WorldWideScience

Sample records for model wide bandgap

  1. Thermal modeling of wide bandgap materials for power MOSFETs

    Science.gov (United States)

    Manandhar, Mahesh B.; Matin, Mohammad A.

    2016-09-01

    This paper investigates the thermal performance of different wide bandgap (WBG) materials for their applicability as semiconductor material in power electronic devices. In particular, Silicon Carbide (SiC) and Gallium Nitride (GaN) are modeled for this purpose. These WBG materials have been known to show superior intrinsic material properties as compared to Silicon (Si), such as higher carrier mobility, lower electrical and thermal resistance. These unique properties have allowed for them to be used in power devices that can operate at higher voltages, temperatures and switching speeds with higher efficiencies. Digital prototyping of power devices have facilitated inexpensive and flexible methods for faster device development. The commercial simulation software COMSOL Multiphysics was used to simulate a 2-D model of MOSFETs of these WBG materials to observe their thermal performance under different voltage and current operating conditions. COMSOL is a simulation software that can be used to simulate temperature changes due to Joule heating in the case of power MOSFETs. COMSOL uses Finite Element/Volume Analysis methods to solve for variables in complex geometries where multiple material properties and physics are involved. The Semiconductor and Heat Transfer with Solids modules of COMSOL were used to study the thermal performance of the MOSFETs in steady state conditions. The results of the simulations for each of the two WBG materials were compared with that of Silicon to determine relative stability and merit of each material.

  2. Wide-Bandgap Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, M.S.

    2005-11-22

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters

  3. Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal

    Science.gov (United States)

    D'Alessandro, L.; Belloni, E.; Ardito, R.; Corigliano, A.; Braghin, F.

    2016-11-01

    This paper reports a comprehensive modeling and experimental characterization of a three-dimensional phononic crystal composed of a single material, endowed with an ultra-wide complete bandgap. The phononic band structure shows a gap-mid gap ratio of 132% that is by far the greatest full 3D bandgap in literature for any kind of phononic crystals. A prototype of the finite crystal structure has been manufactured in polyamide by means of additive manufacturing technology and tested to assess the transmission spectrum of the crystal. The transmission spectrum has been numerically calculated taking into account a frequency-dependent elastic modulus and a Rayleigh model for damping. The measured and numerical transmission spectra are in good agreement and present up to 75 dB of attenuation for a three-layer crystal.

  4. A generation/recombination model assisted with two trap centers in wide band-gap semiconductors

    Science.gov (United States)

    Yamaguchi, Ken; Kuwabara, Takuhito; Uda, Tsuyoshi

    2013-03-01

    A generation/recombination (GR) model assisted with two trap centers has been proposed for studying reverse current on pn junctions in wide band-gap semiconductors. A level (Et1) has been assumed to be located near the bottom of the conduction band and the other (Et2) to be near the top of the valence band. The GR model has been developed by assuming (1) a high-electric field; F, (2) a short distance; d, between trap centers, (3) reduction in an energy-difference; Δeff = |Et1 - Et2| - eFd, and (4) hopping or tunneling conductions between trap centers with the same energy-level (Δeff ≈ 0). The GR rate has been modeled by trap levels, capture cross-sections, trap densities, and transition rate between trap centers. The GR rate, about 1010 greater than that estimated from the single-level model, has been predicted on pn junctions in a material with band-gap of 3.1 eV. Device simulations using the proposed GR model have been demonstrated for SiC diodes with and without a guard ring. A reasonable range for reverse current at room temperature has been simulated and stable convergence has been obtained in a numerical scheme for analyzing diodes with an electrically floating region.

  5. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Univ. of California, Davis, CA (United States)

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  6. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.

  7. Wide Bandgap Nanostructured Space Photovoltaics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a wide-bandgap GaP-based space solar cell capable...

  8. Wide bandgap matrix switcher, amplifier and oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, Stephen

    2016-08-16

    An electronic device comprising an optical gate, an electrical input an electrical output and a wide bandgap material positioned between the electrical input and the electrical output to control an amount of current flowing between the electrical input and the electrical output in response to a stimulus received at the optical gate can be used in wideband telecommunication applications in transmission of multi-channel signals.

  9. A novel electro-thermal model for wide bandgap semiconductor based devices

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    This paper propose a novel Electro-Thermal Model for the new generation of power electronics WBG-devices (by considering the SiC MOSFET-CMF20120D from CREE), which is able to estimate the device junction and case temperature. The Device-Model estimates the voltage drop and the switching energies...... by considering the device current, the off-state blocking voltage and junction temperature variation. Moreover, the proposed Thermal-Model is able to consider the thermal coupling within the MOSFET and its freewheeling diode, integrated into the same package, and the influence of the ambient temperature...... variation. The importance of temperature loop feedback in the estimation accuracy of device junction and case temperature is studied. Furthermore, the Safe Operating Area (SOA) of the SiC MOSFET is determined for 2L-VSI applications which are using sinusoidal PWM. Thus, by considering the heatsink thermal...

  10. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  11. Wide-bandgap III-Nitride based Second Harmonic Generation

    Science.gov (United States)

    2014-10-02

    Jun-2014 Approved for Public Release; Distribution Unlimited Final Report: Wide-bandgap III - Nitride based Second Harmonic Generation The views...Report: Wide-bandgap III - Nitride based Second Harmonic Generation Report Title It was demonstrated that GaN, AlGaN and AlN lateral polar structures can...research have been socialized to the III - Nitride Optoelectronics Center of Excellence (ARL SEDD) and to the 2013 ARO Staff Research Symposium and at

  12. Recent ROB developments on wide bandgap based UV sensors

    Science.gov (United States)

    Giordanengo, B.; Ben Moussa, A.; Hochedez, J.-F.; Soltani, A.; de Moor, P.; Minoglou, K.; Malinowski, P.; Duboz, J.-Y.; Chong, Y. M.; Zou, Y. S.; Zhang, W. J.; Lee, S. T.; Dahal, R.; Li, J.; Lin, J. Y.; Jiang, H. X.

    The next ESA spatial mission planned to study the Sun, Solar Orbiter (SO), necessitates very innovative EUV detectors. The commonly used silicon detectors suffer important limitations mainly in terms of UV robustness and dark current level. An alternative comes from diamond or III-nitride materials. In these materials, the radiation hardness, solar blindness and dark current are improved due to their wide bandgap. This paper presents the new developments on wide bandgap materials at the Royal Observatory of Belgium (ROB). We present also the LYRA instrument, the BOLD project, and the EUI instrument suite.

  13. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  14. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  15. Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution.

    Science.gov (United States)

    Yang, Zhibin; Rajagopal, Adharsh; Jo, Sae Byeok; Chueh, Chu-Chen; Williams, Spencer; Huang, Chun-Chih; Katahara, John K; Hillhouse, Hugh W; Jen, Alex K-Y

    2016-12-14

    Wide bandgap MAPb(I1-yBry)3 perovskites show promising potential for application in tandem solar cells. However, unstable photovoltaic performance caused by phase segregation has been observed under illumination when y is above 0.2. Herein, we successfully demonstrate stabilization of the I/Br phase by partially replacing Pb(2+) with Sn(2+) and verify this stabilization with X-ray diffractometry and transient absorption spectroscopy. The resulting MAPb0.75Sn0.25(I1-yBry)3 perovskite solar cells show stable photovoltaic performance under continuous illumination. Among these cells, the one based on MAPb0.75Sn0.25(I0.4Br0.6)3 perovskite shows the highest efficiency of 12.59% with a bandgap of 1.73 eV, which make it a promising wide bandgap candidate for application in tandem solar cells. The engineering of internal bonding environment by partial Sn substitution is believed to be the main reason for making MAPb0.75Sn0.25(I1-yBry)3 perovskite less vulnerable to phase segregation during the photostriction under illumination. Therefore, this study establishes composition engineering of the metal site as a promising strategy to impart phase stability in hybrid perovskites under illumination.

  16. Petahertz optical drive with wide-bandgap semiconductor

    Science.gov (United States)

    Mashiko, Hiroki; Oguri, Katsuya; Yamaguchi, Tomohiko; Suda, Akira; Gotoh, Hideki

    2016-08-01

    High-speed photonic and electronic devices at present rely on radiofrequency electric fields to control the physical properties of a semiconductor, which limits their operating speed to terahertz frequencies (1012 Hz ref. ). Using the electric field from intense light pulses, however, could extend the operating frequency into the petahertz regime (1015 Hz ref. ). Here we demonstrate optical driving at a petahertz frequency in the wide-bandgap semiconductor gallium nitride. Few-cycle near-infrared pulses are shown to induce electric interband polarization though a multiphoton process. Dipole oscillations with a periodicity of 860 as are revealed in the gallium nitride electron and hole system by using the quantum interference between the two transitions from the valence and conduction band states, which are probed by an extremely short isolated attosecond pulse with a coherent broadband spectrum. In principle, this shows that the conductivity of the semiconductor can be manipulated on attosecond timescales, which corresponds to instantaneous light-induced switching from insulator to conductor. The resultant dipole frequency reaches 1.16 PHz, showing the potential for future high-speed signal processing technologies based on wide-bandgap semiconductors.

  17. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    Science.gov (United States)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  18. High Power Wide Bandgap Engineered MMW MMIC Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During this phase I SBIR effort unique proven lattice and bandgap engineering techniques will be utilized to epitaxially grow InAlAs / InGaAs on GaN substrate for...

  19. SSPA's Using Reduced Conduction Angle Techniques on Wide-Bandgap Devices for Ultra High Efficiency Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for very efficient, very reliable, low weight, wide-bandgap medium power SSPAs for Space applications operating at 400 MHz and 8GHz.

  20. High temperature performance of Wide Bandgap Semiconductors Devices for High Power Applications

    OpenAIRE

    2010-01-01

    Wide bandgap III-Nitride semiconductor materials possess superior properties as compared to silicon and other IIIV compound materials. GaN has recently attracted a lot of interest for applications in high power electronics capable of operation at elevated temperatures. Modeling of the drift region properties of GaN Schottky rectifiers and power MOSFET to achieve breakdown voltages ranging from 200 to 5kV is presented. 1kV and 3kV Schottky rectifiers are simulated and the characteristics of th...

  1. Wide bandgap GaN-based semiconductors for spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Pearton, S J [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Abernathy, C R [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Thaler, G T [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Frazier, R M [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Norton, D P [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Ren, F [Department of Chemical Engineering, University of Florida, Gainesville, FL 32611 (United States); Park, Y D [CSCMR and School of Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Zavada, J M [US Army Research Office, Research Triangle Park, NC 27709 (United States); Buyanova, I A [Department of Physics and Measurement Technology, Linkoeping University, S-581 83 Linkoeping (Sweden); Chen, W M [Department of Physics and Measurement Technology, Linkoeping University, S-581 83 Linkoeping (Sweden); Hebard, A F [Department of Physics, University of Florida, Gainesville, FL 32611 (United States)

    2004-02-25

    Recent results on achieving ferromagnetism in transition-metal-doped GaN, AlN and related materials are discussed. The field of semiconductor spintronics seeks to exploit the spin of charge carriers in new generations of transistors, lasers and integrated magnetic sensors. There is strong potential for new classes of ultra-low-power, high speed memory, logic and photonic devices based on spintronics. The utility of such devices depends on the availability of materials with practical magnetic ordering temperatures and most theories predict that the Curie temperature will be a strong function of bandgap. We discuss the current state-of-the-art in producing room temperature ferromagnetism in GaN-based materials, the origins of the magnetism and its potential applications. (topical review)

  2. The ultraviolet radiation detectors based on wide-bandgap Schottky barrier structures

    CERN Document Server

    Blank, T V; Konstantinov, O V

    2002-01-01

    Recently, much attention has been given to measure and control ultraviolet radiation (UVR) from the Sun and artificial sources. We present photodetectors based on different wide-bandgap surface-barrier structures, which exhibit linear photocurrent-radiant flux characteristics in the range 10 sup - sup 2 -10 sup 3 W/m sup 2 and can register different types of UVR. The use of light filter UFS-6 with GaP photodetector results in a spectral photosensitivity range corresponding to the Sun UV radiation if observed on Earth. The spectral sensitivity range of the photodetectors based on 4H-SiC is near the spectrum of relative effectiveness of various wavelengths in bactericidal UVR. The photosensitivity of the surface-barrier photodetectors based on wide-bandgap semiconductors exhibits the essential decline in the short-wavelength UVR region (5-6 eV), which is the region of intrinsic absorption of the semiconductor. We propose a hot exciton model, according to which the hot excitons can form in the process of the pho...

  3. Wide bandgap n-type and p-type semiconductor porous junction devices as photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan-Pai; Horng, Sheng-Fu [Institute of Electronics Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chao, Yu-Chiang; Meng, Hsin-Fei [Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan (China); Zan, Hsiao-Wen, E-mail: yuchiangchao@gmail.com, E-mail: meng@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2011-10-12

    In junction absorber photovoltaics doped wide bandgap n-type and p-type semiconductors form a porous interpenetrating junction structure with a layer of low bandgap absorber at the interface. The doping concentration is high enough such that the junction depletion width is smaller than the pore size. The highly conductive neutral region then has a dentrite shape with fingers reaching the absorber to effectively collect the photo-carriers swept out by the junction electric field. With doping of 10{sup 19} cm{sup -3} corresponding to a depletion width of 25 nm, pore size of 32 nm, absorber thickness close to exciton diffusion length of 17 nm, absorber bandgap of 1.4 eV and carrier mobility over 10{sup -5} cm{sup 2} V{sup -1} s{sup -1}, numerical calculation shows the power conversion efficiency is as high as 19.4%. It rises to 23% for a triplet exciton absorber.

  4. Dye- and quantum dot-sensitized solar cells based on nanostructured wide-bandgap semiconductors via an integrated experimental and modeling study

    Science.gov (United States)

    Xin, Xukai

    Dye-sensitized solar cells (DSSCs) and quantum dot-sensitized solar cells (QDSSCs) are two promising alternative, cost-effective concepts for solar-to-electric energy conversion that have been offered to challenge conventional Si solar cells over the past decade. The configuration of a DSSC or a QDSSC consists of sintered TiO2 nanoparticle films, ruthenium-based dyes or quantum dots (QDs) (i.e., sensitizers), and electrolytes. Upon the absorption of photons, the dyes or QDs generate excitons (i.e., electron-hole pairs). Subsequently, the electrons inject into the TiO2 photoanode to generate photocurrent; scavenged by a redox couple, holes transport to the cathode. The overall power conversion efficiency (PCE) of a DSSC or QDSSC is dictated by the light harvest efficiency, quantum yield for charge injection, and charge collection efficiency at the electrodes. The goal of our research is to understand the fundamental physics and performance of DSSCs and QDSSCs with improved PCE at the low cost based on rational engineering of TiO2 nanostructures, sensitizers, and electrodes through an integrated experimental and modeling study. In this presentation, I will discuss three aspects that I have accomplished over the last several years. (1) Effects of surface treatment and structural modification of photoanode on the performance of DSSCs. First, our research indicates that the surface treatment with both TiCl4 and oxygen plasma yields the most efficient dye-sensitized TiO2-nanoparticle solar cells. A maximum PCE is achieved with a 21 microm thick TiO2 film; the PCE further increases to 8.35% after TiCl4 and O 2 plasma treatments, compared to the untreated TiO2 ( PCE = 3.86%). Second, we used a layer of TiO2 nanoparticle film coated on the FTO glass, and a bilayer of TiO2nanoparticle/freestanding TiO2 nanotube film deposited on the FTO glass as photoanodes. The J˜V parameter analysis acquired by equivalent circuit model simulation reveals that nanotubular structures are

  5. Novel Approaches to Wide Bandgap CuInSe2 Based Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    William N. Shafarman

    2011-04-28

    This project targeted the development of high performance wide bandgap solar cells based on thin film alloys of CuInSe2 to relax constraints on module design and enable tandem solar cell structures. This addressed goals of the Solar Energy Technologies Program for Next Generation PV to develop technology needed for higher thin film module efficiency as a means to reduce costs. Specific objectives of the research project were: 1) to develop the processes and materials required to improve the performance of wide bandgap thin film solar cells based on alloys of CuInSe2, and 2) to provide the fundamental science and engineering basis for the material, electronic, and device properties required to effectively apply these processes and materials to commercial manufacture. CuInSe2-based photovoltaics have established the highest efficiencies of the thin film materials at both the cell and module scales and are actively being scaled up to commercialization. In the highest efficiency cells and modules, the optical bandgap, a function of the CuInSe2-based alloy composition, is relatively low compared to the optimum match to the solar spectrum. Wider bandgap alloys of CuInSe2 produce higher cell voltages which can improve module performance and enable the development of tandem solar cells to boost the overall efficiency. A focus for the project was alloying with silver to form (AgCu)(InGa)Se2 pentenary thin films deposited by elemental co-evaporation which gives the broadest range of control of composition and material properties. This alloy has a lower melting temperature than Ag-free, Cu-based chalcopyrite compounds, which may enable films to be formed with lower defect densities and the (AgCu)(InGa)Se2 films give improved material properties and better device performance with increasing bandgap. A comprehensive characterization of optical, structural, and electronic properties of (AgCu)(InGa)Se2 was completed over the complete compositional range 0 ≤ Ga/(In+Ga) ≤ 1 and

  6. Electron field emission from wide bandgap semiconductors under intervalley carrier redistribution

    Science.gov (United States)

    Litovchenko, V.; Grygoriev, A.; Evtukh, A.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2009-11-01

    Electron field emission phenomena from semiconductors (and, in particular, wide band gap materials) are analyzed theoretically for the general case, i.e., by taking into consideration aspects that have not been considered earlier such as two (or more) valleys of the energy band structure, nondegenerated statistics for the free electrons, heating of conduction band electrons, intervalley carrier redistribution under applied electrical fields, size quantization of electron band spectra, and change in the field emission characteristics. Comparisons with experiments performed on the highly structured (micro- and nano) surfaces of the GaN wide bandgap semiconductor have been made. The influence of the above factors on the current-voltage Fowler-Nordheim characteristics was demonstrated by theory and experiment. From theoretical and experimental results the intervalley energy difference (ΔE) for GaN quantum-sized cathodes was estimated to be 0.8 eV, which is considerably less than that predicted for bulk semiconductor (ΔE =1.2-1.5 eV). Furthermore the field emission currents were several orders higher than for bulk material. This is in good agreement with the prediction of the proposed theoretical model.

  7. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources

    Science.gov (United States)

    Acharyya, Aritra; Banerjee, J. P.

    2014-01-01

    In this paper the potentiality of impact avalanche transit time (IMPATT) devices based on different semiconductor materials such as GaAs, Si, InP, 4H-SiC and Wurtzite-GaN (Wz-GaN) has been explored for operation at terahertz frequencies. Drift-diffusion model is used to design double-drift region (DDR) IMPATTs based on different materials at millimeter-wave (mm-wave) and terahertz (THz) frequencies. The performance limitations of these devices are studied from the avalanche response times at different mm-wave and THz frequencies. Results show that the upper cut-off frequency limits of GaAs and Si DDR IMPATTs are 220 GHz and 0.5 THz, respectively, whereas the same for InP and 4H-SiC DDR IMPATTs is 1.0 THz. Wz-GaN DDR IMPATTs are found to be excellent candidate for generation of RF power at THz frequencies of the order of 5.0 THz with appreciable DC to RF conversion efficiency. Further, it is observed that up to 1.0 THz, 4H-SiC DDR IMPATTs excel Wz-GaN DDR IMPATTs as regards their RF power outputs. Thus, the wide bandgap semiconductors such as Wz-GaN and 4H-SiC are highly suitable materials for DDR IMPATTs at both mm-wave and THz frequency ranges.

  8. High-Temperature, Wirebondless, Ultra-Compact Wide Bandgap Power Semiconductor Modules for Space Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon carbide (SiC) and other wide band-gap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and...

  9. Liquid Crystal Photonic bandgap Fibers: Modeling and Devices

    DEFF Research Database (Denmark)

    Weirich, Johannes

    In this PhD thesis an experimental and numerical investigation of liquid crystal infiltrated photonic bandgap fibers (LCPBGs) is presented. A simulation scheme for modeling LCPBG devices including electrical tunability is presented. New experimental techniques, boundary coating and the applicatio...

  10. Point defect reduction in wide bandgap semiconductors by defect quasi Fermi level control

    Science.gov (United States)

    Reddy, P.; Hoffmann, M. P.; Kaess, F.; Bryan, Z.; Bryan, I.; Bobea, M.; Klump, A.; Tweedie, J.; Kirste, R.; Mita, S.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-11-01

    A theoretical framework for a general approach to reduce point defect density in materials via control of defect quasi Fermi level (dQFL) is presented. The control of dQFL is achieved via excess minority carrier generation. General guidelines for controlling dQFL that lead to a significant reduction in compensating point defects in any doped material is proposed. The framework introduces and incorporates the effects of various factors that control the efficacy of the defect reduction process such as defect level, defect formation energy, bandgap, and excess minority carrier density. Modified formation energy diagrams are proposed, which illustrate the effect of the quasi Fermi level control on the defect formation energies. These formation energy diagrams provide powerful tools to determine the feasibility and requirements to produce the desired reduction in specified point defects. An experimental study of the effect of excess minority carriers on point defect incorporation in GaN and AlGaN shows an excellent quantitative agreement with the theoretical predictions. Illumination at energies larger than the bandgap is employed as a means to generate excess minority carriers. The case studies with CN in Si doped GaN, H and VN in Mg doped GaN and VM-2ON in Si doped Al0.65Ga0.35N revealed a significant reduction in impurities in agreement with the proposed theory. Since compensating point defects control the material performance (this is particularly challenging in wide and ultra wide bandgap materials), dQFL control is a highly promising technique with wide scope and may be utilized to improve the properties of various materials systems and performance of devices based upon them.

  11. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Rongqing (Lenexa, KS); Jiang,Hong-Xing (Manhattan, KS); Lin, Jing-Yu (Manhattan, KS)

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  12. Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells.

    Science.gov (United States)

    Lin, Yuze; Chen, Bo; Zhao, Fuwen; Zheng, Xiaopeng; Deng, Yehao; Shao, Yuchuan; Fang, Yanjun; Bai, Yang; Wang, Chunru; Huang, Jinsong

    2017-07-01

    Efficient wide-bandgap (WBG) perovskite solar cells are needed to boost the efficiency of silicon solar cells to beyond Schottky-Queisser limit, but they suffer from a larger open circuit voltage (VOC ) deficit than narrower bandgap ones. Here, it is shown that one major limitation of VOC in WBG perovskite solar cells comes from the nonmatched energy levels of charge transport layers. Indene-C60 bisadduct (ICBA) with higher-lying lowest-unoccupied-molecular-orbital is needed for WBG perovskite solar cells, while its energy-disorder needs to be minimized before a larger VOC can be observed. A simple method is applied to reduce the energy disorder by isolating isomer ICBA-tran3 from the as-synthesized ICBA-mixture. WBG perovskite solar cells with ICBA-tran3 show enhanced VOC by 60 mV, reduced VOC deficit of 0.5 V, and then a record stabilized power conversion efficiency of 18.5%. This work points out the importance of matching the charge transport layers in perovskite solar cells when the perovskites have a different composition and energy levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. III-N Wide Bandgap Deep-Ultraviolet Lasers and Photodetectors

    KAUST Repository

    Detchprohm, T.

    2016-11-05

    The III-N wide-bandgap alloys in the AlInGaN system have many important and unique electrical and optical properties which have been exploited to develop deep-ultraviolet (DUV) optical devices operating at wavelengths < 300 nm, including light-emitting diodes, optically pumped lasers, and photodetectors. In this chapter, we review some aspects of the development and current state of the art of these DUV materials and devices. We describe the growth of III-N materials in the UV region by metalorganic chemical vapor deposition as well as the properties of epitaxial layers and heterostructure devices. In addition, we discuss the simulation and design of DUV laser diodes, the processing of III-N optical devices, and the description of the current state of the art of DUV lasers and photodetectors.

  14. Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies

    Science.gov (United States)

    Wilkins, R.; Powell, Kirk St. A.

    1997-01-01

    Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.

  15. The ideal chip is not enough: Issues retarding the success of wide band-gap devices

    Science.gov (United States)

    Kaminski, Nando

    2017-04-01

    Semiconductor chips made from the wide band-gap (WBG) materials silicon carbide (SiC) or gallium nitride (GaN) are already approaching the theoretical limits given by the respective materials. Unfortunately, their advantages over silicon devices cannot be fully exploited due to limitations imposed by the device packaging or the circuitry around the semiconductors. Stray inductances slow down the switching speed and increase losses, packaging materials limit the maximum temperature and the maximum useful temperature swing, and passives limit the maximum switching frequency. All these issues have to be solved or at least minimised to make WBG attractive for a wider range of applications and, consequently, to profit from the economy of scale.

  16. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    Science.gov (United States)

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  17. Growth of Bulk Wide Bandgap Semiconductor Crystals and Their Potential Applications

    Science.gov (United States)

    Chen, Kuo-Tong; Shi, Detang; Morgan, S. H.; Collins, W. Eugene; Burger, Arnold

    1997-01-01

    Developments in bulk crystal growth research for electro-optical devices in the Center for Photonic Materials and Devices since its establishment have been reviewed. Purification processes and single crystal growth systems employing physical vapor transport and Bridgman methods were assembled and used to produce high purity and superior quality wide bandgap materials such as heavy metal halides and II-VI compound semiconductors. Comprehensive material characterization techniques have been employed to reveal the optical, electrical and thermodynamic properties of crystals, and the results were used to establish improved material processing procedures. Postgrowth treatments such as passivation, oxidation, chemical etching and metal contacting during the X-ray and gamma-ray device fabrication process have also been investigated and low noise threshold with improved energy resolution has been achieved.

  18. On the Integration of Wide Band-gap Semiconductors in Single Phase Boost PFC Converters

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos

    of high frequency operation in optoelectronics applications. On the other hand, Schottky SiC power diodes were introduced in 2001 as an alternative to eliminate reverse recovery issues in Si rectifiers. Wide band-gap semiconductors offer an increased electrical field strength and electron mobility...... diodes, or the introduction of silicon carbide (SiC) diodes, provided large steps in miniaturization and efficiency improvement of switched mode power converters. Gallium nitride (GaN) and SiC semiconductor devices have already been around for some years. The first one proliferated due to the necessity...... compared to Si semiconductors. Moreover, both semiconductor materials are particularly interesting for high temperature operation. These characteristics makes integration of SiC and GaN devices as the next logical step to further increase efficiency and power density in SMPS. This work is part of the Ph...

  19. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    Science.gov (United States)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  20. High-Performance Nonfullerene Polymer Solar Cells based on Imide-Functionalized Wide-Bandgap Polymers.

    Science.gov (United States)

    Fan, Baobing; Zhang, Kai; Jiang, Xiao-Fang; Ying, Lei; Huang, Fei; Cao, Yong

    2017-06-01

    High-performance nonfullerene polymer solar cells (PSCs) are developed by integrating the nonfullerene electron-accepting material 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophne) (ITIC) with a wide-bandgap electron-donating polymer PTzBI or PTzBI-DT, which consists of an imide functionalized benzotriazole (TzBI) building block. Detailed investigations reveal that the extension of conjugation can affect the optical and electronic properties, molecular aggregation properties, charge separation in the bulk-heterojunction films, and thus the overall photovoltaic performances. Single-junction PSCs based on PTzBI:ITIC and PTzBI-DT:ITIC exhibit remarkable power conversion efficiencies (PCEs) of 10.24% and 9.43%, respectively. To our knowledge, these PCEs are the highest efficiency values obtained based on electron-donating conjugated polymers consisting of imide-functionalized electron-withdrawing building blocks. Of particular interest is that the resulting device based on PTzBI exhibits remarkable PCE of 7% with the thickness of active layer of 300 nm, which is among the highest values of nonfullerene PSCs utilizing thick photoactive layer. Additionally, the device based on PTzBI:ITIC exhibits prominent stability, for which the PCE remains as 9.34% after thermal annealing at 130 °C for 120 min. These findings demonstrate the great promise of using this series of wide-bandgap conjugated polymers as electron-donating materials for high-performance nonfullerene solar cells toward high-throughput roll-to-roll processing technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pressure-induced phase transition and bandgap collapse in the wide-bandgap semiconductor InTaO4

    CERN Document Server

    Errandonea, D; Garg, A B; Botella, P; Martinez-Garcia, D; Pellicer-Porres, J; Rodriguez-Hernandez, P; Munoz, A; Cuenca-Gotor, V; Sans, J A

    2016-01-01

    A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond anvil cell with ab-initio calculations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure which shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic bandgap collapse observed by experiments and calculations. Additionally, a band crossing is found to occur in the low-pressure phase near 7 GPa. The pressure dependence of all the Raman-active modes is reported for both phases as well as the pressure dependence of unit-cell parameters and the equations of state. Calculations also provide inf...

  2. Modeling of realistic cladding structures for photonic bandgap fibers

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Nielsen, Martin Dybendal

    2004-01-01

    . For the fundamental bandgap we find that the bandgap edges (the intersections with the air line) shift toward shorter wavelengths when the air-filling fraction f is increased. The bandgap also broadens, and the relative bandwidth increases exponentially with f2. Compared with recent experiments [Nature 424, 657 (2003...

  3. Accurate modelling of fabricated hollow-core photonic bandgap fibers.

    Science.gov (United States)

    Fokoua, Eric Numkam; Sandoghchi, Seyed Reza; Chen, Yong; Jasion, Gregory T; Wheeler, Natalie V; Baddela, Naveen K; Hayes, John R; Petrovich, Marco N; Richardson, David J; Poletti, Francesco

    2015-09-07

    We report a novel approach to reconstruct the cross-sectional profile of fabricated hollow-core photonic bandgap fibers from scanning electron microscope images. Finite element simulations on the reconstructed geometries achieve a remarkable match with the measured transmission window, surface mode position and attenuation. The agreement between estimated scattering loss from surface roughness and measured loss values indicates that structural distortions, in particular the uneven distribution of glass across the thin silica struts on the core boundary, have a strong impact on the loss. This provides insight into the differences between idealized models and fabricated fibers, which could be key to further fiber loss reduction.

  4. Understanding defect related luminescence processes in wide bandgap materials using low temperature multi-spectroscopic techniques

    DEFF Research Database (Denmark)

    Prasad, Amit Kumar

    ; it is, therefore, not likely to suffer from same problems as the IRSL signal. The IRPL signal, increases with dose and can be probed non-destructively (especially at low temperatures). Preliminary dating investigations suggest that this signal does not suffer from anomalous fading. There are two...... Quaternary climate changes, landscape development and human evolution and dispersal. Optical properties of feldspar originate from a) a wide band gap (∼ 7.7 eV, b) crystal defects (impurity atoms and distortions) that create localized energy states within the bandgap, and c) the low-mobility band tail states, which...... dosimetric trap to holes located elsewhere in the lattice, which is affected by sensitivity changes leading to several uncertainties in the dose measurement. In contrast, it is shown here that the IRPL signal arises from intra-defect excitation and subsequent radiative emission within the IR dosimetric trap...

  5. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current.

    Science.gov (United States)

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-02-04

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.

  6. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current

    Science.gov (United States)

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-02-01

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.

  7. Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2013-01-01

    Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.

  8. Alternative approaches of SiC & related wide bandgap materials in light emitting & solar cell applications

    Science.gov (United States)

    Wellmann, Peter; Syväjärvi, Mikael; Ou, Haiyan

    2014-03-01

    understanding the device performance. In relation to these, the surface pre-treatment and deposition technique can influence the reliability and electric field durability of the system, and relate to interface and near interface regions between the dielectric and semiconductor which can host electronic defects which change the surface potential, reduces mobility and enhance the recombination of charge carriers. At the end, materials for energy savings are critically needed. At the symposium ''Alternative approaches of SiC and related wide bandgap materials in light emitting and solar cell applications'', held at the E-MRS 2013 Spring meeting, 27-31 May, 2013 Strasbourg, France, a variety of concepts were presented. In this publication, a selection is presented that represents a range of issues from materials to reliability processing to system approaches. Acknowledgements: Technical support during preparation of the symposium program and proceedings by Saskia Schimmel is greatly acknowledged.

  9. Optical investigations on the wide bandgap semiconductors diamond and aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Teofilov, Nikolai

    2007-07-01

    In the context of this thesis, new results about optical defects and intrinsic properties of diamond, AlN and AlGaN alloys have been obtained. The main experimental techniques used were low temperature cathodoluminescence and photoluminescence spectroscopy. First, different aspects of intentional and background doping of diamond were discussed. Thus, the most commonly observed green luminescence emission from boron doped HPHT diamonds has been studied by means of temperature dependent CL in a wide temperature range from 10 K to 450 K. One further subject, addressing deep defect nitrogen related luminescence was a study of nitrogen addition in combustion flame grown CVD diamond layers. Two further topics concern intrinsic excitations in diamond, free excitons and electron-hole drops. Several important parameters like the critical density, the critical temperature, and the low-temperature density inside the drops were evaluated. The ground state density of the electron-hole condensate in diamond is about {approx} 42 times larger than that in Si, and the critical temperature takes very high values in the range of 165K.. 173K. Cathodoluminescence investigations on epitaxial wurtzite AlN layers grown on sapphire, SiC, and Si substrates, have shown that although the material is generally of good optical quality, deep level luminescence are still dominating the spectra. Relatively sharp near-band-edge transitions have been observed in all three samples that exhibit significantly reduced line widths for the AlN/sapphire and the AlN/SiC samples. Much broader emission lines in the near band-gap region have been observed for the first time from the AlN sample grown on Si (111) substrate. Temperature dependent CL measurements and numerical line decompositions reveal complicated substructures in the excitonic lines. The temperature dependence of the energy positions and broadening parameters of the transition have been studied and compared with the other materials. Epitaxial Al

  10. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    OpenAIRE

    2016-01-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflec...

  11. Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors

    Science.gov (United States)

    Sanz, Mikel; Rebollar, Esther; Ganeev, Rashid A.; Castillejo, Marta

    2013-08-01

    In this work we report on fabrication of laser-induced periodic surface structures (LIPSS) on different semiconductors with bandgap energies in the range of 1.3-3.3 eV and melting temperatures from 1100 to 2700 °C. In particular, InP, GaAs, GaP and SiC were irradiated in air with nanosecond pulses using a linearly polarized laser beam at 266 nm (6 ns pulse width). The nanostructures, inspected by atomic force microscopy, are produced upon multiple pulse irradiation at fluences near the ablation threshold. LIPSS are perpendicular to the laser polarization direction and their period is of the order of the irradiation wavelength. It was observed that the accumulative effect of both fluence and number of pulses needed for LIPSS formation increased with the material bandgap energy. These results, together with estimations of surface temperature increase, are discussed with reference to the semiconductor electrical, optical and thermal properties.

  12. Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Mikel, E-mail: mikel.sanz@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Rebollar, Esther [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Ganeev, Rashid A. [Voronezh State University, Voronezh 394006 (Russian Federation); Castillejo, Marta [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2013-08-01

    In this work we report on fabrication of laser-induced periodic surface structures (LIPSS) on different semiconductors with bandgap energies in the range of 1.3–3.3 eV and melting temperatures from 1100 to 2700 °C. In particular, InP, GaAs, GaP and SiC were irradiated in air with nanosecond pulses using a linearly polarized laser beam at 266 nm (6 ns pulse width). The nanostructures, inspected by atomic force microscopy, are produced upon multiple pulse irradiation at fluences near the ablation threshold. LIPSS are perpendicular to the laser polarization direction and their period is of the order of the irradiation wavelength. It was observed that the accumulative effect of both fluence and number of pulses needed for LIPSS formation increased with the material bandgap energy. These results, together with estimations of surface temperature increase, are discussed with reference to the semiconductor electrical, optical and thermal properties.

  13. Wide bandgap mesoporous hematite nanowire bundles as a sensitive and rapid response ethanol sensor

    Science.gov (United States)

    Li, Danping; Zhang, Beibei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Ge, Hongliang; Wang, Xinqing

    2016-05-01

    In this study, α-Fe2O3 nanowires were synthesized using mesoporous SBA-15 silica as the hard templates with the nanocasting method, and then mesoporous α-Fe2O3 nanowire bundles (NWBs) were separated from the well-dispersed α-Fe2O3 nanowires (NWs) by the centrifugation technique. Both samples were characterized by x-ray diffraction, transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherm and UV-vis spectra. All results indicated that the α-Fe2O3 NWBs with mesoporous structure presented a higher BET surface area (95 m2 g-1) and wider bandgap (2.08 eV) than those of α-Fe2O3 NWs (32 m2 g-1 and 1.91 eV). The bandgap of α-Fe2O3 NWBs was in accordance with the bulk α-Fe2O3, while the BET surface area was much higher. The results from the gas-sensing measurement revealed that the α-Fe2O3 NWBs based gas sensor exhibited a high sensitivity of 21.7, fast response-recovery of 7.5 s and 1 s, and good selectivity to ethanol at 340 °C. The sensitivity (21.7) for ethanol of α-Fe2O3 NWBs was much better than that of the α-Fe2O3 NWs (12.2), which should be attributed to the higher BET surface area and wider bandgap of α-Fe2O3 NWBs.

  14. A simple model for approximate bandgap structure calculation of all-solid photonic bandgap fibre based on an array of rings

    Institute of Scientific and Technical Information of China (English)

    Fang Hong; Lou Shu-Qin; Guo Tie-Ying; Yao Lei; Li nong-Lei; Jian ShuiSheng

    2008-01-01

    A simple model for approximate bandgap structure caculation of all-solid photonic bandgap fibre based on an array of rings is proposed.In this model calculated are only the potential modes of a unit cell,which is a high-index ring in the low-index background for this fibre,rather than the whole cladding periodic structure based on Bloch's theorem to find the bandgap.Its accuracy is proved by comparing its results with the results obtained by using the accurate full-vector plane-wave method.High speed in computation is its great advantage over the other exact methods,because it only needs to find the roots of one-dimensional analytical expressions.And the results of this model,mode plots,offer an ideal environment to explore the basic properties of photonic bandgap clearly.

  15. Fast Robust Gate-Drivers with Easy Adjustable Voltage Ranges for Driving Normally-On Wide-Bandgap Power Transistors

    OpenAIRE

    Jacqmaer, Pieter; Everts, Jordi; Gelagaev, Ratmir; Tant, Peter; Driesen, Johan

    2010-01-01

    Wide-bandgap (WBG) semiconductors, such as gallium nitride (GaN), are more and more being used in switching power devices. An AlGaN/GaN/AlGaN Double Heterojunction Field Effect transistor (DHFET) was developed in previous work and needed to be tested. The used test circuit was a buck converter. This type of converter, in addition with the normally-on switching behaviour of the GaN-based transistors, requires dedicated gate drive circuitry, resulting in the development of three types of gate-d...

  16. Structural, optical, and electronic studies of wide-bandgap lead halide perovskites

    KAUST Repository

    Comin, Riccardo

    2015-01-01

    © The Royal Society of Chemistry 2015. We investigate the family of mixed Br/Cl organolead halide perovskites which enable light emission in the blue-violet region of the visible spectrum. We report the structural, optical and electronic properties of this air-stable family of perovskites, demonstrating full bandgap tunability in the 400-550 nm range and enhanced exciton strength upon Cl substitution. We complement this study by tracking the evolution of the band levels across the gap, thereby providing a foundational framework for future optoelectronic applications of these materials.

  17. Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm-1

    Science.gov (United States)

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; Shukla, Sudhanshu; Ager, Joel W.; Lo, Cynthia S.; Jalan, Bharat

    2017-05-01

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of significant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 104 S cm-1. Significantly, these films show room temperature mobilities up to 120 cm2 V-1 s-1 even at carrier concentrations above 3 × 1020 cm-3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III-N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality.

  18. Sensing Performance Study of SiC, a Wide Bandgap Semiconductor Material Platform for Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Wei Du

    2015-01-01

    Full Text Available The sensing properties of a surface plasmon resonance (SPR based waveguide sensor on a wide bandgap semiconductor, silicon carbide (SiC, were studied. Compared to other waveguide sensors, the large bandgap energy of SiC material allows the sensor to operate in the visible and near infrared wavelength range, while the SPR effect by a thin gold film is expected to improve the sensitivity. The confinement factor of the sensor at various wavelengths of the incident light and refractive index of the analyte were investigated using an effective index method. Since the change of analyte type and concentration is reflected by the change of refractive index, the sensing performance can be evaluated by the shift of resonant wavelength from the confinement factor spectrum at different refractive index. The results show that the shift of resonant wavelength demonstrates linear characteristics. A sensitivity of 1928 nm/RIU (refractive index unit shift could be obtained from the refractive index of 1.338~1.348 which attracts research interests because most biological analytes are in this range.

