WorldWideScience

Sample records for model wind turbine

  1. Type IV Wind Turbine Model

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Margaris, Ioannis D.

    (WPP) will be considered. The aggregate WPP model, which will be based on the upscaling of the individual wind turbine model on the electrical part, will make use of an equivalent wind speed. The implemented model follows the basic structure of the generic standard Type 4 wind turbine model proposed...... by the International Electrotechnical Commission (IEC), in the IEC61400-27-1 Committee Draft for electrical simulation models for wind power generation, which is currently under review, [1]. The Type 4 wind turbine model described in this report includes a set of adjustments of the standard Type 4 wind turbine model...... project to be incorporated in the wind power plant level. This document describes the Type 4 wind turbine simulation model, implemented in the EaseWind project. The implemented wind turbine model is one of the initial necessary steps toward integrating new control services in the wind power plant level...

  2. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  3. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind...

  4. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  5. Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... are controlled by pitching the blades and by controlling the electro-magnetic torque of the generator, thus slowing the rotation of the blades. Improved control of wind turbines, leading to reduced fatigue loads, can be exploited by using less materials in the construction of the wind turbine or by reducing...... the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving...

  6. An integrated modeling method for wind turbines

    Science.gov (United States)

    Fadaeinedjad, Roohollah

    To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a

  7. Dynamic modeling and simulation of wind turbines

    International Nuclear Information System (INIS)

    Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.

    2002-01-01

    Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator

  8. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...

  9. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    components. Thus, models of reliability should be developed and applied in order to quantify the residual life of the components. Damage models based on physics of failure combined with stochastic models describing the uncertain parameters are imperative for development of cost-optimal decision tools...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied....... Further, reliability modeling of load sharing systems is considered and a theoretical model is proposed based on sequential order statistics and structural systems reliability methods. Procedures for reliability estimation are detailed and presented in a collection of research papers....

  10. Wind Turbine Control: Robust Model Based Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood

    . This is because, on the one hand, control methods can decrease the cost of energy by keeping the turbine close to its maximum efficiency. On the other hand, they can reduce structural fatigue and therefore increase the lifetime of the wind turbine. The power produced by a wind turbine is proportional...... to the square of its rotor radius, therefore it seems reasonable to increase the size of the wind turbine in order to capture more power. However as the size increases, the mass of the blades increases by cube of the rotor size. This means in order to keep structural feasibility and mass of the whole structure...... reasonable, the ratio of mass to size should be reduced. This trend results in more flexible structures. Control of the flexible structure of a wind turbine in a wind field with stochastic nature is very challenging. In this thesis we are examining a number of robust model based methods for wind turbine...

  11. Modelling Wind Turbine Inflow: The Induction Zone

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul

    to the rotor, but requires exact knowledge of the flow deceleration to estimate the available, undis- turbed kinetic energy. Thus this thesis explores, mostly numerically, any wind turbine or environmental dependencies of this deceleration. The computational fluid dynamics model (CFD) employed is validated......A wind turbine decelerates the wind in front of its rotor by extracting kinetic energy. The wind speed reduction is maximal at the rotor and negligible more than five rotor radii upfront. By measuring wind speed this far from the rotor, the turbine’s performance is determined without any rotor bias...... significant parameter. Exploiting this singu- lar dependency, a fast semi-empirical model is devised that accurately predicts the velocity deficit upstream of a single turbine. Near-rotor mea-surements in combination with this model are able to retrieve the kinetic energy available to the turbine in flat...

  12. Pitchcontrol of wind turbines using model free adaptivecontrol based on wind turbine code

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Cheng, Ming

    2011-01-01

    value is only based on I/O data of the wind turbine is identified and then the wind turbine system is replaced by a dynamic linear time-varying model. In order to verify the correctness and robustness of the proposed model free adaptive pitch controller, the wind turbine code FAST which can predict...

  13. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...

  14. Modeling of wind turbines for power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Petru, T.

    2001-05-01

    When wind turbines are installed into the electric grid, the power quality is affected. Today, strict installation recommendations often prevail due to a lack of knowledge on this subject. Consequently, it is important to predict the impact of wind turbines on the electric grid before the turbines are installed. The thesis describes relevant power quality issues, discusses different configurations of wind turbines with respect to power quality and draw requirements regarding wind turbine modeling. A model of a stall-regulated, fixed-speed wind turbine system is introduced and its power quality impact on the electric grid is evaluated. The model is verified with field measurements.

  15. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  16. Dynamic Models for Wind Turbines and Wind Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  17. Model Predictive Control with Constraints of a Wind Turbine

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    2007-01-01

    Model predictive control of wind turbines offer a more systematic approach of constructing controllers that handle constraints while focusing on the main control objective. In this article several controllers are designed for different wind conditions and appropriate switching conditions ensure...... an efficient control of the wind turbine over the entire range of wind speeds. Both onshore and floating offshore wind turbines are tested with the controllers....

  18. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... speed doubly-fed induction generator wind turbine concept 3. Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies......, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control...

  19. Simulation model of an active stall wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)

    2004-07-01

    This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)

  20. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most componen....../nodules on fatigue life of cast iron samples. The cast iron samples scanned by 3D tomography equipment at the DTU Wind Energy (Risø campus), and the distribution of nodules are used to estimate the fatigue life....

  1. Wind turbine noise modeling : a comparison of modeling methods

    International Nuclear Information System (INIS)

    Wang, L.; Strasser, A.

    2009-01-01

    All wind turbine arrays must undergo a noise impact assessment. DataKustik GmbH developed the Computer Aided Noise Abatement (Cadna/A) modeling software for calculating noise propagation to meet accepted protocols and international standards such as CONCAWE and ISO 9613 standards. The developer of Cadna/A, recommended the following 3 models for simulating wind turbine noise. These include a disk of point sources; a ring of point sources located at the tip of each blade; and a point source located at the top of the wind turbine tower hub. This paper presented an analytical comparison of the 3 models used for a typical wind turbine with a hub tower containing 3 propeller blades, a drive-train and top-mounted generator, as well as a representative wind farm, using Cadna/A. AUC, ISO and IEC criteria requirements for the meteorological input with Cadna/A for wind farm noise were also discussed. The noise predicting modelling approach was as follows: the simplest model, positioning a single point source at the top of the hub, can be used to predict sound levels for a typical wind turbine if receptors are located 250 m from the hub; a-weighted sound power levels of a wind turbine at cut-in and cut-off wind speed should be used in the models; 20 by 20 or 50 by 50 meter terrain parameters are suitable for large wind farm modeling; and ISO 9613-2 methods are recommended to predict wind farm noise with various metrological inputs based on local conditions. The study showed that the predicted sound level differences of the 3 wind turbine models using Cadna/A are less than 0.2 dB at receptors located greater than 250 m from the wind turbine hub, which fall within the accuracy range of the calculation method. All 3 models of wind turbine noise meet ISO9613-2 standards for noise prediction using Cadna/A. However, the single point source model was found to be the most efficient in terms of modeling run-time among the 3 models. 7 refs., 3 tabs., 15 figs.

  2. Frequency weighted model predictive control of wind turbine

    DEFF Research Database (Denmark)

    Klauco, Martin; Poulsen, Niels Kjølstad; Mirzaei, Mahmood

    2013-01-01

    This work is focused on applying frequency weighted model predictive control (FMPC) on three blade horizontal axis wind turbine (HAWT). A wind turbine is a very complex, non-linear system influenced by a stochastic wind speed variation. The reduced dynamics considered in this work...... are the rotational degree of freedom of the rotor and the tower for-aft movement. The MPC design is based on a receding horizon policy and a linearised model of the wind turbine. Due to the change of dynamics according to wind speed, several linearisation points must be considered and the control design adjusted...... accordingly. In practice is very hard to measure the effective wind speed, this quantity will be estimated using measurements from the turbine itself. For this purpose stationary predictive Kalman filter has been used. Stochastic simulations of the wind turbine behaviour with applied frequency weighted model...

  3. Wind turbine noise propagation modelling: An unsteady approach

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects of unste......Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects...

  4. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine...

  5. Wall modeled LES of wind turbine wakes with geometrical effects

    Science.gov (United States)

    Bricteux, Laurent; Benard, Pierre; Zeoli, Stephanie; Moureau, Vincent; Lartigue, Ghislain; Vire, Axelle

    2017-11-01

    This study focuses on prediction of wind turbine wakes when geometrical effects such as nacelle, tower, and built environment, are taken into account. The aim is to demonstrate the ability of a high order unstructured solver called YALES2 to perform wall modeled LES of wind turbine wake turbulence. The wind turbine rotor is modeled using an Actuator Line Model (ALM) while the geometrical details are explicitly meshed thanks to the use of an unstructured grid. As high Reynolds number flows are considered, sub-grid scale models as well as wall modeling are required. The first test case investigated concerns a wind turbine flow located in a wind tunnel that allows to validate the proposed methodology using experimental data. The second test case concerns the simulation of a wind turbine wake in a complex environment (e.g. a Building) using realistic turbulent inflow conditions.

  6. Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined...

  7. Unsteady aerodynamic modelling of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Coton, F.N.; Galbraith, R.A. [Univ. og Glasgow, Dept. of Aerospace Engineering, Glasgow (United Kingdom)

    1997-08-01

    The following current and future work is discussed: Collaborative wind tunnel based PIV project to study wind turbine wake structures in head-on and yawed flow. Prescribed wake model has been embedded in a source panel representation of the wind tunnel walls to allow comparison with experiment; Modelling of tower shadow using high resolution but efficient vortex model in tower shadow domain; Extension of model to yawing flow; Upgrading and tuning of unsteady aerodynamic model for low speed, thick airfoil flows. Glasgow has a considerable collection of low speed dynamic stall data. Currently, the Leishman - Beddoes model is not ideally suited to such flows. For example: Range of stall onset criteria used for dynamic stall prediction including Beddoes. Wide variation of stall onset prediction. Beddoes representation was developed primarily with reference to compressible flows. Analyses of low speed data from Glasgow indicate deficiencies in the current model; Predicted versus measured response during ramp down motion. Modification of the Beddoes representation is required to obtain a fit with the measured data. (EG)

  8. A Reliability Based Model for Wind Turbine Selection

    Directory of Open Access Journals (Sweden)

    A.K. Rajeevan

    2013-06-01

    Full Text Available A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.

  9. Modeling of wind turbines with doubly fed generator system

    CERN Document Server

    Fortmann, Jens

    2014-01-01

    Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requ

  10. Models for wind turbines - a collection

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H. (eds.); Baumgart, A.

    2002-02-01

    This report is a collection of notes which were intended to be short communications. Main target of the work presented is to supply new approaches to stability investigations of wind turbines. The authors opinion is that an efficient, systematic stability analysis can not be performed for large systems of differential equations (i.e. the order of the differential equations > 100), because numerical 'effects' in the solution of the equations of motion as initial value problem, eigenvalue problem or whatsoever become predominant. It is therefore necessary to find models which are reduced to the elementary coordinates but which can still describe the physical processes under consideration with sufficiently good accuracy. Such models are presented. (au)

  11. Models for wind turbines - a collection

    DEFF Research Database (Denmark)

    2002-01-01

    This report is a collection of notes which were intended to be short communications. Main target of the work presented is to supply new approaches to stability investigations of wind turbines. The author's opinion is that an efficient, systematicstability analysis can not be performed for large...

  12. Time Series Model of Wind Speed for Multi Wind Turbines based on Mixed Copula

    Directory of Open Access Journals (Sweden)

    Nie Dan

    2016-01-01

    Full Text Available Because wind power is intermittent, random and so on, large scale grid will directly affect the safe and stable operation of power grid. In order to make a quantitative study on the characteristics of the wind speed of wind turbine, the wind speed time series model of the multi wind turbine generator is constructed by using the mixed Copula-ARMA function in this paper, and a numerical example is also given. The research results show that the model can effectively predict the wind speed, ensure the efficient operation of the wind turbine, and provide theoretical basis for the stability of wind power grid connected operation.

  13. Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined......, we simplify state prediction for the MPC. Consequently, the control problem of the nonlinear system is simplified into a quadratic programming. We consider uncertainty in the wind propagation time, which is the traveling time of wind from the LIDAR measurement point to the rotor. An algorithm based...... by the effective wind speed on the rotor disc. We take the wind speed as a scheduling variable. The wind speed is measurable ahead of the turbine using LIDARs, therefore, the scheduling variable is known for the entire prediction horizon. By taking the advantage of having future values of the scheduling variable...

  14. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  15. An aerodynamic noise propagation model for wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Sørensen, Jens Nørkær; Shen, Wen Zhong

    2005-01-01

    A model based on 2-D sound ray theory for aerodynamic noise propagation from wind turbine rotating blades is introduced. The model includes attenuation factors from geometric spreading, sound directivity of source, air absorption, ground deflection and reflection, as well as effects from...... temperature and airflow. At a given receiver point, the sound pressure is corrected by taking into account these propagation effects. As an overall assumption, the noise field generated by the wind turbine is simplified as a point source placed at the hub height of the wind turbine. This assumtion...

  16. Demonstration of the Ability of RCAS to Model Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J.; Cotrell, J.

    2003-08-01

    In recent years, the wind industry has sponsored the development, verification, and validation of comprehensive aeroelastic simulators, which are used for wind turbine design, certification, and research. Unfortunately, as wind turbines continue to grow in size and sometimes exhibit unconventional design characteristics, the existing codes do not always support the additional analysis features required for proper design. The development history, functionality, and advanced nature of RCAS (Rotorcraft Comprehensive Analysis System) make this code a sensible option. RCAS is an aeroelastic simulator developed over a 4-year cooperative effort amongst the U.S. Army's Aeroflightdynamics Directorate, Advanced Rotorcraft Technology (ART), Inc., and the helicopter industry. As its name suggests, RCAS was created for the rotorcraft industry but developed as a general purpose code for modeling the aerodynamic and structural response of any system with rotating and nonrotating subsystems (such as wind turbines). To demonstrate that RCAS can analyze wind turbines, models of a conventional, 1.5-MW, 3-bladed, upwind, horizontal axis wind turbine (HAWT) are created in RCAS and wind turbine analysis codes FAST (Fatigue, Aerodynamics, Structures, and Turbulence) and ADAMS (Automatic Dynamic Analysis of Mechanical Systems). Using these models, a side-by-side comparison of structural response predictions is performed under several test scenarios.

  17. Modelling of offshore wind turbine wakes with the wind farm program FLaP

    DEFF Research Database (Denmark)

    Lange, B.; Waldl, H.P.; Guerrero, A.G.

    2003-01-01

    The wind farm layout program FLaP estimates the wind speed at any point in a wind farm and the power output of the turbines. The ambient flow conditions and the properties of the turbines and the farm are used as input. The core of the program is an axisymmetric wake model describing the wake...

  18. IEA Wind Task 37: Systems Modeling Framework and Ontology for Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zahle, Frederik [Technical University of Denmark; Merz, Karl [SINTEF Energy Research; McWilliam, Mike [Technical University of Denmark; Bortolotti, Pietro [Technical University Munich

    2017-08-14

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common conceptual architecture for wind turbines and plants so that practitioners can more easily share descriptions of wind turbines and plants across multiple parties and reduce the effort for translating descriptions between models; integrate different models together and collaborate on model development; and translate models among different levels of fidelity in the system.

  19. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  20. Robust Model Predictive Control of a Wind Turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    , a new sensor is introduced in the EKF to give faster estimations. Wind speed estimation error is used to assess uncertainties in the linearized model. Significant uncertainties are considered to be in the gain of the system (B matrix of the state space model). Therefore this special structure......In this work the problem of robust model predictive control (robust MPC) of a wind turbine in the full load region is considered. A minimax robust MPC approach is used to tackle the problem. Nonlinear dynamics of the wind turbine are derived by combining blade element momentum (BEM) theory...... and first principle modeling of the turbine flexible structure. Thereafter the nonlinear model is linearized using Taylor series expansion around system operating points. Operating points are determined by effective wind speed and an extended Kalman filter (EKF) is employed to estimate this. In addition...

  1. Wind turbine model and loop shaping controller design

    Science.gov (United States)

    Gilev, Bogdan

    2017-12-01

    A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.

  2. Modelling of a chaotic load of wind turbines drivetrain

    Science.gov (United States)

    Bielecki, Andrzej; Barszcz, Tomasz; Wójcik, Mateusz

    2015-03-01

    The purpose of this paper is to present a model of the load of the wind turbine gears for simulation of real, varying operational conditions for modelling of wind turbine vibration. The characteristics of the wind, which generates chaotically varying loads on the drivetrain components generating load in teeth and bearings of gears during torque transfer, are discussed. A generator of variable load of wind turbines drivetrain is proposed. Firstly, the module for generation of wind speed is designed. It is based on the approach in which the wind speed was considered as a time series approximated by the Weierstrass function. Secondly, the rotational speed of the main shaft is proposed as a function of the wind speed value. The function depends on a few parameters that are fitted by using a genetic algorithm. Finally, the model of torque of the main shaft is introduced. This model has been created by using a multi-layer artificial neural network. The results show that the proposed approach yields a very good fit for the experimental data. The fit brings about the proper reproducing of all the aspects of the load that are crucial for causing fatigue and, as a consequence, damaging of gears of the wind turbines.

  3. Sequence Domain Harmonic Modeling of Type-IV Wind Turbines

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim Høj; Rasmussen, Tonny Wederberg

    2017-01-01

    -sampled pulsewidth modulation and an analysis of converter generated voltage harmonics due to compensated dead-time. The decoupling capabilities of the proposed the SD harmonic model are verified through a power quality (PQ) assessment of a 3MW Type-IV wind turbine. The assessment shows that the magnitude and phase...... of low-order odd converter generated voltage harmonics are dependent on the converter operating point and the phase of the fundamental component of converter current respectively. The SD harmonic model can be used to make PQ assessments of Type-IV wind turbines or incorporated into harmonic load flows...... for computation of PQ in wind power plants....

  4. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  5. Simulation platform to model, optimize and design wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F.; Hansen, A.D.; Soerensen, P.; Blaabjerg, F.

    2004-03-01

    This report is a general overview of the results obtained in the project 'Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines'. The motivation for this research project is the ever-increasing wind energy penetration into the power network. Therefore, the project has the main goal to create a model database in different simulation tools for a system optimization of the wind turbine systems. Using this model database a simultaneous optimization of the aerodynamic, mechanical, electrical and control systems over the whole range of wind speeds and grid characteristics can be achieved. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. However, other simulation packages e.g PSCAD/EMTDC can easily be added in the simulation platform. New models and new control algorithms for wind turbine systems have been developed and tested in these tools. All these models are collected in dedicated libraries in Matlab/Simulink as well as in Saber. Some simulation results from the considered tools are presented for MW wind turbines. These simulation results focuses on fixed-speed and variable speed/pitch wind turbines. A good agreement with the real behaviour of these systems is obtained for each simulation tool. These models can easily be extended to model different kinds of wind turbines or large wind

  6. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  7. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over......We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400-1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear...

  8. Modelling of a PMSG Wind Turbine with Autonomous Control

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2014-01-01

    Full Text Available The aim of this research is to model an autonomous control wind turbine driven permanent magnetic synchronous generator (PMSG which feeds alternating current (AC power to the utility grid. Furthermore, this research also demonstrates the effects and the efficiency of PMSG wind turbine which is integrated by autonomous controllers. In order for well autonomous control, two voltage source inverters are used to control wind turbine connecting with the grid. The generator-side inverter is used to adjust the synchronous generator as well as separating the generator from the grid when necessary. The grid-side inverter controls the power flow between the direct current (DC bus and the AC side. Both of them are oriented control by space vector pulse width modulation (PWM with back-to-back frequency inverter. Moreover, the proportional-integral (PI controller is enhanced to control both of the inverters and the pitch angle of the wind turbine. Maximum power point tracking (MPPT is integrated in generator-side inverter to track the maximum power, when wind speed changes. The simulation results in Matlab Simulink 2012b showing the model have good dynamic and static performance. The maximum power can be tracked and the generator wind turbine can be operated with high efficiency.

  9. Data Driven Modelling of the Dynamic Wake Between Two Wind Turbines

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas

    2012-01-01

    turbine. This paper establishes flow models relating the wind speeds at turbines in a farm. So far, research in this area has been mainly based on first principles static models and the data driven modelling done has not included the loading of the upwind turbine and its impact on the wind speed downwind......Wind turbines in a wind farm, influence each other through the wind flow. Downwind turbines are in the wake of upwind turbines and the wind speed experienced at downwind turbines is hence a function of the wind speeds at upwind turbines but also the momentum extracted from the wind by the upwind....... This paper is the first where modern commercial mega watt turbines are used for data driven modelling including the upwind turbine loading by changing power reference. Obtaining the necessary data is difficult and data is therefore limited. A simple dynamic extension to the Jensen wake model is tested...

  10. Study on Parameters Modeling of Wind Turbines Using SCADA Data

    Directory of Open Access Journals (Sweden)

    Yonglong YAN

    2014-08-01

    Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.

  11. Stochastic wind turbine modeling for individual pitch control

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    and a simplified description of the aerodynamics with sufficient detail to design model-based individual pitch controllers. Combined with a simplified model of the wind turbine, we exemplify how to use the model elements to systematically design an individual pitch controller. The design is investigated...

  12. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  13. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...

  14. Evaluation of RCAS Inflow Models for Wind Turbine Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.; Bir, G.

    2004-02-01

    The finite element structural modeling in the Rotorcraft Comprehensive Analysis System (RCAS) provides a state-of-the-art approach to aeroelastic analysis. This, coupled with its ability to model all turbine components, results in a methodology that can simulate complex system interactions characteristic of large wind. In addition, RCAS is uniquely capable of modeling advanced control algorithms and the resulting dynamic responses.

  15. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  16. On Practical tuning of Model Uncertainty in Wind Turbine Model Predictive Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    model of a wind turbine. In this paper, we investigate the impact of this approach on the performance of a wind turbine. In particular, we focus on the most non-linear operational ranges of a wind turbine. The MPC controller is designed for, tested, and evaluated at an industrial high fidelity wind......Model predictive control (MPC) has in previous works been applied on wind turbines with promising results. These results apply linear MPC, i.e., linear models linearized at different operational points depending on the wind speed. The linearized models are derived from a nonlinear first principles...... parameters in the linearized model to fit the actual physical wind turbine behavior. We evaluate the MPC with the different model parameters, and show that, e.g., over-speed events are avoided, and a good performance of the wind turbine control is obtained....

  17. Actuator Line Modeling of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2009-01-01

    with the 3D Navier Stokes solver EllipSys3D and a LES turbulence model. Simple models, based on applying body forces in the computational domain, are developed for imposing sheared and turbulent infow and their validity is discussed. A few computations on stand alone turbines are compared to measurements...... inflow shows that besides an expected vertical skewed wake the wake also becomes increasingly asymmetric in the horizontal direction as it is convected downstream. The latter phenomena, which is also often observed in measurements, is argued to be caused by the rotation of the wake. A detailed study...

  18. Methodologies for Wind Turbine and STATCOM Integration in Wind Power Plant Models for Harmonic Resonances Assessment

    DEFF Research Database (Denmark)

    Freijedo Fernandez, Francisco Daniel; Chaudhary, Sanjay Kumar; Guerrero, Josep M.

    2015-01-01

    This paper approaches modelling methodologies for integration of wind turbines and STATCOM in harmonic resonance studies. Firstly, an admittance equivalent model representing the harmonic signature of grid connected voltage source converters is provided. A simplified type IV wind turbine modelling......-domain. As an alternative, a power based averaged modelling is also proposed. Type IV wind turbine harmonic signature and STATCOM active harmonic mitigation are considered for the simulation case studies. Simulation results provide a good insight of the features and limitations of the proposed methodologies....

  19. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    NARCIS (Netherlands)

    Simao Ferreira, C.J.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple

  20. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Ferreira, C. Simão; Aagaard Madsen, Helge; Barone, M.

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multipl...

  1. Importance of Dynamic Inflow Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Knudsen, Torben; Overgaard, Anders

    2015-01-01

    The efficiency of including dynamic inflow in the model based design of wind turbine controller has been discussed for many years in the wind energy community with out getting to a safe conclusion. This paper delivers a good argument in favor of including dynamic inflow. The main contributions...... pronounces. For this the well accepted NREL 5MW reference turbine simulated with FAST is used. The main result is a reduction in tower fatigue load at 22% while power error, rotor speed error, generator torque and pitch rate is improved from 2 to 33%....

  2. Stochastic models for strength of wind turbine blades using tests

    DEFF Research Database (Denmark)

    Toft, H.S.; Sørensen, John Dalsgaard

    2008-01-01

    The structural cost of wind turbine blades is dependent on the values of the partial safety factors which reflect the uncertainties in the design values, including statistical uncertainty from a limited number of tests. This paper presents a probabilistic model for ultimate and fatigue strength...... of wind turbine blades especially considering the influence of prior knowledge and test results and how partial safety factors can be updated when additional full-scale tests are performed. This updating is performed by adopting a probabilistic design basis based on Bayesian statistical methods....

  3. Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Hansen, Kurt Schaldemose; Frandsen, Sten Tronæs

    2009-01-01

    Average power losses due to wind turbine wakes are of the order of 10 to 20% of total power output in large offshore wind farms. Accurately quantifying power losses due to wakes is, therefore, an important part of overall wind farm economics. The focus of this research is to compare different types...... power losses due to wakes and loads. The research presented is part of the EC-funded UpWind project, which aims to radically improve wind turbine and wind farm models in order to continue to improve the costs of wind energy. Reducing wake losses, or even reduce uncertainties in predicting power losses...... from wakes, contributes to the overall goal of reduced costs. Here, we assess the state of the art in wake and flow modelling for offshore wind forms, the focus so for has been cases at the Horns Rev wind form, which indicate that wind form models require modification to reduce under-prediction of wake...

  4. A Numerical Model for a Floating TLP Wind Turbine

    DEFF Research Database (Denmark)

    Kumari Ramachandran, Gireesh Kumar Vasanta

    A numerical model is developed for a TLP configuration of a floating offshore wind turbine. The platform dynamics and hydrodynamic forces are derived and implemented in an advanced aero-elastic code, Flex5, to compute the hydro-aero-servo-elastic loads and responses on the floater and the wind...... turbine. This is achieved through three steps. In the first step, an independent 2D code with fourteen degrees of freedom (DOFs) is developed and the responses are verified for load cases concerning steady and spatially coherent turbulent wind with regular and irregular waves. In the second step, the 2D...... irregular waves. In addition, the effect of wind-wave misalignment is investigated. Further, in the third step, the 3D platform dynamics and wave loading are implemented into Flex5, resulting in a fully coupled hydro-aero-servo-elastic code. The implementation is tested to make the model reliable and robust...

  5. Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines

    OpenAIRE

    Ahmed M. Hemeida; Wael A. Farag; Osama A. Mahgoub

    2011-01-01

    This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbin...

  6. Modelling the pultrusion process of off shore wind turbine blades

    NARCIS (Netherlands)

    Baran, Ismet

    This thesis is devoted to the numerical modelling of the pultrusion process for industrial products such as wind turbine blades and structural profiles. The main focus is on the thermo-chemical and mechanical analyses of the process in which the process induced tresses and shape distortions together

  7. Modeling of uncertainties for wind turbine blade design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, Henrik Stensgaard

    2014-01-01

    Wind turbine blades are designed by a combination of tests and numerical calculations using finite element models of the blade. The blades are typically composite structures with laminates of glass-fiber and/or carbon-fibers glued together by a matrix material. This paper presents a framework...

  8. Stochastic Models for Strength of Wind Turbine Blades using Tests

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    The structural cost of wind turbine blades is dependent on the values of the partial safety factors which reflect the uncertainties in the design values, including statistical uncertainty from a limited number of tests. This paper presents a probabilistic model for ultimate and fatigue strength...

  9. Code Shift: Grid Specifications and Dynamic Wind Turbine Models

    DEFF Research Database (Denmark)

    Ackermann, Thomas; Ellis, Abraham; Fortmann, Jens

    2013-01-01

    Grid codes (GCs) and dynamic wind turbine (WT) models are key tools to allow increasing renewable energy penetration without challenging security of supply. In this article, the state of the art and the further development of both tools are discussed, focusing on the European and North American e...

  10. PIV in a model wind turbine rotor wake

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Naumov, Igor; Karbadin, Ivan

    2013-01-01

    Stereoscopic particle image velocimetry (PIV) measurements of the flow in the wake of scale model of a horizontal axis wind turbine is presented Near the rotor, measurements are made in vertical planes intersecting the rotor axis These planes capture flow effect from the tip and root vortices...

  11. IEA Wind Task 37 System Modeling Framework and Ontology for Wind Turbines and Plants

    NARCIS (Netherlands)

    Dykes, K; Sanchez Perez Moreno, S.; Zahle, Frederik; Ning, A; McWilliam, M.; Zaayer, M B

    2017-01-01

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common

  12. Guest Editorial Modeling and Advanced Control of Wind Turbines/Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Hou, Y.; Zhu, Z.; Xu, D.; Xu, D.; Muljadi, E.; Liu, F.; Iwanski, G.; Geng, H.; Erlich, I.; Wen, J.; Harnefors, L.; Fan, L.; El Moursi, M. S.; Kjaer, P. C.; Nelson, R. J.; Cardenas, R.; Feng, S.; Islam, S.; Qiao, W.; Yuan, X.

    2017-09-01

    The papers in this special section brings together papers focused on the recent advancements and breakthroughs in the technology of modeling and enhanced active/reactive power control of wind power conversion systems, ranging from components of wind turbines to wind farms.

  13. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  14. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...... conditions. So, a new aeroelastic blade model has been derived, which includes important features of large wind turbines, yet simple enough to be suitable for analytical analysis and control design....

  15. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    is not reasonable regarding the focus of the study. Therefore the power system operators should be aware of the modelling aspects of the wind power considering the related stability study and implement the required model in the appropriate power system toolbox. In this paper, the modelling aspects of wind turbines...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system.......Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...

  16. MATHEMATICAL MODELING OF FLOW PARAMETERS FOR SINGLE WIND TURBINE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available It is known that on the territory of the Russian Federation the construction of several large wind farms is planned. The tasks connected with design and efficiency evaluation of wind farm work are in demand today. One of the possible directions in design is connected with mathematical modeling. The method of large eddy simulation developed within the direction of computational hydrodynamics allows to reproduce unsteady structure of the flow in details and to determine various integrated values. The calculation of work for single wind turbine installation by means of large eddy simulation and Actuator Line Method along the turbine blade is given in this work. For problem definition the numerical method in the form of a box was considered and the adapted unstructured grid was used.The mathematical model included the main equations of continuity and momentum equations for incompressible fluid. The large-scale vortex structures were calculated by means of integration of the filtered equations. The calculation was carried out with Smagorinsky model for determination of subgrid scale turbulent viscosity. The geometrical parametersof wind turbine were set proceeding from open sources in the Internet.All physical values were defined at center of computational cell. The approximation of items in equations was ex- ecuted with the second order of accuracy for time and space. The equations for coupling velocity and pressure were solved by means of iterative algorithm PIMPLE. The total quantity of the calculated physical values on each time step was equal to 18. So, the resources of a high performance cluster were required.As a result of flow calculation in wake for the three-bladed turbine average and instantaneous values of velocity, pressure, subgrid kinetic energy and turbulent viscosity, components of subgrid stress tensor were worked out. The re- ceived results matched the known results of experiments and numerical simulation, testify the opportunity

  17. Wind turbine state estimation

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2014-01-01

    the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has therefore been developed. The unscented Kalman filter was first tested on linear and non-linear test cases......Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify...... which was successful. Then the estimation of a wind turbine state including dynamic inflow was tested on a simulated NREL 5MW turbine was performed. This worked perfectly with wind speeds from low to nominal wind speed as the output prediction errors where white. In high wind where the pitch actuator...

  18. Impact of tower modeling on wind turbine wakes

    Science.gov (United States)

    Kleusberg, Elektra; Schlatter, Philipp; Henningson, Dan

    2017-11-01

    Recent research suggests the importance of modeling the support structure (tower and nacelle) when investigating the wake development behind wind turbines. These investigations are however mostly limited to low ambient turbulence levels which seldomly occur in field conditions. We present numerical simulations of wind turbine wakes using the actuator line method under different inflow conditions including varying turbulence levels and sheared inflow. The wind turbine, which employs the NREL S826 airfoil, is modeled after experiments conducted at the Norwegian University of Science and Technology. The rotor is investigated when perpendicular to the inflow and at a yaw angle of 30 degrees. The support structure is modeled using lift and drag body forces based on tabulated data. The simulations are performed with the spectral-element code Nek5000. After discussing the setup of the numerical domain and the turbulent inflow boundary condition, the influence of the tower model is characterized under turbulent, sheared and uniform inflow and the impact on downstream turbines is evaluated.

  19. Modular structure of wind turbine models in IEC 61400-27-1

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Andresen, Bjørn; Fortmann, Jens

    2013-01-01

    This paper presents the modular structure of wind turbine models to be published in a new standard IEC 61400-27 for “Electrical simulation models for wind power generation”. The purpose of this standardization work is to define generic simulation models for wind turbines (Part 1) and wind power p...

