarbide samples with different Oxygen contents. Xenon is introduced by ion implantation and the samples are annealed in secondary vacuum in the temperature range 1400 °C-1800 °C. The Oxygen profiles are determined by using the 16O(4He, 4He)16O nuclear reaction at 7.5 MeV and the concentration profiles of Xenon are measured by Rutherford Backscattering Spectrometry at each step of the treatment. The results show that the behavior of the material during annealing with respect to oxidation is strongly related to its initial Oxygen content. More generally, the higher the initial Oxygen content, the more important is the oxidation. Consequently, the Xenon migration is enhanced in Oxygen rich Zirconium carbides. at 1950 °C under vacuum with an applied load of 100 MPa by Spark Plasma Sintering (SPS) at the University of Toulouse (CNRS PNF2 platform) [22]. at 1845 °C under an Ar gas flow with an applied load of 40 MPa by Hot Pressing (HP) at Limoges. Sintered pellets were divided into two batches: (i) a batch of

  19. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters.

    Science.gov (United States)

    Joung, In Suk; Cheatham, Thomas E

    2009-10-01

    The dynamic and energetic properties of the alkali and halide ions were calculated using molecular dynamics (MD) and free energy simulations with various different water and ion force fields including our recently developed water-model-specific ion parameters. The properties calculated were activity coefficients, diffusion coefficients, residence times of atomic pairs, association constants, and solubility. Through calculation of these properties, we can assess the validity and range of applicability of the simple pair potential models and better understand their limitations. Due to extreme computational demands, the activity coefficients were only calculated for a subset of the models. The results qualitatively agree with experiment. Calculated diffusion coefficients and residence times between cation-anion, water-cation, and water-anion showed differences depending on the choice of water and ion force field used. The calculated solubilities of the alkali-halide salts were generally lower than the true solubility of the salts. However, for both the TIP4P(EW) and SPC/E water-model-specific ion parameters, solubility was reasonably well-reproduced. Finally, the correlations among the various properties led to the following conclusions: (1) The reliability of the ion force fields is significantly affected by the specific choice of water model. (2) Ion-ion interactions are very important to accurately simulate the properties, especially solubility. (3) The SPC/E and TIP4P(EW) water-model-specific ion force fields are preferred for simulation in high salt environments compared to the other ion force fields.

  20. Modeling of negative ion transport in a plasma source

    Science.gov (United States)

    Riz, David; Paméla, Jérôme

    1998-08-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  1. Dark matter sensitivity of multi-ton liquid xenon detectors

    CERN Document Server

    Schumann, Marc; Bütikofer, Lukas; Kish, Alexander; Selvi, Marco

    2015-01-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t x y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as $2.5 \\times 10^{-49}$ cm$^2$ can be probed for WIMP masses around 40 GeV/$c^2$. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.

  2. First Dark Matter Results from the XENON100 Experiment

    CERN Document Server

    Aprile, E; Arneodo, F; Askin, A; Baudis, L; Behrens, A; Brown, E; Cardoso, J M R; Choi, B; Cline, D B; Fattori, S; Ferella, A D; Giboni, K -L; Hugenberg, K; Kish, A; Lam, C W; Lamblin, J; Lang, R F; Lim, K E; Lopes, J A M; Undagoitia, T Marrodán; Mei, Y; Fernandez, A J Melgarejo; Ni, K; Oberlack, U; Orrigo, S E A; Pantic, E; Plante, G; Ribeiro, A C C; Santorelli, R; Santos, J M F dos; Schumann, M; Shagin, P; Teymourian, A; Thers, D; Tziaferi, E; Wang, H; Weinheimer, C

    2010-01-01

    The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter WIMPs scattering off 62 kg of liquid xenon in an ultra-low background dual-phase time projection chamber. In this letter, we present first dark matter results from the analysis of 11.17 live days of non-blind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the pre-defined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross-sections above 3 x 10^-44 cm^2 for 50 GeV/c^2 WIMPs at 90% confidence level. Below 20 GeV/c^2, this result challenges the interpretation of the CoGeNT or DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.

  3. Two-photon resonant, stimulated processes in krypton and xenon

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.C.

    1988-11-01

    Both on-axis and conical emissions have been observed following two-photon pumping of the 5p states of krypton and the 6p', 7p, 8p, and 4f states of xenon. In the former case, coherent emissions from the 5p states to the 5s are observed, and in the latter case, many p..-->..s, d..-->..p, and f..-->..d cascade emissions are observed. By analogy to the well-studied alkali and alkaline earth examples, the emissions are discussed in terms of amplified spontaneous emission (ASE), stimulated hyper-Raman scattering, and parametric four-wave mixing. The physical processes responsible for the conical emission and for intensity anomalies in the xenon p..-->..s emissions are not understood at present. Interference effects due to coherent cancellation between competing excitation pathways may be occurring. 4 refs., 3 figs.

  4. Measurements of proportional scintillation in liquid xenon using thin wires

    CERN Document Server

    Aprile, E; Goetzke, L W; Fernandez, A J Melgarejo; Messina, M; Naganoma, J; Plante, G; Rizzo, A; Shagin, P; Wall, R

    2014-01-01

    Proportional scintillation in liquid xenon has a promising application in the field of direct dark matter detection, potentially allowing for simpler, more sensitive detectors. However, knowledge of the basic properties of the phenomenon as well as guidelines for its practical use are currently limited. We report here on measurements of proportional scintillation light emitted in liquid xenon around thin wires. The maximum proportional scintillation gain of $287^{+97}_{-75}$ photons per drift electron was obtained using 10 $\\mu$m diameter gold plated tungsten wire. The thresholds for electron multiplication and proportional scintillation are measured as $725^{+48}_{-139}$ and $412^{+10}_{-133}$ kV/cm, respectively. The threshold for proportional scintillation is in good agreement with a previously published result, while the electron multiplication threshold represents a novel measurement. A complete set of parameters for the practical use of the electron multiplication and proportional scintillation processe...

  5. High Pressure XENON Gamma-Ray Spectrometers for Field Use

    Energy Technology Data Exchange (ETDEWEB)

    David K. Wehe; Zong He; Glenn K. Knoll

    2004-02-16

    This project explored a new concept for high-pressure xenon ionization chambers by replacing the Frisch grid with coplanar grid electrodes similar to those used in wide bandgap semiconductor gamma-ray spectrometers. This work is the first attempt to apply the coplanar grid anode design in a gas ionization chamber in order to achieve to improved energy resolution. Three prototype detectors, two cylindrical and one parallel plate configurations, were built and tested. While the detectors did not demonstrate energy resolutions as good as other high pressure xenon gamma-ray spectrometers, the results demonstrated that the concept of single polarity charge sending using coplanar grid electrodes will work in a gas detector.

  6. Inelastic scattering of xenon atoms by quantized vortices in superfluids

    CERN Document Server

    Pshenichnyuk, I A

    2016-01-01

    We study inelastic interactions of particles with quantized vortices in superfluids by using a semi-classical matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The research is motivated by recent experiments on xenon doped helium nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other impurities by quantized vortices. Different energies and impact parameters of incident particles are considered. We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of the binding energy.

  7. Driving Rabi oscillations at the giant dipole resonance in xenon

    CERN Document Server

    Pabst, Stefan; Santra, Robin

    2015-01-01

    Free-electron lasers (FELs) produce short and very intense light pulses in the XUV and x-ray regimes. We investigate the possibility to drive Rabi oscillations in xenon with an intense FEL pulse by using the unusually large dipole strength of the giant-dipole resonance (GDR). The GDR decays within less than 30 as due to its position, which is above the $4d$ ionization threshold. We find that intensities around 10$^{18}$ W/cm$^2$ are required to induce Rabi oscillations with a period comparable to the lifetime. The pulse duration should not exceed 100 as because xenon will be fully ionized within a few lifetimes. Rabi oscillations reveal themselves also in the photoelectron spectrum in form of Autler-Townes splittings extending over several tens of electronvolt.

  8. Xenon excimer emission from multicapillary discharges in direct current mode

    OpenAIRE

    Lee, Byung-Joon; Rahaman, Hasibur; Nam, Sang Hoon; Giapis, Konstantinos P.; Iberler, Marcus; Jacoby, Joachim; Frank, Klaus

    2012-01-01

    Microdischarges in xenon have been generated in a pressure range of 400–1013 mbar with a fixed flow rate of 100 sccm. These microdischarges are obtained from three metallic capillary tubes in series for excimer emission. Total discharge voltage is thrice as large as that of a single capillary discharge tube at current levels of up to 12 mA. Total spectral irradiance of vacuum ultraviolet (VUV) emission also increases significantly compared to that of the single capillary discharge. Further, t...

  9. Shear Thinning Near the Critical Point of Xenon

    Science.gov (United States)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.; Yao, Minwu

    2008-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(exp -3) critical fluctuations. The measurements had a temperature resolution of 0.01 mK and were conducted in microgravity aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity. The viscometer measured the drag on a delicate nickel screen as it oscillated in the xenon at amplitudes 3 mu,m 430 mu, and frequencies 1 Hz critical scaling. At high frequencies, (omega tau)(exp 2) > gamma-dot tau, C(sub gamma) depends also on both x(sub 0) and omega. The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma-dot)/eta(0)=[1+A(sub gamma)|gamma-dot tau|](exp - chi(sub eta)/3+chi(sub eta)), where chi(sub eta) =0.069 is the critical exponent for viscosity and mode-coupling theory predicts A(sub gamma) =0.121. For xenon we find A(sub gamma) =0.137 +/- 0.029, in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature T(sub c) were independent of the cooling rate (both above and below T(sub c) and these data were symmetric about T(sub c) to within a temperature scale factor. The scale factors for the magnitude of the oscillator s response differed from those for the oscillator's phase; this suggests that the surface tension of the two-phase domains affected the drag on the screen below T(sub c).

  10. A computational study of ion conductance in the KcsA K(+) channel using a Nernst-Planck model with explicit resident ions.

    Science.gov (United States)

    Jung, Yong-Woon; Lu, Benzhuo; Mascagni, Michael

    2009-12-01

    The biophysical mechanisms underlying the relationship between the structure and function of the KcsA K(+) channel are described. Because of the conciseness of electrodiffusion theory and the computational advantages of a continuum approach, the Nernst-Planck (NP) type models, such as the Goldman-Hodgkin-Katz and Poisson-NP (PNP) models, have been used to describe currents in ion channels. However, the standard PNP (SPNP) model is known to be inapplicable to narrow ion channels because it cannot handle discrete ion properties. To overcome this weakness, the explicit resident ions NP (ERINP) model was formulated, which applies a local explicit model where the continuum model fails. Then, the effects of the ERI Coulomb potential, the ERI induced potential, and the ERI dielectric constant for ion conductance were tested in the ERINP model. The current-voltage (I-V) and current-concentration (I-C) relationships determined in the ERINP model provided biologically significant information that the traditional continuum model could not, explicitly taking into account the effects of resident ions inside the KcsA K(+) channel. In addition, a mathematical analysis of the K(+) ion dynamics established a tight structure-function system with a shallow well, a deep well, and two K(+) ions resident in the selectivity filter. Furthermore, the ERINP model not only reproduced the experimental results with a realistic set of parameters, but it also reduced CPU costs.

  11. Solar Ion Processing of Itokawa Grains: Reconciling Model Predictions with Sample Observations

    Science.gov (United States)

    Christoffersen, Roy; Keller, L. P.

    2014-01-01

    Analytical TEM observations of Itokawa grains reported to date show complex solar wind ion processing effects in the outer 30-100 nm of pyroxene and olivine grains. The effects include loss of long-range structural order, formation of isolated interval cavities or "bubbles", and other nanoscale compositional/microstructural variations. None of the effects so far described have, however, included complete ion-induced amorphization. To link the array of observed relationships to grain surface exposure times, we have adapted our previous numerical model for progressive solar ion processing effects in lunar regolith grains to the Itokawa samples. The model uses SRIM ion collision damage and implantation calculations within a framework of a constant-deposited-energy model for amorphization. Inputs include experimentally-measured amorphization fluences, a Pi steradian variable ion incidence geometry required for a rotating asteroid, and a numerical flux-versus-velocity solar wind spectrum.

  12. Likelihood Approach to the First Dark Matter Results from XENON100

    CERN Document Server

    Aprile, E; Arneodo, F; Askin, A; Baudis, L; Behrens, A; Bokeloh, K; Brown, E; Bruch, T; Cardoso, J M R; Choi, B; Cline, D; Duchovni, E; Fattori, S; Ferella, A D; Giboni, K -L; Gross, E; Kish, A; Lam, C W; Lamblin, J; Lang, R F; Lim, K E; Lindemann, S; Lindner, M; Lopes, J A M; Undagoitia, T Marrodán; Mei, Y; Fernandez, A J Melgarejo; Ni, K; Oberlack, U; Orrigo, S E A; Pantic, E; Plante, G; Ribeiro, A C C; Santorelli, R; Santos, J M F dos; Schumann, M; Shagin, P; Teymourian, A; Thers, D; Tziaferi, E; Vitells, O; Wang, H; Weber, M; Weinheimer, C

    2011-01-01

    Many experiments that aim at the direct detection of Dark Matter are able to distinguish a dominant background from the expected feeble signals, based on some measured discrimination parameter. We develop a statistical model for such experiments using the Profile Likelihood ratio as a test statistic in a frequentist approach. We take data from calibrations as control measurements for signal and background, and the method allows the inclusion of data from Monte Carlo simulations. Systematic detector uncertainties, such as uncertainties in the energy scale, as well as astrophysical uncertainties, are included in the model. The statistical model can be used to either set an exclusion limit or to make a discovery claim, and the results are derived with a proper treatment of statistical and systematic uncertainties. We apply the model to the first data release of the XENON100 experiment, which allows to extract additional information from the data, and place stronger limits on the spin-independent elastic WIMP-nuc...

  13. 37 Ar Calibration of the Large Underground Xenon Experiment

    Science.gov (United States)

    Boulton, Elizabeth; LUX Collaboration Collaboration

    2017-01-01

    The LUX collaboration released its 332 live-day WIMP search result in June 2016. Besides WIMPs, there are several other rare particles to search for using two-phase xenon detectors, such as axion-like pseudoscalars, axions, and electrophilic dark matter. All of these proposed particles interact with xenon via electron recoils at low energy. Also, the neutrino magnetic moment can be searched for by examining the rates of neutrino-electron scattering at low energy. Therefore, understanding xenon's response in this low-energy regime is vitally important. 37Ar is an ideal source for calibrating a detector at these low energies, because it decays via electron capture (EC) and releases x-rays at two energies: 2.8 keV due to EC from the K-shell and 0.27 keV due to EC from the L-shell. Additionally, 37Ar can be used to precisely study recombination fluctuations at a specific energy in the WIMP region of interest. Recombination fluctuations limit electron recoil discrimination efficiency, so understanding how these fluctuations change with electric drift field is important to all LUX analysis. This talk will explain the motivation, creation, deployment, and results of the 37Ar source in LUX over a wide range of drift fields.

  14. High-pressure xenon detector development at Constellation Technology Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Austin, Robert A. [Constellation Technology Corporation, 7887 Bryan Dairy Road, Suite 100, Largo, FL 33777 (United States)], E-mail: austin@contech.com

    2007-08-21

    Xenon-filled ionization detectors, due to their high atomic number fill gas (Z=54), moderate densities ({approx}0.3-0.5 g/cm{sup 3}) and good energy resolution (2-4% at 662 keV), fill an important niche between more familiar technologies such as NaI(Tl) scintillators and germanium detectors. Until recently, difficulties with obtaining sufficient xenon purity, reducing microphonic sensitivity, and developing low-noise electronics compatible with small ionization signals have hampered the development of this nuclear detection field. Constellation Technology Corporation, whose experience with xenon detectors goes back to the mid 1990s, has made significant progress in these areas and has developed a commercial line of detectors with active volumes ranging from small (35 g Xe) to large (1400 g Xe). Current applications for Constellation's detectors are principally in the area of defense (Unmanned Aerial Vehicles and Advanced Spectroscopic Portals), but as awareness of this technology grows, it will surely find applications in a much expanded range of fields.

  15. High-pressure xenon detector development at Constellation Technology Corporation

    Science.gov (United States)

    Austin, Robert A.