  19. A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications

    Energy Technology Data Exchange (ETDEWEB)

    Lamichhane, Ranjan [University of Arkansas; Ericson, Milton Nance [ORNL; Frank, Steven Shane [ORNL; BRITTONJr., CHARLES L. [Oak Ridge National Laboratory (ORNL); Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Matt [APEI, Inc.; Shepherd, Dr. Paul [University of Arkansas; Glover, Dr. Michael [University of Arkansas; Podar, Mircea [ORNL; Perez, M [University of Arkansas; Mcnutt, Tyler [APEI, Inc.; Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.

    2014-01-01

    Limitations of silicon (Si) based power electronic devices can be overcome with Silicon Carbide (SiC) because of its remarkable material properties. SiC is a wide bandgap semiconductor material with larger bandgap, lower leakage currents, higher breakdown electric field, and higher thermal conductivity, which promotes higher switching frequencies for high power applications, higher temperature operation, and results in higher power density devices relative to Si [1]. The proposed work is focused on design of a SiC gate driver to drive a SiC power MOSFET, on a Cree SiC process, with rise/fall times (less than 100 ns) suitable for 500 kHz to 1 MHz switching frequency applications. A process optimized gate driver topology design which is significantly different from generic Si circuit design is proposed. The ultimate goal of the project is to integrate this gate driver into a Toyota Prius plug-in hybrid electric vehicle (PHEV) charger module. The application of this high frequency charger will result in lighter, smaller, cheaper, and a more efficient power electronics system.

  20. Computer simulation and modeling of graded bandgap CuInSe{sub 2}/CdS based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dhingra, A.; Rothwarf, A. [Drexel Univ., Philadelphia, PA (United States). Dept. of Electrical and Computer Engineering

    1996-04-01

    This paper proposes the use of graded bandgap absorber material, to improve the low open-circuit voltage (V{sub oc}) seen in CuInSe{sub 2}/CdS solar cells, without sacrificing the short-circuit current density (J{sub sc}). It also proposes a p-i-n model for the CuInSe{sub 2}/CdS solar cell, where the intrinsic region is the graded bandgap CIS. Reflecting surfaces are provided at the p-i and n-i interfaces to trap the light in the narrow intrinsic region for maximum generation of electron and hole pairs (EHP`s). This optical confinement results in a 25--40% increase in the number of photons absorbed. An extensive numerical simulator was developed, which provides a 1-D self-consistent solution for Poisson`s equation and the two continuity equations for electrons and holes. This simulator was used to generate J-V curves to delineate the effect of different grading profiles on cell performance. The effects of a uniform bandgap, normal grading, reverse grading, and a low bandgap notch have been considered. Having established the inherent advantages to these grading profiles an optimal doubly graded structure is proposed. Replacing the thick CdS (2.42ev) layer assumed in the simulations with a wide gap semiconductor such as ZnO (3.35ev) increases all current densities by about 5 mA/cm{sup 2}, and increases the optimal calculated efficiency from 17.9% to roughly 21% for a doubly graded structure with a thickness of 1 {micro}m and bandgaps ranging from 1.3 eV to 1.5 eV.

  1. Ultra-wide bandgap beta-Ga2O3 for deep-UV solar blind photodetectors(Conference Presentation)

    Science.gov (United States)

    Rafique, Subrina; Han, Lu; Zhao, Hongping

    2017-03-01

    Deep-ultraviolet (DUV) photodetectors based on wide bandgap (WB) semiconductor materials have attracted strong interest because of their broad applications in military surveillance, fire detection and ozone hole monitoring. Monoclinic β-Ga2O3 with ultra-wide bandgap of 4.9 eV is a promising candidate for such application because of its high optical transparency in UV and visible wavelength region, and excellent thermal and chemical stability at elevated temperatures. Synthesis of high qualityβ-Ga2O3 thin films is still at its early stage and knowledge on the origins of defects in this material is lacking. The conventional epitaxy methods used to grow β-Ga2O3 thin films such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) still face great challenges such as limited growth rate and relatively high defects levels. In this work, we present the growth of β-Ga2O3 thin films on c-plane (0001) sapphire substrate by our recently developed low pressure chemical vapor deposition (LPCVD) method. The β-Ga2O3 thin films synthesized using high purity metallic gallium and oxygen as the source precursors and argon as carrier gas show controllable N-type doping and high carrier mobility. Metal-semiconductor-metal (MSM) photodetectors (PDs) were fabricated on the as-grown β-Ga2O3 thin films. Au/Ti thin films deposited by e-beam evaporation served as the contact metals. Optimization of the thin film growth conditions and the effects of thermal annealing on the performance of the PDs were investigated. The responsivity of devices under 250 nm UV light irradiation as well as dark light will be characterized and compared.

  2. High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices

    DEFF Research Database (Denmark)

    Kouchaki, Alireza

    Improving the conversion efficiency of power factor correction (PFC) rectifiers has become compelling due to their wide applications such as adjustable speed drives, uninterruptible power supplies (UPS), and battery chargers for electric vehicles (EVs). The attention to PFCs has increased even more...... since grid regulations have become stricter in terms of injected harmonic and power quality. Therefore, improving the efficiency and the power quality of PFCs are the main objectives of this PhD work. New wide band gap (WBG) power switches have better switching characteristics in comparison with silicon...... power devices. Therefore, the PFC switching frequency using WBG devices can potentially be increased. This advantage helps the reactive components to be reduced in size. However, it also brings challenges such as identifying a proper material for inductive components that has lower loss and layout...

  3. High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices

    OpenAIRE

    2016-01-01

    Improving the conversion efficiency of power factor correction (PFC) rectifiers has become compelling due to their wide applications such as adjustable speed drives, uninterruptible power supplies (UPS), and battery chargers for electric vehicles (EVs). The attention to PFCs has increased even more since grid regulations have become stricter in terms of injected harmonic and power quality. Therefore, improving the efficiency and the power quality of PFCs are the main objectives of this PhD wo...

  4. Development of a Wide Bandgap Cell for Thin Film Tandem Solar Cells: Final Technical Report, 6 November 2003 - 5 January 2007

    Energy Technology Data Exchange (ETDEWEB)

    Shafarman, W.; McCandless, B.

    2008-08-01

    The objective of this research program was to develop approaches for a transparent wide-bandgap cell to be used in a thin-film tandem polycrystalline solar cell that can ultimately attain 25% efficiency. Specific goals included the research and development of Cu(InGa)(SeS)2 and Cd1-xZnxTe alloys with a bandgap from 1.5 to 1.8 eV, demonstrating the potential of a 15% cell efficiency with a transparent contact, and supporting the High Performance PV Program. This Final Report presents results that emphasize the 3rd phase of the program.

  5. Wide Band-Gap Semiconductors. 1991 Materials Research Society Symposium Proceedings

    Science.gov (United States)

    1992-09-01

    Fisica . TU aivc ida (sit,~le AvSeiro, 3800) Aveiroi. PO()RT’UGCAL. A13IST H ACT WideI-’-I aild gap II-V\\I sui’liicoildi c tars haive dlirect lanclgaps... Fisica , Politacnico -C. so Duca degli Abruzzi 24, 10129 lorino (Italy) Elettrorava S.p.A., 10040 Savonera loririi (Italy) Amorphous and...Rustagi, Phys. Rev. B 35, 4098 (1987). 4. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988). 5. M.V. Rama Krishna and R.A. Friesner, Phys. Rev. Lett. 67, 629

  6. High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices

    DEFF Research Database (Denmark)

    Kouchaki, Alireza

    2016-01-01

    Improving the conversion efficiency of power factor correction (PFC) rectifiers has become compelling due to their wide applications such as adjustable speed drives, uninterruptible power supplies (UPS), and battery chargers for electric vehicles (EVs). The attention to PFCs has increased even more...... power devices. Therefore, the PFC switching frequency using WBG devices can potentially be increased. This advantage helps the reactive components to be reduced in size. However, it also brings challenges such as identifying a proper material for inductive components that has lower loss and layout....... Therefore, current controllers are also important to be investigated in this project. In this PhD research work, a comprehensive design of a two-level three-phase PFC rectifier using silicon-carbide (SiC) switches to achieve high efficiency is presented. The work is divided into two main parts: 1) Optimum...

  7. Overshoot mechanism in transient excitation of THz and Gunn oscillations in wide-bandgap semiconductors

    Science.gov (United States)

    Momox, Ernesto; Zakhleniuk, Nick; Balkan, Naci

    2012-11-01

    A detailed study of high-field transient and direct-current (DC) transport in GaN-based Gunn diode oscillators is carried out using the commercial simulator Sentaurus Device. Applicability of drift-diffusion (DD) and hydrodynamic (HD) models to high-speed, high-frequency devices is discussed in depth, and the results of the simulations from these models are compared. It is shown, for a highly homogeneous device based on a short (2 μm) supercritically doped (1017 cm-3) GaN specimen, that the DD model is unable to correctly take into account some essential physical effects which determine the operation mode of the device. At the same time, the HD model is ideally suited to solve such problems due to its ability to incorporate non-local effects. We show that the velocity overshoot near the device contacts and space charge injection and extraction play a crucial role in defining the operation mode of highly homogeneous short diodes in both the transient regime and the voltage-controlled oscillation regime. The transient conduction current responses are fundamentally different in the DD and HD models. The DD current simply repeats the velocity-field (v-F) characteristics, and the sample remains in a completely homogeneous state. In the HD model, the transient current pulse with a full width at half maximum of approximately 0.2 ps is increased about twofold due to the carrier injection (extraction) into (from) the active region and the velocity overshoot. The electron gas is characterized by highly inhomogeneous distributions of the carrier density, the electric field and the electron temperature. The simulation of the DC steady states of the diodes also shows very different results for the two models. The HD model shows the trapped stable anodic domain in the device, while the DD model completely retains all features of the v-F characteristics in a homogeneous gas. Simulation of the voltage-controlled oscillator shows that it operates in the accumulation layer mode

  8. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects

    Science.gov (United States)

    Otrokov, M. M.; Menshchikova, T. V.; Vergniory, M. G.; Rusinov, I. P.; Vyazovskaya, A. Yu; Koroteev, Yu M.; Bihlmayer, G.; Ernst, A.; Echenique, P. M.; Arnau, A.; Chulkov, E. V.

    2017-06-01

    An interplay of spin-orbit coupling and intrinsic magnetism is known to give rise to the quantum anomalous Hall and topological magnetoelectric effects under certain conditions. Their realization could open access to low power consumption electronics as well as many fundamental phenomena like image magnetic monopoles, Majorana fermions and others. Unfortunately, being realized very recently, these effects are only accessible at extremely low temperatures and the lack of appropriate materials that would enable the temperature increase is a most severe challenge. Here, we propose a novel material platform with unique combination of properties making it perfectly suitable for the realization of both effects at elevated temperatures. The key element of the computational material design is an extension of a topological insulator (TI) surface by a thin film of ferromagnetic insulator, which is both structurally and compositionally compatible with the TI. Following this proposal we suggest a variety of specific systems and discuss their numerous advantages, in particular wide band gaps with the Fermi level located in the gap.

  9. Influence of grain boundary modification on limited performance of wide bandgap Cu(In,Ga)Se2 solar cells

    Science.gov (United States)

    Raghuwanshi, M.; Cadel, E.; Pareige, P.; Duguay, S.; Couzinie-Devy, F.; Arzel, L.; Barreau, N.

    2014-07-01

    The reason why so-called wide-bandgap CuIn1-xGaxSe2 (CIGSe with x > 0.4) based solar cells show hindered performance compared with theoretical expectations is still a matter of debate. In the present Letter, atom probe tomography studies of CuIn1-xGaxSe2 polycrystalline thin films with x varying from 0 to 1 are reported. These investigations confirm that the grain boundaries (GBs) of low gallium containing (x CIGSe layers are Cu-depleted compared with grains interior (GI). In contrast, it is observed that the GBs of widest band gap CIGSe films (x > 0.8) are Cu-enriched compared with GI. For intermediate gallium contents (0.4 < x < 0.8), both types of GBs are detected. This threshold value of 0.4 surprisingly coincides with solar cells output voltage deviation from theoretical expectations, which suggests modifications of GBs properties could participate in the loss of photovoltaic performance.

  10. Influence of grain boundary modification on limited performance of wide bandgap Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Raghuwanshi, M., E-mail: mohit.raghuwanshi@etu.univ-rouen.fr; Cadel, E.; Pareige, P.; Duguay, S. [Groupe de Physique des Materiaux (GPM), UMR 6634 CNRS, Université et INSA de Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Couzinie-Devy, F.; Arzel, L.; Barreau, N. [Institut des Materiaux Jean Rouxel (IMN), UMR 6502 CNRS, Université de Nantes, 2 rue de la Houssiniere BP 32229, 44322 Nantes cedex 3 (France)

    2014-07-07

    The reason why so-called wide-bandgap CuIn{sub 1−x}Ga{sub x}Se{sub 2} (CIGSe with x > 0.4) based solar cells show hindered performance compared with theoretical expectations is still a matter of debate. In the present Letter, atom probe tomography studies of CuIn{sub 1−x}Ga{sub x}Se{sub 2} polycrystalline thin films with x varying from 0 to 1 are reported. These investigations confirm that the grain boundaries (GBs) of low gallium containing (x < 0.4) CIGSe layers are Cu-depleted compared with grains interior (GI). In contrast, it is observed that the GBs of widest band gap CIGSe films (x > 0.8) are Cu-enriched compared with GI. For intermediate gallium contents (0.4 < x < 0.8), both types of GBs are detected. This threshold value of 0.4 surprisingly coincides with solar cells output voltage deviation from theoretical expectations, which suggests modifications of GBs properties could participate in the loss of photovoltaic performance.

  11. Screening of inorganic wide-bandgap p-type semiconductors for high performance hole transport layers in organic photovoltaic devices

    Science.gov (United States)

    Ginley, David; Zakutayev, Andriy; Garcia, Andreas; Widjonarko, Nicodemus; Ndione, Paul; Sigdel, Ajaya; Parilla, Phillip; Olson, Dana; Perkins, John; Berry, Joseph

    2011-03-01

    We will report on the development of novel inorganic hole transport layers (HTL) for organic photovoltaics (OPV). All the studied materials belong to the general class of wide-bandgap p-type oxide semiconductors. Potential candidates suitable for HTL applications include SnO, NiO, Cu2O (and related CuAlO2, CuCrO2, SrCu2O4 etc) and Co3O4 (and related ZnCo2O4, NiCo2O4, MgCo2O4 etc.). Materials have been optimized by high-throughput combinatorial approaches. The thin films were deposited by RF sputtering and pulsed laser deposition at ambient and elevated temperatures. Performance of the inorganic HTLs and that of the reference organic PEDOT:PSS HTL were compared by measuring the power conversion efficiencies and spectral responses of the P3HT/PCBM- and PCDTBT/PCBM-based OPV devices. Preliminary results indicate that Co3O4-based HTLs have performance comparable to that of our previously reported NiOs and PEDOT:PSS HTLs, leading to a power conversion efficiency of about 4 percent. The effect of composition and work function of the ternary materials on their performance in OPV devices is under investigation.

  12. Simulation Evidence of Hexagonal-to-Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide-Range Tunable Direct Bandgap.

    Science.gov (United States)

    Li, Lei; Li, Pengfei; Lu, Ning; Dai, Jun; Zeng, Xiao Cheng

    2015-12-01

    2D material with tunable direct bandgap in the intermediate region (i.e., ≈2-3 eV) is key to the achievement of high efficiency in visible-light optical devices. Herein, a simulation evidence of structure transition of monolayer ZnSe from the experimental pseudohexagonal structure to the tetragonal structure (t-ZnSe) under lateral pressure is shown, suggesting a possible fabrication route to achieve the t-ZnSe monolayer. The as-produced t-ZnSe monolayer exhibits highly tunable bandgap under the biaxial strains, allowing strain engineering of t-ZnSe's bandgap over a wide range of 2-3 eV. Importantly, even under the biaxial strain up to 7%, the t-ZnSe monolayer still keeps its direct-gap property in the desirable range of 2.40-3.17 eV (corresponding to wavelength of green light to ultraviolet). The wide-range tunability of direct bandgap appears to be a unique property of the t-ZnSe monolayer, suggesting its potential application as a light-emitting 2D material in red-green-blue light emission diodes or as complementary light-absorption material in the blue-yellow region for multijunction solar cells. The straddling of the band edge of the t-ZnSe monolayer over the redox potential of water splitting reaction also points to its plausible application for visible-light-driven water splitting.

  13. Analysis of bandgap characteristics of two-dimensional periodic structures by using the source-model technique.

    Science.gov (United States)

    Ludwig, Alon; Leviatan, Yehuda

    2003-08-01

    We introduce a solution based on the source-model technique for periodic structures for the problem of electromagnetic scattering by a two-dimensional photonic bandgap crystal slab illuminated by a transverse-magnetic plane wave. The proposed technique takes advantage of the periodicity of the slab by solving the problem within the unit cell of the periodic structure. The results imply the existence of a frequency bandgap and provide a valuable insight into the relationship between the dimensions of a finite periodic structure and its frequency bandgap characteristics. A comparison shows a discrepancy between the frequency bandgap obtained for a very thick slab and the bandgap obtained by solving the corresponding two-dimensionally infinite periodic structure. The final part of the paper is devoted to explaining in detail this apparent discrepancy.

  14. Optical bandgap modeling of thermal annealed ZnO:Ga thin films using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Eun; Moon, Pyung; Yun, Ilgu [School of Electrical and Electronic Engineering, Yonsei University, 262 Seongsanno, Seodaemoon-gu, Seoul 120-749 (Korea); Kim, Sungyeon; Myoung, Jae-Min [Department of Materials Science and Engineering, Yonsei University, 262 Seongsanno, Seodaemoon-gu, Seoul 120-749 (Korea); Jang, Hyeon Woo; Bang, Jungsik [LG Chem, Ltd., Research Park, 104-1 Moonji-Dong, Yuseng-Gu, Daejeon 305-380 (Korea)

    2010-07-15

    In this paper, the thermal annealing process modeling for the optical bandgap of ZnO:Ga thin films for transparent conductive oxide was presented using neural network (NNets) based on error backpropagation (BPNN) algorithm and multilayer perceptron (MLP). The thermal annealing process of ZnO:Ga thin films were analyzed by general factorial experimental design. The annealing temperature and film thickness were considered as input factors. To model the nonlinear annealing process, 6 experiments were trained by BPNN which has 2-4-1 structures and 2 additional samples were experimented to verify the predicted models. The output response model on optical bandgap and carrier concentration of ZnO:Ga thin films trained by BPNN was represented by surface plot of response surface model. Based on the modeling results, NNets can provide sufficient correspondence between the predicted output values and the measured. The optical bandgap variation of ZnO:Ga thin films by annealing is due to increased carrier concentration and explained by Burstein-Moss effect. The thermal annealing process is nonlinear and complex but the output response can be predicted by the NNets model. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Type-II InP quantum dots in wide-bandgap InGaP host for intermediate-band solar cells

    Science.gov (United States)

    Tayagaki, Takeshi; Sugaya, Takeyoshi

    2016-04-01

    We demonstrate type-II quantum dots (QDs) with long carrier lifetimes in a wide-bandgap host as a promising candidate for intermediate-band solar cells. Type-II InP QDs are fabricated in a wide-bandgap InGaP host using molecular beam epitaxy. Time-resolved photoluminescence measurements reveal an extremely long carrier lifetime (i.e., greater than 30 ns). In addition, from temperature-dependent PL spectra, we find that the type-II InP QDs form a negligible valence band offset and conduction band offset of ΔEc ≈ 0.35 eV in the InGaP host. Such a type-II confinement potential for InP/InGaP QDs has a significant advantage for realizing efficient two-step photon absorption and suppressed carrier capture in QDs via Auger relaxation.

  16. Mechanical Deformation of Sintered Porous Ag Die Attach at High Temperature and Its Size Effect for Wide-Bandgap Power Device Design

    Science.gov (United States)

    Chen, Chuantong; Nagao, Shijo; Zhang, Hao; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki; Iwashige, Tomohito; Sugiura, Kazuhiko; Tsuruta, Kazuhiro

    2016-12-01

    The mechanical properties of sintered Ag paste with microporous structure have been investigated by tensile and shear tests, focusing on the temperature-dependent plastic deformation at various temperatures from 25°C to 300°C, corresponding to the target operating temperature range of emerging wide-bandgap semiconductor devices. Specimens were prepared by sintering hybrid Ag paste consisting of microflake and submicron spherical Ag particles, simulating a typical bonding process for power semiconductor die attach. Mechanical tests revealed that the unique microstructure caused a brittle-to-ductile transition at temperature of around 160°C, remarkably lower than that of bulk Ag. The obtained Young's modulus and shear modulus values indicate obvious softening with increasing temperature, together with a remarkable decrease in Poisson's ratio. These plastic behaviors at elevated temperature can be explained based on Coble creep in the microporous network structure. Fracture surfaces after tensile and shear tests indicated unique features on scanning electron microscopy, reflecting the variation in the ductile behavior with the test temperature. Furthermore, these temperature-dependent mechanical parameters were employed in three-dimensional finite-element analysis of the thermomechanical stress distribution in wide-bandgap semiconductor module structures including Ag paste die attach of different sizes. Detailed thermal stress analysis enabled precise evaluation of the packaging design for wide-bandgap semiconductor modules for use in high-temperature applications.

  17. Mechanical Deformation of Sintered Porous Ag Die Attach at High Temperature and Its Size Effect for Wide-Bandgap Power Device Design

    Science.gov (United States)

    Chen, Chuantong; Nagao, Shijo; Zhang, Hao; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki; Iwashige, Tomohito; Sugiura, Kazuhiko; Tsuruta, Kazuhiro

    2017-03-01

    The mechanical properties of sintered Ag paste with microporous structure have been investigated by tensile and shear tests, focusing on the temperature-dependent plastic deformation at various temperatures from 25°C to 300°C, corresponding to the target operating temperature range of emerging wide-bandgap semiconductor devices. Specimens were prepared by sintering hybrid Ag paste consisting of microflake and submicron spherical Ag particles, simulating a typical bonding process for power semiconductor die attach. Mechanical tests revealed that the unique microstructure caused a brittle-to-ductile transition at temperature of around 160°C, remarkably lower than that of bulk Ag. The obtained Young's modulus and shear modulus values indicate obvious softening with increasing temperature, together with a remarkable decrease in Poisson's ratio. These plastic behaviors at elevated temperature can be explained based on Coble creep in the microporous network structure. Fracture surfaces after tensile and shear tests indicated unique features on scanning electron microscopy, reflecting the variation in the ductile behavior with the test temperature. Furthermore, these temperature-dependent mechanical parameters were employed in three-dimensional finite-element analysis of the thermomechanical stress distribution in wide-bandgap semiconductor module structures including Ag paste die attach of different sizes. Detailed thermal stress analysis enabled precise evaluation of the packaging design for wide-bandgap semiconductor modules for use in high-temperature applications.

  18. Novel molecular host materials based on carbazole/PO hybrids with wide bandgap via unique linkages for solution-processed blue phosphorescent OLEDs

    Science.gov (United States)

    Ye, Hua; Zhou, Kaifeng; Wu, Hongyu; Chen, Kai; Xie, Gaozhan; Hu, Jingang; Yan, Guobing; Ma, Songhua; Su, Shi-Jian; Cao, Yong

    2016-10-01

    A series of novel molecules with wide bandgap based on electron-withdrawing diphenyl phosphine oxide units and electron-donating carbazolyl moieties through insulated unique linkages of flexible chains terminated by oxygen or sulfur atoms as solution-processable host materials were successfully synthesized for the first time, and their thermal, photophysical, and electrochemical properties were studied thoroughly. These materials possess high triplet energy levels (ET, 2.76-2.77 eV) due to the introduction of alkyl chain to interrupt the conjugation between electron-donor and electron-acceptor. Such high ET could effectively curb the energy from phosphorescent emitter transfer to the host molecules and thus assuring the emission of devices was all from the blue phosphorescent emitter iridium (III) bis [(4,6-difluorophenyl)-pyridinate-N,C2‧]picolinate (FIrpic). Among them, the solution-processed device based on CBCR6OPO without extra vacuum thermal-deposited hole-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 4.16 cd/A. Moreover, the device presented small efficiency roll-off with current efficiency (CE) of 4.05 cd/A at high brightness up to 100 cd/m2. Our work suggests the potential applications of the solution-processable materials with wide bandgap in full-color flat-panel displays and organic lighting.

  19. Growth of Wide-Bandgap Nanocrystalline Silicon Carbide Films by HWCVD: Influence of Filament Temperature on Structural and Optoelectronic Properties

    Science.gov (United States)

    Jha, Himanshu S.; Yadav, Asha; Singh, Mukesh; Kumar, Shailendra; Agarwal, Pratima

    2015-03-01

    Silicon carbide (SiC) thin films have been deposited using a hot-wire chemical vapor deposition technique on quartz substrates with a mixture of silane, methane, and hydrogen gases as precursors at a reasonably high deposition rate of approximately 15 nm/min to 50 nm/min. The influence of the filament temperature ( T F) on the structural, optical, and electrical properties of the SiC film has been investigated using x-ray diffraction, Raman scattering, Fourier-transform infrared spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible-near infrared transmission spectroscopy, and dark conductivity ( σ d) studies. Films deposited at low T F (1800°C to 1900°C) are amorphous in nature with high density of Si-Si bonds, whereas high- T F (≥2000°C) films are nanocrystalline embedded in an amorphous SiC matrix with higher concentration of Si-C bonds and negligible concentration of Si-Si bonds. The bandgap ( E g) varies from 2.5 eV to 3.1 eV and σ d (50°C) from ˜10-9 Ω-1 cm-1 to 10-1 Ω-1 cm-1 as T F is increased from 1900°C to 2200°C. This increase in E g and σ d is due to microstructural changes and unintentional oxygen doping of the films.

  20. A model for the direct-to-indirect band-gap transition in monolayer MoSe2 under strain

    Indian Academy of Sciences (India)

    Ruma Das; Priya Mahadevan

    2015-06-01

    A monolayer of MoSe2 is found to be a direct band-gap semiconductor. We show, within ab-initio electronic structure calculations, that a modest biaxial tensile strain of 3% can drive it into an indirect band-gap semiconductor with the valence band maximum (VBM) shifting from point to point. An analysis of the charge density reveals that while Mo–Mo interactions contribute to the VBM at 0% strain, Mo–Se interactions contribute to the highest occupied band at point. A scaling of the hopping interaction strengths within an appropriate tight binding model can capture the transition.

  1. Wide Band-Gap 3,4-Difluorothiophene-Based Polymer with 7% Solar Cell Efficiency: an Alternative to P3HT

    KAUST Repository

    Wolf, Jannic Sebastian

    2015-05-27

    We report on a wide band-gap polymer donor composed of benzo[1,2-b:4,5-b\\']dithiophene (BDT) and 3,4-difluorothiophene ([2F]T) units (Eopt ~2.1 eV), and show that the fluorinated analog PBDT[2F]T performs significantly better than its non-fluorinated counterpart PBDT[2H]T in BHJ solar cells with PC71BM. While control P3HT- and PBDT[2H]T-based devices yield PCEs of ca. 4% and 3% (Max.) respectively, PBDT[2F]T-based devices reach PCEs of ca. 7%, combining a large Voc of ca. 0.9 V and short-circuit current values (ca. 10.7 mA/cm2) comparable to those of the best P3HT-based control devices.

  2. Wide-bandgap nonlinear crystal LiGaSsub>2sub> for femtosecond mid-infrared spectroscopy with chirped-pulse upconversion.

    Science.gov (United States)

    Nakamura, Ryosuke; Inagaki, Yoshizumi; Hata, Hidefumi; Hamada, Norio; Umemura, Nobuhiro; Kamimura, Tomosumi

    2016-11-20

    Femtosecond time-resolved mid-infrared (MIR) spectroscopy based on chirped-pulse upconversion is a promising method for observing molecular vibrational dynamics. A quantitative study on nonlinear media for upconversion is still essential for wide applications, particularly at the frequencies below 2000  cm-1. We evaluate wide-bandgap nonlinear crystals of Li-containing ternary chalcogenides based on their performance as the upconversion medium for femtosecond MIR spectroscopy. The upconversion efficiency is measured as a function of the MIR pulse frequency and the chirped pulse energy. LiGaSsub>2sub> is found to be an efficient crystal for the upconversion of MIR pulses in a wide frequency range of 1100-2700  cm-1, especially below 2000  cm-1. By using LiGaSsub>2sub> as an efficient upconversion crystal, we develop a MIR pump-probe spectroscopy system with a spectral resolution of 2.5  cm-1, a time resolution of 0.2 ps, and a probe window of 120  cm-1. Vibrational relaxation dynamics of CO stretching modes of Mnsub>2sub>(CO)sub>10sub> in cyclohexane and bovine serum albumin in Dsub>2sub>O are demonstrated with a high signal-to-noise ratio.

  3. Modeling of Z-scan characteristics for one-dimensional nonlinear photonic bandgap materials.

    Science.gov (United States)

    Chen, Shuqi; Zang, Weiping; Schülzgen, Axel; Liu, Xin; Tian, Jianguo; Moloney, Jerome V; Peyghambarian, Nasser

    2009-12-01

    We propose a Z-scan theory for one-dimensional nonlinear photonic bandgap materials. The Z-scan characteristics for this material are analyzed. Results show that the Z-scan curves for photonic bandgap materials with nonlinear refraction are similar to those of uniform materials exhibiting both nonlinear refraction and nonlinear absorption simultaneously. Effects of nonlinear absorption on reflected and transmitted Z-scan results are also discussed.

  4. Analysis of doping concentration and composition in wide bandgap AlGaN:Si by wavelength dispersive x-ray spectroscopy

    Science.gov (United States)

    Kusch, Gunnar; Mehnke, Frank; Enslin, Johannes; Edwards, Paul R.; Wernicke, Tim; Kneissl, Michael; Martin, Robert W.

    2017-03-01

    Detailed knowledge of the dopant concentration and composition of wide band gap Al x Ga{}1-x{{N}} layers is of crucial importance for the fabrication of ultra violet light emitting diodes. This paper demonstrates the capabilities of wavelength dispersive x-ray (WDX) spectroscopy in accurately determining these parameters and compares the results with those from high resolution x-ray diffraction (HR-XRD) and secondary ion mass spectrometry (SIMS). WDX spectroscopy has been carried out on different silicon-doped wide bandgap Al x Ga{}1-x{{N}} samples (x between 0.80 and 1). This study found a linear increase in the Si concentration with the SiH4/group-III ratio, measuring Si concentrations between 3× {10}18 cm‑3 and 2.8× {10}19 cm‑3, while no direct correlation between the AlN composition and the Si incorporation ratio was found. Comparison between the composition obtained by WDX and by HR-XRD showed very good agreement in the range investigated, while comparison of the donor concentration between WDX and SIMS found only partial agreement, which we attribute to a number of effects.

  5. High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4-f]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63.

    Science.gov (United States)

    Lan, Liuyuan; Chen, Zhiming; Hu, Qin; Ying, Lei; Zhu, Rui; Liu, Feng; Russell, Thomas P; Huang, Fei; Cao, Yong

    2016-09-01

    A novel donor-acceptor type conjugated polymer based on a building block of 4,8-di(thien-2-yl)-6-octyl-2-octyl-5H-pyrrolo[3,4-f]benzotriazole-5,7(6H)-dione (TZBI) as the acceptor unit and 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo-[1,2-b:4,5-b']dithiophene as the donor unit, named as PTZBIBDT, is developed and used as an electron-donating material in bulk-heterojunction polymer solar cells. The resulting copolymer exhibits a wide bandgap of 1.81 eV along with relatively deep highest occupied molecular orbital energy level of -5.34 eV. Based on the optimized processing conditions, including thermal annealing, and the use of a water/alcohol cathode interlayer, the single-junction polymer solar cell based on PTZBIBDT:PC71BM ([6,6]-phenyl-C71-butyric acid methyl ester) blend film affords a power conversion efficiency of 8.63% with an open-circuit voltage of 0.87 V, a short circuit current of 13.50 mA cm(-2), and a fill factor of 73.95%, which is among the highest values reported for wide-bandgap polymers-based single-junction organic solar cells. The morphology studies on the PTZBIBDT:PC71BM blend film indicate that a fibrillar network can be formed and the extent of phase separation can be mani-pulated by thermal annealing. These results indicate that the TZBI unit is a very promising building block for the synthesis of wide-bandgap polymers for high-performance single-junction and tandem (or multijunction) organic solar cells.

  6. Morphology effects on the bandgap of silicon nanocrystals—Numerically modelled by a full multi-grid method

    Science.gov (United States)

    Puthen Veettil, Binesh; König, Dirk; Huang, Shujuan; Patterson, Robert; Conibeer, Gavin

    2017-02-01

    Silicon nanocrystals embedded in a dielectric matrix have been considered a potential candidate for many optoelectronic and photovoltaic applications and have been under vigorous study in recent years. One of the main properties of interest in this application is the absorption bandgap, which is determined by the quantum confinement of silicon nanocrystals. The ability to predict the absorption bandgap is a key step in designing an optimum solar cell using this material. Although several higher level algorithms are available to predict the electronic confinement in these nanocrystals, most of them make regular-shape assumptions for the ease of computation. In this work, we present a model for the accurate prediction of the quantum confinement in silicon nanocrystals of non-regular shape by employing an efficient, self-consistent Full-Multi-Grid method. Confined energies in spherical, elongated, and arbitrarily shaped nanocrystals are calculated. The excited level calculations quantify the wavefunction coupling and energy level splitting arising due to the proximity of dots. The splitting magnitude was found to be as high as 0.1 eV for the 2 nm size silicon quantum dots. The decrease in confinement energy due to the elongation of dots was found to be more than 0.2 eV, and the trend was similar for different dielectric materials. Theoretical predictions were compared to the results from optical and structural characterisation and found to be in agreement. The loss of degeneracy in highly asymmetric quantum dots, such as a "horse-shoe" shaped quantum dot, significantly affects the excited state energies.

  7. New Coefficients of the Minority Carrier Lifetime and Bandgap Narrowing Models in the Transparent Emitter of Thin Film Silicon Solar Cells

    OpenAIRE

    2001-01-01

    In this study we have determined new coefficients for the physical model describing the band-gap narrowing and the minority carriers lifetime. This was accomplished according to the doping level of the thin emitter. This model allows us to take into account both the effects of the heavy doping and the majority carrier degeneration for the very high level of doping. The results we obtain by the corrected model are in good agreement with those reported in the literature and in di...

  8. Wooden Model of Wide AA Bending Magnet

    CERN Multimedia

    1978-01-01

    The very particular lattice of the AA required 2 types of dipoles (bending magnets: BLG, long and narrow; BST, short and wide). The wide ones had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. Here we see a wooden model, built in 1978, to gain dimensional experience with such a monster.

  9. Porous-core honeycomb bandgap THz fiber

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd

    2011-01-01

    In this Letter we propose a novel (to our knowledge) porous-core honeycomb bandgap design. The holes of the porous core are the same size as the holes in the surrounding cladding, thereby giving the proposed fiber important manufacturing benefits. The fiber is shown to have a 0:35-THz......-wide fundamental bandgap centered at 1:05 THz. The calculated minimum loss of the fiber is 0:25 dB=cm....

  10. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Zaslavsky, Alexander [Department of Physics and School of Engineering, Brown University, 182-184 Hope St., Providence, Rhode Island 02912 (United States); Longo, Paolo [Gatan, Inc., 5794 W Las Positas Blvd., Pleasanton, California 94588 (United States); Pacifici, Domenico, E-mail: Domenico-Pacifici@brown.edu [School of Engineering, Brown University, 184 Hope St., Providence, Rhode Island 02912 (United States)

    2016-01-07

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Tauc and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.

  11. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    Science.gov (United States)

    Liu, Pei; Longo, Paolo; Zaslavsky, Alexander; Pacifici, Domenico

    2016-01-01

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Tauc and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO2 superlattices with single and multiple a-Ge layers down to 2 nm thickness.

  12. Research Progress on Hydrothermal Growth of Wide Bandgap ZnO Single Crystal%水热法生长宽禁带氧化锌单晶研究进展

    Institute of Scientific and Technical Information of China (English)

    王金亮; 任孟德; 左艳彬; 何小玲; 张昌龙

    2015-01-01

    This article lists the development history and application prospect of the third generation of semiconductor material-wide bandgap zinc oxide single crystal,and sum-marizes the structural performance,application direction and preparation technique of ZnO.The article also introduces the distinct advantages of wide bandgap zinc oxide single crystal compared to gallium nitride which are as follow:more powerful exciton binding energy (60 mev),lower lasing threshold,very likely to achieve ultraviolet laser of high efficiency and low threshold under indoor temperature.Compared to the very successful gallium nitride,the cost of the raw material for ZnO is extremely low and it is environ-mental friendly and easy for synthesis.For the moment,the difficult and hot issues of the research on ZnO semiconductor material focus on the research and development of p-type doping materials and devices.Excellent physical properties of zinc oxide have made it a new generation of mainstream broadband gap semiconductor materials.Growth of zinc oxide single crystal of large size and high crystallization quality has a great significance for both of basic research and practical application.The method and techical advantage of hy-drothermal synthesis of wide bandgap zinc oxide single crystal have been specially intro-duced in this article which demonstrates our latest research development of hydrothermal synthesis of wide bandgap zinc oxide single crystal.%罗列了第三代半导体材料宽禁带氧化锌材料的发展历史与应用前景,总结了 ZnO 的结构性能、应用方向和制备方法,介绍了宽禁带氧化锌半导体晶体相对于氮化镓材料具有的显著优势:即具有更大的激子结合能(60meV),更低的激射阀值,有望实现室温下高效低阈值的紫外激光。氧化锌相比已获得巨大成功的氮化镓来说其原材料成本极低,环境友好,合成技术门槛低。目前氧化锌半导体材料的研

  13. Wooden Model of Wide AA Bending Magnet

    CERN Multimedia

    1978-01-01

    The very particular lattice of the AA required 2 types of dipoles (bending magnets: BLG, long and narrow; BST, short and wide). A wide one had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. A wooden model was build in 1978, to gain dimensional experience. Here, Peter Zettwoch, one of the largest men at CERN at that time, is putting a hand in the mouth of the wooden BST monster.

  14. Photonic bandgap fiber bundle spectrometer

    CERN Document Server

    Hang, Qu; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim

    2010-01-01

    We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our work is equivalent in its function to a set of 100 optical filters densely packed in the area of ~1cm2. Black and white CCD camera is then used to capture spectrally "binned" image of the incoming light at the output facet of a fiber bundle. To reconstruct the test spectrum from a single CCD image we developed an algorithm based on pseudo-inversion of the spectrometer transmission matrix. We then study resolution limit of this spectroscopic system by testing its performance using spectrally narrow test peaks (FWHM 5nm-25nm) centered at va...

  15. Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  16. Reflection and transmission of elastic waves in non-local band-gap metamaterials: A comprehensive study via the relaxed micromorphic model

    Science.gov (United States)

    Madeo, Angela; Neff, Patrizio; Ghiba, Ionel-Dumitrel; Rosi, Giuseppe

    2016-10-01

    In this paper we derive, by means of a suitable least action principle, the duality jump conditions to be imposed at surfaces of discontinuity of the material properties in non-dissipative, linear-elastic, isotropic, Mindlin's and relaxed micromorphic media, respectively. The introduced theoretical framework allows the transparent set-up of different types of micro-macro connections which are intrinsically compatible with the governing bulk equations. To illustrate the interest of the many introduced jump conditions, we focus on the case of an interface between a classical Cauchy continuum on one side and a relaxed micromorphic one on the other side. As expected, we find a complete reflection in the frequency intervals for which band-gaps are known to occur in the relaxed micromorphic continuum and precise microstructure-related reflective patterns are identified. We repeat a similar study for analogous connections between a classical Cauchy continuum and a Mindlin's micromorphic one and we show that the reflective properties of the considered interfaces are drastically modified due to the fact that band-gaps are not allowed in standard Mindlin's micromorphic media. The present work opens the way towards the possibility of conceiving complex metastructures in which band-gap metamaterials and classical materials are coupled together to produce structures with completely new and unorthodox properties with respect to wave propagation, transmission and reflection. Last, but not least, indirect measurements of the material coefficients of the relaxed micromorphic model based upon real experiments of reflection and transmission in band-gap metamaterials are uncovered by the present work which makes them finally realizable in the short term.