  20. Prediction models for wind speed at turbine locations in a wind farm

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas; Soltani, Mohsen

    2011-01-01

    turbulence models. The esti- mator includes a nonlinear time varying wind speed model, which compared with literature results in an adaptive filter. Given the estimated effective wind speed, it is possible to establish wind speed prediction models by system identification. As the prediction models are based...... manifested through the wind field is hence required. This paper develops models for this relationship. The result is based on two new contributions: the first is related to the estimation of effective wind speeds, which serves as a basis for the second contribution to wind speed prediction models. Based...... on standard turbine measurements such as rotor speed and power produced, an effective wind speed, which represents the wind field averaged over the rotor disc, is derived. The effective wind speed estimator is based on a continuous–discrete extended Kalman filter that takes advantage of nonlinear time varying...

  1. Selection of References in Wind Turbine Model Predictive Control Design

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    a model predictive controller for a wind turbine. One of the important aspects for a tracking control problem is how to setup the optimal reference tracking problem, as it might be relevant to track, e.g., the three concurrent references: optimal pitch angle, optimal rotational speed, and optimal power....... The importance if the individual references differ depending in particular on the wind speed. In this paper we investigate the performance of a reference tracking model predictive controller with two different setups of the used optimal reference signals. The controllers are evaluated using an industrial high...

  2. Modelling and control of variable speed wind turbines for power system studies

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2010-01-01

    and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally......, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride-through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.......Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed...

  3. MODELING WIND TURBINES IN THE GRIDLAB-D SOFTWARE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, J.C.; Schneider, K.P.

    2009-01-01

    In recent years, the rapid expansion of wind power has resulted in a need to more accurately model the effects of wind penetration on the electricity infrastructure. GridLAB-D is a new simulation environment developed for the U.S. Department of Energy (DOE) by the Pacifi c Northwest National Laboratory (PNNL), in cooperation with academic and industrial partners. GridLAB-D was originally written and designed to help integrate end-use smart grid technologies, and it is currently being expanded to include a number of other technologies, including distributed energy resources (DER). The specifi c goal of this project is to create a preliminary wind turbine generator (WTG) model for integration into GridLAB-D. As wind power penetration increases, models are needed to accurately study the effects of increased penetration; this project is a beginning step at examining these effects within the GridLAB-D environment. Aerodynamic, mechanical and electrical power models were designed to simulate the process by which mechanical power is extracted by a wind turbine and converted into electrical energy. The process was modeled using historic atmospheric data, collected over a period of 30 years as the primary energy input. This input was then combined with preliminary models for synchronous and induction generators. Additionally, basic control methods were implemented, using either constant power factor or constant power modes. The model was then compiled into the GridLAB-D simulation environment, and the power outputs were compared against manufacturers’ data and then a variation of the IEEE 4 node test feeder was used to examine the model’s behavior. Results showed the designs were suffi cient for a prototype model and provided output power similar to the available manufacturers’ data. The prototype model is designed as a template for the creation of new modules, with turbine-specifi c parameters to be added by the user.

  4. Wind turbine pitch optimization

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Juelsgaard, Morten; Stoustrup, Jakob

    2011-01-01

    We consider a static wind model for a three-bladed, horizontal-axis, pitch-controlled wind turbine. When placed in a wind field, the turbine experiences several mechanical loads, which generate power but also create structural fatigue. We address the problem of finding blade pitch profiles......% compared to any constant pitch profile while sacrificing at most 7% of the maximum attainable output power. Using iterative learning, we show that very similar performance can be achieved by using only load measurements, with no knowledge of the wind field or wind turbine model....... for maximizing power production while simultaneously minimizing fatigue loads. In this paper, we show how this problem can be approximately solved using convex optimization. When there is full knowledge of the wind field, numerical simulations show that force and torque RMS variation can be reduced by over 96...

  5. Reducing Turbine Mechanical Loads Using Flow Model-Based Wind Farm Controller

    DEFF Research Database (Denmark)

    Kazda, Jonas; Cutululis, Nicolaos Antonio

    WindFarm [2]. SimWindFarm allows for the simultaneous simulation of the turbulent hub height flow field in the wind farm, the turbine dynamics and the wind farm control. The tests show a reduction of loads when compared to other optimal wind farm control approaches. Future work shall enhance the controller......Cumulated O&M costs of offshore wind farms are comparable with wind turbine CAPEX of such wind farm. In wind farms, wake effects can result in up to 80% higher fatigue loads at downstream wind turbines [1] and consequently larger O&M costs. The present work therefore investigates to reduce...... these loads during the provision of grid balancing services using optimal model-based wind farm control. Wind farm controllers coordinate the operating point of wind turbines in a wind farm in order to achieve a given objective. The investigated objective of the control in this work is to follow a total wind...

  6. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Iov, F.; Sørensen, Poul Ejnar

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... speed doubly-fed induction generator wind turbine concept 3. Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies......, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control...

  7. Wind turbine state estimation

    OpenAIRE

    Knudsen, Torben

    2014-01-01

    Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has the...

  8. Uncovering wind turbine properties through two-dimensional stochastic modeling of wind dynamics.

    Science.gov (United States)

    Raischel, Frank; Scholz, Teresa; Lopes, Vitor V; Lind, Pedro G

    2013-10-01

    Using a method for stochastic data analysis borrowed from statistical physics, we analyze synthetic data from a Markov chain model that reproduces measurements of wind speed and power production in a wind park in Portugal. We show that our analysis retrieves indeed the power performance curve, which yields the relationship between wind speed and power production, and we discuss how this procedure can be extended for extracting unknown functional relationships between pairs of physical variables in general. We also show how specific features, such as the rated speed of the wind turbine or the descriptive wind speed statistics, can be related to the equations describing the evolution of power production and wind speed at single wind turbines.

  9. Wake Development of a Model Vertical Axis Wind Turbine

    Science.gov (United States)

    Kadum, Hawwa; Friedman, Sasha; Camp, Elizabeth; Cal, Rau'l.

    2015-11-01

    At the Portland State University wind tunnel facility, an experiment is conducted to observe the downstream development of the wake past a model vertical axis wind turbine (VAWT). The flow domain is composed of streamwise-spanwise planes at mid-height of the VAWT rotor and data is obtained via particle image velocimetry (PIV). The flow field is assessed by analyzing contours of mean velocities and the full Reynolds stress tensor. Furthermore, profiles of the aforementioned quantities and flow parameters are discussed in the context of downstream evolution/flow development.

  10. Optimal Placing of Wind Turbines: Modelling the Uncertainty

    NARCIS (Netherlands)

    Leenman, T.S.; Phillipson, F.

    2014-01-01

    When looking at the optimal place to locate a wind turbine, trade-offs have to be made between local placement and spreading: transmission loss favours local placements and the correlation between the stochastic productions of wind turbines favours spreading. In this paper steps are described to

  11. Optimal Placing of Wind Turbines: Modelling the Uncertainty

    NARCIS (Netherlands)

    Leenman, T.S.; Phillipson, F.

    2015-01-01

    When looking at the optimal place to locate a wind turbine, trade-offs have to be made between local placement and spreading: transmission loss favours local placements and the correlation between the stochastic productions of wind turbines favours spreading. In this paper steps are described to

  12. A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines

    Science.gov (United States)

    Spera, David A.

    1995-01-01

    Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.

  13. Wind turbine fatigue damage evaluation based on a linear model and a spectral method

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Henriksen, Lars Christian; Hansen, Morten Hartvig

    2015-01-01

    presents a method to estimate wind turbine fatigue damage suited for optimization design applications. The method utilizes a high-order linear wind turbine model. The model comprehends a detailed description of the wind turbine and the controller. The fatigue is computed with a spectral method applied...... to power spectral densities of wind turbine sensor responses to turbulent wind. In this paper, the model is validated both in time domain and frequency domain with a nonlinear aeroservoelastic model. The approach is compared quantitatively against fatigue damage obtained from the power spectra of time...

  14. Simulation Model of an Active-stall Fixed-speed Wind Turbine Controller

    DEFF Research Database (Denmark)

    Jauch, Clemens; Hansen, Anca D.; Soerensen, Poul

    2004-01-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented...... and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented...

  15. Simulation model of an active-stall fixed-speed wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Sorensen, P.; Blaabjerg, F.

    2004-07-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i. e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (author)

  16. Advanced modelling of doubly fed induction generator wind turbine under network disturbance

    DEFF Research Database (Denmark)

    Seman, S.; Iov, Florin; Niiranen, J.

    This paper presents a variable speed wind turbine simulator. The simulator is used for a 2 MW wind turbine transient behavior study during a short-term symmetrical network disturbance. The mechanical part of wind turbine model consists of the rotor aerodynamic model, the wind turbine control...... and the drive train model. The Doubly Fed Induction Generator (DFIG) is represented by an analytical two-axis model with constant lumped parameters and by Finite Element Method (FEM) based model. The model of the DFIG is coupled with the model of the passive crowbar protected and DTC controlled frequency...

  17. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  18. Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Blaabjerg, Frede; Boldea, Ion

    2004-01-01

    the interaction between a wind turbine and the power system. The model is intended to simulate the behaviour of the wind turbine using induction generators both during normal operation. Sample simulation results for two induction generators (2/0.5 MW) validate the fundamental issues.......To optimise the power produced in a wind turbine, the speed of the turbine should vary with the wind speed. A simple control method is proposed that will allow an induction machine to run a turbine at its maximum power coefficient. Various types of power control strategies have been suggested...... for application in variable speed wind turbines. The usual strategy is to control the power or the torque acting on the wind turbine shafts. This paper presents an alternative control strategy, where the rotational speed is the controlled variable. The paper describes a model, which is being developed to simulate...

  19. Trailing edge noise model applied to wind turbine airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2008-01-15

    The aim of this work is firstly to provide a quick introduction to the theory of noise generation that are relevant to wind turbine technology with focus on trailing edge noise. Secondly, the socalled TNO trailing edge noise model developed by Parchen [1] is described in more details. The model is tested and validated by comparing with other results from the literature. Finally, this model is used in the optimization process of two reference airfoils in order to reduce their noise signature: the RISOE-B1-18 and the S809 airfoils. (au)

  20. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  1. Simulation model of a transient fault controller for an active-stall wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Soerensen, P.; Bak Jensen, B.

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed. (author)

  2. Comparison of Standard Wind Turbine Models with Vendor Models for Power System Stability Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia-Escribano, A.; Gomez Lazaro, E.; Jimenez-Buendia, F.; Muljadi, Eduard

    2016-11-01

    The International Electrotechnical Commission Standard 61400-27-1 was published in February 2015. This standard deals with the development of generic terms and parameters to specify the electrical characteristics of wind turbines. Generic models of very complex technological systems, such as wind turbines, are thus defined based on the four common configurations available in the market. Due to its recent publication, the comparison of the response of generic models with specific vendor models plays a key role in ensuring the widespread use of this standard. This paper compares the response of a specific Gamesa dynamic wind turbine model to the corresponding generic IEC Type III wind turbine model response when the wind turbine is subjected to a three-phase voltage dip. This Type III model represents the doubly-fed induction generator wind turbine, which is not only one of the most commonly sold and installed technologies in the current market but also a complex variable-speed operation implementation. In fact, active and reactive power transients are observed due to the voltage reduction. Special attention is given to the reactive power injection provided by the wind turbine models because it is a requirement of current grid codes. Further, the boundaries of the generic models associated with transient events that cannot be represented exactly are included in the paper.

  3. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Iov, F.; Soerensen, Poul.; Cutululis, N.; Jauch, C.; Blaabjerg, F.

    2007-08-15

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risoe-R-1400(EN) and it gathers and describes a whole wind turbine model database built-op and developed during several national research projects, carried out at Risoe DTU National Laboratory for Sustainable Energy and Aalborg University, in the period 2001-2007. The overall objective of these projects was to create a wind turbine model database able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. The main attention in the report is drawn to the modelling at the system level of the following wind turbine concepts: (1) Fixed speed active stall wind turbine concept (2) Variable speed doubly-fed induction generator wind turbine concept (3) Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine

  4. Scaling forecast models for wind turbulence and wind turbine power intermittency

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy

    2017-04-01

    The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.

  5. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C.; Jauch, C.; Soerensen, P.; Iov, F.; Blaabjerg, F.

    2003-12-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1. Active stall wind turbine with induction generator 2. Variable speed, variable pitch wind turbine with doubly fed induction generator. These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. For both these two concepts, control strategies are developed and implemented, their performance assessed and discussed by means of simulations. (au)

  6. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    Science.gov (United States)

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  7. Modelling Wind Turbine Failures based on Weather Conditions

    Science.gov (United States)

    Reder, Maik; Melero, Julio J.

    2017-11-01

    A large proportion of the overall costs of a wind farm is directly related to operation and maintenance (O&M) tasks. By applying predictive O&M strategies rather than corrective approaches these costs can be decreased significantly. Here, especially wind turbine (WT) failure models can help to understand the components’ degradation processes and enable the operators to anticipate upcoming failures. Usually, these models are based on the age of the systems or components. However, latest research shows that the on-site weather conditions also affect the turbine failure behaviour significantly. This study presents a novel approach to model WT failures based on the environmental conditions to which they are exposed to. The results focus on general WT failures, as well as on four main components: gearbox, generator, pitch and yaw system. A penalised likelihood estimation is used in order to avoid problems due to for example highly correlated input covariates. The relative importance of the model covariates is assessed in order to analyse the effect of each weather parameter on the model output.

  8. Small Wind Turbine Technology Assessment

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    The result of the study carried out under the scope of the ATYCA project Test Plant of Wind Systems for Isolated Applications, about the state of art of the small wind turbine technology (wind turbines with swept area smaller than 40 m 2 ) is presented. The study analyzes the collected information on 60 models of wind turbines from 23 manufacturers in the worldwide market. Data from Chinese manufacturers, that have a large participation in the total number of small wind turbines in operation, are not included, due to the unavailability of the technical information. (Author) 15 refs

  9. Wind turbine noise diagnostics

    International Nuclear Information System (INIS)

    Richarz, W.; Richarz, H.

    2009-01-01

    This presentation proposed a self-consistent model for broad-band noise emitted from modern wind turbines. The simple source model was consistent with the physics of sound generation and considered the unique features of wind turbines. Although the acoustics of wind turbines are similar to those of conventional propellers, the dimensions of wind turbines pose unique challenges in diagnosing noise emission. The general features of the sound field were deduced. Source motion and source directivity appear to be responsible for amplitude variations. The amplitude modulation is likely to make wind-turbine noise more audible, and may be partly responsible for annoyance that has been reported in the literature. Acoustic array data suggests that broad-band noise is emitted predominantly during the downward sweep of each rotor blade. Source motion and source directivity account for the observed pattern. Rotor-tower interaction effects are of lesser importance. Predicted amplitude modulation ranges from 1 dB to 6dB. 2 refs., 9 figs.

  10. A simplified model predicting the weight of the load carrying beam in a wind turbine blade

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    2016-01-01

    Based on a simplified beam model, the loads, stresses and deflections experienced by a wind turbine blade of a given length is estimated. Due to the simplicity of the model used, the model is well suited for work investigating scaling effects of wind turbine blades. Presently, the model is used t...

  11. Investigation of transient models and performances for a doubly fed wind turbine under a grid fault

    DEFF Research Database (Denmark)

    Wang, M.; Zhao, B.; Li, H.

    2011-01-01

    of the grid-side converter and the rotor-side converter of DFIG. Secondly, the transient performances of the presented doubly fed wind turbine under a grid fault were compared and evaluated with different equivalent models, parameters and initial operational conditions. And thirdly, the effects of the active......In order to investigate the impacts of the integration of wind farms into utilities network, it is necessary to analyze the transient performances of wind turbine generation systems (WTGS) with the appropriate transient models. According to the grid code requirements for a wind turbine with doubly...... trip time. Firstly, the different mathematical models of the doubly fed wind turbine were presented, including the electromagnetic transient models of DFIG, a one-mass lumped model, a two-mass shaft flexible model of the wind turbine drive train system, and the power decoupling control strategies...

  12. Modelling of lightning streamer formation and propagation in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The positioning of lightning air terminations along a wind turbine blade is a complex issue to consider when designing the lightning protection of wind turbine blades. According to the IEC 61400-24 on lightning protection of wind turbines, the interception efficiency depends on the effectiveness ...... models can involve a high level of detail and therefore be used in the detailed positioning of air terminations in blades equipped with conductive elements such as carbon fiber or electrical monitoring systems (load, temperature, etc.)....

  13. Towards a Wind Turbine Wake Reduced-Order Model

    Science.gov (United States)

    Hamilton, Nicholas; Viggiano, Bianca; Calaf, Marc; Tutkun, Murat; Cal, Raúl Bayoán

    2017-11-01

    A reduced-order model for a wind turbine wake is sought for prediction and control. Basis functions from the proper orthogonal decomposition (POD) represent the spatially coherent turbulence structures in the wake; eigenvalues delineate the turbulence kinetic energy associated with each mode. Back-projecting the POD modes onto the velocity snapshots produces coefficients that express the amplitude of each mode in time. A reduced-order model of the wind turbine wake (wakeROM) is defined through a series of polynomial parameters that quantify mode interaction and the evolution of each mode coefficient. Tikhonov regularization is employed to recalibrate the dynamical system, reducing error in the modeled mode coefficients and adding stability to the system. The wakeROM is periodically reinitialized by relating the incoming turbulent velocity to the POD mode coefficients. A high-level view of the wakeROM provides as a platform to discuss promising research direction, alternate processes that will enhance stability, and portability to control methods. NSF- ECCS-1032647, NSF-CBET-1034581, Research Council of Norway Project Number 231491.

  14. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of

  15. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  16. Controls of Hydraulic Wind Turbine

    OpenAIRE

    Zhang Yin; Kong Xiangdong; Hao Li; Ai Chao

    2016-01-01

    In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system ca...

  17. Preliminary modelling study of ice accretion on wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Marie Cecilie; Yin, Chungen

    2014-01-01

    One of the main challenges associated with cold-climate wind energy is icing on wind turbines and a series of icing-induced problems such as production loss, blade fatigue and safety issues. Because of the difficulties with on-site measurements, simulations are often used to understand and predic...

  18. Probabilistic Fatigue Model for Reinforced Concrete Onshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    Reinforced Concrete Slab Foundation (RCSF) is the most common onshore wind turbine foundation type installed by the wind industry around the world. Fatigue cracks in a RCSF are an important issue to be considered by the designers. Causes and consequences of the cracks due to fatigue damage in RCSFs...

  19. Developments of the offshore wind turbine wake model Fuga

    DEFF Research Database (Denmark)

    Ott, Søren; Nielsen, Morten

    with the modified equations. - Meandering. Meandering has been included in the form of a post processing of the model results that bend and twist the wake centreline. The meandering centrelines are calculated using a Gaussian process developed on the basis of measured spectra. An analysis of meteorological data...... from Horns Rev has been made in order to quantify the impact of non-stationarity of the wind direction. The results are generalized so as to account for the uncertainties imposed by a ten minute mean value trend as well as by the distance between turbines and the met mast. The old model has been...... with data is made. Even if the model predictions fall within estimated error bars, the model seems to over predict the measured efficiencies by a few percent. The model works best for unstable, neutral and light stable conditions whereas the results for stable and very stable conditions are questionable. We...

  20. Multivariate Modelling of Extreme Load Combinations for Wind Turbines

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2015-01-01

    We demonstrate a model for estimating the joint probability distribution of two load components acting on a wind turbine blade cross section. The model addresses the problem of modelling the probability distribution of load time histories with large periodic components by dividing the signal...... into a periodic part and a perturbation term, where each part has a known probability distribution. The proposed model shows good agreement with simulated data under stationary conditions, and a design load envelope based on this model is comparable to the load envelope estimated using the standard procedure...... for determining contemporaneous loads. By defining a joint probability distribution and full return-period contours for multiple load components, the suggested procedure gives the possibility for determining the most critical loading direction in a blade cross section, or for carrying out reliability analysis...

  1. Offshore Wind Turbine Design

    DEFF Research Database (Denmark)

    Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo

    2006-01-01

    Current offshore wind turbine design methods have matured to a 1st generation state, manifested in the draft of a possible standard, IEC 61400-3 (2005). It is now time to investigate the possibilities of improving existing methods. To do so in an efficient manner a clear identification of the most...... important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...

  2. CFD Wake Modelling with a BEM Wind Turbine Sub-Model

    Directory of Open Access Journals (Sweden)

    Anders Hallanger

    2013-01-01

    Full Text Available Modelling of wind farms using computational fluid dynamics (CFD resolving the flow field around each wind turbine's blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accurately enough to handle interaction of wakes in wind farms. A wind turbine sub-model, based on the Blade Momentum Theory, see Hansen (2008, has been implemented in an in-house CFD code, see Hallanger et al. (2002. The tangential and normal reaction forces from the wind turbine blades are distributed on the control volumes (CVs at the wind turbine rotor location as sources in the conservation equations of momentum. The classical k-epsilon turbulence model of Launder and Spalding (1972 is implemented with sub-grid turbulence (SGT model, see Sha and Launder (1979 and Sand and Salvesen (1994. Steady state CFD simulations were compared with flow and turbulence measurements in the wake of a model scale wind turbine, see Krogstad and Eriksen (2011. The simulated results compared best with experiments when stalling (boundary layer separation on the wind turbine blades did not occur. The SGT model did improve turbulence level in the wake but seems to smear the wake flow structure. It should be noted that the simulations are carried out steady state not including flow oscillations caused by vortex shedding from tower and blades as they were in the experiments. Further improvement of the simulated velocity defect and turbulence level seems to rely on better parameter estimation to the SGT model, improvements to the SGT model, and possibly transient- instead of steady state simulations.

  3. Description of signature scales in a floating wind turbine model wake subjected to varying turbulence intensity

    Science.gov (United States)

    Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon

    2017-11-01

    The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.

  4. Effects of Freestream Turbulence in a Model Wind Turbine Wake

    Directory of Open Access Journals (Sweden)

    Yaqing Jin

    2016-10-01

    Full Text Available The flow structure in the wake of a model wind turbine is explored under negligible and high turbulence in the freestream region of a wind tunnel at R e ∼ 7 × 10 4 . Attention is placed on the evolution of the integral scale and the contribution of the large-scale motions from the background flow. Hotwire anemometry was used to obtain the streamwise velocity at various streamwise and spanwise locations. The pre-multiplied spectral difference of the velocity fluctuations between the two cases shows a significant energy contribution from the background turbulence on scales larger than the rotor diameter. The integral scale along the rotor axis is found to grow linearly with distance, independent of the incoming turbulence levels. This scale appears to reach that of the incoming flow in the high turbulence case at x / d ∼ 35–40. The energy contribution from the turbine to the large-scale flow structures in the low turbulence case increases monotonically with distance. Its growth rate is reduced past x / d ∼ 6–7. There, motions larger than the rotor contribute ∼ 50 % of the total energy, suggesting that the population of large-scale motions is more intense in the intermediate field. In contrast, the wake in the high incoming turbulence is quickly populated with large-scale motions and plateau at x / d ∼ 3 .

  5. Comparison of Transient Behaviors of Wind Turbines with DFIG Considering the Shaft Flexible Models

    DEFF Research Database (Denmark)

    Chen, Zhe; Ye, Ren-jie; Hui, Li

    2008-01-01

    on the electrical transient performances of doubly fed induction generator (DFIG) wind turbines with different operationally states is investigated. In order to compare the transient performances of DFIG wind turbines during electrical transients, a DFIG model with simple one-mass lumped model and a two-mass shaft...

  6. Low-order aeroelastic models of wind turbines for controller design

    DEFF Research Database (Denmark)

    Sønderby, Ivan Bergquist

    Wind turbine controllers are used to optimize the performance of wind turbines such as to reduce power variations and fatigue and extreme loads on wind turbine components. Accurate tuning and design of modern controllers must be done using low-order models that accurately captures the aeroelastic...... response of the wind turbine. The purpose of this thesis is to investigate the necessary model complexity required in aeroelastic models used for controller design and to analyze and propose methods to design low-order aeroelastic wind turbine models that are suited for model-based control design...... stall using only few states. A set of reduced-order models obtained at various operating points are shown to be easily connected by interpolation and are thereby suited for gain-scheduling control design. A new method is proposed to reduce separately the number of structural and aerodynamic states...

  7. Some challenges of wind modelling for modern wind turbines: The Weibull distribution

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekatarina; Floors, Rogier

    2012-01-01

    Wind power assessments, as well as forecast of wind energy production, are key issues in wind energy and grid related studies. However the hub height of today’s wind turbines is well above the surface layer. Wind profiles studies based on mast data show that the wind profile above the surface layer...

  8. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  9. Computational Modelling of Materials for Wind Turbine Blades: Selected DTU Wind Energy Activities.

    Science.gov (United States)

    Mikkelsen, Lars Pilgaard; Mishnaevsky, Leon

    2017-11-08

    Computational and analytical studies of degradation of wind turbine blade materials at the macro-, micro-, and nanoscale carried out by the modelling team of the Section Composites and Materials Mechanics, Department of Wind Energy, DTU, are reviewed. Examples of the analysis of the microstructural effects on the strength and fatigue life of composites are shown. Computational studies of degradation mechanisms of wind blade composites under tensile and compressive loading are presented. The effect of hybrid and nanoengineered structures on the performance of the composite was studied in computational experiments as well.

  10. Numerical Study of Wind Turbine Wake Modeling Based on a Actuator Surface Model

    DEFF Research Database (Denmark)

    Zhou, Huai-yang; Xu, Chang; Han, Xing Xing

    2017-01-01

    on the basis of actuator line model(ALM). By using ASM, the model of turbine can be simplified and the quantity of grids and computing time can be significantly reduced. A linear distribution model and a ASM Grid identification method are presented. This paper compares the ASM with ALM by computing both near...... and far wake of a Nibe A wind turbine, which combines wake velocity, turbulent intensity and vortex structure. Results show that ASM has better prediction accuracy and verify it's feasibility on numerical simulation of wind turbine wake....

  11. Repetitive model predictive approach to individual pitch control of wind turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob; Odgaard, Peter Fogh

    2011-01-01

    Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use this....... A simulation comparison betweeen the proposed controller and an industry-standard PID controller shows better mitigation of drive-train, blade and tower loads.......Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use...... this peculiar disturbance pattern to better attenuate loads and regulate power by controlling the blade pitch angles individually. A novel model predictive (MPC) approach for individual pitch control of wind turbines is proposed in this paper. A repetitive wind disturbance model is incorporated into the MPC...

  12. Model-based control of a ballast-stabilized floating wind turbine exposed to wind and waves

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Soeren

    2013-01-15

    The wind turbine is a commercial product which is competing against other sources of energy, such as coal and gas. This competition drives a constant development to reduce costs and improve efficiency in order to reduce the total cost of the energy. The latest offshore development is the floating wind turbine, for water depths beyond 50 meters where winds are stronger and less turbulent. A floating wind turbine is subject to not only aerodynamics and wind induced loads, but also to hydrodynamics and wave induced loads. In contrast to a bottom fixed wind turbine, the floating structure, the hydrodynamics and the loads change the dynamic behavior of a floating wind turbine. Consequently, conventional wind turbine control cause instabilities on floating wind turbines. This work addresses the control of a floating spar buoy wind turbine, and focuses on the impact of the additional platform dynamics. A time varying control model is presented based on the wind speed and wave frequency. Estimates of the wind speed and wave frequency are used as scheduling variables in a gain scheduled linear quadratic controller to improve the electrical power production while reducing fatigue. To address the problem of negative damped fore-aft tower motion, additional control loops are suggested which stabilize the response of the onshore controller and reduce the impact of the wave induced loads. This research is then extended to model predictive control, to further address wave disturbances. In the context of control engineering, the dynamics and disturbances of a floating wind turbine have been identified and modeled. The objectives of maximizing the production of electrical power and minimizing fatigue have been reached by using advanced methods of estimation and control. (Author)

  13. Documentation, User Support, and Verification of Wind Turbine and Plant Models

    Energy Technology Data Exchange (ETDEWEB)

    Robert Zavadil; Vadim Zheglov; Yuriy Kazachkov; Bo Gong; Juan Sanchez; Jun Li

    2012-09-18

    As part of the Utility Wind Energy Integration Group (UWIG) and EnerNex's Wind Turbine Modeling Project, EnerNex has received ARRA (federal stimulus) funding through the Department of Energy (DOE) to further the progress of wind turbine and wind plant models. Despite the large existing and planned wind generation deployment, industry-standard models for wind generation have not been formally adopted. Models commonly provided for interconnection studies are not adequate for use in general transmission planning studies, where public, non-proprietary, documented and validated models are needed. NERC MOD (North American Electric Reliability Corporation) reliability standards require that power flow and dynamics models be provided, in accordance with regional requirements and procedures. The goal of this project is to accelerate the appropriate use of generic wind turbine models for transmission network analysis by: (1) Defining proposed enhancements to the generic wind turbine model structures that would allow representation of more advanced; (2) Comparative testing of the generic models against more detailed (and sometimes proprietary) versions developed by turbine vendors; (3) Developing recommended parameters for the generic models to best mimic the performance of specific commercial wind turbines; (4) Documenting results of the comparative simulations in an application guide for users; (5) Conducting technology transfer activities in regional workshops for dissemination of knowledge and information gained, and to engage electric power and wind industry personnel in the project while underway; (6) Designing of a "living" homepage to establish an online resource for transmission planners.

  14. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    The wind turbine technology is a very complex technology involving multidisciplinary and broad technical disciplines such as aerodynamics, mechanics, structure dynamics, meteorology as well as electrical engineering addressing the generation, transmission, and integration of wind turbines...... into the power system. Wind turbine technology has matured over the years and become the most promising and reliable renewable energy technology today. It has moved very fast, since the early 1980s, from wind turbines of a few kilowatts to today’s multimegawatt-sized wind turbines [13]. Besides their size......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled...

  15. Wind Turbine Blockset in Matlab/Simulink. General Overview and Description of the Model

    DEFF Research Database (Denmark)

    Iov, Florin; Hansen, A. D.; Soerensen, P.

    This report presents a new developed Matlab/Simulink Toolbox for wind turbine applications. This toolbox has been developed during the research project ?Simulation Platform to model, optimize and design wind turbines? and it has been used as a general developer tool for other three simulation tools...

  16. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, A.D.; Jauch, C.; Sørensen, Poul Ejnar

    2004-01-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create amodel database in different simulation tools....... Active stall wind turbine withinduction generator 2. Variable speed, variable pitch wind turbine with doubly-fed induction generator These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, controlstrategies, connection...... of the wind turbine at different types of grid and storage systems. For both these two concepts, control strategies are developed and implemented, their performance assessed and discussed by means of simulations....

  17. CFD analysis of a Darrieus wind turbine

    Science.gov (United States)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.

    2017-07-01

    The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.

  18. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit

    2015-01-01

    Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilit......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... free-surface elevation equally well, the one-mode model can still be utilized for the design of TLD. Parametric optimization of the TLD is carried out based on the one-mode model, and the optimized damper effectively improves the dynamic response of wind turbine blades....

  19. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    Science.gov (United States)

    Simão Ferreira, C.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-06-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.

  20. Study of wind turbine wake modeling based on a modified actuator disk model and extended k-ε turbulence model

    DEFF Research Database (Denmark)

    Xu, Chang; Han, Xingxing; Wang, Xin

    2015-01-01

    This paper presented an improved computational fluid dynamics (CFD) model for simulating a horizontal-axis wind turbine wake. The model used the actuator disk model to simplify the wind turbine effect on the aerodynamic field by adding an extra momentum source and an improved term to correct...... the underestimation issue of the wind speed deficit when applying the STD k-ε model. In addition, the model also introduced a radial distribution function to assess the non-uniform load on the actuator disk and a coefficient C4ε of the turbulent source. To validate the model, the wind turbines of Nibe `B' and Dawin...

  1. Multibody Model for Planetary Gearbox of 500 kW Wind Turbine

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix; Pedersen, Niels Leergaard; Sørensen, Jens Nørkær

    The aim of the work is to simulate the loadings in a planetary gearbox of a wind turbine using a multibody program. A realistic wind turbine gearbox of a 500 kW wind turbine is examined using turbulent inflow data. An aeroelastic model of the wind turbine has been set up using the FLEX5-code...... (industrial standard software). The FLEX5 model as well as the developed multibody code has been verified from strain gauge measurements, giving e.g. the main shaft torque, and met mast wind data measurements. The realistic measurements on both input and output variables form an excellent base for studying...... the gearbox fatigue loads, the effect of wind turbulence on the power production/output torque on the highspeed shaft and for calibration and verification of the gearbox model....

  2. Study on Modelling Standardization of Double-fed Wind Turbine and Its Application

    Directory of Open Access Journals (Sweden)

    Li Xiang

    2016-01-01

    Full Text Available Based on the standardized modelling of the International Modelling Team, study on double-fed induction generator (DFIG wind turbine is processed in this paper, aiming at capability of universally and reasonably reflecting key performance related to large scale system analysis. The standardized model proposed is of high degree of structural modularity, easy functional extension and universalization of control strategy and signal. Moreover, it is applicable for wind turbines produced by different manufacturers through model parameter adjustment. The complexity of the model can meet both needs of grid-connected characteristic simulation of wind turbine and large scale power system simulation.