    2007-08-01

    Xenon-filled ionization detectors, due to their high atomic number fill gas ( Z=54), moderate densities (˜0.3-0.5 g/cm 3) and good energy resolution (2-4% at 662 keV), fill an important niche between more familiar technologies such as NaI(Tl) scintillators and germanium detectors. Until recently, difficulties with obtaining sufficient xenon purity, reducing microphonic sensitivity, and developing low-noise electronics compatible with small ionization signals have hampered the development of this nuclear detection field. Constellation Technology Corporation, whose experience with xenon detectors goes back to the mid 1990s, has made significant progress in these areas and has developed a commercial line of detectors with active volumes ranging from small (35 g Xe) to large (1400 g Xe). Current applications for Constellation's detectors are principally in the area of defense (Unmanned Aerial Vehicles and Advanced Spectroscopic Portals), but as awareness of this technology grows, it will surely find applications in a much expanded range of fields.

  16. Mirror dark matter will be confirmed or excluded by XENON1T

    Directory of Open Access Journals (Sweden)

    J.D. Clarke

    2017-03-01

    Full Text Available Mirror dark matter, where dark matter resides in a hidden sector exactly isomorphic to the standard model, can be probed via direct detection experiments by both nuclear and electron recoils if the kinetic mixing interaction exists. In fact, the kinetic mixing interaction appears to be a prerequisite for consistent small scale structure: Mirror dark matter halos around spiral galaxies are dissipative – losing energy via dark photon emission. This ongoing energy loss requires a substantial energy input, which can be sourced from ordinary supernovae via kinetic mixing induced processes in the supernova's core. Astrophysical considerations thereby give a lower limit on the kinetic mixing strength, and indeed lower limits on both nuclear and electron recoil rates in direct detection experiments can be estimated. We show here that potentially all of the viable parameter space will be probed in forthcoming XENON experiments including LUX and XENON1T. Thus, we anticipate that these experiments will provide a definitive test of the mirror dark matter hypothesis.

  17. The iodine-plutonium-xenon age of the Moon-Earth system revisited

    CERN Document Server

    Avice, Guillaume

    2015-01-01

    From iodine-plutonium-xenon isotope systematics, we re-evaluate time constraints on the early evolution of the Earth-atmosphere system and, by inference, on the Moon-forming event. Two extinct radioactivites (129I, T1/2 = 15.6 Ma, and 244Pu, T1/2 = 80 Ma) have produced radiogenic 129Xe and fissiogenic 131-136Xe, respectively, within the Earth, which related isotope fingerprints are seen in the compositions of mantle and atmospheric Xe. Recent studies of Archean rocks suggest that xenon atoms have been lost from the Earth's atmosphere and isotopically fractionated during long periods of geological time, until at least the end of the Archean eon. Here we build a model that takes into account these results. Correction for Xe loss permits to compute new closure ages for the Earth's atmosphere that are in agreement with those computed for mantle Xe. The minimum Xe formation interval for the Earth- atmosphere is 40 (-10+20) Ma after start of solar system formation, which may also date the Moon-forming impact.

  18. The iodine-plutonium-xenon age of the Moon-Earth system revisited.

    Science.gov (United States)

    Avice, G; Marty, B

    2014-09-13

    Iodine-plutonium-xenon isotope systematics have been used to re-evaluate time constraints on the early evolution of the Earth-atmosphere system and, by inference, on the Moon-forming event. Two extinct radionuclides ((129)I, T1/2=15.6 Ma and (244)Pu, T1/2=80 Ma) have produced radiogenic (129)Xe and fissiogenic (131-136)Xe, respectively, within the Earth, the related isotope fingerprints of which are seen in the compositions of mantle and atmospheric Xe. Recent studies of Archaean rocks suggest that xenon atoms have been lost from the Earth's atmosphere and isotopically fractionated during long periods of geological time, until at least the end of the Archaean eon. Here, we build a model that takes into account these results. Correction for Xe loss permits the computation of new closure ages for the Earth's atmosphere that are in agreement with those computed for mantle Xe. The corrected Xe formation interval for the Earth-atmosphere system is [Formula: see text] Ma after the beginning of Solar System formation. This time interval may represent a lower limit for the age of the Moon-forming impact.

  19. Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Xenon Collaboration

    2017-03-01

    We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 43 1-14+16 day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9 σ ; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8 σ , from a previous analysis of a subset of this data, to 1.8 σ with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7 σ .

  20. Impacts of Xe-135m on Xenon Reactivity in Thermal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeha; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    To our best knowledge, the effect of the omission of Xe-135m has never been evaluated before. Recently, we found that the cross section data of Xe-135m are available from the TENDL-2011 library based on the theoretical evaluations. According to the TENDL data, the neutron absorption cross section of Xe-135m turns out to be much larger than that of Xe-135 in the thermal neutron region, as shown in Fig. 1. In this paper, we evaluated the impacts of Xe-135m on the total steady-state and transient Xe reactivity. By taking into account Xe-135m in the I-135 decay, we have found the followings. First, the steady state total xenon reactivity is slightly increased by ∼0.94% as compared with the conventional model. Second, the impact of Xe-135m on the transient Xe reactivity is rather significant. In particular, the reactivity change during the early transient period can be noticeably enhanced by accounting for Xe-135. And this indicates that Xe-135m may play an important role in measuring the PCR for which the transient Xenon reactivity should be accurately estimated. Currently, the impacts of Xe-135 on the PCR measurement are under investigation.

  1. Low-energy electronic recoil in xenon detectors by solar neutrinos

    CERN Document Server

    Chen, Jiunn-Wei; Liu, C -P; Wu, Chih-Pan

    2016-01-01

    Low-energy electronic recoil caused by solar neutrinos in multi-ton xenon detectors is an important subject not only because it is a source of the irreducible background for direct searches of weakly-interacting massive particles (WIMPs), but also because it provides a viable way to measure the solar $pp$ and $^{7}\\textrm{Be}$ neutrinos at the precision level of current standard solar model predictions. In this work we perform $\\textit{ab initio}$ many-body calculations for the structure, photoionization, and neutrino-ionization of xenon. It is found that the atomic binding effect yields a sizable suppression to the neutrino-electron scattering cross section at low recoil energies. Compared with the previous calculation based on the free electron picture, our calculated event rate of electronic recoil in the same detector configuration is reduced by about $25\\%$. We present in this paper the electronic recoil rate spectrum in the energy window of 100 eV - 30 keV with the standard per ton per year normalizatio...

  2. Magnetohydrodynamic Model for Plasma Instabilities in the Ion-Kinetic Regime

    NARCIS (Netherlands)

    Kuvshinov, B. N.

    1994-01-01

    A magnetized plasma is considered. It is shown that the MHD model provides an adequate description of plasma instabilities in the ion-kinetic regime, where the characteristic scales of the plasma motion fall below the ion Larmor radius. This conclusion is the consequence of the fact that the well kn

  3. Kinetic modeling of particle dynamics in H{sup −} negative ion sources (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hatayama, A., E-mail: akh@ppl.appi.keio.ac.jp; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Fukano, A. [Monozukuri Department, Tokyo Metropolitan College of Industrial Technology, Shinagawa, Tokyo 140-0011 (Japan); Mizuno, T. [Department of Management Science, College of Engineering, Tamagawa University, Machida, Tokyo 194-8610 (Japan)

    2014-02-15

    Progress in the kinetic modeling of particle dynamics in H{sup −} negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H{sup −} ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H{sup −} production, and (ii) extraction physics of H{sup −} ions and beam optics.

  4. Modeling of negative ion transport in a plasma source (invited)

    Science.gov (United States)

    Riz, David; Paméla, Jérôme

    1998-02-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  5. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface

    Directory of Open Access Journals (Sweden)

    Yan-Zi Yu

    2015-01-01

    Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.

  6. Two-dimensional Thermal Modeling of Lithium-ion Battery Cell Based on Electrothermal Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Knap, Vaclav

    2016-01-01

    Thermal modeling of lithium-ion batteries is gaining its importance together with increasing power density and compact design of the modern battery systems in order to assure battery safety and long lifetime. Thermal models of lithium-ion batteries are usually either expensive to develop...... and accurate or equivalent thermal circuit based with moderate accuracy and without spatial temperature distribution. This work presents initial results that can be used as a fundament for the cost-efficient development of the two-dimensional thermal model of lithium-ion battery based on multipoint...

  7. On the crucial features of a single-file transport model for ion channels

    CERN Document Server

    Liang, Kuo Kan

    2013-01-01

    It has long been accepted that the multiple-ion single-file transport model is appropriate for many kinds of ion channels. However, most of the purely theoretical works in this field did not capture all of the important features of the realistic systems. Nowadays, large-scale atomic-level simulations are more feasible. Discrepancy between theories, simulations and experiments are getting obvious, enabling people to carefully examine the missing parts of the theoretical models and methods. In this work, it is attempted to find out the essential features that such kind of models should possess, in order that the physical properties of an ion channel be adequately reflected.

  8. Lithium-ion battery dynamic model for wide range of operating conditions

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef

    2017-01-01

    In order to analyze the dynamic behavior of a Lithium-ion (Li-ion) battery and to determine their suitability for various applications, battery models are needed. An equivalent electrical circuit model is the most common way of representing the behavior of a Li-ion battery. There are different...... characterization tests performed for a wide range of operating conditions (temperature, load current and state-ofcharge) on a commercial available 13Ah high-power lithium titanate oxide battery cell. The obtained results were used to parametrize the proposed dynamic model of the battery cell. To assess...

  9. NMR investigations of surfaces and interfaces using spin-polarized xenon

    Energy Technology Data Exchange (ETDEWEB)

    Gaede, Holly Caroline [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-07-01

    129Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional 129Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 105times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the 13C signal of CO2 of xenon occluded in solid CO2 by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of ~1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6.

  10. Minimum alveolar concentration (MAC) for sevoflurane and xenon at normothermia and hypothermia in newborn pigs.

    Science.gov (United States)

    Liu, X; Dingley, J; Elstad, M; Scull-Brown, E; Steen, P A; Thoresen, M

    2013-05-01

    Neuroprotection from therapeutic hypothermia increases when combined with the anaesthetic gas xenon in animal studies. A clinical feasibility study of the combined treatment has been successfully undertaken in asphyxiated human term newborns. It is unknown whether xenon alone would be sufficient for sedation during hypothermia eliminating or reducing the need for other sedative or analgesic infusions in ventilated sick infants. Minimum alveolar concentration (MAC) of xenon is unknown in any neonatal species. Eight newborn pigs were anaesthetised with sevoflurane alone and then sevoflurane plus xenon at two temperatures. Pigs were randomised to start at either 38.5°C or 33.5°C. MAC for sevoflurane was determined using the claw clamp technique at the preset body temperature. For xenon MAC determination, a background of 0.5 MAC sevoflurane was used, and 60% xenon added to the gas mixture. The relationship between sevoflurane and xenon MAC is assumed to be additive. Xenon concentrations were changed in 5% steps until a positive clamp reaction was noted. Pigs' temperature was changed to the second target, and two MAC determinations for sevoflurane and 0.5 MAC sevoflurane plus xenon were repeated. MAC for sevoflurane was 4.1% [95% confidence interval (CI): 3.65-4.50] at 38.5°C and 3.05% (CI: 2.63-3.48) at 33.5°C, a significant reduction. MAC for xenon was 120% at 38.5°C and 116% at 33.5°C, not different. In newborn swine sevoflurane, MAC was temperature dependent, while xenon MAC was independent of temperature. There was large individual variability in xenon MAC, from 60% to 120%. © 2013 The Acta Anaesthesiologica Scandinavica Foundation.

  11. Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation.

    Science.gov (United States)

    Zhang, Qiang; Zhang, Ruiting; Zhao, Ying; Li, HuanHuan; Gao, Yi Qin; Zhuang, Wei

    2014-05-14

    We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significant deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.

  12. Potassium ions in the cavity of a KcsA channel model.

    Science.gov (United States)

    Yao, Zhenwei; Qiao, Baofu; Olvera de la Cruz, Monica

    2013-12-01

    The high rate of ion flux and selectivity of potassium channels has been attributed to the conformation and dynamics of the ions in the filter which connects the channel cavity and the extracellular environment. The cavity serves as the reservoir for potassium ions diffusing from the intracellular medium. The cavity is believed to decrease the dielectric barrier for the ions to enter the filter. We study here the equilibrium and dynamic properties of potassium ions entering the water-filled cavity of a KcsA channel model. Atomistic molecular dynamics simulations that are supplemented by electrostatic calculations reveal the important role of water molecules and the partially charged protein helices at the bottom of the cavity in overcoming the energy barrier and stabilizing the potassium ion in the cavity. We further show that the average time for a potassium ion to enter the cavity is much shorter than the conduction rate of a potassium passing through the filter, and this time duration is insensitive over a wide range of the membrane potential. The conclusions drawn from the study of the channel model are applicable in generalized contexts, including the entry of ions in artificial ion channels and other confined geometries.

  13. Surface modeling for optical fabrication with linear ion source

    CERN Document Server

    Wu, Lixiang; Shao, Jianda

    2016-01-01

    We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. It is the first time that we have a surface descriptor for building a relationship between the fabrication process of optical surfaces and the surface characterization based on PSD analysis, which akin to Zernike polynomials used for mapping the relationship between surface errors and Seidel aberrations. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of surface errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that, in theory, optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approac...

  14. The afterglow characteristics of xenon pulsed plasma for mercury-free fluorescent lamps

    Science.gov (United States)

    Jinno, Masafumi; Kurokawa, Hisayoshi; Aono, Masaharu; Ninomiya, Hideki

    2000-03-01

    In this study, the spectroscopic characteristics of radiations from xenon pulsed plasma are measured experimentally as a study on a mercury-free fluorescent lamp. Each radiation waveform has two peaks and they vary according to the inner diameter of lamp and the pressure of xenon as follows: (a) As the inner diameter of lamps increases, the afterglow radiation, that is the second peak, decays faster. (b) As the xenon pressure increases the first peak of radiation just after the start of discharge decreases and the afterglow increases. The characteristics of afterglow are explained by the rate equation of metastable xenon atoms Xem, and its coefficients are determined through the experimental results. This equation shows that in order to obtain intense phosphor afterglow, i.e. strong radiation of xenon excimer, high pressure of xenon and large lamp diameter are desirable. Moreover, high pressure of xenon brings fast decay of afterglow. Then the afterglow radiation has no overlap on the first peak of next discharge at a high frequency. Consequently, higher pressure of xenon and large lamp diameter are desirable for high intensity and high efficacy for xenon fluorescent lamps.

  15. Chloride Ion Transmission Model under the Drying-wetting Cycles and Its Solution

    Institute of Scientific and Technical Information of China (English)

    HUANG Ying; WEI Jun; DONG Rongzhen; ZENG Hua

    2014-01-01

    The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the drying-wetting cycles. The finite difference method was adopted to solve the model. The equation of chloride ion transmission model in the convection and diffusion zone of concrete was discreted by the group explicit scheme with right single point (GER method) and the equation in diffusion zone was discreted by FTCS difference scheme. According to relative humidity characteristics in concrete under drying-wetting cycles, the seepage velocity equation was formulated based on Kelvin Equation and Darcy’s Law. The time-variant equations of chloride ion concentration of concrete surface and the boundary surface of the convection and diffusion zone were established. Based on the software MATLAB the numerical calculation was carried out by using the model and basic material parameters from the experiments. The calculation of chloride ion concentration distribution in concrete is in good agreement with the drying-wetting cycles experiments. It can be shown that the chloride ion transmission model and the seepage velocity equation are reasonable and practical. Studies have shown that the chloride ion transmission in concrete considering convection and diffusion under the drying-wetting cycles is the better correlation with the actual situation than that only considering the diffusion.

  16. Nonlinear Inverse Problem for an Ion-Exchange Filter Model: Numerical Recovery of Parameters

    Directory of Open Access Journals (Sweden)

    Balgaisha Mukanova

    2015-01-01

    Full Text Available This paper considers the problem of identifying unknown parameters for a mathematical model of an ion-exchange filter via measurement at the outlet of the filter. The proposed mathematical model consists of a material balance equation, an equation describing the kinetics of ion-exchange for the nonequilibrium case, and an equation for the ion-exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion-exchange and several parameters. First, a numerical solution of the direct problem, the calculation of the impurities concentration at the outlet of the filter, is provided. Then, the inverse problem, finding the parameters of the ion-exchange process in nonequilibrium conditions, is formulated. A method for determining the approximate values of these parameters from the impurities concentration measured at the outlet of the filter is proposed.

  17. Modeling Chamber Transport for Heavy-Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W M; Niller, D A C; Tabak, M; Yu, S S; Peterson, P F; Welch, D R; Rose, D V; Olson, C L

    2002-08-02

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  18. Modeling chamber transport for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2002-10-01

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  19. Computational modelling of chloride ion transport in reinforced concrete

    NARCIS (Netherlands)

    Meijers, S.J.H.; Bijen, J.M.J.M.; De Borst, R.; Fraaij, A.L.A.