  17. From electromagnetic bandgap to left-handed metamaterials: modelling and applications

    Institute of Scientific and Technical Information of China (English)

    HAO Yang

    2006-01-01

    In this paper, numerical modelling of left-handed materials (LHMs) is presented using in-house and commercial software packages. Approaches used include the finite-difference time-domain (FDTD) method, finite element method (FEM) and method of moments (MoMs). Numerical simulation includes verification of negative refraction and "perfect lenses" construction,investigation of evanescent wave behaviour in layered LHMs, reversed Snell's Law in electromagnetic band gap (EBG)-like structures and construction of LHMs using modified split ring resonators (SRRs). Numerical results were verified to be in good agreement with theory. At the end of this paper, potential applications of LHMs in microwave engineering are discussed.

  18. New Coefficients of the Minority Carrier Lifetime and Bandgap Narrowing Models in the Transparent Emitter of Thin Film Silicon Solar Cells

    OpenAIRE

    2003-01-01

    In this study we have determined new coefficients for the physical model describing the band-gap narrowing and the minority carriers lifetime. This was accomplished according to the doping level of the thin emitter. This model allows us to take into account both the effects of the heavy doping and the majority carrier degeneration for the very high level of doping. The results we obtain by the corrected model are in good agreement with those reported in the literature and in different expe...

  19. ABi2 (IO3 )2 F5 (A=K, Rb, and Cs): A Combination of Halide and Oxide Anionic Units To Create a Large Second-Harmonic Generation Response with a Wide Bandgap.

    Science.gov (United States)

    Liu, Hongming; Wu, Qi; Jiang, Xingxing; Lin, Zheshuai; Meng, Xianggao; Chen, Xingguo; Qin, Jingui

    2017-08-01

    A family of nonlinear optical materials that contain the halide, oxide, and oxyhalide polar units simultaneously in a single structure, namely ABi2 (IO3 )2 F5 (A=K (1), Rb (2), and Cs (3)), have been designed and synthesized. They crystallize in the same polar space group (P21 ) with a two-dimensional double-layered framework constructed by [BiF5 ](2-) and [BiO2 F4 ](5-) units connected to each other by four F atoms, in which two [IO3 ](-) groups are linked to [BiO2 F4 ](5-) unit on the same side. A hanging Bi-F bond of [BiF5 ](2-) unit is located on the other side via ionic interaction with the layer-inserted alkali metal ions to form three-dimensional structure. The well-ordered alignments of these polar units lead to a very strong second-harmonic generation response of 12 (1), 9.5 (2), and 7.5 (3) times larger than that of potassium dihydrogen phosphate under 1064 nm laser radiation. All of them exhibited a wide energy bandgap over 3.75 eV, suggesting that they will have a high laser damage threshold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V).

    Science.gov (United States)

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-01-01

    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm(-2) , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Materials Research Society Symposium Proceedings on Diamond, SiC and Nitride Wide Bandgap Semiconductors Held at San Francisco, California on 4-8 April 1994. Volume 339.

    Science.gov (United States)

    1994-04-08

    363 D. Prasad Beesabathina, K. Fekade, K. Wongchotigul, M.G. Spencer, and L. Salamanca -Riba *NUCLEATION AND STEP...demonstrated MESFET and HEMT devices based on the AlxGal-XN material system [2]. Recent Monte Carlo simulations predict high values for peak velocity...resolved dynamic Monte Carlo simulations for diamond growth. The process of diamond growth was modeled 19 as a Markovian sequence of collisions between gas

  2. Ion Implantation of Wide Bandgap Semiconductors.

    Science.gov (United States)

    1978-05-01

    u s i n g nomina l l v • S’~ xi lane in UHP argon and r o u g h ly eq u i va l e n t system cond it ions. We probably obtained a h o t t i t ’ of...dilute silane that is more c o nce n t rat e d han t he nomina l 1 .5Z reques ted . Both Auger ana l vs is and Rut her f o rd b ackscu t t er ing

  3. Ultrafast spectroscopy of wide bandgap semiconductor nanostructures

    OpenAIRE

    2015-01-01

    Group III-nitrides have been considered a promising choice for the realization of optoelectronic devices since 1970. Since the first demonstration of the high-brightness blue light-emitting diodes (LEDs) by Shuji Nakamura and coworkers, the fabrication of highly efficient white LEDs has passed successful developments. A serious physical issue still remained, which prevents their use for high power and highly efficient LEDs: the drop of external quantum efficiency (EQE) of III-nitride LEDs whe...

  4. Interface Properties of Wide Bandgap Semiconductor Structures

    Science.gov (United States)

    1993-06-01

    different ONR and other on- going programs) and is under the direction of Dr. R. J. Nemanich. Previously, the NCSU ISSS consisted of separate systems with...stop before going through all of the oxide. 14. Use HF to remove the remaining oxide. 15. Grow thin oxide (A) on trenched wafers for passivation...J. Jacko and S. J. W. Price, Can. J. Chem. 42, 1198 (1964). 17. N. Kobayashi, T. Makimoto and Y. Horikoshi, Jpn. I. of Appl. Phys. 24, L962 (1985

  5. Contact and Bandgap Engineering in Two Dimensional Crystal

    Science.gov (United States)

    Chu, Tao

    At the heart of semiconductor research, bandgap is one of the key parameters for materials and determine their applications in modern technologies. For traditional bulk semiconductors, the bandgap is determined by the chemical composition and specific arrangement of the crystal lattices, and usually invariant during the device operation. Nevertheless, it is highly desirable for many optoelectronic and electronic applications to have materials with continuously tunable bandgap available. In the past decade, 2D layered materials including graphene and transition metal dichalcogenides (TMDs) have sparked interest in the scientific community, owing to their unique material properties and tremendous potential in various applications. Among many newly discovered properties that are non-existent in bulk materials, the strong in-plane bonding and weak van der Waals inter-planar interaction in these 2D layered structures leads to a widely tunable bandgap by electric field. This provides an extra knob to engineer the fundamental material properties and open a new design space for novel device operation. This thesis focuses on this field controlled dynamic bandgap and can be divided into three parts: (1) bilayer graphene is the first known 2D crystal with a bandgap can be continuously tuned by electric field. However, the electrical transport bandgaps is much smaller than both theoretical predictions and extracted bandgaps from optical measurements. In the first part of the thesis, the limiting factors of preventing achieving a large transport bandgap in bilayer graphene are investigated and different strategies to achieve a large transport bandgap are discussed, including the vertically scaling of gate oxide and patterning channel into ribbon structure. With a record large transport bandgap of ~200meV, a dual-gated semiconducting bilayer graphene P/N junction with extremely scaled gap of 20nm in-between is fabricated. A tunable local maxima feature, associated with 1D v

  6. Time-domain analysis of bandgap characteristics of two-dimensional periodic structures by use of a source-model technique.

    Science.gov (United States)

    Ludwig, Alon; Leviatan, Yehuda

    2008-02-01

    We introduce a time-domain source-model technique for analysis of two-dimensional, transverse-magnetic, plane-wave scattering by a photonic crystal slab composed of a finite number of identical layers, each comprising a linear periodic array of dielectric cylinders. The proposed technique takes advantage of the periodicity of the slab by solving the problem within a unit cell of the periodic structure. A spectral analysis of the temporal behavior of the fields scattered by the slab shows a clear agreement between frequency bands where the spectral density of the transmitted energy is low and the bandgaps of the corresponding two-dimensionally infinite periodic structure. The effect of the bandwidth of the incident pulse and its center frequency on the manner it is transmitted through and reflected by the slab is studied via numerical examples.

  7. Modeling and simulation of band-gap profiling with planar heterojunction of hole-transporting layer-free perovskite solar cells

    Science.gov (United States)

    Liu, Yung-Tsung; Chen, Yu-Hung; Lin, Chen-Cheng; Fan, Chia-Ming; Liu, Jun-Chin; Tung, Yung-Liang; Tsai, Song-Yeu

    2017-07-01

    This study entailed modeling a perovskite absorber involving band-gap grading at the back of the absorber and double-grading profiles of hole-transporting layer-free perovskite solar cells. Device simulation based on continuity equations and Poisson’s equation was carried out by using AMPS-1D software. The optimum grading profile consisted of a band gap of 1.7 eV at the interface between the TiO2 and absorber with a graded thickness of 300 nm, uniform 1.5 eV of 50 nm, and back surface 2.1 eV with a graded thickness of 50 nm. The attained simulated efficiency was 22.68% (open-circuit voltage, V oc  =  1.34 V; short-circuit current density, J sc  =  19.98 mA cm-2 fill factor, FF  =  0.84), which is close to the uniform band gap of 1.5 eV of the whole absorber with a hole-transporting layer (Spiro-OMeTAD). This was mainly because of back grading forming a conduction band energy barrier to suppress the transportation of photo-generated electrons from the absorber to the back electrode, thereby improving carrier collection. The results indicate that the hole-transporting layer could be replaced by optimal band-gap profiling of the absorber, with near to no decayed performance of the perovskite solar cells.

  8. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    -sectional area. To study the band-gap for travelling waves, a repeated inner segment of the optimized beams is analyzed using Floquet theory and the waveguide finite element (WFE) method. Finally, the frequency response is computed for the optimized beams when these are subjected to an external time......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...

  9. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun

    2016-03-03

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low and high stress levels; all updated models involve four parameters. Compiled consolidation data for remolded and natural clays are used to test the models and to develop correlations between model parameters and index properties. Models can adequately fit soil compression data for a wide range of stresses and soil types; in particular, models that involve the power of the stress σ\\'β display higher flexibility to capture the brittle response of some natural soils. The use of a single continuous function avoids numerical discontinuities or the need for ad hoc procedures to determine the yield stress. The tangent stiffness-readily computed for all models-should not be mistaken for the small-strain constant-fabric stiffness. © 2016 American Society of Civil Engineers.

  10. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Science.gov (United States)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  11. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-01-05

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  12. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  13. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-03-22

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  14. Densely Aligned Graphene Nanoribbon Arrays and Bandgap Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Justin [Stanford Univ., CA (United States); Chen, Changxin [Stanford Univ., CA (United States); Gong, Ming [Stanford Univ., CA (United States); Kenney, Michael [Stanford Univ., CA (United States)

    2017-01-04

    Graphene has attracted great interest for future electronics due to its high mobility and high thermal conductivity. However, a two-dimensional graphene sheet behaves like a metal, lacking a bandgap needed for the key devices components such as field effect transistors (FETs) in digital electronics. It has been shown that, partly due to quantum confinement, graphene nanoribbons (GNRs) with ~2 nm width can open up sufficient bandgaps and evolve into semiconductors to exhibit high on/off ratios useful for FETs. However, a challenging problem has been that, such ultra-narrow GNRs (~2 nm) are difficult to fabricate, especially for GNRs with smooth edges throughout the ribbon length. Despite high on/off ratios, these GNRs show very low mobility and low on-state conductance due to dominant scattering effects by imperfections and disorders at the edges. Wider GNRs (>5 nm) show higher mobility, higher conductance but smaller bandgaps and low on/off ratios undesirable for FET applications. It is highly desirable to open up bandgaps in graphene or increase the bandgaps in wide GNRs to afford graphene based semiconductors for high performance (high on-state current and high on/off ratio) electronics. Large scale ordering and dense packing of such GNRs in parallel are also needed for device integration but have also been challenging thus far. It has been shown theoretically that uniaxial strains can be applied to a GNR to engineer its bandgap. The underlying physics is that under uniaxial strain, the Dirac point moves due to stretched C-C bonds, leading to an increase in the bandgap of armchair GNRs by up to 50% of its original bandgap (i.e. bandgap at zero strain). For zigzag GNRs, due to the existence of the edge states, changes of bandgap are smaller under uniaxial strain and can be increased by ~30%. This work proposes a novel approach to the fabrication of densely aligned graphene nanoribbons with highly smooth edges afforded by anisotropic etching and uniaxial strain for

  15. Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride

    Science.gov (United States)

    Ba, Kun; Jiang, Wei; Cheng, Jingxin; Bao, Jingxian; Xuan, Ningning; Sun, Yangye; Liu, Bing; Xie, Aozhen; Wu, Shiwei; Sun, Zhengzong

    2017-04-01

    Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN’s hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge bizarre hybrid structures like hetero-junctions or semiconducting h-BNC materials. Here we successfully developed a general chemical method to synthesize these different h-BN derivatives, showcasing how the chemical structure can be manipulated with or without a graphene precursor, and the bandgap be tuned to ~2 eV, only one third of the pristine one’s.

  16. Polarization properties of photonic bandgap fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard

    2000-01-01

    We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components.......We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components....

  17. Shape optimization of solid-air porous phononic crystal slabs with widest full 3D bandgap for in-plane acoustic waves

    Science.gov (United States)

    D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele

    2017-09-01

    The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.

  18. Electronic and chemical structure of an organic light emitter embedded in an inorganic wide-bandgap semiconductor: Photoelectron spectroscopy of layered and composite structures of Ir(BPA) and ZnSe

    Science.gov (United States)

    Dimamay, Mariel; Mayer, Thomas; Hadziioannou, Georges; Jaegermann, Wolfram

    2015-05-01

    Luminescent organic phases embedded in conductive inorganic matrices are proposed for hybrid organic-inorganic light-emitting diodes. In this configuration, the organic dye acts as the radiative recombination site for charge carriers injected into the inorganic matrix. Our investigation is aimed at finding a material combination where the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the organic dye are situated in between the valence and conduction bands of the inorganic matrix in order to promote electron and hole transfer from the matrix to the dye. Bilayer and composite thin films of zinc selenide (ZnSe) and a red iridium complex (Ir(BPA)) organic light emitter were prepared in situ via UHV thermal evaporation technique. The electronic and atomic structures were studied applying X-ray and ultraviolet photoelectron spectroscopies. The measured energy band alignments for the ZnSe/Ir(BPA) bilayer and ZnSe+Ir(BPA) composite reveal that the HOMO and LUMO of the organic dye are positioned in the ZnSe bandgap. For the initial steps of ZnSe deposition on a dye film to form Ir(BPA)/ZnSe bilayers, zinc atoms intercalate into the dye film leaving behind an excess of selenium at the interface that partly reacts with dye molecules. Photoelectron spectroscopy of the composites shows the same species suggesting a similar mechanism. This mechanism leads to composite films with increased content of amorphous phases in the inorganic matrix, thereby affecting its conductivity, as well as to the presence of nonradiative recombination sites provided by the intercalated Zn atoms.

  19. Electronic and chemical structure of an organic light emitter embedded in an inorganic wide-bandgap semiconductor: Photoelectron spectroscopy of layered and composite structures of Ir(BPA) and ZnSe

    Energy Technology Data Exchange (ETDEWEB)

    Dimamay, Mariel [Institute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt (Germany); Laboratoire de Chimie des Polymères Organiques, CNRS, Université de Bordeaux, UMR 5629-16 Avenue Pey-Berland, 33607 Pessac (France); Mayer, Thomas; Jaegermann, Wolfram [Institute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt (Germany); Hadziioannou, Georges [Laboratoire de Chimie des Polymères Organiques, CNRS, Université de Bordeaux, UMR 5629-16 Avenue Pey-Berland, 33607 Pessac (France)

    2015-05-07

    Luminescent organic phases embedded in conductive inorganic matrices are proposed for hybrid organic-inorganic light-emitting diodes. In this configuration, the organic dye acts as the radiative recombination site for charge carriers injected into the inorganic matrix. Our investigation is aimed at finding a material combination where the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the organic dye are situated in between the valence and conduction bands of the inorganic matrix in order to promote electron and hole transfer from the matrix to the dye. Bilayer and composite thin films of zinc selenide (ZnSe) and a red iridium complex (Ir(BPA)) organic light emitter were prepared in situ via UHV thermal evaporation technique. The electronic and atomic structures were studied applying X-ray and ultraviolet photoelectron spectroscopies. The measured energy band alignments for the ZnSe/Ir(BPA) bilayer and ZnSe+Ir(BPA) composite reveal that the HOMO and LUMO of the organic dye are positioned in the ZnSe bandgap. For the initial steps of ZnSe deposition on a dye film to form Ir(BPA)/ZnSe bilayers, zinc atoms intercalate into the dye film leaving behind an excess of selenium at the interface that partly reacts with dye molecules. Photoelectron spectroscopy of the composites shows the same species suggesting a similar mechanism. This mechanism leads to composite films with increased content of amorphous phases in the inorganic matrix, thereby affecting its conductivity, as well as to the presence of nonradiative recombination sites provided by the intercalated Zn atoms.

  20. Wide-area traffic: The failure of Poisson modeling

    Energy Technology Data Exchange (ETDEWEB)

    Paxson, V.; Floyd, S.

    1994-08-01

    Network arrivals are often modeled as Poisson processes for analytic simplicity, even though a number of traffic studies have shown that packet interarrivals are not exponentially distributed. The authors evaluate 21 wide-area traces, investigating a number of wide-area TCP arrival processes (session and connection arrivals, FTPDATA connection arrivals within FTP sessions, and TELNET packet arrivals) to determine the error introduced by modeling them using Poisson processes. The authors find that user-initiated TCP session arrivals, such as remote-login and file-transfer, are well-modeled as Poisson processes with fixed hourly rates, but that other connection arrivals deviate considerably from Poisson; that modeling TELNET packet interarrivals as exponential grievously underestimates the burstiness of TELNET traffic, but using the empirical Tcplib[DJCME92] interarrivals preserves burstiness over many time scales; and that FTPDATA connection arrivals within FTP sessions come bunched into ``connection bursts``, the largest of which are so large that they completely dominate FTPDATA traffic. Finally, they offer some preliminary results regarding how the findings relate to the possible self-similarity of wide-area traffic.

  1. Graded bandgap perovskite solar cells

    Science.gov (United States)

    Ergen, Onur; Gilbert, S. Matt; Pham, Thang; Turner, Sally J.; Tan, Mark Tian Zhi; Worsley, Marcus A.; Zettl, Alex

    2017-05-01

    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ~75% and high short-circuit current densities up to 42.1 mA cm-2. The cells are based on an architecture of two perovskite layers (CH3NH3SnI3 and CH3NH3PbI3-xBrx), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  2. Photonic Bandgaps in Photonic Molecules

    Science.gov (United States)

    Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.

  3. Bandgap renormalization in single-wall carbon nanotubes.

    Science.gov (United States)

    Zhu, Chunhui; Liu, Yujie; Xu, Jieying; Nie, Zhonghui; Li, Yao; Xu, Yongbing; Zhang, Rong; Wang, Fengqiu

    2017-09-11

    Single-wall carbon nanotubes (SWNTs) have been extensively explored as an ultrafast nonlinear optical material. However, due to the numerous electronic and morphological arrangements, a simple and self-contained physical model that can unambiguously account for the rich photocarrier dynamics in SWNTs is still absent. Here, by performing broadband degenerate and non-degenerate pump-probe experiments on SWNTs of different chiralities and morphologies, we reveal strong evidences for the existence of bandgap renormalization in SWNTs. In particularly, it is found that the broadband transient response of SWNTs can be well explained by the combined effects of Pauli blocking and bandgap renormalization, and the distinct dynamics is further influenced by the different sensitivity of degenerate and non-degenerate measurements to these two concurrent effects. Furthermore, we attribute optical-phonon bath thermalization as an underlying mechanism for the observed bandgap renormalization. Our findings provide new guidelines for interpreting the broadband optical response of carbon nanotubes.

  4. Transformer Model in Wide Frequency Bandwidth for Power Electronics Systems

    Directory of Open Access Journals (Sweden)

    Carlos Gonzalez-Garcia

    2013-01-01

    Full Text Available The development of the smart grids leads to new challenges on the power electronics equipment and power transformers. The use of power electronic transformer presents several advantages, but new problems related with the application of high frequency voltage and current components come across. Thus, an accurate knowledge of the transformer behavior in a wide frequency range is mandatory. A novel modeling procedure to relate the transformer physical behavior and its frequency response by means of electrical parameters is presented. Its usability is demonstrated by an example where a power transformer is used as filter and voltage reducer in an AC-DC-AC converter.

  5. Novel 1-D Sandwich Photonic Bandgap Structure

    Institute of Scientific and Technical Information of China (English)

    庞云波; 高葆新

    2004-01-01

    A sandwich photonic bandgap (PBG) structure is a novel PBG structure whose periodic lattice is buried in the middle of a substrate. Neither drilling nor suspending the substrate is required, and the integrity of the ground plane is maintained. This paper presents several modification techniques for sandwich PBG structure fabrication. The forbidden gap can be improved by adopting the chirping technique, applying the tapering technique, enlarging the periodic elements, adjusting the location of the periodic lattice in the substrate, and using different dielectric media H-shape elements. A finite difference time domain method is applied to analyze the structures. Deep and wide stopbands can be obtained using the modified sandwich structures. Experimental measurement results agree well with the theoretical analysis.

  6. Design of photonic bandgap fibers by topology optimization

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Feurer, Thomas

    2010-01-01

    A method based on topology optimization is presented to design the cross section of hollow-core photonic bandgap fibers for minimizing energy loss by material absorption. The optical problem is modeled by the timeharmonic wave equation and solved with the finite element program Comsol Multiphysics...

  7. Machine learning bandgaps of double perovskites

    National Research Council Canada - National Science Library

    Pilania, G; Mannodi-Kanakkithodi, A; Uberuaga, B P; Ramprasad, R; Gubernatis, J E; Lookman, T

    2016-01-01

    .... While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning...

  8. Photovoltaic efficiency of an indirect bandgap material

    Science.gov (United States)

    Tomasik, Michelle; Mangan, Niall; Grossman, Jeffrey

    2015-03-01

    Photovoltaic materials with direct band gap transitions absorb light more readily than those with indirect gaps, allowing for thinner devices. However, direct bands also suffer faster rates of radiative recombination than indirect bandgap materials. Some novel photovoltaic absorber materials, such as tin sulfide, have both direct and indirect gaps. Such materials raise the question of whether the multiple energy states benefit or harm device efficiency. We develop a model for current in a device with direct and indirect band gaps using detailed balance, similar to the Shockley-Quiesser model for direct band photovoltaics. We explore the effects of the following on device performance: transition probability of carriers between the direct and indirect state, and relative transport rate in each band.

  9. Thermodynamic Property Model of Wide-Fluid Phase Propane

    Directory of Open Access Journals (Sweden)

    I Made Astina

    2007-05-01

    Full Text Available A new thermodynamic property model for propane is expressed in form of the Helmholtz free energy function. It consists of eight terms of the ideal-gas part and eighteen terms of the residual part. Accurate experimental data of fluid properties and theoretical approach from the intermolecular potential were simultaneously considered in the development to insure accuracy and to improve reliability of the equation of state over wide range of pressures and temperatures. Based on the state range of experimental data used in the model development, the validity range is judged from the triple-point of 85.48 K to temperature of 450 K and pressure up to 60 MPa. The uncertainties with respect to different properties are estimated to be 0.03% in ideal-gas isobaric specific heat, 0.2% in liquid phase density, 0.3% in gaseous phase density 1% in specific heats, 0.1% in vapor-pressure except at very low temperatures, 0.05% in saturated-liquid density, 0.02% in speed of sound of the gaseous phase and 1% in speed of sound of the liquid phase.

  10. Multi-Line Fit Model for the Detection of Methane at ν2 + 2ν3 Band using Hollow-Core Photonic Bandgap Fibres

    Directory of Open Access Journals (Sweden)

    Ana M. Cubillas

    2009-01-01

    Full Text Available Hollow-core photonic bandgap fibres (HC-PBFs have emerged as a novel technology in the field of gas sensing. The long interaction pathlengths achievable with these fibres are especially advantageous for the detection of weakly absorbing gases. In this work, we demonstrate the good performance of a HC-PBF in the detection of the ν2 + 2ν3 band of methane, at 1.3 μm. The Q-branch manifold, at 1331.55 nm, is targeted for concentration monitoring purposes. A computationally optimized multi-line model is used to fit the Q-branch. Using this model, a detection limit of 98 ppmv (parts per million by volume is estimated.

  11. Quantum electrodynamics near a photonic bandgap

    Science.gov (United States)

    Liu, Yanbing; Houck, Andrew A.

    2017-01-01

    Photonic crystals are a powerful tool for the manipulation of optical dispersion and density of states, and have thus been used in applications from photon generation to quantum sensing with nitrogen vacancy centres and atoms. The unique control provided by these media makes them a beautiful, if unexplored, playground for strong-coupling quantum electrodynamics, where a single, highly nonlinear emitter hybridizes with the band structure of the crystal. Here we demonstrate that such a hybridization can create localized cavity modes that live within the photonic bandgap, whose localization and spectral properties we explore in detail. We then demonstrate that the coloured vacuum of the photonic crystal can be employed for efficient dissipative state preparation. This work opens exciting prospects for engineering long-range spin models in the circuit quantum electrodynamics architecture, as well as new opportunities for dissipative quantum state engineering.

  12. Composition and bandgap-graded semiconductor alloy nanowires.

    Science.gov (United States)

    Zhuang, Xiujuan; Ning, C Z; Pan, Anlian

    2012-01-03

    Semiconductor alloy nanowires with spatially graded compositions (and bandgaps) provide a new material platform for many new multifunctional optoelectronic devices, such as broadly tunable lasers, multispectral photodetectors, broad-band light emitting diodes (LEDs) and high-efficiency solar cells. In this review, we will summarize the recent progress on composition graded semiconductor alloy nanowires with bandgaps graded in a wide range. Depending on different growth methods and material systems, two typical nanowire composition grading approaches will be presented in detail, including composition graded alloy nanowires along a single substrate and those along single nanowires. Furthermore, selected examples of applications of these composition graded semiconductor nanowires will be presented and discussed, including tunable nanolasers, multi-terminal on-nanowire photodetectors, full-spectrum solar cells, and white-light LEDs. Finally, we will make some concluding remarks with future perspectives including opportunities and challenges in this research area.

  13. Design techniques for superposition of acoustic bandgaps using fractal geometries

    CERN Document Server

    Castiñeira-Ibáñez, S; Sánchez-Pérez, J V; Garcia-Raffi, L M

    2010-01-01

    Research into properties of heterogeneous artificial materials, consisting of arrangements of rigid scatterers embedded in a medium with different elastic properties, has been intense throughout last two decades. The capability to prevent the transmission of waves in predetermined bands of frequencies -called bandgaps- becomes one of the most interesting properties of these systems, and leads to the possibility of designing devices to control wave propagation. The underlying physical mechanism is destructive Bragg interference. Here we show a technique that enables the creation of a wide bandgap in these materials, based on fractal geometries. We have focused our work in the acoustic case where these materials are called Phononic/Sonic Crystals (SC) but, the technique could be applied any types of crystals and wave types in ranges of frequencies where the physics of the process is linear.

  14. Microresonator and associated method for producing and controlling photonic signals with a photonic bandgap delay apparatus

    Science.gov (United States)

    Fork, Richard Lynn (Inventor); Jones, Darryl Keith (Inventor); Keys, Andrew Scott (Inventor)

    2000-01-01

    By applying a photonic signal to a microresonator that includes a photonic bandgap delay apparatus having a photonic band edge transmission resonance at the frequency of the photonic signal, the microresonator imparts a predetermined delay to the photonic signal. The photonic bandgap delay apparatus also preferably has a photonic band edge transmission resonance bandwidth which is at least as wide as the bandwidth of the photonic signal such that a uniform delay is imparted over the entire bandwidth of the photonic signal. The microresonator also includes a microresonator cavity, typically defined by a pair of switchable mirrors, within which the photonic bandgap delay apparatus is disposed. By requiring the photonic signal to oscillate within the microresonator cavity so as to pass through the photonic bandgap delay apparatus several times, the microresonator can controllably impart an adjustable delay to the photonic signal.

  15. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    National Research Council Canada - National Science Library

    Abdulraheem, Yaser; Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef

    2014-01-01

    ...) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap...

  16. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    Science.gov (United States)

    Shaheed, M. Reaz

    1995-01-01

    to provide consistently accurate values for base sheet resistance for both Si- and SiGe-base transistors over a wide range of temperatures. A model for plasma-induced bandgap narrowing suitable for implementation in a numerical simulator has been developed. The appropriate method of incorporating this model in a drift -diffusion solver is described. The importance of including this model for low temperature simulation is demonstrated. With these models in place, the enhanced simulator has been used for evaluating and designing the Si- and SiGe-base bipolar transistors. Silicon-germanium heterojunction bipolar transistors offer significant performance and cost advantages over conventional technologies in the production of integrated circuits for communications, computer and transportation applications. Their high frequency performance at low cost, will find widespread use in the currently exploding wireless communication market. However, the high performance SiGe-base transistors are prone to have a low common-emitter breakdown voltage. In this dissertation, a modification in the collector design is proposed for improving the breakdown voltage without sacrificing the high frequency performance. A comprehensive simulation study of p-n-p SiGe-base transistors has been performed. Different figures of merit such as drive current, current gain, cut -off frequency and Early voltage were compared between a graded germanium profile and an abrupt germanium profile. The differences in the performance level between the two profiles diminishes as the base width is scaled down.

  17. Wide bandgap III-nitride nanomembranes for optoelectronic applications.

    Science.gov (United States)

    Park, Sung Hyun; Yuan, Ge; Chen, Danti; Xiong, Kanglin; Song, Jie; Leung, Benjamin; Han, Jung

    2014-08-13

    Single crystalline nanomembranes (NMs) represent a new embodiment of semiconductors having a two-dimensional flexural character with comparable crystalline perfection and optoelectronic efficacy. In this Letter, we demonstrate the preparation of GaN NMs with a freestanding thickness between 90 to 300 nm. Large-area (>5 × 5 mm(2)) GaN NMs can be routinely obtained using a procedure of conductivity-selective electrochemical etching. GaN NM is atomically flat and possesses an optical quality similar to that from bulk GaN. A light-emitting optical heterostructure NM consisting of p-GaN/InGaN quantum wells/GaN is prepared by epitaxy, undercutting etching, and layer transfer. Bright blue light emission from this heterostructure validates the concept of NM-based optoelectronics and points to potentials in flexible applications and heterogeneous integration.

  18. Continuous photocatalytic fuel production over wide-bandgap metal oxides

    OpenAIRE

    Bazzo, Antonio

    2014-01-01

    La fotosíntesis artificial ha sido propuesta como una de las posibles soluciones a los problemas energéticos y de materias primas de origen químico para hacer frente, de forma anticipada, al agotamiento de los combustibles fósiles en un futuro cercano. Esta tesis doctoral trata el estudio de catalizadores prometedores y el diseño de reactores para realzar la eficiencia de reacción y entender el origen de la actividad fotocatalítica. Un sistema de reacción en flujo continuo fue diseñado y cons...

  19. Wide-Bandgap Semiconductor Devices for Automotive Applications

    Science.gov (United States)

    Sugimoto, M.; Ueda, H.; Uesugi, T.; Kachi, T.

    2007-06-01

    In this paper, we discuss requirements of power devices for automotive applications, especially hybrid vehicles and the development of GaN power devices at Toyota. We fabricated AlGaN/GaN HEMTs and measured their characteristics. The maximum breakdown voltage was over 600V. The drain current with a gate width of 31mm was over 8A. A thermograph image of the HEMT under high current operation shows the AlGaN/GaN HEMT operated at more than 300°C. And we confirmed the operation of a vertical GaN device. All the results of the GaN HEMTs are really promising to realize high performance and small size inverters for future automobiles.

  20. Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors

    Science.gov (United States)

    Wang, Hung-Ta; Gila, Brent P.; Lin, Jenshan; Pearton, Stepehn J.

    2006-01-01

    In this review we discuss the advances in use of GaN and ZnO-based solid-state sensors for gas sensing applications. AlGaN/GaN high electron mobility transistors (HEMTs) show a strong dependence of source/drain current on the piezoelectric polarization -induced two dimensional electron gas (2DEG). Furthermore, spontaneous and piezoelectric polarization induced surface and interface charges can be used to develop very sensitive but robust sensors for the detection of gases. Pt-gated GaN Schottky diodes and Sc2O3/AlGaN/GaN metal-oxide semiconductor diodes also show large change in forward currents upon exposure to H2 containing ambients. Of particular interest are methods for detecting ethylene (C2H4), which offers problems because of its strong double bonds and hence the difficulty in dissociating it at modest temperatures. ZnO nanorods offer large surface area, are bio-safe and offer excellent gas sensing characteristics.

  1. Wide Bandgap Semiconductor Nanowires for Electronic, Photonic and Sensing Devices

    Science.gov (United States)

    2012-01-05

    exciton emission at 3.24 eV. Also, the ZnO nanorods can be integrated with AlGaN/ GaN HEMT sensors by incorporating the nano-rods on the HEMT gate sensing...area, the total sensing area increases significantly. The conventional AlGaN/ GaN HEMT detects the ambient changes through the “gate sensing area...glucose interaction to the AlGaN/ GaN HEMT . With such low detection limit, it is possible to dilute ɘ.1 micro-liter of EBC in 100-200 micro-liter

  2. Characterization of Plasma Etch Processes for Wide Bandgap Semiconductors

    Science.gov (United States)

    2005-09-07

    resubmission suspense date of is recommended. Attached is Principal Contracting Officer (PCO) letter to the Business Office and PI detailing reasons for nonacceptance and establishing a resubmittal date. DON SILVERSMITH Program Manager

  3. Front-end ASIC for pixilated wide bandgap detectors

    Science.gov (United States)

    Vernon, Emerson; de Geronimo, Gianluigi; Fried, Jack; Herman, Cedric; Zhang, Feng; He, Zhong

    2009-08-01

    A CMOS application specific integrated circuit (ASIC) was developed for 3D Position Sensitive Detectors (PSD). The preamplifiers were optimized for pixellated Cadmium-Zinc-Telluride (CZT) Mercuric-Iodide (HgI2) and Thallium Bromide (TlBr) sensors. The ASIC responds to an ionizing event in the sensor by measuring both amplitude and timing in the pertinent anode and cathode channels. Each channel is sensitive to events and transients of positive or negative polarity and performs low-noise charge amplification, high-order shaping, peak and timing detection along with analog storage and multiplexing. Three methodologies are implemented to perform timing measurement in the cathode channel. Multiple sparse modes are available for the readout of channel data. The ASIC integrates 130 channels in an area of 12 x 9 mm2 and dissipates ~330 mW. With a CZT detector connected and biased, an electronic resolution of ~200 e- rms for charges up to 100 fC was measured. Spectral data from the University of Michigan revealed a cumulative single-pixel resolution of ~0.55 % FWHM at 662 KeV.

  4. Bandgap narrowing in moderately to heavily doped silicon

    Science.gov (United States)

    Lanyon, H. P. D.; Tuft, R. A.

    1979-01-01

    A theoretical model of bandgap narrowing in silicon at high doping levels has been developed. The model takes into account the electrostatic energy of interaction between a minority carrier and the majority carriers surrounding it, which reduces the thermal energy necessary for creation of an electron-hole pair. A pair energy similar to the excitonic binding energy of bound electron-hole pairs in insulators is obtained. Theoretical results are in excellent agreement with experimental results in the doping range from 3 times 10 to the 17th to 1.5 times 10 to the 20th/cu cm at room temperature. These results indicate that at high injection levels such as a transistor biased into the conductivity-modulation regime or a solar cell whose surface is established by ion implantation into an oxide layer, the bandgap narrowing is determined by the injected carrier concentration rather than by the doping level.

  5. Actively doped solid core Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Broeng, Jes; Olausson, Christina Bjarnal Thulin; Lyngsøe, Jens Kristian;

    2010-01-01

    Solid photonic bandgap fibers offer distributed spectral filtering with extraordinary high suppression. This opens new possibilities of artificially tailoring the gain spectrum of fibers. We present record-performance of such fibers and outline their future applications....

  6. The Second Order Guided Modes Based on Photonic Bandgap Effects in Air/Glass Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    YAO Lei; LOU Shu-Qin; JIAN Shui-Sheng

    2009-01-01

    We introduce a defect site in the periodic structure of a photonic bandgap fiber,to confine and guide the second order mode by photonic bandgap effects.Based on a high air-filling fraction photonic crystal cladding structure,a simplified model with an equivalent air cladding was proposed to explore and analyze the properties of this second order guided mode.

  7. Variability of bandgap and carrier mobility caused by edge defects in ultra-narrow graphene nanoribbons

    Science.gov (United States)

    Poljak, M.; Wang, K. L.; Suligoj, T.

    2015-06-01

    We report the results of multi-scale modeling of ultra-narrow graphene nanoribbons (GNRs) that combines atomistic non-equilibrium Green's function (NEGF) approach with semiclassical mobility modeling. The variability of the transport gap and carrier mobility caused by random edge defects is analyzed. We find that the variability increases as the GNR width is downscaled and that even the minimum variation of the total mobility reaches more than 100% compared to average mobility in edge-defected nanoribbons. It is shown that scattering by optical phonons exhibits significantly more variability than the acoustic, line-edge roughness and Coulomb scattering mechanisms. The simulation results demonstrate that sub-5 nm-wide nanoribbons offer no improvement over conventional bulk semiconductors, however, GNRs are comparable with sub-7 nm-thick silicon-on-insulator devices in terms of mobility-bandgap trade-off characteristics.

  8. Structure and optical bandgap relationship of π-conjugated systems.

    Science.gov (United States)

    Botelho, André Leitão; Shin, Yongwoo; Liu, Jiakai; Lin, Xi

    2014-01-01

    In bulk heterojunction photovoltaic systems both the open-circuit voltage as well as the short-circuit current, and hence the power conversion efficiency, are dependent on the optical bandgap of the electron-donor material. While first-principles methods are computationally intensive, simpler model Hamiltonian approaches typically suffer from one or more flaws: inability to optimize the geometries for their own input; absence of general, transferable parameters; and poor performance for non-planar systems. We introduce a set of new and revised parameters for the adapted Su-Schrieffer-Heeger (aSSH) Hamiltonian, which is capable of optimizing geometries, along with rules for applying them to any [Formula: see text]-conjugated system containing C, N, O, or S, including non-planar systems. The predicted optical bandgaps show excellent agreement to UV-vis spectroscopy data points from literature, with a coefficient of determination [Formula: see text], a mean error of -0.05 eV, and a mean absolute deviation of 0.16 eV. We use the model to gain insights from PEDOT, fused thiophene polymers, poly-isothianaphthene, copolymers, and pentacene as sources of design rules in the search for low bandgap materials. Using the model as an in-silico design tool, a copolymer of benzodithiophenes along with a small-molecule derivative of pentacene are proposed as optimal donor materials for organic photovoltaics.

  9. Structure and optical bandgap relationship of π-conjugated systems.

    Directory of Open Access Journals (Sweden)

    André Leitão Botelho

    Full Text Available In bulk heterojunction photovoltaic systems both the open-circuit voltage as well as the short-circuit current, and hence the power conversion efficiency, are dependent on the optical bandgap of the electron-donor material. While first-principles methods are computationally intensive, simpler model Hamiltonian approaches typically suffer from one or more flaws: inability to optimize the geometries for their own input; absence of general, transferable parameters; and poor performance for non-planar systems. We introduce a set of new and revised parameters for the adapted Su-Schrieffer-Heeger (aSSH Hamiltonian, which is capable of optimizing geometries, along with rules for applying them to any [Formula: see text]-conjugated system containing C, N, O, or S, including non-planar systems. The predicted optical bandgaps show excellent agreement to UV-vis spectroscopy data points from literature, with a coefficient of determination [Formula: see text], a mean error of -0.05 eV, and a mean absolute deviation of 0.16 eV. We use the model to gain insights from PEDOT, fused thiophene polymers, poly-isothianaphthene, copolymers, and pentacene as sources of design rules in the search for low bandgap materials. Using the model as an in-silico design tool, a copolymer of benzodithiophenes along with a small-molecule derivative of pentacene are proposed as optimal donor materials for organic photovoltaics.