  3. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  4. Development of CFD-based icing model for wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Marie Cecilie; Martinez, Benjamin; Yin, Chungen

    2015-01-01

    Operation of wind turbines in cold climate areas is challenged by icing-induced problems, such as loss of production, safety issues and blade fatique. Production losses are especially a big issue in Sweden, and due to difficulties with on-site measurements, simulations are often used to get an un...

  5. Dynamic modeling of fluid power transmissions for wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2011-01-01

    Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power

  6. Scale Adaptive Simulation Model for the Darrieus Wind Turbine

    DEFF Research Database (Denmark)

    Rogowski, K.; Hansen, Martin Otto Laver; Maroński, R.

    2016-01-01

    the scale adaptive simulation (SAS) approach for performance analysis of a one-bladed Darrieus wind turbine working at a tip speed ratio of 5 and at a blade Reynolds number of 40 000. The three-dimensional incompressible unsteady Navier-Stokes equations are used. Numerical results of aerodynamic loads...

  7. Stochastic Models of Defects in Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2013-01-01

    The drivetrain in a wind turbine nacelle typically consists of a variety of heavily loaded components, like the main shaft, bearings, gearbox and generator. The variations in environmental load challenge the performance of all the components of the drivetrain. Failure of each of these components ...

  8. Model tests of wind turbine with a vertical axis of rotation type Lenz 2

    Science.gov (United States)

    Zwierzchowski, Jaroslaw; Laski, Pawel Andrzej; Blasiak, Slawomir; Takosoglu, Jakub Emanuel; Pietrala, Dawid Sebastian; Bracha, Gabriel Filip; Nowakowski, Lukasz

    A building design of vertical axis wind turbines (VAWT) was presented in the article. The construction and operating principle of a wind turbine were described therein. Two VAWT turbine models were compared, i.a. Darrieus and Lenz2, taking their strengths and weaknesses into consideration. 3D solid models of turbine components were presented with the use of SolidWorks software. Using CFD methods, the air flow on two aerodynamic fins, symmetrical and asymmetrical, at different angles of attack were tested. On the basis of flow simulation conducted in FlowSimulation, an asymmetrical fin was chosen as the one showing greater load bearing capacities. Due to the uncertainty of trouble-free operation of Darrieus turbine on construction elements creating the basis thereof, a 3D model of Lenz2 turbine was constructed, which is more reliable and makes turbine self-start possible. On the basis of the research, components were designed and technical docu mentation was compiled.

  9. Wind Plant Models in IEC 61400-27-2 and WECC - latest developments in international standards on wind turbine and wind plant modeling

    DEFF Research Database (Denmark)

    Fortmann, Jens; Miller, Nicholas; Kazachkov, Yuri

    This paper describes the latest developments in the standardization of wind plant and wind plant controller models. As a first step IEC TC88 WG 27 and WECC jointly developed generic wind turbine models which have been published by WECC in 2014 and IEC in 2015 as IEC 61400-27-1, which also include...

  10. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  11. Danish wind turbines: Technical-economic feasibility of commercial models

    International Nuclear Information System (INIS)

    Falchetta, M.

    1992-01-01

    This feasibility study examines the principal technical and economic (investment-manufacturing-installation-operation unit costs, supply and demand) characteristics of wind turbines being commercialized in Denmark. The general configuration of the 150 to 450 kW range machines currently being manufactured can be described as that of a three bladed fibreglass rotor, of from 24 to 35 meters in diameter, and mounted on a tower of from 29 to 41 meters in height. The electrical system consists of one asynchronous generator or a two generator system with a power ratio of 1 to 5 between the two generators. The cost analysis reveals that the Danish wind turbines are competitively priced, with per kWh costs varying from $0. 0675 to $0. 040 for operating wind speeds ranging from 5 to 7 m/sec, and that their overall design and performance characteristics make them suitable for Italian site conditions

  12. Model-Based Control of a Ballast-Stabilized Floating Wind Turbine Exposed to Wind and Waves

    DEFF Research Database (Denmark)

    Christiansen, Søren

    2013-01-01

    wind turbine, for water depths beyond 50 meters where winds are stronger and less turbulent. A floating wind turbine is subject to not only aerodynamics and wind induced loads, but also to hy-drodynamics and wave induced loads. In contrast to a bottom fixed wind turbine, the floating structure....... A time varying control model is presented based on the wind speed and wave frequency. Estimates of the wind speed and wave frequency are used as scheduling variables in a gain scheduled linear quadratic controller to improve the electrical power production while reducing fatigue. To address the problem...... of negative damped fore--aft tower motion, addi-tional control loops are suggested which stabilize the response of the onshore controller and reduce the impact of the wave induced loads. This research is then extended to model predictive control, to further address wave disturbances. In the context of control...

  13. Application of aeroacoustic models to design of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Madsen, H.A. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    A design method is presented for wind turbine rotors. The design process is split into overall design of the rotor and detailed design of the blade tip. A numerical optimization tool is used together with a semi-empirical noise prediction code for overall rotor design. The noise prediction code is validated with measurements and good agreement is obtained both on the total noise emission and on the sensitivity to wind speed, tip pitch angle and tip speed. A design study for minimum noise emission for a 300 kW rotor shows that the total sound power level can be reduced by 3 dB(A) without loss in energy production and the energy production can be increased by 2% without increase in the total noise. Detailed CFD calculations are subsequently done to resolve the blade tip flow. The characteristics of the general flow and the tip vortex are found, and the relevant parameters for the aeroacoustic models are derived for a sharp rectangular tip. (au) 16 refs.

  14. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  15. Effects of a three-dimensional hill on the wake characteristics of a model wind turbine

    Science.gov (United States)

    Yang, Xiaolei; Howard, Kevin B.; Guala, Michele; Sotiropoulos, Fotis

    2015-02-01

    The spatial evolution of a turbine wake downwind of a three-dimensional sinusoidal hill is studied using large-eddy simulations and wind tunnel measurements. The computed flow fields behind the hill show good agreement with wind tunnel measurements. Three different heights of the hill, i.e., hhill = zh - 0.5D, ≈ zh and =zh + 0.5D (where zh is the turbine hub height and D is the diameter of the turbine rotor), were considered. The effect of the hill turbine spacing was investigated through a comparative analysis with the turbine wake results in the undisturbed turbulent boundary layer. It is observed that the turbine wakes downwind of the hill with hhill ≈ zh and hhill = zh + 0.5D recover faster because of the increased entrainment of ambient flow into the turbine wake, which is due to the enhanced turbulent transport in both spanwise and vertical directions. In comparison with the turbine only case, significant increases in the turbulence kinetic energy (TKE) in the turbine wake are observed for the hill-turbine cases with hhill ≈ zh and hhill = zh + 0.5D. A velocity scale UT, defined in terms of the thrust force acting on the turbine, is introduced for the turbine-added velocity deficit and TKE. For the turbine-added velocity deficit, UT is shown to be an appropriate scale at wake locations sufficiently far downwind of the turbine (i.e., greater than or equal to 8D). The vertical profiles of the turbine-added TKE normalized by UT 2 are shown to nearly collapse in the wake both for the turbine only and hill-turbine cases at all locations greater than 4D downwind of the turbine. A simple model for the turbine-added TKE in complex terrain is also proposed based on the new physical insights obtained from our simulations.

  16. Wind Plant Models in IEC 61400-27-2 and WECC - latest developments in international standards on wind turbine and wind plant modeling

    DEFF Research Database (Denmark)

    Fortmann, Jens; Miller, Nicholas; Kazachkov, Yuri

    2015-01-01

    This paper describes the latest developments in the standardization of wind plant and wind plant controller models. As a first step IEC TC88 WG 27 and WECC jointly developed generic wind turbine models which have been published by WECC in 2014 and IEC in 2015 as IEC 61400-27-1, which also included...... a draft plant controller model in an informative annex. In a second step, parallel activities have been going on in WECC and IEC TC88 WG 27 to create plant models that can include a number of wind turbines, a plant controller and optional equipment. The WECC models are intended to be finalized in 2015...

  17. Enhancing BEM simulations of a stalled wind turbine using a 3D correction model

    Science.gov (United States)

    Bangga, Galih; Hutomo, Go; Syawitri, Taurista; Kusumadewi, Tri; Oktavia, Winda; Sabila, Ahmad; Setiadi, Herlambang; Faisal, Muhamad; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus; Bumi, Ilmi

    2018-03-01

    Nowadays wind turbine rotors are usually employed with pitch control mechanisms to avoid deep stall conditions. Despite that, wind turbines often operate under pitch fault situation causing massive flow separation to occur. Pure Blade Element Momentum (BEM) approaches are not designed for this situation and inaccurate load predictions are already expected. In the present studies, BEM predictions are improved through the inclusion of a stall delay model for a wind turbine rotor operating under pitch fault situation of -2.3° towards stall. The accuracy of the stall delay model is assessed by comparing the results with available Computational Fluid Dynamics (CFD) simulations data.

  18. Comparative study on the wake deflection behind yawed wind turbine models

    Science.gov (United States)

    Schottler, Jannik; Mühle, Franz; Bartl, Jan; Peinke, Joachim; Adaramola, Muyiwa S.; Sætran, Lars; Hölling, Michael

    2017-05-01

    In this wind tunnel campaign, detailed wake measurements behind two different model wind turbines in yawed conditions were performed. The wake deflections were quantified by estimating the rotor-averaged available power within the wake. By using two different model wind turbines, the influence of the rotor design and turbine geometry on the wake deflection caused by a yaw misalignment of 30° could be judged. It was found that the wake deflections three rotor diameters downstream were equal while at six rotor diameters downstream insignificant differences were observed. The results compare well with previous experimental and numerical studies.

  19. A New Analytical Model for Wind-Turbine Wakes

    Science.gov (United States)

    Bastankhah, Majid; Porté-Agel, Fernando

    2013-04-01

    The intention of this study is to propose and validate a simple and efficient analytical model for the prediction of the wake velocity downwind of a stand-alone wind-turbine. Extensive efforts have been carried out to model the wake region analytically. One of the most popular models, proposed by Jensen, assumes a top-hat distribution of the velocity deficit at any plane perpendicular to the wake. That model has been extensively used in the literature and commercial softwares, but it has two important limitations that should be pointed out: (a) Even though this model is supposed to satisfy momentum conservation, in reality mass conservation is only used to derive it; (b) the assumption of a top-hat distribution of the velocity deficit is expected to underestimate that deficit in the center of the wake, and overestimate it near the edge of the wake. In order to overcome the above-mentioned limitations, here we propose an alternative analytical model that satisfies both mass and momentum conservation, and assumes a Gaussian distribution of the velocity deficit. For this purpose, we apply momentum and mass conservation to two different control volumes which have been previously used in the context of analytical modeling of wakes. The velocity profiles obtained with our proposed model are in good agreement with large-eddy simulation data and experimental measurements. By contrast, the top hat models, as expected, clearly underestimate the velocity deficit at the center of the wake region and overestimate it near the edge of the wake.

  20. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  1. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...

  2. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...

  3. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  4. Modeling and control of PMSG-based variable-speed wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Woo; Ko, Hee-Sang [Wind Energy Research Center, Korea Institute of Energy Research, Yuseong-gu Jang-Dong 71-2,305-343 Daejeon (Korea); Kim, Sung-Soo [Chungbuk National University (Korea)

    2010-01-15

    This paper presents a control scheme of a variable-speed wind turbine with a permanent-magnetic synchronous generator (PMSG) and full-scale back-to-back voltage source converter. A comprehensive dynamical model of the PMSG wind turbine and its control scheme is presented. The control scheme comprises both the wind-turbine control itself and the power-converter control. In addition, since the PMSG wind turbine is able to support actively the grid due to its capability to control independently active and reactive power production to the imposed set-values with taking into account its operating state and limits, this paper presents the supervisory reactive power control scheme in order to regulate/contribute the voltage at a remote location. The ability of the control scheme is assessed and discussed by means of simulations, based on a candidate site of the offshore wind farm in Jeju, Korea. (author)

  5. Small wind turbine

    OpenAIRE

    Vélez Castellano, Didier

    2010-01-01

    The main objective is to develop a project on installing a small wind turbine at the University of Glyndwr in Wrexham Wales. Today are immersed in a world seeking clean energy for reduce greenhouse gases because this problem is becoming a global reality. So installing a small wind turbine at the university would provide large quantity of clean energy to supply a workshop and also reduce the expulsion of CO2 into the atmosphere. The main characteristic of the turbine under...

  6. High-resolution computational algorithms for simulating offshore wind turbines and farms: Model development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Calderer, Antoni [Univ. of Minnesota, Minneapolis, MN (United States); Yang, Xiaolei [Stony Brook Univ., NY (United States); Angelidis, Dionysios [Univ. of Minnesota, Minneapolis, MN (United States); Feist, Chris [Univ. of Minnesota, Minneapolis, MN (United States); Guala, Michele [Univ. of Minnesota, Minneapolis, MN (United States); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guo, Xin [Univ. of Minnesota, Minneapolis, MN (United States); Boomsma, Aaron [Univ. of Minnesota, Minneapolis, MN (United States); Shen, Lian [Univ. of Minnesota, Minneapolis, MN (United States); Sotiropoulos, Fotis [Stony Brook Univ., NY (United States)

    2015-10-30

    The present project involves the development of modeling and analysis design tools for assessing offshore wind turbine technologies. The computational tools developed herein are able to resolve the effects of the coupled interaction of atmospheric turbulence and ocean waves on aerodynamic performance and structural stability and reliability of offshore wind turbines and farms. Laboratory scale experiments have been carried out to derive data sets for validating the computational models.

  7. Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic optimization algorithm that aims to minimize the expectation of the system power losses by controlling wind turbine (WT) power factors. This objective of the optimization is subject to the probability constraints of bus voltage and line current requirements....... The optimization algorithm utilizes the stochastic models of wind power generation (WPG) and load demand to take into account their stochastic variation. The stochastic model of WPG is developed on the basis of a limited autoregressive integrated moving average (LARIMA) model by introducing a crosscorrelation...... structure to the LARIMA model. The proposed stochastic optimization is carried out on a 69-bus distribution system. Simulation results confirm that, under various combinations of WPG and load demand, the system power losses are considerably reduced with the optimal setting of WT power factor as compared...

  8. Computational modelling of an operational wind turbine and validation with LIDAR

    Science.gov (United States)

    Creech, Angus; Fruh, Wolf-Gerrit; Clive, Peter

    2010-05-01

    We present a computationally efficient method to model the interaction of wind turbines with the surrounding flow, where the interaction provides information on the power generation of the turbine and the generated wake behind the turbine. The turbine representation is based on the principle of an actuator volume, whereby the energy extraction and balancing forces on the fluids are formulated as body forces which avoids the extremely high computational costs of boundary conditions and forces. Depending on the turbine information available, those forces can be derived either from published turbine performance specifications or from their rotor and blade design. This turbine representation is then coupled to a Computational Fluid Dynamics package, in this case the hr-adaptive Finite-Element code Fluidity from Imperial College, London. Here we present a simulation of an operational 950kW NEG Micon NM54 wind turbine installed in the west of Scotland. The calculated wind is compared with LIDAR measurements using a Galion LIDAR from SgurrEnergy. The computational domain extends over an area of 6km by 6km and a height of 750m, centred on the turbine. The lower boundary includes the orography of the terrain and surface roughness values representing the vegetation - some forested areas and some grassland. The boundary conditions on the sides are relaxed Dirichlet conditions, relaxed to an observed prevailing wind speed and direction. Within instrumental errors and model limitations, the overall flow field in general and the wake behind the turbine in particular, show a very high degree of agreement, demonstrating the validity and value of this approach. The computational costs of this approach are such that it is possible to extend this single-turbine example to a full wind farm, as the number of required mesh nodes is given by the domain and then increases only linearly with the number of turbines

  9. Materials for Wind Turbine Blades: An Overview.

    Science.gov (United States)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F

    2017-11-09

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed.

  10. Materials for Wind Turbine Blades: An Overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard

    2017-01-01

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural...... composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed....

  11. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, H.S.

    2010-01-01

    Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability....... It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....

  12. Modeling of wind turbine vortex generators in considering the inter-effects between arrays

    DEFF Research Database (Denmark)

    Zhao, Zhenzhou; Shen, Wenzhong; Wang, Ruixin

    2017-01-01

    Vortex generators (VGs) are commonly placed on wind turbine blades to delay flow separation in the boundary layer. VGs can be parametrically modeled in computational fluid dynamics for effective and efficient simulations of wind blade flow fields. Many researchers have studied the vortex circulat......Vortex generators (VGs) are commonly placed on wind turbine blades to delay flow separation in the boundary layer. VGs can be parametrically modeled in computational fluid dynamics for effective and efficient simulations of wind blade flow fields. Many researchers have studied the vortex....... Compared to the solid VG model, the array type model has similar streamlines and surface pressure coefficients on the suction surface. The array type VG model can effectively reduce the number of grid points and yield highly accurate predictions of wind turbine blade aerodynamic characteristics....

  13. Creating a benchmark of vertical axis wind turbines in dynamic stall for validating numerical models

    DEFF Research Database (Denmark)

    Castelein, D.; Ragni, D.; Tescione, G.

    2015-01-01

    An experimental campaign using Particle Image Velocimetry (2C-PIV) technique has been conducted on a H-type Vertical Axis Wind Turbine (VAWT) to create a benchmark for validating and comparing numerical models. The turbine is operated at tip speed ratios (TSR) of 4.5 and 2, at an average chord-ba...

  14. Model Predictive Control of Trailing Edge Flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien; Poulsen, Niels Kjølstad; Buhl, Thomas

    2011-01-01

    Trailing Edge Flaps on wind turbine blades have been studied in order to achieve fatigue load reduction on the turbine components. We show in this paper how Model Predictive Control can be used to do frequency weighted control of the trailing edge flaps in order to reduce fatigue damage on the bl...

  15. An investigation on wind turbine resonant vibrations

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Kim, Taeseong; Larsen, Torben J.

    2016-01-01

    Wind turbine resonant vibrations are investigated based on aeroelastic simulations both in frequency and time domain. The investigation focuses on three different aspects: the need of a precise modeling when a wind turbine is operating close to resonant conditions; the importance of estimating wind...... turbine loads also at low turbulence intensity wind conditions to identify the presence of resonances; and the wind turbine response because of external excitations. In the first analysis, three different wind turbine models are analysed with respect to the frequency and damping of the aeroelastic modes....... Fatigue loads on the same models are then investigated with two different turbulence intensities to analyse the wind turbine response. In the second analysis, a wind turbine model is excited with an external force. This analysis helps in identifying the modes that might be excited, and therefore...

  16. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  17. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  18. Structural Health Monitoring challenges on the 10-MW offshore wind turbine model

    Science.gov (United States)

    Di Lorenzo, E.; Kosova, G.; Musella, U.; Manzato, S.; Peeters, B.; Marulo, F.; Desmet, W.

    2015-07-01

    The real-time structural damage detection on large slender structures has one of its main application on offshore Horizontal Axis Wind Turbines (HAWT). The renewable energy market is continuously pushing the wind turbine sizes and performances. This is the reason why nowadays offshore wind turbines concepts are going toward a 10 MW reference wind turbine model. The aim of the work is to perform operational analyses on the 10-MW reference wind turbine finite element model using an aeroelastic code in order to obtain long-time-low- cost simulations. The aeroelastic code allows simulating the damages in several ways: by reducing the edgewise/flapwise blades stiffness, by adding lumped masses or considering a progressive mass addiction (i.e. ice on the blades). The damage detection is then performed by means of Operational Modal Analysis (OMA) techniques. Virtual accelerometers are placed in order to simulate real measurements and to estimate the modal parameters. The feasibility of a robust damage detection on the model has been performed on the HAWT model in parked conditions. The situation is much more complicated in case of operating wind turbines because the time periodicity of the structure need to be taken into account. Several algorithms have been implemented and tested in the simulation environment. They are needed in order to carry on a damage detection simulation campaign and develop a feasible real-time damage detection method. In addition to these algorithms, harmonic removal tools are needed in order to dispose of the harmonics due to the rotation.

  19. A simple model of the wind turbine induction zone derived from numerical simulations

    DEFF Research Database (Denmark)

    Troldborg, Niels; Meyer Forsting, Alexander Raul

    2017-01-01

    The induction zone in front of different wind turbine rotors is studied by means of steady-state Navier-Stokes simulations combined with an actuator disk approach. It is shown that, for distances beyond 1 rotor radius upstream of the rotors, the induced velocity is self-similar and independent of...... of the rotor geometry. On the basis of these findings, a simple analytical model of the induction zone of wind turbines is proposed....

  20. Comparing different CFD wind turbine modelling approaches with wind tunnel measurements

    Science.gov (United States)

    Kalvig, Siri; Manger, Eirik; Hjertager, Bjørn

    2014-12-01

    The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach.

  1. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  2. Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw

    Directory of Open Access Journals (Sweden)

    J. Schottler

    2017-08-01

    Full Text Available The effect of vertical wind shear on the total power output of two aligned model wind turbines as a function of yaw misalignment of the upstream turbine is studied experimentally. It is shown that asymmetries of the power output of the downstream turbine and the combined power of both with respect to the upstream turbine's yaw misalignment angle can be linked to the vertical wind shear of the inflow.

  3. Health-aware Model Predictive Control of Wind Turbines using Fatigue Prognosis

    DEFF Research Database (Denmark)

    Sardi, Hector Eloy Sanchez; Escobet, Teressa; Puig, Vicenc

    2015-01-01

    Wind turbines components are subject to considerable fatigue due to extreme environmental conditions to which are exposed, especially those located offshore. Interest in the integration of control with fatigue load minimization has increased in recent years. The integration of a system health...... management module with the control provides a mechanism for the wind turbine to operate safely and optimize the trade-off between components life and energy production. The research presented in this paper explores the integration of model predictive control (MPC) with fatigue-based prognosis approach...... to minimize the damage of wind turbine components (the blades). The controller objective is modified by adding an extra criterion that takes into account the accumulated damage. The scheme is implemented and tested using a high fidelity simulator of a utility scale wind turbine....

  4. Gearbox and Drivetrain Models to Study Dynamic Effects of Modern Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Girsang, I. P.; Dhupia, J. S.; Muljadi, E.; Singh, M.; Pao, L. Y.

    2013-10-01

    Wind turbine drivetrains consist of components that directly convert kinetic energy from the wind to electrical energy. Guaranteeing robust and reliable drivetrain designs is therefore important to minimize turbine downtime. Current drivetrain models often lack the ability to model both the impacts of electrical transients as well as wind turbulence and shear in one package. In this work, thecapability of the FAST wind turbine computer-aided engineering tool, developed by the National Renewable Energy Laboratory, is enhanced through integration of a dynamic model of the drivetrain. The dynamic drivetrain model is built using Simscape in the MATLAB/Simulink environment and incorporates detailed electrical generator models. This model can be used in the future to test advanced controlschemes to extend life of the gearbox.

  5. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  6. Modeling of the UAE Wind Turbine for Refinement of FAST{_}AD

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.

    2003-12-01

    The Unsteady Aerodynamics Experiment (UAE) research wind turbine was modeled both aerodynamically and structurally in the FAST{_}AD wind turbine design code, and its response to wind inflows was simulated for a sample of test cases. A study was conducted to determine why wind turbine load magnitude discrepancies-inconsistencies in aerodynamic force coefficients, rotor shaft torque, and out-of-plane bending moments at the blade root across a range of operating conditions-exist between load predictions made by FAST{_}AD and other modeling tools and measured loads taken from the actual UAE wind turbine during the NASA-Ames wind tunnel tests. The acquired experimental test data represent the finest, most accurate set of wind turbine aerodynamic and induced flow field data available today. A sample of the FAST{_}AD model input parameters most critical to the aerodynamics computations was also systematically perturbed to determine their effect on load and performance predictions. Attention was focused on the simpler upwind rotor configuration, zero yaw error test cases. Inconsistencies in input file parameters, such as aerodynamic performance characteristics, explain a noteworthy fraction of the load prediction discrepancies of the various modeling tools.

  7. Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

    2010-04-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

  8. Wind turbines and infrasound

    International Nuclear Information System (INIS)

    Howe, B.

    2006-01-01

    This paper provided the results of a study conducted to assess the impacts of wind farm-induced infrasound on nearby residences and human populations. Infrasound occurs at frequencies below those considered as detectable by human hearing. Infrasonic levels caused by wind turbines are often similar to ambient levels of 85 dBG or lower that are caused by wind in the natural environment. This study examined the levels at which infrasound poses a threat to human health or can be considered as an annoyance. The study examined levels of infrasound caused by various types of wind turbines, and evaluated acoustic phenomena and characteristics associated with wind turbines. Results of the study suggested that infrasound near modern wind turbines is typically not perceptible to humans through either auditory or non-auditory mechanisms. However, wind turbines often create an audible broadband noise whose amplitude can be modulated at low frequencies. A review of both Canadian and international studies concluded that infrasound generated by wind turbines should not significantly impact nearby residences or human populations. 17 refs., 2 tabs., 4 figs

  9. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes.

    Science.gov (United States)

    Debnath, M; Santoni, C; Leonardi, S; Iungo, G V

    2017-04-13

    The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized through modal decomposition techniques. The dataset under examination consists of snapshots of the velocity field obtained from large-eddy simulations (LES) of an isolated wind turbine, for which aerodynamic forcing exerted by the turbine blades on the atmospheric boundary layer is mimicked through the actuator line model. Particular attention is paid to the interaction between the downstream evolution of the helicoidal tip vortices and the alternate vortex shedding from the turbine tower. The LES dataset is interrogated through different modal decomposition techniques, such as proper orthogonal decomposition and dynamic mode decomposition. The dominant wake dynamics are selected for the formulation of a reduced order model, which consists in a linear time-marching algorithm where temporal evolution of flow dynamics is obtained from the previous temporal realization multiplied by a time-invariant operator.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  10. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes

    Science.gov (United States)

    Debnath, M.; Santoni, C.; Leonardi, S.; Iungo, G. V.

    2017-03-01

    The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized through modal decomposition techniques. The dataset under examination consists of snapshots of the velocity field obtained from large-eddy simulations (LES) of an isolated wind turbine, for which aerodynamic forcing exerted by the turbine blades on the atmospheric boundary layer is mimicked through the actuator line model. Particular attention is paid to the interaction between the downstream evolution of the helicoidal tip vortices and the alternate vortex shedding from the turbine tower. The LES dataset is interrogated through different modal decomposition techniques, such as proper orthogonal decomposition and dynamic mode decomposition. The dominant wake dynamics are selected for the formulation of a reduced order model, which consists in a linear time-marching algorithm where temporal evolution of flow dynamics is obtained from the previous temporal realization multiplied by a time-invariant operator. This article is part of the themed issue 'Wind energy in complex terrains'.

  11. Wind turbine airfoil catalogue

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel...... data. A study correlating the available data and this classification is performed. It is found that transition modelling is to a large extent responsible forthe poor quality of the computational results for most of the considered airfoils. The transition model mechanism that leads...

  12. A Simulation Platform To Model, Optimize And Design Wind Turbines. The Matlab/Simulink Toolbox

    Directory of Open Access Journals (Sweden)

    Anca Daniela HANSEN

    2002-12-01

    Full Text Available In the last years Matlab / Simulink® has become the most used software for modeling and simulation of dynamic systems. Wind energy conversion systems are for example such systems, containing subsystems with different ranges of the time constants: wind, turbine, generator, power electronics, transformer and grid. The electrical generator and the power converter need the smallest simulation step and therefore, these blocks decide the simulation speed. This paper presents a new and integrated simulation platform for modeling, optimizing and designing wind turbines. The platform contains different simulation tools: Matlab / Simulink - used as basic modeling tool, HAWC, DIgSilent and Saber.

  13. Analysis of Wind Turbine Simulation Models: Assessment of Simplified versus Complete Methodologies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia-Escribano, A.; Jimenez-Buendia, F.; Molina-Garcia, A.; Fuentes-Moreno, J. A.; Muljadi, Eduard; Gomez-Lazaro, E.

    2015-09-14

    This paper presents the current status of simplified wind turbine models used for power system stability analysis. This work is based on the ongoing work being developed in IEC 61400-27. This international standard, for which a technical committee was convened in October 2009, is focused on defining generic (also known as simplified) simulation models for both wind turbines and wind power plants. The results of the paper provide an improved understanding of the usability of generic models to conduct power system simulations.

  14. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  15. Noise immission from wind turbines

    International Nuclear Information System (INIS)

    1999-01-01

    The project has dealt with practical ways to reduce the influence of background noise caused by wind acting on the measuring microphones. The uncertainty of measured noise emission (source strength) has been investigated. The main activity was a Round Robin Test involving measurements by five laboratories at the same wind turbine. Each laboratory brought its own instrumentation and performed the measurements and analyses according to their interpretation. The tonality of wind turbine noise is an essential component of the noise impact on the environment. In the present project the uncertainty in the newest existing methods for assessing tonality was investigated. The project included noise propagation measurements in different weather conditions around wind turbines situated in different types of terrain. The results were used to validate a noise propagation model developed in the project. Finally, the project also included a study with listeners evaluating recordings of wind turbine noise. The results are intended as guidance for wind turbine manufacturers in identifying the aspects of wind turbine noise most important to annoyance. (author)

  16. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  17. Overview of Modelling and Advanced Control Strategies for Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Silvio Simani

    2015-11-01

    Full Text Available The motivation for this paper comes from a real need to have an overview of the challenges of modelling and control for very demanding systems, such as wind turbine systems, which require reliability, availability, maintainability, and safety over power conversion efficiency. These issues have begun to stimulate research and development in the wide control community particularly for these installations that need a high degree of “sustainability”. Note that this represents a key point for offshore wind turbines, since they are characterised by expensive and/or safety critical maintenance work. In this case, a clear conflict exists between ensuring a high degree of availability and reducing maintenance times, which affect the final energy cost. On the other hand, wind turbines have highly nonlinear dynamics, with a stochastic and uncontrollable driving force as input in the form of wind speed, thus representing an interesting challenge also from the modelling point of view. Suitable control methods can provide a sustainable optimisation of the energy conversion efficiency over wider than normally expected working conditions. Moreover, a proper mathematical description of the wind turbine system should be able to capture the complete behaviour of the process under monitoring, thus providing an important impact on the control design itself. In this way, the control scheme could guarantee prescribed performance, whilst also giving a degree of “tolerance” to possible deviation of characteristic properties or system parameters from standard conditions, if properly included in the wind turbine model itself. The most important developments in advanced controllers for wind turbines are also briefly referenced, and open problems in the areas of modelling of wind turbines are finally outlined.

  18. Application of engineering models to predict wake deflection due to a tilted wind turbine

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Troldborg, Niels; Gaunaa, Mac

    2012-01-01

    such a mechanism introduces control complications due to changing wind directions. Deflecting the wake in the vertical direction using tilt, on the other hand, overcomes this challenge. In this paper, the feasibility of steering wake is explored in a simple uniform inflow case. This is done by trying to model......It is a known fact that the power produced by wind turbines operating inside an array decreases due to the wake effects of the upstream turbines. It has been proposed previously to use the yaw mechanism as a potential means to steer the upstream wake away from downstream turbines, however...

  19. A discrete force allocation algorithm for modelling wind turbines in computational fluid dynamics

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades’ action on the wind (actuator disc/line), to model forests and to model turbulent inf...... applicable in other fields of CFD that use discrete body forces. Copyright © 2011 John Wiley & Sons, Ltd....... inflows. Many CFD codes are designed with collocated variables layout. Although this approach has many attractive features, it can generate a numerical decoupling between the pressure and the velocities. This issue is addressed by the Rhie–Chow control volume momentum interpolation. However......This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades’ action on the wind (actuator disc/line), to model forests and to model turbulent...

  20. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1992-11-01

    Based on a previous project concerning the calculation of the amount of noise emanating from wind turbine arrays, this one examines the subject further by investigating whether there could be significant differences in the amount of noise made by individual wind turbines in an array, and whether the noise is transmitted in varying directions - so that when it is carried in the same direction as the wind blows it would appear to be louder. The aim was also to determine whether the previously used method of calculation lacked precision. It was found that differences in noise niveaux related to individual wind turbines were insignificant and that noise was not so loud when it was not borne in the direction of the wind. It was necessary to change the method of calculation as reckoning should include the influence of the terrain, wind velocity and distance. The measuring and calculation methods are exemplified and the resulting measurements are presented in detail. (AB)

  1. Latest results from the EU project AVATAR : Aerodynamic modelling of 10 MW wind turbines

    NARCIS (Netherlands)

    Ceyhan, J. G Schepers O; Ceyhan, O; Boorsma, K; Gonzalez, A; Munduate, X; Pires, O; Sørensen, Jens Nørkær; Simao Ferreira, C.; Sieros, G; Madsen, J.; Voutsinas, S.; Lutz, T.; Barakos, G.; Colonia, S.; Heißelmann, H.; Meng, F.; Croce, A.