    2001-01-01

    Exposure to a saline environment is a major threat with respect to the durability of reinforced concrete structures. The chloride ions, which are present in seawater and de-icing salts, are able to penetrate the concrete up to the depth of the reinforcement. They can eventually trigger a pitting cor

  20. Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries

    Science.gov (United States)

    Jokar, Ali; Rajabloo, Barzin; Désilets, Martin; Lacroix, Marcel

    2016-09-01

    Over the last decade, many efforts have been deployed to develop models for the prediction, the control, the optimization and the parameter estimation of Lithium-ion (Li-ion) batteries. It appears that the most successful electrochemical-based model for Li-ion battery is the Pseudo-two-Dimensional model (P2D). Due to the fact that the governing equations are complex, this model cannot be used in real-time applications like Battery Management Systems (BMSs). To remedy the situation, several investigations have been carried out to simplify the P2D model. Mathematical and physical techniques are employed to reduce the order of magnitude of the P2D governing equations. The present paper is a review of the studies on the modeling of Li-ion batteries with simplified P2D models. The assumptions on which these models rest are stated, the calculation methods are examined, the advantages and the drawbacks of the models are discussed and their applications are presented. Suggestions for overcoming the shortcomings of the models are made. Challenges and future directions in the modeling of Li-ion batteries are also discussed.

  1. Modeling heat dominated electric breakdown in air, with adaptivity to electron or ion time scales

    Science.gov (United States)

    Agnihotri, A.; Hundsdorfer, W.; Ebert, U.

    2017-09-01

    We model heat dominated electrical breakdown in air in a short planar gap. We couple the discharge dynamics in fluid approximation with the hydrodynamic motion of the air heated by the discharge. To be computationally efficient, we derive a reduced model on the ion time scale, and we switch between the full model on the electron time scale and the reduced model. We observe an ion pulse reaching the cathode, releasing electrons by secondary emission, and these electrons create another ion pulse. These cycles of ion pulses might lead to electrical breakdown. This breakdown is driven by Ohmic heating, thermal shocks and induced pressure waves, rather than by the streamer mechanism of local field enhancement at the streamer tip.

  2. Delineating ion-ion interactions by electrostatic modeling for predicting rhizotoxicity of metal mixtures to lettuce Lactuca sativa.

    Science.gov (United States)

    Le, T T Yen; Wang, Peng; Vijver, Martina G; Kinraide, Thomas B; Hendriks, A Jan; Peijnenburg, Willie J G M

    2014-09-01

    Effects of ion-ion interactions on metal toxicity to lettuce Lactuca sativa were studied based on the electrical potential at the plasma membrane surface (ψ0 ). Surface interactions at the proximate outside of the membrane influenced ion activities at the plasma membrane surface ({M(n+)}0). At a given free Cu(2+) activity in the bulk medium ({Cu(2+)}b), additions of Na(+), K(+), Ca(2+), and Mg(2+) resulted in substantial decreases in {Cu(2+)}0. Additions of Zn(2+) led to declines in {Cu(2+)}0, but Cu(2+) and Ag(+) at the exposure levels tested had negligible effects on the plasma membrane surface activity of each other. Metal toxicity was expressed by the {M(n+)}0 -based strength coefficient, indicating a decrease of toxicity in the order: Ag(+)  > Cu(2+)  > Zn(2+). Adsorbed Na(+), K(+), Ca(2+), and Mg(2+) had significant and dose-dependent effects on Cu(2+) toxicity in terms of osmolarity. Internal interactions between Cu(2+) and Zn(2+) and between Cu(2+) and Ag(+) were modeled by expanding the strength coefficients in concentration addition and response multiplication models. These extended models consistently indicated that Zn(2+) significantly alleviated Cu(2+) toxicity. According to the extended concentration addition model, Ag(+) significantly enhanced Cu(2+) toxicity whereas Cu(2+) reduced Ag(+) toxicity. By contrast, the response multiplication model predicted insignificant effects of adsorbed Cu(2+) and Ag(+) on the toxicity of each other. These interactions were interpreted using ψ0, demonstrating its influence on metal toxicity.

  3. Ion properties in a Hall current thruster operating at high voltage

    Science.gov (United States)

    Garrigues, L.

    2016-04-01

    Operation of a 5 kW-class Hall current Thruster for various voltages from 400 V to 800 V and a xenon mass flow rate of 6 mg s-1 have been studied with a quasi-neutral hybrid model. In this model, anomalous electron transport is fitted from ion mean velocity measurements, and energy losses due to electron-wall interactions are used as a tuned parameter to match expected electron temperature strength for same class of thruster. Doubly charged ions production has been taken into account and detailed collisions between heavy species included. As the electron temperature increases, the main channel of Xe2+ ion production becomes stepwise ionization of Xe+ ions. For an applied voltage of 800 V, the mass utilization efficiency is in the range of 0.8-1.1, and the current fraction of doubly charged ions varies between 0.1 and 0.2. Results show that the region of ion production of each species is located at the same place inside the thruster channel. Because collision processes mean free path is larger than the acceleration region, each type of ions experiences same potential drop, and ion energy distributions of singly and doubly charged are very similar.

  4. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

    2012-01-01

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.

  5. Ion composition at comet 67P near perihelion: Rosetta/ROSINA measurements and modeling

    Science.gov (United States)

    Beth, Arnaud; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Calmonte, Ursina; Combi, Michael R.; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Björn; Fuselier, Stephen; Galand, Marina; Gasc, Sébastien; Gombosi, T. I.; Hansen, Kenneth C.; Hässig, Myrtha; Héritier, Kévin; Kopp, Ernest; Le Roy, Léna; Peroy, Solène; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Vigren, Erik

    2016-10-01

    On August 13th, 2015, comet 67P/Churyumov-Gerasimenko reached its perihelion at 1.24 AU, a milestone for its cometary activity observed by the European Space Agency's Rosetta spacecraft which arrived in August 2014. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Comet Pressure Sensor (COPS) instrument onboard Rosetta measured local outgassing rates over 1028 molecules.s-1 in summer 2015. In the meantime, the ROSINA/Double Focusing Mass Spectrometer (DFMS) instrument measured the ion composition in the coma which was expected to be more diversified than during the early phase of the mission. Indeed, the increase in the cometary activity is expected to trigger new chemical pathways, yielding the formation of new cometary ions, other than the major water ions observed at larger heliocentric distances. Such new ion species can be produced from minor neutral species, such as those with proton affinity higher than that of water. This includes NH4+ whose detection has been recently reported (Beth et al., 2016).In this study, we propose to investigate other ion species during the perihelion period by:- analysing DFMS data to find any signature of substantial ion species,- modeling the ionosphere of 67P by driving the model with the neutral densities measured by DFMS and COPS to support or constrain the absence or the presence of these ion species,- discussing any discrepancy between observations and simulations.

  6. Kuang's Semi-Classical Formalism for Electron Capture Cross-Sections in Ion-Ion Collisions at Approximately to MeV/amu: Application to ENA Modeling

    Science.gov (United States)

    Barghouty, A. F.

    2012-01-01

    Recent discovery by STEREO A/B of energetic neutral hydrogen is spurring an interest and need for reliable estimates of electron capture cross sections at few MeVs per nucleon as well as for multi-electron ions. Required accuracy in such estimates necessitates detailed and involved quantum-mechanical calculations or expensive numerical simulations. For ENA modeling and similar purposes, a semi-classical approach offers a middle-ground approach. Kuang's semiclassical formalism to calculate electron-capture cross sections for single and multi-electron ions is an elegant and efficient method, but has so far been applied to limited and specific laboratory measurements and at somewhat lower energies. Our goals are to test and extend Kuang s method to all ion-atom and ion-ion collisions relevant to ENA modeling, including multi-electron ions and for K-shell to K-shell transitions.

  7. Ion pairing and phase behaviour of an asymmetric restricted primitive model of ionic liquids

    Science.gov (United States)

    Lu, Hongduo; Li, Bin; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan

    2016-12-01

    An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple three parameter (charge q, diameter d, and charge displacement b) model of ionic liquids and solutions. Charge displacement allows electrostatic and steric interactions to operate between different centres, so that orientational correlations arise in ion-ion interactions. In this way the ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid formed from ion pairs. The present exploration of the system focuses on the ion pair formation mechanism, the relative concentration of paired and free ions and the consequences for the cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar (though not identical) models in the past, we focus on behaviours at room temperature. By MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or essentially hard-sphere) diameter equal to 5 Å and a charge displacement ranging from 0 to 2 Å from the hard-sphere origin, we find that ion pairing dominates for b larger than 1 Å. When b exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs with a small presence of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate of self-diffusion and, to a lesser extent, conductivity is overestimated, presumably due to the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in relation to the rich variety of new mechanisms and properties it introduces, and to the numerical simplicity of its exploration by theory or simulation, makes it an essential step on the way towards representation of the full complexity of ionic liquids.

  8. Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion

    Directory of Open Access Journals (Sweden)

    Alexandros Nikolian

    2016-05-01

    Full Text Available In this paper, advanced equivalent circuit models (ECMs were developed to model large format and high energy nickel manganese cobalt (NMC lithium-ion 20 Ah battery cells. Different temperatures conditions, cell characterization test (Normal and Advanced Tests, ECM topologies (1st and 2nd Order Thévenin model, state of charge (SoC estimation techniques (Coulomb counting and extended Kalman filtering and validation profiles (dynamic discharge pulse test (DDPT and world harmonized light vehicle profiles have been incorporated in the analysis. A concise state-of-the-art of different lithium-ion battery models existing in the academia and industry is presented providing information about model classification and information about electrical models. Moreover, an overview of the different steps and information needed to be able to create an ECM model is provided. A comparison between begin of life (BoL and aged (95%, 90% state of health ECM parameters (internal resistance (Ro, polarization resistance (Rp, activation resistance (Rp2 and time constants (τ is presented. By comparing the BoL to the aged parameters an overview of the behavior of the parameters is introduced and provides the appropriate platform for future research in electrical modeling of battery cells covering the ageing aspect. Based on the BoL parameters 1st and 2nd order models were developed for a range of temperatures (15 °C, 25 °C, 35 °C, 45 °C. The highest impact to the accuracy of the model (validation results is the temperature condition that the model was developed. The 1st and 2nd order Thévenin models and the change from normal to advanced characterization datasets, while they affect the accuracy of the model they mostly help in dealing with high and low SoC linearity problems. The 2nd order Thévenin model with advanced characterization parameters and extended Kalman filtering SoC estimation technique is the most efficient and dynamically correct ECM model developed.

  9. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vittone, E., E-mail: ettore.vittone@unito.it [Department of Physics, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Pastuovic, Z. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Breese, M.B.H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Garcia Lopez, J. [Centro Nacional de Aceleradores (CNA), Sevilla University, J. Andalucia, CSIC, Av. Thomas A. Edison 7, 41092 Sevilla (Spain); Jaksic, M. [Department for Experimental Physics, Ruder Boškovic Institute (RBI), P.O. Box 180, 10002 Zagreb (Croatia); Raisanen, J. [Department of Physics, University of Helsinki, Helsinki 00014 (Finland); Siegele, R. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Simon, A. [International Atomic Energy Agency (IAEA), Vienna International Centre, P.O. Box 100, 1400 Vienna (Austria); Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Vizkelethy, G. [Sandia National Laboratories (SNL), PO Box 5800, Albuquerque, NM (United States)

    2016-04-01

    Highlights: • We study the electronic degradation of semiconductors induced by ion irradiation. • The experimental protocol is based on MeV ion microbeam irradiation. • The radiation induced damage is measured by IBIC. • The general model fits the experimental data in the low level damage regime. • Key parameters relevant to the intrinsic radiation hardness are extracted. - Abstract: This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  10. High-Power, High-Thrust Ion Thruster (HPHTion)

    Science.gov (United States)

    Peterson, Peter Y.

    2015-01-01

    Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.

  11. A model of the effects of heavy ion radiation on human tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A.L.; Guida, P.; Ponomarev, A.L.; Sundaresan, A.; Vazquez, M.E.; Guida, P.; Kim, A.; Cucinotta, F.A.

    2010-08-09

    In heavy ion radiotherapy and space travel humans are exposed to energetic heavy ions (C, Si, Fe and others). This type of irradiation often produces more severe biological effects per unit dose than more common X-rays. A new Monte Carlo model generates a physical space with the complex geometry of human tissue or a cell culture based model of tissue, which is affected by the passage of ionizing radiation. For irradiation, the model relies on a physical code for the ion track structure; for tissues, cellular maps are derived from two- or three-dimensional confocal microscopy images using image segmentation algorithm, which defines cells as pixilated volumes. The model is used to study tissue-specific statistics of direct ion hits and the remote ion action on cells. As an application of the technique, we considered the spatial pattern of apoptotic cells after heavy ion irradiation. The pattern of apoptosis is modeled as a stochastic process, which is defined by the action cross section taken from available experimental data. To characterize the degree of apoptosis, an autocorrelation function that describes the spatial correlation of apoptotic cells is introduced. The values of the autocorrelation function demonstrate the effect of the directionality of the radiation track on the spatial arrangements of inactivated cells in tissue. This effect is intrinsic only to high linear-energy-transfer radiation.

  12. Ion composition measurements and modelling at altitudes from 140 to 350 km using EISCAT measurements

    Directory of Open Access Journals (Sweden)

    A. Litvin

    Full Text Available This work aims at processing the data of CP1 and CP2 programs of EISCAT ionospheric radar from 1987 to 1994 using the "full profile" method which allows to solve the "temperature-composition" ambiguity problem in the lower F region. The program of data analysis was developed in the CEPHAG in 1995–1996. To improve this program, we implemented another analytical function to model the ion composition profile. This new function better reflects the real profile of the composition. Secondly, we chose the best method to select the initial conditions for the "full profile" procedure. A statistical analysis of the results was made to obtain the averages of various parameters: electron concentration and temperature, ion temperature, composition and bulk velocity. The aim is to obtain models of the parameter behaviour defining the ion composition profiles : z50 (transition altitude between atomic and molecular ions and dz (width of the profile, for various seasons and for high and low solar activities. These models are then compared to other models. To explain the principal features of parameters z50 and dz, we made an analysis of the processes leading to composition changes and related them to production and electron density profile. A new experimental model of ion composition is now available.

    Key words. Auroral ionosphere · Ion chemistry and composition · Instruments and techniques · EISCAT

  13. A simple model for the effect of flouride ions on remineralization of partly demineralized tooth enamel

    Science.gov (United States)

    Christoffersen, J.; Christoffersen, M. R.; Arends, J.

    1984-06-01

    A model is presented for remineralization of partly demineralized tooth enamel, taking the effect of the presence of fluoride ions into account. The model predicts that, in the absence of precipitation of other phases than calcium hydroxyapatite (HAP) and fluroridized HAP, which are assumed to model enamel, there exists a maximum value of the fluoride concentration gradient, above which lesions cannot be successfully repaired.

  14. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    Energy Technology Data Exchange (ETDEWEB)

    Fubiani, G.; Boeuf, J. P. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France)

    2013-11-15

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)

  15. Xenon-induced power oscillations in a generic small modular reactor

    Science.gov (United States)

    Kitcher, Evans Damenortey

    As world demand for energy continues to grow at unprecedented rates, the world energy portfolio of the future will inevitably include a nuclear energy contribution. It has been suggested that the Small Modular Reactor (SMR) could play a significant role in the spread of civilian nuclear technology to nations previously without nuclear energy. As part of the design process, the SMR design must be assessed for the threat to operations posed by xenon-induced power oscillations. In this research, a generic SMR design was analyzed with respect to just such a threat. In order to do so, a multi-physics coupling routine was developed with MCNP/MCNPX as the neutronics solver. Thermal hydraulic assessments were performed using a single channel analysis tool developed in Python. Fuel and coolant temperature profiles were implemented in the form of temperature dependent fuel cross sections generated using the SIGACE code and reactor core coolant densities. The Power Axial Offset (PAO) and Xenon Axial Offset (XAO) parameters were chosen to quantify any oscillatory behavior observed. The methodology was benchmarked against results from literature of startup tests performed at a four-loop PWR in Korea. The developed benchmark model replicated the pertinent features of the reactor within ten percent of the literature values. The results of the benchmark demonstrated that the developed methodology captured the desired phenomena accurately. Subsequently, a high fidelity SMR core model was developed and assessed. Results of the analysis revealed an inherently stable SMR design at beginning of core life and end of core life under full-power and half-power conditions. The effect of axial discretization, stochastic noise and convergence of the Monte Carlo tallies in the calculations of the PAO and XAO parameters was investigated. All were found to be quite small and the inherently stable nature of the core design with respect to xenon-induced power oscillations was confirmed. Finally, a

  16. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    Science.gov (United States)

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found.