  10. A Probabilistic Genome-Wide Gene Reading Frame Sequence Model

    DEFF Research Database (Denmark)

    Have, Christian Theil; Mørk, Søren

    We introduce a new type of probabilistic sequence model, that model the sequential composition of reading frames of genes in a genome. Our approach extends gene finders with a model of the sequential composition of genes at the genome-level -- effectively producing a sequential genome annotation...... and are evaluated by the effect on prediction performance. Since bacterial gene finding to a large extent is a solved problem it forms an ideal proving ground for evaluating the explicit modeling of larger scale gene sequence composition of genomes. We conclude that the sequential composition of gene reading frames...... as output. The model can be used to obtain the most probable genome annotation based on a combination of i: a gene finder score of each gene candidate and ii: the sequence of the reading frames of gene candidates through a genome. The model --- as well as a higher order variant --- is developed and tested...

  11. Quantum electrodynamics near a photonic band-gap

    Science.gov (United States)

    Liu, Yanbing; Houck, Andrew

    Quantum electrodynamics predicts the localization of light around an atom in photonic band-gap (PBG) medium or photonic crystal. Here we report the first experimental realization of the strong coupling between a single artificial atom and an one dimensional PBG medium using superconducting circuits. In the photonic transport measurement, we observe an anomalous Lamb shift and a large band-edge avoided crossing when the artificial atom frequency is tuned across the band-edge. The persistent peak within the band-gap indicates the single photon bound state. Furthermore, we study the resonance fluorescence of this bound state, again demonstrating the breakdown of the Born-Markov approximation near the band-edge. This novel architecture can be directly generalized to study many-body quantum electrodynamics and to construct more complicated spin chain models.

  12. Band structure of germanium carbides for direct bandgap silicon photonics

    Science.gov (United States)

    Stephenson, C. A.; O'Brien, W. A.; Penninger, M. W.; Schneider, W. F.; Gillett-Kunnath, M.; Zajicek, J.; Yu, K. M.; Kudrawiec, R.; Stillwell, R. A.; Wistey, M. A.

    2016-08-01

    Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge1-xCx (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge0.998C0.002 shows a bandgap reduction supporting these results. Growth of Ge0.998C0.002 using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III-V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.

  13. A Probabilistic Genome-Wide Gene Reading Frame Sequence Model

    DEFF Research Database (Denmark)

    Have, Christian Theil; Mørk, Søren

    using the probabilistic logic programming language and machine learning system PRISM - a fast and efficient model prototyping environment, using bacterial gene finding performance as a benchmark of signal strength. The model is used to prune a set of gene predictions from an underlying gene finder...

  14. Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, Tayebeh; Min, Jie; Li, Ning; Machui, Florian; Baran, Derya [Institute Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen (Germany); Forster, Michael; Schottler, Kristina J.; Dolfen, Daniel; Scherf, Ullrich [FB C - Mathematik and Naturwissenschaften, Fachgebiet Makromolekulare Chemie and Institut fuer Polymertechnologie, Bergische Universitaet Wuppertal (Germany); Brabec, Christoph J. [Institute Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen (Germany); Bavarian Center for Applied Energy Research (ZAE Bayern), Erlangen (Germany)

    2012-10-15

    A smart strategy to significantly improve the energy conversion efficiency of the wide-bandgap polymer P3HT blended in PCBM is demonstrated through NIR sensitization with a low-bandgap polymer. An efficiency of over 4% is achieved by adding 30-40% of the low bandgap polymer Si-PCPDTBT to the binary P3HT:PCBM blend, corresponding to an efficiency improvement of 25% compared to the P3HT:PCBM reference binary blend. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. MGP : a tool for wide range temperature modelling

    Energy Technology Data Exchange (ETDEWEB)

    Morales, A.F. [Inst. Tecnologico Autonomo de Mexico, Mexico City (Mexico); Seisdedos, L.V. [Univ. de Oriente, Santiago de Cuba (Cuba). Dept. de Control Automatico

    2006-07-01

    This paper proposed a practical temperature modelling tool that used genetic multivariate polynomials to determine polynomial expressions of enthalpy and empirical heat transfer equations in superheaters. The model was designed to transform static parameter estimations from distributed into lumped parameter systems. Two dynamic regimes were explored: (1) a power dynamics regime containing major inputs and outputs needed for overall plant control; and (2) a steam temperature dynamics scheme that considered consecutive superheater sections considered in terms of cooling water mass flow and steam mass flow. The single lumped parameters model was developed to provide temperature control for a fossil fuel-fired power plant. The design procedure used enthalpy to determine the plant's energy balance. The enthalpy curve was seen as a function of either temperature and steam pressure. A graphic simulation tool was used to optimize the model by comparing real and simulated plant data. The study showed that the amount of energy taken by the steam mass flow per time unit can be calculated by measuring temperatures and pressures at both ends of the superheater. An algorithm was then developed to determine the polynomial's coefficients according to best curve fitting over the training set and best maximum errors. It was concluded that a unified approach is now being developed to simulate and emulate the dynamics of steam temperature for each section's attemporator-superheater. 14 refs., 3 tabs., 5 figs.

  16. Study of sub-bandgap states in polymer-fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Presselt, Martin; Herrmann, Felix; Seeland, Marco; Baerenklau, Maik; Engmann, Sebastian; Roesch, Roland; Shokhovets, Sviatoslav; Hoppe, Harald; Gobsch, Gerhard [Experimental Physics I, Institute of Physics and Institute of Micro- und Nanotechnologies, Ilmenau University of Technology (Germany); Beenken, Wichard J.D. [Theoretical Physics I, Institute of Physics, Ilmenau University of Technology (Germany)

    2010-07-01

    At present polymer-fullerene blends are widely used to build organic solar cells. The main contribution to their photocurrent originates from optical transitions between occupied states below the HOMO level and unoccupied states above the LUMO level of the polymer. In this work, we investigated the origin of states contributing to the optical absorption in the sub-bandgap spectral range and the resulting photocurrent in P3HT-PCBM bulk heterojunction solar cells. Photothermal deflection spectroscopy, temperature dependent external quantum efficiency, photoluminescence and electroluminescence as well as spectroscopic ellipsometry measurements have been carried out. Effects due to different P3HT-PCBM blending ratios and annealing temperatures have been studied. Two models are discussed to explain the experimental observations: optical transitions involving (a) disorder and/or defect related states, and (b) charge transfer complexes.

  17. Capacitive MEMS accelerometer wide range modeling using artificial neural network

    Directory of Open Access Journals (Sweden)

    A. Baharodimehr

    2009-08-01

    Full Text Available This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA. System parameters ofthe accelerometer are developed using the effect of cubic term of the folded‐flexure spring. To solve this equation, we use theFEA method. The neural network (NN uses the Levenberg‐Marquardt (LM method for training the system to have a moreaccurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. Thesimulation results are very promising.

  18. Properties of granular analogue model materials: A community wide survey

    Science.gov (United States)

    Klinkmüller, M.; Schreurs, G.; Rosenau, M.; Kemnitz, H.

    2016-08-01

    We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between c. 100 and 400 μm. Analysis of grain shape factors shows that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling. Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil. Most materials have an internal cohesion in the order of 20-100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C < 20 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density after sifting, which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains.

  19. Community-wide model validation studies for systematic assessment of ionosphere-thermosphere models

    Science.gov (United States)

    Shim, Ja Soon; Kuznetsova, Maria; Rastätter, Lutz

    2016-07-01

    As an unbiased agent, the Community Coordinated Modeling Center (CCMC) has been leading community-wide model validation efforts; GEM, CEDAR and GEM-CEDAR Modeling Challenges since 2009. The CEDAR ETI (Electrodynamics Thermosphere Ionosphere) Challenge focused on the ability of ionosphere-thermosphere (IT) models to reproduce basic IT system parameters, such as electron and neutral densities, NmF2, hmF2, and Total Electron Content (TEC). Model-data time series comparisons were performed for a set of selected events with different levels of geomagnetic activity (quiet, moderate, storms). The follow-on CEDAR-GEM Challenge aims to quantify geomagnetic storm impacts on the IT system. On-going studies include quantifying the storm energy input, such as increase in auroral precipitation and Joule heating, and quantifying the storm-time variations of neutral density and TEC. In this paper, we will present lessons learned from the Modeling Challenges led by the CCMC.

  20. Modelling basin-wide variations in Amazon forest photosynthesis

    Science.gov (United States)

    Mercado, Lina; Lloyd, Jon; Domingues, Tomas; Fyllas, Nikolaos; Patino, Sandra; Dolman, Han; Sitch, Stephen

    2010-05-01

    Given the importance of Amazon rainforest in the global carbon and hydrological cycles, there is a need to use parameterized and validated ecosystem gas exchange and vegetation models for this region in order to adequately simulate present and future carbon and water balances. Recent research has found major differences in above-ground net primary productivity (ANPP), above ground biomass and tree dynamics across Amazonia. West Amazonia is more dynamic, with younger trees, higher stem growth rates and lower biomass than central and eastern Amazon (Baker et al. 2004; Malhi et al. 2004; Phillips et al. 2004). A factor of three variation in above-ground net primary productivity has been estimated across Amazonia by Malhi et al. (2004). Different hypotheses have been proposed to explain the observed spatial variability in ANPP (Malhi et al. 2004). First, due to the proximity to the Andes, sites from western Amazonia tend to have richer soils than central and eastern Amazon and therefore soil fertility could possibly be highly related to the high wood productivity found in western sites. Second, if GPP does not vary across the Amazon basin then different patterns of carbon allocation to respiration could also explain the observed ANPP gradient. However since plant growth depends on the interaction between photosynthesis, transport of assimilates, plant respiration, water relations and mineral nutrition, variations in plant gross photosynthesis (GPP) could also explain the observed variations in ANPP. In this study we investigate whether Amazon GPP can explain variations of observed ANPP. We use a sun and shade canopy gas exchange model that has been calibrated and evaluated at five rainforest sites (Mercado et al. 2009) to simulate gross primary productivity of 50 sites across the Amazon basin during the period 1980-2001. Such simulation differs from the ones performed with global vegetation models (Cox et al. 1998; Sitch et al. 2003) where i) single plant functional

  1. Microfabricated bulk wave acoustic bandgap device

    Science.gov (United States)

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  2. Wide frequency rheological modeling of crosslinked polyacrylamide gels

    CERN Document Server

    Abidine, Yara; Michel, Richard; Duperray, Alain; Palade, Liviu Iulian; Verdier, Claude

    2013-01-01

    Gels are known to behave as viscoelastic materials but only a small amount of data is usually provided in the glassy transition. Results concerning the dynamic moduli G′ and G′′ are presented here using AFM in contact oscillatory mode and show good agreement with classical rheological data. Different gels are studied with increasing polymer concentration. G0N, the plateau modulus, is measured at low frequencies, but interestingly another one, G1, is found at high frequencies. A model based on fractional derivatives is proposed, covering the whole frequency range. The relaxation spectrum is recovered, and the physical parameters contain interesting information about the local dynamics of crosslinks.

  3. Modeling Brain Circuitry over a Wide Range of Scales

    Directory of Open Access Journals (Sweden)

    Pascal eFua

    2015-04-01

    Full Text Available If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important.In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation.

  4. Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acevedo, Arturo [CINVESTAV del IPN, Electrical Engineering Department, Avenida IPN No. 2508, 07360 Mexico, D. F. (Mexico)

    2009-01-15

    A simple model for the generation of carriers by photons incident on a (linearly) decreasing band-gap material, such as has been described in recent CIGS solar cells, is developed. The model can be generalized for different cases such as increasing band-gap grading or for having a more complex band-gap profile. The model developed for direct band semiconductors such as CIGS or AlGaAs allows us to define an effective absorption coefficient, so that the ideal photocurrent density can be calculated in a similar manner as for solar cells with non-graded band-gap materials. We show that this model gives completely different results as those expected from intuitive approaches for calculating this ideal photocurrent density. We also show that grading of the band-gap of the absorbing material in solar cells makes the photocurrent less sensitive to the total band-gap change, in such a way that the design of the band-gap variation can be more flexible in order to have other advantages such as higher built-in voltage or higher back surface field in the device structure. (author)

  5. Selecting Semiconducting Single-Walled Carbon Nanotubes with Narrow Bandgap Naphthalene Diimide-Based Polymers

    NARCIS (Netherlands)

    Salazar-Rios, Jorge Mario; Gomulya, Widianta; Derenskyi, Vladimir; Yang, Jie; Bisri, Satria Zulkarnaen; Chen, Zhihua; Facchetti, Antonio; Loi, Maria Antonietta

    2015-01-01

    Noncovalent functionalization of carbon nanotubes by wrapping them using pi-conjugated polymers is one of the most promising techniques to sort, separate, and purify semiconducting nanotube species for applications in optoelectronic devices. However, wide energy bandgap polymers commonly used in thi

  6. A Super Performance Bandgap Voltage Reference with Adjustable Output for DC-DC Converter

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents a super performance bandgap voltage reference for DC-DC converter with adjustable output. It generates a wide range of voltage reference ranging from sub- 1V to 1.221 7 V and has a low temperature coefficient of 2.3 × 10 - 5/K over the temperature variation using the current feedback and resistive subdivision. In addition, the power supply rejection ration of the proposed bandgap voltage reference is 78 dB. When supply voltage varies from 2.5 V to 6 V, output VREF is 1.221 685 ± 0.055 mV.

  7. System-wide Benchmark Simulation Model for integrated analysis of urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, R.; Flores-Alsina, X.; Gernaey, K. V.

    (Gernaey et al., 2014). Given the success of BSMs in evaluation of control strategies for WWTPs, it is envisioned to spatially expand the plant-wide BSM to a system-wide tool. A system-wide BSM can then play an important role, not only in the evaluation of integrated control strategies, but also...... in developing a better understanding of the interactions between different components of an UWS. This paper aims at presenting a system-wide benchmark simulation model that includes catchment, sewer network, WWTP and receiving water subsystems. A hypothetical UWS layout is defined and an integrated model......Interactions between different components (sewer, wastewater treatment plant (WWTP) and river) of an urban wastewater system (UWS) are widely recognized (Benedetti et al., 2013). This has resulted in an increasing interest in the modelling of the UWS. System-wide models take into account...

  8. Electric gating induced bandgaps and enhanced Seebeck effect in zigzag bilayer graphene ribbons

    Science.gov (United States)

    Vu, Thanh-Tra; Tran, Van-Truong

    2016-08-01

    We theoretically investigate the effect of a transverse electric field generated by side gates and a vertical electric field generated by top/back gates on energy bands and transport properties of zigzag bilayer graphene ribbons (Bernal stacking). Using atomistic tight binding calculations and Green’s function formalism we demonstrate that a bandgap is opened when either field is applied and even enlarged under simultaneous influence of the two fields. Interestingly, although vertical electric fields are widely used to control the bandgap in bilayer graphene, here we show that transverse fields exhibit a more positive effect in terms of modulating a larger range of bandgap and retaining good electrical conductance. The Seebeck effect is also demonstrated to be enhanced strongly—by about 13 times for a zigzag bilayer graphene ribbon with 16 chain lines. These results may motivate new designs of devices made of bilayer graphene ribbons using electric gates.

  9. Fabrication and characterization of porous-core honeycomb bandgap THz fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Rasmussen, Henrik K.

    We have fabricated a porous-core honeycomb fiber in the cyclic olefin copolymer (COC) Topas® by drill-draw technology [1]. A cross-sectional image of the fabricated fiber is shown in the left Panel of Fig. 1. Simulation of the electromagnetic properties of the fiber shows two wide bandgaps within...... the cladding modes from the fiber. The propagation loss is measured in a cut-back experiment. The fundamental bandgap at 0.75-1.05 THz is found to have losses lower than 1.5 dB/cm, whereas the loss is below 1.0 dB/cm in the reduced bandgap 0.78-1.02 THz, as shown in Fig. 1(g)....

  10. Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice.

    Science.gov (United States)

    Gao, Dingshan; Zhou, Zhiping; Citrin, David S

    2008-03-01

    The photonic crystal structure with parallelogram lattice, capable of bending a self-collimated wave with free angles and partial bandgap reflection, is presented. The equifrequency contours show that the direction of the collimation wave can be turned by tuning the angle between the two basic vectors of the lattice. Acute, right, and obtuse angles of collimating waveguide bends have been realized by arc lattices of parallelogram photonic crystals. Moreover, partial bandgap reflection of the parallelogram lattice photonic crystals is validated from the equifrequency contours and the projected band structures. A waveguide taper based on this partial bandgap reflection is also designed and proved to have above 85% transmittance over a very wide operating bandwidth of 180 nm.

  11. Luminescence in Conjugated Molecular Materials under Sub-bandgap Excitation

    Energy Technology Data Exchange (ETDEWEB)

    So, Franky [University of Florida

    2014-05-08

    Light emission in semiconductors occurs when they are under optical and electrical excitation with energy larger than the bandgap energy. In some low-dimensional semiconductor heterostructure systems, this thermodynamic limit can be violated due to radiative Auger recombination (AR), a process in which the sub-bandgap energy released from a recombined electron-hole pair is transferred to a third particle leading to radiative band-to-band recombination.1 Thus far, photoluminescence up-conversion phenomenon has been observed in some low dimensional semiconductor systems, and the effect is very weak and it can only be observed at low temperatures. Recently, we discovered that efficient electroluminescence in poly[2-methoxy-5-(2’-ethylhexyloxy)-1, phenylenevinylene] (MEH-PPV) polymer light-emitting devices (PLEDs) at drive voltages below its bandgap voltage could be observed when a ZnO nanoparticles (NPs) electron injection layer was inserted between the polymer and the aluminum electrode. Specifically, emitted photons with energy of 2.13 eV can be detected at operating voltages as low as 1.2 V at room temperature. Based on these data, we propose that the sub-bandgap turn-on in the MEH-PPV device is due to an Auger-assisted energy up-conversion process. The significance of this discovery is three-fold. First, radiative recombination occurs at operating voltages below the thermodynamic bandgap voltage. This process can significantly reduce the device operating voltage. For example, the current density of the device with the ZnO NC layer is almost two orders of magnitude higher than that of the device without the NC layer. Second, a reactive metal is no longer needed for the cathode. Third, this electroluminescence up-conversion process can be applied to inorganic semiconductors systems as well and their operation voltages of inorganic LEDs can be reduced to about half of the bandgap energy. Based on our initial data, we propose that the sub-bandgap turn-on in MEH

  12. New Coefficients of the Minority Carrier Lifetime and Bandgap Narrowing Models in the Transparent Emitter of Thin Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    A. Zerga

    2003-01-01

    literature and in different experiments. They show us the possibility of accurately evaluating the performances for the n+p silicon solar cell. This model is then used to introduce a new concept for the thin layer emitter, called transparent emitter.

  13. Wide Area Thermal Processing of Light Emitting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E [ORNL; Joshi, Pooran C [ORNL; Jellison Jr, Gerald Earle [ORNL; Angelini, Joseph Attilio [ORNL; Sabau, Adrian S [ORNL

    2011-10-01

    Laboratory laser materials synthesis of wide bandgap materials has been successfully used to create white light emitting materials (LEMs). This technology development has progressed to the exploration on design and construction of apparatus for wide area doping and phase transformation of wide bandgap material substrates. The objective of this proposal is to develop concepts for wide area doping and phase transformation based on AppliCote Associates, LLC laser technology and ORNL high density pulsed plasma arc technology.

  14. Extending the Utility of the Parabolic Approximation in Medical Ultrasound Using Wide-Angle Diffraction Modeling.

    Science.gov (United States)

    Soneson, Joshua E

    2017-04-01

    Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.

  15. Graded bandgap semiconduc-tor thin film photoelectrodes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A graded bandgap oxide semiconductor thin film electrode was designed in order to obtain a photoelectrochemically stable photoelectrode, with wide absorption range. The graded bandgap Ti1-xVxO2 film electrode was prepared by heating the stacked layers of V/Ti in varying ratios, which were coated on the substrate by the sol-gel method using the starting solution with various V/Ti ratios. XPS result showed that the composition gradient was achieved for the film. The Ti1-xVxO2 film electrode was found to be photoelectrochemically stable. Its photovoltage was about 360 mV. Obvious visible light photoresponse was observed for the Ti1-xVxO2 film electrode. Compared with the pure TiO2 electrode, the photocurrent onset potential of the Ti1-xVxO2 film electrode was shifted positively, probably because the accumulation of vanadium at the electrode sur-face causes the recombination of the electrons and holes, and the lowest level of the conduction band of Ti1-xVxO2 is lower than that of TiO2. Impedance analysis showed that the donor density of the Ti1-xVxO2 film electrode was higher than that of TiO2 film electrode.

  16. Advances in photonic bandgap fiber functionality

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian

    In order to take advantage of the many intriguing optical properties of photonic bandgap fibers, there are some technological challenges that have to be addressed. Among other things this includes transmission loss and the fibers ability to maintain field polarization. The work presented...... in this thesis addresses these two fundamental properties in both hollow core photonic crystal fibers and solid photonic bandgap fibers. Transmission loss in hollow core photonic crystal fibers is dominated by light scattering at the silica surfaces inside the fiber. In the current work it has been...... experimentally demonstrated that the minimum loss wavelength is located in the spectral region around 2000 nm, where the transmission loss in these fibers is significantly lower than in conventional solid silica fibers. Additionally it has been shown that transmission loss can be lowered roughly 40...

  17. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure....... The presence of liquid crystals (LCs) in the air-holes of the PCF transforms the fiber from a total internal reflection (TIR) guiding type into a photonic bandgap (PBG) guiding type. The light is confined to the silica core by coherent scattering from the LC-filled air-holes and the transmission spectrum...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  18. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure....... The presence of liquid crystals (LCs) in the air-holes of the PCF transforms the fiber from a total internal reflection (TIR) guiding type into a photonic bandgap (PBG) guiding type. The light is confined to the silica core by coherent scattering from the LC-filled air-holes and the transmission spectrum...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  19. Mass balance-based plant-wide wastewater treatment plant models ...

    African Journals Online (AJOL)

    2006-07-03

    Jul 3, 2006 ... Mass balance-based plant-wide wastewater treatment plant models – Part ... organics under anaerobic conditions .... which limit the capacity of the WWTP. ..... Thermophilic Heat Treatment on the Anaerobic Digestibility of Pri-.

  20. Universal rule on chirality-dependent bandgaps in graphene antidot lattices.

    Science.gov (United States)

    Liu, Xiaofei; Zhang, Zhuhua; Guo, Wanlin

    2013-04-22

    Graphene with periodically patterned antidots has attracted intense research attention as it represents a facile route to open a bandgap for graphene electronics. However, not all graphene antidot lattices (GALs) can open a bandgap and a guiding rule is missing. Here, through systematic first-principles calculations, it is found that bandgaps in triangular GALs are surprisingly well defined by a chirality vector R = n a1 + ma2 connecting two neighboring antidots, where a1 and a2 are the basis vectors of graphene. The bandgap opens in the GALs with (n-m)mod3 = 0 but remains closed in those with (n-m)mod3 = ±1, reminiscent of the gap-chirality rule in carbon nanotubes. Remarkably, the gap value in GALs allows ample modulation by adjusting the length of chirality vectors, shape and size of the antidots. The gap-chirality relation in GALs stems from the chirality-dependent atomic structures of GALs as revealed by a super-atom model as well as Clar sextet analyses. This chirality-dependent bandgap is further shown to be a generic behavior in any parallelogram GAL and thus serves as an essential stepping stone for experimenters to realize graphene devices by antidot engineering.

  1. A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature*

    Institute of Scientific and Technical Information of China (English)

    Jia Kan; Sun Weifeng; Shi Longxing

    2011-01-01

    A sub-circuit SPICE model ofa MOSFET for low temperature operation is presented. Two resistors are introduced for the freeze-out effect, and the explicit behavioral models are developed for them. The model can be used in a wide temperature range covering both cryogenic temperature and regular temperatures.

  2. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  3. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis

    Science.gov (United States)

    Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.

    2017-06-01

    Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.

  4. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  5. Novel Photonic Bandgap Structure and Its Application in Amplifier

    Institute of Scientific and Technical Information of China (English)

    PANGYunbo; GAOBaoxin

    2003-01-01

    A novel compact photonic bandgap (PBG)structural element, which is etched in the ground plane of the microstrip line, is proposed in this paper. A forbid-den gap, which is about 200MHz wide, is measured at the center frequency of 8.6GHz. The measured results agree with finite difference time domain (FDTD) simulations. A harmonic-suppression amplifier is fabricated by utilizing this novel structural element. The suppression of the sec-ond order harmonic has been enhanced about 17dB when compared with a reference amplifier. Since no filters are needed and the structural element is etched in the ground plane, the whole circuit is compact.

  6. Bandgap engineering of rippled MoS2 monolayer under external electric field

    Science.gov (United States)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng; Feng, Ji

    2013-04-01

    In this letter we propose a universal strategy combining external electric field with the ripple of membrane to tune the bandgap of semiconducting atomic monolayer. By first-principles calculations we show that the bandgap of rippled MoS2 monolayer can be tuned in a large range by vertical external electric field, which is expected to have little effect on MoS2 monolayer. This phenomenon can be explained from charge redistribution under external electric field by a simple model. This may open an avenue of optimizing monolayer MoS2 for electronic and optoelectronic applications by surface patterning.

  7. A novel two-layer compact electromagnetic bandgap (EBG) structure and its applications in microwave circuits

    Institute of Scientific and Technical Information of China (English)

    YANG; Ning(杨宁); CHEN; Zhining; (陈志宁); WANG; Yunyi; (王蕴仪); Chia; M.; Y.; W.

    2003-01-01

    This paper presents a novel two-layer electromagnetic bandgap (EBG) structure. The studies on the characteristics of the cell are carried out numerically and experimentally. A lumped-LC equivalent circuit extracted from the numerical simulation is used to model the bandgap characteristics of the proposed EBG structure. The influences of geometric parameters on the operation frequency and equivalent LC parameters are discussed. A meander line high performance bandstop filter and a notch type duplexer are designed and measured. These EBG structures are shown to have potential applications in microwave and RF systems.

  8. A new photonic bandgap cover for a patch antenna with a photonic bandgap substrate

    Institute of Scientific and Technical Information of China (English)

    林青春; 朱方明; 何赛灵

    2004-01-01

    A new photonic bandgap (PBG) cover for a patch antenna with a photonic bandgap substrate is introduced. The plane wave expansion method and the FDTD method were used to calculate such an antenna system. Numerical results for the input return loss, radiation pattern, surface wave, and the directivity of the antennas are presented. A comparison between the conventional patch antenna and the new PBG antenna is given. It is shown that the new PBG cover is very efficient for improving the radiation directivity. The physical reasons for the improvement are also given.

  9. Lyapunov exponents for one-dimensional aperiodic photonic bandgap structures

    Science.gov (United States)

    Kissel, Glen J.

    2011-10-01

    Existing in the "gray area" between perfectly periodic and purely randomized photonic bandgap structures are the socalled aperoidic structures whose layers are chosen according to some deterministic rule. We consider here a onedimensional photonic bandgap structure, a quarter-wave stack, with the layer thickness of one of the bilayers subject to being either thin or thick according to five deterministic sequence rules and binary random selection. To produce these aperiodic structures we examine the following sequences: Fibonacci, Thue-Morse, Period doubling, Rudin-Shapiro, as well as the triadic Cantor sequence. We model these structures numerically with a long chain (approximately 5,000,000) of transfer matrices, and then use the reliable algorithm of Wolf to calculate the (upper) Lyapunov exponent for the long product of matrices. The Lyapunov exponent is the statistically well-behaved variable used to characterize the Anderson localization effect (exponential confinement) when the layers are randomized, so its calculation allows us to more precisely compare the purely randomized structure with its aperiodic counterparts. It is found that the aperiodic photonic systems show much fine structure in their Lyapunov exponents as a function of frequency, and, in a number of cases, the exponents are quite obviously fractal.

  10. Theory study on the bandgap of antimonide-based multi-element alloys

    Science.gov (United States)

    An, Ning; Liu, Cheng-Zhi; Fan, Cun-Bo; Dong, Xue; Song, Qing-Li

    2017-05-01

    In order to meet the design requirements of the high-performance antimonide-based optoelectronic devices, the spin-orbit splitting correction method for bandgaps of Sb-based multi-element alloys is proposed. Based on the analysis of band structure, a correction factor is introduced in the InxGa1-xAsySb1-y bandgaps calculation with taking into account the spin-orbit coupling sufficiently. In addition, the InxGa1-xAsySb1-y films with different compositions are grown on GaSb substrates by molecular beam epitaxy (MBE), and the corresponding bandgaps are obtained by photoluminescence (PL) to test the accuracy and reliability of this new method. The results show that the calculated values agree fairly well with the experimental results. To further verify this new method, the bandgaps of a series of experimental samples reported before are calculated. The error rate analysis reveals that the α of spin-orbit splitting correction method is decreased to 2%, almost one order of magnitude smaller than the common method. It means this new method can calculate the antimonide multi-element more accurately and has the merit of wide applicability. This work can give a reasonable interpretation for the reported results and beneficial to tailor the antimonides properties and optoelectronic devices.

  11. INVESTIGATION ON EMI EFFECTS IN BANDGAP VOLTAGE REFERENCES

    OpenAIRE

    Fiori, Franco; Crovetti S., Paolo

    2002-01-01

    International audience; In this paper the susceptibility of integrated bandgap voltage references to Electromagnetic Interference (EMI) is investigated by on-chip measurements carried out on Kuijk and Tsividis bandgap circuits. These measurements highlight the offset in the reference voltage induced by continuous wave (CW) EMI and the complete failures which may be experienced by bandgap circuits. The role of the susceptibility of the startup circuit and of the operational amplifier which are...

  12. Polarizing 50micrometers Core Yb-Doped Photonic Bandgap Fiber

    Science.gov (United States)

    2015-02-08

    properly. Recent reports demonstrate that the birefringence in photonic bandgap fibers (PBFs) can provide single-polarization operation by shifting the...add ref]. Here, we demonstrate a 50µm core Yb-doped polarizing photonic bandgap fiber (PBF) for single-polarization operation 1. REPORT DATE (DD-MM...19-08-2015 Approved for public release; distribution is unlimited. Polarizing 50µm core Yb-doped photonic bandgap fiber The views, opinions and/or

  13. Wide band modeling of large power transformer windings for very fast transient overvoltage (VFTO) analysis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    There are some difficulties in using multi-transmission-line (MTL) model for wide band modeling of whole windings of the large power transformer. In this paper, the normalized MTL model is firstly de- rived, with which not only the difficulty of modeling windings with different turn-lengths using MTL can be solved, but also the model can be extended to the modeling of the multi-winding transformer. Secondly, both MTL model and the lumped circuit model on turn basis are mathematically compared in validation of the frequency range and it is pointed out that the lumped circuit model on turn basis is generally valid below 2.5 MHz for EHV and UHV power transformers. Finally, based on the MTL equations, a novel lumped circuit model is derived and it is shown that the valid frequency range of the new circuit is extended to about 4 MHz for modeling large EHV and UHV power transformer windings.

  14. Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion

    DEFF Research Database (Denmark)

    Solon, Kimberly; Flores Alsina, Xavier; Mbamba, Christian Kazadi

    2015-01-01

    ) and ion pairing on modelling of anaerobic digestion processes in such plant-wide models of wastewater treatment. Using the BSM2 as a case study with a number of model variants and cationic load scenarios, this paper presents the effects of an improved physico-chemical description on model predictions....... The paper describes: 1) how the anaerobic digester performance is affected by physico-chemical corrections; 2) the effect on pH and the anaerobic digestion products (CO2, CH4 and H2); and, 3) how these variations are propagated from the sludge treatment to the water line. Results at high ionic strength......Plant-wide models of wastewater treatment (such as the Benchmark Simulation Model No. 2 or BSM2) are gaining popularity for use in holistic virtual studies of treatment plant control and operations. The objective of this study is to show the influence of ionic strength (as activity corrections...

  15. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  16. Air-guiding Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Hansen, Theis Peter

    2005-01-01

    Photonic bandgap fibers that guide light in an air core have attracted much interest since their first demonstration in 1999. The prospect of low-loss guiding of light in air has importance for a multitude of applications, such as data transmission, gas sensors, dispersion compensation and guiding...... of high-power pulses. The low overlap between light and glass affects both the loss and nonlinear properties of the fiber. At the same time, the strong overlap between light and air provides a mean for creating convenient gas-filled devices with extremely long interaction lengths. In this project...

  17. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    water splitting devices having tandem design. The increase of the photovoltage produced by GaP under illumination was the main goal of this work. GaP has a bandgap of 2.25 eV and could in theory produce a photovoltage of approximately 1.7 V. Instead, the photovoltage produced by the semiconductor...... density generated by GaP was increased by more than 60% by electrochemical etching of the surface. The etching process produces a rough microstructured surface that increases the optical path length of the incident photons and the collection of photogenerated electrons.Furthermore, the synthesis of BiVO4...

  18. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    NARCIS (Netherlands)

    Huang, M.; Rivera-Diaz-del-Castillo, P.E.J.; Bouaziz, O.; Van der Zwaag, S.

    2009-01-01

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that t

  19. Model Study of Wave Overtopping of Marine Structure for a Wide Range of Geometric Parameters

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2000-01-01

    The objective of the study described in this paper is to enable estimation of wave overtopping rates for slopes/ramps given by a wide range of geometric parameters when subjected to varying wave conditions. To achieve this a great number of model tests are carried out in a wave tank using irregular...

  20. Software engineering the mixed model for genome-wide association studies on large samples

    Science.gov (United States)

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample siz...

  1. Modelling land change: the issue of use and cover in wide-scale applications

    NARCIS (Netherlands)

    Bakker, M.M.; Veldkamp, A.

    2008-01-01

    In this article, the underlying causes for the apparent mismatch between land cover and land use in the context of wide-scale land change modelling are explored. A land use-land cover (LU/LC) ratio is proposed as a relevant landscape characteristic. The one-to-one ratio between land use and land

  2. Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment.

    NARCIS (Netherlands)

    Kufareva, I.; Rueda, M.; Katritch, V.; Stevens, R.C.; Abagyan, R.; Vroling, B.; Sanders, M.P.A.

    2011-01-01

    The community-wide GPCR Dock assessment is conducted to evaluate the status of molecular modeling and ligand docking for human G protein-coupled receptors. The present round of the assessment was based on the recent structures of dopamine D3 and CXCR4 chemokine receptors bound to small molecule

  3. An efficient hierarchical generalized linear mixed model for pathway analysis of genome-wide association studies.

    Science.gov (United States)

    Wang, Lily; Jia, Peilin; Wolfinger, Russell D; Chen, Xi; Grayson, Britney L; Aune, Thomas M; Zhao, Zhongming

    2011-03-01

    In genome-wide association studies (GWAS) of complex diseases, genetic variants having real but weak associations often fail to be detected at the stringent genome-wide significance level. Pathway analysis, which tests disease association with combined association signals from a group of variants in the same pathway, has become increasingly popular. However, because of the complexities in genetic data and the large sample sizes in typical GWAS, pathway analysis remains to be challenging. We propose a new statistical model for pathway analysis of GWAS. This model includes a fixed effects component that models mean disease association for a group of genes, and a random effects component that models how each gene's association with disease varies about the gene group mean, thus belongs to the class of mixed effects models. The proposed model is computationally efficient and uses only summary statistics. In addition, it corrects for the presence of overlapping genes and linkage disequilibrium (LD). Via simulated and real GWAS data, we showed our model improved power over currently available pathway analysis methods while preserving type I error rate. Furthermore, using the WTCCC Type 1 Diabetes (T1D) dataset, we demonstrated mixed model analysis identified meaningful biological processes that agreed well with previous reports on T1D. Therefore, the proposed methodology provides an efficient statistical modeling framework for systems analysis of GWAS. The software code for mixed models analysis is freely available at http://biostat.mc.vanderbilt.edu/LilyWang.

  4. Gas sensing using air-guiding photonic bandgap fibers

    DEFF Research Database (Denmark)

    Ritar, Tuomo; Tuominen, J.; Ludvigsen, Hanne

    2004-01-01

    We demonstrate the high sensitivity of gas sensing using a novel air-guiding photonic bandgap fiber. The bandgap fiber is spliced to a standard single-mode fiber at the input end for easy coupling and filled with gas through the other end placed in a vacuum chamber. The technique is applied...

  5. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei;

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  6. A Novel 2D Z-Shaped Electromagnetic Bandgap Structure

    Directory of Open Access Journals (Sweden)

    I. Iliev

    2015-02-01

    Full Text Available This paper researches a novel 2D Z-shaped Electromagnetic Band-Gap (EBG structure, its dispersion diagram and application field. Based on a transmission line model, the dispersion equation is derived and theoretically investigated. In order to validate theoretical results, a full wave analysis is performed and the electromagnetic properties of the structure are revealed. The theoretical results show good agreement with the full wave simulation results. The frequency response of the structure is compared to the well know structures of Jerusalem cross and patch EBG. The results show the applicability of the proposed 2D Z-shaped EBG in microstrip patch antennas, microstrip filters and high speed switching circuits, where the suppression of parasitic surface wave is required.

  7. Communication Modeling for Wide-Area Relay Protection Based on IEC 61850

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2012-11-01

    Full Text Available Wide-area communication system is the information exchange supporting platform for wide-area relay protection (WARP, which includes not only visible physical communication equipment and links, but also communication protocols and other upper communication services. WARP communication had become an important issue in WARP practical applications, but it has not been described in IEC 61850 standard. To solve this issue, this paper firstly presents the general steps of WARP modeling according to the layer upon layer modeling methods of the IEC 61850 standard, then proposes a tree structure model of master station and affiliate stations with information interaction model between master station and affiliate stations following IEC 61850 by taking a 220kV smart substation and WARP algorithm based on fault voltage distribution for example, finally establishes a communication model of WARP that includes client/server transfer model, electrical value transmission model and logical status variables transmission model. The fundamental purpose of constructing the communication model is to implement the interoperability between WARP−IED (WARP−Intelligent Electronic Devices and other IEDs in a smart substation.

  8. Development of Industry-Wide IS Integration Model in the Agri-Industry

    DEFF Research Database (Denmark)

    Hedman, Jonas; Henningsson, Stefan

    2013-01-01

    his paper presents a model explaining industrywide information systems (IS) integration in the agri-industry.Using a theoretical frame of value confi guration analysis and IS integration extent we study 15 organizations. We find that product sensitivity, continuous production, value chain captains......, and value creation logic explain the industry-wide IS integration. Incompatible value creation logic among stakeholders and the lack of presence of “value chain captains” – powerful actors dominating the entire industry - has and negative impact on industry-wide integration. On the other hand, product...... sensitivity and continuous production process led to higher levels of integration....

  9. A note on anomalous band-gap variations in semiconductors with temperature

    Science.gov (United States)

    Chakraborty, P. K.; Mondal, B. N.

    2017-09-01

    An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.

  10. Ultra-sensitive pressure dependence of bandgap of rutile-GeO{sub 2} revealed by many body perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Atanu; Singh, Abhishek K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Jain, Manish [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-08-14

    The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.

  11. Ultraviolet laser quantum well intermixing based prototyping of bandgap tuned heterostructures for the fabrication of superluminescent diodes

    Science.gov (United States)

    Beal, Romain; Moumanis, Khalid; Aimez, Vincent; Dubowski, Jan J.

    2016-04-01

    The ultraviolet laser induced quantum well intermixing process has been investigated for prototyping of multiple bandgap quantum well (QW) wafers designed for the fabrication of superluminescent diodes (SLDs). The process takes advantage of a krypton fluoride excimer laser (λ=248 nm) that by irradiating an InP layer capping GaInAs/GaInAsP QW heterostructure leads to the modification of its surface chemical composition and formation of point defects. A subsequent rapid thermal annealing step results in the selective area intermixing of the investigated heterostructures achieving a high quality bandgap tuned material for the fabrication of broad spectrum SLDs. The devices made from a 3-bandgap material are characterized by ~100 nm wide emission spectra with relatively flat profiles and emission exceeding 1 mW.

  12. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    Science.gov (United States)

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings.

  13. Lithium-ion battery dynamic model for wide range of operating conditions

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef

    2017-01-01

    In order to analyze the dynamic behavior of a Lithium-ion (Li-ion) battery and to determine their suitability for various applications, battery models are needed. An equivalent electrical circuit model is the most common way of representing the behavior of a Li-ion battery. There are different...... characterization tests performed for a wide range of operating conditions (temperature, load current and state-ofcharge) on a commercial available 13Ah high-power lithium titanate oxide battery cell. The obtained results were used to parametrize the proposed dynamic model of the battery cell. To assess...