    2016-01-01

    This paper presents the most recent results from the EU project AVATAR in which aerodynamic models are improved and validated for wind turbines on a scale of 10 MW and more. Measurements on a DU 00-W-212 airfoil are presented which have been taken in the pressurized DNW-HDG wind tunnel up to a

  2. The suitability of the IEC 61400-2 wind model for small wind turbines operating in the built environment★

    Directory of Open Access Journals (Sweden)

    Evans Samuel P.

    2017-01-01

    Full Text Available This paper investigates the applicability of the assumed wind fields in International Electrotechnical Commission (IEC standard 61400 Part 2, the design standard for small wind turbines, for a turbine operating in the built environment, and the effects these wind fields have on the predicted performance of a 5 kW Aerogenesis turbine using detailed aeroelastic models developed in Fatigue Aerodynamics Structures and Turbulence (FAST. Detailed wind measurements were acquired at two built environment sites: from the rooftop of a Bunnings Ltd. warehouse at Port Kennedy (PK (Perth, Australia and from the small wind turbine site at the University of Newcastle at Callaghan (Newcastle, Australia. For both sites, IEC 61400-2 underestimates the turbulence intensity for the majority of the measured wind speeds. A detailed aeroelastic model was built in FAST using the assumed wind field from IEC 61400-2 and the measured wind fields from PK and Callaghan as an input to predict key turbine performance parameters. The results of this analysis show a modest increase in the predicted mean power for the higher turbulence regimes of PK and Callaghan as well as higher variation in output power. Predicted mean rotor thrust and blade flapwise loading showed a minor increase due to higher turbulence, with mean predicted torque almost identical but with increased variations due to higher turbulence. Damage equivalent loading for the blade flapwise moment was predicted to be 58% and 11% higher for a turbine operating at Callaghan and PK respectively, when compared with IEC 61400-2 wind field. Time series plots for blade flapwise moments and power spectral density plots in the frequency domain show consistently higher blade flapwise bending moments for the Callaghan site with both the sites showing a once-per-revolution response.

  3. Monitoring of wind turbines

    Science.gov (United States)

    White, Jonathan R.; Adams, Douglas E.; Paquette, Josh

    2017-07-25

    Method and apparatus for determining the deflection or curvature of a rotating blade, such as a wind turbine blade or a helicopter blade. Also, methods and apparatus for establishing an inertial reference system on a rotating blade.

  4. Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    This paper presents the modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator. The hybrid turbine captures the offshore wind energy and tidal current energy simultaneously and stores the excess energy in hydraulic accumulator prior to electricity generation. Two hydraulic pumps installed respectively in wind and tidal turbine nacelles are used to transform the captured mechanical energy into hydraulic energy. To extract the maximal power from wind and tidal current, standard torque controls are achieved by regulating the displacements of the hydraulic pumps. To meet the output power demand, a Proportion Integration Differentiation (PID) controller is designed to distribute the hydraulic energy between the accumulator and the Pelton turbine. A simulation case study based on combining a 5 MW offshore wind turbine and a 1 MW tidal current turbine is undertaken. Case study demonstrates that the hybrid generation system not only captures all the available wind and tidal energy and also delivers the desired generator power precisely through the accumulator damping out all the power fluctuations from the wind and tidal speed disturbances. Energy and exergy analyses show that the energy efficiency can exceed 100% as the small input speeds are considered, and the exergy efficiency has the consistent change trends with demand power. Further more parametric sensitivity study on hydraulic accumulator shows that there is an inversely proportional relationship between accumulator and hydraulic equipments including the pump and nozzle in terms of dimensions. - Highlights: • A hybrid wind-tidal turbine is presented. • Hydraulic accumulator stores/releases the surplus energy. • Standard torque controls extract the maximal power from wind and tidal. • Generator outputs meet the electricity demand precisely. • Parametric sensitivity study on accumulator is implemented.

  5. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  6. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  7. Experimental Study on Influence of Pitch Motion on the Wake of a Floating Wind Turbine Model

    Directory of Open Access Journals (Sweden)

    Stanislav Rockel

    2014-03-01

    Full Text Available Wind tunnel experiments were performed, where the development of the wake of a model wind turbine was measured using stereo Particle Image Velocimetry to observe the influence of platform pitch motion. The wakes of a classical bottom fixed turbine and a streamwise oscillating turbine are compared. Results indicate that platform pitch creates an upward shift in all components of the flow and their fluctuations. The vertical flow created by the pitch motion as well as the reduced entrainment of kinetic energy from undisturbed flows above the turbine result in potentially higher loads and less available kinetic energy for a downwind turbine. Experimental results are compared with four wake models. The wake models employed are consistent with experimental results in describing the shapes and magnitudes of the streamwise velocity component of the wake for a fixed turbine. Inconsistencies between the model predictions and experimental results arise in the floating case particularly regarding the vertical displacement of the velocity components of the flow. Furthermore, it is found that the additional degrees of freedom of a floating wind turbine add to the complexity of the wake aerodynamics and improved wake models are needed, considering vertical flows and displacements due to pitch motion.

  8. Quick Method for Aeroelastic and Finite Element Modeling of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Bennett, Jeffrey; Bitsche, Robert; Branner, Kim

    2014-01-01

    In this paper a quick method for modeling composite wind turbine blades is developed for aeroelastic simulations and finite element analyses. The method reduces the time to model a wind turbine blade by automating the creation of a shell finite element model and running it through a cross...... the user has two models of the same blade, one for performing a structural finite element model analysis and one for aeroelastic simulations. Here, the method is implemented and applied to reverse engineer a structural layup for the NREL 5MW reference blade. The model is verified by comparing natural...

  9. The Triple Spar campaign: Model tests of a 10MW floating wind turbine with waves, wind and pitch control

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Lemmer, F.; Borg, Michael Borg

    2017-01-01

    Results of a test campaign for a floating wind turbine in simultaneous wind and wave forcing at scale 1:60 are presented. The floater is the Triple Spar floater, a hybrid between a spar buoy and a semi submersible tri-floater, tested here for the first time. The turbine is a model scale version...... of the DTU 10 MW reference wind turbine, which, also for the first time, is tested with active blade pitch control. The tests focus on the effects of aerodynamic damping and interaction effects between the wind forcing, wave forcing and the blade pitch control algorithm. Special focus is devoted...... to the instability of the platform pitch natural mode, that can occur if a standard land-based controller is applied....

  10. Wind turbines and health

    International Nuclear Information System (INIS)

    Rideout, K.; Copes, R.; Bos, C.

    2010-01-01

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  11. European wind turbine catalogue

    International Nuclear Information System (INIS)

    1994-01-01

    The THERMIE European Community programme is designed to promote the greater use of European technology and this catalogue contributes to the fulfillment of this aim by dissemination of information on 50 wind turbines from 30 manufacturers. These turbines are produced in Europe and are commercially available. The manufacturers presented produce and sell grid-connected turbines which have been officially approved in countries where this approval is acquired, however some of the wind turbines included in the catalogue have not been regarded as fully commercially available at the time of going to print. The entries, which are illustrated by colour photographs, give company profiles, concept descriptions, measured power curves, prices, and information on design and dimension, safety systems, stage of development, special characteristics, annual energy production, and noise pollution. Lists are given of wind turbine manufacturers and agents and of consultants and developers in the wind energy sector. Exchange rates used in the conversion of the prices of wind turbines are also given. Information can be found on the OPET network (organizations recognised by the European Commission as an Organization for the Promotion of Energy Technologies (OPET)). An article describes the development of the wind power industry during the last 10-15 years and another article on certification aims to give an overview of the most well-known and acknowledged type approvals currently issued in Europe. (AB)

  12. Wind turbines and health

    Energy Technology Data Exchange (ETDEWEB)

    Rideout, K.; Copes, R.; Bos, C. [National Colaborating Centre for Environmental Health, Vancouver, BC (Canada)

    2010-01-15

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  13. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    Science.gov (United States)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  14. Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates

    DEFF Research Database (Denmark)

    Murcia Leon, Juan Pablo; Réthoré, Pierre-Elouan; Dimitrov, Nikolay Krasimirov

    2018-01-01

    -alignment. The methodology presented extends the deterministic power and thrust coefficient curves to uncertainty models and adds new variables like damage equivalent fatigue loads in different components of the turbine. These surrogate models can then be implemented inside other work-flows such as: estimation......Polynomial surrogates are used to characterize the energy production and lifetime equivalent fatigue loads for different components of the DTU 10 MW reference wind turbine under realistic atmospheric conditions. The variability caused by different turbulent inflow fields are captured by creating...... of the uncertainty in annual energy production due to wind resource variability and/or robust wind power plant layout optimization. It can be concluded that it is possible to capture the global behavior of a modern wind turbine and its uncertainty under realistic inflow conditions using polynomial response surfaces...

  15. An improved k-ε model applied to a wind turbine wake in atmospheric turbulence

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    An improved k-ε turbulence model is developed and applied to a single wind turbine wake in a neutral atmospheric boundary layer using a Reynolds averaged Navier–Stokes solver. The proposed model includes a flow-dependent Cμ that is sensitive to high velocity gradients, e.g., at the edge of a wind...... turbine wake. The modified k-ε model is compared with the original k-ε eddy viscosity model, Large-Eddy Simulations and field measurements using eight test cases. The comparison shows that the velocity wake deficits, predicted by the proposed model are much closer to the ones calculated by the Large...

  16. Lumped-Parameter Models for Wind-Turbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Liingaard, Morten

    2007-01-01

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computational model significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...

  17. Advanced tools for modeling, design and optimization of wind turbine systems

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, A.D.; Jauch, C.

    2005-01-01

    As wind turbine technology and control has advanced over the last decade, this has led to a high penetration of wind turbines into the power system. Whether it be for a large wind turbine or an offshore wind farm with hundreds of MW power capacity, the electrical system has become more and more i...

  18. Model-Based Estimation of Collision Risks of Predatory Birds with Wind Turbines

    Directory of Open Access Journals (Sweden)

    Marcus Eichhorn

    2012-06-01

    Full Text Available The expansion of renewable energies, such as wind power, is a promising way of mitigating climate change. Because of the risk of collision with rotor blades, wind turbines have negative effects on local bird populations, particularly on raptors such as the Red Kite (Milvus milvus. Appropriate assessment tools for these effects have been lacking. To close this gap, we have developed an agent-based, spatially explicit model that simulates the foraging behavior of the Red Kite around its aerie in a landscape consisting of different land-use types. We determined the collision risk of the Red Kite with the turbine as a function of the distance between the wind turbine and the aerie and other parameters. The impact function comprises the synergistic effects of species-specific foraging behavior and landscape structure. The collision risk declines exponentially with increasing distance. The strength of this decline depends on the raptor's foraging behavior, its ability to avoid wind turbines, and the mean wind speed in the region. The collision risks, which are estimated by the simulation model, are in the range of values observed in the field. The derived impact function shows that the collision risk can be described as an aggregated function of distance between the wind turbine and the raptor's aerie. This allows an easy and rapid assessment of the ecological impacts of (existing or planned wind turbines in relation to their spatial location. Furthermore, it implies that minimum buffer zones for different landscapes can be determined in a defensible way. This modeling approach can be extended to other bird species with central-place foraging behavior. It provides a helpful tool for landscape planning aimed at minimizing the impacts of wind power on biodiversity.

  19. Development and Evaluation of an Aerodynamic Model for a Novel Vertical Axis Wind Turbine Concept

    Directory of Open Access Journals (Sweden)

    Andrew Shires

    2013-05-01

    Full Text Available There has been a resurgence of interest in the development of vertical axis wind turbines which have several inherent attributes that offer some advantages for offshore operations, particularly their scalability and low over-turning moments with better accessibility to drivetrain components. This paper describes an aerodynamic performance model for vertical axis wind turbines specifically developed for the design of a novel offshore V-shaped rotor with multiple aerodynamic surfaces. The model is based on the Double-Multiple Streamtube method and includes a number of developments for alternative complex rotor shapes. The paper compares predicted results with measured field data for five different turbines with both curved and straight blades and rated powers in the range 100–500 kW. Based on these comparisons, the paper proposes modifications to the Gormont dynamic stall model that gives improved predictions of rotor power for the turbines considered.

  20. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian

    2016-01-01

    This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...

  1. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  2. Wind turbines and idiopathic symptoms

    DEFF Research Database (Denmark)

    Blanes-Vidal, Victoria; Schwartz, Joel

    2016-01-01

    Whether or not wind turbines pose a risk to human health is a matter of heated debate. Personal reactions to other environmental exposures occurring in the same settings as wind turbines may be responsible of the reported symptoms. However, these have not been accounted for in previous studies. We...... investigated whether there is an association between residential proximity to wind turbines and idiopathic symptoms, after controlling for personal reactions to other environmental co-exposures. We assessed wind turbine exposures in 454 residences as the distance to the closest wind turbine (Dw) and number...... of wind turbines

  3. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  4. WindPACT Reference Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rinker, Jennifer [Former National Renewable Energy Laboratory (NREL) employee

    2018-04-02

    To fully understand how loads and turbine cost scale with turbine size, it is necessary to have identical turbine models that have been scaled to different rated powers. The report presents the WindPACT baseline models, which are a series of four baseline models that were designed to facilitate investigations into the scalings of loads and turbine cost with size. The models have four different rated powers (750 kW, 1.5 MW, 3.0 MW, and 5.0 MW), and each model was designed to its specified rated power using the same design methodology. The models were originally implemented in FAST_AD, the predecessor to NREL's open-source wind turbine simulator FAST, but have yet to be implemented in FAST. This report contains the specifications for all four WindPACT baseline models - including structural, aerodynamic, and control specifications - along with the inherent assumptions and equations that were used to calculate the model parameters. It is hoped that these baseline models will serve as extremely useful resources for investigations into the scalings of costs, loads, or optimization routines.

  5. Modeling and Simulation of a Wind Turbine Driven Induction Generator Using Bond Graph

    Directory of Open Access Journals (Sweden)

    Lachouri Abderrazak

    2015-12-01

    Full Text Available The objective of this paper is to investigate the modelling and simulation of wind turbine applied on induction generator with bond graph methodology as   a graphical and multi domain approach. They provide a precise and unambiguous modelling tool, which allows for the specification of hierarchical physical structures. The paper begins with an introduction to the bond graphs technique, followed by an implementation of the wind turbine model. Simulation results illustrate the simplified system response obtained using the 20-sim software.

  6. Wind Turbine Blockset in Saber. General Overview and Description of the Model

    DEFF Research Database (Denmark)

    Iov, Florin; Timbus, Adrian Vasile; Hansen, A. D.

    This report presents a new developed Saber Toolbox for wind turbine applications. This toolbox has been developed during the research project ?Simulation Platform to model, optimize and design wind turbines?. The report provides a quick overview of the Saber and then explains the structure...... of this simulation package, which is different than other tools e.g. Matlab/Simulink. Then the structure of the toolbox is shown as well as the description of the developed models. The main focus here is to underline the special structure of the models, which are a mixture of Saber built-in blocks and new developed...

  7. Study on the Wake of a Miniature Wind Turbine Using the Reynolds Stress Model

    Directory of Open Access Journals (Sweden)

    Jianxiao Hu

    2016-09-01

    Full Text Available The Reynolds Stress Model (RSM is adopted to simulate the wind turbine wake and the simulation results are compared with the wind tunnel test data, simulation results from the standard k-ε model and a modified k-ε model. RSM shows good performance in predicting the turbine wakes velocity, turbulence intensity and the kinetic shear stress, while the k-ε based models fail to predict either wakes velocity or turbulence intensity. Simulation results show that the wake velocity will be recovered up to 90% at around 10 D downstream of the turbine (D denotes turbine rotor diameter and it stops at 91% at around 16 D downstream. The wake turbulence intensity reaches a maximum at around 5 D downstream of turbine. Further investigation shows that the horizontal profile of the wakes velocity can be approximated by a Gaussian distribution, and the turbulence intensity can be approximated by a bimodal distribution. The influence of the wakes effect is limited to within ±D in the across-wind direction. The turbine wakes show clear anisotropy, which could explain the incorrect estimation on the turbulence intensity with the extended k-ε model.

  8. Probabilistic model for multi-axial load combinations for wind turbines

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2016-01-01

    The article presents a model describing the joint probability distribution of multiple load components acting on a wind turbine blade cross section. The problem of modelling the probability distribution of load time histories with large periodic components is addressed by dividing the signal...... for determining contemporaneous loads. Using examples with simulated loads on a 10 MW wind turbine,the behavior of the bending moments acting on a blade section is illustrated under different conditions.The loading direction most critical for material failure is determined using a finite-element model...... of the blade cross section on which load combinations with different directions but with equal probability are applied. By defining a joint probability distribution and return-period contours for multiple load components,the suggested procedure is applicable to different aspects of the design of wind turbine...

  9. Numerical investigation of the wake interaction between two model wind turbines with span-wise offset

    DEFF Research Database (Denmark)

    Sarmast, Sasan; Chivaee, Hamid Sarlak; Ivanell, Stefan

    2014-01-01

    Wake interaction between two model scale wind turbines with span-wise offset is investigated numerically using Large Eddy Simulation (LES) and the results are validated against the experimental data. An actuator line technique is used for modeling the rotor. The investigated setup refers...... to a series of experimental measurements of two model scale turbines conducted by NTNU in low speed wind tunnel in which the two wind turbines are aligned with a span-wise offset resulting in half wake interaction. Two levels of free-stream turbulence are tested, the minimum undisturbed level of about Ti ≈ 0.......23% and a high level of about Ti ≈ 10% using a passive upstream grid. The results show that the rotor characteristics for both rotors are well captured numerically even if the downstream rotor operates into stall regimes. There are however some difficulties in correct prediction of the thrust level...

  10. Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Krysiński Tomasz

    2015-03-01

    Full Text Available The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.

  11. Wind turbine influence on surfers wind conditions at Hanstholm

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Andersen, Søren Juhl

    alter the wind conditions on the lee side, which is an important area for wind and kite surfers. The Dynamic Wake Meander Model is used to investigate the wind conditions north east of the planned new turbines at Hanstholm covering a surf area from a location called “Fish Factory” to a location called...... “Hamborg”. This model, which predicts instationary wind conditions behind one or more wind turbines, has previously been used to predict the changed power and load conditions for wind turbines in wind farm conditions. Avery fine agreement to measurements is seen and the model is therefore considered...

  12. Implementation of IEC Generic Model Type 1 Wind Turbine Generators using RTDS

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Wu, Qiuwei; Zhao, Haoran

    are useful tools to evaluate the impact of the wind power on the power system stability. Thus, a strong stimulus exists for the development of a generic dynamic model in order to further investigate the dynamic response of WTG under grid disturbances. This paper presents the implementation of the IEC generic......With the ever increasing penetration of the wind power generation, transmission system operators (TSOs) and distribution system operators (DSOs) are demanding an accurate dynamic wind turbine generator (WTG) models for power system stability studies. However, the confidential requirements from wind...... turbine manufacturers prevent the academia and researchers from working on a real or/and manufacturer specific models. A generic WTG model is of great interest that does not contain the confidential information meanwhile represents the manufacturer specific models. These generic dynamic simulation models...

  13. Experimental Study on the Effects of Winglets on the Wake of a Model Wind Turbine

    Science.gov (United States)

    Tobin, Nicolas; Hamed, Ali M.; Chamorro, Leonardo P.

    2015-11-01

    Wind tunnel particle image velocimetry was used to investigate the effects of winglets on the wake dynamics of a model wind turbine. The behavior of a turbine with downstream-facing winglets was compared with a turbine without winglets. The turbines were placed in a turbulent boundary layer that reached up to the hub height, allowing for investigation of behavior in both turbulent and uniform flow. The winglets did not significantly change the strength of the tip vortices in the region of uniform incoming flow. The tip vortices in the more turbulent region, however, decayed much faster, diminishing to near-zero within the first ~1.5 rotor diameters, whereas the upper tip vortices persisted potentially up to ~4 rotor diameters. The winglets also increased the power coefficient by 7.5 %, while increasing the coefficient of thrust by 10.0 %. The higher coefficient of thrust created a region of enhanced mean shear in the outer portion of the wake, leading to increased turbulence statistics in the far wake. The wingletted turbine had a similar wake deficit at 5 rotor diameters as the base turbine did at 1.5 rotor diameters, with potential implications for using wingletted turbines in wind farms.

  14. Wind Turbine Tower Vibration Modeling and Monitoring by the Nonlinear State Estimation Technique (NSET

    Directory of Open Access Journals (Sweden)

    Peng Guo

    2012-12-01

    Full Text Available With appropriate vibration modeling and analysis the incipient failure of key components such as the tower, drive train and rotor of a large wind turbine can be detected. In this paper, the Nonlinear State Estimation Technique (NSET has been applied to model turbine tower vibration to good effect, providing an understanding of the tower vibration dynamic characteristics and the main factors influencing these. The developed tower vibration model comprises two different parts: a sub-model used for below rated wind speed; and another for above rated wind speed. Supervisory control and data acquisition system (SCADA data from a single wind turbine collected from March to April 2006 is used in the modeling. Model validation has been subsequently undertaken and is presented. This research has demonstrated the effectiveness of the NSET approach to tower vibration; in particular its conceptual simplicity, clear physical interpretation and high accuracy. The developed and validated tower vibration model was then used to successfully detect blade angle asymmetry that is a common fault that should be remedied promptly to improve turbine performance and limit fatigue damage. The work also shows that condition monitoring is improved significantly if the information from the vibration signals is complemented by analysis of other relevant SCADA data such as power performance, wind speed, and rotor loads.

  15. Eddy Current Loss Modeling for Design of PM Generators for Wind Turbines

    NARCIS (Netherlands)

    Jassal, A.

    2014-01-01

    This thesis deals with analysis, calculation and validation of eddy current loss models for Permanent Magnet (PM) direct drive generators for wind turbines. The modelling approach is a mixed use of analytical and Finite Element (FE) methods. The models are validated experimentally and design

  16. Experimental verification of computational model for wind turbine blade geometry design

    Directory of Open Access Journals (Sweden)

    Štorch Vít

    2015-01-01

    Full Text Available A 3D potential flow solver with unsteady force free wake model intended for optimization of blade shape for wind power generation is applied on a test case scenario formed by a wind turbine with vertical axis of rotation. The calculation is sensitive to correct modelling of wake and its interaction with blades. The validity of the flow solver is verified by comparing experimentally obtained performance data of model rotor with numerical results.

  17. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  18. Consistent modelling of wind turbine noise propagation from source to receiver.

    Science.gov (United States)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick

    2017-11-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.

  19. Application of computational fluid dynamics models to aerodynamic design and optimization of wind turbine airfoils

    OpenAIRE

    Castiñeira, Esther; Solís, Irene; Argüelles, K.M. (Katia); Velarde, Sandra; Fernández, J.M. (Jesús); González, Jose

    2016-01-01

    In this work, the capability of simple numerical models with coarse grids to predict performance coefficients in wind turbine airfoils is explored. A wide range of simulations were performed for a typical wind turbine profile, under the main criteria of design simplicity and low calculation time. The solutions were computed over different mesh sizes using a two-dimensional Reynolds-Average Navier-Stockes (2D-RANS) approach. Spalart-Allmaras, k-ε and k-omega turbulence models were run in the s...

  20. Active aerodynamic load control on wind turbines : Aeroservoelastic modeling and wind tunnel

    NARCIS (Netherlands)

    Barlas, A.

    2011-01-01

    This thesis investigates particular concepts and technologies that can alleviate fatigue loads on wind turbines by using distributed active aerodynamic devices on the blades, a concept briefly referred to as `smart blades'. Firstly, published research work on smart control devices is reviewed, and

  1. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However......, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...

  2. Small Wind Research Turbine: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  3. Dynamic modeling and control of DFIG-based wind turbines under balanced network conditions

    DEFF Research Database (Denmark)

    Mehdipour, Cyrous; Hajizadeh, Amin; Mehdipour, Iman

    2016-01-01

    The performance of wind power station is researched by utilizing a detailed model which includes a wind turbine (WT), doubly fed induction generator (DFIG) and power electronic devices. In the initial stage, a comprehensive review and definition of each part of this system are presented....... Then dynamic modeling and simulation of a sample power system are carried out. The operation of a DFIG coupled with WT under balanced condition of a power grid is investigated and stationary reference frame is utilized for analysis of a wind energy conversion system. At the second step, a wind power station...

  4. Prototype bucket foundation for wind turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers...... estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models...

  5. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  6. Multi-level hydrodynamic modelling of a scaled 10MW TLP wind turbine

    DEFF Research Database (Denmark)

    Pegalajar Jurado, Antonio Manuel; Bredmose, Henrik; Borg, Michael

    2016-01-01

    In the present paper the accuracy of three numerical models for a scaled 10MW TLP wind turbine is assessed by comparison with test data. The three models present different levels of complexity, and therefore different degrees of accuracy can be expected. A set of load cases including irregular an...

  7. A testing procedure for wind turbine generators based on the power grid statistical model

    DEFF Research Database (Denmark)

    Farajzadehbibalan, Saber; Ramezani, Mohammad Hossein; Nielsen, Peter

    2017-01-01

    In this study, a comprehensive test procedure is developed to test wind turbine generators with a hardware-in-loop setup. The procedure employs the statistical model of the power grid considering the restrictions of the test facility and system dynamics. Given the model in the latent space, the j...

  8. A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2014-01-01

    A simple model for including the influence of the atmospheric boundary layer in connection with large eddy simulations of wind turbine wakes is presented and validated by comparing computed results with measurements as well as with direct numerical simulations. The model is based on an immersed...

  9. A LIDAR-assisted model predictive controller added on a traditional wind turbine controller

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Hansen, Morten Hartvig

    2016-01-01

    LIDAR-assisted collective pitch control shows promising results for load reduction in the full load operating region of horizontal axis wind turbines (WT). Utilizing LIDARs in WT control can be approached in different ways; One method is to design the WT controller from ground up based on the LIDAR...... measurements. Nevertheless, to make the LIDAR-assisted controller easily implementable on existing wind turbines, one can design a controller that is added to the original and existing WT controller. This add-on solution makes it easier to prove the applicability and performance of the LIDAR-assisted WT...... control and opens the market of retrofitting existing wind turbines with the new technology. In this paper, we suggest a model predictive controller (MPC) that is added to the basic gain scheduled PI controller of a WT to enhance the performance of the closed loop system using LIDAR measurements...

  10. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  11. Experimental investigation of the wake behind a model of wind turbine in a water flume

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, Igor; Kabardin, I.

    2014-01-01

    The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert’s optimization. The transitional regime, generally characterized as in between...... the regime governed by stable organized vortical structures and the turbulent wake, develops from disturbances of the tip and root vorticies through vortex paring and further complex behaviour towards the fully turbulent wake. Our PIV measurements pay special attention to the onset of the instabilities...

  12. Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

    2013-09-01

    Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

  13. Damage severity assessment in wind turbine blade laboratory model through fuzzy finite element model updating

    Science.gov (United States)

    Turnbull, Heather; Omenzetter, Piotr

    2017-04-01

    The recent shift towards development of clean, sustainable energy sources has provided a new challenge in terms of structural safety and reliability: with aging, manufacturing defects, harsh environmental and operational conditions, and extreme events such as lightning strikes wind turbines can become damaged resulting in production losses and environmental degradation. To monitor the current structural state of the turbine, structural health monitoring (SHM) techniques would be beneficial. Physics based SHM in the form of calibration of a finite element model (FEMs) by inverse techniques is adopted in this research. Fuzzy finite element model updating (FFEMU) techniques for damage severity assessment of a small-scale wind turbine blade are discussed and implemented. The main advantage is the ability of FFEMU to account in a simple way for uncertainty within the problem of model updating. Uncertainty quantification techniques, such as fuzzy sets, enable a convenient mathematical representation of the various uncertainties. Experimental frequencies obtained from modal analysis on a small-scale wind turbine blade were described by fuzzy numbers to model measurement uncertainty. During this investigation, damage severity estimation was investigated through addition of small masses of varying magnitude to the trailing edge of the structure. This structural modification, intended to be in lieu of damage, enabled non-destructive experimental simulation of structural change. A numerical model was constructed with multiple variable additional masses simulated upon the blades trailing edge and used as updating parameters. Objective functions for updating were constructed and minimized using both particle swarm optimization algorithm and firefly algorithm. FFEMU was able to obtain a prediction of baseline material properties of the blade whilst also successfully predicting, with sufficient accuracy, a larger magnitude of structural alteration and its location.

  14. A Study of Wind Turbine Comprehensive Operational Assessment Model Based on EM-PCA Algorithm

    Science.gov (United States)

    Zhou, Minqiang; Xu, Bin; Zhan, Yangyan; Ren, Danyuan; Liu, Dexing

    2018-01-01

    To assess wind turbine performance accurately and provide theoretical basis for wind farm management, a hybrid assessment model based on Entropy Method and Principle Component Analysis (EM-PCA) was established, which took most factors of operational performance into consideration and reach to a comprehensive result. To verify the model, six wind turbines were chosen as the research objects, the ranking obtained by the method proposed in the paper were 4#>6#>1#>5#>2#>3#, which are completely in conformity with the theoretical ranking, which indicates that the reliability and effectiveness of the EM-PCA method are high. The method could give guidance for processing unit state comparison among different units and launching wind farm operational assessment.

  15. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  16. Numeric-modeling sensitivity analysis of the performance of wind turbine arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lissaman, P.B.S.; Gyatt, G.W.; Zalay, A.D.

    1982-06-01

    An evaluation of the numerical model created by Lissaman for predicting the performance of wind turbine arrays has been made. Model predictions of the wake parameters have been compared with both full-scale and wind tunnel measurements. Only limited, full-scale data were available, while wind tunnel studies showed difficulties in representing real meteorological conditions. Nevertheless, several modifications and additions have been made to the model using both theoretical and empirical techniques and the new model shows good correlation with experiment. The larger wake growth rate and shorter near wake length predicted by the new model lead to reduced interference effects on downstream turbines and hence greater array efficiencies. The array model has also been re-examined and now incorporates the ability to show the effects of real meteorological conditions such as variations in wind speed and unsteady winds. The resulting computer code has been run to show the sensitivity of array performance to meteorological, machine, and array parameters. Ambient turbulence and windwise spacing are shown to dominate, while hub height ratio is seen to be relatively unimportant. Finally, a detailed analysis of the Goodnoe Hills wind farm in Washington has been made to show how power output can be expected to vary with ambient turbulence, wind speed, and wind direction.

  17. Large Eddy Simulation of wind turbines using the actuator line model and immersed boundary method

    Science.gov (United States)

    Santoni, Christian; Carrasquillo-Solís, Kenneth; Leonardi, Stefano

    2014-11-01

    Despite the growth of the energy extracted from wind turbines, the flow physics is still not fully understood even under ideal operational conditions. Large Eddy Simulations of the turbulent flow past a wind turbine in a channel have been performed. The numerical setup reproduces the experiment performed in a wind tunnel at the Norwegian University of Science and Technology (NUST). The code is based on a finite difference scheme with a fractional step and Runge-Kutta, which couples the actuator line model (ALM) and the Immersed Boundary Method (IBM). Two simulations were performed, one neglecting the tower and nacelle resulting in the rotating blades only, the other modeling both the rotating blades as well as the tower and nacelle with IBM. Results relative to the simulation with tower and nacelle have a very good agreement with experiments. Profiles of turbulent kinetic energy shows that the effect of the tower and nacelle is not confined to the hub region but extend to the entire rotor. In addition we placed the wind turbine over an undulated topography to understand how it affects the performances and wake of a wind turbine. Comparison with the results obtained for the smooth wall show an interaction between the rough wall and the wake. The numerical simulations were performed on XSEDE TACC under Grant No. CTS070066. The present work is supported by the National Science Foundation (NSF), Grant IIA-1243482 (WINDINSPIRE).

  18. Wind turbine reliability analysis

    OpenAIRE

    Pinar Pérez, Jesús María; García Márquez, Fausto Pedro; Tobias, Andrew Mark; Papaelias, Mayorkinos

    2013-01-01

    Against the background of steadily increasing wind power generation worldwide, wind turbine manufacturers are continuing to develop a range of configurations with different combinations of pitch control, rotor speeds, gearboxes, generators and converters. This paper categorizes the main designs, focusing on their reliability by bringing together and comparing data from a selection of major studies in the literature. These are not particularly consistent but plotting failure rates against hour...

  19. A Simulation Platform To Model, Optimize And Design Wind Turbines. The Matlab/Simulink Toolbox

    OpenAIRE

    Anca Daniela HANSEN; Frede BLAABJERG; Florin IOV

    2002-01-01

    In the last years Matlab / Simulink® has become the most used software for modeling and simulation of dynamic systems. Wind energy conversion systems are for example such systems, containing subsystems with different ranges of the time constants: wind, turbine, generator, power electronics, transformer and grid. The electrical generator and the power converter need the smallest simulation step and therefore, these blocks decide the simulation speed. This paper presents a new and integrated si...