  17. Preparation and Purification of 125I With Neutron Irradiated Xenon in a Vacuum Circular system

    Institute of Scientific and Technical Information of China (English)

    MIAOZeng-xing; LIYu-cheng; YUNing-wen; WUJie; XIANGXue-qin; ZHAOXiu-yan

    2003-01-01

    This paper describes the preparation and purification of 125I with neutron irradiated xenon in a vacuum circular system, which is specially designed with an irradiate chamber set inside of the reactor and three decay chambers set outside of the reactor. The xenon is filled in this system and recurrently circulates between the irradiate chamber and the decay chambers during the reactor is operating.

  18. Design and comparison of exchange spectroscopy approaches to cryptophane-xenon host-guest kinetics.

    Science.gov (United States)

    Korchak, Sergey; Kilian, Wolfgang; Schröder, Leif; Mitschang, Lorenz

    2016-04-01

    Exchange spectroscopy is used in combination with a variation of xenon concentration to disentangle the kinetics of the reversible binding of xenon to cryptophane-A. The signal intensity of either free or crytophane-bound xenon decays in a manner characteristic of the underlying exchange reactions when the spins in the other pool are perturbed. Three experimental approaches, including the well-known Hyper-CEST method, are shown to effectively entail a simple linear dependence of the signal depletion rate, or of a related quantity, on free xenon concentration. This occurs when using spin pool saturation or inversion followed by free exchange. The identification and quantification of contributions to the binding kinetics is then straightforward: in the depletion rate plot, the intercept at the vanishing free xenon concentration represents the kinetic rate coefficient for xenon detachment from the host by dissociative processes while the slope is indicative of the kinetic rate coefficient for degenerate exchange reactions. Comparing quantified kinetic rates for hyperpolarized xenon in aqueous solution reveals the high accuracy of each approach but also shows differences in the precision of the numerical results and in the requirements for prior knowledge. Because of their broad range of applicability the proposed exchange spectroscopy experiments can be readily used to unravel the kinetics of complex formation of xenon with host molecules in the various situations appearing in practice.

  19. Poisson-Fermi model of single ion activities in aqueous solutions

    Science.gov (United States)

    Liu, Jinn-Liang; Eisenberg, Bob

    2015-09-01

    A Poisson-Fermi model is proposed for calculating activity coefficients of single ions in strong electrolyte solutions based on the experimental Born radii and hydration shells of ions in aqueous solutions. The steric effect of water molecules and interstitial voids in the first and second hydration shells play an important role in our model. The screening and polarization effects of water are also included in the model that can thus describe spatial variations of dielectric permittivity, water density, void volume, and ionic concentration. The activity coefficients obtained by the Poisson-Fermi model with only one adjustable parameter are shown to agree with experimental data, which vary nonmonotonically with salt concentrations.

  20. Scintillation efficiency of nuclear recoil in liquid xenon

    CERN Document Server

    Arneodo, F; Badertscher, A; Benetti, P; Bernardini, E; Bettini, A; Borio di Tigliole, A A; Brunetti, R; Bueno, A G; Calligarich, E; Campanelli, M; Carpanese, C; Cavalli, D; Cavanna, F; Cennini, P; Centro, Sandro; Cesana, A; Cline, D; De Mitri, I; Dolfini, R; Ferrari, A; Gigli-Berzolari, A; Matthey, C; Mauri, F; Mazza, D; Mazzone, L; Meng, G; Montanari, C; Nurzia, G; Otwinowski, S; Palamara, O; Pascoli, D; Pepato, Adriano; Petrera, S; Periale, L; Piano Mortari, G; Piazzoli, A; Picchi, P; Pietropaolo, F; Rancati, T; Rappoldi, A; Raselli, G L; Rebuzzi, D; Revol, Jean Pierre Charles; Rico, J; Rossella, M; Rossi, C; Rubbia, André; Rubbia, Carlo; Sala, P; Scannicchio, D A; Sergiampietri, F; Suzuki, S; Terrani, M; Tian, W; Ventura, Sandro; Vignoli, C; Wang, H; Woo, J; Xu, Z

    2000-01-01

    We present the results of a test done with a Liquid Xenon (LXe) detector for 'Dark Matter' search, exposed to a neutron beam to produce nuclear recoil events simulating those which would be generated by WIMP's elastic scattering. The aim of the experiment was to measure directly the scintillation efficiency of nuclear recoil. The nuclear recoil considered in the test was in the tens of keV range. The ratio of measured visible energy over the true recoil energy was evaluated to be about 20%, in good agreement with the theoretical predictions.

  1. Development of Liquid Xenon Imaging Gamma-Ray Spectrophotometers

    Science.gov (United States)

    1990-07-01

    ground potential. The cathode plane is made from 63/rm diameter silver-plated beryllium copper wire set at 0.55mm pitch on a 15cm span. These wires are...100000 ( ! IUD i 10 10000 .. SCUID GAS Pressure Density (torr) 10 ,..........I (gm/cc) 10 1 1 100 120 140 160 180 200 220 240 260 280 300 Temperature (K...The freon is kept in a 30cm diameter by 10cm deep SS cryostat large enough to accomodate a 15cm diameter by 5cm deep liquid xenon cell and copper

  2. Detector r&d proposal liquid xenon(krypton) calorimetry

    CERN Document Server

    Séguinot, Jacques; Ypsilantis, Thomas; Bosteels, Michel; Chesi, Enrico Guido; Gougas, Andreas; Passardi, Giorgio; Tischhauser, Johann; Zichichi, Antonino; Ferreira-Marques, R; Lopes, M I; Policarpo, Armando; Kostrikov, M E; Ostankov, A P; Zaitsev, A; Giomataris, Ioanis; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    A proposal is made for R&D support to investigate the ultimate resolution achievable in a totally active liquid Xenon (Krypton) electromagnetic calorimeter which should lead to the construction of a 100 (400) litre prototype. Detection of either ionization or scintillation gives excellent energy resolution (sigmaE/E le 1%/sqrtE) while ionization alone gives precise determination of the direction (order 1mr) and vertex origin (order 1mm) of a high energy photon or electron (E ge 25 GeV). Large surface area photocathodes have been developed which efficiently detect the fast scintillation signal.

  3. Xenon excimer emission from multicapillary discharges in direct current mode

    Science.gov (United States)

    Lee, Byung-Joon; Rahaman, Hasibur; Nam, Sang Hoon; Giapis, Konstantinos P.; Iberler, Marcus; Jacoby, Joachim; Frank, Klaus

    2011-08-01

    Microdischarges in xenon have been generated in a pressure range of 400-1013 mbar with a fixed flow rate of 100 sccm. These microdischarges are obtained from three metallic capillary tubes in series for excimer emission. Total discharge voltage is thrice as large as that of a single capillary discharge tube at current levels of up to 12 mA. Total spectral irradiance of vacuum ultraviolet (VUV) emission also increases significantly compared to that of the single capillary discharge. Further, the irradiance of the VUV emission is strongly dependent on pressure as well as the discharge current.

  4. Xenon excimer emission from multicapillary discharges in direct current mode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung-Joon; Rahaman, Hasibur; Nam, Sang Hoon [Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784 (Korea, Republic of); Giapis, Konstantinos P. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); Iberler, Marcus; Jacoby, Joachim [Institute of Applied Physics, Goethe University, Max-von-Laue-St. 1, 60438 Frankfurt am Main (Germany); Frank, Klaus [Physics Department I, F.A., University of Erlangen-Nuremberg, D-91058 Erlangen (Germany)

    2011-08-15

    Microdischarges in xenon have been generated in a pressure range of 400-1013 mbar with a fixed flow rate of 100 sccm. These microdischarges are obtained from three metallic capillary tubes in series for excimer emission. Total discharge voltage is thrice as large as that of a single capillary discharge tube at current levels of up to 12 mA. Total spectral irradiance of vacuum ultraviolet (VUV) emission also increases significantly compared to that of the single capillary discharge. Further, the irradiance of the VUV emission is strongly dependent on pressure as well as the discharge current.

  5. Frequency-Dependent Viscosity of Xenon Near the Critical Point

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    We used a novel, overdamped oscillator aboard the Space Shuttle to measure the viscosity eta of xenon near its critical density rho(sub c), and temperature T(sub c). In microgravity, useful data were obtained within 0.1 mK of T(sub c), corresponding to a reduced temperature t = (T -T(sub c))/T(sub c) = 3 x 10(exp -7). The data extend two decades closer to T(sub c) than the best ground measurements, and they directly reveal the expected power-law behavior eta proportional to t(sup -(nu)z(sub eta)). Here nu is the correlation length exponent, and our result for the small viscosity exponent is z(sub eta) = 0.0690 +/- 0.0006. (All uncertainties are one standard uncertainty.) Our value for z(sub eta) depends only weakly on the form of the viscosity crossover function, and it agrees with the value 0.067 +/- 0.002 obtained from a recent two-loop perturbation expansion. The measurements spanned the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz and revealed viscoelasticity when t less than or equal to 10(exp -1), further from T(sub c) than predicted. The viscoelasticity scales as Af(tau), where tau is the fluctuation-decay time. The fitted value of the viscoelastic time-scale parameter A is 2.0 +/- 0.3 times the result of a one-loop perturbation calculation. Near T(sub c), the xenon's calculated time constant for thermal diffusion exceeded days. Nevertheless, the viscosity results were independent of the xenon's temperature history, indicating that the density was kept near rho(sub c), by judicious choices of the temperature vs. time program. Deliberately bad choices led to large density inhomogeneities. At t greater than 10(exp -5), the xenon approached equilibrium much faster than expected, suggesting that convection driven by microgravity and by electric fields slowly stirred the sample.

  6. Xenon tissue/blood partition coefficient for pig urinary bladder

    DEFF Research Database (Denmark)

    Nielsen, K K; Bülow, J; Nielsen, S L

    1990-01-01

    In four landrace pigs the tissue/blood partition coefficient (lambda) for xenon (Xe) for the urinary bladder was calculated after chemical analysis for lipid, water and protein content and determination of the haematocrit. The coefficients varied from bladder to bladder owing to small differences...... in both the haematocrit and tissue composition. In Xe washout studies of the blood flow of the urinary bladder, we recommend calculating the lambda for Xe from the actual haematocrit and from the median value of tissue composition found in the present study....

  7. Beyond the thermal model in relativistic heavy-ion collisions

    CERN Document Server

    Wolschin, Georg

    2016-01-01

    Deviations from thermal distribution functions of produced particles in relativistic heavy-ion collisions are discussed as indicators for nonequilibrium processes. The focus is on rapidity distributions of produced charged hadrons as functions of collision energy and centrality which are used to infer the fraction of produced particles from a central fireball as compared to the one from the fragmentation sources that are out of equilibrium with the rest of the system. Overall thermal equilibrium would only be reached for large times t -> infinity.

  8. Modelling surface restructuring by slow highly charged ions

    Science.gov (United States)

    Wachter, G.; Tőkési, K.; Betz, G.; Lemell, C.; Burgdörfer, J.

    2013-12-01

    We theoretically investigate surface modifications on alkaline earth halides due to highly charged ion impact, focusing on recent experimental evidence for both etch pit and nano-hillock formation on CaF2 (A.S. El-Said et al., Phys. Rev. Lett. 109, (2012) 117602 [1]). We discuss mechanisms for converting the projectile potential and kinetic energies into thermal energy capable of changing the surface structure. A proof-of-principle classical molecular dynamics simulation suggests the existence of two thresholds which we associate with etch pit and nano-hillock formation in qualitative agreement with experiment.

  9. Modelling surface restructuring by slow highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, G., E-mail: georg.wachter@tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria); Tőkési, K. [Institute of Nuclear Research of the Hungarian Academy of Science (ATOMKI), H-4001 Debrecen, P.O. Box 51 (Hungary); Betz, G. [Institute for Applied Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria); Lemell, C.; Burgdörfer, J. [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria)

    2013-12-15

    We theoretically investigate surface modifications on alkaline earth halides due to highly charged ion impact, focusing on recent experimental evidence for both etch pit and nano-hillock formation on CaF{sub 2} (A.S. El-Said et al., Phys. Rev. Lett. 109, (2012) 117602 [1]). We discuss mechanisms for converting the projectile potential and kinetic energies into thermal energy capable of changing the surface structure. A proof-of-principle classical molecular dynamics simulation suggests the existence of two thresholds which we associate with etch pit and nano-hillock formation in qualitative agreement with experiment.

  10. A computational model for He{sup +} ions in a magnetized sheet plasma: comparative analysis between model and experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Blantocas, Gene Q. [West Visayas State Univ., Lapaz, Iloilo City (Philippines); Ramos, Henry J. [Univ. of the Phillippines, College of Science, National Inst. of Physics, Deliman Quezon City (Philippines); Wada, Motoi [Doshisha Univ., Dept. of Engineering, Kyoto (Japan)

    2003-07-01

    An E x B probe was used to extract He{sup +} ions from a magnetized steady sheet plasma. Plasma parameters T{sub e}, n{sub e} and extracted He{sup +} ion current were analyzed vis-a-vis a modified Saha population density equation of the collisional-radiative model. Numerical calculations show that at low discharge currents and in the hot electron region of the sheet plasma, relative densities of He{sup +} ions show some degree of correlation with ion current profiles established experimentally using the E x B probe. Both experimental and computational results indicate a division of the plasma into two distinct regions each with different formation mechanisms of He{sup +} ions. (author)

  11. Modeling of steady-state convective cooling of cylindrical Li-ion cells

    Science.gov (United States)

    Shah, K.; Drake, S. J.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2014-07-01

    While Lithium-ion batteries have the potential to serve as an excellent means of energy storage, they suffer from several operational safety concerns. Temperature excursion beyond a specified limit for a Lithium-ion battery triggers a sequence of decomposition and release, which can preclude thermal runaway events and catastrophic failure. To optimize liquid or air-based convective cooling approaches, it is important to accurately model the thermal response of Lithium-ion cells to convective cooling, particularly in high-rate discharge applications where significant heat generation is expected. This paper presents closed-form analytical solutions for the steady-state temperature profile in a convectively cooled cylindrical Lithium-ion cell. These models account for the strongly anisotropic thermal conductivity of cylindrical Lithium-ion batteries due to the spirally wound electrode assembly. Model results are in excellent agreement with experimentally measured temperature rise in a thermal test cell. Results indicate that improvements in radial thermal conductivity and axial convective heat transfer coefficient may result in significant peak temperature reduction. Battery sizing optimization using the analytical model is discussed, indicating the dependence of thermal performance of the cell on its size and aspect ratio. Results presented in this paper may aid in accurate thermal design and thermal management of Lithium-ion batteries.

  12. An experimentally validated transient thermal model for cylindrical Li-ion cells

    Science.gov (United States)

    Shah, K.; Drake, S. J.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2014-12-01

    Measurement and modeling of thermal phenomena in Li-ion cells is a critical research challenge that directly affects both performance and safety. Even though the operation of a Li-ion cell is in most cases a transient phenomenon, most available thermal models for Li-ion cells predict only steady-state temperature fields. This paper presents the derivation, experimental validation and application of an analytical model to predict the transient temperature field in a cylindrical Li-ion cell in response to time-varying heat generation within the cell. The derivation is based on Laplace transformation of governing energy equations, and accounts for anisotropic thermal conduction within the cell. Model predictions are in excellent agreement with experimental measurements on a thermal test cell. The effects of various thermophysical properties and parameters on transient thermal characteristics of the cell are analyzed. The effect of pulse width and cooling time for pulsed operation is quantified. The thermal response to multiple cycles of discharge and charge is computed, and cell-level trade-offs for this process are identified. The results presented in this paper may help understand thermal phenomena in Li-ion cells, and may contribute towards thermal design and optimization tools for energy conversion and storage systems based on Li-ion cells.

  13. Relativistic evaluation of the two-photon decay of the metastable ${1s}^{2} 2s 2p~^3\\mbox{P}_0$ state in berylliumlike ions with an active-electron model

    CERN Document Server

    Amaro, Pedro; Safari, Laleh; Machado, Jorge; Guerra, Mauro; Indelicato, Paul; Santos, José Paulo

    2015-01-01

    The two-photon ${1s}^{2} 2s 2p~^3\\mbox{P}_0 \\rightarrow {1s}^{2} {2s}^2$ $^1\\mbox{S}_0$ transition in berylliumlike ions is theoretically investigated within a full relativistic framework and a second-order perturbation theory. We focus our analysis on how electron correlation, as well as the negative-energy spectrum can affect the forbidden $E1M1$ decay rate. For this purpose we include the electronic correlation by an effective potential and within an active-electron model. Due to its experimental interest, evaluation of decay rates are performed for berylliumlike xenon and uranium. We find that the negative-energy contribution can be neglected in the present decay rate. On the other hand, if contributions of electronic correlation are not carefully taken into account, it may change the lifetime of the metastable state by 20\\%. By performing a full-relativistic $jj$-coupling calculation, we found discrepancies for the decay rate of an order of 2 compared to non-relativistic $LS$-coupling calculations, for t...