  14. Liquid Crystals and Photonic Bandgap Fiber Components

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Scolari, Lara

    Liquid Crystal(LC)filled Photonic Crystal Fibers(PCFs) represent a promising platform for the design and the fabrication of tunable all-in fiber devices. Tunability is achieved by varying the refractive index of the LC thermally, optically or electrically. In this contribution we present important...... parts of the LC theory as well as an application of a LC infiltrated PCF subject to an external electrostatic field. The fiber is placed between two electrodes and the voltage is increased step by step leading to the reorientation of the LC in the fiber capillaries. This mechanism can be used to produce...... a swichable polarizer, and an on chip LC photonic bandgap fiber polarimeter is presented, which admits strong attenuation of one polarization direction while the other one is nearly unaffected....

  15. Bandgap engineering of GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Bang-Ming; Yan, Hui [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Ru-Zhi, E-mail: wrz@bjut.edu.cn, E-mail: yamcy@csrc.ac.cn [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Beijing Computational Science Research Center, Beijing, 100094 (China); Yam, Chi-Yung, E-mail: wrz@bjut.edu.cn, E-mail: yamcy@csrc.ac.cn [Beijing Computational Science Research Center, Beijing, 100094 (China); Xu, Li-Chun [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lau, Woon-Ming [Beijing Computational Science Research Center, Beijing, 100094 (China); Chengdu Green Energy and Green Manufacturing Technology R& D Center, Chengdu, Sichuan, 610207 (China)

    2016-05-15

    Bandgap engineering has been a powerful technique for manipulating the electronic and optical properties of semiconductors. In this work, a systematic investigation of the electronic properties of [0001] GaN nanowires was carried out using the density functional based tight-binding method (DFTB). We studied the effects of geometric structure and uniaxial strain on the electronic properties of GaN nanowires with diameters ranging from 0.8 to 10 nm. Our results show that the band gap of GaN nanowires depends linearly on both the surface to volume ratio (S/V) and tensile strain. The band gap of GaN nanowires increases linearly with S/V, while it decreases linearly with increasing tensile strain. These linear relationships provide an effect way in designing GaN nanowires for their applications in novel nano-devices.

  16. Jacquard-woven photonic bandgap fiber displays

    CERN Document Server

    Sayed, Imran; Skorobogatiy, Maksim

    2010-01-01

    We present an overview of photonic textile displays woven on a Jacquard loom, using newly discovered polymer photonic bandgap fibers that have the ability to change color and appearance when illuminated with ambient or transmitted light. The photonic fiber can be thin (smaller than 300 microns in diameter) and highly flexible, which makes it possible to weave in the weft on a computerized Jacquard loom and develop intricate double weave structures together with a secondary weft yarn. We demonstrate how photonic crystal fibers enable a variety of color and structural patterns on the textile, and how dynamic imagery can be created by balancing the ambient and emitted radiation. Finally, a possible application in security ware for low visibility conditions is described as an example.

  17. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    Science.gov (United States)

    Froese, Jens G; Smith, Carl S; Durr, Peter A; McAlpine, Clive A; van Klinken, Rieks D

    2017-01-01

    Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  18. Wide-aperture laser beam measurement using transmission diffuser: errors modeling

    Science.gov (United States)

    Matsak, Ivan S.

    2015-06-01

    Instrumental errors of measurement wide-aperture laser beam diameter were modeled to build measurement setup and justify its metrological characteristics. Modeled setup is based on CCD camera and transmission diffuser. This method is appropriate for precision measurement of large laser beam width from 10 mm up to 1000 mm. It is impossible to measure such beams with other methods based on slit, pinhole, knife edge or direct CCD camera measurement. The method is suitable for continuous and pulsed laser irradiation. However, transmission diffuser method has poor metrological justification required in field of wide aperture beam forming system verification. Considering the fact of non-availability of a standard of wide-aperture flat top beam modelling is preferred way to provide basic reference points for development measurement system. Modelling was conducted in MathCAD. Super-Lorentz distribution with shape parameter 6-12 was used as a model of the beam. Using theoretical evaluations there was found that the key parameters influencing on error are: relative beam size, spatial non-uniformity of the diffuser, lens distortion, physical vignetting, CCD spatial resolution and, effective camera ADC resolution. Errors were modeled for 90% of power beam diameter criteria. 12-order Super-Lorentz distribution was primary model, because it precisely meets experimental distribution at the output of test beam forming system, although other orders were also used. The analytic expressions were obtained analyzing the modelling results for each influencing data. Attainability of <1% error based on choice of parameters of expression was shown. The choice was based on parameters of commercially available components of the setup. The method can provide up to 0.1% error in case of using calibration procedures and multiple measurements.

  19. GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis.

    Science.gov (United States)

    Stricker, Georg; Engelhardt, Alexander; Schulz, Daniel; Schmid, Matthias; Tresch, Achim; Gagneur, Julien

    2017-08-01

    Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used approach to study protein-DNA interactions. Often, the quantities of interest are the differential occupancies relative to controls, between genetic backgrounds, treatments, or combinations thereof. Current methods for differential occupancy of ChIP-Seq data rely however on binning or sliding window techniques, for which the choice of the window and bin sizes are subjective. Here, we present GenoGAM (Genome-wide Generalized Additive Model), which brings the well-established and flexible generalized additive models framework to genomic applications using a data parallelism strategy. We model ChIP-Seq read count frequencies as products of smooth functions along chromosomes. Smoothing parameters are objectively estimated from the data by cross-validation, eliminating ad hoc binning and windowing needed by current approaches. GenoGAM provides base-level and region-level significance testing for full factorial designs. Application to a ChIP-Seq dataset in yeast showed increased sensitivity over existing differential occupancy methods while controlling for type I error rate. By analyzing a set of DNA methylation data and illustrating an extension to a peak caller, we further demonstrate the potential of GenoGAM as a generic statistical modeling tool for genome-wide assays. Software is available from Bioconductor: https://www.bioconductor.org/packages/release/bioc/html/GenoGAM.html . gagneur@in.tum.de. Supplementary information is available at Bioinformatics online.

  20. Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential

    Energy Technology Data Exchange (ETDEWEB)

    Marotti, R.E.; Guerra, D.N.; Machado, G.; Dalchiele, E.A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, Julio Herrera y Reissig 565, C.C. 30, Montevideo 11000 (Uruguay); Bello, C. [Unidad Central de Instrumentacion Cientifica UCIC, Facultad de Ciencias, Universidad de la Republica, Igua 4225, C.C. 10773, Montevideo 11400 (Uruguay)

    2004-05-01

    ZnO thin films were electrochemically deposited onto opaque and transparent substrates (copper and ITO). The electrolyte consisted of a 0.1M Zn(NO{sub 3}){sub 2} solution with the initial pH adjusted to 6.0, different electrodeposition potentials from E=-700 to -1200mV (saturated calomel electrode, SCE). The resulting samples have the structural, chemical and morphological properties of hexagonal ZnO, with thickness varying from less than 1{mu}m to almost 30{mu}m. The bandgap energy varies inversely with film thickness, ranging from less than 3.1 to 3.4eV. The bandgap also depends on the electrodeposition potential. This result allows to adjust the desired absorption edge within a 30nm wide region in the UV.

  1. Wide band modeling of large power transformer windings for very fast transient overvoltage (VFTO) analysis

    Institute of Scientific and Technical Information of China (English)

    YANG Yu; WANG ZanJi

    2009-01-01

    There are some difficulties in using multi-transmission-line (MTL) model for wide band modeling of whole windings of the large power transformer. In this paper, the normalized MTL model is firstly de-rived, with which not only the difficulty of modeling windings with different turn-lengths using MTL can be solved, but also the model can be extended to the modeling of the multi-winding transformer. Sec-ondly, both MTL model and the lumped circuit model on turn basis are mathematically compared in validation of the frequency range and it is pointed out that the lumped circuit model on turn basis is generally valid below 2.5 MHz for EHV and UHV power transformers. Finally, based on the MTL equa-tions, a novel lumped circuit model is derived and it is shown that the valid frequency range of the new circuit is extended to about 4 MHz for modeling large EHV and UHV power transformer windings.

  2. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

    Directory of Open Access Journals (Sweden)

    William R Swindell

    Full Text Available Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1. While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

  3. Communication Service Model for Wide Area Protection System Based on IEC 61850

    Institute of Scientific and Technical Information of China (English)

    CONG Wei; PAN Zhencun; GAO Zhanjun; ZENG Yuxiao; ZHAI Yunjuan

    2008-01-01

    In order to meet the requirements of information exchange varieties and manners in wide area protection system, a communication service model based on IEC 61850 is proposed. This service model can realize communication consistency and cooperation between different types of devices. Furthermore, the communication reliability and time delay performance are guaranteed to meet the requirements of relay protection from the upper layer. Message structure of generic substation event (GSE) and its communication mechanism are discussed. General methods to communicate digital information by generic substation status event (GSSE) and communicate analog sampling information by sampling analog value (SAV) of GSE are proposed.

  4. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all......-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065nm by applying...

  5. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    -sectional area. To study the band-gap for travelling waves, a repeated inner segment of the optimized beams is analyzed using Floquet theory and the waveguide finite element (WFE) method. Finally, the frequency response is computed for the optimized beams when these are subjected to an external time......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...

  6. Effects of ion strength and ion pairing on (plant-wide) modelling of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Solon, Kimberly;

    2014-01-01

    The objective of this study is to show the influence of ionic strength (as activity corrections) andion pairing on (plant-wide) modelling of anaerobic digestion processes in wastewater treatment plants(WWTPs). Using the Benchmark Simulation Model No. 2 (BSM2) as a case study, this paper presents...... the effects that an improved physico-chemical description will have on the predicted effluent quality (EQI) and operational cost (OCI) indices. The acid-base equilibria implemented in the Anaerobic Digestion Model No.1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects...... processes. Results at high ionic strength demonstrate that corrections to account for non-ideal conditions lead to significant differences in predicted process performance. In addition, the paper describes: 1) how the anaerobic digester performance is affected; 2) the effect on pH and the anaerobic...

  7. Genome-wide association study of handedness excludes simple genetic models

    Science.gov (United States)

    Armour, J AL; Davison, A; McManus, I C

    2014-01-01

    Handedness is a human behavioural phenotype that appears to be congenital, and is often assumed to be inherited, but for which the developmental origin and underlying causation(s) have been elusive. Models of the genetic basis of variation in handedness have been proposed that fit different features of the observed resemblance between relatives, but none has been decisively tested or a corresponding causative locus identified. In this study, we applied data from well-characterised individuals studied at the London Twin Research Unit. Analysis of genome-wide SNP data from 3940 twins failed to identify any locus associated with handedness at a genome-wide level of significance. The most straightforward interpretation of our analyses is that they exclude the simplest formulations of the ‘right-shift' model of Annett and the ‘dextral/chance' model of McManus, although more complex modifications of those models are still compatible with our observations. For polygenic effects, our study is inadequately powered to reliably detect alleles with effect sizes corresponding to an odds ratio of 1.2, but should have good power to detect effects at an odds ratio of 2 or more. PMID:24065183

  8. Software engineering the mixed model for genome-wide association studies on large samples.

    Science.gov (United States)

    Zhang, Zhiwu; Buckler, Edward S; Casstevens, Terry M; Bradbury, Peter J

    2009-11-01

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample size and number of markers used for GWAS is increasing dramatically, resulting in greater statistical power to detect those associations. The use of mixed models with increasingly large data sets depends on the availability of software for analyzing those models. While multiple software packages implement the mixed model method, no single package provides the best combination of fast computation, ability to handle large samples, flexible modeling and ease of use. Key elements of association analysis with mixed models are reviewed, including modeling phenotype-genotype associations using mixed models, population stratification, kinship and its estimation, variance component estimation, use of best linear unbiased predictors or residuals in place of raw phenotype, improving efficiency and software-user interaction. The available software packages are evaluated, and suggestions made for future software development.

  9. Band-gap tunable dielectric elastomer filter for low frequency noise

    Science.gov (United States)

    Jia, Kun; Wang, Mian; Lu, Tongqing; Zhang, Jinhua; Wang, Tiejun

    2016-05-01

    In the last decades, diverse materials and technologies for sound insulation have been widely applied in engineering. However, suppressing the noise radiation at low frequency still remains a challenge. In this work, a novel membrane-type smart filter, consisting of a pre-stretched dielectric elastomer membrane with two compliant electrodes coated on the both sides, is presented to control the low frequency noise. Since the stiffness of membrane dominates its acoustic properties, sound transmission band-gap of the membrane filter can be tuned by adjusting the voltage applied to the membrane. The impedance tube experiments have been carried out to measure the sound transmission loss (STL) of the filters with different electrodes, membrane thickness and pre-stretch conditions. The experimental results show that the center frequency of sound transmission band-gap mainly depends on the stress in the dielectric elastomer, and a large band-gap shift (more than 60 Hz) can be achieved by tuning the voltage applied to the 85 mm diameter VHB4910 specimen with pre-stretch {λ }0=3. Based on the experimental results and the assumption that applied electric field is independent of the membrane behavior, 3D finite element analysis has also been conducted to calculate the membrane stress variation. The sound filter proposed herein may provide a promising facility to control low frequency noise source with tonal characteristics.

  10. Compound semiconductor alloys: From atomic-scale structure to bandgap bowing

    Energy Technology Data Exchange (ETDEWEB)

    Schnohr, C. S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2015-09-15

    Compound semiconductor alloys such as In{sub x}Ga{sub 1−x}As, GaAs{sub x}P{sub 1−x}, or CuIn{sub x}Ga{sub 1−x}Se{sub 2} are increasingly employed in numerous electronic, optoelectronic, and photonic devices due to the possibility of tuning their properties over a wide parameter range simply by adjusting the alloy composition. Interestingly, the material properties are also determined by the atomic-scale structure of the alloys on the subnanometer scale. These local atomic arrangements exhibit a striking deviation from the average crystallographic structure featuring different element-specific bond lengths, pronounced bond angle relaxation and severe atomic displacements. The latter, in particular, have a strong influence on the bandgap energy and give rise to a significant contribution to the experimentally observed bandgap bowing. This article therefore reviews experimental and theoretical studies of the atomic-scale structure of III-V and II-VI zincblende alloys and I-III-VI{sub 2} chalcopyrite alloys and explains the characteristic findings in terms of bond length and bond angle relaxation. Different approaches to describe and predict the bandgap bowing are presented and the correlation with local structural parameters is discussed in detail. The article further highlights both similarities and differences between the cubic zincblende alloys and the more complex chalcopyrite alloys and demonstrates that similar effects can also be expected for other tetrahedrally coordinated semiconductors of the adamantine structural family.

  11. Surrogate runner model for draft tube losses computation within a wide range of operating points

    Science.gov (United States)

    Susan-Resiga, R.; Muntean, S.; Ciocan, T.; de Colombel, T.; Leroy, P.

    2014-03-01

    We introduce a quasi two-dimensional (Q2D) methodology for assessing the swirling flow exiting the runner of hydraulic turbines at arbitrary operating points, within a wide operating range. The Q2D model does not need actual runner computations, and as a result it represents a surrogate runner model for a-priori assessment of the swirling flow ingested by the draft tube. The axial, radial and circumferential velocity components are computed on a conical section located immediately downstream the runner blades trailing edge, then used as inlet conditions for regular draft tube computations. The main advantage of our model is that it allows the determination of the draft tube losses within the intended turbine operating range in the early design stages of a new or refurbished runner, thus providing a robust and systematic methodology to meet the optimal requirements for the flow at the runner outlet.

  12. Design of Bandgap Reference in Switching Power Supply

    Institute of Scientific and Technical Information of China (English)

    XU Li; NIU Ping-juan; FU Xian-song; DING Ke; PENG Xiao-lei

    2009-01-01

    A bandgap voltage reference is designed to meet the requirements of low power loss,low temperature coefficient and high power source rejection ratio(PSRR) in the intergrated circuit.Based on the analysis of conventional bandgap reference circuit,and combined with the integral performance of IC,the specific design index of the bandgap reference is put forward.In the meantime,the circuit and the layout are designed with Chartered 0.35 μm dual gate CMOS process.The simulation result shows that the coefficient is less than 30ppm/℃ with the temperature from -50℃ to 150℃. The bandgap reference has the characteristics of low power and high PSRR.

  13. Relaxation of femtosecond photoexcited electrons in a polar indirect band-gap semiconductor nanoparticle

    Indian Academy of Sciences (India)

    Navinder Singh

    2005-01-01

    A model calculation is given for the energy relaxation of a non-equilibrium distribution of hot electrons (holes) prepared in the conduction (valence) band of a polar indirect band-gap semiconductor, which has been subjected to homogeneous photoexcitation by a femtosecond laser pulse. The model assumes that the pulsed photoexcitation creates two distinct but spatially interpenetrating electron and hole non-equilibrium subsystems that initially relax non-radiatively through the electron (hole)–phonon processes towards the conduction (valence) band minimum (maximum), and finally radiatively through the phonon-assisted electron–hole recombination across the band-gap, which is a relatively slow process. This leads to an accumulation of electrons (holes) at the conduction (valence) band minimum (maximum). The resulting peaking of the carrier density and the entire evolution of the hot electron (hole) distribution has been calculated. The latter may be time resolved by a pump-probe study. The model is particularly applicable to a divided (nanometric) polar indirect band-gap semiconductor with a low carrier concentration and strong electron–phonon coupling, where the usual two-temperature model [1–4] may not be appropriate.

  14. The Three-Dimensional Velocity Distribution of Wide Gap Taylor-Couette Flow Modelled by CFD

    Directory of Open Access Journals (Sweden)

    David Shina Adebayo

    2016-01-01

    Full Text Available A numerical investigation is conducted for the flow between two concentric cylinders with a wide gap, relevant to bearing chamber applications. This wide gap configuration has received comparatively less attention than narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer stationary cylinder has been modelled as an incompressible flow using an implicit finite volume RANS scheme with the realisable k-ε model. The model flow is above the critical Taylor number at which axisymmetric counterrotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different from typical journal bearing applications, where the velocity profiles are quasilinear. The predicted results led to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbomachinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of fouling in the seal.

  15. Bandgap Restructuring of the Layered Semiconductor Gallium Telluride in Air.

    Science.gov (United States)

    Fonseca, Jose J; Tongay, Sefaattin; Topsakal, Mehmet; Chew, Annabel R; Lin, Alan J; Ko, Changhyun; Luce, Alexander V; Salleo, Alberto; Wu, Junqiao; Dubon, Oscar D

    2016-08-01

    A giant bandgap reduction in layered GaTe is demonstrated. Chemisorption of oxygen to the Te-terminated surfaces produces significant restructuring of the conduction band resulting in a bandgap below 0.8 eV, compared to 1.65 eV for pristine GaTe. Localized partial recovery of the pristine gap is achieved by thermal annealing, demonstrating that reversible band engineering in layered semiconductors is accessible through their surfaces.

  16. Large-area single-mode photonic bandgap vcsels

    DEFF Research Database (Denmark)

    Birkedal, Dan; Gregersen, N.; Bischoff, S.;

    2003-01-01

    We demonstrate that the photonic bandgap effect can be used to control the modes of large area vertical cavity surface emitting lasers. We obtain more than 20 dB side mode suppression ratios in a 10-micron area device.......We demonstrate that the photonic bandgap effect can be used to control the modes of large area vertical cavity surface emitting lasers. We obtain more than 20 dB side mode suppression ratios in a 10-micron area device....

  17. Degenerate four wave mixing in solid core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2008-01-01

    Degenerate four wave mixing in solid core photonic bandgap fibers is studied theoretically. We demonstrate the possibility of generating parametric gain across bandgaps, and propose a specific design suited for degenerate four wave mixing when pumping at 532nmm. the possibility of tuning the effi...... the efficency of the parametric gain by varying the temperature is also considered. The sults are verified by numerical simultations of pulse propagation....

  18. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  19. Bandgap calculations and trends of organometal halide perovskites

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2014-01-01

    of Cs, CH3NH3, and HC(NH2)2 as A-cation, Sn and Pb as B-ion, and a combination of Cl, Br, and I as anions. The calculated gaps span over a region from 0.5 to 5.0 eV. In addition, the trends over bandgaps have been investigated: the bandgap increases with an increase of the electronegativities...

  20. Toronto Heart Attack Collaborative: an administrative model that facilitated a successful city-wide integration initiative.

    Science.gov (United States)

    Young, Justin; McLellan, Barry; Escaf, Marnie; Dzavik, Vladimir; Michaud, Susan; Newton, Janet; Newman, Erone

    2014-01-01

    This article provides a description of the administrative model that enabled a city-wide integration effort between Greater Toronto Area hospitals and Toronto Emergency Medical Services in the care of patients within the city of Toronto with ST elevation myocardial infarction (STEMI). This administrative structure, known as the Toronto Heart Attack Collaborative (THAC), enabled universal 24/7 access to primary percutaneous coronary intervention within Toronto, improving patient efficacy and outcomes. The lessons and administrative enablers from this experience may be useful for regions that are embarking on multi-centre integration efforts. This article presents a five-year perspective on the THAC integration effort.

  1. Multiple oscillator models for the optical constants of polycrystalline zinc oxide thin films over a wide wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Khoshman, J.M., E-mail: khoshman@ahu.edu.jo [Department of Physics, Al-Hussein Bin Talal University, Maan 71111 (Jordan); College of Engineering, University of Dammam, Dammam 31451 (Saudi Arabia); Hilfiker, J.N. [J.A. Woollam Company, 645 M Street, Suite 102, Lincoln, NE 68508 (United States); Tabet, N. [Physics Department, Center of Research Excellence in Renewable Energy, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Kordesch, M.E. [Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States)

    2014-07-01

    Zinc oxide (ZnO) films were prepared on Si(1 1 1) and quartz substrates using RF-magnetron sputtering in N₂ plasma at room temperature. From the X-ray diffraction observations, it was found that all films are polycrystalline with a preferred orientation of (1 0 1). X ray photoelectron spectroscopy was used to analyze the chemical composition of the films by observing the behavior of the Zn2p3, O1s, N1s, and C1s lines. The thicknesses and optical constants of the ZnO thin films were determined using variable angle spectroscopic ellipsometry through the Genosc™ Herzinger–Johs parameterized semiconductor oscillator functions and multiple Gaussian oscillator models. Combining multiple oscillator types provided a very flexible approach to fitting optical constants over a wavelength range 190–1400 nm while simultaneously enforcing Kramers–Kronig consistency in the fitted ellipsometric parameters. Refractive indices of the films were determined to be in the range 1.68–1.93 and extinction coefficients in the range 4.56 × 10⁻⁶–0.23. A direct bandgap of 3.38 ± 0.03 eV was calculated from the extinction coefficient. Low temperature photoluminescence studies of the films exhibited one prominent peak at 3.41 eV. The equality of the ZnO thin films was obtained through the depolarization measurements.

  2. Impact of structural distortions on the performance of hollow-core photonic bandgap fibers

    OpenAIRE

    2014-01-01

    We present a generic model for studying numerically the performance of hollow-core photonic bandgap fibers (HC-PBGFs) with arbitrary cross-sectional distortions. Fully vectorial finite element simulations reveal that distortions beyond the second ring of air holes have an impact on the leakage loss and bandwidth of the fiber, but do not significantly alter its surface scattering loss which remains the dominant contribution to the overall fiber loss (providing that a sufficient number of rings...

  3. Modelling anaerobic co-digestion in Benchmark Simulation Model No. 2: Parameter estimation, substrate characterisation and plant-wide integration.

    Science.gov (United States)

    Arnell, Magnus; Astals, Sergi; Åmand, Linda; Batstone, Damien J; Jensen, Paul D; Jeppsson, Ulf

    2016-07-01

    Anaerobic co-digestion is an emerging practice at wastewater treatment plants (WWTPs) to improve the energy balance and integrate waste management. Modelling of co-digestion in a plant-wide WWTP model is a powerful tool to assess the impact of co-substrate selection and dose strategy on digester performance and plant-wide effects. A feasible procedure to characterise and fractionate co-substrates COD for the Benchmark Simulation Model No. 2 (BSM2) was developed. This procedure is also applicable for the Anaerobic Digestion Model No. 1 (ADM1). Long chain fatty acid inhibition was included in the ADM1 model to allow for realistic modelling of lipid rich co-substrates. Sensitivity analysis revealed that, apart from the biodegradable fraction of COD, protein and lipid fractions are the most important fractions for methane production and digester stability, with at least two major failure modes identified through principal component analysis (PCA). The model and procedure were tested on bio-methane potential (BMP) tests on three substrates, each rich on carbohydrates, proteins or lipids with good predictive capability in all three cases. This model was then applied to a plant-wide simulation study which confirmed the positive effects of co-digestion on methane production and total operational cost. Simulations also revealed the importance of limiting the protein load to the anaerobic digester to avoid ammonia inhibition in the digester and overloading of the nitrogen removal processes in the water train. In contrast, the digester can treat relatively high loads of lipid rich substrates without prolonged disturbances.

  4. A retinal circuit model accounting for wide-field amacrine cells.

    Science.gov (United States)

    Sağlam, Murat; Hayashida, Yuki; Murayama, Nobuki

    2009-03-01

    In previous experimental studies on the visual processing in vertebrates, higher-order visual functions such as the object segregation from background were found even in the retinal stage. Previously, the "linear-nonlinear" (LN) cascade models have been applied to the retinal circuit, and succeeded to describe the input-output dynamics for certain parts of the circuit, e.g., the receptive field of the outer retinal neurons. And recently, some abstract models composed of LN cascades as the circuit elements could explain the higher-order retinal functions. However, in such a model, each class of retinal neurons is mostly omitted and thus, how those neurons play roles in the visual computations cannot be explored. Here, we present a spatio-temporal computational model of the vertebrate retina, based on the response function for each class of retinal neurons and on the anatomical inter-cellular connections. This model was capable of not only reproducing the spatio-temporal filtering properties of the outer retinal neurons, but also realizing the object segregation mechanism in the inner retinal circuit involving the "wide-field" amacrine cells. Moreover, the first-order Wiener kernels calculated for the neurons in our model showed a reasonable fit to the kernels previously measured in the real retinal neuron in situ.

  5. Computational modelling of genome-wide [corrected] transcription assembly networks using a fluidics analogy.

    Directory of Open Access Journals (Sweden)

    Yousry Y Azmy

    Full Text Available Understanding how a myriad of transcription regulators work to modulate mRNA output at thousands of genes remains a fundamental challenge in molecular biology. Here we develop a computational tool to aid in assessing the plausibility of gene regulatory models derived from genome-wide expression profiling of cells mutant for transcription regulators. mRNA output is modelled as fluid flow in a pipe lattice, with assembly of the transcription machinery represented by the effect of valves. Transcriptional regulators are represented as external pressure heads that determine flow rate. Modelling mutations in regulatory proteins is achieved by adjusting valves' on/off settings. The topology of the lattice is designed by the experimentalist to resemble the expected interconnection between the modelled agents and their influence on mRNA expression. Users can compare multiple lattice configurations so as to find the one that minimizes the error with experimental data. This computational model provides a means to test the plausibility of transcription regulation models derived from large genomic data sets.

  6. Dispersion model for optical thin films applicable in wide spectral range

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Ohlídal, Ivan; Giglia, Angelo

    2015-09-01

    In the optics industry thin film systems are used to construct various interference devices such as antireflective coatings, high-reflectance mirrors, beam splitters and filters. The optical characterization of complex optical systems can not be performed by measurements only in the short spectral range in which the interference devices will be employed because the measured data do not contain sufficient information about all relevant parameters of these systems. The characterization of film materials requires the extension of the spectral range of the measurements to the IR region containing phonon absorption and to the UV region containing the electronic excitations. However, this leads to necessity of a dispersion model suitable for the description of the dielectric response in the wide spectral range. Such model must respect the physical conditions following from theory of dispersion, particularly Kramers-Kronig relations and integrability imposed by sum rules. This work presents the construction of a universal dispersion model composed from individual contributions representing both electronic and phonon excitations. The efficiency of presented model is given by the fact that all the contributions are described by analytical expressions. It is shown that the model is suitable for precise modeling of spectral dependencies of optical constants of a broad class of materials used in the optical industry for thin film systems such as MgF2, SiO2, Al2O3, HfO2, Ta2O5 and TiO2 in the spectral range from far IR to vacuum UV.

  7. Research on micro-sized acoustic bandgap structures.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, James Grant; McCormick, Frederick Bossert; Su, Mehmet F.; El-Kady, Ihab Fathy; Olsson, Roy H., III; Tuck, Melanie R.

    2010-01-01

    Phononic crystals (or acoustic crystals) are the acoustic wave analogue of photonic crystals. Here a periodic array of scattering inclusions located in a homogeneous host material forbids certain ranges of acoustic frequencies from existence within the crystal, thus creating what are known as acoustic (or phononic) bandgaps. The vast majority of phononic crystal devices reported prior to this LDRD were constructed by hand assembling scattering inclusions in a lossy viscoelastic medium, predominantly air, water or epoxy, resulting in large structures limited to frequencies below 1 MHz. Under this LDRD, phononic crystals and devices were scaled to very (VHF: 30-300 MHz) and ultra (UHF: 300-3000 MHz) high frequencies utilizing finite difference time domain (FDTD) modeling, microfabrication and micromachining technologies. This LDRD developed key breakthroughs in the areas of micro-phononic crystals including physical origins of phononic crystals, advanced FDTD modeling and design techniques, material considerations, microfabrication processes, characterization methods and device structures. Micro-phononic crystal devices realized in low-loss solid materials were emphasized in this work due to their potential applications in radio frequency communications and acoustic imaging for medical ultrasound and nondestructive testing. The results of the advanced modeling, fabrication and integrated transducer designs were that this LDRD produced the 1st measured phononic crystals and phononic crystal devices (waveguides) operating in the VHF (67 MHz) and UHF (937 MHz) frequency bands and established Sandia as a world leader in the area of micro-phononic crystals.

  8. Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters

    Science.gov (United States)

    Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.

    2016-12-01

    Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.

  9. Validation of a plant-wide phosphorus modelling approach with minerals precipitation in a full-scale WWTP

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Flores Alsina, Xavier; Batstone, Damien John

    2016-01-01

    The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust simula...

  10. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huang Mingxin; Rivera-Diaz-del-Castillo, Pedro E J; Zwaag, Sybrand van der [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Bouaziz, Olivier, E-mail: mingxin.huang@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, Voie Romaine-BP30320, 57283 Maizieres-les-Metz Cedex (France)

    2009-07-15

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that there is a transitional strain rate ({approx} 10{sup 4} s{sup -1}) over which the phonon drag effects appear, resulting in a significant increase in the flow stress and the average dislocation density. The model is applied to pure Cu deformed at room temperature and at strain rates ranging from 10{sup -5} to 10{sup 6} s{sup -1} showing good agreement with experimental results.

  11. A benchmark simulation model to describe plant-wide phosphorus transformations in WWTPs

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Ikumi, D.; Kazadi-Mbamba, C.

    It is more than 10 years since the publication of the BSM1 technical report (Copp, 2002). The main objective of BSM1 was to create a platform for benchmarking C and N removal strategies in activated sludge systems. The initial platform evolved into BSM1_LT and BSM2, which allowed for the evaluati...... to be addressed and presents the simulation results of the first software prototype....... of monitoring and plant-wide control strategies, respectively. In addition, researchers working within the IWA Task Group on Benchmarking of Control Strategies for Wastewater Treatment Plants developed other BSM related spin-off products, such as the dynamic influent generator, sensor/actuators/fault models......) pursue biological/chemical phosphorus removal. However, realistic descriptions of combined C, N and P removal, adds a major, but unavoidable degree of complexity in wastewater treatment process models. This paper identifies and discusses important issues that need to be addressed to upgrade the BSM2...

  12. Examining Teacher Outcomes of the School-Wide Positive Behavior Support Model in Norway

    Directory of Open Access Journals (Sweden)

    Mari-Anne Sørlie

    2016-05-01

    Full Text Available Research on teacher outcomes of the School-Wide Positive Behavior Support (SWPBS model has been scarce. The present study adds to the knowledge base by examining the effects of the Norwegian version of SWPBS (N-PALS on school staffs’ behavior management practices and on their individual and collective efficacy. Questionnaire data were collected from staff and students (Grades 4-7 at four measurement points across four successive school years in 28 intervention schools and 20 comparison schools. Using longitudinal multilevel analyses, indications of positive 3-year main effects of the N-PALS model were observed for staff-reported collective efficacy, self-efficacy, and positive behavior support practices. The intervention effects as measured by Cohen’s d ranged from .14 to .91. The effects on student perceptions of teachers’ behavior management strategies were, however, not consistent with the positive staff ratings. Results are discussed in relation to prior research, future research, and study limitations.

  13. An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies

    DEFF Research Database (Denmark)

    Thompson, Wesley K.; Wang, Yunpeng; Schork, Andrew J.

    2015-01-01

    Characterizing the distribution of effects from genome-wide genotyping data is crucial for understanding important aspects of the genetic architecture of complex traits, such as number or proportion of non-null loci, average proportion of phenotypic variance explained per non-null effect, power...... for discovery, and polygenic risk prediction. To this end, previous work has used effect-size models based on various distributions, including the normal and normal mixture distributions, among others. In this paper we propose a scale mixture of two normals model for effect size distributions of genome...... of variance explained by genotyped SNPs, CD and SZ have a broadly dissimilar genetic architecture, due to differing mean effect size and proportion of non-null loci....

  14. Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs

    DEFF Research Database (Denmark)

    Jeppsson, Ulf; Rosen, Christian; Alex, Jens;

    2006-01-01

    The COST/IWA benchmark simulation model has been available for seven years. Its primary purpose has been to create a platform for control strategy benchmarking of activated sludge processes. The fact that the benchmark has resulted in more than 100 publications, not only in Europe but also...... worldwide, demonstrates the interest in such a tool within the research community In this paper, an extension of the benchmark simulation model no 1 (BSM1) is proposed. This extension aims at facilitating control strategy development and performance evaluation at a plant-wide level and, consequently...... the changes, the evaluation period has been extended to one year. A prolonged evaluation period allows for long-term control strategies to be assessed and enables the use of control handles that cannot be evaluated in a realistic fashion in the one-week BSM1 evaluation period. In the paper, the extended plant...

  15. Modulating Bandgap and HOCO/LUCO Energy of Semiconducting Polymer by Copolymerization or Incorporation of Electron Withdrawing/Releasing Groups

    Institute of Scientific and Technical Information of China (English)

    YAN Liu-ming; LU Wen-cong

    2007-01-01

    The modulation of bandgap and HOCO/LUCO energies of conjugated polymers by copolymerization or by incorporation of electron withdrawing/releasing groups is studied. The study was conducted by band structure calculation applying density functional theory with generalized gradient approximation. The polymers and copolymers were modeled as 1D infinite system with periodical boundary condition along the molecular direction. It is concluded that the bandgap and HOCO/LUCO energies of conjugated polymers depend on both electron withdrawing/releasing effects and non-bonding interaction between a side group and the conjugated systems.

  16. Effect of band-gap narrowing on the built-in electric field in n-type silicon

    Science.gov (United States)

    Geist, J.; Lowney, J. R.

    1981-02-01

    A relation is derived to describe the change in the built-in electric field in an n-type semiconductor due to band tailing and carrier freeze-out, as well as band-gap narrowing. Recent numerical models of these various phenomena were used to illustrate the effect on heavily doped n-type silicon. While neither band-gap narrowing, band tailing, nor deionization alone is sufficient to explain the large decrease in the built-in electric field that has been inferred from experimental measurements, the combination of all three effects may be sufficient.

  17. Cellular automaton model in the fundamental diagram approach reproducing the synchronized outflow of wide moving jams

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jun-fang, E-mail: tianhustbjtu@hotmail.com [MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); Yuan, Zhen-zhou; Jia, Bin; Fan, Hong-qiang; Wang, Tao [MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2012-09-10

    Velocity effect and critical velocity are incorporated into the average space gap cellular automaton model [J.F. Tian, et al., Phys. A 391 (2012) 3129], which was able to reproduce many spatiotemporal dynamics reported by the three-phase theory except the synchronized outflow of wide moving jams. The physics of traffic breakdown has been explained. Various congested patterns induced by the on-ramp are reproduced. It is shown that the occurrence of synchronized outflow, free outflow of wide moving jams is closely related with drivers time delay in acceleration at the downstream jam front and the critical velocity, respectively. -- Highlights: ► Velocity effect is added into average space gap cellular automaton model. ► The physics of traffic breakdown has been explained. ► The probabilistic nature of traffic breakdown is simulated. ► Various congested patterns induced by the on-ramp are reproduced. ► The occurrence of synchronized outflow of jams depends on drivers time delay.

  18. Community-wide validation of geospace model local K-index predictions to support model transition to operations

    Science.gov (United States)

    Glocer, A.; Rastätter, L.; Kuznetsova, M.; Pulkkinen, A.; Singer, H. J.; Balch, C.; Weimer, D.; Welling, D.; Wiltberger, M.; Raeder, J.; Weigel, R. S.; McCollough, J.; Wing, S.

    2016-07-01

    We present the latest result of a community-wide space weather model validation effort coordinated among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), model developers, and the broader science community. Validation of geospace models is a critical activity for both building confidence in the science results produced by the models and in assessing the suitability of the models for transition to operations. Indeed, a primary motivation of this work is supporting NOAA/SWPC's effort to select a model or models to be transitioned into operations. Our validation efforts focus on the ability of the models to reproduce a regional index of geomagnetic disturbance, the local K-index. Our analysis includes six events representing a range of geomagnetic activity conditions and six geomagnetic observatories representing midlatitude and high-latitude locations. Contingency tables, skill scores, and distribution metrics are used for the quantitative analysis of model performance. We consider model performance on an event-by-event basis, aggregated over events, at specific station locations, and separated into high-latitude and midlatitude domains. A summary of results is presented in this report, and an online tool for detailed analysis is available at the CCMC.

  19. Recent Site-Wide Transport Modeling Related to the Carbon Tetrachloride Plume at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Marcel P.; Cole, C R.

    2005-11-01

    Carbon tetrachloride transport in the unconfined aquifer system at the Hanford Site has been the subject of follow-on studies since the Carbon Tetrachloride Innovative Treatment Remediation Demonstration (ITRD) Program was completed in FY 2002. These scoping analyses were undertaken to provide support for strategic planning and guidance for the more robust modeling needed to obtain a final record of decision (ROD) for the carbon tetrachloride plume in the 200 West Area. This report documents the technical approach and the results of these follow-on, site-wide scale-modeling efforts. The existing site-wide groundwater model was used in this effort. The work extended that performed as part of the ITRD modeling study in which a 200 West Area scale submodel was developed to examine arrival concentrations at an arbitrary boundary between the 200 E and 200 W areas. These scoping analyses extended the analysis to predict the arrival of the carbon tetrachloride plume at the Columbia River. The results of these analyses illustrate the importance of developing field-scale estimates of natural attenuation parameters, abiotic degradation rate and soil/water equilibrium sorption coefficient, for carbon tetrachloride. With these parameters set to zero, carbon tetrachloride concentrations will exceed the compliance limit of 5 ?g/L outside the 200 Area Plateau Waste Management Area, and the aquifer source loading and area of the aquifer affected will continue to grow until arrival rates of carbon tetrachloride equal source release rates, estimated at 33 kg/yr. Results of this scoping analysis show that the natural attenuation parameters are critical in predicting the future movement of carbon tetrachloride from the 200 West Area. Results also show the significant change in predictions between continual source release from the vadose zone and complete source removal.

  20. On the Suppression Band and Bandgap of Planar Electromagnetic Bandgap Structures

    Directory of Open Access Journals (Sweden)

    Baharak Mohajer-Iravani

    2014-01-01

    Full Text Available Electromagnetic bandgap structures are considered a viable solution for the problem of switching noise in printed circuit boards and packages. Less attention, however, has been given to whether or not the introduction of EBGs affects the EMI potential of the circuit to couple unwanted energy to neighboring layers or interconnects. In this paper, we show that the bandgap of EBG structures, as generated using the Brillouin diagram, does not necessarily correspond to the suppression bandwidth typically generated using S-parameters. We show that the reactive near fields radiating from openings within the EBG layers can be substantial and are present in the entire frequency band including propagating and nonpropagating mode regions. These fields decay fast with distance; however, they can couple significant energy to adjacent layers and to signal lines. The findings are validated using full-wave three-dimensional numerical simulation. Based on this work, design guidelines for EBG structures can be drawn to insure not only suppression of switching noise but also minimization of EMI and insuring signal integrity.