  20. Tornado type wind turbines

    Science.gov (United States)

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  1. Development and Analysis of a Swept Blade Aeroelastic Model for a Small Wind Turbine (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Preus, R.; Damiani, R.; Lee, S.; Larwood, S.

    2014-06-01

    As part of the U.S. Department-of-Energy-funded Competitiveness Improvement Project, the National Renewable Energy Laboratory (NREL) developed new capabilities for aeroelastic modeling of precurved and preswept blades for small wind turbines. This presentation covers the quest for optimized rotors, computer-aided engineering tools, a case study, and summary of the results.

  2. Wind turbine large-eddy simulations on very coarse grid resolutions using an actuator line model

    NARCIS (Netherlands)

    Martínez-Tossas, Luis A.; Stevens, Richard J.A.M.; Meneveau, Charles

    2016-01-01

    In this work the accuracy of the Actuator Line Model (ALM) in Large Eddy Simulations of wind turbine flow is studied under the specific conditions of very coarse spatial resolutions. For finely-resolved conditions, it is known that ALM provides better accuracy compared to the standard Actuator Disk

  3. Modeling and Simulation of PMSG Wind Turbine with Boost Converter Working under Discontinuous Conduction Mode

    DEFF Research Database (Denmark)

    Qin, Nan; Xu, Zhao

    2008-01-01

    in the discontinuous conducting mode (DCM). The new wind turbine model with the variable speed control of the PMSG based on duty cycle control of the boost converter has been developed in Matlab Simulink. Simulation studies show that DCM working mode of the boost converter provides more flexibility in controlling...

  4. Fast Trailed Vorticity Modeling for Wind Turbine Aerodynamics and its Influence on Aeroelastic Stability

    DEFF Research Database (Denmark)

    Pirrung, Georg

    efficiency is increased. The model is validated against results from full rotor CFD and free wake panel code computations, which show that the model yields improved results in steady and unsteady simulations compared to unsteady BEM modeling. Especially the aerodynamic work due to prescribed in-plane and out......In this work, an aerodynamic model for the use in aeroelastic wind turbine codes is presented. It consists of a simplified lifting line model covering the induction due to the trailed vorticity in the near wake, a 2D shed vorticity model and a far wake model using the well known blade element...... momentum (BEM) theory. The model is an extension of unsteady BEM models, which provides a radial coupling of the aerodynamic sections through the trailed vorticity. The model is very fast and slows down aeroelastic wind turbine simulations by only few percent, compared to an unsteady BEM model. Compared...

  5. Wind turbine spoiler

    Science.gov (United States)

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  6. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  7. Earthquake Response Modeling for a Parked and Operating Megawatt-Scale Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, I.; Elgamal, A.; Romanowitz, H.; Duggan, J. E.; Jonkman, J.

    2010-10-01

    Demand parameters for turbines, such as tower moment demand, are primarily driven by wind excitation and dynamics associated with operation. For that purpose, computational simulation platforms have been developed, such as FAST, maintained by the National Renewable Energy Laboratory (NREL). For seismically active regions, building codes also require the consideration of earthquake loading. Historically, it has been common to use simple building code approaches to estimate the structural demand from earthquake shaking, as an independent loading scenario. Currently, International Electrotechnical Commission (IEC) design requirements include the consideration of earthquake shaking while the turbine is operating. Numerical and analytical tools used to consider earthquake loads for buildings and other static civil structures are not well suited for modeling simultaneous wind and earthquake excitation in conjunction with operational dynamics. Through the addition of seismic loading capabilities to FAST, it is possible to simulate earthquake shaking in the time domain, which allows consideration of non-linear effects such as structural nonlinearities, aerodynamic hysteresis, control system influence, and transients. This paper presents a FAST model of a modern 900-kW wind turbine, which is calibrated based on field vibration measurements. With this calibrated model, both coupled and uncoupled simulations are conducted looking at the structural demand for the turbine tower. Response is compared under the conditions of normal operation and potential emergency shutdown due the earthquake induced vibrations. The results highlight the availability of a numerical tool for conducting such studies, and provide insights into the combined wind-earthquake loading mechanism.

  8. Operation and control of large wind turbines and wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Thomsen, Kenneth (and others)

    2005-09-01

    This report is the final report of a Danish research project 'Operation and control of large wind turbines and wind farms'. The objective of the project has been to analyse and assess operational strategies and possibilities for control of different types of wind turbines and different wind farm concepts. The potentials of optimising the lifetime/energy production ratio by means of using revised operational strategies for the individual wind turbines are investigated. Different strategies have been simulated, where the power production is decreased to an optimum when taking loads and actual price of produced electricity into account. Dynamic models and control strategies for the wind farms have also been developed, with the aim to optimise the operation of the wind farms considering participation in power system control of power (frequency) and reactive power (voltage), maximise power production, keep good power quality and limit mechanical loads and life time consumption. The project developed models for 3 different concepts for wind farms. Two of the concepts use active stall controlled wind turbines, one with AC connection and one with modern HVDC/VSC connection of the wind farm. The third concept is based on pitch controlled wind turbines using doubly fed induction generators. The models were applied to simulate the behaviour of the wind farm control when they were connected to a strong grid, and some initial simulations were performed to study the behaviour of the wind farms when it was isolated from the main grid on a local grid. Also the possibility to use the available information from the wind turbine controllers to predict the wind speed has been investigated. The main idea has been to predict the wind speed at a wind turbine using up-wind measurements of the wind speed in another wind turbine. (au)

  9. Iterative feedback tuning of wind turbine controllers

    NARCIS (Netherlands)

    van Solingen, E.; Mulders, S.P.; van Wingerden, J.W.

    2017-01-01

    Traditionally, wind turbine controllers are designed using first principles or linearized or identified models. The aim of this paper is to show that with an automated, online, and model-free tuning strategy, wind turbine control performance can be significantly increased. For this purpose,

  10. An Experimental Study of Lightning Overvoltages in Wind Turbine Generation Systems Using a Reduced-Size Model

    Science.gov (United States)

    Yamamoto, Kazuo; Noda, Taku; Yokoyama, Shigeru; Ametani, Akihiro

    Wind turbine generation systems are built at locations where few tall structures are found nearby so as to obtain good wind conditions, and thus, they are often struck by lightning. To promote wind power generation, lightning-protection methodologies for such wind turbine generation systems have to be established. This paper presents the result of an experimental study of lightning overvoltages in wind turbine generation systems using a reduced-size wind turbine model. Overvoltages observed at wavefronts of lightning surges are focused on in this study. In the experiments, lightning strokes to one of the blades and to the nacelle were considered, and voltages and currents at various positions of the wind turbine model were measured. The following points have been deduced from the results: (i) The voltage rise due to the tower footing resistance can cause a significant voltage difference between the tower foot and an incoming conductor led from a distant point. Also, a voltage difference between the bottom of down conductors installed inside the tower and an incoming conductor can be of significance. (ii) The lightning current flowing through the tower body induces voltages in main and control circuits which form loops, and the induced voltages can cause overvoltages and malfunctions. (iii) Traveling-wave phenomena in a wind turbine generation system for a lightning strike to the tip of a blade and to the nacelle have been made clear from the measured waveforms. This information can be used for developing an EMTP simulation model of wind turbine generation systems.

  11. Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control

    DEFF Research Database (Denmark)

    Schlipf, David; Cheng, Po Wen; Mann, Jakob

    2013-01-01

    - or spinner-based lidar system. If on the one hand, the assumed correlation is overestimated, then the uncorrelated frequencies of the preview will cause unnecessary control action, inducing undesired loads. On the other hand, the benefits of the lidar-assisted controller will not be fully exhausted......, if correlated frequencies are filtered out. To avoid these miscalculations, this work presents a method to model the correlation between lidar systems and wind turbines using Kaimal wind spectra. The derived model accounts for different measurement configurations and spatial averaging of the lidar system......, different rotor sizes, and wind evolution. The method is compared to real measurement data with promising results. In addition, examples depict how this model can be used to design an optimal controller and how the configuration of a lidar system is optimized for a given turbine to improve the correlation....

  12. A Case Study Regarding Influence of Solvers in Matlab/Simulink for Induction Machine Model in Wind Turbine Simulations

    DEFF Research Database (Denmark)

    Iov, F.; Blaabjerg, Frede; Hansen, A.D.

    2002-01-01

    In the last years Matlab/Simulink® has become the most used software for modelling and simulation of dynamic systems. Wind energy conversion systems are for example such systems because they contain parts with different range for the time constant: wind, turbine, generator, power electronics...... the different implementations of induction machine model, influence of the solvers from Simulink and how the simulation speed can be increase for a wind turbine....

  13. Active Power Optimal Control of Wind Turbines with Doubly Fed Inductive Generators Based on Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Guo Jiuwang

    2015-01-01

    Full Text Available Because of the randomness and fluctuation of wind energy, as well as the impact of strongly nonlinear characteristic of variable speed constant frequency (VSCF wind power generation system with doubly fed induction generators (DFIG, traditional active power control strategies are difficult to achieve high precision control and the output power of wind turbines is more fluctuated. In order to improve the quality of output electric energy of doubly fed wind turbines, on the basis of analyzing the operating principles and dynamic characteristics of doubly fed wind turbines, this paper proposes a new active power optimal control method of doubly fed wind turbines based on predictive control theory. This method uses state space model of wind turbines, based on the prediction of the future state of wind turbines, moves horizon optimization, and meanwhile, gets the control signals of pitch angle and generator torque. Simulation results show that the proposed control strategies can guarantee the utilization efficiency for wind energy. Simultaneously, they can improve operation stability of wind turbines and the quality of electric energy.

  14. Development and Verification of CFD Models for Modeling Wind Conditions on Forested Wind Turbine Sites

    DEFF Research Database (Denmark)

    Andersen, Morten Q.; Mortensen, Kasper; Nielsen, Daniel E.

    2009-01-01

    This paper describes a proposed CFD model to simulate the wind conditions on a forested site. The model introduces porous subdomains representing the forests in the terrain. Obtained simulation values are compared to field measurements in- and outside a forest. Initial results are very promising...

  15. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  16. Dependency in State Transitions of Wind Turbines

    DEFF Research Database (Denmark)

    Herp, Jürgen; Ramezani, Mohammad Hossein; S. Nadimi, Esmaeil

    2017-01-01

    © 2017 IEEE. Turbine states and predicting the transition into failure states ahead of time is important in operation and maintenance of wind turbines. This study presents a method to monitor state transitions of a wind turbine based on the online inference on residuals. In a Bayesian framework...... the impact machine learning concepts have on the predictive performance of the presented models. In conclusion, a study on model residuals is performed to highlight the contribution to wind turbine monitoring. The presented algorithm can consistently detect the state transition under various configurations...

  17. Wind turbine condition monitoring based on SCADA data using normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar; Achiche, Sofiane

    2013-01-01

    This paper proposes a system for wind turbine condition monitoring using Adaptive Neuro-Fuzzy Interference Systems (ANFIS). For this purpose: (1) ANFIS normal behavior models for common Supervisory Control And Data Acquisition (SCADA) data are developed in order to detect abnormal behavior...... of the captured signals and indicate component malfunctions or faults using the prediction error. 33 different standard SCADA signals are used and described, for which 45 normal behavior models are developed. The performance of these models is evaluated in terms of the prediction error standard deviations to show...... the applicability of ANFIS models for monitoring wind turbine SCADA signals. The computational time needed for model training is compared to Neural Network (NN) models showing the strength of ANFIS in training speed. (2) For automation of fault diagnosis Fuzzy Interference Systems (FIS) are used to analyze...

  18. Great expectations: large wind turbines

    International Nuclear Information System (INIS)

    De Vries, E.

    2001-01-01

    This article focuses on wind turbine product development, and traces the background to wind turbines from the first generation 1.5 MW machines in 1995-6, plans for the second generation 3-5 MW class turbines to meet the expected boom in offshore wind projects, to the anticipated installation of a 4.5 MW turbine, and offshore wind projects planned for 2000-2002. The switch by the market leader Vestas to variable speed operation in 2000, the new product development and marketing strategy taken by the German Pro + Pro consultancy in their design of a 1.5 MW variable speed pitch control concept, the possible limiting of the size of turbines due to logistical difficulties, opportunities offered by air ships for large turbines, and the commissioning of offshore wind farms are discussed. Details of some 2-5 MW offshore wind turbine design specifications are tabulated

  19. Wind turbine optimal control during storms

    International Nuclear Information System (INIS)

    Petrović, V; Bottasso, C L

    2014-01-01

    This paper proposes a control algorithm that enables wind turbine operation in high winds. With this objective, an online optimization procedure is formulated that, based on the wind turbine state, estimates those extremal wind speed variations that would produce maximal allowable wind turbine loads. Optimization results are compared to the actual wind speed and, if there is a danger of excessive loading, the wind turbine power reference is adjusted to ensure that loads stay within allowed limits. This way, the machine can operate safely even above the cut-out wind speed, thereby realizing a soft envelope-protecting cut-out. The proposed control strategy is tested and verified using a high-fidelity aeroservoelastic simulation model

  20. Dynamic modeling and performance evaluation of axial flux PMSG based wind turbine system with MPPT control

    Directory of Open Access Journals (Sweden)

    Vahid Behjat

    2014-12-01

    Full Text Available This research work develops dynamic model of a gearless small scale wind power generation system based on a direct driven single sided outer rotor AFPMSG with coreless armature winding. Dynamic modeling of the AFPMSG based wind turbine requires machine parameters. To this end, a 3D FEM model of the generator is developed and from magnetostatic and transient analysis of the FEM model, machine parameters are calculated and utilized in dynamic modeling of the system. A maximum power point tracking (MPPT-based FOC control approach is used to obtain maximum power from the variable wind speed. The simulation results show the proper performance of the developed dynamic model of the AFPMSG, control approach and power generation system.

  1. Updating Finite Element Model of a Wind Turbine Blade Section Using Experimental Modal Analysis Results

    Directory of Open Access Journals (Sweden)

    Marcin Luczak

    2014-01-01

    Full Text Available This paper presents selected results and aspects of the multidisciplinary and interdisciplinary research oriented for the experimental and numerical study of the structural dynamics of a bend-twist coupled full scale section of a wind turbine blade structure. The main goal of the conducted research is to validate finite element model of the modified wind turbine blade section mounted in the flexible support structure accordingly to the experimental results. Bend-twist coupling was implemented by adding angled unidirectional layers on the suction and pressure side of the blade. Dynamic test and simulations were performed on a section of a full scale wind turbine blade provided by Vestas Wind Systems A/S. The numerical results are compared to the experimental measurements and the discrepancies are assessed by natural frequency difference and modal assurance criterion. Based on sensitivity analysis, set of model parameters was selected for the model updating process. Design of experiment and response surface method was implemented to find values of model parameters yielding results closest to the experimental. The updated finite element model is producing results more consistent with the measurement outcomes.

  2. Advanced Modeling System for Optimization of Wind Farm Layout and Wind Turbine Sizing Using a Multi-Level Extended Pattern Search Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, Bryony; Cagan, Jonathan; Moriarty, Patrick

    2016-07-01

    This paper presents a system of modeling advances that can be applied in the computational optimization of wind plants. These modeling advances include accurate cost and power modeling, partial wake interaction, and the effects of varying atmospheric stability. To validate the use of this advanced modeling system, it is employed within an Extended Pattern Search (EPS)-Multi-Agent System (MAS) optimization approach for multiple wind scenarios. The wind farm layout optimization problem involves optimizing the position and size of wind turbines such that the aerodynamic effects of upstream turbines are reduced, which increases the effective wind speed and resultant power at each turbine. The EPS-MAS optimization algorithm employs a profit objective, and an overarching search determines individual turbine positions, with a concurrent EPS-MAS determining the optimal hub height and rotor diameter for each turbine. Two wind cases are considered: (1) constant, unidirectional wind, and (2) three discrete wind speeds and varying wind directions, each of which have a probability of occurrence. Results show the advantages of applying the series of advanced models compared to previous application of an EPS with less advanced models to wind farm layout optimization, and imply best practices for computational optimization of wind farms with improved accuracy.

  3. Reduced models of doubly fed induction generator system for wind turbine simulations

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Lund, Torsten

    2005-01-01

    This article compares three reduced models with a detailed model of a doubly fed induction generator system for wind turbine applications. The comparisons are based on simulations only. The main idea is to provide reduced generator models which are appropriate to simulate normal wind turbine...... fed induction generator system is very well represented by the dynamics due to the generator inertia and the generator control system, whereas the electromagnetic characteristics of the generator can be represented by the steady state relations. The parameters for the proposed models are derived from...... parameters typically available from the generator data sheet and from the controller settings. Thus the models are simple to apply in any case where the generator data sheet is available....

  4. Generic dynamic wind turbine models for power system stability analysis: A comprehensive review

    DEFF Research Database (Denmark)

    Honrubia-Escribano, A.; Gómez-Lázaro, E.; Fortmann, J.

    2018-01-01

    the subsequent changes made during the development phase. The main differences between IEC and WECC generic models are also analyzed. Not only is the final model structure presented but we also provide a complete description of the physical behavior of wind turbines facing power system stability problems......In recent years, international working groups, mainly from the International Electrotechnical Commission (IEC) and the Western Electricity Coordinating Council (WECC), have made a major effort to develop generic —also known as simplified or standard— dynamic wind turbine models to be used for power...... system stability analysis. These models are required by power system operators to conduct the planning and operation activities of their networks since the use of detailed manufacturer models is not practical. This paper presents a comprehensive review of the work done in this field, based on the results...

  5. Wind Turbine Blockset in Saber. General Overview and Description of the Model

    DEFF Research Database (Denmark)

    Iov, Florin; Timbus, Adrian Vasile; Hansen, A. D.

    This report presents a new developed Saber Toolbox for wind turbine applications. This toolbox has been developed during the research project ?Simulation Platform to model, optimize and design wind turbines?. The report provides a quick overview of the Saber and then explains the structure...... of this simulation package, which is different than other tools e.g. Matlab/Simulink. Then the structure of the toolbox is shown as well as the description of the developed models. The main focus here is to underline the special structure of the models, which are a mixture of Saber built-in blocks and new developed...... blocks. Since the developed models are based on Saber built-in blocks, a description of the libraries from Saber is given. Then some simulation results using the developed models are shown. Finally some general conclusions regarding this new developed Toolbox as well as some directions for future work...

  6. Advanced induction machine model in phase coordinates for wind turbine applications

    DEFF Research Database (Denmark)

    Fajardo, L.A.; Iov, F.; Hansen, Anca Daniela

    2007-01-01

    and the proposed ABC/abc phase coordinate with varying parameters model, in the presence of external faults. The results are promising for protection and control applications of fixed speed active stall controlled wind turbines. This new approach is useful to support control and planning of wind turbines......In this paper an advanced phase coordinates squirrel cage induction machine model with time varying electrical parameters affected by magnetic saturation and rotor deep bar effects, is presented. The model uses standard data sheet for characterization of the electrical parameters, it is developed...... in C-code and interfaced with Matlab/Simulink through an S-Function. The investigation is conducted in the way to study the ride through capability of Squirrel Cage Induction Generators and compares the behavior of the classical DQ0 model, ABC/abc model in phase coordinate with constant parameters...

  7. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    DEFF Research Database (Denmark)

    Døssing, Mads

    During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design...... numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an eective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads...... due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coecient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization....

  8. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    in this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have designed and constructed an HTS machine......A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely on in the future. The work presented...... experimental setup which is made to serve as precursor, leading towards an optimized HTS machine concept proposed for wind turbines. In part, the work presented in this thesis will focus on the description of the experimental setup and reasoning behind the choices made during the design. The setup comprises...

  9. Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions

    DEFF Research Database (Denmark)

    Sarlak, Hamid; Meneveau, C.; Sørensen, Jens Nørkær

    2015-01-01

    A series of simulations are carried out to evaluate specific features of the Large Eddy Simulation (LES) technique in wind turbine wake interactions. We aim to model wake interactions of two aligned model rotors. The effects of the rotor resolution, actuator line force filter size, and Reynolds...... number are investigated at certain tip speed ratios. The numerical results are validated against wind tunnel measurements in terms of the mean velocity, turbulence intensity and the power and thrust coefficients. Special emphasis is placed on the role played by subgrid scale (SGS) models in affecting...... the flow structures and turbine loading, as this has been studied less in prior investigations. It is found that, compared with the effects of rotor resolution and force kernel size, the SGS models have only a minor impact on the wake and predicted power performance. These observations confirm the usual...

  10. Wave Disturbance Reduction of a Floating Wind Turbine Using a Reference Model-based Predictive Control

    DEFF Research Database (Denmark)

    Christiansen, Søren; Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2013-01-01

    a controller designed for an onshore wind turbine yields instability in the fore-aft rotation. In this paper, we propose a general framework, where a reference model models the desired closed-loop behavior of the system. Model predictive control combined with a state estimator finds the optimal rotor blade...... pitch such that the state trajectories of the controlled system tracks the reference trajectories. The framework is demonstrated with a reference model of the desired closed-loop system undisturbed by the incident waves. This allows the wave-induced motion of the platform to be damped significantly...... compared to a baseline floating wind turbine controller at the cost of more pitch action....

  11. Stochastic wind turbine control in multiblade coordinates

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    pitch controller design. In this way the variability of the wind can be estimated and compensated for by the controller. The wind turbine model is in general time-variant due to its rotational nature. For this reason the modeling and control is carried out in so-called multiblade coordinates......In this paper we consider wind turbine load attenuation through model based control. Asymmetric loads caused by the wind field can be reduced by pitching the blades individually. To this end we investigate the use of stochastic models of the wind which can be included in a model based individual...

  12. Aerodynamic damping of nonlinearily wind-excited wind turbine blades

    NARCIS (Netherlands)

    Van der Male, P.; Van Dalen, K.N.; Metrikine, A.

    2013-01-01

    This paper presents the first step of the derivation of an aerodynamic damping matrix that can be adopted for the foundation design of a wind turbine. A single turbine blade is modelled as a discrete mass-spring system, representing the flap and edge wise motions. Nonlinear wind forcing is applied,

  13. Hierarchical nanoreinforced composites for highly reliable large wind turbines: Computational modelling and optimization

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2014-01-01

    , with modified, hybridor nanomodified structures. In this project, we seek to explore the potential of hybrid (carbon/glass),nanoreinforced and hierarchical composites (with secondary CNT, graphene or nanoclay reinforcement) as future materials for highly reliable large wind turbines. Using 3D multiscale......The major precondition for the successful development of wind energy in Europe is the high reliability of wind turbines, in particular, large off-shore turbines. The qualitative enhancement of the reliability of wind turbine blades can be achieved by the development of new highly damage materials...

  14. Wind Turbine Blockset in Matlab/Simulink - General overview and description of the models

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F.; Hansen, A.D.; Soerensen, P.; Blaabjerg, F.

    2004-03-01

    This report presents a new developed Matlab/Simulink Toolbox for wind turbine applications. This toolbox has been developed during the research project 'Simulation Platform to model, optimize and design wind turbines' and it has been used as a general developer tool for other three simulation tools: Saber, DIgSILENT, HAWC. The report provides first a quick overview over Matlab issues and then explains the structure of the developed toolbox. The attention in the report is mainly drawn to the description of the most important mathematical models, which have been developed in the Toolbox. Then, some simulation results using the developed models are shown. Finally, some general conclusions regarding this new developed Toolbox as well as some directions for future work are made. (au)

  15. Symbolic Solution Approach to Wind Turbine based on Doubly Fed Induction Generator Model

    DEFF Research Database (Denmark)

    Cañas–Carretón, M.; Gómez–Lázaro, E.; Martín–Martínez, S.

    2015-01-01

    This paper describes an alternative approach based on symbolic computations to simulate wind turbines equipped with Doubly–Fed Induction Generator (DFIG). The actuator disk theory is used to represent the aerodynamic part, and the one-mass model simulates the mechanical part. The 5th–order induct......This paper describes an alternative approach based on symbolic computations to simulate wind turbines equipped with Doubly–Fed Induction Generator (DFIG). The actuator disk theory is used to represent the aerodynamic part, and the one-mass model simulates the mechanical part. The 5th......–order induction generator is selected to model the electric machine, being this approach suitable to estimate the DFIG performance under transient conditions. The corresponding non–linear integro-differential equation system has been reduced to a linear state-space system by using an ad-hoc local linearization...

  16. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller...... is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without...... changing the operation of the wind turbine to a more efficient working point.; When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical...

  17. Open-loop frequency response analysis of a wind turbine using a high-order linear aeroelastic model

    DEFF Research Database (Denmark)

    Sønderby, Ivan Bergquist; Hansen, Morten Hartvig

    2014-01-01

    generator torque and collective pitch control actions of a modern non-floating wind turbine based on a high-order linear model. The model is a linearization of a geometrically non-linear finite beam element model coupled with an unsteady blade element momentum model of aerodynamic forces including effects......Wind turbine controllers are commonly designed on the basis of low-order linear models to capture the aeroelastic wind turbine response due to control actions and disturbances. This paper characterizes the aeroelastic wind turbine dynamics that influence the open-loop frequency response from......-minimum phase zeros below the frequency of the first drivetrain mode. To correctly predict the non-minimum phase zeros, it is essential to include lateral tower and blade flap degrees of freedom. Copyright © 2013 John Wiley & Sons, Ltd....

  18. Model-based fault detection for generator cooling system in wind turbines using SCADA data

    DEFF Research Database (Denmark)

    Borchersen, Anders Bech; Kinnaert, Michel

    2016-01-01

    In this work, an early fault detection system for the generator cooling of wind turbines is presented and tested. It relies on a hybrid model of the cooling system. The parameters of the generator model are estimated by an extended Kalman filter. The estimated parameters are then processed...... by an appropriate statistical change detection algorithm in order to detect faults in the cooling system. To validate the method, it has been tested on 3 years of historical data from 43 turbines. During the testing period, 16 faults occurred; 15 of these were detected by the developed method, and one false alarm...... was issued. This is an improvement compared with the current system that gives 15 detections and more than 10 false alarms. In some cases, the method detects the fault a long time before the turbine reports an alarm. A further advantage of the method is that it is based on supervisory control and data...

  19. A Comparative Analysis on the Response of a Wind-Turbine Model to Atmospheric and Terrain Effects

    Science.gov (United States)

    Howard, K. B.; Chamorro, L. P.; Guala, M.

    2016-02-01

    In a series of wind-tunnel experiments conducted at the St. Anthony Falls Laboratory, a wind-turbine model was exposed to three different thermal regimes (neutral, weakly stable and weakly convective flows) in three simple arrangements relevant to wind-farm applications: single turbine in the boundary-layer, aligned turbine-turbine, and an upwind three-dimensional sinusoidal hill aligned with the turbine. Results focus on the spatial evolution of large-scale motions developing over the different thermal and topographic boundary conditions, and on their influence on the mean and fluctuating angular velocity of the turbine rotor. As compared to the single turbine case, both the upwind hill and turbine caused a reduction in the mean angular velocity regardless of the thermal regime; the turbine angular velocity fluctuations always decreased with a turbine upwind, which depleted the energy of the large structures of the flow; however such fluctuations decreased (increased) under stably stratified (convective) conditions when the hill was present. Pre-multiplied spectra of the rotor angular velocity and two-point correlation contours of the streamwise velocity component confirmed a non-trivial link between thermal stratification and terrain complexity. It is inferred that the thermal effects occurring in the three different boundary-layer regimes modulate the spanwise motion of the hill wake and define whether the hill shelters or exposes the turbine to enhanced large-scale energetic motions.

  20. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  1. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  2. Structured Linear Parameter Varying Control of Wind Turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sloth, Christoffer; Stoustrup, Jakob

    2012-01-01

    High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this chapter, a framework for modelling and controller design of wind turbines is pre...

  3. Adaptive Extremum Control and Wind Turbine Control

    DEFF Research Database (Denmark)

    Ma, Xin

    1997-01-01

    This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important...... role. If it can be emphasis on control design. The models have beenvalidated by experimental data obtained from an existing wind turbine. The e ective wind speed experienced by the rotor of a wind turbine, which is often required by some control methods, is estimated by using a wind turbine as a wind...

  4. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  5. Reliability-Based Design of Wind Turbine Foundations – Computational Modelling

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammad Javad

    Among renewable green energy generators, wind turbines are the most technically and economically efficient. Therefore, wind power plants are experiencing a competitive increased trend in global growth. The gas and oil industry is shrouded by political conflict, not the least of which is burning...... increased cost-effectiveness in wind turbines, and an optimized design must be implemented on the expensive structural components. The traditional wind turbine foundation typically expends 25-30% of the total wind turbine budget; thus it is one of the most costly fabrication components. Therefore......, a reduction in foundation cost, and optimizing foundation structural design is the best solution to cost effectiveness. An optimized wind turbine foundation design should provide a suitable target reliability level. Unfortunately, the reliability level is not identified in most current deterministic design...

  6. Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009

    Energy Technology Data Exchange (ETDEWEB)

    Matha, D.

    2010-02-01

    This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The report also provides a description of the development process of the TLP model. The model has been verified via comparisons to frequency-domain calculations. Important differences have been identified between the frequency-domain and time-domain simulations, and have generated implications for the conceptual design process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the IEC 61400-3 offshore wind turbine design standard was performed with the verified TLP model. This report compares the loads for the wind turbine on the TLP to those of an equivalent land-based turbine. Major instabilities for the TLP are identified and described.

  7. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders

    1999-07-01

    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  8. A stochastic wind turbine wake model based on new metrics for wake characterization: A stochastic wind turbine wake model based on new metrics for wake characterization

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa, Paula [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall Ithaca 14850 New York USA; Barthelmie, Rebecca J. [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall Ithaca 14850 New York USA; Wang, Hui [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall Ithaca 14850 New York USA; Churchfield, Matthew J. [National Renewable Energy Laboratory, Golden 80401 Colorado USA

    2016-08-04

    Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between these two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.

  9. Modeling control and simulation of a prototype wind turbine using S4WT

    OpenAIRE

    Evren, Sanem

    2012-01-01

    Wind energy is a renewable and sustainable kind of energy that is becoming increasingly important in the last decades. The technologies converting wind energy into usable forms of electricity are developed as alternatives to traditional power plants that rely on fossil fuels. The smallest wind turbines are used for applications such as battery charging or auxiliary power on boats; while large grid-connected wind turbines are designed to generate commercial electricity. This thesis focuses on ...

  10. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... turbines and the central topics considered are statistical load extrapolation of extreme loads during operation and reliability assessment of wind turbine blades. Wind turbines differ from most civil engineering structures by having a control system which highly influences the loading. In the literature......, methods for estimating the extreme load-effects on a wind turbine during operation, where the control system is active, have been proposed. But these methods and thereby the estimated loads are often subjected to a significant uncertainty which influences the reliability of the wind turbine...

  11. Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance

    Directory of Open Access Journals (Sweden)

    Mihai Florian

    2015-09-01

    Full Text Available Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair and replacement activities as well as large revenue losses, mainly in the case of offshore wind farms. The recent development and evolution of condition monitoring techniques, as well as the fact that an increasing number of installed turbines are equipped with online monitoring systems, offers a large amount of information on the blades structural health to the decision maker. Further, inspections of the blades are often performed in connection with service. In light of the obtained information, a preventive type of maintenance becomes feasible, with the potential of predicting the blades remaining life to support O&M decisions for avoiding major failure events. The present paper presents a fracture mechanics based model for estimating the remaining life of a wind turbine blade, focusing on the crack propagation in the blades adhesive joints. A generic crack propagation model is built in Matlab based on a Paris law approach. The model is used within a risk-based maintenance decision framework to optimize maintenance planning for the blades lifetime.

  12. Integrated Approach Using Condition Monitoring and Modeling to Investigate Wind Turbine Gearbox Design: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Guo, Y.

    2015-03-01

    Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lower than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.

  13. Influence of Model Simplifications Excitation Force in Surge for a Floating Foundation for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt; Hindhede, Dennis; Lauridsen, Jimmy

    2015-01-01

    As offshore wind turbines move towards deeper and more distant sites, the concept of floating foundations is a potential technically and economically attractive alternative to the traditional fixed foundations. Unlike the well-studied monopile, the geometry of a floating foundation is complex and......, thereby, increases the difficulty in wave force determination due to limitations of the commonly used simplified methods. This paper deals with a physical model test of the hydrodynamic excitation force in surge on a fixed three-columned structure intended as a floating foundation for offshore wind...

  14. Phasor model of full scale converter wind turbine for small-signal stability analysis

    OpenAIRE

    Gihga, Radu; Wu, Qiuwei; Nielsen, Arne Hejde

    2017-01-01

    The small-signal stability analysis of power system electromechanical oscillations is a well-established field in control and stability assessment of power systems. The impact of large wind farms on small-signal stability of power systems has been a topic of high interest in recent years. This study presents a phasor model of full scale converter wind turbines (WTs) implemented in MATLAB/SIMULINK for small-signal stability studies. The phasor method is typically used for dynamic studies of po...