  14. Niagara Falls Cascade Model for Interstellar Energetic Ions in the Heliosheath

    Science.gov (United States)

    Cooper, John F.

    The origin of anomalous cosmic ray ions has long been assumed to be heliospheric pickup ion production from interstellar neutrals and acceleration at the solar wind termination shock. The Voyager-1 shock crossing showed a well-defined boundary for sharply increased keV ion fluxes in the heliosheath but no sign of local acceleration. Ion flux spectra at keV to MeV energies are instead unfolding with outward passage to approximate the E(-1.5) power-law expected for compressional magnetic tubulence. This spectrum provides excellent connection over many energy decades of a maxwellian distribution for local interstellar plasma ions to well-known flux spectra of high energy galactic ions at GeV energies. The Niagara Falls cascade model is proposed that the heliosheath is a transitional region for direct entry of ions from the local interstellar ‘river’ through a permeable heliopause into the supersonic outer heliosphere. As Voyager-1 moves outwards in the heliosheath to the heliopause, energy-dependent transport features can appear in the transitional 0.01 - 1 GeV/n energy band but otherwise a general unfolding to the interstellar limiting spectrum should continue by this model. Spectral regions then become dominated by bulk plasma flow at low energy, cascade transport at intermediate energies, and interstellar shock acceleration at higher energies.

  15. Effects of ion strength and ion pairing on (plant-wide) modelling of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Solon, Kimberly;

    2014-01-01

    The objective of this study is to show the influence of ionic strength (as activity corrections) andion pairing on (plant-wide) modelling of anaerobic digestion processes in wastewater treatment plants(WWTPs). Using the Benchmark Simulation Model No. 2 (BSM2) as a case study, this paper presents...... the effects that an improved physico-chemical description will have on the predicted effluent quality (EQI) and operational cost (OCI) indices. The acid-base equilibria implemented in the Anaerobic Digestion Model No.1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects...... processes. Results at high ionic strength demonstrate that corrections to account for non-ideal conditions lead to significant differences in predicted process performance. In addition, the paper describes: 1) how the anaerobic digester performance is affected; 2) the effect on pH and the anaerobic...

  16. First limits on WIMP nuclear recoil signals in ZEPLIN-II: a two phase xenon detector for dark matter detection

    CERN Document Server

    Alner, G J; Bewick, A; Bungau, C; Camanzi, B; Carson, M J; Cashmore, R J; Chagani, H; Chepel, V; Cline, D; Davidge, D; Davies, J C; Daw, E; Dawson, J; Durkin, T; Edwards, B; Gamble, T; Gao, J; Ghag, C; Howard, A S; Jones, W G; Joshi, M; Korolkova, E V; Kudryavtsev, V A; Lawson, T; Lebedenko, V N; Lewin, J D; Lightfoot, P; Lindote, A; Liubarsky, I; Lopes, M I; Lüscher, R; Majewski, P; Mavrokoridis, K; McMillan, J E; Morgan, B; Muna, D; Murphy, A S J; Neves, F; Nicklin, G G; Ooi, W; Paling, S M; Cunha, J P; Plank, S J S; Preece, R M; Quenby, J J; Robinson, M; Sergiampietri, F; Silva, C; Solovov, V N; Smith, N J T; Smith, P F; Spooner, N J C; Sumner, T J; Thorne, C; Tovey, D R; Tziaferi, E; Walker, R J; Wang, H; White, J; Wolfs, F L H

    2007-01-01

    Results are presented from the first underground data run of ZEPLIN-II, a 31 kg two phase xenon detector developed to observe nuclear recoils from hypothetical weakly interacting massive dark matter particles. Discrimination between nuclear recoils and background electron recoils is afforded by recording both the scintillation and ionisation signals generated within the liquid xenon, with the ratio of these signals being different for the two classes of event. This ratio is calibrated for different incident species using an AmBe neutron source and Co-60 gamma-ray sources. From our first 31 live days of running ZEPLIN-II, the total exposure following the application of fiducial and stability cuts was 225 kgxdays. A background population of radon progeny events was observed in this run, arising from radon emission in the gas purification getters, due to radon daughter ion decays on the surfaces of the walls of the chamber. An acceptance window, defined by the neutron calibration data, of 50% nuclear recoil acce...

  17. Scalability, scintillation readout and charge drift in a kilogram scale solid xenon particle detector

    CERN Document Server

    Yoo, J; Jaskierny, W F; Markley, D; Pahlka, R B; Balakishiyeva, D; Saab, T; Filipenko, M

    2014-01-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used a conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.

  18. Application of scintillating properties of liquid xenon and silicon photomultiplier technology to medical imaging

    Science.gov (United States)

    Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, Paola

    2016-04-01

    We describe a new positron emission time-of-flight apparatus using liquid xenon. The detector is based in a liquid xenon scintillating cell. The cell shape and dimensions can be optimized depending on the intended application. In its simplest form, the liquid xenon scintillating cell is a box in which two faces are covered by silicon photomultipliers and the others by a reflecting material such as Teflon. It is a compact, homogenous and highly efficient detector which shares many of the desirable properties of monolithic crystals, with the added advantage of high yield and fast scintillation offered by liquid xenon. Our initial studies suggest that good energy and spatial resolution comparable with that achieved by lutetium oxyorthosilicate crystals can be obtained with a detector based in liquid xenon scintillating cells. In addition, the system can potentially achieve an excellent coincidence resolving time of better than 100 ps.

  19. The Electron Recoil Response of the XENON1T Dark Matter Experiment

    Science.gov (United States)

    Shockley, Evan; Xenon1T Collaboration

    2017-01-01

    XENON1T employs a two-phase xenon TPC to search for dark matter by detecting scintillation light produced by nuclear recoils in a 2 ton active volume of liquid xenon. However, nuclear recoils are not the only recoils that can occur since radiogenic electronic recoils are possible. Our only way of differentiating nuclear and electronic recoils is by comparing the relative fraction of scintillation (S1) and ionization (S2) signals. For the first Science Run of XENON1T, we must understand the response of our detector to S1 and S2 signals at the low keV energies where dark matter will present itself. Therefore, I will be discussing the current understanding of our signal and detection mechanisms at these energies. This work includes work using sources such as the Rn220 technique developed by XENON collaborators for understanding our rejection of electronic recoils.

  20. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J. [Fermilab; Cease, H. [Fermilab; Jaskierny, W. F. [Fermilab; Markley, D. [Fermilab; Pahlka, R. B. [Fermilab; Balakishiyeva, D. [Florida U.; Saab, T. [Florida U.; Filipenko, M. [Erlangen - Nuremberg U., ECAP

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used a conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.

  1. Ion collection by planar Langmuir probes: Sheridan's model and its verification

    Science.gov (United States)

    Lee, Dongsoo; Hershkowitz, Noah

    2007-03-01

    Data analysis from planar Langmuir probes normally assumes that the sheath effects are not significant in determining electron density and temperature when the Debye length is small compared to the probe radius. However, analysis of ion saturation current requires careful attention due to sheath expansion near the probe electrode. It is experimentally verified for the first time that Sheridan's numerical model [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] provides a correct method to measure the ion saturation current for which the ion density agrees with the electron density in argon plasmas.

  2. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  3. Validation of recent Geant4 physics models for application in carbon ion therapy

    CERN Document Server

    Lechner, A; Ivanchenko, V N

    2010-01-01

    Cancer treatment with energetic carbon ions has distinct advantages over proton or photon irradiation. In this paper we present a simulation model integrated into the Geant4 Monte Carlo toolkit (version 9.3) which enables the use of ICRU 73 stopping powers for ion transport calculations. For a few materials, revised ICRU 73 stopping power tables recently published by ICRU (P. Sigmund, A. Schinner, H. Paul, Errata and Addenda: ICRU Report 73 (Stopping of Ions Heavier than Helium), International Commission on Radiation Units and Measurements, 2009) were incorporated into Geant4, also covering media like water which are of importance in radiotherapeutical applications. We examine, with particular attention paid to the recent developments, the accuracy of current Geant4 models for simulating Bragg peak profiles of C-12 ions incident on water and polyethylene targets. Simulated dose distributions are validated against experimental data available in the literature, where the focus is on beam energies relevant to io...

  4. Intensity-Resolved Above Threshold Ionization of Xenon with Short Laser Pulses

    CERN Document Server

    Hart, Nathan A; Kaya, Gamze; Kaya, Necati; Kolomenskii, Alexandre A; Schuessler, Hans A

    2014-01-01

    We present intensity-resolved above threshold ionization (ATI) spectra of xenon using an intensity scanning and deconvolution technique. Experimental data were obtained with laser pulses of 58 fs and central wavelength of 800 nm from a chirped-pulse amplifier. Applying a deconvolution algorithm, we obtained spectra that have higher contrast and are in excellent agreement with characteristic 2 $U_p$ and 10 $U_p$ cutoff energies contrary to that found for raw data. The retrieved electron ionization probability is consistent with the presence of a second electron from double ionization. This recovered ionization probability is confirmed with a calculation based on the PPT tunneling ionization model [Perelomov, Popov, and Terent'ev, Sov. Phys. JETP 23, 924 (1966)]. Thus, the measurements of photoelectron yields and the proposed deconvolution technique allowed retrieval of more accurate spectroscopic information from the ATI spectra and ionization probability features that are usually concealed by volume averaging...

  5. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  6. An electrodynamics-based model for ion diffusion in microbial polysaccharides.

    Science.gov (United States)

    Liu, Chongxuan; Zachara, John M; Felmy, Andrew; Gorby, Yuri

    2004-10-10

    An electrodynamics-based model was formulated for simulation of ion diffusion in microbial polysaccharides. The fixed charges and electrostatic double layers that may associate with microbial polysaccharides and their effects on ion diffusion were explicitly built into the model. The model extends a common multicomponent ion diffusion formulation that is based on irreversible thermodynamics under a zero ionic charge flux condition, which is only applicable to the regions without fixed charges and electrostatic double layers. An efficient numerical procedure was presented to solve the differential equations in the model. The model well described key features of experimental observations of ion diffusion in negatively charged microbial polysaccharides including accelerated diffusive transport of cations, exclusion of anions, and increased rate of cation transport with increasing negative charge density. The simulated diffusive fluxes of cations and anions were consistent with a cation exchange diffusion concept in negatively charged polysaccharides at the interface of plant roots and soils; and the developed model allows to mathematically study such diffusion phenomena. An illustrative example was also provided to simulate dynamic behavior of ionic current during ion diffusion within a charged bacterial cell wall polysaccharide and the effects of the ionic current on the compression or expansion of the bacterial electrostatic double layer at the interface of the cell wall and bulk solution.

  7. D-meson observables in heavy-ion collisions at LHC with EPOSHQ model

    Science.gov (United States)

    Ozvenchuk, Vitalii; Aichelin, Joerg; Gossiaux, Pol-Bernard; Guiot, Benjamin; Nahrgang, Marlene; Werner, Klaus

    2016-11-01

    We study the propagation of charm quarks in the quark-gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions at LHC within EPOSHQ model. The interactions of heavy quarks with the light partons in ultrarelativistic heavy-ion collisions through the collisional and radiative processes lead to a large suppression of final D-meson spectra at high transverse momentum and a finite D-meson elliptic flow. Our results are in a good agreement with the available experimental data.

  8. A QICAR Model for Metal Ion Toxicity Established via PLS Method

    Institute of Scientific and Technical Information of China (English)

    LI Yu; JIANG Long; LI Xiao-li; HU Yan; WEN Jing-ya

    2013-01-01

    The partial least squares(PLS) method was employed to establish a quantitative ion characteristics-activity relationship(QICAR) model for metal ion toxicity(EC50 of 15 metal ions).The ion characteristics included AN(the atomic number),AIP(the change in ionization potential,eV),Xm(the electronegativity,eV),AW(the atomic weight),Xm2r(the covalent index),△E0(the absolute difference between electrochemical potential of the ion and that of its first stable reduced state,eV),│lgKoH│(the absolute value of the lg of the first hydrolysis constant),AR(the atomic radius,nm),AR/AW(the ratio between atomic radius and atomic weight) and σp(the softness index) selected based on relative correlation analysis.The simulated and tested(with the other four metals) efficiency coefficients of the model are 0.88 and 0.96,respectively.The information revealed from the QICAR model indicates that the value of the metal ion toxicity was positively correlated with variables AN,△IP,Xm,AW and Xm2r; negatively correlated with variables △E0,│lgKoH│,AR/AW,AR and σp,and ion characteristics AE0,Xm,σp and Xm2r were found to contribute more to the toxicity of metal ions via the accurate analysis method provided by PLS.The model could be used to predict the toxicity of the target metals and preliminary to assess combined pollution and environmental risk for heavy metals in the environments.

  9. GANIL Workshop on Ion Sources; Journees Sources d'Ions

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Renan [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    1999-07-01

    The proceedings of the GANIL Workshop on Ion Sources held at GANIL - Caen on 18-19 March 1999 contains 13 papers aiming at improving the old source operation and developing new types of sources for nuclear research and studies of ion physics. A number of reports are devoted to applications like surface treatment, ion implantation or fusion injection. The 1+{yields}n+ transformation, charged particle transport in ECR sources, addition of cesium and xenon in negative ion sources and other basic issues in ion sources are also addressed.

  10. a Comprehensive Model of Global Transport and Localized Layering of Metallic Ions in the Upper Atmosphere.

    Science.gov (United States)

    Carter, Leonard Nelson, Jr.

    1995-01-01

    The physics and chemistry of atmospheric metallic ions have been an active area of research for many years; however, a number of issues remain unresolved. Numerical models have been developed and used to establish and validate theories of metallic ion dynamics. While agreement with observational measurements has generally been satisfactory, these models have embodied highly simplified pictures of the total physical system, usually focusing on a single aspect of metallic dynamics. The model described herein is considered the first to simulate all phases of the life cycle of metallic ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral atoms to ions through photoionization and charge exchange with ambient ions. Global ion transport arising from daytime electric fields and poleward/downward diffusion along geomagnetic field lines, localized transport and layer formation through descending convergent nulls in the thermospheric tidal wind field, and finally annihilation by chemical neutralization and compound formation are treated. The end result of this developmental effort is a model that has not only shown good agreement with observations, but has also shed new light on the interdependencies of the physical and chemical processes affecting atmospheric metallics. The model has been used, in both one- and two -dimensional versions, to simulate ion dynamics in the vertical dimension (at Arecibo, PR, 19^circ N, 67^circW), and in the vertical and meridional dimensions from the equator to 45^circN, ranging over a 90 to 4000 km altitude span. Model output analysis confirms the dominant role of both global and local transport to the ions' life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the formation of dense ion layers in the 90-150 km height region. The model also

  11. Tests of the modified Sigmund model of ion sputtering using Monte Carlo simulations

    Science.gov (United States)

    Hofsäss, Hans; Bradley, R. Mark

    2015-05-01

    Monte Carlo simulations are used to evaluate the Modified Sigmund Model of Sputtering. Simulations were carried out for a range of ion incidence angles and surface curvatures for different ion species, ion energies, and target materials. Sputter yields, moments of erosive crater functions, and the fraction of backscattered energy were determined. In accordance with the Modified Sigmund Model of Sputtering, we find that for sufficiently large incidence angles θ the curvature dependence of the erosion crater function tends to destabilize the solid surface along the projected direction of the incident ions. For the perpendicular direction, however, the curvature dependence always leads to a stabilizing contribution. The simulation results also show that, for larger values of θ, a significant fraction of the ions is backscattered, carrying off a substantial amount of the incident ion energy. This provides support for the basic idea behind the Modified Sigmund Model of Sputtering: that the incidence angle θ should be replaced by a larger angle Ψ to account for the reduced energy that is deposited in the solid for larger values of θ.

  12. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor.