  1. Low bandgap semiconducting polymers for polymeric photovoltaics.

    Science.gov (United States)

    Liu, Chang; Wang, Kai; Gong, Xiong; Heeger, Alan J

    2016-08-22

    In order to develop high performance polymer solar cells (PSCs), full exploitation of the sun-irradiation from ultraviolet (UV) to near infrared (NIR) is one of the key factors to ensure high photocurrents and thus high efficiency. In this review, five of the effective design rules for approaching LBG semiconducting polymers with high molar absorptivity, suitable energy levels, high charge carrier mobility and high solubility in organic solvents are overviewed. These design stratagems include fused heterocycles for facilitating π-electron flowing along the polymer backbone, groups/atoms bridging adjacent rings for maintaining a high planarity, introduction of electron-withdrawing units for lowering the bandgap (Eg), donor-acceptor (D-A) copolymerization for narrowing Eg and 2-dimensional conjugation for broadened absorption and enhanced hole mobility. It has been demonstrated that LBG semiconducting polymers based on electron-donor units combined with strong electron-withdrawing units possess excellent electronic and optic properties, emerging as excellent candidates for efficient PSCs. While for ultrasensitive photodetectors (PDs), which have intensive applications in both scientific and industrial sectors, sensing from the UV to the NIR region is of critical importance. For polymer PDs, Eg as low as 0.8 eV has been obtained through a rational design stratagem, covering a broad wavelength range from the UV to the NIR region (1450 nm). However, the response time of the polymer PDs are severely limited by the hole mobility of LBG semiconducting polymers, which is significantly lower than those of the inorganic materials. Thus, further advancing the hole mobility of LBG semiconducting polymers is of equal importance as broadening the spectral response for approaching uncooled ultrasensitive broadband polymer PDs in the future study.

  2. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    Science.gov (United States)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2016-06-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates ( 10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass ( α ) transition and the secondary ( β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  3. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    Science.gov (United States)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2017-02-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  4. A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations

    Directory of Open Access Journals (Sweden)

    Rui Tu

    2017-03-01

    Full Text Available In this study, a unified model for BeiDou Navigation Satellite System (BDS wide area and local area augmentation positioning based on raw observations has been proposed. Applying this model, both the Real-Time Kinematic (RTK and Precise Point Positioning (PPP service can be realized by performing different corrections at the user end. This algorithm was assessed and validated with the BDS data collected at four regional stations from Day of Year (DOY 080 to 083 of 2016. When the users are located within the local reference network, the fast and high precision RTK service can be achieved using the regional observation corrections, revealing a convergence time of about several seconds and a precision of about 2–3 cm. For the users out of the regional reference network, the global broadcast State-Space Represented (SSR corrections can be utilized to realize the global PPP service which shows a convergence time of about 25 min for achieving an accuracy of 10 cm. With this unified model, it can not only integrate the Network RTK (NRTK and PPP into a seamless positioning service, but also recover the ionosphere Vertical Total Electronic Content (VTEC and Differential Code Bias (DCB values that are useful for the ionosphere monitoring and modeling.

  5. A lithium-ion capacitor model working on a wide temperature range

    Science.gov (United States)

    Barcellona, S.; Piegari, L.

    2017-02-01

    Energy storage systems are spreading both in stationary and transport applications. Among innovative storage devices, lithium ion capacitors (LiCs) are very interesting. They combine the advantages of both traditional electric double layer capacitors (EDLCs) and lithium ion batteries (LiBs). The behavior of this device is much more similar to ELDCs than to batteries. For this reason, several models developed for traditional ELDCs were extended to LiCs. Anyway, at low temperatures LiCs behavior is quite different from ELDCs and it is more similar to a LiB. Consequently, EDLC models works fine at room temperature but give worse results at low temperatures. This paper proposes a new electric model that, overcoming this issue, is a valid solution in a wide temperature range. Based on only five parameters, depending on polarization voltage and temperature, the proposed model is very simple to be implemented. Its accuracy is verified through experimental tests. From the reported results, it is also shown that, at very low temperatures, the dependence of the resistance from the current has to be taken into account.

  6. A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations.

    Science.gov (United States)

    Tu, Rui; Zhang, Rui; Lu, Cuixian; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2017-03-03

    In this study, a unified model for BeiDou Navigation Satellite System (BDS) wide area and local area augmentation positioning based on raw observations has been proposed. Applying this model, both the Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) service can be realized by performing different corrections at the user end. This algorithm was assessed and validated with the BDS data collected at four regional stations from Day of Year (DOY) 080 to 083 of 2016. When the users are located within the local reference network, the fast and high precision RTK service can be achieved using the regional observation corrections, revealing a convergence time of about several seconds and a precision of about 2-3 cm. For the users out of the regional reference network, the global broadcast State-Space Represented (SSR) corrections can be utilized to realize the global PPP service which shows a convergence time of about 25 min for achieving an accuracy of 10 cm. With this unified model, it can not only integrate the Network RTK (NRTK) and PPP into a seamless positioning service, but also recover the ionosphere Vertical Total Electronic Content (VTEC) and Differential Code Bias (DCB) values that are useful for the ionosphere monitoring and modeling.

  7. Linking river flow regimes to riparian plant guilds: a community-wide modeling approach.

    Science.gov (United States)

    Lytle, David A; Merritt, David M; Tonkin, Jonathan D; Olden, Julian D; Reynolds, Lindsay V

    2017-06-01

    Modeling riparian plant dynamics along rivers is complicated by the fact that plants have different edaphic and hydrologic requirements at different life stages. With intensifying human demands for water and continued human alteration of rivers, there is a growing need for predicting responses of vegetation to flow alteration, including responses related to climate change and river flow management. We developed a coupled structured population model that combines stage-specific responses of plant guilds with specific attributes of river hydrologic regime. The model uses information on the vital rates of guilds as they relate to different hydrologic conditions (flood, drought, and baseflow), but deliberately omits biotic interactions from the structure (interaction neutral). Our intent was to (1) consolidate key vital rates concerning plant population dynamics and to incorporate these data into a quantitative framework, (2) determine whether complex plant stand dynamics, including biotic interactions, can be predicted from basic vital rates and river hydrology, and (3) project how altered flow regimes might affect riparian communities. We illustrated the approach using five flow-response guilds that encompass much of the river floodplain community: hydroriparian tree, xeroriparian shrub, hydroriparian shrub, mesoriparian meadow, and desert shrub. We also developed novel network-based tools for predicting community-wide effects of climate-driven shifts and deliberately altered flow regimes. The model recovered known patterns of hydroriparian tree vs. xeroriparian shrub dominance, including the relative proportion of these two guilds as a function of river flow modification. By simulating flow alteration scenarios ranging from increased drought to shifts in flood timing, the model predicted that mature hydroriparian forest should be most abundant near the observed natural flow regime. Multiguild sensitivity analysis identified substantial network connectivity (many

  8. A three-dimensional numerical model for linking community-wide vapour risks

    Science.gov (United States)

    Mustafa, Nizar; Mumford, Kevin G.; Gerhard, Jason I.; O'Carroll, Denis M.

    2014-01-01

    A three-dimensional (3D) numerical model that couples contaminant transport in the saturated zone to vapour transport in the vadose zone and vapour intrusion into buildings was developed. Coupling these processes allows the simulation of vapour intrusion, arising from volatilization at the water table, associated with temporally and spatially variable groundwater plumes. In particular, the model was designed to permit, for the first time, 3D simulations of risk at receptors located in the wider community (i.e., kilometre scale) surrounding a contaminated site. The model can account for heterogeneous distributions of permeability, fraction organic carbon, sorption and biodegradation in the vadose and saturated zones. The model formulation, based upon integration of a number of widely accepted models, is presented along with verification and benchmarking tests. In addition, a number of exploratory simulations of benzene and naphthalene transport in a 1000 m long domain (aquifer cross-section: 500 m × 14 m) are presented, which employed conservative assumptions consistent with the development of regulatory guidance. Under these conservative conditions, these simulations demonstrated, for example, that whether houses in the community were predicted to be impacted by groundwater and indoor air concentrations exceeding regulatory standards strongly depended on their distance downgradient from the source and lateral distance from the plume centreline. In addition, this study reveals that the degree of reduction in source concentration (i.e., remediation) required to achieve compliance with standards is less if the risk receptor is in the wider community than at the site boundary. However, these example scenarios suggest that, even considering community receptors, sources with initially high concentrations still required substantial remediation (i.e., > 99% reductions in source concentration). Overall, this work provides insights and a new tool for considering the

  9. Hardware-in-the-loop simulation technology of wide-band radar targets based on scattering center model

    Institute of Scientific and Technical Information of China (English)

    Huang Hao; Pan Minghai; Lu Zhijun

    2015-01-01

    Hardware-in-the-loop (HWIL) simulation technology can verify and evaluate the radar by simulating the radio frequency environment in an anechoic chamber. The HWIL simulation technology of wide-band radar targets can accurately generate wide-band radar target echo which stands for the radar target scattering characteristics and pulse modulation of radar transmitting sig-nal. This paper analyzes the wide-band radar target scattering properties first. Since the responses of target are composed of many separate scattering centers, the target scattering characteristic is restructured by scattering centers model. Based on the scattering centers model of wide-band radar target, the wide-band radar target echo modeling and the simulation method are discussed. The wide-band radar target echo is reconstructed in real-time by convoluting the transmitting signal to the target scattering parameters. Using the digital radio frequency memory (DRFM) system, the HWIL simulation of wide-band radar target echo with high accuracy can be actualized. A typical wide-band radar target simulation is taken to demonstrate the preferable simulation effect of the reconstruction method of wide-band radar target echo. Finally, the radar target time-domain echo and high-resolution range profile (HRRP) are given. The results show that the HWIL simulation gives a high-resolution range distribution of wide-band radar target scattering centers.

  10. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum.

    Science.gov (United States)

    Pan, Anlian; Liu, Ruibin; Sun, Minghua; Ning, Cun-Zheng

    2009-07-15

    We used an improved cothermal evaporation route for the first time to achieve quaternary semiconductor nanostructured alloys, using an example of Zn(x)Cd(1-x)S(y)Se(1-y) nanobelts. The PL (bandgap) of these as-grown nanostructured alloys can be continuously tunable across the entire visible spectrum through experimentally controlling their compositions. Such widely controlled alloy nanostructures via composition/light emission provide a new material platform for applications in wavelength-tunable lasers, multicolor detectors, full-spectrum solar cells, LEDs, and color displays.

  11. DESIGN OF A CMOS BANDGAP REFERENCE WITH LOWTEMPERATURE COEFFICIENT AND HIGH POWER SUPPLY REJECTION PERFORMANCE

    OpenAIRE

    Abhisek Dey; Tarun Kanti Bhattacharyya

    2011-01-01

    A high precision temperature compensated CMOS bandgap reference is presented. The proposed circuit employs current-mode architecture that improves the temperature stability of the output reference voltage as well as the power supply rejection when compared to the conventional voltage-mode band gap reference.Using only first order compensation the new architecture can generate an output reference voltage of 550 mV with a peak-to-peak variation of 400μV over a wide temperature range from -25oC ...

  12. Defects induced luminescence and tuning of bandgap energy narrowing in ZnO nanoparticles doped with Li ions

    KAUST Repository

    Awan, Saif Ullah

    2014-08-28

    Microstructural and optical properties of Zn1-yLiyO (0.00 ≤y ≤0.10) nanoparticles are investigated. Li incorporation leads to substantial changes in the structural characterization. From micro-structural analysis, no secondary phases or clustering of Li was detected. Elemental maps confirmed homogeneous distribution of Li in ZnO. Sharp UV peak due to the recombination of free exciton and defects based luminescence broad visible band was observed. The transition from the conduction band to Zinc vacancy defect level in photoluminescence spectra is found at 518±2.5nm. The yellow luminescence was observed and attributed to Li related defects in doped samples. With increasing Li doping, a decrease in energy bandgap was observed in the range 3.26±0.014 to 3.17±0.018eV. The bandgap narrowing behavior is explained in terms of the band tailing effect due to structural disorder, carrier-impurities, carrier-carrier, and carrier-phonon interactions. Tuning of the bandgap energy in this class of wide bandgap semiconductor is very important for room temperature spintronics applications and optical devices. © 2014 AIP Publishing LLC.

  13. Enola Gay: an integrated modelling optical toolbox applied to a wide-field telescope

    Science.gov (United States)

    Schipani, P.; Perrotta, F.

    2008-07-01

    The integrated modelling approach is fundamental in telescopes design where it is necessary to merge different disciplines together. This paper describes the integration of optical ray-tracing capabilities within the Matlab computational environment. This approach allows to write automatic procedures to implement a huge number of computations, that are very unpractical to perform in interactive mode by ray tracing software packages. Data produced by computations are stored and automatically analyzed. One of the main benefits from this approach comes from the traceability of the work, that is intrinsically impossible when the optical designer works in interactive mode. The right procedure is built and tuned just the first time and the computation software is available for inspection and check. Furthermore computations and results are easily reproducible simply re-running Matlab scripts. An automatic approach is especially helpful in wide-field telescope projects where the optical quality has to be studied over a wide field of view. This leads to repeat the same computations many times in a number of fields. In interactive mode this would cause a significant waste of optical designer time to repeat many times the same manual procedures. The solution proposed here allows to save time and prevent occasional mistakes.

  14. An architecture for modeling and decision support base the World Wide Web%基于World Wide Web的决策支持模型研究

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper discuss a distributed decision support and modeling environment over the World Wide Web. Decision Net build a birdge from consumers to providers via the use of brokers.Decision Net would facilitate developers of decision technologies in making their technologies available for access and execution over World Wide Web.%文中通过对基于World Wide Web(WWW)上建立决策支持电子环境的研究, 利用中介代理的概念,在用户和技术的拥有者之间架起了一座桥梁,构成了决策网 ,从而使WWW上的决策技术得到共享。讨论了其结构、性能和各种功能,为进一步研 究WWW上的决策支持提供了一条途径。

  15. Modeling of the ITER-like wide-angle infrared thermography view of JET.

    Science.gov (United States)

    Aumeunier, M-H; Firdaouss, M; Travère, J-M; Loarer, T; Gauthier, E; Martin, V; Chabaud, D; Humbert, E

    2012-10-01

    Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.

  16. Modeling of the ITER-like wide-angle infrared thermography view of JET

    Energy Technology Data Exchange (ETDEWEB)

    Aumeunier, M.-H. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); OPTIS, ZE de La Farlede, F-83078 Toulon Cedex 9 (France); Firdaouss, M.; Travere, J.-M.; Loarer, T.; Gauthier, E.; Martin, V. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Chabaud, D.; Humbert, E. [OPTIS, ZE de La Farlede, F-83078 Toulon Cedex 9 (France); Collaboration: JET-EFDA Contributors

    2012-10-15

    Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.

  17. Mathematical Modeling of Local Scour at Slender and Wide Bridge Piers

    Directory of Open Access Journals (Sweden)

    Youssef I. Hafez

    2016-01-01

    Full Text Available Most existing equations for predicting local scour at bridge piers suffer from overprediction of the scour depths which results in higher foundation costs. To tackle this problem, a mathematical model for predicting bridge pier scour is developed herein based on an energy balance theory. The present study equation was compared to commonly used bridge scour equations using scour field data in USA. The developed equation has several advantages among which we have the following: it adds to the understanding of the physics of bridge pier scour, is valid for slender and wide piers, does not suffer from overprediction of scour depths, addresses clear water and live bed scour, and includes the effects of various characteristics of the bed material such as specific gravity (or density, porosity, size, and angle of repose. In addition, the developed equation accounts for the debris effect and aids in the design of scour mitigation methods such as collars, side bars, slots, and pier protective piles.

  18. TRANSPORT PLANNING MODEL FOR WIDE AREA RECYCLING SYSTEM OF INDUSTRIAL WASTE PLASTIC

    Science.gov (United States)

    Arai, Yasuhiro; Kawamura, Hisashi; Koizumi, Akira; Mogi, Satoshi

    To date, the majority of industrial waste plastic generated in an urban city has been processed into landfill. However, it is now necessary to actively utilize that plastic as a useful resource to create a recycling society with a low environment influence. In order to construct a reasonable recycling system, it is necessary to address the "transportation problem," which means determining how much industrial waste plastic is to be transported to what location. With the goal of eliminating landfill processing, this study considers a transport planning model for industrial waste plastic applying linear programming. The results of running optimized calculations under given scenarios clarified not only the possibilities for recycle processing in the Metropolitan area, but also the validity of wide area recycling system.

  19. Prowess – A Software Model for the Ooty Wide Field Array

    Indian Academy of Sciences (India)

    Visweshwar Ram Marthi;

    2017-03-01

    One of the scientific objectives of the Ooty Wide Field Array (OWFA) is to observe the redshifted Hi emission from $z \\sim 3.35$. Although predictions spell out optimistic outcomes in reasonable integration times, these studies were based purely on analytical assumptions, without accounting for limiting systematics. A software model for OWFA has been developed with a view to understanding the instrument-induced systematics, by describing a complete software model for the instrument. This model has been implemented through a suite of programs, together called Prowess, which has been conceived with the dual role of an emulator as well as observatory data analysis software. The programming philosophy followed in building Prowess enables a general user to define an own set of functions and add new functionality. This paper describes a co-ordinate system suitable for OWFA in which the baselines are defined. The foregrounds are simulated from their angular power spectra. The visibilities are then computed from the foregrounds. These visibilities are then used for further processing, such as calibration and power spectrum estimation. The package allows for rich visualization features in multiple output formats in an interactive fashion, giving the user an intuitive feel for the data. Prowess has been extensively used for numerical predictions of the foregrounds for the OWFA \\HI~ experiment.

  20. Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment.

    Science.gov (United States)

    Kufareva, Irina; Rueda, Manuel; Katritch, Vsevolod; Stevens, Raymond C; Abagyan, Ruben

    2011-08-10

    The community-wide GPCR Dock assessment is conducted to evaluate the status of molecular modeling and ligand docking for human G protein-coupled receptors. The present round of the assessment was based on the recent structures of dopamine D3 and CXCR4 chemokine receptors bound to small molecule antagonists and CXCR4 with a synthetic cyclopeptide. Thirty-five groups submitted their receptor-ligand complex structure predictions prior to the release of the crystallographic coordinates. With closely related homology modeling templates, as for dopamine D3 receptor, and with incorporation of biochemical and QSAR data, modern computational techniques predicted complex details with accuracy approaching experimental. In contrast, CXCR4 complexes that had less-characterized interactions and only distant homology to the known GPCR structures still remained very challenging. The assessment results provide guidance for modeling and crystallographic communities in method development and target selection for further expansion of the structural coverage of the GPCR universe. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Development of a plant-wide dynamic model of an integrated gasification combined cycle (IGCC) plant

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2009-01-01

    In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOL acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on

  2. High-Efficiency Solar Cells Using Photonic-Bandgap Materials

    Science.gov (United States)

    Dowling, Jonathan; Lee, Hwang

    2005-01-01

    Solar photovoltaic cells would be designed to exploit photonic-bandgap (PBG) materials to enhance their energy-conversion efficiencies, according to a proposal. Whereas the energy-conversion efficiencies of currently available solar cells are typically less than 30 percent, it has been estimated that the energy-conversion efficiencies of the proposed cells could be about 50 percent or possibly even greater. The primary source of inefficiency of a currently available solar cell is the mismatch between the narrow wavelength band associated with the semiconductor energy gap (the bandgap) and the broad wavelength band of solar radiation. This mismatch results in loss of power from both (1) long-wavelength photons, defined here as photons that do not have enough energy to excite electron-hole pairs across the bandgap, and (2) short-wavelength photons, defined here as photons that excite electron- hole pairs with energies much above the bandgap. It follows that a large increase in efficiency could be obtained if a large portion of the incident solar energy could be funneled into a narrow wavelength band corresponding to the bandgap. In the proposed approach, such funneling would be effected by use of PBG materials as intermediaries between the Sun and photovoltaic cells.

  3. Bandgap Tunability in Sb-Alloyed BiVO₄ Quaternary Oxides as Visible Light Absorbers for Solar Fuel Applications.

    Science.gov (United States)

    Loiudice, Anna; Ma, Jie; Drisdell, Walter S; Mattox, Tracy M; Cooper, Jason K; Thao, Timothy; Giannini, Cinzia; Yano, Junko; Wang, Lin-Wang; Sharp, Ian D; Buonsanti, Raffaella

    2015-11-01

    The challenge of fine compositional tuning and microstructure control in complex oxides is overcome by developing a general two-step synthetic approach. Antimony-alloyed bismuth vanadate, which is identified as a novel light absorber for solar fuel applications, is prepared in a wide compositional range. The bandgap of this quaternary oxide linearly decreases with the Sb content, in agreement with first-principles calculations.

  4. Influenza H1N1 and the world wide economic crisis--a model of coherence?

    Science.gov (United States)

    Sperling, W; Biermann, T

    2009-11-01

    A recent published model described the phenomenon of a global panic reaction (GPR) on the stock markets based on two remarkable stock market crashes in the months of January and March [Sperling W, Bleich S, Reulbach U, Black Monday on stock markets throughout the world - a new phenomenon of collective panic disorder? A psychiatric approach. Med Hypotheses; 2008]. This model was completed by a therapeutic approach following typical elements of cognitive behavioural therapy (CBT) [Sperling W, Biermann T, Maler JM, Global panic reaction - a therapeutic approach to a world-wide economic crisis. Med Hypotheses; 2009]. The phenomenon of a global panic reaction due to economic crises seems to have even larger implications on human health as well. It is well known that acute and chronic distress is competent to suppress the immune system by various mechanisms that are discussed in detail. This global panic reaction - that has also been observed in former times - might therefore be responsible for the new variation of recent influenza pandemic coming from Mexico.

  5. Incorporating biological pathways via a Markov random field model in genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Min Chen

    2011-04-01

    Full Text Available Genome-wide association studies (GWAS examine a large number of markers across the genome to identify associations between genetic variants and disease. Most published studies examine only single markers, which may be less informative than considering multiple markers and multiple genes jointly because genes may interact with each other to affect disease risk. Much knowledge has been accumulated in the literature on biological pathways and interactions. It is conceivable that appropriate incorporation of such prior knowledge may improve the likelihood of making genuine discoveries. Although a number of methods have been developed recently to prioritize genes using prior biological knowledge, such as pathways, most methods treat genes in a specific pathway as an exchangeable set without considering the topological structure of a pathway. However, how genes are related with each other in a pathway may be very informative to identify association signals. To make use of the connectivity information among genes in a pathway in GWAS analysis, we propose a Markov Random Field (MRF model to incorporate pathway topology for association analysis. We show that the conditional distribution of our MRF model takes on a simple logistic regression form, and we propose an iterated conditional modes algorithm as well as a decision theoretic approach for statistical inference of each gene's association with disease. Simulation studies show that our proposed framework is more effective to identify genes associated with disease than a single gene-based method. We also illustrate the usefulness of our approach through its applications to a real data example.

  6. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina.

    Directory of Open Access Journals (Sweden)

    Oliver Philipp

    Full Text Available Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression. A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii present testable predictions for subsequent experimental investigations.

  7. Hierarchical modeling of genome-wide Short Tandem Repeat (STR) markers infers native American prehistory.

    Science.gov (United States)

    Lewis, Cecil M

    2010-02-01

    This study examines a genome-wide dataset of 678 Short Tandem Repeat loci characterized in 444 individuals representing 29 Native American populations as well as the Tundra Netsi and Yakut populations from Siberia. Using these data, the study tests four current hypotheses regarding the hierarchical distribution of neutral genetic variation in native South American populations: (1) the western region of South America harbors more variation than the eastern region of South America, (2) Central American and western South American populations cluster exclusively, (3) populations speaking the Chibchan-Paezan and Equatorial-Tucanoan language stock emerge as a group within an otherwise South American clade, (4) Chibchan-Paezan populations in Central America emerge together at the tips of the Chibchan-Paezan cluster. This study finds that hierarchical models with the best fit place Central American populations, and populations speaking the Chibchan-Paezan language stock, at a basal position or separated from the South American group, which is more consistent with a serial founder effect into South America than that previously described. Western (Andean) South America is found to harbor similar levels of variation as eastern (Equatorial-Tucanoan and Ge-Pano-Carib) South America, which is inconsistent with an initial west coast migration into South America. Moreover, in all relevant models, the estimates of genetic diversity within geographic regions suggest a major bottleneck or founder effect occurring within the North American subcontinent, before the peopling of Central and South America. 2009 Wiley-Liss, Inc.

  8. Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data

    Science.gov (United States)

    Kashubin, Sergey N.; Petrov, Oleg V.; Rybalka, Alexander V.; Milshtein, Evgenia D.; Shokalsky, Sergey P.; Verba, Mark L.; Petrov, Evgeniy O.

    2017-07-01

    Deep seismic studies of the Sea of Okhotsk region started in late 1950s. Since that time, wide-angle reflection and refraction data on more than two dozen profiles were acquired. Only five of those profiles either crossed or entered the deep-water area of the South-Okhotsk Basin (also known as the Kuril Basin or the South-Okhotsk Deep-Water Trough). Only P-waves were used to develop velocity-interface models in all the early research. Thus, all seismic and geodynamic models of the Okhotsk region were based only on the information on compressional waves. Nevertheless, the use of Vp/Vs ratio in addition to P-wave velocity allows discriminating felsic and mafic crustal layers with similar Vp values. In 2007 the Russian seismic service company Sevmorgeo acquired multi-component data with ocean bottom seismometers (OBS) along the 1700-km-long north-south 2-DV-M Profile. Only P-wave information was used previously to develop models for the entire profile. In this study, a multi-wave processing, analysis, and interpretation of the OBS data are presented for the 550-km-long southern segment of this Profile that crosses the deep-water South-Okhotsk Basin. Within this segment 50 seismometers were deployed with nominal OBS station spacing of 10-12 km. Shot point spacing was 250 m. Not only primary P-waves and S-waves but also multiples and P-S, S-P converted waves were analyzed in this study to constrain velocity-interface models by means of travel time forward modeling. In offshore deep seismic studies, thick water layer hinders an estimation of velocities in the sedimentary cover and in the upper consolidated crust. Primarily, this is due to the fact that refracted waves propagating in low-velocity solid upper layers interfere with high-amplitude direct water wave. However, in multi-component measurements with ocean bottom seismometers, it is possible to use converted and multiple waves for velocity estimations in these layers. Consequently, one can obtain P- and S

  9. Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images.

    Science.gov (United States)

    Udupa, Jayaram K; Odhner, Dewey; Zhao, Liming; Tong, Yubing; Matsumoto, Monica M S; Ciesielski, Krzysztof C; Falcao, Alexandre X; Vaideeswaran, Pavithra; Ciesielski, Victoria; Saboury, Babak; Mohammadianrasanani, Syedmehrdad; Sin, Sanghun; Arens, Raanan; Torigian, Drew A

    2014-07-01

    To make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide Automatic Anatomy Recognition (AAR) becomes essential. With the goal of building a general AAR system that is not tied to any specific organ system, body region, or image modality, this paper presents an AAR methodology for localizing and delineating all major organs in different body regions based on fuzzy modeling ideas and a tight integration of fuzzy models with an Iterative Relative Fuzzy Connectedness (IRFC) delineation algorithm. The methodology consists of five main steps: (a) gathering image data for both building models and testing the AAR algorithms from patient image sets existing in our health system; (b) formulating precise definitions of each body region and organ and delineating them following these definitions; (c) building hierarchical fuzzy anatomy models of organs for each body region; (d) recognizing and locating organs in given images by employing the hierarchical models; and (e) delineating the organs following the hierarchy. In Step (c), we explicitly encode object size and positional relationships into the hierarchy and subsequently exploit this information in object recognition in Step (d) and delineation in Step (e). Modality-independent and dependent aspects are carefully separated in model encoding. At the model building stage, a learning process is carried out for rehearsing an optimal threshold-based object recognition method. The recognition process in Step (d) starts from large, well-defined objects and proceeds down the hierarchy in a global to local manner. A fuzzy model-based version of the IRFC algorithm is created by naturally integrating the fuzzy model constraints into the delineation algorithm. The AAR system is tested on three body regions - thorax (on CT), abdomen (on CT and MRI), and neck (on MRI and CT) - involving a total of over 35 organs and 130 data sets (the total used for model building and testing). The training and

  10. An Intelligent Optimal Genetic Model to Investigate the User Usage Behaviour on World Wide Web

    Directory of Open Access Journals (Sweden)

    V.V.R. Maheswara Rao

    2013-04-01

    Full Text Available The unexpected wide spread use of WWW and dynamically increasing nature of the web creates new challenges in the web mining since the data in the web inherently unlabelled, incomplete, non linear, and heterogeneous. The investigation of user usage behaviour on WWW is real time problem which involves multiple conflicting measures of performance. These measures make not only computational intensive butalso needs to the possibility of be unable to find the exact solution. Unfortunately, the conventional methods are limited to optimization problems due to the absence of semantic certainty and presence of human intervention. In handling such data and overcome the limitations of conventional methodologies it is necessary to use a soft computing model that can work intelligently to attain optimal solution. To achieve the optimized solution for investigating the web user usage behaviour, the authors in the present paper proposes an Intelligent Optimal Genetic Model, IOGM, which is designed as an optimization tool based on the concept of natural genetic systems. Initially, IOGM comprise a set of individual solutions or chromosomes called the initial population. Later, biologically inspired operators create a new and potentially better population. Finally, by the theory of evolution, survive only optimal individuals from the population and then generate the next biological population. This process is terminated as when an acceptable optimal set of visited patterns is found or after fixed time limit. Additionally, IOGM strengthen by its ability to estimate the optimal stopping time of process. The proposed soft computing model ensures the identifiable features like learning, adaptability, self-maintenance and self-improvement. To validate the proposed system, several experiments were conducted and results proven this are claimed in this paper

  11. AN INTELLIGENT OPTIMAL GENETIC MODEL TO INVESTIGATE THE USER USAGE BEHAVIOUR ON WORLD WIDE WEB

    Directory of Open Access Journals (Sweden)

    V.V.R. Maheswara Rao

    2013-03-01

    Full Text Available The unexpected wide spread use of WWW and dynamically increasing nature of the web creates new challenges in the web mining since the data in the web inherently unlabelled, incomplete, non linear, and heterogeneous. The investigation of user usage behaviour on WWW is real time problem which involves multiple conflicting measures of performance. These measures make not only computational intensive but also needs to the possibility of be unable to find the exact solution. Unfortunately, the conventional methods are limited to optimization problems due to the absence of semantic certainty and presence of human intervention. In handling such data and overcome the limitations of conventional methodologies it is necessary to use a soft computing model that can work intelligently to attain optimal solution. To achieve the optimized solution for investigating the web user usage behaviour, the authors in the present paper proposes an Intelligent Optimal Genetic Model, IOGM, which is designed as an optimization tool based on the concept of natural genetic systems. Initially, IOGM comprise a set of individual solutions or chromosomes called the initial population. Later, biologically inspired operators create a new and potentially better population. Finally, by the theory of evolution, survive only optimal individuals from the population and then generate the next biological population. This process is terminated as when an acceptable optimal set of visited patterns is found or after fixed time limit. Additionally, IOGM strengthen by its ability to estimate the optimal stopping time of process. The proposed soft computing model ensures the identifiable features like learning, adaptability, self-maintenance and self-improvement. To validate the proposed system, several experiments were conducted and results proven this are claimed in this paper.

  12. Epigenomic model of cardiac enhancers with application to genome wide association studies.

    Science.gov (United States)

    Sahu, Avinash Das; Aniba, Radhouane; Chang, Yen-Pei Christy; Hannenhalli, Sridhar

    2013-01-01

    Mammalian gene regulation is often mediated by distal enhancer elements, in particular, for tissue specific and developmental genes. Computational identification of enhancers is difficult because they do not exhibit clear location preference relative to their target gene and also because they lack clearly distinguishing genomic features. This represents a major challenge in deciphering transcriptional regulation. Recent ChIP-seq based genome-wide investigation of epigenomic modifications have revealed that enhancers are often enriched for certain epigenomic marks. Here we utilize the epigenomic data in human heart tissue along with validated human heart enhancers to develop a Support Vector Machine (SVM) model of cardiac enhancers. Cross-validation classification accuracy of our model was 84% and 92% on positive and negative sets respectively with ROC AUC = 0.92. More importantly, while P300 binding has been used as gold standard for enhancers, our model can distinguish P300-bound validated enhancers from other P300-bound regions that failed to exhibit enhancer activity in transgenic mouse. While GWAS studies reveal polymorphic regions associated with certain phenotypes, they do not immediately provide causality. Next, we hypothesized that genomic regions containing a GWAS SNP associated with a cardiac phenotype might contain another SNP in a cardiac enhancer, which presumably mediates the phenotype. Starting with a comprehensive set of SNPs associated with cardiac phenotypes in GWAS studies, we scored other SNPs in LD with the GWAS SNP according to its probability of being an enhancer and choose one with best score in the LD as enhancer. We found that our predicted enhancers are enriched for known cardiac transcriptional regulator motifs and are likely to regulate the nearby gene. Importantly, these tendencies are more favorable for the predicted enhancers compared with an approach that uses P300 binding as a marker of enhancer activity.

  13. Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data.

    Science.gov (United States)

    Wang, Joanne H; Pappas, Derek; De Jager, Philip L; Pelletier, Daniel; de Bakker, Paul Iw; Kappos, Ludwig; Polman, Chris H; Chibnik, Lori B; Hafler, David A; Matthews, Paul M; Hauser, Stephen L; Baranzini, Sergio E; Oksenberg, Jorge R

    2011-01-18

    Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant

  14. Various Approaches to Forward and Inverse Wide-Angle Seismic Modelling Tested on Data from DOBRE-4 Experiment

    Directory of Open Access Journals (Sweden)

    Janik Tomasz

    2016-12-01

    Full Text Available The interpretation of seismic refraction and wide angle reflection data usually involves the creation of a velocity model based on an inverse or forward modelling of the travel times of crustal and mantle phases using the ray theory approach. The modelling codes differ in terms of model parameterization, data used for modelling, regularization of the result, etc. It is helpful to know the capabilities, advantages and limitations of the code used compared to others.

  15. Sub-bandgap absorption in polymer-fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Presselt, Martin; Herrmann, Felix; Seeland, Marco; Baerenklau, Maik; Roesch, Roland; Shokhovets, Sviatoslav; Hopp, Harald; Gobsch, Gerhard [Experimental Physics I, Institute of Physics and Institute of Micro- und Nanotechnologies, Ilmenau University of Technology, Ilmenau (Germany); Beenken, Wichard J.D.; Runge, Erich [Theoretical Physics I, Institute of Physics, Ilmenau University of Technology, Ilmenau (Germany)

    2011-07-01

    We present external quantum efficiency (EQE) studies of P3HT:PCBM based bulk heterojunction polymer solar cells with improved intensity resolution in the sub-bandgap (SBG) region, i.e. the energy range below the optical bandgaps of the pristine materials. Varying the P3HT:PCBM blending ratio, we find that in addition to a Gaussian profile an exponential tail is needed for a quantitative description of the SBG EQE spectra. To gain insights into the origin of the single contributions, absorption and emission spectra covering several decades of intensity and SBG EQE signals are discussed in detail.

  16. Ultrasensitive twin-core photonic bandgap fiber refractive index sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham; Bang, Ole

    2009-01-01

    We propose a microfluidic refractive index sensor based on new polymer twin-core photonic bandgap fiber (PBGF). The sensor can achieve ultrahigh detection limit, i.e. >1.4times10-7RIU refractive index unit (RIU), by measuring the coupling wavelength shift.......We propose a microfluidic refractive index sensor based on new polymer twin-core photonic bandgap fiber (PBGF). The sensor can achieve ultrahigh detection limit, i.e. >1.4times10-7RIU refractive index unit (RIU), by measuring the coupling wavelength shift....

  17. The density matrix method in photonic bandgap and antiferromagnetic materials

    Science.gov (United States)

    Barrie, Scott B.

    In this thesis, a theory for dispersive polaritonic bandgap (DPBG) and photonic bandgap (PBG) materials is developed. An ensemble of multi-level nanoparticles, such as non-interacting two-, three- and four-level atoms doped in DPBG and PBG materials is considered. The optical properties of these materials such as spontaneous emission, line broadening, fluorescence and narrowing of the natural linewidth have been studied using the density matrix method. Numerical simulations for these properties have been performed for the DPBG materials SiC and InAs, and for a PBG material with a 20 percent gap-to-midgap ratio. When a three-level nanoparticle is doped into a DPBG material, it is predicted that one or two bound states exist when one or both resonance energies, respectively, lie in the bandgap. It is shown when a resonance energy lies below the bandgap, its spectral density peak weakens and broadens as the resonance energy increases to the lower band edge. For the first time it is predicted that when a nanoparticle's resonance energy lies above the bandgap, its spectral density peak weakens and broadens as the resonance energy increases. A relation is also found between spectral structure and gap-to-midgap ratios. The dressed states of a two-level atom doped into a DPBG material under the influence of an intense monochromatic laser field are examined. The splitting of the dressed state energies is calculated, and it is predicted that the splitting depends on the polariton density of states and the Rabi frequency of laser field. The fluoresence is also examined, and for the first time two distinct control processes are found for the transition from one peak to three peaks. It was previously known that the Rabi frequency controlled the Stark effect, but this thesis predicts that the local of the peak with respect to the optical bandgap can cause a transition from one to three peaks even with a weak Rabi frequency. The transient linewidth narrowing of PBG crystal

  18. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  19. Testing Quantum Models of Conjunction Fallacy on the World Wide Web

    Science.gov (United States)

    Aerts, Diederik; Arguëlles, Jonito Aerts; Beltran, Lester; Beltran, Lyneth; de Bianchi, Massimiliano Sassoli; Sozzo, Sandro; Veloz, Tomas

    2017-01-01

    The `conjunction fallacy' has been extensively debated by scholars in cognitive science and, in recent times, the discussion has been enriched by the proposal of modeling the fallacy using the quantum formalism. Two major quantum approaches have been put forward: the first assumes that respondents use a two-step sequential reasoning and that the fallacy results from the presence of `question order effects'; the second assumes that respondents evaluate the cognitive situation as a whole and that the fallacy results from the `emergence of new meanings', as an `effect of overextension' in the conceptual conjunction. Thus, the question arises as to determine whether and to what extent conjunction fallacies would result from `order effects' or, instead, from `emergence effects'. To help clarify this situation, we propose to use the World Wide Web as an `information space' that can be interrogated both in a sequential and non-sequential way, to test these two quantum approaches. We find that `emergence effects', and not `order effects', should be considered the main cognitive mechanism producing the observed conjunction fallacies.

  20. Proto-Model of an Infrared Wide-Field Off-Axis Telescope

    CERN Document Server

    Kim, Sanghyuk; Chang, Seunghyuk; Kim, Geon Hee; Yang, Sun Choel; Kim, Myung Sang; Lee, Sungho; Lee, Hanshin; 10.5303/JKAS.2010.43.5.169

    2010-01-01

    We develop a proto-model of an off-axis reflective telescope for infrared wide-field observations based on the design of Schwarzschild-Chang type telescope. With only two mirrors, this design achieves an entrance pupil diameter of 50 mm and an effective focal length of 100 mm. We can apply this design to a mid-infrared telescope with a field of view of 8 deg X 8 deg. In spite of the substantial advantages of off-axis telescopes in the infrared compared to refractive or on-axis reflective telescopes, it is known to be difficult to align the mirrors in off-axis systems because of their asymmetric structures. Off-axis mirrors of our telescope are manufactured at the Korea Basic Science Institute (KBSI). We analyze the fabricated mirror surfaces by fitting polynomial functions to the measured data. We accomplish alignment of this two-mirror off-axis system using a ray tracing method. A simple imaging test is performed to compare a pinhole image with a simulated prediction.