  15. State-Space Modeling and Performance Analysis of Variable-Speed Wind Turbine Based on a Model Predictive Control Approach

    Directory of Open Access Journals (Sweden)

    H. Bassi

    2017-04-01

    Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.

  16. Modeling of the wind turbine with doubly fed induction machine and its dynamic behavior in distribution networks

    International Nuclear Information System (INIS)

    Mendez Rodriguez, Christian; Badilla Solorzano, Jorge Adrian

    2014-01-01

    Wind turbines equipped with doubly fed induction generator (DFIG) are described. A model is constructed to represent the behavior of wind turbines during the connection with distribution networks. The main systems that compose a wind turbine with DFIG are specified to develop a mathematical model of each of them. The behavior of the wind turbine in the stable and transient regimes is investigated to explain its dynamics during nominal operation and contingency situations when they are connected to distribution networks. In addition, strategies to mitigate the negative effects of such situations and control strategies to contribute to the dynamics of the network are included. An integrated model of the parts of the wind turbine is built in the program SIMULINK® of MATLAB® to validate the models of the systems and to obtain a tool that allows their simulation. The wind turbine model developed is simulated in order to evaluate and to analyze the dynamic behavior under different operating conditions. The results from validations have revealed an adequate behavior for the model under normal operating conditions. In the case of behavior in contingency situations, the study is limited to the response to three-phase faults and voltage variations, and frequency under conditions of balance in the power system [es

  17. Validation of a vortex ring wake model suited for aeroelastic simulations of floating wind turbines

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    In order to evaluate aerodynamic loads on floating oshore wind turbines, advanced dynamic analysis tools are required. As a unied model that can represent both dynamic in ow and skewed in ow effects in it basic formulation, a wake model based on a vortex ring formulation is discussed. Such a model...... presents a good intermediate solution between computationally efficient but simple momentum balance methods and computationally expensive but complete computational fluid dynamics models. The model introduced is shown to be capable of modelling typical steady and unsteady test cases with reasonable...

  18. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  19. Phasor model of full scale converter wind turbine for small-signal stability analysis

    DEFF Research Database (Denmark)

    Ghiga, Radu; Wu, Qiuwei; Nielsen, Arne Hejde

    2017-01-01

    The small-signal stability analysis of power system electromechanical oscillations is a well-established field in control and stability assessment of power systems. The impact of large wind farms on small-signal stability of power systems has been a topic of high interest in recent years....... This study presents a phasor model of full scale converter wind turbines (WTs) implemented in MATLAB/SIMULINK for small-signal stability studies. The phasor method is typically used for dynamic studies of power systems consisting of large electric machines. It can also be applied to any linear system....... This represents an advantage in small-signal stability studies, which are based on modal analysis of the linearised model and are usually complemented with dynamic simulations. The proposed model can represent a single WT or an aggregated wind power plant. The implemented model for small-signal stability analysis...

  20. Implementation and Validation of IEC Generic Type 1A Wind Turbine Generator Model

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Margaris, Ioannis

    2015-01-01

    This paper presents the implementation of the International Electrotechnical Commission (IEC) generic Type 1A wind turbine generator (WTG) model in Power Factory (PF) and the validation of the implemented model against field measurements. The IEC generic Type 1A WTG model structure is briefly...... measurement validation of the implemented model was carried out by using the “play-back” approach and the measurement data from Siemens Wind Power. The results of the model to field measurement validation show that there is a good match between the simulation results and the measurements. The errors between...... described. The details are explained regarding how the two mass mechanical model is implemented when the generator mass is included in the PF built-in generator model. In order to verify the IEC generic Type 1A WTG model, the model to field measurement validation method was employed. The model to field...

  1. Wind turbine airfoil catalogue

    OpenAIRE

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe; Fuglsang, P.

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which airfoils it does not perform well compared to the experiments, as well as why, when it does so...

  2. On System Identification of Wind Turbines

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Perisic, Nevena; Pedersen, B.J.

    Recently several methods have been proposed for the system identification of wind turbines which can be considered as a linear time-varying system due to the operating conditions. For the identification of linear wind turbine models, either black-box or grey-box identification can be used....... The operational model analysis (OMA) methodology can provide accurate estimates of the natural frequencies, damping ratios and mode shapes of the systems as long as the measurements have a low noise to signal ratio. However, in order to take information about the wind turbine into account a grey...

  3. Modeling and simulation of a small wind turbine using Matlab Simulink

    Directory of Open Access Journals (Sweden)

    Dumitru Pop

    2013-12-01

    Full Text Available In this paper, a small wind turbine is analyzed. Because usually the manufactures don’t provide enough information about the turbine (especially for small turbines, the steps for obtaining this parameters are presented. A Matlab program was written to fulfill this steps and then the whole turbine was simulated in Simulink. The resulted performance curve from simulation was compared with the performance curve from the manufacture’s datasheet for validation.

  4. Modeling and simulation of a small wind turbine using Matlab Simulink

    OpenAIRE

    Dumitru Pop; Radu Tîrnovan; Liviu Neamţ; Dorin Sabou

    2013-01-01

    In this paper, a small wind turbine is analyzed. Because usually the manufactures don’t provide enough information about the turbine (especially for small turbines), the steps for obtaining this parameters are presented. A Matlab program was written to fulfill this steps and then the whole turbine was simulated in Simulink. The resulted performance curve from simulation was compared with the performance curve from the manufacture’s datasheet for validation.

  5. Reduced-order LPV model of flexible wind turbines from high fidelity aeroelastic codes

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sønderby, Ivan Bergquist; Hansen, Morten Hartvig

    2013-01-01

    of high-order linear time invariant (LTI) models. Firstly, the high-order LTI models are locally approximated using modal and balanced truncation and residualization. Then, an appropriate coordinate transformation is applied to allow interpolation of the model matrices between points on the parameter...... space. The obtained LPV model is of suitable size for designing modern gain-scheduling controllers based on recently developed LPV control design techniques. Results are thoroughly assessed on a set of industrial wind turbine models generated by the recently developed aeroelastic code HAWCStab2....

  6. Wind Turbine Manufacturing Process Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  7. Modeling, Simulation and Control of Matrix Convert for Variable Speed Wind Turbine System

    Directory of Open Access Journals (Sweden)

    M. Alizadeh Moghadam

    2015-09-01

    Full Text Available This paper presents modeling, simulation and control of matrix converter (MC for variable speed wind turbine (VSWT system including permanent magnet synchronous generator (PMSG. At a given wind velocity, the power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the PMSG shaft speed.The proposed control system allowing independent control maximum power point tracking (MPPT of generator side and regulate reactive power of grid side for the operation of the VSWT system. The MPPT is implemented by a new control system. This control system is based on control of zero d-axis current (ZDC. The ZDC control can be realized by transfer the three-phase stator current in the stationary reference frame into d-and q-axis components in the synchronous reference frame. Also this paper is presented, a novel control strategy to regulate the reactive power supplied by a variable speed wind energy conversion system. This control strategy is based on voltage oriented control (VOC. The simulation results based on Simulink/Matlab software show that the controllers can extract maximum power and regulate reactive power under varying wind velocities.

  8. Frequency Based Fault Detection in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    In order to obtain lower cost of energy for wind turbines fault detection and accommodation is important. Expensive condition monitoring systems are often used to monitor the condition of rotating and vibrating system parts. One example is the gearbox in a wind turbine. This system is operated...... in parallel to the control system, using different computers and additional often expensive sensors. In this paper a simple filter based algorithm is proposed to detect changes in a resonance frequency in a system, exemplified with faults resulting in changes in the resonance frequency in the wind turbine...... turbine fault detection and fault tolerant control benchmark model, in which one of the included faults results in a change in the gear box resonance frequency. This evaluation shows the potential of the proposed scheme to monitor the condition of wind turbine gear boxes in the existing control system....

  9. Vortex lattice modelling of winglets on wind turbine blades. 3. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2007-08-15

    The power production of wind turbines can be increased by the use of winglets without increasing the swept area. This makes them suitable for sites with restrictions in rotor diameter and in wind farms. The present project aims at understanding how winglets influences the flow and the aerodynamic forces on wind turbine blades. A free wake vortex lattice code and a fast design algorithm for a horizontal axis wind turbine under steady conditions has been developed. 2 winglet designs are treated in detail. (au)

  10. Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hyeon; Kim, Bum Suk; Huh, Jong Chul [Jeju National Univ., Jeju (Korea, Republic of); Go, Young Jun [Hanjin Ind, Co., Ltd., Yangsan (Korea, Republic of)

    2016-01-15

    The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

  11. Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still

    DEFF Research Database (Denmark)

    Pirrung, Georg; Aagaard Madsen, Helge; Schreck, Scott

    2016-01-01

    Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing...... the steady loading for the Phase VI blade in attached flow. The prediction of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where...

  12. A modified model of axial flux permanent magnet generator for wind turbine applications

    International Nuclear Information System (INIS)

    Ashraf, M.M.

    2014-01-01

    The Axial Flux Permanent Magnet Generators (AFPMGs) are gaining immense attention in the modern era. The single stage AFPMG topology consists of one stator disc which is held stationery between two revolving rotor discs attached with a common shaft. The number of poles of AFPMG depends on the winding pattern in which the coils are connected in series within stator disc. Connecting the coils in begin-to-end winding pattern, doubles the number of poles which also increases the active mass of AFPMG. The AFPMG considering begin-to-end winding pattern, can be operated at half shaft speed. This AFPMG is also having greater air gap flux density which, ultimately, improves the power density parameter of AFPMG. In this paper, a modified AFPMG has been proposed which is designed by considering begin-to-end winding pattern. A 380W single phase, single stage prototype model has been developed and tested. The test results show that power density of designed AFPMG with begin-to-end winding pattern has been improved by 32% as compared to AFPMG with begin-to-begin winding pattern. The proposed low speed and high power density AFPMG model can be actively deployed for wind turbine applications. (author)

  13. Measuring and modelling of the wind on the scale of tall wind turbines

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph

    and the friction velocity had a bias, which were related to the change in surface roughness. A higher-order boundary-layer scheme represented the wind profile of the westerly flow over sea better, while a first-order scheme modelled the flow from the east with low-level jets better. The wind profile shape...... to baroclinity. The variation of the resistance law constants in neutral, baroclinic conditions was approximately the same as in experiments that where assumed to be barotropic; part of the variation was explained by baroclinity showing the importance of including this effect when studying boundary-layer winds....

  14. Latest results from the EU project AVATAR: Aerodynamic modelling of 10 MW wind turbines

    DEFF Research Database (Denmark)

    Schepers O. Ceyhan, J. G.; Boorsma, K.; Gonzalez, A.

    2016-01-01

    This paper presents the most recent results from the EU project AVATAR in which aerodynamic models are improved and validated for wind turbines on a scale of 10 MW and more. Measurements on a DU 00-W-212 airfoil are presented which have been taken in the pressurized DNW-HDG wind tunnel up...... to a Reynolds number of 15 Million. These measurements are compared with measurements in the LM wind tunnel for Reynolds numbers of 3 and 6 Million and with calculational results. In the analysis of results special attention is paid to high Reynolds numbers effects. CFD calculations on airfoil performance...... results from 3D rotor models where a comparison is made between results from vortex wake methods and BEM methods at yawed conditions....

  15. Analysis of horizontal axis wind turbine blade using CFD | Nigam ...

    African Journals Online (AJOL)

    Blade is very essential part of HAWT (horizontal axis wind turbine). Forces for Lift and drag on the blade has an important role in the wind turbine performance. The main purpose of this work is to perform CFD analysis of a blade and airfoil of wind turbine using k-ω SST model. In this present study NACA 634 -221 airfoil ...

  16. 1:50 Scale Testing of Three Floating Wind Turbines at MARIN and Numerical Model Validation Against Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Dagher, Habib [Univ. of Maine, Orno, ME (United States); Viselli, Anthony [Univ. of Maine, Orno, ME (United States); Goupee, Andrew [Univ. of Maine, Orno, ME (United States); Allen, Christopher [Univ. of Maine, Orno, ME (United States)

    2017-08-15

    The primary goal of the basin model test program discussed herein is to properly scale and accurately capture physical data of the rigid body motions, accelerations and loads for different floating wind turbine platform technologies. The intended use for this data is for performing comparisons with predictions from various aero-hydro-servo-elastic floating wind turbine simulators for calibration and validation. Of particular interest is validating the floating offshore wind turbine simulation capabilities of NREL’s FAST open-source simulation tool. Once the validation process is complete, coupled simulators such as FAST can be used with a much greater degree of confidence in design processes for commercial development of floating offshore wind turbines. The test program subsequently described in this report was performed at MARIN (Maritime Research Institute Netherlands) in Wageningen, the Netherlands. The models considered consisted of the horizontal axis, NREL 5 MW Reference Wind Turbine (Jonkman et al., 2009) with a flexible tower affixed atop three distinct platforms: a tension leg platform (TLP), a spar-buoy modeled after the OC3 Hywind (Jonkman, 2010) and a semi-submersible. The three generic platform designs were intended to cover the spectrum of currently investigated concepts, each based on proven floating offshore structure technology. The models were tested under Froude scale wind and wave loads. The high-quality wind environments, unique to these tests, were realized in the offshore basin via a novel wind machine which exhibits negligible swirl and low turbulence intensity in the flow field. Recorded data from the floating wind turbine models included rotor torque and position, tower top and base forces and moments, mooring line tensions, six-axis platform motions and accelerations at key locations on the nacelle, tower, and platform. A large number of tests were performed ranging from simple free-decay tests to complex operating conditions with

  17. Modeling and Design Optimization of Variable-Speed Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Ulas Eminoglu

    2014-01-01

    Full Text Available As a result of the increase in energy demand and government subsidies, the usage of wind turbine system (WTS has increased dramatically. Due to the higher energy production of a variable-speed WTS as compared to a fixed-speed WTS, the demand for this type of WTS has increased. In this study, a new method for the calculation of the power output of variable-speed WTSs is proposed. The proposed model is developed from the S-type curve used for population growth, and is only a function of the rated power and rated (nominal wind speed. It has the advantage of enabling the user to calculate power output without using the rotor power coefficient. Additionally, by using the developed model, a mathematical method to calculate the value of rated wind speed in terms of turbine capacity factor and the scale parameter of the Weibull distribution for a given wind site is also proposed. Design optimization studies are performed by using the particle swarm optimization (PSO and artificial bee colony (ABC algorithms, which are applied into this type of problem for the first time. Different sites such as Northern and Mediterranean sites of Europe have been studied. Analyses for various parameters are also presented in order to evaluate the effect of rated wind speed on the design parameters and produced energy cost. Results show that proposed models are reliable and very useful for modeling and optimization of WTSs design by taking into account the wind potential of the region. Results also show that the PSO algorithm has better performance than the ABC algorithm for this type of problem.

  18. Model predictive control of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien Bruno

    -weighted model predictive control, tuned in order to target only the flapwise blade root loads at the frequencies contributing the most to blade root fatigue damage (the 1P, 2P and 3P frequencies), and to avoid unnecessary wear and tear of the actuators at high frequencies. A disturbance model consisting...... in periodic disturbances at the rotor speed harmonic frequencies and a quasi-steady input disturbance is aggregated to an analytical model of a spinning blade with trailing edge flaps. Simulations on a multi-megawatt wind turbine show the potential of the trailing edge flaps to reduce the flapwise blade root......, in Roskilde, Denmark. One blade of the turbine was equipped with three independent trailing edge flaps. In spite of the failure of several sensors and actuators, the test of the trailing edge flaps controller described in this thesis showed a consistent flapwise blade root fatigue load reduction. An average...

  19. Development and validation of a new two-dimensional wake model for wind turbine wakes

    DEFF Research Database (Denmark)

    Tian, Linlin; Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    , wind tunnel experiments, and results of an advanced k-ω turbulence model as well as large eddy simulations. From the comparisons, it is found that the proposed new wake model gives a good prediction in terms of both shape and velocity amplitude of the wake deficit, especially in the far wake which......A new two-dimensional (2D) wake model is developed and validated in this article to predict the velocity and turbulence distribution in the wake of a wind turbine. Based on the classical Jensen wake model, this model is further employing a cosine shape function to redistribute the spread...... of the wake deficit in the crosswind direction. Moreover, a variable wake decay rate is proposed to take into account both the ambient turbulence and the rotor generated turbulence, different from a constant wake decay rate used in the Jensen model. The obtained results are compared to field measurements...

  20. Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; Wallen, R.; Errichello, R.; Halse, C.; Lambert, S.

    2015-02-01

    Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.

  1. Computationally Efficient Modelling of Dynamic Soil-Structure Interaction of Offshore Wind Turbines on Gravity Footings

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    The formulation and quality of a computationally efficient model of offshore wind turbine surface foundations is examined. The aim is to establish a model, workable in the frequency and time domain, that can be applied in aeroelastic codes for fast and reliable evaluation of the dynamic structural...... to wave propagating in the subsoil–even for soil stratifications with low cut-in frequencies. In this regard, utilising discrete second-order models for the physical interpretation of a rational filter puts special demands on the Newmark β-scheme, where the time integration in most cases only provides...

  2. Investigation of the interactions between wind turbines and radio systems aimed at establishing co-siting guidelines. Phase 1: Introduction and modelling of wind turbine scatter, appendices E, F and G

    International Nuclear Information System (INIS)

    Dabis, H.S.; Chignell, R.J.

    1997-01-01

    The potential for wind turbines to interfere with radio systems can be a source of conflict between radio operators and the wind energy community. In this report, the problem of accurately predicting the effects of wind turbines on radio systems with the aim of establishing guidelines for their installation is investigated. Initially models for the scatter mechanisms that occur at the wind turbine are developed. These models predict the wind turbine radar cross section and the modulation effects due to the rotation of the blades. Initial validation of these models is established by comparing the predicted results with a set of measurements obtained from experiments performed on a 20:1 scale model wind turbine. It is shown that generally these results agree well. These results are then used in the guideline formulation to compute, for specific radio systems, regions where wind turbines cannot be installed. Examples using realistic parameters for various radio systems are presented. Further validation of the derived models is required. (author)

  3. Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2011-01-01

    Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components......, it is necessary to understand the physics of their failure and be able to develop reliability prediction models. Such a model is proposed in this paper for an IGBT power electronic module. IGBTs are critical components in wind turbine converter systems. These are multi-layered devices where layers are soldered...... and propagation processes is discussed. A statistical analysis is performed for appropriate model parameter selection. Based on the proposed model, a layout for component life prediction with crack movement is described in details....

  4. Wind turbine blockset in Saber. General overview and description of the models

    DEFF Research Database (Denmark)

    Iov, Florin; Timbus, Adrian Vasile; Hansen, Anca Daniela

    This report presents a new developed Saber Toolbox for wind turbine applications. This toolbox has been developed during the research project “Simulation Platform to model, optimize and design wind turbines”. The report provides a quick overview of the Saber and then explains the structure...... of this simulation package, which is different than other tools e.g. Matlab/Simulink. Then the structure of the toolbox is shown as well as the description of the developed models. The main focus here is to underline the special structure of the models, which are a mixture of Saber built-in blocks and new developed...... blocks. Since the developed models are based on Saber built-in blocks, a description of the libraries from Saber is given. Then some simulation results using the developed models are shown. Finally some general conclusions regarding this new developed Toolbox as well as some directions for future work...

  5. Mixed H2/H∞ Pitch Control of Wind Turbine with a Markovian Jump Model

    DEFF Research Database (Denmark)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei

    2016-01-01

    of wind turbine. Through sampling the low-frequency wind speed data into separate intervals, the stochastic characteristic of the steady wind speed can be represented as a Markov process, while the high-frequency wind speed in the each interval is regarded as the disturbance input. Then, the traditional...... to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method....

  6. Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault

    DEFF Research Database (Denmark)

    Bolik, Sigrid Mechthild

    are stated. The main motivations are the challenges related to the grid connection of wind turbines. The second chapter elucidates recent thinking in the area of grid connection by discussing several grid codes or grid requirements. In the discussion it is tried to present the view of the transmission line...... production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution...... to grid stability, power quality and behaviour during fault situations plays therefore as important a role as the reliability. The introduction of the present work briefly presents the development of wind turbine technology. Several wind turbine types are discussed and the motivations for this project...

  7. Implementation of the Actuator Cylinder Flow Model in the HAWC2 code for Aeroelastic Simulations on Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Schmidt Paulsen, Uwe

    2013-01-01

    The paper presents the implementation of the Actuator Cylinder (AC) flow model in the HAWC2 aeroelastic code originally developed for simulation of Horizontal Axis Wind Turbine (HAWT) aeroelasticity. This is done within the DeepWind project where the main objective is to explore the competitivene...

  8. Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Paul A.; Peiffer, Antoine; Schlipf, David

    2016-06-24

    This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinear aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.

  9. Megawatt wind turbines gaining momentum

    International Nuclear Information System (INIS)

    Oehlenschlaeger, K.; Madsen, B.T.

    1996-01-01

    Through the short history of the modern wind turbine, electric utilities have made it amply clear that they have held a preference for large scale wind turbines over smaller ones, which is why wind turbine builders through the years have made numerous attempts develop such machines - machines that would meet the technical, aesthetic and economic demands that a customer would require. Considerable effort was put into developing such wind turbines in the early 1980s. There was the U.S. Department of Energy's MOD 1-5 program, which ranged up to 3.2 MW, Denmark's Nibe A and B, 630 kW turbine and the 2 MW Tjaereborg machine, Sweden's Naesudden, 3 MW, and Germany's Growian, 3 MW. Most of these were dismal failures, though some did show the potential of MW technology. (au)

  10. Development of an Offshore Direct-Drive Wind Turbine Model by Using a Flexible Multibody Simulation (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Bergua, R.; Jove, J.; Campbell, J.; Guo, Y.; Van Dam, J.

    2014-05-01

    Modern wind turbines are complex, highly-coupled systems. The dynamic interaction between various components is especially pronounced for multi-megawatt wind turbines. As a result, design process is generally split in several phases. First step consists of creating a global aero-elastic model that includes essential dynamics of structural components using the minimum-possible number of degrees of freedom (d.o.f.). The most important simplifications concern drivetrain and rotor-nacelle assembly (RNA). This approach has been shown valid for several wind turbine configurations. Nevertheless, with increasing size of wind turbines, any simplified design approach must be validated. The present work deals with the comparison and validation of the two modeling approaches for directdrive offshore wind turbines. ARNA/drivetrain model idealized as collection of lumped masses and springs is compared to a detailed Finite Element Method (FEM) based model. The comparison between models focuses on dynamic loads concerning drivetrain system. The comparison is performed in several operational conditions in order to explore the range of validity of the simplified model. Finally, the paper proposes a numerical-based workflow to assess the validity of simplified models of RNA/drivetrain in an aero-elastic global WT model.

  11. A graphical interface based model for wind turbine drive train dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, J.F.; McGowan, J.G.; Abdulwahid, U.; Rogers, A. [Univ. of Massachusetts, Amherst, MA (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

    1996-12-31

    This paper presents a summary of a wind turbine drive train dynamics code that has been under development at the University of Massachusetts, under National Renewable Energy Laboratory (NREL) support. The code is intended to be used to assist in the proper design and selection of drive train components. This work summarizes the development of the equations of motion for the model, and discusses the method of solution. In addition, a number of comparisons with analytical solutions and experimental field data are given. The summary includes conclusions and suggestions for future work on the model. 13 refs., 10 figs.

  12. Wind turbine blade life-time assessment model for preventive planning of operation and maintenance

    DEFF Research Database (Denmark)

    Florian, Mihai; Sørensen, John Dalsgaard

    2014-01-01

    of information on the blades structural health to the decision maker. Further, inspections of the blades are often performed in connection with service. In light of the obtained information, a preventive type of maintenance becomes feasible, with the potential of predicting the blades remaining life to support O......&M decisions for avoiding major failure events. The present paper presents a fracture mechanics based model for estimating the remaining life of a wind turbine blade, focusing on the crack propagation in the blades adhesive joints. A generic crack propagation model is built in Matlab based on a Paris law...

  13. Investigations on macro-element modelling of bucket foundations for offshore wind turbines

    DEFF Research Database (Denmark)

    Foglia, Aligi; Govoni, Laura; Gottardi, Guido

    -model for shallow foundations proposed by Nova and Montrasio (1991) is modified to comply with the response of skirted foundations for offshore wind turbines under general loading. On the base of di Prisco et al. (2003a), the constitutive relationship is modified to account for cyclic loading. The validation......In this report a macro-element model for bucket foundations is formulated and validated against small-scale experimental results. The topics investigated are the response of the foundation under general monotonic loading and the long-term accumulated displacements under cyclic loading. The macro...

  14. Potential health impact of wind turbines

    International Nuclear Information System (INIS)

    2010-05-01

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  15. Potential health impact of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  16. Application of a ray theory model to the prediction of noise emissions from isolated wind turbines and wind parks

    International Nuclear Information System (INIS)

    Prospathopoulos, John M.; Voutsinas, Spyros G.

    2006-01-01

    Various propagation models have been developed to estimate the level of noise near residential areas. Predictions and measurements have proven that proper modelling of the propagation medium is of particular importance. In the present work, calculations are performed using a ray theory methodology. The ray trajectory and transport equations are derived from the linear acoustics equations for a moving medium in three dimensions. Ground and atmospheric absorption, wave refraction and diffraction and atmospheric turbulence are taken into account by introducing appropriate coefficients in the equations. In the case of a wind turbine (W/T) it is assumed that noise is produced by a point source located at the rotor centre. Given the sound power spectrum, the noise spectrum at the receiver is obtained by solving the axisymmetric propagation problem. The procedure consists of (a) finding the eigenrays, (b) calculating the energy losses along the eigenrays and (c) synthesizing the sound pressure level (SPL) by superposing the contributions of the eigenrays. In the case of a wind park the total SPL is calculated by superposing the contributions of all W/Ts. Application is made to five cases of isolated W/Ts in terrains of varying complexity. In flat or even smooth terrain the predictions agree well with the measurements. In complex terrain the predictions can be considered satisfactory, taking into account the assumption of constant wind velocity profile. Application to a wind park shows clearly the influence of the terrain on the wind velocity and consequently on the SPL. (Author)

  17. Frequency based Wind Turbine Gearbox Fault Detection applied to a 750 kW Wind Turbine

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Nejad, Amir R.

    2014-01-01

    turbines. One of the critical components in modern wind turbines is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself, but also due to lost power generation during repair of it. Wind turbine gearboxes are consequently monitored by condition monitoring systems...... operating in parallel with the control system, and also uses additional sensors measuring different accelerations and noises, etc. In this paper gearbox data from high fidelity gearbox model of a 750 kW wind turbine gearbox, simulated with and without faults are used to shown the potential of frequency...

  18. Wind turbine control and model predictive control for uncertain systems

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz

    as disturbance models for controller design. The theoretical study deals with Model Predictive Control (MPC). MPC is an optimal control method which is characterized by the use of a receding prediction horizon. MPC has risen in popularity due to its inherent ability to systematically account for time...

  19. Dynamics modeling and periodic control of horizontal-axis wind turbines

    Science.gov (United States)

    Stol, Karl Alexander

    2001-07-01

    The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that

  20. Towards a CFD Model for Prediction of Wind Turbine Power Losses due to Icing in Cold Climate

    DEFF Research Database (Denmark)

    Pedersen, Marie Cecilie; Sørensen, Henrik

    Icing induced power losses is an important issue when operating wind turbines in cold climate. This paper presents a concept of modelling ice accretion on wind turbines using Computational Fluid Dynamics (CFD). The modelling concept works towards unifying the processes of modelling ice accretion...... and the aerodynamic analysis of the iced object into one CFD-based icing model. Modelling of icing and obtaining ice shapes in combination with mesh update by surface boundary displacement was demonstrated in the paper. It has been done by expressing in-cloud icing in CFD by an Eulerian multiphase model, implementing...

  1. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  2. Modelling the Pultrusion Process of Off Shore Wind Turbine Blades

    DEFF Research Database (Denmark)

    Baran, Ismet

    to the quasi-static mechanical model in which the finite element method is employed. In the mechanical model, the composite part is assumed to advance along the pulling direction meanwhile tracking the corresponding temperature and degree of cure profiles. Modelling the pultrusion process containing both uni....... The compaction, viscous and frictional forces have been predicted for a pultruded composite rod. The viscous drag is found to be the main contribution in terms of the frictional force to the overall pulling force, while the contribution due to material compaction at the inlet is found to be negligible. Process...

  3. Simple Model for Describing and Estimating Wind Turbine Dynamic Inflow

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas

    2013-01-01

    a method that can be characterised as the blade element momentum method plus a dynamic equation for the induction factor. This method then needs calculations along the blade for a number of sections including numerical solution of equations. This is numerical demanding. The simplest models amounts...... model suggested here places itself in between the most complex and the most simple both in accuracy, numerical demands and physical appeal. The suggested models behavior is demonstrated by simulation and the usefulness for extended Kalman filtering is assessed both via simulated data and real full scale...

  4. Streamwise Evolution of Statistical Events in a Model Wind-Turbine Array

    Science.gov (United States)

    Viestenz, Kyle; Cal, Raúl Bayoán

    2016-02-01

    Hot-wire anemometry data, obtained from a wind-tunnel experiment containing a 3 × 3 model wind-turbine array, are used to conditionally average the Reynolds stresses. Nine profiles at the centreline behind the array are analyzed to characterize the turbulent velocity statistics of the wake flow. Quadrant analysis yields statistical events occurring in the wake of the wind farm where quadrants 2 and 4 produce ejections and sweeps, respectively. The scaled difference between these two events is expressed via the Δ R0 parameter and is based on the Δ S0 quantity as introduced by M. R. Raupach (J Fluid Mech 108:363-382, 1981). Δ R0 attains a maximum value at hub height and changes sign near the top of the rotor. The ratio of quadrant events of upward momentum flux to those of the downward flux, known as the exuberance, is examined and reveals the effect of root vortices persisting to eight rotor diameters downstream. These events are then associated with the triple correlation term present in the turbulent kinetic energy equation of the fluctuations where it is found that ejections play the dual role of entraining mean kinetic energy while convecting turbulent kinetic energy out of the turbine canopy. The development of these various quantities possesses significance in closure models, and is assessed in light of wake remediation, energy transport and power fluctuations, where it is found that the maximum fluctuation is about 30% of the mean power produced.

  5. Definition of a 5MW/61.5m wind turbine blade reference model.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  6. Aero-acoustic noise of wind turbines. Noise prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    Semi-empirical and CAA (Computational AeroAcoustics) noise prediction techniques are the subject of this expert meeting. The meeting presents and discusses models and methods. The meeting may provide answers to the following questions: What Noise sources are the most important? How are the sources best modeled? What needs to be done to do better predictions? Does it boil down to correct prediction of the unsteady aerodynamics around the rotor? Or is the difficult part to convert the aerodynamics into acoustics? (LN)

  7. Design Mining Interacting Wind Turbines.

    Science.gov (United States)

    Preen, Richard J; Bull, Larry

    2016-01-01

    An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.

  8. Damping Wind and Wave Loads on a Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Bak, Thomas; Knudsen, Torben

    2013-01-01

    Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. To enable deployment of wind turbines in deep-water locations, structures are being explored, where wind turbines are placed on a floating platform. This combined structure presents a new control problem, due...... to the partly unconstrained movement of the platform and ocean wave excitation. If this additional complexity is not dealt with properly, this may lead to a significant increase in the structural loads and, potentially, instability of the controlled system. In this paper, the wave excitation is investigated......, and we show the influence that both wind speed, wave frequencies and misalignment between wind and waves have on the system dynamics. A new control model is derived that extends standard turbine models to include the hydrodynamics, additional platform degrees of freedom, the platform mooring system...

  9. Model improvements for evaluating the effect of tower tilting on the aerodynamics of a vertical axis wind turbine

    DEFF Research Database (Denmark)

    Wang, K.; Hansen, Martin Otto Laver; Moan, T.

    2015-01-01

    in skewed flow conditions. Three different dynamic stall models are also integrated into the DMS model: Gormont's model with the adaptation of Strickland, Gormont's model with the modification of Berg and the Beddoes-Leishman dynamic stall model. Both the small Sandia 17m wind turbine and the large Deep...

  10. Modeling and Comparison of Power Converters for Doubly Fed Induction Generators in Wind Turbines

    DEFF Research Database (Denmark)

    Helle, Lars

    - an evolution which has taken place in a very short time. Further, besides the increased complexity of the wind turbines, the tendency during the late nineties and in the beginning of the new millennium has been, that the size of the turbines has doubled every third year -a progress putting a very high stress...... on the design engineers employed in the wind industry. Such a progress may force design engineers to adopt common practice from more or less related technologies rather than finding the optimum solution for the specific application. For instance when applying power electronic converters to wind turbines...... converter, the back-to-back transistor clamped three-level voltage source converter and finally the back-to-back diode clamped three-level voltage source converter. To evaluate the consequences of applying different converter topologies in a wind turbine application based on the doubly-fed induction...