    Science.gov (United States)

    Sansom, M S; Adcock, C; Smith, G R

    1998-01-01

    Molecular dynamics simulations with experimentally derived restraints have been used to develop atomic models of M2 helix bundles forming the pore-lining domains of the nicotinic acetylcholine receptor and related ligand-gated ion channels. M2 helix bundles have been used in microscopic simulations of the dynamics and energetics of water and ions within an ion channel. Translational and rotational motion of water are restricted within the pore, and water dipoles are aligned relative to the pore axis by the surrounding helix dipoles. Potential energy profiles for translation of a Na+ ion along the pore suggest that the protein and water components of the interaction energy exert an opposing effect on the ion, resulting in a relatively flat profile which favors cation permeation. Empirical conductance calculations based on a pore radius profile suggest that the M2 helix model is consistent with a single channel conductance of ca. 50 pS. Continuum electrostatics calculations indicate that a ring of glutamate residues at the cytoplasmic mouth of the alpha 7 nicotinic receptor M2 helix bundle may not be fully ionized. A simplified model of the remainder of the channel protein when added to the M2 helix bundle plays a significant role in enhancing the ion selectivity of the channel.

  13. Interaction of Simple Ions with Water: Theoretical Models for the Study of Ion Hydration

    Science.gov (United States)

    Gancheff, Jorge S.; Kremer, Carlos; Ventura, Oscar N.

    2009-01-01

    A computational experiment aimed to create and systematically analyze models of simple cation hydrates is presented. The changes in the structure (bond distances and angles) and the electronic density distribution of the solvent and the thermodynamic parameters of the hydration process are calculated and compared with the experimental data. The…

  14. Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP

    Energy Technology Data Exchange (ETDEWEB)

    Podesta,, Mario; Gorelenkova, Marina; White, Roscoe

    2014-02-28

    Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.

  15. Physics reach of the XENON1T dark matter experiment

    CERN Document Server

    Aprile, E; Agostini, F; Alfonsi, M; Amaro, F D; Anthony, M; Arazi, L; Arneodo, F; Balan, C; Barrow, P; Baudis, L; Bauermeister, B; Berger, T; Breur, P; Breskin, A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Bütikofer, L; Cardoso, J M R; Cervantes, M; Cichon, D; Coderre, D; Colijn, A P; Conrad, J; Contreras, H; Cussonneau, J P; Decowski, M P; de Perio, P; Di Gangi, P; Di Giovanni, A; Duchovni, E; Fattori, S; Ferella, A D; Fieguth, A; Franco, D; Fulgione, W; Galloway, M; Garbini, M; Geis, C; Goetzke, L W; Greene, Z; Grignon, C; Gross, E; Hampel, W; Hasterok, C; Itay, R; Kaether, F; Kaminsky, B; Kessler, G; Kish, A; Landsman, H; Lang, R F; Lellouch, D; Levinson, L; Calloch, M Le; Levy, C; Lindemann, S; Lindner, M; Lopes, J A M; Lyashenko, A; Macmullin, S; Manfredini, A; Undagoitia, T Marrodán; Masbou, J; Massoli, F V; Mayani, D; Fernandez, A J Melgarejo; Meng, Y; Messina, M; Micheneau, K; Miguez, B; Molinario, A; Murra, M; Naganoma, J; Oberlack, U; Orrigo, S E A; Pakarha, P; Pelssers, B; Persiani, R; Piastra, F; Pienaar, J; Plante, G; Priel, N; Rauch, L; Reichard, S; Reuter, C; Rizzo, A; Rosendahl, S; Rupp, N; Santos, J M F dos; Sartorelli, G; Scheibelhut, M; Schindler, S; Schreiner, J; Schumann, M; Lavina, L Scotto; Selvi, M; Shagin, P; Simgen, H; Stein, A; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C; von Sivers, M; Wall, R; Wang, H; Weber, M; Wei, Y; Weinheimer, C; Wulf, J; Zhang, Y

    2015-01-01

    The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \\pm 0.15) \\cdot 10^{-4}$ ($\\rm{kg} \\cdot day \\cdot keV)^{-1}$, mainly due to the decay of $^{222}\\rm{Rn}$ daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region ($4$, $50$) keV, is composed of $(0.6 \\pm 0.1)$ ($\\rm{t} \\cdot y)^{-1}$ from radiogenic neutrons, $(1.8 \\pm 0.3) \\cdot 10^{-2}$ ($\\rm{t} \\cdot y)^{-1}$ from coherent scattering of neutrinos, and less than $0.01$ ($\\rm{t} \\cdot y)^{-1}$ from...

  16. MAC of xenon and halothane in rhesus monkeys.

    Science.gov (United States)

    Whitehurst, S L; Nemoto, E M; Yao, L; Yonas, H

    1994-10-01

    Local cerebral blood flow (LCBF) maps produced by 33% xenon-enhanced computed tomographic scanning (Xe/CT LCBF) are useful in the clinical diagnosis and management of patients with cerebrovascular disorders. However, observations in humans that 25-35% xenon (Xe) inhalation increases cerebral blood flow (CBF) have raised concerns that Xe/CT LCBF measurements may be inaccurate and that Xe inhalation may be hazardous in patients with decreased intracranial compliance. In contrast, 33% Xe does not increase CBF in rhesus monkeys. To determine whether this interspecies difference in the effect of Xe on CBF correlates with an interspecies difference in the anesthetic potency of Xe, we measured the minimum alveolar concentration (MAC) of Xe preventing movement to a tail-clamp stimulus in rhesus monkeys. Using a standard protocol for the determination of MAC in animals, we first measured the MAC of halothane (n = 5), and then used a combination of halothane and Xe to measure the MAC of Xe (n = 7). The halothane MAC was 0.99 +/- 0.12% (M +/- SD), and the Xe MAC was 98 +/- 15%. These results suggest that the MAC of Xe in rhesus monkeys is higher than the reported human Xe MAC value of 71%. Thus the absence of an effect of 33% Xe on CBF in the rhesus monkey may be related to its lower anesthetic potency.

  17. A simple model for /f-->d transitions of rare-earth ions in crystals

    Science.gov (United States)

    Duan, C. K.; Reid, M. F.

    2003-02-01

    Theoretical simulation and interpretation of f→ d transitions of rare earth ions in crystals are more difficult than for f→ f transitions, because f→ d transitions involve many more energy levels and are further complicated by strong vibronic transitions, so the experimental spectra contain many fewer resolvable peaks. In order to better understand the structure of the spectra, a simple model is developed to take into account the main interactions in the fN-1 d configuration. This model leads to quantum numbers characterizing the states and the associated transition selection rules. Relative transition intensities can be quantitatively estimated. The model is applied to Eu 2+ and Sm 3+ ions in crystals.

  18. Computing excess functions of ionic solutions: the smaller-ion shell model versus the primitive model. 2. Ion-size parameters.

    Science.gov (United States)

    Fraenkel, Dan

    2015-01-13

    A recent Monte Carlo (MC) simulation study of the primitive model (PM) of ionic solutions ( Abbas, Z. et al. J. Phys. Chem. B 2009 , 113 , 5905 ) has resulted in an extensive "mapping" of real aqueous solutions of 1-1, 2-1, and 3-1 binary electrolytes and a list of "recommended ionic radii" for many ions. For the smaller cations, the model-experiment fitting process gave much larger radii than the respective crystallographic radii, and those cations were therefore claimed to be hydrated. In Part 1 (DOI 10.1021/ct5006938 ) of the present work, the above study for the unrestricted PM - dubbed MC-UPM - has been confronted with the Smaller-ion Shell (SiS) treatment ( Fraenkel, D. Mol. Phys. 2010 , 108 , 1435 ), or "DH-SiS", by comparing the range and quality of model-experiment fits of the mean ionic activity coefficient as a function of ionic concentration. Here I compare the ion-size parameters (ISPs) of "best fit" of the two models and argue that since ISPs derived from DH-SiS are identical with (or close to) crystallographic or thermochemical ionic diameters for both cations and anions, and they do not depend on the counterion - they are more reliable, as physicochemical entities, than the PM-derived "recommended ionic radii".

  19. A multi-ion generalized transport model of the polar wind

    Science.gov (United States)

    Demars, H. G.; Schunk, R. W.

    1994-01-01

    The higher-order generalizations of the equations of standard hydrodynamics, known collectively as generalized transport theories, have been used since the early 1980s to describe the terrestrial polar wind. Inherent in the structure of generalized transport theories is the ability to describe not only interparticle collisions but also certain non-Maxwellian processes, such as heat flow and viscous stress, that are characteristic of any plasma flow that is not collision dominated. Because the polar wind exhibits a transition from collision-dominated to collisionless flow, generalized transport theories possess advantages for polar wind modeling not shared by either collision-dominated models (such as standard hydrodynamics) or collisionless models (such as those based on solving the collisionless Boltzmann equation). In general, previous polar wind models have used generalized transport equations to describe electrons and only one species of ion (H(+)). If other ion species were included in the models at all, it was in a simplified or semiempirical manner. The model described in this paper is the first polar wind model that uses a generalized transport theory (bi-Maxwellian-based 16-moment theory) to describe all of the species, both major and minor, in the polar wind plasma. In the model, electrons and three ion species (H(+), He(+), O(+)) are assumed to be major and several ion species are assumed to be minor (NO(+), Fe(+), O(++)). For all species, a complete 16-moment transport formulation is used, so that profiles of density, drift velocity, parallel and perpendicular temperatures, and the field-aligned parallel and perpendicular energy flows are obtained. In the results presented here, emphasis is placed on describing those constituents of the polar wind that have received little attention in past studies. In particular, characteristic solutions are presented for supersonic H(+) outflow and for both supersonic and subsonic outflows of the major ion He

  20. Electron-beam-ion-source (EBIS) modeling progress at FAR-TECH, Inc.

    Science.gov (United States)

    Kim, J. S.; Zhao, L.; Spencer, J. A.; Evstatiev, E. G.

    2015-01-01

    FAR-TECH, Inc. has been developing a numerical modeling tool for Electron-Beam-Ion-Sources (EBISs). The tool consists of two codes. One is the Particle-Beam-Gun-Simulation (PBGUNS) code to simulate a steady state electron beam and the other is the EBIS-Particle-In-Cell (EBIS-PIC) code to simulate ion charge breeding with the electron beam. PBGUNS, a 2D (r,z) electron gun and ion source simulation code, has been extended for efficient modeling of EBISs and the work was presented previously. EBIS-PIC is a space charge self-consistent PIC code and is written to simulate charge breeding in an axisymmetric 2D (r,z) device allowing for full three-dimensional ion dynamics. This 2D code has been successfully benchmarked with Test-EBIS measurements at Brookhaven National Laboratory. For long timescale (< tens of ms) ion charge breeding, the 2D EBIS-PIC simulations take a long computational time making the simulation less practical. Most of the EBIS charge breeding, however, may be modeled in 1D (r) as the axial dependence of the ion dynamics may be ignored in the trap. Where 1D approximations are valid, simulations of charge breeding in an EBIS over long time scales become possible, using EBIS-PIC together with PBGUNS. Initial 1D results are presented. The significance of the magnetic field to ion dynamics, ion cooling effects due to collisions with neutral gas, and the role of Coulomb collisions are presented.

  1. Measurement and modeling of neutral, radical, and ion densities in H2-N2-Ar plasmas

    Science.gov (United States)

    Sode, M.; Jacob, W.; Schwarz-Selinger, T.; Kersten, H.

    2015-02-01

    A comprehensive experimental investigation of absolute ion and neutral species densities in an inductively coupled H2-N2-Ar plasma was carried out. Additionally, the radical and ion densities were calculated using a zero-dimensional rate equation model. The H2-N2-Ar plasma was studied at a pressure of 1.5 Pa and an rf power of 200 W. The N2 partial pressure fraction was varied between fN2=0 % and 56% by a simultaneous reduction of the H2 partial pressure fraction. The Ar partial pressure fraction was held constant at about 1%. NH3 was found to be produced almost exclusively on the surfaces of the chamber wall. NH3 contributes up to 12% to the background gas. To calculate the radical densities with the rate equation model, it is necessary to know the corresponding wall loss times twrad of the radicals. twrad was determined by the temporal decay of radical densities in the afterglow with ionization threshold mass spectrometry during pulsed operation and based on these experimental data the absolute densities of the radical species were calculated and compared to measurement results. Ion densities were determined using a plasma monitor (mass and energy resolved mass spectrometer). H3+ is the dominant ion in the range of 0.0 ≤fN2reasonably well. The ion chemistry, i.e., the production and loss processes of the ions and radicals, is discussed in detail. The main features, i.e., the qualitative abundance of the ion species and the ion density dependence on the N2 partial pressure fraction, are well reproduced by the model.

  2. Multi-shell model of ion-induced nucleic acid condensation

    Science.gov (United States)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding

  3. Kinetic Modeling of Next-Generation High-Energy, High-Intensity Laser-Ion Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yin, Lin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stark, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    One of the long-standing problems in the community is the question of how we can model “next-generation” laser-ion acceleration in a computationally tractable way. A new particle tracking capability in the LANL VPIC kinetic plasma modeling code has enabled us to solve this long-standing problem

  4. Ion exchange model for α phase proton exchange waveguide in LiNbO3

    DEFF Research Database (Denmark)

    Veng, Torben Erik; Skettrup, Torben

    1998-01-01

    An H+/Li+ exchange model is found to be applicable to describe the diffusion of protons when optical waveguides are formed in LiNbO3 by proton exchange methods where the proton doped crystal structure stays in the pure α phase. The H + and Li+ self-diffusion coefficients in the ion exchange model...

  5. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries

    Science.gov (United States)

    Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing

    2017-01-01

    Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405

  6. Modeling heat dominated electric breakdown in air, with adaptivity to electron or ion time scales

    NARCIS (Netherlands)

    A. Agnihotri (Ashutosh); W. Hundsdorfer (Willem); U. Ebert (Ute)

    2017-01-01

    textabstractWe model heat dominated electrical breakdown in air in a short planar gap. We couple the discharge dynamics in fluid approximation with the hydrodynamic motion of the air heated by the discharge. To be computationally efficient, we derive a reduced model on the ion time scale, and we

  7. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries.

    Science.gov (United States)

    Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing

    2017-01-01

    Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries.

  8. NREL Multiphysics Modeling Tools and ISC Device for Designing Safer Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad A.; Yang, Chuanbo

    2016-03-24

    The National Renewable Energy Laboratory has developed a portfolio of multiphysics modeling tools to aid battery designers better understand the response of lithium ion batteries to abusive conditions. We will discuss this portfolio, which includes coupled electrical, thermal, chemical, electrochemical, and mechanical modeling. These models can simulate the response of a cell to overheating, overcharge, mechanical deformation, nail penetration, and internal short circuit. Cell-to-cell thermal propagation modeling will be discussed.

  9. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons.

    Science.gov (United States)

    Goldwyn, Joshua H; Imennov, Nikita S; Famulare, Michael; Shea-Brown, Eric

    2011-04-01

    The random transitions of ion channels between conducting and nonconducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling the states of ion channels nonlinearly couples continuous-time Markov chains to a differential equation for voltage. Beginning with the work of R. F. Fox and Y.-N. Lu [Phys. Rev. E 49, 3421 (1994)], there have been attempts to generate simpler models that use stochastic differential equation (SDEs) to approximate the stochastic spiking activity produced by Markov chain models. Recent numerical investigations, however, have raised doubts that SDE models can capture the stochastic dynamics of Markov chain models.We analyze three SDE models that have been proposed as approximations to the Markov chain model: one that describes the states of the ion channels and two that describe the states of the ion channel subunits. We show that the former channel-based approach can capture the distribution of channel noise and its effects on spiking in a Hodgkin-Huxley neuron model to a degree not previously demonstrated, but the latter two subunit-based approaches cannot. Our analysis provides intuitive and mathematical explanations for why this is the case. The temporal correlation in the channel noise is determined by the combinatorics of bundling subunits into channels, but the subunit-based approaches do not correctly account for this structure. Our study confirms and elucidates the findings of previous numerical investigations of subunit-based SDE models. Moreover, it presents evidence that Markov chain models of the nonlinear, stochastic dynamics of neural membranes can be accurately approximated by SDEs. This finding opens a door to future modeling work using SDE techniques to further illuminate the effects of ion channel fluctuations on electrically active cells.

  10. 76 FR 57627 - Special Conditions: Cessna Aircraft Company Model M680 Airplane; Rechargeable Lithium-Ion Battery...

    Science.gov (United States)

    2011-09-16

    ... Airplane; Rechargeable Lithium-Ion Battery Installations AGENCY: Federal Aviation Administration (FAA), DOT... lithium-ion batteries. The applicable airworthiness regulations do not contain adequate or appropriate... lithium-ion batteries in the Model 680. Type Certification Basis Under the provisions of Title 14, Code of...