  1. Mitigation of hurricane storm surge impacts: Modeling scenarios over wide continental shelves

    Science.gov (United States)

    Lima Rego, Joao; Li, Chunyan

    2010-05-01

    The improvement of present understanding of surge dynamics over wide and shallow shelves is vital for the improvement of our ability to forecast storm surge impacts to coastal regions, particularly the low-lying land areas that are most vulnerable to hurricane flooding (e.g. the Northern Gulf of Mexico, coastal Bangladesh, the Southeast China sea). Given the increase of global sea-surface temperature, both the total number and proportion of intense tropical cyclones have increased notably since 1970 (Emanuel, 2005; Nature). Therefore, more intense hurricanes may hit densely populated coastal regions, and this problem may be aggravated by the prospect of accelerated sea-level rise in the 21st century. This presentation offers a review of recent work on hurricane-induced storm surge. The finite-volume coastal ocean model ("FVCOM", by Chen et al., 2003; J. Atmos. Ocean Tech.) was applied to the storm surge induced by Hurricanes Rita and Ike along the coasts of Louisiana and Texas in 2005 and 2008, respectively, to study coastal storm surge dynamics. The sensitivity analysis of Rego and Li (2009; Geophys. Res. Lett.) demonstrated how stronger, wider or faster tropical cyclones would affect coastal flooding. Li, Weeks and Rego (2009; Geophys. Res. Lett) looked into how hurricane flooding and receding dynamics differ, concluding that the overland flow in the latter stage is of considerable importance. Rego and Li (2010; J. Geophys. Res.) showed how extreme events may result of a combination of non-extreme factors, by studying the nonlinear interaction of tide and hurricane surge. The ability of models to reproduce these extreme events and to proactive plan for damage reduction is covered in Rego and Li's (2010; J. Marine Syst.) study of how barrier island systems protect coastal bays from offshore surge propagation. Here we combine these results for a wider perspective on how hurricane flooding could be mitigated under changing conditions.

  2. Effect of Dielectric Constant Contrast and Filling Factor to Photonic Bandgap

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effect of dielectric constant contrast and the filling factor to the photonic bandgap in a 2-D square lattice photonic crystal is discussed. The location, width and number of photonic bandgap can be modulated.

  3. Diagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression data

    DEFF Research Database (Denmark)

    Olsen, Jørgen; Gerds, Thomas A; Seidelin, Jakob B

    2009-01-01

    biopsies from 78 patients were included. A diagnostic model was derived with the random forest method based on 71 biopsies from 60 patients. The model-internal out-of-bag performance measure yielded perfect classification. Furthermore, the model was validated in independent 18 noninflamed biopsies from 18...... of random forest modeling of genome-wide gene expression data for distinguishing quiescent and active UC colonic mucosa versus control and CD colonic mucosa.(Inflamm Bowel Dis 2009)....

  4. High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm

    DEFF Research Database (Denmark)

    Shirakawa, A; Maruyama, H; Ueda, K

    2009-01-01

    Ytterbium-doped solid-core photonic bandgap fiber amplifiers operating at the long-wavelength edge of the ytterbium gain band are reported. The low-loss bandgap transmission window is formed in the very low gain region, whilst outside the bandgap, large attenuation inhibits the exponential growth...... knowledge, these are the highest output powers generating from active photonic bandgap fibers, as well as from ytterbium-doped fiber lasers at these wavelengths. (C) 2009 Optical Society of America...

  5. Optically controlled photonic bandgap structures for microstrip circuits

    CERN Document Server

    Cadman, D A

    2003-01-01

    This thesis is concerned with the optical control of microwave photonic bandgap circuits using high resistivity silicon. Photoconducting processes that occur within silicon are investigated. The influence of excess carrier density on carrier mobility and lifetime is examined. In addition, electron-hole pair recombination mechanisms (Shockley-Read-Hall, Auger, radiative and surface) are investigated. The microwave properties of silicon are examined, in particular the variation of silicon reflectivity with excess carrier density. Filtering properties of microstrip photonic bandgap structures and how they may be controlled optically are studied. A proof-of-concept microstrip photonic bandgap structure with optical control is designed, simulated and measured. With no optical illumination incident upon the silicon, the microstrip photonic bandgap structure's filtering properties are well-defined; a 3dB stopband width of 2.6GHz, a 6dB bandwidth of 2GHz and stopband depth of -11.6dB at the centre frequency of 9.9GHz...

  6. AlN Bandgap Temperature Dependence from its Optical Properties

    Science.gov (United States)

    2008-06-07

    AlN bandgap temperature dependence from its optical properties E. Silveira a,, J.A. Freitas b, S.B. Schujman c, L.J. Schowalter c a Depto. de Fisica ...range. The energy gap in semiconductors in general changes due to contributions from the electron–phonon interaction and due to the lattice thermal

  7. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  8. Spontaneous emission and nonlinear effects in photonic bandgap materials

    Science.gov (United States)

    Fogel, Ishella S.; Bendickson, Jon M.; Tocci, Michael D.; Bloemer, Mark J.; Scalora, Michael; Bowden, Charles M.; Dowling, Jonathan P.

    1998-03-01

    We summarize and review our theoretical and experimental work on spontaneous emission and nonlinear effects in one-dimensional, photonic bandgap (PBG) structures. We present a new result: a method for calculating the normal-mode solutions - and hence the spontaneous emission of embedded emitters - in an arbitrary, linear, lossless, one-dimensional, PBG structure.

  9. Mode Division Multiplexing Exploring Hollow-Core Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Xu, Jing; Lyngso, Jens Kristian; Leick, Lasse

    2013-01-01

    We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 µm etc....

  10. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong;

    2005-01-01

    Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...

  11. Design for maximum band-gaps in beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lowe...

  12. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    -size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...... of achieving a full bandgap (in the surface plane) for LR-SPPs are also discussed....

  13. Automating Energy Bandgap Measurements in Semiconductors Using LabVIEW

    Science.gov (United States)

    Garg, Amit; Sharma, Reena; Dhingra, Vishal

    2010-01-01

    In this paper, we report the development of an automated system for energy bandgap and resistivity measurement of a semiconductor sample using Four-Probe method for use in the undergraduate laboratory of Physics and Electronics students. The automated data acquisition and analysis system has been developed using National Instruments USB-6008 DAQ…

  14. Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption

    DEFF Research Database (Denmark)

    Balog, Richard; Jørgensen, Bjarke; Nilsson, Louis

    2010-01-01

    fermions, and graphene shows ballistic charge transport, turning it into an ideal material for circuit fabrication. However, graphene lacks a bandgap around the Fermi level, which is the defining concept for semiconductor materials and essential for controlling the conductivity by electronic means. Theory...

  15. Electrically controllable liquid crystal photonic bandgap fiber with dual-frequency control

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Riishede, Jesper

    2005-01-01

    We present an electrically tunable liquid crystal photonic bandgap fiber device based on a dual frequency liquid crystal with pre-tilted molecules that allows the bandgaps to be continuously tuned. The frequency dependent behavior of the liquid crystal enables active shifting of the bandgaps toward...

  16. A Modified Johnson-Cook Model for Advanced High-Strength Steels Over a Wide Range of Temperatures

    Science.gov (United States)

    Qingdong, Zhang; Qiang, Cao; Xiaofeng, Zhang

    2014-12-01

    Advanced high-strength steel (AHSS) is widely used in automotive industry. In order to investigate the mechanical behaviors of AHSS over a wide range of temperatures, quasi-static tensile experiments were conducted at the temperatures from 298 to 1073 K on a Gleeble-3500 thermo-simulation machine. The results show that flow behaviors are affected by testing temperature significantly. In order to describe the flow features of AHSS, the Johnson-Cook (JC) model is employed. By introducing polynomial functions to consider the effects of temperature on hardening behavior, the JC model is modified and used to predict flow behavior of AHSS at different experimental conditions. The accuracy of the modified JC model is verified and the predicted flow stress is in good agreement with experimental results, which confirms that the modified JC model can give an accurate and precise estimate over a wide range of temperatures.

  17. First WNK4-hypokalemia animal model identified by genome-wide association in Burmese cats.

    Directory of Open Access Journals (Sweden)

    Barbara Gandolfi

    Full Text Available Burmese is an old and popular cat breed, however, several health concerns, such as hypokalemia and a craniofacial defect, are prevalent, endangering the general health of the breed. Hypokalemia, a subnormal serum potassium ion concentration ([K(+], most often occurs as a secondary problem but can occur as a primary problem, such as hypokalaemic periodic paralysis in humans, and as feline hypokalaemic periodic polymyopathy primarily in Burmese. The most characteristic clinical sign of hypokalemia in Burmese is a skeletal muscle weakness that is frequently episodic in nature, either generalized, or sometimes localized to the cervical and thoracic limb girdle muscles. Burmese hypokalemia is suspected to be a single locus autosomal recessive trait. A genome wide case-control study using the illumina Infinium Feline 63K iSelect DNA array was performed using 35 cases and 25 controls from the Burmese breed that identified a locus on chromosome E1 associated with hypokalemia. Within approximately 1.2 Mb of the highest associated SNP, two candidate genes were identified, KCNH4 and WNK4. Direct sequencing of the genes revealed a nonsense mutation, producing a premature stop codon within WNK4 (c.2899C>T, leading to a truncated protein that lacks the C-terminal coiled-coil domain and the highly conserved Akt1/SGK phosphorylation site. All cases were homozygous for the mutation. Although the exact mechanism causing hypokalemia has not been determined, extrapolation from the homologous human and mouse genes suggests the mechanism may involve a potassium-losing nephropathy. A genetic test to screen for the genetic defect within the active breeding population has been developed, which should lead to eradication of the mutation and improved general health within the breed. Moreover, the identified mutation may help clarify the role of the protein in K⁺ regulation and the cat represents the first animal model for WNK4-associated hypokalemia.

  18. First WNK4-hypokalemia animal model identified by genome-wide association in Burmese cats.

    Science.gov (United States)

    Gandolfi, Barbara; Gruffydd-Jones, Timothy J; Malik, Richard; Cortes, Alejandro; Jones, Boyd R; Helps, Chris R; Prinzenberg, Eva M; Erhardt, George; Lyons, Leslie A

    2012-01-01

    Burmese is an old and popular cat breed, however, several health concerns, such as hypokalemia and a craniofacial defect, are prevalent, endangering the general health of the breed. Hypokalemia, a subnormal serum potassium ion concentration ([K(+)]), most often occurs as a secondary problem but can occur as a primary problem, such as hypokalaemic periodic paralysis in humans, and as feline hypokalaemic periodic polymyopathy primarily in Burmese. The most characteristic clinical sign of hypokalemia in Burmese is a skeletal muscle weakness that is frequently episodic in nature, either generalized, or sometimes localized to the cervical and thoracic limb girdle muscles. Burmese hypokalemia is suspected to be a single locus autosomal recessive trait. A genome wide case-control study using the illumina Infinium Feline 63K iSelect DNA array was performed using 35 cases and 25 controls from the Burmese breed that identified a locus on chromosome E1 associated with hypokalemia. Within approximately 1.2 Mb of the highest associated SNP, two candidate genes were identified, KCNH4 and WNK4. Direct sequencing of the genes revealed a nonsense mutation, producing a premature stop codon within WNK4 (c.2899C>T), leading to a truncated protein that lacks the C-terminal coiled-coil domain and the highly conserved Akt1/SGK phosphorylation site. All cases were homozygous for the mutation. Although the exact mechanism causing hypokalemia has not been determined, extrapolation from the homologous human and mouse genes suggests the mechanism may involve a potassium-losing nephropathy. A genetic test to screen for the genetic defect within the active breeding population has been developed, which should lead to eradication of the mutation and improved general health within the breed. Moreover, the identified mutation may help clarify the role of the protein in K⁺ regulation and the cat represents the first animal model for WNK4-associated hypokalemia.

  19. A simulation of wide area surveillance (WAS) systems and algorithm for digital elevation model (DEM) extraction

    Science.gov (United States)

    Cheng, Beato T.

    2010-04-01

    With the advances in focal plane, electronics and memory storage technologies, wide area and persistence surveillance capabilities have become a reality in airborne ISR. A WAS system offers many benefits in comparison with the traditional airborne image capturing systems that provide little data overlap, both in terms of space and time. Unlike a fix-mount surveillance camera, a persistence WAS system can be deployed anywhere as desired, although the platform typically has to be in motion, say circling above an area of interest. Therefore, WAS is a perfect choice for surveillance that can provide near real time capabilities such as change detection and target tracking. However, the performance of a WAS system is still limited by the available technologies: the optics that control the field-of-view, the electronics and mechanical subsystems that control the scanning, the focal plane data throughput, and the dynamics of the platform all play key roles in the success of the system. It is therefore beneficial to develop a simulated version that can capture the essence of the system, in order to help provide insights into the design of an optimized system. We describe an approach to the simulation of a generic WAS system that allows focal plane layouts, scanning patterns, flight paths and platform dynamics to be defined by a user. The system generates simulated image data of the area ground coverage from reference databases (e.g. aerial imagery, and elevation data), based on the sensor model. The simulated data provides a basis for further algorithm development, such as image stitching/mosaic, registration, and geolocation. We also discuss an algorithm to extract the terrain elevation from the simulated data, and to compare that with the original DEM data.

  20. A Model for Program-Wide Assessment of the Effectiveness of Writing Instruction in Science Laboratory Courses

    Science.gov (United States)

    Saitta, Erin K.; Zemliansky, Pavel; Turner, Anna

    2015-01-01

    The authors present a model for program-wide assessment of the effectiveness of writing instruction in a chemistry laboratory course. This model, which involves collaboration between faculty from chemistry, the Writing Across the Curriculum (WAC) program, and the Faculty Center for Teaching and Learning, is based on several theories and…

  1. Benchmark simulation Model no 2 in Matlab-simulink: towards plant-wide WWTP control strategy evaluation.

    Science.gov (United States)

    Vreck, D; Gernaey, K V; Rosen, C; Jeppsson, U

    2006-01-01

    In this paper, implementation of the Benchmark Simulation Model No 2 (BSM2) within Matlab-Simulink is presented. The BSM2 is developed for plant-wide WWTP control strategy evaluation on a long-term basis. It consists of a pre-treatment process, an activated sludge process and sludge treatment processes. Extended evaluation criteria are proposed for plant-wide control strategy assessment. Default open-loop and closed-loop strategies are also proposed to be used as references with which to compare other control strategies. Simulations indicate that the BM2 is an appropriate tool for plant-wide control strategy evaluation.

  2. Very Small Bandgap π-Conjugated Polymers with Extended Thienoquinoids.

    Science.gov (United States)

    Kawabata, Kohsuke; Saito, Masahiko; Osaka, Itaru; Takimiya, Kazuo

    2016-06-22

    The introduction of quinoidal character to π-conjugated polymers is one of the effective approaches to reducing the bandgap. Here we synthesized new π-conjugated polymers (PBTD4T and PBDTD4T) incorporating thienoquinoids 2,2'-bithiophene-5,5'-dione (BTD) and benzo[1,2-b:4,5-b']dithiophene-2,6-dione (BDTD) as strong electron-deficient (acceptor) units. PBTD4T showed a deep LUMO energy level of -3.77 eV and a small bandgap of 1.28 eV, which are similar to those of the analog using thieno[3,2-b]thiophene-2,5-dione (TTD) (PTTD4T). PBDTD4T had a much deeper LUMO energy level of -4.04 eV and a significantly smaller bandgap of 0.88 eV compared to those of the other two polymers. Interestingly, PBDTD4T showed high transparency in the visible region. The very small bandgap of PBDTD4T can be rationalized by the enhanced contribution of the resonance backbone structure in which the p-benzoquinodimethane skeleton in the BDTD unit plays a crucial role. PBTD4T and PBDTD4T exhibited ambipolar charge transport with more balanced mobilities between the hole and the electron than PTTD4T. We believe that the very small bandgap, i.e., the high near-infrared activity, as well as the well-balanced ambipolar property of the π-conjugated polymers based on these units would be of particular interest in the fabrication of next-generation organic devices.

  3. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    Science.gov (United States)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M. S.; Guest, James K.

    2016-05-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  4. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, A.B. [CSIRO Industrial Physics, P.O. Box 218, Lindfield, NSW 2070 (Australia); CSIRO Energy Transformed National Research Flagship, PO Box 330, Newcastle, NSW 2300 (Australia)

    2007-09-06

    Measurements of the diffuse reflectance of TiO{sub 2} semiconductor coatings, such as are used for water splitting, are analysed using the Kubelka-Munk radiative transfer model. The widely used practice of determining the band gap of the coating directly from the diffuse reflectance is found to be inaccurate, since the diffuse reflectance depends on parameters such as the thickness, refractive index and surface roughness of the coating. However, it is shown that the absorption coefficient can be derived from the diffuse reflectance using an inversion method; the band gap can then be obtained from the absorption coefficient. Finally, the diffuse reflectance of carbon-doped TiO{sub 2} presented by Khan et al. [Science 297 (2002) 2243-2245] is analysed; it is found that while the band-gap wavelength is extended into the visible region, it is overestimated. Moreover, light at visible wavelengths is only very weakly absorbed, and is expected to make only a minor contribution to the water-splitting efficiency. (author)

  5. Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy

    Science.gov (United States)

    D'Costa, Vijay Richard; Wang, Wei; Yeo, Yee-Chia

    2016-08-01

    We investigated the compositional dependence of the near-bandgap dielectric function and the E0 critical point in pseudomorphic Ge1-xSnx alloys grown on Ge (100) substrate by molecular beam epitaxy. The complex dielectric functions were obtained using spectroscopic ellipsometry from 0.5 to 4.5 eV at room temperature. Analogous to the E1 and E1+Δ1 transitions, a model consisting of the compositional dependence of relaxed alloys along with the strain contribution predicted by the deformation potential theory fully accounts for the observed compositional dependence in pseudomorphic alloys.

  6. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions

    NARCIS (Netherlands)

    Li, T.; Hasegawa, T.; Yin, X.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; Gaydon, D.; Marcaida III, M.; Nakagawa, H.; Oriol, P.; Ruane, A.C.; Ruget, F.; Singh, B.; Singh, U.; Tang, L.; Yoshida, H.; Zhang, Z.; Bouman, B.

    2015-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluat

  7. Validation of a plant-wide phosphorus modelling approach with minerals precipitation in a full-scale WWTP.

    Science.gov (United States)

    Kazadi Mbamba, Christian; Flores-Alsina, Xavier; John Batstone, Damien; Tait, Stephan

    2016-09-01

    The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant-wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust simulation tools applicable to a broad range of wastewater engineering problems, this paper evaluates a plant-wide model built with sub-models from the Benchmark Simulation Model No. 2-P (BSM2-P) with an improved/expanded physico-chemical framework (PCF). The PCF includes a simple and validated equilibrium approach describing ion speciation and ion pairing with kinetic multiple minerals precipitation. Model performance is evaluated against data sets from a full-scale wastewater treatment plant, assessing capability to describe water and sludge lines across the treatment process under steady-state operation. With default rate kinetic and stoichiometric parameters, a good general agreement is observed between the full-scale datasets and the simulated results under steady-state conditions. Simulation results show differences between measured and modelled phosphorus as little as 4-15% (relative) throughout the entire plant. Dynamic influent profiles were generated using a calibrated influent generator and were used to study the effect of long-term influent dynamics on plant performance. Model-based analysis shows that minerals precipitation strongly influences composition in the anaerobic digesters, but also impacts on nutrient loading across the entire plant. A forecasted implementation of nutrient recovery by struvite crystallization (model scenario only), reduced the phosphorus content in the treatment plant influent (via centrate recycling) considerably and thus decreased phosphorus in the treated outflow by up to 43%. Overall, the evaluated plant-wide model is able to jointly describe the physico-chemical and biological processes, and is advocated for future use as a tool for

  8. Investigating Faculty Technology Mentoring as a University-Wide Professional Development Model

    Science.gov (United States)

    Baran, Evrim

    2016-01-01

    A growing and increasingly important area of research in higher education is the investigation of how different forms of support and training programs facilitate faculty adoption of technology into pedagogical practices. This study explored the implementation of a faculty technology mentoring (FTM) program as a university-wide professional…

  9. Meta-analysis of genome-wide association from genomic prediction models

    Science.gov (United States)

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. To increase sample size, results from different GWA can be combined in a meta-analys...

  10. Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area

    Science.gov (United States)

    Berthier, Etienne; Cabot, Vincent; Vincent, Christian; Six, Delphine

    2016-06-01

    Since 2000, a vast archive of stereo-images has been built by the Advanced Spaceborne Thermal Emission and Reflection (ASTER) satellite. Several studies already extracted glacier mass balances from multi-temporal ASTER digital elevation models (DEMs) but they lacked accurate independent data for validation. Here, we apply a linear regression to a time series of 3D-coregistered ASTER DEMs to estimate the rate of surface elevation changes (dh/dtASTER) and geodetic mass balances of Mont-Blanc glaciers (155 km²) between 2000 and 2014. Validation using field and spaceborne geodetic measurements reveals large errors at the individual pixel level (> 1 m a-1) and an accuracy of 0.2-0.3 m a-1 for dh/dtASTER averaged over areas larger than 1 km². For all Mont-Blanc glaciers, the ASTER region-wide mass balance (-1.05±0.37 m water equivalent (w.e.) a-1) agrees remarkably with the one measured using Spot5 and Pléiades DEMs (-1.06±0.23 m w.e. a-1) over their common 2003-2012 period. This multi-temporal ASTER DEM strategy leads to smaller errors than the simple differencing of two ASTER DEMs. By extrapolating dh/dtASTER to mid-February 2000, we infer a mean penetration depth of about 9±3 m for the C-band Shuttle Radar Topographic Mission (SRTM) radar signal, with a strong altitudinal dependency (range 0-12 m). This methodology thus reveals the regional pattern of glacier surface elevation changes and improves our knowledge of the penetration of the radar signal into snow and ice.

  11. Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area

    Directory of Open Access Journals (Sweden)

    Etienne eBerthier

    2016-06-01

    Full Text Available Since 2000, a vast archive of stereo-images has been built by the Advanced Spaceborne Thermal Emission and Reflection (ASTER satellite. Several studies already extracted glacier mass balances from multi-temporal ASTER digital elevation models (DEMs but they lacked accurate independent data for validation. Here, we apply a linear regression to a time series of 3D-coregistered ASTER DEMs to estimate the rate of surface elevation changes (dh/dtASTER and geodetic mass balances of Mont-Blanc glaciers (155 km² between 2000 and 2014. Validation using field and spaceborne geodetic measurements reveals large errors at the individual pixel level (> 1 m a-1 and an accuracy of 0.2-0.3 m a-1 for dh/dtASTER averaged over areas larger than 1 km². For all Mont-Blanc glaciers, the ASTER region-wide mass balance (-1.05±0.37 m water equivalent (w.e. a-1 agrees remarkably with the one measured using Spot5 and Pléiades DEMs (-1.06±0.23 m w.e. a-1 over their common 2003-2012 period. This multi-temporal ASTER DEM strategy leads to smaller errors than the simple differencing of two ASTER DEMs. By extrapolating dh/dtASTER to mid-February 2000, we infer a mean penetration depth of about 9±3 m for the C-band Shuttle Radar Topographic Mission (SRTM radar signal, with a strong altitudinal dependency (range 0-12 m. This methodology thus reveals the regional pattern of glacier surface elevation changes and improves our knowledge of the penetration of the radar signal into snow and ice.

  12. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  13. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  14. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1987-03-10

    A method is described of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap E/sub g1/ in the presence of a second semiconductor material of a different composition and direct bandgap E/sub g2/, wherein E/sub g2/>E/sub g1/. The second semiconductor material is not substantially etched during the method, comprising subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where the etchant would be ineffective for chemical etching of either material where the photons are not present, the photons being of an energy greater than E/sub g1/ but less than E/sub g2/, whereby the first semiconductor material is photochemically etched and the second material is substantially not etched.

  15. High extinction ratio bandgap of photonic crystals in LNOI wafer

    Science.gov (United States)

    Zhang, Shao-Mei; Cai, Lu-Tong; Jiang, Yun-Peng; Jiao, Yang

    2017-02-01

    A high-extinction-ratio bandgap of air-bridge photonic crystal slab, in the near infrared, is reported. These structures were patterned in single-crystalline LiNbO3 film bonded to SiO2/LiNbO3 substrate by focused ion beam. To improve the vertical confinement of light, the SiO2 layer was removed by 3.6% HF acid. Compared with photonic crystals sandwiched between SiO2 and air, the structures suspending in air own a robust photonic bandgap and high transmission efficiency at valence band region. The measured results are in good agreement with numerically computed transmission spectra by finite-difference time-domain method. The air-bridge photonic crystal waveguides were formed by removing one line holes. We reveal experimentally the guiding characteristics and calculate the theoretical results for photonic crystal waveguides in LiNbO3 film.

  16. Low Loss Plastic Terahertz Photonic Band-Gap Fibres

    Institute of Scientific and Technical Information of China (English)

    GENG You-Fu; TAN Xiao-Ling; ZHONG Kai; WANG Peng; YAO Jian-Quan

    2008-01-01

    We report a numerical investigation on terahertz wave propagation in plastic photonic band-gap fibres which are characterized by a 19-unit-cell air core and hexagonal air holes with rounded corners in cladding. Using the finite element method, the leakage loss and absorption loss are calculated and the transmission properties are analysed.The lowest loss of 0.268 dB/m is obtained. Numerical results show that the fibres could liberate the constraints of background materials beyond the transparency region in terahertz wave band, and efficiently minimize the effect of absorption by background materials, which present great advantage of plastic photonic band-gap fibres in long distance terahertz delivery.

  17. Experimental Methods for Implementing Graphene Contacts to Finite Bandgap Semiconductors

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob

    for molecular electronics with parallel CVD graphene bottom electrodes with SiO2 passivation was successfully fabricated and electronically characterized. A functioning Carbon Burger was not achieved. Along the work on the Carbon Burger, the scope was broadened and focus was put on implementing graphene......Present Ph.D. thesis describes my work on implanting graphene as electrical contact to finite bandgap semiconductors. Different transistor architectures, types of graphene and finite bandgap semiconductors have been employed. The device planned from the beginning of my Ph.D. fellowship...... was a graphene-C60 monolayergraphene vertical transistor named the Carbon Burger. The fabrication of such device proved increasingly difficult to achieve and many experimental methods to handle graphene were implemented and improved in attempt to fabricate the Carbon Burger. In the end, a device platform...

  18. Omnidirectional bandgaps in Fibonacci quasicrystals containing single-negative materials.

    Science.gov (United States)

    Deng, Xin-Hua; Liu, Jiang-Tao; Huang, Jie-Hui; Zou, Liner; Liu, Nian-Hua

    2010-02-10

    The band structure and bandgaps of one-dimensional Fibonacci quasicrystals composed of epsilon-negative materials and mu-negative materials are studied. We show that an omnidirectional bandgap (OBG) exists in the Fibonacci structure. In contrast to the Bragg gaps, such an OBG is insensitive to the incident angle and the polarization of light, and the width and location of the OBG cease to change with increasing Fibonacci order, but vary with the thickness ratio of both components, and the OBG closes when the thickness ratio is equal to the golden ratio. Moreover, the general formulations of the higher and lower band edges of the OBG are obtained by the effective medium theory. These results could lead to further applications of Fibonacci structures.

  19. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  20. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  1. Treating temperature effect on bandgap in polymer opal photonic crystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The optical reflective spectra and microstruc- tures of polystyrene opal photonic crystals treated with dif- ferent temperatures have been investigated. With tempera- ture increasing, the polystyrene spheres in opal structure transform to dodecahedrons, and the peak of reflective spec- trum moves to shorter wavelength. The experiment result testifies the effect of the effective refractive index and the filling ratio to the bandgap position, and it corresponds to the theoretical simulative result.

  2. Feasibility of detecting single atoms using photonic bandgap cavities

    OpenAIRE

    Lev, Benjamin; Srinivasan, Kartik; Barclay, Paul; Painter, Oskar; Mabuchi, Hideo

    2004-01-01

    We propose an atom-cavity chip that combines laser cooling and trapping of neutral atoms with magnetic microtraps and waveguides to deliver a cold atom to the mode of a fiber taper coupled photonic bandgap (PBG) cavity. The feasibility of this device for detecting single atoms is analyzed using both a semi-classical treatment and an unconditional master equation approach. Single-atom detection seems achievable in an initial experiment involving the non-deterministic delivery of weakly trapped...

  3. Nanostructured and wide bandgap CdS:O thin films grown by reactive RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M. A.; Rahman, K. S.; Haque, F.; Rashid, M. J.; Akhtaruzzaman, M.; Sopian, K.; Sulaiman, Y. [Solar Energy Research Institute (SERI), National University of Malaysia, 43600 Bangi (Malaysia); Amin, N. [Solar Energy Research Institute (SERI), National University of Malaysia, 43600 Bangi (Malaysia); Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, National University of Malaysia, 43600 Bangi (Malaysia)

    2015-05-15

    In this study, CdS:O thin films were prepared from a 99.999% CdS target by reactive sputtering in a Ar:O{sub 2} (99:1) ambient with different RF power at room temperature. The deposited films were studied by means of XRD, SEM, EDX, Hall Effect and UV-Vis spectrometry. The incorporations of O{sub 2} into the films were observed to increase with the decrease of deposition power. The cryatallinity of the films were reduced, whereas the band gaps of the films were increased by the increase of O{sub 2} content on the films. The films were found in nano-structured grains with a compact surface. It has been seen that the highest carrier density is observed in the film with O{sub 2} at.% 21.10, while the values decreased with the further increase or decrease of O{sub 2} content on the films; indicating that specific amount of donor like O{sub 2} atoms substitute to the S atoms can improve the carrier density of the CdS:O thin film.

  4. Purification, Growth, Fabrication and Characterization of Wide Bandgap Materials for Gamma-Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arnold Burger, Ph.D.

    1999-04-30

    The objective of this project was to improve the performance and the fabrication of cadmium zinc telluride room temperature gamma ray detetors This paper outlines the necessity for controlled surface preparation and deposition of ohmic contacts.

  5. Electrochromic devices based on wide band-gap nanocrystalline semiconductors functionalized with mononuclear charge transfer compounds

    DEFF Research Database (Denmark)

    Biancardo, M.; Argazzi, R.; Bignozzi, C.A.

    2006-01-01

    A series of ruthenium and iron mononuclear complexes were prepared and their spectroeletrochemical behavior characterized oil Optically Transparent Thin Layer Electrodes (OTTLE) and on Fluorine Doped SnO2 (FTO) conductive glasses coated with Sb-doped nanocrystalline SnO2. These systems display...... a reversible electrochemical response and offer potential application in electrochromic devices. On SnO2 films distinct spectral changes are observed in a narrow potential range (-0.5/0.9 V vs SCE) with switching times of the order of 0.8 s. (c) 2005 Elsevier B.V. All rights reserved....

  6. Ultraviolet photoluminescence and Raman scattering of wide bandgap semiconductors and nanocrystallites

    Science.gov (United States)

    Chen, Xiang-Bai

    In the sports psychology literature, goal setting intervention studies have been a popular area of research the last ten years (Burton, 2001). Previous research demonstrates that goal setting is the most consistent and effective performance enhancement strategy in the behavioral sciences and seems to have a positive impact on performance (Burton et al., 2003; Locke & Latham, 1990). A "roadmap" detailing how to implement a periodized goal-setting program was developed, and its effectiveness was assessed using a quasi-experimental, multiple baseline case study design. Participants were six female members of a collegiate tennis team in the Northwest who ranged in age between 18--22 years. Several instruments were used to assess the effectiveness of the goal setting intervention, including: the Sports Motivation Scale (SMS), Task and Ego Orientation Sports Questionnaire (TEOSQ), Theories of Talent Scale (TOTS), Athletic Coping Skills Inventory (ACSI-28), Trait Sport Confidence Inventory (TSCI), and the Multidimensional Perfectionism Scale (MPS). All of these instruments have been documented to possess solid psychometric properties. Goal term length was periodized into three duration increments, including: long-term (macro), short-term (micro), and intermediate-term (meso) goals. Intervention effectiveness was assessed using both quantitative and qualitative analysis to assess self-confidence and performance. A review of qualitative data provided the strongest support for the generally large positive impact of goal-setting on athletes' self-confidence and performance. Every athlete reported that goal-setting was extremely helpful for increasing their understanding of the game, becoming more motivated to practice and compete, enhancing their self-confidence, focus and concentration, and boosting their performance. Overall, these results point out the effectiveness of goal-setting as a strategy to increase self-confidence and enhance performance, but they suggest that effective goal-setting programs nurture the process by spending significant individual time teaching athletes to set and adjust goals. (Abstract shortened by UMI.)

  7. High-Temperature Ferromagnetism in Transition Metal Implanted Wide-Bandgap Semiconductors

    Science.gov (United States)

    2005-07-01

    for which calculations were performed [100]. Uspenskii et al. also performed ab initio calculations concerning the energy-related preference of a DMS...xCrxO (x = 0.25) [100]. A-2 In the case of Cr-doped ZnO, Uspenskii et al. found the preferred mag- netic ordering to be ferromagnetic. In the case... Uspenskii et al. also reported a ground state preference for antiferro- magnetic ordering for the case of Zn0.875Mn0.125O [131]. Dietl et al. have

  8. Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range.

    Science.gov (United States)

    Aleshkina, Svetlana S; Likhachev, Mikhail E; Pryamikov, Andrey D; Gaponov, Dmitry A; Denisov, Alexandr N; Bubnov, Mikhail M; Salganskii, Mikhail Yu; Laptev, Alexandr Yu; Guryanov, Aleksei N; Uspenskii, Yurii A; Popov, Nikolay L; Février, Sébastien

    2011-09-15

    A design of a polarizing all-glass Bragg fiber with a microstructure core has been proposed for the first time. This design provides suppression of high-order modes and of one of the polarization states of the fundamental mode. The polarizing fiber was fabricated by a new, simple method based on a combination of the modified chemical vapor deposition (MCVD) process and the rod-in-tube technique. The mode field area has been found to be about 870 μm² near λ=1064 nm. The polarization extinction ratio better than 13 dB has been observed over a 33% wavelength range (from 1 to 1.4 μm) after propagation in a 1.7 m fiber piece bent to a radius of 70 cm.

  9. Tailoring the optical properties of wide-bandgap based microcavities via metal films

    Energy Technology Data Exchange (ETDEWEB)

    Sebald, K., E-mail: ksebald@ifp.uni-bremen.de; Rahman, SK. S.; Cornelius, M.; Gutowski, J. [Semiconductor Optics, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany); Klein, T.; Klembt, S.; Kruse, C.; Hommel, D. [Semiconductor Epitaxy, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany)

    2015-08-10

    We report on the tuning of the optical properties of II-VI-material-based microcavity samples, which is achieved by depositing Ag films on top of the structures. The micro-reflectivity spectra show a spectral shift of the sample resonance dependent on the metal layer thickness. By comparison of the experimental findings with the theoretical calculations applying the transfer matrix method on a metal-dielectric mirror structure, the influence of the metal layer particularly with regard to its partial oxidation was explored. Tamm plasmon modes are created at the interface between an open cavity with three ZnSe quantum wells and a metal layer on top. When tuning the excitonic emission relative to the mode by changing the sample temperature, an anticrossing of the resonances was observed. This is a clear indication that the strong coupling regime has been achieved in that sample configuration yielding a Rabi splitting of 18.5 meV. These results are promising for the realization of polariton-based optical devices with a rather simple sample configuration.

  10. A contribution to the development of wide band-gap nonlinear optical laser materials

    Science.gov (United States)

    Stone-Sundberg, Jennifer Leigh

    The primary focus of this work is on examining structure-property relationships of interest for high-power nonlinear optical and laser crystals. An intuitive and simply illustrated method for assessing the nonlinear optical potential of structurally characterized noncentrosymmetric materials is introduced. This method is applied to materials including common quartz and tourmaline and then extended to synthetic materials including borates, silicates, aluminates, and phosphates. Particularly, the contributions of symmetric tetrahedral and triangular anionic groups are inspected. It is shown that both types of groups significantly contribute to the optical frequency converting abilities of noncentrosymmetric crystals. In this study, several known materials are included as well as several new materials. The roles of the orientation, composition, and packing density of these anionic groups are also discussed. The structures and optical properties of the known materials BPO 4, NaAlO2, LaCa4O(BO3)3, and tourmaline; the new compounds La0.8Y0.2Sc3 (BO3)4 and Ba2B10O 17; and the laser host Sr3Y0.75Yb0.25(BO 3)3 are described.

  11. X-ray diffuse scattering for evaluation of wide bandgap semiconductor nuclear radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Goorsky, M.S. [University of Southern California, Los Angeles, CA (United States). Dept. of Mater. Sci. and Eng.; Yoon, H. [University of Southern California, Los Angeles, CA (United States). Dept. of Mater. Sci. and Eng.; Schieber, M. [Hebrew Univ., Jerusalem (Israel). Graduate Sch. of Appl. Sci.; James, R.B. [Sandia Nat. Labs., Livermore, CA (United States). Dept. 8347; McGregor, D.S. [Sandia Nat. Labs., Livermore, CA (United States). Dept. 8347; Natarajan, M. [TN Technol., Round Rock, TX (United States)

    1996-10-01

    The crystalline perfection of solid state radiation detectors was examined using triple axis x-ray diffraction. Triple axis techniques provide a means to analyze the origin of diffraction peak broadening: the effects of strain (due to deviations in alloy composition or stoichiometry) and lattice tilts (mosaic structure) can be separated. Cd{sub 1-x}Zn{sub x}Te (x{approx}0.1), HgI{sub 2}, and GaAs detector materials were studied. In the cases of Cd{sub 1-x}Zn{sub x}Te and HgI{sub 2} the crystalline properties of detectors with different spectral responses to {gamma}-radiation were determined. Increased mosaicity was universally found to be related to deteriorated detector properties. For Cd{sub 1-x}Zn{sub x}Te, detectors with poor performance possessed greater levels of diffuse scatter due to lattice tilts than did high quality detectors. For GaAs, low angle grain boundaries were attributed to impaired detector performance. Additionally, in large HgI{sub 2} detectors, deviations from stoichiometry were also related to reduced performance. Interestingly, HgI{sub 2} detectors which possessed a sharp spectral response to {gamma}-radiation but also showed polarization were of comparable crystallinity to those detectors which did not exhibit polarization effects. This initial analysis suggests that polarization is related to native point defects or chemical impurities which do not significantly alter the crystallinity of the material. Overall, within a given class of materials, improved detector performance (better spectral response) always correlated with better material quality. (orig.).

  12. High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices

    DEFF Research Database (Denmark)

    Kouchaki, Alireza

    2016-01-01

    . Therefore, current controllers are also important to be investigated in this project. In this PhD research work, a comprehensive design of a two-level three-phase PFC rectifier using silicon-carbide (SiC) switches to achieve high efficiency is presented. The work is divided into two main parts: 1) Optimum...

  13. On the Integration of Wide Band-gap Semiconductors in Single Phase Boost PFC Converters

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos

    diodes, or the introduction of silicon carbide (SiC) diodes, provided large steps in miniaturization and efficiency improvement of switched mode power converters. Gallium nitride (GaN) and SiC semiconductor devices have already been around for some years. The first one proliferated due to the necessity...

  14. Monte Carlo analysis of Gunn oscillations in narrow and wide band-gap asymmetric nanodiodes

    Science.gov (United States)

    González, T.; Iñiguez-de-la Torre, I.; Pardo, D.; Mateos, J.; Song, A. M.

    2009-11-01

    By means of Monte Carlo simulations we show the feasibility of asymmetric nonlinear planar nanodiodes for the development of Gunn oscillations. For channel lengths about 1 μm, oscillation frequencies around 100 GHz are predicted in InGaAs diodes, being significantly higher, around 400 GHz, in the case of GaN structures. The DC to AC conversion efficiency is found to be higher than 1% for the fundamental and second harmonic frequencies in GaN diodes.

  15. ZnO - Wide Bandgap Semiconductor and Possibilities of Its Application in Optical Waveguide Structures

    Directory of Open Access Journals (Sweden)

    Struk Przemysław

    2014-08-01

    Full Text Available The paper presents the results of investigations concerning the application of zinc oxide - a wideband gap semiconductor in optical planar waveguide structures. ZnO is a promising semiconducting material thanks to its attractive optical properties. The investigations were focused on the determination of the technology of depositions and the annealing of ZnO layers concerning their optical properties. Special attention was paid to the determination of characteristics of the refractive index of ZnO layers and their coefficients of spectral transmission within the UV-VIS-NIR range. Besides that, also the mode characteristics and the attenuation coefficients of light in the obtained waveguide structures have been investigated. In the case of planar waveguides, in which the ZnO layers have not been annealed after their deposition, the values of the attenuation coefficient of light modes amount to a~ 30 dB/cm. The ZnO layers deposited on the heated substrate and annealed by rapid thermal annealing in an N2 and O2 atmosphere, are characterized by much lower values of the attenuation coefficients: a~ 3 dB/cm (TE0 and TM0 modes. The ZnO optical waveguides obtained according to our technology are characterized by the lowest values of the attenuation coefficients a encountered in world literature concerning the problem of optical waveguides based on ZnO. Studies have shown that ZnO layers elaborated by us can be used in integrated optic systems, waveguides, optical modulators and light sources.