  11. Frequency-Weighted Model Predictive Control of Trailing Edge Flaps on a Wind Turbine Blade

    DEFF Research Database (Denmark)

    Castaignet, Damien; Couchman, Ian; Poulsen, Niels Kjølstad

    2013-01-01

    This paper presents the load reduction achieved with trailing edge flaps during a full-scale test on a Vestas V27 wind turbine. The trailing edge flap controller is a frequency-weighted linear model predictive control (MPC) where the quadratic cost consists of costs on the zero-phase filtered...... flapwise blade root moment and trailing edge flap deflection. Frequency-weighted MPC is chosen for its ability to handle constraints on the trailing edge flaps deflection, and to target at loads with given frequencies only. The controller is first tested in servo-aeroelastic simulations, before being...

  12. Turbine Control Strategies for Wind Farm Power Optimization

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Göçmen Bozkurt, Tuhfe; Giebel, Gregor

    2015-01-01

    and wind farms. One way of achieving these goals is to optimize the power generated by a wind farm. One optimization method is to choose appropriate operating points for the individual wind turbines in the farm. We have made three models of a wind farm based on three difference control strategies...... are different. This means that choosing an appropriate control strategy for the individual wind turbines will result in an increased power production of the wind farm........ Basically, the control strategies determine the steady state operating points of the wind turbines. Except the control strategies of the individual wind turbines, the wind farm models are similar. Each model consists of a row of 5MW reference wind turbines. In the models we are able to optimize...

  13. A simple and complete model for wind turbine wakes over complex terrain

    Science.gov (United States)

    Rommelfanger, Nick; Rajborirug, Mai; Luzzatto-Fegiz, Paolo

    2017-11-01

    Simple models for turbine wakes have been used extensively in the wind energy community, both as independent tools, as well as to complement more refined and computationally-intensive techniques. These models typically prescribe empirical relations for how the wake radius grows with downstream distance x and obtain the wake velocity at each x through the application of either mass conservation, or of both mass and momentum conservation (e.g. Katić et al. 1986; Frandsen et al. 2006; Bastankhah & Porté-Agel 2014). Since these models assume a global behavior of the wake (for example, linear spreading with x) they cannot respond to local changes in background flow, as may occur over complex terrain. Instead of assuming a global wake shape, we develop a model by relying on a local assumption for the growth of the turbulent interface. To this end, we introduce to wind turbine wakes the use of the entrainment hypothesis, which has been used extensively in other areas of geophysical fluid dynamics. We obtain two coupled ordinary differential equations for mass and momentum conservation, which can be readily solved with a prescribed background pressure gradient. Our model is in good agreement with published data for the development of wakes over complex terrain.

  14. Implementation of a Generalized Actuator Line Model for Wind Turbine Parameterization in the Weather Research and Forecasting Model

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, Julie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Marjanovic, Nikola [University of California, Berkeley; Lawrence Livermore National Laboratory; Mirocha, Jeffrey D. [Lawrence Livermore National Laboratory; Kosovic, Branko [University Corporation for Atmospheric Research; Chow, Fotini Katopodes [University of California, Berkeley

    2017-12-22

    A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulations show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.

  15. Model-Based Load Estimation for Predictive Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pederen, Bo Juul; Grunnet, Jacob Deleuran

    The main objective of this paper is to present a Load Observer Tool (LOT) for condition monitoring of structural extreme and fatigue loads on the main wind turbine (WTG) components. LOT uses well-known methods from system identification, state estimation and fatigue analysis in a novel approach...... for application in condition monitoring. Fatigue loads are estimated online using a load observer and grey box models which include relevant WTG dynamics. Identification of model parameters and calibration of observer are performed offline using measurements from WTG prototype. Signal processing of estimated load...... signal is performed online, and a Load Indicator Signal (LIS) is formulated as a ratio between current estimated accumulated fatigue loads and its expected value based only on a priori knowledge (WTG dynamics and wind climate). LOT initialisation is based on a priori knowledge and can be obtained using...

  16. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  17. Observer Backstepping Control for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens

    2013-01-01

    This paper presents an observer backstepping controller as feasible solution to variable speed control of wind turbines to maximize wind power capture when operating between cut-in and rated wind speeds. The wind turbine is modeled as a two-mass drive-train system controlled by the generator torq...

  18. Observer Backstepping Control for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens

    2013-01-01

    This paper presents an observer backstepping controller as feasible solution to variable speed control of wind turbines to maximize wind power capture when operating between cut-in and rated wind speeds. The wind turbine is modeled as a two-mass drive-train system controlled by the generator torque...

  19. Nonlinear Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian

    The continuing development of wind turbines aim at higher effect production and reducing the purchase and maintenance costs for the customers. This demands that the components in the wind turbine are optimized closer to the limit than previously. In order to determine the design loads...... turbine blade with large nonlinear displacements it has shown most favorable to use the end points in the substructure for updating the moving frames. For speeding up dynamical simulations for use in e.g. active control or parameter studies, system reduction of substructures in the multibody formulation...... at the assembling point. This method is more general and can also be used to model the blade in e.g. two substructures or to model other components in the wind turbine. To determine the structural properties of a blade for use in beam element models, a FEmodel is implemented which besides the more common beam...

  20. Fatigue Reliability of Offshore Wind Turbine Systems

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2012-01-01

    Optimization of the design of offshore wind turbine substructures with respect to fatigue loads is an important issue in offshore wind energy. A stochastic model is developed for assessing the fatigue failure reliability. This model can be used for direct probabilistic design and for calibration...... of appropriate partial safety factors / fatigue design factors (FDF) for steel substructures of offshore wind turbines (OWTs). The fatigue life is modeled by the SN approach. Design and limit state equations are established based on the accumulated fatigue damage. The acceptable reliability level for optimal...... fatigue design of OWTs is discussed and results for reliability assessment of typical fatigue critical design of offshore steel support structures are presented....

  1. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    and variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...

  2. A coupled near and far wake model for wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Pirrung, Georg R.; Aagaard Madsen, Helge; Kim, Taeseong

    2016-01-01

    a radial coupling between the blade sections and provides a computation of tip loss effects that depends on the actual blade geometry and the respective operating point. Moreover, the coupling of the NWM with a BEM theory-based far wake model is presented. To avoid accounting for the near wake induction......In this paper, an aerodynamic model consisting of a lifting line-based trailed vorticity model and a blade element momentum (BEM) model is described. The focus is on the trailed vorticity model, which is based on the near wake model (NWM) by Beddoes and has been extended to include the effects...... model and full rotor computational fluid dynamics (CFD) to evaluate the steady-state results in different cases. The model is shown to deliver good results across the whole operation range of the NREL 5-MW reference wind turbine....

  3. Wake effect on a uniform flow behind wind-turbine model

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, I. V.; Mikkelsen, Robert Flemming

    2015-01-01

    LDA experiments were carried out to study the development of mean velocity profiles of the very far wake behind a wind turbine model in a water flume. The model of the rotor is placed in a middle of the flume. The initial flume flow is subjected to a very low turbulence level, limiting the influe......LDA experiments were carried out to study the development of mean velocity profiles of the very far wake behind a wind turbine model in a water flume. The model of the rotor is placed in a middle of the flume. The initial flume flow is subjected to a very low turbulence level, limiting...... the influence of external disturbances on the development of the inherent wake instability. The rotor is three-bladed and designed using Glauert’s optimum theory at a tip speed ratio λ =5 with a constant of the lift coefficient along the span, CL= 0.8. The wake development has been studied in the range of tip...

  4. Meteorological Controls on Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca J.; Hansen, Kurt Schaldemose; Pryor, S.C.

    2013-01-01

    The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient ...

  5. Development of a representative model of a wind turbine in order to study the installation of several machines on a wind park

    International Nuclear Information System (INIS)

    Jourieh, M.

    2007-12-01

    This thesis is devoted to the study of aerodynamics in wind turbines. It is divided into two main parts, one is experimental, and the other deals with modelling and numerical simulation. The velocity field downstream from a three-bladed wind turbine with a horizontal axis is explored in the wind tunnel at ENSAM-Paris. Two measurement techniques are used: hot wire anemometry and Particle Image Velocimetry (PIV). Experimental work gives a clear idea of the structure of the near wake and provides useful data to validate the numerical simulations and the hybrid models which are studied in this thesis. In the work concerning numerical simulation, two hybrid models are defined and implemented: a model of actuator disc and a model of actuator cylinder, coupled with a simulation based on the numerical resolution of the Navier-Stokes equations. These models are validated by the power of the wind turbine and on the velocity field in the near wake of the rotor. The numerical results are compared with the experimental data resulting from the tests carried out by the NREL for NREL phase II and VI cases. The experimental and numerical velocity fields are also compared in the wake of a wind turbine Rutland 503. In both validation cases, power and wake, the experimental data are in accordance with the results provided by the hybrid models. After this validation, the interaction between several wind turbines is studied and quantified. The tested hybrid models are also used to study the interaction between identical wind turbines placed one behind the other. The obtained results highlight the effect of spacing between the machines as well as the effect of free stream velocity. (author)

  6. Studying Wake Deflection of Wind Turbines in Yaw using Drag Disk Experiments and Actuator Disk Modeling in LES

    Science.gov (United States)

    Howland, Michael; Bossuyt, Juliaan; Meyers, Johan; Meneveau, Charles

    2015-11-01

    Recently, there has been a push towards the optimization in the power output of entire large wind farms through the control of individual turbines, as opposed to operating each turbine in a maximum power point tracking manner. In this vane, the wake deflection by wind turbines in yawed conditions has generated considerable interest in recent years. In order to effectively study the wake deflection according to classical actuator disk momentum theory, a 3D printed drag disk model with a coefficient of thrust of approximately 0.75 - 0.85 and a diameter of 3 cm is used, studied under uniform inflow in a wind tunnel with test section of 1 m by 1.3 m, operating with a negligible inlet turbulence level at an inflow velocity of 10 m/s. Mean velocity profile measurements are performed using Pitot probes. Different yaw angles are considered, including 10, 20, and 30 degrees. We confirm earlier results that (e.g.) a 30 degree yaw angle deflects the center of the wake around 1/2 of a rotor diameter when it impinges on a downstream turbine. Detailed comparisons between the experiments and Large Eddy Simulations using actuator disk model for the wind turbines are carried out in order to help validate the CFD model. Work supported by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project) and by ERC (ActiveWindFarms, grant no. 306471).

  7. Implementation, Comparison and Application of an Average Simulation Model of a Wind Turbine Driven Doubly Fed Induction Generator

    Directory of Open Access Journals (Sweden)

    Lidula N. Widanagama Arachchige

    2017-10-01

    Full Text Available Wind turbine driven doubly-fed induction generators (DFIGs are widely used in the wind power industry. With the increasing penetration of wind farms, analysis of their effect on power systems has become a critical requirement. This paper presents the modeling of wind turbine driven DFIGs using the conventional vector controls in a detailed model of a DFIG that represents power electronics (PE converters with device level models and proposes an average model eliminating the PE converters. The PSCAD/EMTDC™ (4.6 electromagnetic transient simulation software is used to develop the detailed and the proposing average model of a DFIG. The comparison of the two models reveals that the designed average DFIG model is adequate for simulating and analyzing most of the transient conditions.

  8. Anisotropic beam model for analysis and design of passive controlled wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Branner, K.; Blasques, J.P.; Kim, T.; Fedorov, V.A.; Berring, P.; Bitsche, R.D.; Berggreen, C.

    2012-02-15

    The main objective of the project was, through theoretical and experimental research, to develop and validate a fully coupled, general beam element that can be used for advanced and rapid analysis of wind turbine blades. This is fully achieved in the project and the beam element has even been implemented in the aeroelastic code HAWC2. It has also been demonstrated through a parametric study in the project that a promising possibility with the tool is to reduce fatigue loads through structural couplings. More work is needed before these possibilities are fully explored and blades with structural couplings can be put into production. A cross section analysis tool BECAS (BEam Cross section Analysis Software) has been developed and validated in the project. BECAS is able to predict all geometrical and material induced couplings. This tool has obtained great interest from both industry and academia. The developed fully coupled beam element and cross section analysis tool has been validated against both numerical calculations and experimental measurements. Numerical validation has been performed against beam type calculations including Variational Asymptotical Beam Section Analysis (VABS) and detailed shell and solid finite element analyses. Experimental validation included specially designed beams with built-in couplings, a full-scale blade section originally without couplings, which subsequently was modified with extra composite layers in order to obtain measurable couplings. Both static testing and dynamic modal analysis tests have been performed. The results from the project now make it possible to use structural couplings in an intelligent manner for the design of future wind turbine blades. The developed beam element is especially developed for wind turbine blades and can be used for modeling blades with initial curvature (pre-bending), initial twist and taper. Finally, it have been studied what size of structural couplings can be obtained in current and future

  9. Load prediction of stall regulated wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)

    1996-12-01

    Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs

  10. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T.; Brask, M.H. [DEFU (Denmark); Jensen, F.V.; Raben, N. [SEAS (Denmark); Saxov, J. [Nordjyllandsvaerket (Denmark); Nielsen, L. [Vestkraft (Denmark); Soerensen, P.E. [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  11. Infrasound emission generated by wind turbines

    Science.gov (United States)

    Ceranna, Lars; Pilger, Christoph

    2014-05-01

    Aerodynamic noise emissions from the continuously growing number of wind turbines in Germany are creating increasing problems for infrasound recording systems. Such systems are equipped with highly sensitive micro pressure sensors, which are accurately measuring acoustic signals in a frequency range inaudible to humans. At infrasound station IGADE, north of Bremen, a constantly increasing background noise has been observed throughout the years since its installation in 2005. The spectral peaks are reflecting well the blade passing harmonics, which vary with prevailing wind speeds. Overall, a decrease is noted for the infrasound array's detection capability. This aspect is particularly important for the other two sites of the German infrasound stations I26DE in the Bavarian Forest and I27DE in Antarctica, because plans for installing wind turbines near these locations are being under discussion. These stations are part of the International Monitoring System (IMS) verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and have to meet stringent specifications with respect to infrasonic background noise. Therefore data obtained during a field experiment with mobile micro-barometer stations for measuring the infrasonic pressure level of a single horizontal-axis wind turbine have been revisited. The results of this experiment successfully validate a theoretical model which estimates the generated sound pressure level of wind turbines and makes it possible to specify the minimum allowable distance between wind turbines and infrasound stations for undisturbed recording. Since the theoretical model also takes wind turbine design parameters into account, suitable locations for planned infrasound stations outside the determined disturbance range can be found, which will be presented; and vice versa, the model calculations' results for fixing the minimum distance for wind turbines planned for installation in the vicinity of an existing infrasound array.

  12. Implementation of IEC Generic Model of Type 1 Wind Turbine Generator in DIgSILENT PowerFactory

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Margaris, Ioannis

    2013-01-01

    The implementation method for the International Electrotechnical Commission (IEC) generic models of Type 1 wind turbine generator (WTG) in DIgSILENT PowerFactory is presented. The following items are described, i.e. model structure, model blocks and how to implement these blocks in the Power...... both normal and fault conditions. © 2013 State Grid Electric Power Research Institute Press....

  13. Robust, Gain-Scheduled Control of Wind Turbines

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck

    Wind turbines are today large and efficient machines, which are combined into wind farms operating on par with conventional power plants. When looking back, this is significantly different from the status only a few years ago, when wind turbines were sold mainly to private people. This change...... in turbine owners has resulted in a new focus on operational reliability instead of turbine size. This research deals with investigating model-based gain-scheduling control of wind turbines by use of linear parameter varying (LPV) methods. The numerical challenges grow quickly with the model size...

  14. Validation of a FAST Model of the SWAY Prototype Floating Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Koh, J. H. [Nanyang Technological Univ. (Singapore); Ng, E. Y. K. [Nanyang Technological Univ. (Singapore); Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States); Driscoll, Frederick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    As part of a collaboration of the National Renewable Energy Laboratory (NREL) and SWAY AS, NREL installed scientific wind, wave, and motion measurement equipment on the spar-type 1/6.5th-scale prototype SWAY floating offshore wind system. The equipment enhanced SWAY's data collection and allowed SWAY to verify the concept and NREL to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), in collaboration with NREL, assisted with the validation. This final report gives an overview of the SWAY prototype and NREL and NTU's efforts to validate a model of the system. The report provides a summary of the different software tools used in the study, the modeling strategies, and the development of a FAST model of the SWAY prototype wind turbine, including justification of the modeling assumptions. Because of uncertainty in system parameters and modeling assumptions due to the complexity of the design, several system properties were tuned to better represent the system and improve the accuracy of the simulations. Calibration was performed using data from a static equilibrium test and free-decay tests.

  15. Role of advanced soil modelling in the dynamic analysis of offshore wind turbines

    NARCIS (Netherlands)

    Pisano, F.; Corciulo, S.; Zanoli, Omar

    2017-01-01

    The increasing relevance of offshore wind in the energy mix motivates continual research efforts for the optimisation of foundation systems. Currently, monopiles are still the most common foundations for offshore wind turbines (OWTs), due to their simplicity and the low costs for

  16. An Evaluation of Fault Tolerant Wind Turbine Control Schemes applied to a Benchmark Model

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    an international competition on wind turbine fault tolerant control has been proposed. In this article the top three solutions from this wind fault tolerant control competition are introduced and evaluated. The evaluation presented in this paper shows that the winner of the competition performs very well...

  17. Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine

    Science.gov (United States)

    Ryan, Kevin J.; Coletti, Filippo; Elkins, Christopher J.; Dabiri, John O.; Eaton, John K.

    2016-03-01

    Three-dimensional, three-component mean velocity fields have been measured around and downstream of a scale model vertical axis wind turbine (VAWT) operated at tip speed ratios (TSRs) of 1.25 and 2.5, in addition to a non-rotating case. The five-bladed turbine model has an aspect ratio (height/diameter) of 1 and is operated in a water tunnel at a Reynolds number based on turbine diameter of 11,600. Velocity fields are acquired using magnetic resonance velocimetry (MRV) at an isotropic resolution of 1/50 of the turbine diameter. Mean flow reversal is observed immediately behind the turbine for cases with rotation. The turbine wake is highly three-dimensional and asymmetric throughout the investigated region, which extends up to 7 diameters downstream. A vortex pair, generated at the upwind-turning side of the turbine, plays a dominant role in wake dynamics by entraining faster fluid from the freestream and aiding in wake recovery. The higher TSR case shows a larger region of reverse flow and greater asymmetry in the near wake of the turbine, but faster wake recovery due to the increase in vortex pair strength with increasing TSR. The present measurement technique also provides detailed information about flow in the vicinity of the turbine blades and within the turbine rotor. The details of the flow field around VAWTs and in their wakes can inform the design of high-density VAWT wind farms, where wake interaction between turbines is a principal consideration.

  18. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The last...... two models investigated use a combination of shell and solid elements. The results from the numerical investigations are compared with measurements from testing of a section of a full-scale wind turbine blade. It is found that only the combined shell/solid models give reliable results in torsion. Both...

  19. Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Birgit Wieland

    2017-10-01

    Full Text Available The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.

  20. Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling.

    Science.gov (United States)

    Wieland, Birgit; Ropte, Sven

    2017-10-05

    The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.

  1. Convergence of Extreme Loads for Offshore Wind Turbine Support Structures

    OpenAIRE

    Stewart, Gordon; Lackner, Matthew; Arwade, Sanjay R.; Myers, Andrew T.; Hallowell, Spencer

    2015-01-01

    Extreme loads of wind turbines are historically difficult to predict through simulation due to uncertainty in input conditions as well as in the simulation models. In addition, many long time series must be simulated for the statistics of the peak loads to become stationary. Offshore wind turbines require even more simulation due to the addition of stochastic wave loading. Floating offshore wind turbines, the subject of this paper, experience free-body motion as a result of wind and wave load...

  2. Wind Turbine Performance in Controlled Conditions: BEM Modeling and Comparison with Experimental Results

    Directory of Open Access Journals (Sweden)

    David A. Johnson

    2016-01-01

    Full Text Available Predictions of the performance of operating wind turbines are challenging for many reasons including the unsteadiness of the wind and uncertainties in blade aerodynamic behaviour. In the current study an extended blade element momentum (BEM program was developed to compute the rotor power of an existing 4.3 m diameter turbine and compare predictions with reported controlled experimental measurements. Beginning with basic blade geometry and the iterative computation of aerodynamic properties, the method integrated the BEM analysis into the program workflow ensuring that the power production by a blade element agreed with its lift and drag data at the same Reynolds number. The parametric study using the extended BEM algorithm revealed the close association of the power curve behaviour with the aerodynamic characteristics of the blade elements, the discretization of the aerodynamic span, and the dependence on Reynolds number when the blades were stalled. Transition prediction also affected overall performance, albeit to a lesser degree. Finally, to capture blade finite area effects, the tip loss model was adjusted depending on stall conditions. The experimental power curve for the HAWT of the current study was closely matched by the extended BEM simulation.

  3. Modeling the reliability and maintenance costs of wind turbines using Weibull analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vachon, W.A. [W.A. Vachon & Associates, Inc., Manchester, MA (United States)

    1996-12-31

    A general description is provided of the basic mathematics and use of Weibull statistical models for modeling component failures and maintenance costs as a function of time. The applicability of the model to wind turbine components and subsystems is discussed with illustrative examples of typical component reliabilities drawn from actual field experiences. Example results indicate the dominant role of key subsystems based on a combination of their failure frequency and repair/replacement costs. The value of the model is discussed as a means of defining (1) maintenance practices, (2) areas in which to focus product improvements, (3) spare parts inventory, and (4) long-term trends in maintenance costs as an important element in project cash flow projections used by developers, investors, and lenders. 6 refs., 8 figs., 3 tabs.

  4. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    Science.gov (United States)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind

  5. Foundations for offshore wind turbines.

    Science.gov (United States)

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  6. Extreme Response for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    The characteristic load on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and type and settings of the control system. The characteristic load during operation is normally estimated by statistical extrapolation of a limited number...... of simulated 10min time series of the response according to the wind turbine standard IEC 61400-1. However, this method assumes that the individual 10min time series and the extracted peaks from the time series are independent. In the present paper is this assumption investigated based on field measurements...

  7. Implementation of draft IEC Generic Model of Type 1 Wind Turbine Generator in PowerFactory and Simulink

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Sørensen, Poul Ejnar

    2013-01-01

    This paper presents the implementation work of IEC generic model of Type 1 wind turbine generator (WTG) in two commercial simulation tools: DIgSILENT PowerFactory (PF) and Matlab Simulink. The model topology, details of the composite blocks and implementation procedure in PF and Simulink...... correctly represent the performance of Type 1 WTG for power system stability studies....

  8. Aeroelastic modelling and comparison of advanced active flap control concepts for load reduction on the Upwind 5MW wind turbine

    NARCIS (Netherlands)

    Barlas, A.; van Kuik, G.A.M.

    2009-01-01

    A newly developed comprehensive aeroelastic model is used to investigate active flap concepts on the Upwind 5MW reference wind turbine. The model is specially designed to facilitate distributed control concepts and advanced controller design. Different concepts of centralized and distributed control

  9. Aeroelastic Modelling and Comparison of Advanced Active Flap Control Concepts for Load Reduction on the Upwind 5MW Wind Turbine

    NARCIS (Netherlands)

    Barlas, A.; Van Kuik, G.A.M.

    2009-01-01

    A newly developed comprehensive aeroelastic model is used to investigate active flap concepts on the Upwind 5MW reference wind turbine. The model is specially designed to facilitate distributed control concepts and advanced controller design. Different concepts of centralized and distributed control

  10. Validation of the Beddoes-Leishman Dynamic Stall Model for Horizontal Axis Wind Turbines using MEXICO data

    NARCIS (Netherlands)

    Pereira, R.; Schepers, G.; Pavel, M.D.

    2011-01-01

    The aim of this study is to assess the load predicting capability of a classical Beddoes-Leishman dynamic stall model in a horizontal axis wind turbine (HAWT) environment, in the presence of yaw-misalignment. The dynamic stall model was tailored to the HAWT environment, and validated against

  11. Compatibility of IEC 61400-27-1 Ed 1 and WECC 2nd Generation Wind Turbine Models

    DEFF Research Database (Denmark)

    Göksu, Ömer; Sørensen, Poul Ejnar; Morales, Ana

    2016-01-01

    The IEC TC88 WG27 and the Western Electric Coordinating Council (WECC) Renewable Energy Modeling Task Force, in North America, have been developing the IEC 61400-27-1 and WECC 2nd Generation Wind Turbine generic electrical models, where the first editions are published in 2014 and 2013...

  12. Design of a novel and efficient lantern wind turbine

    Science.gov (United States)

    Ibrahim, M. D.; Wong, L. K.; Anyi, M.; Yunos, Y. S.; Rahman, M. R. A.; Mohta, M. Z.

    2017-04-01

    Wind turbine generates renewable energy when the forces acted on the turbine blades cause the rotation of the generator to produce clean electricity. This paper proposed a novel lantern wind turbine design compared to a conventional design model. Comparison is done based on simulation on coarse and fine meshing with all the results converged. Results showed that the pressure difference on the surface of novel design lantern wind turbine is much higher compared to the conventional wind turbine. Prototype is already manufactured and experimental result would be discussed in a separate future publication

  13. System Identification for the Clipper Liberty C96 Wind Turbine

    Science.gov (United States)

    Showers, Daniel

    System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.

  14. Assessment and prediction of wind turbine noise

    International Nuclear Information System (INIS)

    Lowson, M.V.

    1993-01-01

    The significance of basic aerodynamic noise sources for wind turbine noise are assessed, using information on the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. Based on this analysis, a new model for prediction of wind turbine noise is presented and comparisons made between prediction and experiment. The model is based on well established aeroacoustic theory and published laboratory data for the two principal sources, inflow turbulence and boundary layer trailing edge interaction. The new method gives good agreement with experiment with the case studied so far. Parametric trends and sensitivities for the model are presented. Comparisons with previous prediction methods are also given. A consequence of the new model is to put more emphasis on boundary layer trailing edge interaction as a noise source. There are prospects for reducing noise from this source detail changes to the wind turbine design. (author)

  15. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...... (and safe). In probabilistic design the single components are designed to a level of reliability, which accounts for an optimal balance between failure consequences, cost of operation & maintenance, material costs and the probability of failure. Furthermore, using a probabilistic design basis...

  16. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... to the event of failure in ultimate loading in flapwise bending in the normal operating condition of a site-specific turbine....

  17. Condition monitoring with wind turbine SCADA data using Neuro-Fuzzy normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar

    2012-01-01

    System (ANFIS) models are employed to learn the normal behavior in a training phase, where the component condition can be considered healthy. In the application phase the trained models are applied to predict the target signals, e.g. temperatures, pressures, currents, power output, etc. The behavior......This paper presents the latest research results of a project that focuses on normal behavior models for condition monitoring of wind turbines and their components, via ordinary Supervisory Control And Data Acquisition (SCADA) data. In this machine learning approach Adaptive Neuro-Fuzzy Interference...... the component condition Fuzzy Interference System (FIS) structures are used. Based on rules that are established with the prediction error behavior during faults previously experienced and generic rules, the FIS outputs the component condition (green, yellow and red). Furthermore a first diagnosis of the root...

  18. Shape Optimization of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun

    2009-01-01

    of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero-elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used......This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero-elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero-elastic behaviour of a real wind turbine...... in the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 k...

  19. Simulation model of a wind turbine pitch controller for grid frequency stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Cronin, Tom

    2005-06-15

    This paper describes a pitch angle controller that enables an active-stall wind turbine to dampen actively grid frequency oscillations. This builds on previous work in the area of the transient stability control of active-stall turbines. The phenomenon of grid frequency oscillations is explained briefly and then the task for the wind turbine controller defined. The pitch controller that acts as a grid frequency stabiliser is explained in terms of its layout, control sequence and parameters. Finally, a transient fault situation with subsequent grid frequency oscillations is simulated and it is shown how the grid frequency stabiliser works. The performance of the controller is discussed and the conclusion is drawn that grid frequency stabilisation with an active-stall turbine is possible under certain conditions. (Author)

  20. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The las...

  1. Validation of Simplified Load Equations Through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower

    Energy Technology Data Exchange (ETDEWEB)

    Dana, Scott [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Dam, Jeroen J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-24

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, the National Renewable Energy Laboratory (NREL) tested a small horizontal-axis wind turbine in the field at the National Wind Technology Center. The test turbine was a 2.1-kW downwind machine mounted on an 18-m multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. In particular, we compared fatigue loads as measured in the field, predicted by the aeroelastic model, and calculated using the simplified design equations. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads and a discussion about the simplified design equations is discussed.

  2. Lightning protection for wind turbines in Vietnam

    Directory of Open Access Journals (Sweden)

    Thuan Nguyen

    2017-01-01

    Full Text Available Wind energy has become increasingly important in the total electrical energy supply mix in Vietnam over the last few years. Small, kW turbines were installed in isolated areas a decade ago, while wind farms of several MW to few hundred MW are now being connected directly to national grid, with many additional projects in planning or under construction to fulfill an objective of 6% of the total installed capacity by 2030 (approximately 6200 MW of wind energy component. The increase in wind farm generation results in increased damage from lightning. In this paper, the annual frequency of lightning strikes to wind turbines in Vietnam is calculated using electrogeometric model. Reported lightning incidents to three major wind farms in Vietnam are summarized. Possible causes of failure are discussed, and an EMTP simulation for each incident was performed accordingly. The simulations suggest the failure mechanisms as well the potential of improved grounding to reduce lightning induced damage in future windfarms.

  3. Implementation and application of the actuator line model by OpenFOAM for a vertical axis wind turbine

    Science.gov (United States)

    Riva, L.; Giljarhus, K.-E.; Hjertager, B.; Kalvig, S. M.

    2017-12-01

    University of Stavanger has started The Smart Sustainable Campus & Energy Lab project, to gain knowledge and facilitate project based education in the field of renewable and sustainable energy and increase the research effort in the same area. This project includes the future installation of a vertical axis wind turbine on the campus roof. A newly developed Computational Fluid Dynamics (CFD) model by OpenFOAM have been implemented to study the wind behavior over the building and the turbine performance. The online available wind turbine model case from Bachant, Goude and Wosnik from 2016 is used as the starting point. This is a Reynolds-Averaged Navier-Stokes equations (RANS) case set up that uses the Actuator Line Model. The available test case considers a water tank with controlled external parameters. Bachant et al.’s model has been modified to study a VAWT in the atmospheric boundary layer. Various simulations have been performed trying to verify the models use and suitability. Simulation outcomes help to understand the impact of the surroundings on the turbine as well as its reaction to parameters changes. The developed model can be used for wind energy and flow simulations for both onshore and offshore applications.

  4. Wind Turbines and Human Health

    Science.gov (United States)

    Knopper, Loren D.; Ollson, Christopher A.; McCallum, Lindsay C.; Whitfield Aslund, Melissa L.; Berger, Robert G.; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health. PMID:24995266

  5. Wind turbines and human health.

    Science.gov (United States)

    Knopper, Loren D; Ollson, Christopher A; McCallum, Lindsay C; Whitfield Aslund, Melissa L; Berger, Robert G; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  6. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2011-05-15

    During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic effects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Risoe DTU optimization software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplified way allowing fast conceptual design studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an effective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coefficient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization. (Author)

  7. Structural modelling of composite beams with application to wind turbine rotor blades

    DEFF Research Database (Denmark)

    Couturier, Philippe

    The ever changing structure and growing size of wind turbine blades put focus on the accuracy and flexibility of design tools. The present thesis is organized in four parts - all concerning the development of efficient computational methods for the structural modelling of composite beams which...... represented within the elements. A post processing scheme is also presented to recover inter laminar stresses via equilibrium equations of 3D elasticity derived in the laminate coordinate system.In the final part of the thesis a flexible method for analysing two types of instabilities associated with bending...... longitudinal stresses is modelled with a Finite Strip buckling analysis based on the deformed cross-section. The analysis is well suited for early stages of design as it only requires a simple 2D line mesh of the cross-section....

  8. Model-based Estimation of Gas Leakage for Fluid Power Accumulators in Wind Turbines

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen

    2017-01-01

    for accumulators, namely gas leakage. The method utilizes an Extended Kalman Filter for joint state and parameter estimation with special attention to limiting the use of sensors to those commonly used in wind turbines. The precision of the method is investigated on an experimental setup which allows for operation...... of the accumulator similar to the conditions in a turbine. The results show that gas leakage is indeed detectable during start-up of the turbine and robust behavior is achieved in a multi-fault environment where both gas and external fluid leakage occur simultaneously. The estimation precision is shown...... to be sensitive to initial conditions for the gas temperature and volume....

  9. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn

    2013-01-01

    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...... the challenge model and the requirements for challenge participants. In addition, it motivates many of the faults by citing publications that give field data from wind turbine control tests....

  10. Optimized Control Strategy For Over Loaded Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Knudsen, Torben; Wisniewski, Rafal

    2015-01-01

    Abstract Optimized control strategy for overloaded offshore wind turbines Introduction Operation and maintenance cost are an important part of cost of energy especially for offshore wind farms. Typically unplanned service is called for due to detection off excessive loads on components, e.......g., the tower. In the process of decreasing the cost of energy of wind turbines it is relevant to continue some level of production while awaiting service and repair of the offshore wind turbine. This is typically done operating the wind turbine in a power de-rated operation mode, assuming that lower power...... generation results in lower loads on the wind turbine, which enables continued production until next service. Approach Recent results in Model Predictive Control (MPC) applied to wind turbines show a potential for presenting possible controller tunings which weighs multiple conflicting objectives...