  11. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kundrat, Pavel [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Prague 8 (Czech Republic)

    2007-12-07

    A semi-analytical model of light ions' Bragg peaks is presented and used in conjunction with a detailed probabilistic radiobiological module to predict the biological effectiveness of light ion irradiation for hadrontherapy applications. The physical Bragg peak model is based on energy-loss calculations with the SRIM code and phenomenological formulae for the energy-loss straggling. Effects of nuclear reactions are accounted for on the level of reducing the number of primary particles only. Reaction products are not followed at all and their contribution to dose deposition is neglected. Beam widening due to multiple scattering and calculations of spread-out Bragg peaks are briefly discussed. With this simple physical model, integral depth-dose distributions are calculated for protons, carbon, oxygen and neon ions. A good agreement with published experimental data is observed for protons and lower energy ions (with ranges in water up to approximately 15 cm), while less satisfactory results are obtained for higher energy ions due to the increased role of nuclear reaction products, neglected in this model. A detailed probabilistic radiobiological module is used to complement the simple physical model and to estimate biological effectiveness along the penetration depth of Bragg peak irradiation. Excellent agreement is found between model predictions and experimental data for carbon beams, indicating potential applications of the present scheme in treatment planning in light ion hadrontherapy. Due to the semi-analytical character of the model, leading to high computational speed, applications are foreseen in particular in the fully biological optimization of multiple irradiation fields and intensity-modulated beams.

  12. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy.

    Science.gov (United States)

    Kundrát, Pavel

    2007-12-07

    A semi-analytical model of light ions' Bragg peaks is presented and used in conjunction with a detailed probabilistic radiobiological module to predict the biological effectiveness of light ion irradiation for hadrontherapy applications. The physical Bragg peak model is based on energy-loss calculations with the SRIM code and phenomenological formulae for the energy-loss straggling. Effects of nuclear reactions are accounted for on the level of reducing the number of primary particles only. Reaction products are not followed at all and their contribution to dose deposition is neglected. Beam widening due to multiple scattering and calculations of spread-out Bragg peaks are briefly discussed. With this simple physical model, integral depth-dose distributions are calculated for protons, carbon, oxygen and neon ions. A good agreement with published experimental data is observed for protons and lower energy ions (with ranges in water up to approximately 15 cm), while less satisfactory results are obtained for higher energy ions due to the increased role of nuclear reaction products, neglected in this model. A detailed probabilistic radiobiological module is used to complement the simple physical model and to estimate biological effectiveness along the penetration depth of Bragg peak irradiation. Excellent agreement is found between model predictions and experimental data for carbon beams, indicating potential applications of the present scheme in treatment planning in light ion hadrontherapy. Due to the semi-analytical character of the model, leading to high computational speed, applications are foreseen in particular in the fully biological optimization of multiple irradiation fields and intensity-modulated beams.

  13. Volume-Averaged Model of Inductively-Driven Multicusp Ion Source

    Science.gov (United States)

    Patel, Kedar K.; Lieberman, M. A.; Graf, M. A.

    1998-10-01

    A self-consistent spatially averaged model of high-density oxygen and boron trifluoride discharges has been developed for a 13.56 MHz, inductively coupled multicusp ion source. We determine positive ion, negative ion, and electron densities, the ground state and metastable densities, and the electron temperature as functions of the control parameters: gas pressure, gas flow rate, input power and reactor geometry. Neutralization and fragmentation into atomic species are assumed for all ions hitting the wall. For neutrals, a wall recombination coefficient for oxygen atoms and a wall sticking coefficient for boron trifluoride (BF_3) and its dissociation products are the single adjustable parameters used to model the surface chemistry. For the aluminum walls of the ion source used in the Eaton ULE2 ion implanter, complete wall recombination of O atoms is found to give the best match to the experimental data for oxygen, whereas a sticking coefficient of 0.62 for all neutral species in a BF3 discharge was found to best match experimental data.

  14. Numerical modeling of ion transport in a ESI-MS system

    CERN Document Server

    Gimelshein, N; Lilly, T; Moskovets, E

    2013-01-01

    Gas and ion transport in the capillary-skimmer subatmospheric interface of a mass spectrometer, which is typically utilized to separate unevaporated micro-droplets from ions, was studied numerically using a two-step approach spanning multiple gas dynamic regimes. The gas flow in the heated capillary and in the interface was determined by solving numerically the Navier-Stokes equation. The capillary-to-skimmer gas/ion flow was modeled through the solution of the full Boltzmann equation with a force term. The force term, together with calculated aerodynamic drag, determined the ion motion in the gap between the capillary and skimmer. The three-dimensional modeling of the impact of the voltage applied to the Einzel lens on the transmission of doubly-charged peptides ions through the skimmer orifice was compared with experimental data obtained in the companion study. Good agreement between measured and computed signals was observed. The numerical results indicate that as many as 75% ions that exit from the capill...

  15. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima, 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1,Mukoyama, Naka, 319-0913 (Japan)

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  16. Generalized Characterization Methodology for Performance Modelling of Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina;

    2016-01-01

    Lithium-ion (Li-ion) batteries are complex energy storage devices with their performance behavior highly dependent on the operating conditions (i.e., temperature, load current, and state-of-charge (SOC)). Thus, in order to evaluate their techno-economic viability for a certain application, detailed...... information about Li-ion battery performance behavior becomes necessary. This paper proposes a comprehensive seven-step methodology for laboratory characterization of Li-ion batteries, in which the battery’s performance parameters (i.e., capacity, open-circuit voltage (OCV), and impedance) are determined...... and their dependence on the operating conditions are obtained. Furthermore, this paper proposes a novel hybrid procedure for parameterizing the batteries’ equivalent electrical circuit (EEC), which is used to emulate the batteries’ dynamic behavior. Based on this novel parameterization procedure, the performance model...

  17. Fricke-agarose dosimeter gels: ion diffusion modelling and microdensitometry alternative to MRI

    Energy Technology Data Exchange (ETDEWEB)

    De Pasquale, F.; Barone, P.; Sebastiani, G. [CNR. Istituto per le Applicazioni del Calcolo, Rome (Italy); D' Errico, F. [Yale Univ. School of Medicine, Yale (United States). Department of Therapeutic Radiology; Egger, E. [Paul Scheller Institut, Villigen (Switzerland). Department of Radiation Medicine; Luciani, A.M.; Pacilio, M.; Guidoni, L.; Votti, V. [Istituto Superiore della Sanita' , Rome (Italy). Laboratorio di Fisica; INFN, Rome (Italy)

    2002-07-01

    Ferric ion diffusion is one of the main problems that still restrains the dosimetric application of Fricke-agarose gels. In this work, we model this process within finite length gel samples. The temporal evolution of the ion concentration as a function of the initial concentration is derived by solving Fick's second law in two dimensions with boundary reflections. The influence of ion concentration gradient, elapsed time, diffusion coefficient and spatial resolution is studied. Due to the main drawbacks of MRI for studying these systems, i.e. high cost and acquisition time often non-negligible compared to diffusion time, we also investigate the possibility of using a microdensitometer. The application of this technique for Fricke gel dosimetry is proposed here for the first time. The estimate of the ion diffusion coefficient is in a very agreement with those reported in literature.

  18. Measurement of the drift velocity and transverse diffusion of electrons in liquid xenon with the EXO-200 detector

    Science.gov (United States)

    Albert, J. B.; Barbeau, P. S.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Daughhetee, J.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; Fairbank, W.; Farine, J.; Feyzbakhsh, S.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Hughes, M.; Jewell, M. J.; Johnson, A.; Johnson, T. N.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Killick, R.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Lan, Y.; Leonard, D. S.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Marino, M. G.; Mong, B.; Moore, D.; Njoya, O.; Nelson, R.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Retière, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Twelker, K.; Vuilleumier, J.-L.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Wood, J.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.; Zettlemoyer, J.; EXO-200 Collaboration

    2017-02-01

    The EXO-200 Collaboration is searching for neutrinoless double β decay using a liquid xenon (LXe) time projection chamber. This measurement relies on modeling the transport of charge deposits produced by interactions in the LXe to allow discrimination between signal and background events. Here we present measurements of the transverse diffusion constant and drift velocity of electrons at drift fields between 20 V/cm and 615 V/cm using EXO-200 data. At the operating field of 380 V/cm EXO-200 measures a drift velocity of 1 .705-0.010+0.014mm /μ s and a transverse diffusion coefficient of 55 ±4 cm2 /s.

  19. Measurement of the Drift Velocity and Transverse Diffusion of Electrons in Liquid Xenon with the EXO-200 Detector

    CERN Document Server

    :,; Barbeau, P S; Beck, D; Belov, V; Breidenbach, M; Brunner, T; Burenkov, A; Cao, G F; Cen, W R; Chambers, C; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Danilov, M; Daugherty, S J; Daughhetee, J; Davis, J; Delaquis, S; Der Mesrobian-Kabakian, A; DeVoe, R; Didberidze, T; Dilling, J; Dolgolenko, A; Dolinski, M J; Dunford, M; Fairbank, W; Farine, J; Feyzbakhsh, S; Fierlinger, P; Fudenberg, D; Gornea, R; Graham, K; Gratta, G; Hall, C; Hughes, M; Jewell, M J; Johnson, A; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Krucken, R; Kuchenkov, A; Kumar, K S; Lan, Y; Leonard, D S; Licciardi, C; Lin, Y H; MacLellan, R; Marino, M G; Mong, B; Moore, D; Njoya, O; Nelson, R; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Prescott, C Y; Retiere, F; Rowson, P C; Russell, J J; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Tsang, R; Twelker, K; Vuilleumier, J -L; Waite, A; Walton, J; Walton, T; Weber, M; Wen, L J; Wichoski, U; Wood, J; Yang, L; Yen, Y -R; Zeldovich, O Ya; Zettlemoyer, J

    2016-01-01

    The EXO-200 Collaboration is searching for neutrinoless double beta decay using a liquid xenon (LXe) time projection chamber. This measurement relies on modeling the transport of charge deposits produced by interactions in the LXe to allow discrimination between signal and background events. Here we present measurements of the transverse diffusion constant and drift velocity of electrons at drift fields between 20~V/cm and 615~V/cm using EXO-200 data. At the operating field of 380~V/cm EXO-200 measures a drift velocity of 1.705$_{-0.010}^{+0.014}$~mm/$\\mu$s and a transverse diffusion coefficient of 55$\\pm$4~cm$^2$/s.

  20. Evaluation of Model Based State of Charge Estimation Methods for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Zhongyue Zou

    2014-08-01

    Full Text Available Four model-based State of Charge (SOC estimation methods for lithium-ion (Li-ion batteries are studied and evaluated in this paper. Different from existing literatures, this work evaluates different aspects of the SOC estimation, such as the estimation error distribution, the estimation rise time, the estimation time consumption, etc. The equivalent model of the battery is introduced and the state function of the model is deduced. The four model-based SOC estimation methods are analyzed first. Simulations and experiments are then established to evaluate the four methods. The urban dynamometer driving schedule (UDDS current profiles are applied to simulate the drive situations of an electrified vehicle, and a genetic algorithm is utilized to identify the model parameters to find the optimal parameters of the model of the Li-ion battery. The simulations with and without disturbance are carried out and the results are analyzed. A battery test workbench is established and a Li-ion battery is applied to test the hardware in a loop experiment. Experimental results are plotted and analyzed according to the four aspects to evaluate the four model-based SOC estimation methods.

  1. Different approaches to modeling the LANSCE H- ion source filament performance

    Science.gov (United States)

    Draganic, I. N.; O'Hara, J. F.; Rybarcyk, L. J.

    2016-02-01

    An overview of different approaches to modeling of hot tungsten filament performance in the Los Alamos Neutron Science Center (LANSCE) H- surface converter ion source is presented. The most critical components in this negative ion source are two specially shaped wire filaments heated up to the working temperature range of 2600 K-2700 K during normal beam production. In order to prevent catastrophic filament failures (creation of hot spots, wire breaking, excessive filament deflection towards source body, etc.) and to improve understanding of the material erosion processes, we have simulated the filament performance using three different models: a semi-empirical model, a thermal finite-element analysis model, and an analytical model. Results of all three models were compared with data taken during LANSCE beam production. The models were used to support the recent successful transition from the beam pulse repetition rate of 60 Hz-120 Hz.

  2. Time-dependent global sensitivity analysis with active subspaces for a lithium ion battery model

    CERN Document Server

    Constantine, Paul G

    2016-01-01

    Renewable energy researchers use computer simulation to aid the design of lithium ion storage devices. The underlying models contain several physical input parameters that affect model predictions. Effective design and analysis must understand the sensitivity of model predictions to changes in model parameters, but global sensitivity analyses become increasingly challenging as the number of input parameters increases. Active subspaces are part of an emerging set of tools to reveal and exploit low-dimensional structures in the map from high-dimensional inputs to model outputs. We extend a linear model-based heuristic for active subspace discovery to time-dependent processes and apply the resulting technique to a lithium ion battery model. The results reveal low-dimensional structure that a designer may exploit to efficiently study the relationship between parameters and predictions.

  3. Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations

    Institute of Scientific and Technical Information of China (English)

    卢建刚

    2004-01-01

    The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-exchange equilibrium, salt gradient, size exclusion, mass transfer resistance, and port periodic switching mechanism, was developed to simulate the complex dynamics. The model predictions were verified by the experimental data on upward and downward gradients for protein separations reported in the literature. All design and operating parameters (number, configuration, length and diameter of columns, particle size, switching period, flow rates of feed, raffinate, desorbent and extract, protein concentrations in feed, different salt concentrations in desorbent and feed) can be chosen correctly by numerical simulation. This model can facilitate the design, operation, optimization, control and scale-up of salt-gradient ion-exchange SMBC for protein separations.

  4. Modeling of plasma transport and negative ion extraction in a magnetized radio-frequency plasma source

    Science.gov (United States)

    Fubiani, G.; Garrigues, L.; Hagelaar, G.; Kohen, N.; Boeuf, J. P.

    2017-01-01

    Negative ion sources for fusion are high densities plasma sources in large discharge volumes. There are many challenges in the modeling of these sources, due to numerical constraints associated with the high plasma density, to the coupling between plasma and neutral transport and chemistry, the presence of a magnetic filter, and the extraction of negative ions. In this paper we present recent results concerning these different aspects. Emphasis is put on the modeling approach and on the methods and approximations. The models are not fully predictive and not complete as would be engineering codes but they are used to identify the basic principles and to better understand the physics of the negative ion sources.

  5. Modelling of local ion nitriding in a glow discharge with hollow cathode

    Science.gov (United States)

    Budilov, V.; Ramazanov, K.; Khusainov, Yu

    2017-05-01

    The paper presents the results of computer calculations of glow discharge plasma parameters in a hollow cathode zone and modeling of thermal and diffusion processes at local ion nitriding with a hollow cathode. The proposed model of a glow discharge with a hollow cathode with sufficient accuracy allowed to describe the distribution of plasma parameters in a cathode void. Values of plasma parameters in a cathode void formed by a mesh screen and cathode surface were obtained via the probe method. It was found that the use of hollow cathode effect allows to increase the concentration of ions near the treated surface by 1.5 times. The suggested computer model allows to predict the distribution of the temperature field and depth of a diffusion layer at local ion nitriding with a hollow cathode for various configurations and sizes.

  6. Modeling Adsorption Kinetics of Magnesium and Phosphate Ions on Goethite by Empirical Equations

    Directory of Open Access Journals (Sweden)

    Malihe Talebi Atouei

    2017-06-01

    Full Text Available Introduction: Natural environments, including soils and sediments, are open and complex systems in which physico-chemical reactions are in semi equilibrium state. In these systems, bioavailability of plant nutrients, like phosphate, is influenced by environmental conditions and concentrations of other ions such as calcium and magnesium. Magnesium is a dominant cation in irrigation water and in the soil solution of calcareous soils. Recent evidences show relative increase in the concentration of magnesium in irrigation water. Because of the importance of chemical kinetics in controlling concentrations of these ions in the soil solution and for understanding their effects of adsorption kinetics of magnesium and phosphate ions, in this research, adsorption kinetics of these two ions on goethite is investigated as function of time and pH in single ion and binary ion systems. The experimental data are described by using the adsorption kinetics equations. These data are of the great importance in better understanding adsorption interactions and ion adsorption mechanism.With respect to the importance of these interactions from both economical and environmental point of view, in this research, the kinetics and thermodynamics of phosphate and Mg2adsorption interactions were investigated as function of pH on soil model mineral goethite in both single and binary ion systems. Materials and Methods: Kinetics experiments were performed in the presence of 0.2 mM magnesium and 0.4 mM phosphate in 0.1 M NaCl background solution and 3 g L-1 goethite concentration as function of pH and time (1, 5, 14, 24, 48. 72 and 168 h in single ion and binary ion systems. After reaction time, the suspensions were centrifuged and a sample of supernatant was taken for measuring ions equilibrium concentrations.Phosphate concentration was measured calorimetrically with the ammonium molybdate blue method by spectrophotometer (Jenway-6505 UV/Vis. Magnesium concentration was

  7. Measurements and Modelling of Sputtering Rates with Low Energy Ions

    Science.gov (United States)

    Ruzic, David N.; Smith, Preston C.; Turkot, Robert B., Jr.