  11. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Jensen, L.E.

    2010-01-01

    be quantified, albeit with relatively large uncertainty due to stochastic effects in the data. There is evidence of the ‘deep array effect’ in that wake losses in the centre of the wind farm are under-estimated by the wind farm model WAsP, although overall efficiency of the wind farm is well predicted due......Here, we quantify relationships between wind farm efficiency and wind speed, direction, turbulence and atmospheric stability using power output from the large offshore wind farm at Nysted in Denmark. Wake losses are, as expected, most strongly related to wind speed variations through the turbine...... thrust coefficient; with direction, atmospheric stability and turbulence as important second order effects. While the wind farm efficiency is highly dependent on the distribution of wind speeds and wind direction, it is shown that the impact of turbine spacing on wake losses and turbine efficiency can...

  12. Modern Control Design for Flexible Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. D.

    2004-07-01

    Control can improve energy capture and reduce dynamic loads in wind turbines. In the 1970s and 1980s, wind turbines used classical control designs to regulate power and speed. The methods used, however, were not always successful. Modern turbines are larger, mounted on taller towers, and more dynamically active than their predecessors. Control systems to regulate turbine power and maintain stable, closed-loop behavior in the presence of turbulent wind inflow will be critical for these designs. This report applies modern state-space control design methods to a two-bladed teetering hub upwind machine at the National Wind Technology Center (NWTC), which is managed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado. The design objective is to regulate turbine speed and enhance damping in several low-damped flexible modes of the turbine. Starting with simple control algorithms based on linear models, complexity is added incrementally until the desired performance is firmly established.

  13. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    In modern wind farms, maximum power point tracking (MPPT) is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its...... downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can...... be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control...

  14. Modelling the drained response of bucket foundations for offshore wind turbines under general monotonic and cyclic loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Gottardi, Guido; Govoni, Laura

    2015-01-01

    the typical conditions of offshore wind turbines: very large cyclic overturning moment, large cyclic horizontal load and comparatively little, self-weight induced, vertical load. The experimental soil-foundation response is interpreted within the macro-element approach, using an existing analytical model...

  15. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  16. Radar-cross-section reduction of wind turbines. part 1.

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  17. Transient LES of an offshore wind turbine

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2017-12-01

    Full Text Available The estimation of the cost of energy of offshore wind farms has a high uncertainty, which is partly due to the lacking accuracy of information on wind conditions and wake losses inside of the farm. Wake models that aim to reduce the uncertainty by modeling the wake interaction of turbines for various wind conditions need to be validated with measurement data before they can be considered as a reliable estimator. In this paper a methodology that enables a direct comparison of modeled with measured flow data is evaluated. To create the simulation data, a model chain including a mesoscale model, a large-eddy-simulation (LES model and a wind turbine model is used. Different setups are compared to assess the capability of the method to reproduce the wind conditions at the hub height of current offshore wind turbines. The 2-day-long simulation of the ambient wind conditions and the wake simulation generally show good agreements with data from a met mast and lidar measurements, respectively. Wind fluctuations due to boundary layer turbulence and synoptic-scale motions are resolved with a lower representation of mesoscale fluctuations. Advanced metrics to describe the wake shape and development are derived from simulations and measurements but a quantitative comparison proves to be difficult due to the scarcity and the low sampling rate of the available measurement data. Due to the implementation of changing synoptic wind conditions in the LES, the methodology could also be beneficial for case studies of wind farm performance or wind farm control.

  18. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    Wind turbines with a nominal effect of 5MW with a rotor diameter of up to 126m are produced today. With the increasing size wind turbines also become more and more optimized with respect to structural dimensions and material usage, without increasing the stiffness proportionally. Consequently......, large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  19. Wind turbine with lightning protection system

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  20. A wind turbine hybrid simulation framework considering aeroelastic effects

    Science.gov (United States)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  1. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models....... © 2011 American Society of Mechanical Engineers....

  2. Structural Reliability of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    and design. Reliability-based analysis methods have the potential of being a valuable tool which can improve the state of knowledge by explaining the uncertainties, and form the probabilistic basis for calibration of deterministic design tools. The present thesis focuses on reliability-based design of wind...... turbine blades. The main purpose is to draw a clear picture of how reliability-based design of wind turbines can be done in practice. The objectives of the thesis are to create methodologies for efficient reliability assessment of composite materials and composite wind turbine blades, and to map...... the uncertainties in the processes, materials and external conditions that have an effect on the health of a composite structure. The study considers all stages in a reliability analysis, from defining models of structural components to obtaining the reliability index and calibration of partial safety factors...

  3. Simplified rotor load models and fatigue damage estimates for offshore wind turbines.

    Science.gov (United States)

    Muskulus, M

    2015-02-28

    The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Wind turbine blade life-time assessment model for preventive planning of operation and maintenance

    DEFF Research Database (Denmark)

    Florian, Mihai; Sørensen, John Dalsgaard

    2014-01-01

    and replacement activities as well as large revenue losses, mainly in the case of offshore wind farms. The recent development and evolution of condition monitoring techniques, as well as the fact that an increasing number of installed turbines are equipped with online monitoring systems, offers a large amount...

  5. Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance

    DEFF Research Database (Denmark)

    Florian, Mihai; Sørensen, John Dalsgaard

    2015-01-01

    and replacement activities as well as large revenue losses, mainly in the case of offshore wind farms. The recent development and evolution of condition monitoring techniques, as well as the fact that an increasing number of installed turbines are equipped with online monitoring systems, offers a large amount...

  6. Leading edge erosion of coated wind turbine blades: Review of coating life models

    NARCIS (Netherlands)

    Slot, H.M.; Gelinck, E.R.M.; Rentrop, A.; van der Heide, Emile

    2015-01-01

    Erosion of the leading edge of wind turbine blades by droplet impingement wear, reduces blade aerodynamic efficiency and power output. Eventually, it compromises the integrity of blade surfaces. Elastomeric coatings are currently used for erosion resistance, yet the life of such coatings cannot be

  7. A new method for providing a model to analyze a kite wind turbine ...

    African Journals Online (AJOL)

    The ultimate purpose of simulating kite wind turbine is to predict the kite movement and the power generated by its mechanism. To simulate because when the initial estimate of the intended values is found, we may have to manipulate the simulation to find the most efficient design for manufacturing our system and then ...

  8. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew; Fleming, Paul; Schlipf, David; Wright, Alan; Johnson, Kathryn; Wang, Na

    2016-08-01

    The main challenges in harvesting energy from the wind arise from the unknown incoming turbulent wind field. Balancing the competing interests of reduction in structural loads and increasing energy production is the goal of a wind turbine controller to reduce the cost of producing wind energy. Conventional wind turbines use feedback methods to optimize these goals, reacting to wind disturbances after they have already impacted the wind turbine. Lidar sensors offer a means to provide additional inputs to a wind turbine controller, enabling new techniques to improve control methods, allowing a controller to actuate a wind turbine in anticipation of an incoming wind disturbance. This paper will look at the development of lidar-enhanced controls and how they have been used for various turbine load reductions with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wake impacts in a wind farm.

  9. Built Environment Wind Turbine Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsyth, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sinclair, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oteri, F. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy’s National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  10. Modelling and Analysis of Radial Flux Surface Mounted Direct-Driven PMSG in Small Scale Wind Turbine

    Directory of Open Access Journals (Sweden)

    Theint Zar Htet

    2017-11-01

    Full Text Available This paper presents the modelling and analysis of permanent magnet synchronous generator (PMSG which are used in direct driven small scale wind turbines. The 3 kW PM generator which is driven directly without gear system is analyzed by Ansoft Maxwell 2D RMxprt. The performance analysis of generator includes the cogging torque in two teeth, induced coil voltages under load, winding current under load, airgap flux density distribution and so on. The modelling analysis is based on the 2D finite element techniques. In an electrical machine, an accurate determination of the geometry parameters is a vital role. The proper performance results of 3kW PMSG in small scale wind turbine can be seen in this paper.

  11. Modeling of quasi-static thrust load of wind turbines based on 1 s SCADA data

    Directory of Open Access Journals (Sweden)

    N. Noppe

    2018-03-01

    Full Text Available A reliable load history is crucial for a fatigue assessment of wind turbines. However, installing strain sensors on every wind turbine is not economically feasible. In this paper, a technique is proposed to reconstruct the thrust load history of a wind turbine based on high-frequency Supervisory Control and Data Acquisition (SCADA data. Strain measurements recorded during a short period of time are used to train a neural network. The selection of appropriate input parameters is performed based on Pearson correlation and mutual information. Once the training is done, the model can be used to predict the thrust load based on SCADA data only. The technique is validated on two different datasets, one consisting of simulation data (using the software FAST v8, created by Jonkman and Jonkman, 2016 obtained in a controllable environment and one consisting of measurements taken at an offshore wind turbine. In general, the relative error between simulated or measured and predicted thrust load barely exceeds 15 % during normal operation.

  12. Modelling and Design of a 3 kW Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines

    Directory of Open Access Journals (Sweden)

    Acharya Parash

    2016-01-01

    Full Text Available This paper presents the modeling and design of a 3 kW Permanent Magnet Synchronous Generator (PMSG used for a variable speed wind turbine. Initially, the PMSG is modeled in the d-q reference frame. Different optimized parameters of the generator are extracted from the design and used in simulation of the PMSG. The generator output power is matched with the power of the turbine such that the generator is not either over-sized or under-sized.

  13. Model-Based Fault Detection and Isolation of a Liquid-Cooled Frequency Converter on a Wind Turbine

    DEFF Research Database (Denmark)

    Li, Peng; Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    With the rapid development of wind energy technologies and growth of installed wind turbine capacity in the world, the reliability of the wind turbine becomes an important issue for wind turbine manufactures, owners, and operators. The reliability of the wind turbine can be improved by implementing...... system is derived based on energy balance equation. A fault analysis is conducted to determine the severity and occurrence rate of possible component faults and their end effects in the cooling system. A method using unknown input observer is developed in order to detect and isolate the faults based...

  14. Rotor and wind turbine formalism

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The main conventions used in this book for the study of rotors are introduced in this chapter. The main assumptions and notations are provided. The formalism specific to wind turbines is presented. The forces, moments, velocities and dimensionless coefficients used in the study of rotors...

  15. Danish wind turbines: Technical-economic feasibility of commercial models; Indagine statistica sugli aereogeneratori commerciali danesi

    Energy Technology Data Exchange (ETDEWEB)

    Falchetta, M. [ENEA, Camugnano (Italy). Centro Ricerche Energia Brasimone

    1992-12-31

    This feasibility study examines the principal technical and economic (investment-manufacturing-installation-operation unit costs, supply and demand) characteristics of wind turbines being commercialized in Denmark. The general configuration of the 150 to 450 kW range machines currently being manufactured can be described as that of a three bladed fibreglass rotor, of from 24 to 35 meters in diameter, and mounted on a tower of from 29 to 41 meters in height. The electrical system consists of one asynchronous generator or a two generator system with a power ratio of 1 to 5 between the two generators. The cost analysis reveals that the Danish wind turbines are competitively priced, with per kWh costs varying from $0. 0675 to $0. 040 for operating wind speeds ranging from 5 to 7 m/sec, and that their overall design and performance characteristics make them suitable for Italian site conditions.

  16. Fault tolerant control of wind turbines using unknown input observers

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    This paper presents a scheme for accommodating faults in the rotor and generator speed sensors in a wind turbine. These measured values are important both for the wind turbine controller as well as the supervisory control of the wind turbine. The scheme is based on unknown input observers, which...... are also used to detect and isolate these faults. The scheme is tested on a known benchmark for FDI and FTC of wind turbines. Tests on this benchmark model show a clear potential of the proposed scheme....

  17. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  18. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    established from the on-site distribution functions of the horizontal mean wind speeds, the 90% quantile of turbulence along with average values of vertical wind shear and air density and the maximum flow inclination. This paper investigates the accuracy of fatigue loads estimated using this equivalent wind...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...... and Høvsøre in Denmark have been used to estimate the natural variation in the wind conditions between 10 min time periods. The structural wind turbine loads have been simulated using the aero-elastic model FAST. The results show that using a 90% quantile for the turbulence leads to an accurate assessment...

  19. Compatibility of IEC 61400-27-1 Ed 1 and WECC 2nd Generation Wind Turbine Models

    OpenAIRE

    Göksu, Ömer; Sørensen, Poul Ejnar; Morales, Ana; Weigel, Stefan; Fortmann, Jens; Pourbeik, Pouyan

    2016-01-01

    The IEC TC88 WG27 and the Western Electric Coordinating Council (WECC) Renewable Energy Modeling Task Force, in North America, have been developing the IEC 61400-27-1 and WECC 2nd Generation Wind Turbine generic electrical models, where the first editions are published in 2014 and 2013, respectively. Although the two working groups have been collaborating closely, there are small differences between the approaches of the two modelling standards, especially in terms of parameter sets and compl...

  20. Implementation of draft IEC Generic Model of Type 1 Wind Turbine Generator in PowerFactory and Simulink

    OpenAIRE

    Zhao, Haoran; Wu, Qiuwei; Sørensen, Poul Ejnar; Bech, John; Andresen, Bjørn

    2013-01-01

    This paper presents the implementation work of IEC generic model of Type 1 wind turbine generator (WTG) in two commercial simulation tools: DIgSILENTPowerFactory (PF) and Matlab Simulink. The model topology, details of the composite blocks and implementation procedure in PF and Simulink environments are described. Case studies under both normal and fault conditions have been conducted with the implemented IEC Type 1 WTG model. The dynamicresponses are captured and analyzed. The simulation res...

  1. Sound wave contours around wind turbine arrays

    International Nuclear Information System (INIS)

    Van Beek, A.; Van Blokland, G.J.

    1993-02-01

    Noise pollution is an important factor in selecting suitable sites for wind turbines in order to realize 1000 MW of wind power as planned by the Dutch government for the year 2000. Therefore an accurate assessment of wind turbine noise is important. The amount of noise pollution from a wind turbine depends on the wind conditions. An existing standard method to assess wind turbine noise is supplemented and adjusted. In the first part of the investigation the method was developed and applied for a solitary sound source. In the second part attention is paid to the use of the method for wind turbine arrays. It appears that the adjusted method results in a shift of the contours of the permitted noise level. In general the contours are 15-25% closer to the wind farm, which means that the minimal permitted distance between houses and wind turbine arrays can be reduced. 14 figs., 1 tab., 4 appendices, 7 refs

  2. Mapping Ontario’s Wind Turbines: Challenges and Limitations

    Directory of Open Access Journals (Sweden)

    Tanya Christidis

    2013-11-01

    Full Text Available Despite rapid and vast development of wind turbines across the Canadian province of Ontario, there is no map available indicating the location of each wind turbine. A map of this nature is crucial for health and environmental risk research and has many applications in other fields. Research examining health and wind turbines is limited by the available maps showing the nearest community to a wind farm as opposed to each unique wind turbine. Data from provincial-level organizations, developers, and municipalities were collected using government development approval documents, planning documents, and data given directly from municipalities and developers. Wind turbines were mapped using Google Earth, coordinate lists, shapefiles, and translating data from other maps. In total, 1,420 wind turbines were mapped from 56 wind farms. The limitations of each data source and mapping method are discussed. There are numerous challenges in creating a map of this nature, for example incorrect inclusion of wind farms and inaccuracies in wind turbine locations. The resultant map is the first of its kind to be discussed in the literature, can be used for a variety of health and environmental risk studies to assess dose-response, wind turbine density, visibility, and to create sound and vibration models.

  3. Experimental Investigation of the Wind Turbine Blade Root Flow

    NARCIS (Netherlands)

    Akay, B.; Ferreira, C.S.; Van Bussel, G.J.W.

    2010-01-01

    Several methods from experimental to analytical are used to investigate the aerodynamics of a horizontal axis wind turbine. To understand 3D and rotational effects at the root region of a wind turbine blade, correct modeling of the flow field is essential. Aerodynamic models need to be validated by

  4. Results of a wind turbine FDI competition

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    In this paper some newly published methods for fault detection and isolation developed for a wind turbine benchmark model are tested, compared and evaluated. These methods have been presented as a part of an international competition. The tested methods cover different types of fault detection...

  5. PIV and Hotwire Measurement and Analysis of Tip Vortices and Turbulent Wake Generated by a Model Horizontal Axis Wind Turbine

    Science.gov (United States)

    Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.

    2011-12-01

    Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 μm and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single

  6. Gain-Scheduled Model Predictive Control of Wind Turbines using Laguerre Functions

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Wisniewski, Rafal; Larsen, Lars Finn Sloth

    2014-01-01

    This paper presents a systematic approach to design gain-scheduled predictive controllers for wind turbines. The predictive control law is based on Laguerre functions to parameterize control signals and a parameter-dependent cost function that is analytically determined from turbine data....... The approach can be utilized to the design of new controllers and to represent existing gain-scheduled controllers as predictive controllers. The numerical example and simulations illustrate the design of a speed controller augmented with active damping of the tower fore-aft displacement....

  7. Dynamic survey of wind turbine vibrations

    Science.gov (United States)

    Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi; Pan, Chieh-Chen; Huang, Chi-Luen; Cheng, Tao-Ming

    2016-04-01

    Six wind turbines were blown to the ground by the wind gust during the attack of Typhoon Soudelor in August 2015. Survey using unmanned aerial vehicle, UAV, found the collapsed wind turbines had been broken at the lower section of the supporting towers. The dynamic behavior of wind turbine systems is thus in need of attention. The vibration of rotor blades and supporting towers of two wind turbine systems have been measured remotely using IBIS, a microwave interferometer. However the frequency of the rotor blade can be analyzed only if the microwave measurements are taken as the wind turbine is parked and secured. Time-frequency analyses such as continuous wavelet transform and reassigned spectrograms are applied to the displacement signals obtained. A frequency of 0.44Hz exists in both turbines B and C at various operating conditions. Possible links between dynamic characteristics and structural integrity of wind turbine -tower systems is discussed.

  8. The noise generated by wind turbines

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Sound propagation damps down with distance and varies according to different parameters like wind direction and temperature. This article begins by recalling the basic physics of sound wave propagation and gives a list of common noises and corresponding decibels. The habitual noise of wind turbines 500 m away is 35 decibels which ranks it between a quiet bedroom (30 decibels) and a calm office (40 decibels). The question about whether wind turbines are a noise nuisance is all the more difficult as the feeling of a nuisance is so objective and personal. Any project of wind turbines requires a thorough study of its estimated acoustic impact. This study is a 3 step approach: first the initial noise environment is measured, secondly the propagation of the sound generated by the wind turbine farm is modelled and adequate mitigation measures are proposed to comply the law. The law stipulates that the increase of noise must be less than 5 db during daylight and less than 3 db during night. (A.C.)

  9. Smart Wind Turbine : Analysis and Autonomous Flap

    NARCIS (Netherlands)

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure,

  10. A New Approach for Offshore Wind Farm Energy Yields Calculation with Mixed Hub Height Wind Turbines

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Soltani, Mohsen

    2016-01-01

    In this paper, a mathematical model for calculating the energy yields of offshore wind farm with mixed types of wind turbines is proposed. The Jensen model is selected as the base and developed to a three dimension wake model to estimate the energy yields. Since the wind turbines are with differe...... hub heights, the wind shear effect is also taken into consideration. The results show that the proposed wake model is effective in calculating the wind speed deficit. The calculation framework is applicable for energy yields calculation in offshore wind farms.......In this paper, a mathematical model for calculating the energy yields of offshore wind farm with mixed types of wind turbines is proposed. The Jensen model is selected as the base and developed to a three dimension wake model to estimate the energy yields. Since the wind turbines are with different...

  11. Optimum Operational Parameters for Yawed Wind Turbines

    Directory of Open Access Journals (Sweden)

    David A. Peters

    2011-01-01

    Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.

  12. Extreme winds and waves for offshore turbines: Coupling atmosphere and wave modeling for design and operation in coastal zones

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Bolanos, Rodolfo; Du, Jianting

    modeling for oshore wind farms. This modeling system consists of the atmospheric Weather Research and Forecasting (WRF) model, the wave model SWAN and an interface the Wave Boundary Layer Model WBLM, within the framework of coupled-ocean-atmosphere-wave-sediment transport modeling system COAWST...... (Hereinafter the WRF-WBLM-SWAN model). WBLM is implemented in SWAN, and it calculates stress and kinetic energy budgets in the lowest atmospheric layer where the wave-induced stress is introduced to the atmospheric modeling. WBLM ensures consistent calculation of stress for both the atmospheric and wave......, which can aect the choice of the off-shore wind turbine type. X-WiWa examined various methodologies for wave modeling. The offline coupling system using atmospheric data such as WRF or global reanalysis wind field to the MIKE 21 SW model has been improved with considerations of stability, air density...

  13. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  14. Self-starting aerodynamics analysis of vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Jianyang Zhu

    2015-12-01

    Full Text Available Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter definitions are presented. Secondary, the interaction model between the vertical axis wind turbine and fluid is developed by using the weak coupling approach; the numerical data of this model are then compared with the wind tunnel experimental data to show its feasibility. Third, the effects of solidity and fixed pitch angle on the self-starting aerodynamic characteristics of the vertical axis wind turbine are analyzed systematically. Finally, the quantification effects of the solidity and fixed pitch angle on the self-starting performance of the turbine can be obtained. The analysis in this study will provide straightforward physical insight into the self-starting aerodynamic characteristics of vertical axis wind turbine.

  15. Is a wind turbine a point source? (L).

    Science.gov (United States)

    Makarewicz, Rufin

    2011-02-01

    Measurements show that practically all noise of wind turbine noise is produced by turbine blades, sometimes a few tens of meters long, despite that the model of a point source located at the hub height is commonly used. The plane of rotating blades is the critical location of the receiver because the distances to the blades are the shortest. It is shown that such location requires certain condition to be met. The model is valid far away from the wind turbine as well.

  16. Data report: the wake of a horizontal-axis wind turbine model, measurements in uniform approach flow and in a simulated atmospheric boundary layer

    NARCIS (Netherlands)

    Talmon, A.M.

    1985-01-01

    Wake effects will cause power loss when wínd turbínes are grouped in so called wind turbine parks. Wind tunnel measurements of the wake of a wind turbíne model are conducted in order to refine calculatíons of wake effects. Wake effects caused by tower and nacelle are studied in uniform flow. Wake

  17. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  18. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  19. Effects of extreme wind shear on aeroelastic modal damping of wind turbines

    DEFF Research Database (Denmark)

    Skjoldan, P.F.; Hansen, Morten Hartvig

    2013-01-01

    Wind shear is an important contributor to fatigue loads on wind turbines. Because it causes an azimuthal variation in angle of attack, it can also affect aerodynamic damping. In this paper, a linearized model of a wind turbine, based on the nonlinear aeroelastic code BHawC, is used to investigate...

  20. Design and development of nautilus whorl-wind turbine

    Science.gov (United States)

    R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya

    2017-07-01

    Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.

  1. Validated Loads Prediction Models for Offshore Wind Turbines for Enhanced Component Reliability

    DEFF Research Database (Denmark)

    Koukoura, Christina

    are used for the modification of the sub-structure/foundation design for possible material savings. First, the background of offshore wind engineering, including wind-wave conditions, support structure, blade loading and wind turbine dynamics are presented. Second, a detailed description of the site...... is given and the metocean conditions are analyzed. The joint wind-wave distribution and the probability of the misalignment angles are estimated. Third, the calibration process of the different components is thoroughly depicted. The turbulence intensity implemented in the simulations is extracted from...... response of a boat impact. The first and second modal damping of the system during normal operation both from measurements and simulations are identified with the implementation of the Enhanced Frequency Domain Decomposition technique. The effect of damping on the side-side fatigue of the support structure...

  2. Stochastic dynamic stiffness of surface footing for offshore wind turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    Highlights •This study concerns the stochastic dynamic stiffness of foundations for large offshore wind turbines. •A simple model of wind turbine structure with equivalent coupled springs at the base is utilized. •The level of uncertainties is quantified through a sensitivity analysis. •Estimatio...... of rare events of first natural frequency applying subset simulation is discussed....

  3. Load calculation methods for offshore wind turbine foundations

    DEFF Research Database (Denmark)

    Passon, Patrik; Branner, Kim

    2014-01-01

    Calculation of design loads for offshore wind turbine (OWT) foundations is typically performed in a joint effort between wind turbine manufactures and foundation designers (FDs). Ideally, both parties would apply the same fully integrated design tool and model for that purpose. However, such solu...

  4. Prognosticating fault development rate in wind turbine generator bearings using local trend models

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Palou, Jonel; Sweeney, Christian Walsted

    2016-01-01

    Generator bearing defects, e.g. ball, inner and outer race defects, are ranked among the most frequent mechanical failures encountered in wind turbines. Diagnosis and prognosis of bearing faults can be successfully implemented using vibration based condition monitoring systems, where tracking...... to maintenance planning and component replacement. The above approach offers numerous benefits from financial and operational perspective, such as increased availability, uptower repairs and minimization of secondary and catastrophic damages. In this work, a non-speed related condition indicator, measuring...

  5. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  6. Preview-based Asymmetric Load Reduction of Wind Turbines

    DEFF Research Database (Denmark)

    Madsen, Mathias; Filsø, Jakob; Soltani, Mohsen

    2012-01-01

    Fatigue loads on wind turbines caused by an asymmetric wind field become an increasing concern when the scale of wind turbines increases. This paper presents a model based predictive approach to reduce asymmetric loads by using Light Detection And Ranging (LIDAR) measurements. The Model Predictive...... Controller (MPC) developed is based on a model with individual blade pitching to utilize the LIDAR measurements. The MPC must also maintain a given power reference while satisfying a set of actuator constraints. The designed controller was tested on a 5 MW wind turbine in the FAST simulator and compared...

  7. Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    in this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have design and constructed a HTS machine experimental...... still be optimized towards more competitive alternative to conventional machines. Additionally, by constructing the HTS machine setup we went through most of the issues related to the HTS machine design which we managed to address in rather simple manner using everyday materials and therefore proving......A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely in the future. The work presented...

  8. Toward an engineering model for the aerodynamic forces acting on wind turbine blades in quasisteady standstill and blade installation situations

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Heinz, Joachim Christian; Skrzypinski, Witold Robert

    2016-01-01

    The crossflow principle is one of the key elements used in engineering models for prediction of the aerodynamic loads on wind turbine blades in standstill or blade installation situations, where the flow direction relative to the wind turbine blade has a component in the direction of the blade span...... direction. In the present work, the performance of the crossflow principle is assessed on the DTU 10MW reference blade using extensive 3D CFD calculations. Analysis of the computational results shows that there is only a relatively narrow region in which the crossflow principle describes the aerodynamic...... for the key aerodynamic loads in crossflow situations. The general validity of this model for other blade shapes should be investigated in subsequent works....

  9. On the Fatigue Analysis of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  10. RBI Optimization of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    Wind turbines for electricity production have increased significantly the last years both in production capability and size. This development is expected to continue also in the coming years. Offshore wind turbines with an electricity production of 5-10 MW are planned. Typically, the wind turbine...... support structure is a steel structure consisting of a tower and a monopile, tripod or jacket type foundation. This paper considers aspects of inspection and maintenance planning of fatigue prone details in jacket and tripod type of wind turbine support structures. Based on risk-based inspection planning...... methods for oil & gas installations, a framework for optimal inspection and maintenance planning of offshore wind turbines is presented. Special aspects for offshore wind turbines considered are the fatigue loading characteristics where usually the wind loading are dominating the wave loading, wake...

  11. Fault ride-through and voltage support of permanent magnet synchronous generator wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Michalke, G.; Hartkopf, T. [Darmstadt Technical Univ., Dept. of Renewable Energies (Germany); Hansen, A.D. [Risoe National Lab., DTU, Wind Energy Dept. (Denmark)

    2007-11-15

    This paper presents a control strategy of direct driven multipole PMSG wind turbines, which enhances the fault ride-through and voltage support capability of such wind turbines during grid faults. A dynamic simulation model of the turbine is implemented in the simulation software DIgSILENT. Simulation results approve the effectiveness of the developed control strategy. It is shown that PMSG wind turbines equipped with such control even enable nearby connected conventional wind turbines to ride-through grid faults. (au)

  12. Demonstration of a Basis for Tall Wind Turbine Design, EUDP Project Final Report

    DEFF Research Database (Denmark)

    Natarajan, Anand; Dimitrov, Nikolay Krasimirov; Madsen, Peter Hauge

    Wind turbine design using calibrated wind models have been proposed to be used in conjunction with load cases which lead to reduced uncertainties in the design of wind turbines with hub heights above 60m. These recommended wind profiles have been made for shear, wind directional change and turbul......Wind turbine design using calibrated wind models have been proposed to be used in conjunction with load cases which lead to reduced uncertainties in the design of wind turbines with hub heights above 60m. These recommended wind profiles have been made for shear, wind directional change...

  13. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  14. New wind turbines of high profitability

    International Nuclear Information System (INIS)

    Vrsalovic, I.

    1999-01-01

    To generate more quantities of electric energy from wind it is necessary to use the new type of wind turbine built in regulable mantle's nozzle, which the free air stream of wind replaces in programmed i.e. regulated and partially concentrated. In this way their efficiency is multiplied. New turbines are getting more power (P = f(v 3 )) from cube of higher speeds from weaker and medium winds. Short economic analysis evidently indicates that profit achieved by new wind turbines is 5 (five) times higher than that by conventional turbines. (author)

  15. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  16. Load Extrapolation During Operation for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In the recent years load extrapolation for wind turbines has been widely considered in the wind turbine industry. Loads on wind turbines during operations are normally dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. All these parameters...... must be taken into account when characteristic load effects during operation are determined. In the wind turbine standard IEC 61400-1 a method for load extrapolation using the peak over threshold method is recommended. In this paper this method is considered and some of the assumptions are examined...

  17. Developing a type-III wind turbine model for stability studies of the Hydro-Quebec network

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, Charles-Eric; Lefebvre, Daniel [Hydro-Quebec TransEnergie, Montreal, QC (Canada); Dube, Laurent [DEI Technology, Montreal, QC (Canada); Gagnon, Richard [Hydro-Quebec IREQ, Varennes, QC (Canada)

    2009-07-01

    This paper presents a type-III (with DFIG) wind turbine model developed by Hydro-Quebec for stability studies. The model was built in EMTPWorks for use in PSS/E via an EMTP-PSS/E multi-model interface, also developed by Hydro-Quebec. The type-III model includes a physical representation of the asynchronous generator with rotor flux transients and two-mass shaft dynamics. The paper describes the turbine controls and discusses the design basis of the model. The model was validated with a full-transient detailed MATLAB/SimPowerSystems model developed by Hydro-Quebec. The latter was successfully compared with measurements from some disturbances on the Hydro-Quebec network. Test comparisons with a type-III generic model from the PSS/E library are presented. (orig.)

  18. Electrical components library for HAWC2; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N.A.; Larsen, Torben J.; Soerensen, Poul; Hansen, Anca D. (Risoe National Lab., DTU, Wind Energy Dept., Roskilde (DK)); Iov, F. (Aalborg Univ., Institute of Energy Technology (DK))

    2007-12-15

    The work presented in this report is part of the EFP project called ''A Simulation Platform to Model, Optimize and Design Wind Turbines'' partly funded by the Danish Energy Authority under contract number 1363/04-0008. The project is carried out in cooperation between Risoe National Laboratory and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state and dynamical models for fixed and variable speed wind turbines. A simple steady-state slip model was developed for the fixed speed wind turbine. This model is suitable for aeroelastic design of wind turbines under normal operation. A dynamic model of an induction generator for the fixed speed wind turbine was developed. The model includes the dynamics of the rotor fluxes. The model is suitable for a more detailed investigation of the mechanical-electrical interaction, both under normal and fault operation. For the variable speed wind turbine, a steadystate model, typically used in aeroelastic design, was implemented. The model can be used for normal and, to some extent, for fault operation. The reduced order dynamic model of a DFIG was implemented. The model includes only the active power controller and can be used for normal operation conditions. (au)

  19. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Barahona, B.; Jonkman, J.; Damiani, R.; Robertson, A.; Hayman, G.

    2014-12-01

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshore Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.

  20. Active Power Optimal Control of Wind Turbines with Doubly Fed Inductive Generators Based on Model Predictive Control

    OpenAIRE

    Guo Jiuwang; Liu Xingjie; Wei Wang

    2015-01-01

    Because of the randomness and fluctuation of wind energy, as well as the impact of strongly nonlinear characteristic of variable speed constant frequency (VSCF) wind power generation system with doubly fed induction generators (DFIG), traditional active power control strategies are difficult to achieve high precision control and the output power of wind turbines is more fluctuated. In order to improve the quality of output electric energy of doubly fed wind turbines, on the basis of analyzing...