    1996-10-01

    The angular-resolved sputtering yield of Be by D+, and Al by Ar+ was predicted and then measured. A 50 to 1000 eV ion beam from a Colutron was focused on to commercial grade and magnetron target grade samples. The S-65 C grade beryllium samples were supplied by Brush Wellman and the Al samples from TOSOH SMD. In our vacuum chamber the samples can be exposed to a dc D or Ar plasma to remove oxide, load the surface and more-nearly simulate steady state operating conditions in the plasma device. The angular distribution of the sputtered atoms was measured by collection on a single crystal graphite witness plate. The areal density of Be or Al (and BeO2 or Al2O3, after exposure to air) was then measured using a Scanning Auger Spectrometer. Total yield was also measured by deposition onto a quartz crystal oscillator simultaneously to deposition onto the witness plate. A three dimensional version of vectorized fractal TRIM (VFTRIM3D), a Monte-Carlo computer code which includes surface roughness characterized by fractal geometry, was used to predict the angular distribution of the sputtered particles and a global sputtering coefficient. Over a million trajectories were simulated for each incident angle to determine the azimuthal and polar angle distributions of the sputtered atoms. The experimental results match closely with the simulations for total yield, while the measured angular distributions depart somewhat from the predicted cosine curve.

  8. Datasheet-based modeling of Li-Ion batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Schaltz, Erik; Andreasen, Søren Juhl;

    2012-01-01

    Researchers and developers use battery models in order to predict the performance of batteries depending on external and internal conditions, such as temperature, C-rate, Depth-of-Discharge (DoD) or State-of-Health (SoH). Most battery models proposed in the literature require specific laboratory ...

  9. Modelling radiation fields of ion beams in tissue-like materials

    Energy Technology Data Exchange (ETDEWEB)

    Burigo, Lucas Norberto

    2014-07-16

    Fast nuclei are ionizing radiation which can cause deleterious effects to irradiated cells. The modelling of the interactions of such ions with matter and the related effects are very important to physics, radiobiology, medicine and space science and technology. A powerful method to study the interactions of ionizing radiation with biological systems was developed in the field of microdosimetry. Microdosimetry spectra characterize the energy deposition to objects of cellular size, i.e., a few micrometers. In the present thesis the interaction of ions with tissue-like media was investigated using the Monte Carlo model for Heavy-Ion Therapy (MCHIT) developed at the Frankfurt Institute for Advanced Studies. MCHIT is a Geant4-based application intended to benchmark the physical models of Geant4 and investigate the physical properties of therapeutic ion beams. We have implemented new features in MCHIT in order to calculate microdosimetric quantities characterizing the radiation fields of accelerated nucleons and nuclei. The results of our Monte Carlo simulations were compared with recent experimental microdosimetry data. In addition to microdosimetry calculations with MCHIT, we also investigated the biological properties of ion beams, e.g. their relative biological effectiveness (RBE), by means of the modified Microdosimetric-Kinetic model (MKM). The MKM uses microdosimetry spectra in describing cell response to radiation. MCHIT+MKM allowed us to study the physical and biological properties of ion beams. The main results of the thesis are as follows: MCHIT is able to describe the spatial distribution of the physical dose in tissue-like media and microdosimetry spectra for ions with energies relevant to space research and ion-beam cancer therapy; MCHIT+MKM predicts a reduction of the biological effectiveness of ions propagating in extended medium due to nuclear fragmentation reactions; We predicted favourable biological dose-depth profiles for monoenergetic helium and

  10. MODEL PSEUDOPOTENTIAL OF THE ELECTRON - NEGATIVE ION INTERACTION

    Directory of Open Access Journals (Sweden)

    Yu.Rudavskii

    2003-01-01

    Full Text Available Generalization of the Anderson model to describe the states of electronegative impurities in liquid-metal alloys is the main aim of the present paper. The effects of the random inner field on the charge impurity states is accounted for selfconsistently. Qualitative and quantitative estimation of hamiltonian parameters has been carried out. The limits of the proposed model applicability to a description of real systems are considered. Especially, the case of the oxygen impurity in liquid sodium is studied. The modelling of the proper electron-ionic interaction potential is the main goal of the paper. The parameters of the proposed pseudopotential are analyzed in detail. The comparison with other model potentials have been carried out. Resistivity of liquid sodium containing the oxygen impurities is calculated with utilizing the form-factor of the proposed model potential. Dependence of the resistivity on impurity concentration and on the charge states is received.

  11. Phenomenological force and swelling models for rechargeable lithium-ion battery cells

    Science.gov (United States)

    Oh, Ki-Yong; Epureanu, Bogdan I.; Siegel, Jason B.; Stefanopoulou, Anna G.

    2016-04-01

    Three phenomenological force and swelling models are developed to predict mechanical phenomena caused by Li-ion intercalation: a 1-D force model, a 1st order relaxation model, and a 3-D swelling model. The 1-D force model can estimate the Li-ion intercalation induced force for actual pack conditions with preloads. The model incorporates a nonlinear elastic stiffness to capture the mechanical consequences of Li-ion intercalation swelling. The model also separates the entire state of charge range into three regions considering phase transitions. The 1st order relaxation model predicts dynamic swelling during relaxation periods. A coefficient of relaxation is estimated from dynamic and quasi-static swelling at operational conditions. The 3-D swelling model predicts the swelling shape on the battery surface for all states of charge. This model introduces an equivalent modulus of elasticity, which is dependent on the state of charge, to capture material transformations of the electrodes, and the orthotropic expansion of the jellyroll in a direction perpendicular to the electrode surfaces. Considering the simplicity of the measurements and direct physical correlations between stress and strain, the proposed models can enhance battery management systems and power management strategies.

  12. GraXe, graphene and xenon for neutrinoless double beta decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Monrabal, F.; Vidal, J. Muñoz [Instituto de Física Corpuscular (IFIC), CSIC and Universitat de Valencia, Calle Catedrático José Beltrán, 2, 46980 Valencia (Spain); Guinea, F. [Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz, 3, 28049 Madrid (Spain); Fogler, M.M. [Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Katsnelson, M.I., E-mail: gomez@mail.cern.ch, E-mail: paco.guinea@icmm.csic.es, E-mail: mfogler@ucsd.edu, E-mail: katsnel@sci.kun.nl, E-mail: justo.martin-albo@ific.uv.es, E-mail: francesc.monrabal@ific.uv.es, E-mail: jmunoz@ific.uv.es [Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in {sup 136}XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the {sup 136}XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope {sup 136}XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.

  13. GraXe, graphene and xenon for neutrinoless double beta decay searches

    CERN Document Server

    Gomez-Cadenas, J J; Fogler, M M; Katsnelson, M I; Martin-Albo, J; Monrabal, F; Muñoz-Vidal, J

    2011-01-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in Xe-136. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. Our baseline design of GraXe is a balloon made of graphene (possibly held together with a very thin structure made of radiopure fiber) and filled with xenon enriched in the Xe-136 isotope. The balloon is immersed in a large tank containing 20 tons of natural liquid xenon and instrumented with large photomultipliers. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, an impermeable to the xenon. External backgrounds would be shielded by the buffer liquid xenon, and the inner volume has virtually zero background. Industrial graphene can be manufactured at a competitive cost to produce the inner balloon, and there is already near one ton of enriched Xenon available in the world...

  14. Terrestrial and Martian weathering signatures of xenon components in shergottite mineral separates

    Science.gov (United States)

    Cartwright, J. A.; Ocker, K. D.; Crowther, S. A.; Burgess, R.; Gilmour, J. D.

    2010-08-01

    Xenon-isotopic ratios, step-heating release patterns, and gas concentrations of mineral separates from Martian shergottites Roberts Massif (RBT) 04262, Dar al Gani (DaG) 489, Shergotty, and Elephant Moraine (EET) 79001 lithology B are reported. Concentrations of Martian atmospheric xenon are similar in mineral separates from all meteorites, but more weathered samples contain more terrestrial atmospheric xenon. The distributions of xenon from the Martian and terrestrial atmospheres among minerals in any one sample are similar, suggesting similarities in the processes by which they were acquired. However, in opaque and maskelynite fractions, Martian atmospheric xenon is released at higher temperatures than terrestrial atmospheric xenon. It is suggested that both Martian and terrestrial atmospheric xenon were initially introduced by weathering (low temperature alteration processes). However, the Martian component was redistributed by shock, accounting for its current residence in more retentive sites. The presence or absence of detectable 129Xe from the Martian atmosphere in mafic minerals may correspond to the extent of crustal contamination of the rock's parent melt. Variable contents of excess 129Xe contrast with previously reported consistent concentrations of excess 40Ar, suggesting distinct sources contributed these gases to the parent magma.

  15. Barium Tagging in Solid Xenon for the nEXO Experiment

    Science.gov (United States)

    Chambers, Christopher; Craycraft, Adam; Walton, Timothy; Fairbank, William; nEXO Collaboration

    2016-09-01

    The proposed nEXO experiment utilizes a tonne-scale liquid xenon time projection chamber to search for neutrinoless double beta decay in xenon-136. Positive observation of this decay would determine the nature of the neutrino to be a MAJORANA particle, as well as measure the absolute neutrino mass scale. A critical concern for any rare decay search is reducing or eliminating backgrounds that cannot be distinguished from signal. A powerful background discrimination technique is positive identification of the daughter atom of the decay, in this case barium. This technique, called ``barium tagging'' may be available for a second phase of nEXO operation, allowing for neutrino mass sensitivity beyond the inverted mass hierarchy. Development is underway on a scheme to capture the barium daughter in solid xenon with a cryogenic probe and detect the barium by laser-induced fluorescence inside the solid xenon sample. This presentation reports results on imaging of single barium atoms frozen in a solid xenon matrix, as well as the progress on the freezing and removal of a solid xenon sample from liquid xenon. Graduated.

  16. Irradiated Xenon Isotopic Ratio Measurement for Failed Fuel Detection and Location in Fast Reactor

    Science.gov (United States)

    Ito, Chikara; Iguchi, Tetsuo; Harano, Hideki

    2009-08-01

    The accuracy of xenon isotopic ratio burn-up calculations used for failed fuel identification was evaluated by an irradiation test of xenon tag gas samples in the Joyo test reactor. The experiment was carried out using pressurized steel capsules containing unique blend ratios of stable xenon tag gases in an on-line creep rupture experiment in Joyo. The tag gas samples were irradiated to total neutron fluences of 1.6 to 4.8 × 1026 n/m2. Laser resonance ionization mass spectrometry was used to analyze the cover gas containing released tag gas diluted to isotopic ratios of 100 to 102 ppb. The isotopic ratios of xenon tag gases after irradiation were calculated using the ORIGEN2 code. The neutron cross sections of xenon nuclides were based on the JENDL-3.3 library. These cross sections were collapsed into one group using the neutron spectra of Joyo. The comparison of measured and calculated xenon isotopic ratios provided C/E values that ranged from 0.92 to 1.10. The differences between calculation and measurement were considered to be mainly due to the measurement errors and the xenon nuclide cross section uncertainties.

  17. Removing krypton from xenon by cryogenic distillation to the ppq level

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Orrigo, S.E.A.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [Physik-Institut, University of Zurich, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindemann, S.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Duchovni, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. v. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Huhmann, C.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lin, Q. [Laboratori Nazionali del Gran Sasso, Assergi (Italy); Meng, Y.; Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Lavina, L.S. [LPNHE, Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, Paris (France); Tunnell, C. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Cristescu, I. [Karlsruhe Institute of Technology, Tritium Laboratory Karlsruhe, Eggenstein-Leopoldshafen (Germany); Collaboration: XENON Collaboration

    2017-05-15

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter {sup 85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon {sup nat}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10{sup -15} mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 . 10{sup 5} with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of {sup nat}Kr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN. (orig.)

  18. The breakthrough curve combination for xenon sampling dynamics in a carbon molecular sieve column.

    Science.gov (United States)

    Shu-jiang, Liu; Zhan-ying, Chen; Yin-zhong, Chang; Shi-lian, Wang; Qi, Li; Yuan-qing, Fan; Huai-mao, Jia; Xin-jun, Zhang; Yun-gang, Zhao

    2015-01-21

    In the research of xenon sampling and xenon measurements, the xenon breakthrough curve plays a significant role in the xenon concentrating dynamics. In order to improve the theoretical comprehension of the xenon concentrating procedure from the atmosphere, the method of the breakthrough curve combination for sampling techniques should be developed and investigated under pulse injection conditions. In this paper, we describe a xenon breakthrough curve in a carbon molecular sieve column, the combination curve method for five conditions is shown and debated in detail; the fitting curves and the prediction equations are derived in theory and verified by the designed experiments. As a consequence, the curves of the derived equations are in good agreement with the fitting curves by tested. The retention times of the xenon in the column are 61.2, 42.2 and 23.5 at the flow rate of 1200, 1600 and 2000 mL min(-1), respectively, but the breakthrough times are 51.4, 38.6 and 35.1 min.

  19. Ultrasensitive resonance ionization mass spectrometer for evaluating krypton contamination in xenon dark matter detectors

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Y., E-mail: iwata.yoshihiro@jaea.go.jp [Experimental Fast Reactor Department, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Sekiya, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Ito, C. [Experimental Fast Reactor Department, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita, Oarai, Ibaraki 311-1393 (Japan)

    2015-10-11

    An ultrasensitive resonance ionization mass spectrometer that can be applied to evaluate krypton (Kr) contamination in xenon (Xe) dark matter detectors has been developed for measuring Kr at the parts-per-trillion (ppt) or sub-ppt level in Xe. The gas sample is introduced without any condensation into a time-of-flight mass spectrometer through a pulsed supersonic valve. Using a nanosecond pulsed laser at 212.6 nm, {sup 84}Kr atoms in the sample are resonantly ionized along with other Kr isotopes. {sup 84}Kr ions are then mass separated and detected by the mass spectrometer in order to measure the Kr impurity concentration. With our current setup, approximately 0.4 ppt of Kr impurities contained in pure argon (Ar) gas are detectable with a measurement time of 1000 s. Although Kr detection sensitivity in Xe is expected to be approximately half of that in Ar, our spectrometer can evaluate Kr contamination in Xe to the sub-ppt level.

  20. Assessment of potential advantages of relevant ions for particle therapy: A model based study

    Energy Technology Data Exchange (ETDEWEB)

    Grün, Rebecca, E-mail: r.gruen@gsi.de [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390 (Germany); Medical Faculty of Philipps-University Marburg, Marburg 35032 (Germany); Friedrich, Thomas; Krämer, Michael; Scholz, Michael [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Zink, Klemens [Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany); Durante, Marco [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany and Department of Condensed Matter Physics, Darmstadt University of Technology, Darmstadt 64289 (Germany); Engenhart-Cabillic, Rita [Medical Faculty of Philipps-University Marburg, Marburg 35032, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany)

    2015-02-15

    Purpose: Different ion types offer different physical and biological advantages for therapeutic applications. The purpose of this work is to assess the advantages of the most commonly used ions in particle therapy, i.e., carbon ({sup 12}C), helium ({sup 4}He), and protons ({sup 1}H) for different treatment scenarios. Methods: A treatment planning analysis based on idealized target geometries was performed using the treatment planning software TRiP98. For the prediction of the relative biological effectiveness (RBE) that is required for biological optimization in treatment planning the local effect model (LEM IV) was used. To compare the three ion types, the peak-to-entrance ratio (PER) was determined for the physical dose (PER{sub PHY} {sub S}), the RBE (PER{sub RBE}), and the RBE-weighted dose (PER{sub BIO}) resulting for different dose-levels, field configurations, and tissue types. Further, the dose contribution to artificial organs at risk (OAR) was assessed and a comparison of the dose distribution for the different ion types was performed for a patient with chordoma of the skull base. Results: The study showed that the advantages of the ions depend on the physical and biological properties and the interplay of both. In the case of protons, the consideration of a variable RBE instead of the clinically applied generic RBE of 1.1 indicates an advantage in terms of an increased PER{sub RBE} for the analyzed configurations. Due to the fact that protons show a somewhat better PER{sub PHY} {sub S} compared to helium and carbon ions whereas helium shows a higher PER{sub RBE} compared to protons, both protons and helium ions show a similar RBE-weighted dose distribution. Carbon ions show the largest variation of the PER{sub RBE} with tissue type and a benefit for radioresistant tumor types due to their higher LET. Furthermore, in the case of a two-field irradiation, an additional gain in terms of PER{sub BIO} is observed when using an orthogonal field configuration