  16. ZnO - Wide Bandgap Semiconductor and Possibilities of Its Application in Optical Waveguide Structures

    OpenAIRE

    Struk Przemysław; Pustelny Tadeusz; Gołaszewska Krystyna; A. Borysiewicz Michał; Kamińska Eliana; Wojciechowski Tomasz; Piotrowska Anna

    2014-01-01

    The paper presents the results of investigations concerning the application of zinc oxide - a wideband gap semiconductor in optical planar waveguide structures. ZnO is a promising semiconducting material thanks to its attractive optical properties. The investigations were focused on the determination of the technology of depositions and the annealing of ZnO layers concerning their optical properties. Special attention was paid to the determination of characteristics of the refractive index of...

  17. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    NARCIS (Netherlands)

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the huma

  18. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis

    NARCIS (Netherlands)

    W.R. Swindell (William R.); A. Johnston (Andrew); S. Carbajal (Steve); G. Han (Gangwen); C.T. Wohn (Christopher); J. Lu (Jun); X. Xing (Xianying); R.P. Nair (Rajan P.); J.J. Voorhees (John); J.T. Elder (James); X.J. Wang (Xian Jiang); S. Sano (Shigetoshi); E.P. Prens (Errol); J. DiGiovanni (John); M.R. Pittelkow (Mark R.); N.L. Ward (Nicole); J.E. Gudjonsson (Johann Eli)

    2011-01-01

    textabstractDevelopment of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features

  19. Uncertainties in Predicting Rice Yield by Current Crop Models Under a Wide Range of Climatic Conditions

    Science.gov (United States)

    Li, Tao; Hasegawa, Toshihiro; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Adam, Myriam; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fumoto, Tamon; Gaydon, Donald; Marcaida, Manuel, III; Nakagawa, Hiroshi; Oriol, Philippe; Ruane, Alex C.; Ruget, Francoise; Singh, Balwinder; Singh, Upendra; Tang, Liang; Tao, Fulu; Wilkens, Paul; Yoshida, Hiroe; Zhang, Zhao; Bouman, Bas

    2014-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10 percent of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.

  20. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis

    NARCIS (Netherlands)

    W.R. Swindell (William R.); A. Johnston (Andrew); S. Carbajal (Steve); G. Han (Gangwen); C.T. Wohn (Christopher); J. Lu (Jun); X. Xing (Xianying); R.P. Nair (Rajan P.); J.J. Voorhees (John); J.T. Elder (James); X.J. Wang (Xian Jiang); S. Sano (Shigetoshi); E.P. Prens (Errol); J. DiGiovanni (John); M.R. Pittelkow (Mark R.); N.L. Ward (Nicole); J.E. Gudjonsson (Johann Eli)

    2011-01-01

    textabstractDevelopment of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features

  1. Fabrication and Characterization of Photonic Bandgap Components

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn

    2006-01-01

    Denne ph.d. afhandling beskæftiger sig med modelleringen, fabrikationen og karakteriseringen af fotoniske båndgabs komponenter, som er realiseret i et silicium-på-isolator materiale. Metoderne "plane-wave expansion theory" og "finite-difference time-domain modelling" er blevet anvendt til at mode...

  2. Defect-induced bandgap narrowing in low-k dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Zheng, H.; Shohet, J. L. [Plasma Processing & Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Afanas' ev, V. V. [Department of Physics, University of Leuven, B-3001 Leuven (Belgium); Baklanov, M. R.; Marneffe, J.-F. de [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-08-24

    In this work, core-level X-ray photoelectron spectroscopy was utilized to determine the surface bandgap for various porous and non-porous low-k a-SiCOH dielectrics before and after ion sputtering. By examining the onset of inelastic energy loss in O 1s core-level spectra, the gap narrowing was universally found in Ar{sup +} ion sputtered low-k dielectrics. The reduction of the bandgap ranges from 1.3 to 2.2 eV depending on the film composition. We show that the bandgap narrowing in these low-k dielectrics is caused by development of the valence-band tail as evidenced by the presence of additional electronic states above the valence-band maximum. Electron-spin-resonance measurements were made on a-SiCOH films to gain atomic insight into the nature of the sputtering-induced defects and reveal formation of carbon-related defects as the most probable origin of the gap states.

  3. Hollow multilayer photonic bandgap fibers for NIR applications

    Science.gov (United States)

    Kuriki, Ken; Shapira, Ofer; Hart, Shandon D.; Benoit, Gilles; Kuriki, Yuka; Viens, Jean F.; Bayindir, Mehmet; Joannopoulos, John D.; Fink, Yoel

    2004-04-01

    Here we report the fabrication of hollow-core cylindrical photonic bandgap fibers with fundamental photonic bandgaps at near-infrared wavelengths, from 0.85 to 2.28 μm. In these fibers the photonic bandgaps are created by an all-solid multilayer composite meso-structure having a photonic crystal lattice period as small as 260 nm, individual layers below 75 nm and as many as 35 periods. These represent, to the best of our knowledge, the smallest period lengths and highest period counts reported to date for hollow PBG fibers. The fibers are drawn from a multilayer preform into extended lengths of fiber. Light is guided in the fibers through a large hollow core that is lined with an interior omnidirectional dielectric mirror. We extend the range of materials that can be used in these fibers to include poly(ether imide) (PEI) in addition to the arsenic triselenide (As2Se3) glass and poly(ether sulfone) (PES) that have been used previously. Further, we characterize the refractive indices of these materials over a broad wavelength range (0.25 - 15 μm) and incorporated the measured optical properties into calculations of the fiber photonic band structure and a preliminary loss analysis.

  4. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  5. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes

    Science.gov (United States)

    Lee, Jhinhwan; Kim, H.; Kahng, S.-J.; Kim, G.; Son, Y.-W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; Kuk, Young

    2002-02-01

    Motivated by the technical and economic difficulties in further miniaturizing silicon-based transistors with the present fabrication technologies, there is a strong effort to develop alternative electronic devices, based, for example, on single molecules. Recently, carbon nanotubes have been successfully used for nanometre-sized devices such as diodes, transistors, and random access memory cells. Such nanotube devices are usually very long compared to silicon-based transistors. Here we report a method for dividing a semiconductor nanotube into multiple quantum dots with lengths of about 10nm by inserting Gd@C82 endohedral fullerenes. The spatial modulation of the nanotube electronic bandgap is observed with a low-temperature scanning tunnelling microscope. We find that a bandgap of ~0.5eV is narrowed down to ~0.1eV at sites where endohedral metallofullerenes are inserted. This change in bandgap can be explained by local elastic strain and charge transfer at metallofullerene sites. This technique for fabricating an array of quantum dots could be used for nano-electronics and nano-optoelectronics.

  6. High PSRR bandgap reference used in boost circuit

    Science.gov (United States)

    Li, Yi; Duan, Baoxing; Wang, Yong; Yang, Yintang

    2017-03-01

    Based on pre-regulated voltage structure, a voltage bandgap reference with high power supply rejection ratio (PSRR) is presented in this paper. A pre-regulated voltage structure is used in the circuit to achieve isolating the supply voltage of the bandgap core circuit from VDD to reach a high PSRR. The circuit was designed and simulated in 0.35um BCD technology. The results show the output voltage variation versus temperature (-50°C -100°C) is 8.8 ppm/°C, bandgap reference voltage is 1.236V, current consumption is 30.3 µA. Noise is 53.54 µV/Hz-1/2 at 1Hz. PSRR is -91dB at low frequency, -90.3dB at 1 kHz and -30.3dB at 1MHz. thus, the circuit maintains a good performance in PSRR through a broad frequency.

  7. Influence of transition metal doping (X  =  Mn, Fe, Co, Ni) on the structure and bandgap of ferroelectric Bi3.15Nd0.85Ti2X1O12

    Science.gov (United States)

    Chen, Xiaoqin; Huang, Feng; Lu, Zhangwu; Xue, Yun; Min, Jingjing; Li, Jihui; Xiao, Jun; Yang, Fujun; Zeng, Xiangbin

    2017-03-01

    Although the internal field can effectively maintain the separation between photo-excited charge carriers, the wide bandgap restrains ferroelectric materials from visible light absorption. This study examined the effects of transition metal (TM) Mn, Fe, Co or Ni doping on the structure and bandgap of Bi3.15Nd0.85Ti3O12 (BNdT) prepared by the molten salt synthesis method. No other non-bismuth layered structure phases were introduced. Mn, Co or Ni doping does not change the three-layered perovskite structure of BNdT while Fe doping increases the layer number from three to four. The doping of TM ions decreases the bandgap obviously. Among them, Mn-doped BNdT shows the largest bandgap reduction by ~1.6 eV. The narrowed bandgap was discussed to be attributed to the electronegativity of TM ions and the lattice distortion induced by doping together. The present work provides an available way to control the bandgap of complex oxide materials and provides a new tool for manipulating oxide optoelectronics.

  8. Comprehensive contour prediction model of work rolls in hot wide strip mill

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Wang; Quan Yang; Anrui He; Renzhong Wang

    2007-01-01

    The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation, which have a direct influence on the accuracy of shape control. A statistical wear model and a finite difference thermal contour model of work rolls were described. The comprehensive contour is the equivalence treatment of the sum of grinding, wear, and thermal contours. This comprehensive contour calculation model has been applied successfully in the real on-line strip shape control model. Its high precision has been proved through the large amounts of actual roll profile measurements and theoretical analyses. The hit rates (percent of shape index satisfying requirement) of crown and head flatness of the strips rolled, by using the shape control model, which includes the comprehensive contour calculation model, have about 16% and 10% increase respectively, compared to those of strips rolled by using manual operation.

  9. A mixed model reduces spurious genetic associations produced by population stratification in genome-wide association studies.

    Science.gov (United States)

    Shin, Jimin; Lee, Chaeyoung

    2015-04-01

    Population stratification can produce spurious genetic associations in genome-wide association studies (GWASs). Mixed model methodology has been regarded useful for correcting population stratification. This study explored statistical power and false discovery rate (FDR) with the data simulated for dichotomous traits. Empirical FDRs and powers were estimated using fixed models with and without genomic control and using mixed models with and without reflecting loci linked to the candidate marker in genetic relationships. Population stratification with admixture degree ranged from 1% to 10% resulted in inflated FDRs from the fixed model analysis without genomic control and decreased power from the fixed model analysis with genomic control (Ppopulation stratification could not change FDR and power estimates from the mixed model analyses (P>0.05). We suggest that the mixed model methodology was useful to reduce spurious genetic associations produced by population stratification in GWAS, even with a high degree of admixture (10%). Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Dipole-induced band-gap reduction in an inorganic cage.

    Science.gov (United States)

    Lv, Yaokang; Cheng, Jun; Steiner, Alexander; Gan, Lihua; Wright, Dominic S

    2014-02-10

    Metal-doped polyoxotitanium cages are a developing class of inorganic compounds which can be regarded as nano- and sub-nano sized molecular relatives of metal-doped titania nanoparticles. These species can serve as models for the ways in which dopant metal ions can be incorporated into metal-doped titania (TiO2 ), a technologically important class of photocatalytic materials with broad applications in devices and pollution control. In this study a series of cobalt(II)-containing cages in the size range ca. 0.7-1.3 nm have been synthesized and structurally characterized, allowing a coherent study of the factors affecting the band gaps in well-defined metal-doped model systems. Band structure calculations are consistent with experimental UV/Vis measurements of the Tix Oy absorption edges in these species and reveal that molecular dipole moment can have a profound effect on the band gap. The observation of a dipole-induced band-gap decrease mechanism provides a potentially general design strategy for the formation of low band-gap inorganic cages.

  11. Wide low-mass binary model for the origin of axially symmetric non-thermal radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Kool, M. de; Heuvel, E.P.J. van den

    1985-10-17

    An accreting binary model has been proposed by recent workers to account for the origin of the axially symmetric non-thermal radio sources. The authors show that the only type of binary system that can produce the observed structural properties, is a relatively wide neutron star binary, in which the companion of the neutron star is a low-mass giant. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources as well as the progenitors of the two wide radio pulsar binaries.

  12. Design of Photonic Bandgap Fibre with Novel Air-Hole Structure

    Institute of Scientific and Technical Information of China (English)

    LI Jing; ZHANG Wei-Gang; DU Jiang-Bing; WANG Zhi; LIU Yan-Ge; DONG Xiao-Yi

    2008-01-01

    We introduce PBGFs with the cladding made of our newly designed quasi-hexagonal air holes and demonstrate how it actually operates. This cladding structure is introduced for the first time to the best of our knowledge, and is realized by making use of the hydrofluoric acid's corrosive properties. The fibre corrosion can be accurately controlled, thus opening us the gate for the design and fabrication of new PBGFs with more complex and more efficient cladding structures. Numerical results and actual simulations indicate that PBGFs built with this cladding structure have improved bandgap properties and guiding bands as wide as 500nm have been theoretically reached. Using the same method, we have also been able to design two other types of PBGFs with improved cladding structure.

  13. Excitation dynamics of a low bandgap silicon-bridged dithiophene copolymer and its composites with fullerenes

    Science.gov (United States)

    Othonos, Andreas; Itskos, Grigorios; Neophytou, Marios; Choulis, Stelios A.

    2012-04-01

    We report on excitation dynamics in pristine and bulk heterojunction films of the low bandgap silicon-bridged dithiophene copolymer poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2', 3'-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5'-diyl] with methanofullerene derivatives. The combination of ultrafast transient transmission and photoluminescence allows us to probe the relaxation of both exciton and polaron states in a relatively wide spectral and temporal range. Measurements reveal that the majority of excitations undergo ultrashort non-radiative relaxation while a small fraction of the photoexcited species decays slowly within hundreds of ps. In the blend films, significantly longer decays are observed suggesting the presence of long lived holes and/or charged-transfer type of excitons.

  14. Effects of spatial and spectral frequencies on wide-field functional imaging (wifi) characterization of preclinical breast cancer models

    Science.gov (United States)

    Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Choi, Bernard

    2010-02-01

    A common strategy to study breast cancer is the use of the preclinical model. These models provide a physiologically relevant and controlled environment in which to study both response to novel treatments and the biology of the cancer. Preclinical models, including the spontaneous tumor model and mammary window chamber model, are very amenable to optical imaging and to this end, we have developed a wide-field functional imaging (WiFI) instrument that is perfectly suited to studying tumor metabolism in preclinical models. WiFI combines two optical imaging modalities, spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm x 5 cm) field of view. Using SFDI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are determined, which are then used to extract tissue chromophore concentrations in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. In the current study, we employ Monte Carlo simulations of SFDI light propagation in order to characterize the penetration depth of light in both the spontaneous tumor model and mammary window chamber model. Preliminary results suggest that different spatial frequency and wavelength combinations have different penetration depths, suggesting the potential depth sectioning capability of the SFDI component of WiFI.

  15. Modelling above-ground herbage mass for a wide range of grassland community types

    NARCIS (Netherlands)

    Duru, M.; Adam, M.Y.O.; Cruz, P.; Martin, G.; Ansquer, P.; Ducourtieux, C.; Jouany, C.; Theau, J.P.; Viegas, J.

    2009-01-01

    Whereas it is recognized that management of plant diversity can be the key to reconciling production and environmental aims, most grassland models are tailored for high-value grass species. We proposed to adapt a mono-specific grass model to take into account specific features of species-rich perman

  16. Two-dimensional locally resonant elastic metamaterials with chiral comb-like interlayers: Bandgap and simultaneously double negative properties.

    Science.gov (United States)

    Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng

    2016-06-01

    In this paper, bandgap and dynamic effective properties of two-dimensional elastic metamaterials with a chiral comb-like interlayer are studied by using the finite element method. The effects of the geometrical parameters of the chiral comb-like interlayer on the band edges are investigated and discussed. Combined with the analysis of the vibration modes at the band edges, equivalent spring-mass/pendulum models are developed to investigate the mechanisms of the bandgap generation. The analytically predicted results of the band edges, including the frequency where the double negative properties appear, and the numerical ones are generally in good agreement. The research findings in this paper have relevant engineering applications of the elastic metamaterials in the low frequency range.

  17. Investigation of the guided-mode characteristics of hollow-core photonic band-gap fibre with interstitial holes

    Institute of Scientific and Technical Information of China (English)

    Yuan Jin-Hui; Yu Chong-Xiu; Sang Xin-Zhu; Zhang Jin-Long; Zhou Gui-Yao; Li Shu-Guang; Hou Lan-Tian

    2011-01-01

    This paper investigates the guided-mode characteristics of hollow-core photonic band-gap fibre (HC-PBGF) with interstitial holes fabricated by an improved twice stack-and-draw technique at visible wavelengths. Based on the simulation model with interstitial holes, the influence of glass interstitial apexes on photonic band-gaps is discussed.The existing forms of guided-mode in part band gaps are shown by using the full-vector plane-wave method. In the experiment, the observed transmission spectrum corresponds to the part band gaps obtained by simulation. The fundamental and second-order guided-modes with mixture of yellow and green light are observed through choosing appropriate fibre length and adjusting coupling device. The loss mechanism of guided-modes in HC-PBGF is also discussed.

  18. Gamma bandgap determination in pseudomorphic GeSn layers grown on Ge with up to 15% Sn content

    Science.gov (United States)

    Gassenq, A.; Milord, L.; Aubin, J.; Guilloy, K.; Tardif, S.; Pauc, N.; Rothman, J.; Chelnokov, A.; Hartmann, J. M.; Reboud, V.; Calvo, V.

    2016-12-01

    Adding Tin (Sn) to Germanium (Ge) can turn it into a direct bandgap group IV semiconductor emitting in the mid-infrared wavelength range. Several approaches are currently being investigated to improve the GeSn devices. It has been theoretically predicted that the strain can improve their optical properties. However, the impact of strain on band parameters has not yet been measured for really high Sn contents (i.e., above 11%). In this work, we have used the photocurrent and photoluminescence spectroscopy to measure the gamma bandgap in compressively strained GeSn layers grown on Ge buffers. A good agreement is found with the modeling and the literature. We show here that the conventional GeSn deformation potentials used in the literature for smaller Sn contents can be applied up to 15% Sn. This gives a better understanding of strained-GeSn for future laser designs.

  19. A Wide Bandwidth Model for the Electrical Impedance of Magnetic BearingS

    Science.gov (United States)

    Meeker, David C.; Maslen, Eric H.; Noh, Myounggyu D.

    1996-01-01

    Magnetic bearings are often designed using magnetic circuit theory. When these bearings are built, however, effects not included in the usual circuit theory formulation have a significant influence on bearing performance. Two significant sources of error in the circuit theory approach are the neglect of leakage and fringing effects and the neglect of eddy current effects. This work formulates an augmented circuit model in which eddy current and flux leakage and fringing effects are included. Through the use of this model, eddy current power losses and actuator bandwidth can be derived. Electrical impedance predictions from the model are found to be in good agreement with experimental data from a typical magnetic bearing.

  20. Community-wide assessment of protein-interface modeling suggests improvements to design methodology.

    Science.gov (United States)

    Fleishman, Sarel J; Whitehead, Timothy A; Strauch, Eva-Maria; Corn, Jacob E; Qin, Sanbo; Zhou, Huan-Xiang; Mitchell, Julie C; Demerdash, Omar N A; Takeda-Shitaka, Mayuko; Terashi, Genki; Moal, Iain H; Li, Xiaofan; Bates, Paul A; Zacharias, Martin; Park, Hahnbeom; Ko, Jun-su; Lee, Hasup; Seok, Chaok; Bourquard, Thomas; Bernauer, Julie; Poupon, Anne; Azé, Jérôme; Soner, Seren; Ovali, Sefik Kerem; Ozbek, Pemra; Tal, Nir Ben; Haliloglu, Türkan; Hwang, Howook; Vreven, Thom; Pierce, Brian G; Weng, Zhiping; Pérez-Cano, Laura; Pons, Carles; Fernández-Recio, Juan; Jiang, Fan; Yang, Feng; Gong, Xinqi; Cao, Libin; Xu, Xianjin; Liu, Bin; Wang, Panwen; Li, Chunhua; Wang, Cunxin; Robert, Charles H; Guharoy, Mainak; Liu, Shiyong; Huang, Yangyu; Li, Lin; Guo, Dachuan; Chen, Ying; Xiao, Yi; London, Nir; Itzhaki, Zohar; Schueler-Furman, Ora; Inbar, Yuval; Potapov, Vladimir; Cohen, Mati; Schreiber, Gideon; Tsuchiya, Yuko; Kanamori, Eiji; Standley, Daron M; Nakamura, Haruki; Kinoshita, Kengo; Driggers, Camden M; Hall, Robert G; Morgan, Jessica L; Hsu, Victor L; Zhan, Jian; Yang, Yuedong; Zhou, Yaoqi; Kastritis, Panagiotis L; Bonvin, Alexandre M J J; Zhang, Weiyi; Camacho, Carlos J; Kilambi, Krishna P; Sircar, Aroop; Gray, Jeffrey J; Ohue, Masahito; Uchikoga, Nobuyuki; Matsuzaki, Yuri; Ishida, Takashi; Akiyama, Yutaka; Khashan, Raed; Bush, Stephen; Fouches, Denis; Tropsha, Alexander; Esquivel-Rodríguez, Juan; Kihara, Daisuke; Stranges, P Benjamin; Jacak, Ron; Kuhlman, Brian; Huang, Sheng-You; Zou, Xiaoqin; Wodak, Shoshana J; Janin, Joel; Baker, David

    2011-11-25

    The CAPRI (Critical Assessment of Predicted Interactions) and CASP (Critical Assessment of protein Structure Prediction) experiments have demonstrated the power of community-wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring the power of community-wide experiments to bear on a very challenging protein design problem that provides a complementary but equally fundamental test of current understanding of protein-binding thermodynamics. We have generated a number of designed protein-protein interfaces with very favorable computed binding energies but which do not appear to be formed in experiments, suggesting that there may be important physical chemistry missing in the energy calculations. A total of 28 research groups took up the challenge of determining what is missing: we provided structures of 87 designed complexes and 120 naturally occurring complexes and asked participants to identify energetic contributions and/or structural features that distinguish between the two sets. The community found that electrostatics and solvation terms partially distinguish the designs from the natural complexes, largely due to the nonpolar character of the designed interactions. Beyond this polarity difference, the community found that the designed binding surfaces were, on average, structurally less embedded in the designed monomers, suggesting that backbone conformational rigidity at the designed surface is important for realization of the designed function. These results can be used to improve computational design strategies, but there is still much to be learned; for example, one designed complex, which does form in experiments, was classified by all metrics as a nonbinder.

  1. A retinal circuit model accounting for wide-field amacrine cells

    OpenAIRE

    SAĞLAM, Murat; Hayashida, Yuki; Murayama, Nobuki

    2008-01-01

    In previous experimental studies on the visual processing in vertebrates, higher-order visual functions such as the object segregation from background were found even in the retinal stage. Previously, the “linear–nonlinear” (LN) cascade models have been applied to the retinal circuit, and succeeded to describe the input-output dynamics for certain parts of the circuit, e.g., the receptive field of the outer retinal neurons. And recently, some abstract models composed of LN cascades as the cir...

  2. Micromagnetic modeling of domain wall motion in sub-100-nm-wide wires with individual and periodic edge defects

    Directory of Open Access Journals (Sweden)

    S. Dutta

    2015-12-01

    Full Text Available Reducing the switching energy of devices that rely on magnetic domain wall motion requires scaling the devices to widths well below 100 nm, where the nanowire line edge roughness (LER is an inherent source of domain wall pinning. We investigate the effects of periodic and isolated rectangular notches, triangular notches, changes in anisotropy, and roughness measured from images of fabricated wires, in sub-100-nm-wide nanowires with in-plane and perpendicular magnetic anisotropy using micromagnetic modeling. Pinning fields calculated for a model based on discretized images of physical wires are compared to experimental measurements. When the width of the domain wall is smaller than the notch period, the domain wall velocity is modulated as the domain wall propagates along the wire. We find that in sub-30-nm-wide wires, edge defects determine the operating threshold and domain wall dynamics.

  3. Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators

    CERN Document Server

    Sharma, Bhisham

    2015-01-01

    We study the low frequency wave propagation behavior of sandwich beams containing periodically embedded internal resonators. A closed form expression for the propagation constant is obtained using a phased array approach and verified using finite element simulations. We show that local resonance and Bragg bandgaps coexist in such a system and that the width of both bandgaps is a function of resonator parameters as well as their periodicity. The interaction between the two bandgaps is studied by varying the local resonance frequency. We find that a single combined bandgap does not exist for this system and that the Bragg bandgaps transition into sub-wavelength bandgaps when the local resonance frequency is above their associated classical Bragg frequency.

  4. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure.

    Science.gov (United States)

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A; Kuk, Young

    2016-08-09

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.

  5. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure

    Science.gov (United States)

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A.; Kuk, Young

    2016-08-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.

  6. Improvements of Travel-time Tomography Models from Joint Inversion of Multi-channel and Wide-angle Seismic Data

    Science.gov (United States)

    Begović, Slaven; Ranero, César; Sallarès, Valentí; Meléndez, Adrià; Grevemeyer, Ingo

    2016-04-01

    Commonly multichannel seismic reflection (MCS) and wide-angle seismic (WAS) data are modeled and interpreted with different approaches. Conventional travel-time tomography models using solely WAS data lack the resolution to define the model properties and, particularly, the geometry of geologic boundaries (reflectors) with the required accuracy, specially in the shallow complex upper geological layers. We plan to mitigate this issue by combining these two different data sets, specifically taking advantage of the high redundancy of multichannel seismic (MCS) data, integrated with wide-angle seismic (WAS) data into a common inversion scheme to obtain higher-resolution velocity models (Vp), decrease Vp uncertainty and improve the geometry of reflectors. To do so, we have adapted the tomo2d and tomo3d joint refraction and reflection travel time tomography codes (Korenaga et al, 2000; Meléndez et al, 2015) to deal with streamer data and MCS acquisition geometries. The scheme results in a joint travel-time tomographic inversion based on integrated travel-time information from refracted and reflected phases from WAS data and reflected identified in the MCS common depth point (CDP) or shot gathers. To illustrate the advantages of a common inversion approach we have compared the modeling results for synthetic data sets using two different travel-time inversion strategies: We have produced seismic velocity models and reflector geometries following typical refraction and reflection travel-time tomographic strategy modeling just WAS data with a typical acquisition geometry (one OBS each 10 km). Second, we performed joint inversion of two types of seismic data sets, integrating two coincident data sets consisting of MCS data collected with a 8 km-long streamer and the WAS data into a common inversion scheme. Our synthetic results of the joint inversion indicate a 5-10 times smaller ray travel-time misfit in the deeper parts of the model, compared to models obtained using just

  7. Model-based plant-wide optimization of large-scale lignocellulosic bioethanol plants

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest

    2017-01-01

    with respect to maximum economic profit of a large scale biorefinery plant using a systematic model-based plantwide optimization methodology. The following key process parameters are identified as decision variables: pretreatment temperature, enzyme dosage in enzymatic hydrolysis, and yeast loading per batch...... in fermentation. The plant is treated in an integrated manner taking into account the interactions and trade-offs between the conversion steps. A sensitivity and uncertainty analysis follows at the optimal solution considering both model and feed parameters. It is found that the optimal point is more sensitive...

  8. Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal.

    Science.gov (United States)

    Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Michelotti, Francesco

    2008-02-01

    Dispersion curves of surface electromagnetic waves (SEWs) in 1D silicon nitride photonic crystals having periodic surface corrugations are considered. We experimentally demonstrate that a bandgap for SEWs can be obtained by fabricating a polymeric grating on the multilayered structure. Close to the boundary of the first Brillouin zone connected to the grating, we observe the splitting of the SEW dispersion curve into two separate branches and identify two regions of very low group velocity. The proper design of the structure allows the two folded branches to lie beyond the light line in a wide spectral range, thus doubling the density of modes available for SEWs and avoiding light scattering.

  9. Various Approaches to Forward and Inverse Wide-Angle Seismic Modelling Tested on Data from DOBRE-4 Experiment

    Science.gov (United States)

    Janik, Tomasz; Środa, Piotr; Czuba, Wojciech; Lysynchuk, Dmytro

    2016-12-01

    The interpretation of seismic refraction and wide angle reflection data usually involves the creation of a velocity model based on an inverse or forward modelling of the travel times of crustal and mantle phases using the ray theory approach. The modelling codes differ in terms of model parameterization, data used for modelling, regularization of the result, etc. It is helpful to know the capabilities, advantages and limitations of the code used compared to others. This work compares some popular 2D seismic modelling codes using the dataset collected along the seismic wide-angle profile DOBRE-4, where quite peculiar/uncommon reflected phases were observed in the wavefield. The 505 km long profile was realized in southern Ukraine in 2009, using 13 shot points and 230 recording stations. Double PMP phases with a different reduced time (7.5-11 s) and a different apparent velocity, intersecting each other, are observed in the seismic wavefield. This is the most striking feature of the data. They are interpreted as reflections from strongly dipping Moho segments with an opposite dip. Two steps were used for the modelling. In the previous work by Starostenko et al. (2013), the trial-and-error forward model based on refracted and reflected phases (SEIS83 code) was published. The interesting feature is the high-amplitude (8-17 km) variability of the Moho depth in the form of downward and upward bends. This model is compared with results from other seismic inversion methods: the first arrivals tomography package FAST based on first arrivals; the JIVE3D code, which can also use later refracted arrivals and reflections; and the forward and inversion code RAYINVR using both refracted and reflected phases. Modelling with all the codes tested showed substantial variability of the Moho depth along the DOBRE-4 profile. However, SEIS83 and RAYINVR packages seem to give the most coincident results.

  10. Simulation Evidence of Hexagonal‐to‐Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide‐Range Tunable Direct Bandgap

    Science.gov (United States)

    Li, Lei; Li, Pengfei; Lu, Ning; Dai, Jun

    2015-01-01

    2D material with tunable direct bandgap in the intermediate region (i.e., ≈2–3 eV) is key to the achievement of high efficiency in visible‐light optical devices. Herein, a simulation evidence of structure transition of monolayer ZnSe from the experimental pseudohexagonal structure to the tetragonal structure (t‐ZnSe) under lateral pressure is shown, suggesting a possible fabrication route to achieve the t‐ZnSe monolayer. The as‐produced t‐ZnSe monolayer exhibits highly tunable bandgap under the biaxial strains, allowing strain engineering of t‐ZnSe's bandgap over a wide range of 2–3 eV. Importantly, even under the biaxial strain up to 7%, the t‐ZnSe monolayer still keeps its direct‐gap property in the desirable range of 2.40–3.17 eV (corresponding to wavelength of green light to ultraviolet). The wide‐range tunability of direct bandgap appears to be a unique property of the t‐ZnSe monolayer, suggesting its potential application as a light‐emitting 2D material in red–green–blue light emission diodes or as complementary light‐absorption material in the blue–yellow region for multijunction solar cells. The straddling of the band edge of the t‐ZnSe monolayer over the redox potential of water splitting reaction also points to its plausible application for visible‐light‐driven water splitting. PMID:27774379

  11. Graded-Bandgap Solar Cells Using All-Electrodeposited ZnS, CdS and CdTe Thin-Films

    Directory of Open Access Journals (Sweden)

    Obi K. Echendu

    2015-05-01

    Full Text Available A 3-layer graded-bandgap solar cell with glass/FTO/ZnS/CdS/CdTe/Au structure has been fabricated using all-electrodeposited ZnS, CdS and CdTe thin layers. The three semiconductor layers were electrodeposited using a two-electrode system for process simplification. The incorporation of a wide bandgap amorphous ZnS as a buffer/window layer to form glass/FTO/ZnS/CdS/CdTe/Au solar cell resulted in the formation of this 3-layer graded-bandgap device structure. This has yielded corresponding improvement in all the solar cell parameters resulting in a conversion efficiency >10% under AM1.5 illumination conditions at room temperature, compared to the 8.0% efficiency of a 2-layer glass/FTO/CdS/CdTe/Au reference solar cell structure. These results demonstrate the advantages of the multi-layer graded-bandgap device architecture over the conventional 2-layer structure. In addition, they demonstrate the effective application of the two-electrode system as a simplification to the conventional three-electrode system in the electrodeposition of semiconductors with the elimination of the reference electrode as a possible impurity source.

  12. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism

    Energy Technology Data Exchange (ETDEWEB)

    Stekhoven, Daniel J. [Univ. of Zurich (Switzerland); Omasits, Ulrich [Univ. of Zurich (Switzerland); ETH Zurich (Switzerland); Quebatte, Maxime [Univ. of Basel (Switzerland); Dehio, Christoph [Univ. of Basel (Switzerland); Ahrens, Christian H. [Univ. of Zurich (Switzerland)

    2014-03-01

    Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral innermembrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion.

  13. SiRNA sequence model: redesign algorithm based on available genome-wide libraries.

    Science.gov (United States)

    Kozak, Karol

    2013-12-01

    The evolution of RNA interference (RNAi) and the development of technologies exploiting its biology have enabled scientists to rapidly examine the consequences of depleting a particular gene product in cells. Design tools have been developed based on experimental data to increase the knockdown efficiency of siRNAs. Not all siRNAs that are developed to a given target mRNA are equally effective. Currently available design algorithms take an accession, identify conserved regions among their transcript space, find accessible regions within the mRNA, design all possible siRNAs for these regions, filter them based on multi-scores thresholds, and then perform off-target filtration. These different criteria are used by commercial suppliers to produce siRNA genome-wide libraries for different organisms. In this article, we analyze existing siRNA design algorithms and evaluate weight of design parameters for libraries produced in the last decade. We proved that not all essential parameters are currently applied by siRNA vendors. Based on our evaluation results, we were able to suggest an siRNA sequence pattern. The findings in our study can be useful for commercial vendors improving the design of RNAi constructs, by addressing both the issue of potency and the issue of specificity.

  14. Mathematical modeling of an exothermic leaching reaction system: pressure oxidation of wide size arsenopyrite participates

    Science.gov (United States)

    Papangelakis, V. G.; Berk, D.; Demopoulos, G. P.

    1990-10-01

    In the design of processes involving exothermic reactions, as is the case of several sulfide leaching systems, it is desirable to utilize the energy liberated by the reaction to drive the reactor toward autogenous operation. For optimal reactor design, models which couple leaching kinetics and heat effects are needed. In this paper, the principles of modeling exothermic leaching reactions are outlined. The system investigated is the high-temperature (160 °C to 200 °C) pressure (O2) oxidation of arsenopyrite (FeAsS). The reaction system is characterized by three consecutive reactions: (1) heterogeneous dissolution of arsenopyrite particles, (2) homogeneous oxidation of iron(II) to iron(III), and (3) precipitation of scorodite (FeAsO4-2H2O). The overall kinetics is controlled by the arsenopyrite surface reaction. There was good agreement between laboratory-scale batch tests and model predictions. The model was expanded to simulate the performance of large-scale batch and single-stage continuous stirred tank reactor (CSTR) for the same rate-limiting regime. Emphasis is given to the identification of steady-state temperatures for autogenous processing. The effects of operating variables, such as feed temperature, slurry density, and retention time, on reactor operation and yield of leaching products are discussed.

  15. Culturally Responsive Pyramid Model Practices: Program-Wide Positive Behavior Support for Young Children

    Science.gov (United States)

    Allen, Rosemarie; Steed, Elizabeth A.

    2016-01-01

    This conceptual article reviews current research on racial disparities in disciplinary practices in early childhood education and work to address these issues within a positive behavior support (PBS) framework. Building largely on the Pyramid Model, recommendations and a culturally responsive approach are suggested for use within a program-wide…

  16. Maximizing bandgaps in two-dimensional photonic crystals a variational algorithm

    CERN Document Server

    Paul, P; Paul, Prabasaj; Ndi, Francis C.

    2002-01-01

    We present an algorithm for the maximization of photonic bandgaps in two-dimensional crystals. Once the translational symmetries of the underlying structure have been imposed, our algorithm finds a global maximal (and complete, if one exists) bandgap. Additionally, we prove two remarkable results related to maximal bandgaps: the so-called `maximum contrast' rule, and about the location in the Brillouin zone of band edges.

  17. Application of pressure to shift the bandgap in polystyrene-based photonic crystals

    Science.gov (United States)

    Johnson, Nigel P.; Khokhar, Ali Z.; McLachlan, Martyn A.; McComb, David W.; De La Rue, Richard M.

    2004-09-01

    We describe a simple technique for the selective area modification of the bandgap in planar 3-D photonic crystals (PhC). The PhCs are grown by controlled drying of monosized polystyrene spheres. Uniaxial pressure of 41 MPa can produce a shift in the bandgap of ~90 nm from 230 nm spheres. An unexpected broadening of the bandgap is attributed to the change in topology associated with large necks formed between spheres at pressures greater than 10 MPa.

  18. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    Science.gov (United States)

    Wanlass, Mark W.

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  19. Crops in silico: A community wide multi-scale computational modeling framework of plant canopies

    Science.gov (United States)

    Srinivasan, V.; Christensen, A.; Borkiewic, K.; Yiwen, X.; Ellis, A.; Panneerselvam, B.; Kannan, K.; Shrivastava, S.; Cox, D.; Hart, J.; Marshall-Colon, A.; Long, S.

    2016-12-01

    Current crop models predict a looming gap between supply and demand for primary foodstuffs over the next 100 years. While significant yield increases were achieved in major food crops during the early years of the green revolution, the current rates of yield increases are insufficient to meet future projected food demand. Furthermore, with projected reduction in arable land, decrease in water availability, and increasing impacts of climate change on future food production, innovative technologies are required to sustainably improve crop yield. To meet these challenges, we are developing Crops in silico (Cis), a biologically informed, multi-scale, computational modeling framework that can facilitate whole plant simulations of crop systems. The Cis framework is capable of linking models of gene networks, protein synthesis, metabolic pathways, physiology, growth, and development in order to investigate crop response to different climate scenarios and resource constraints. This modeling framework will provide the mechanistic details to generate testable hypotheses toward accelerating directed breeding and engineering efforts to increase future food security. A primary objective for building such a framework is to create synergy among an inter-connected community of biologists and modelers to create a realistic virtual plant. This framework advantageously casts the detailed mechanistic understanding of individual plant processes across various scales in a common scalable framework that makes use of current advances in high performance and parallel computing. We are currently designing a user friendly interface that will make this tool equally accessible to biologists and computer scientists. Critically, this framework will provide the community with much needed tools for guiding future crop breeding and engineering, understanding the emergent implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem

  20. FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm.

    Directory of Open Access Journals (Sweden)

    Shouheng Tuo

    Full Text Available Two-locus model is a typical significant disease model to be identified in genome-wide association study (GWAS. Due to intensive computational burden and diversity of disease models, existing methods have drawbacks on low detection power, high computation cost, and preference for some types of disease models.In this study, two scoring functions (Bayesian network based K2-score and Gini-score are used for characterizing two SNP locus as a candidate model, the two criteria are adopted simultaneously for improving identification power and tackling the preference problem to disease models. Harmony search algorithm (HSA is improved for quickly finding the most likely candidate models among all two-locus models, in which a local search algorithm with two-dimensional tabu table is presented to avoid repeatedly evaluating some disease models that have strong marginal effect. Finally G-test statistic is used to further test the candidate models.We investigate our method named FHSA-SED on 82 simulated datasets and a real AMD dataset, and compare it with two typical methods (MACOED and CSE which have been developed recently based on swarm intelligent search algorithm. The results of simulation experiments indicate that our method outperforms the two compared algorithms in terms of detection power, computation time, evaluation times, sensitivity (TPR, specificity (SPC, positive predictive value (PPV and accuracy (ACC. Our method has identified two SNPs (rs3775652 and rs10511467 that may be also associated with disease in AMD dataset.

  1. Local Genealogies in a Linear Mixed Model for Genome-wide Association Mapping in Complex Pedigreed Populations

    DEFF Research Database (Denmark)

    Sahana, Goutam; Mailund, Thomas; Lund, Mogens Sandø

    2011-01-01

    be extended to incorporate other effects in a straightforward and rigorous fashion. Here, we present a complementary approach, called ‘GENMIX (genealogy based mixed model)’ which combines advantages from two powerful GWAS methods: genealogy-based haplotype grouping and MMA. Subjects and Methods: We validated......Introduction: The state-of-the-art for dealing with multiple levels of relationship among the samples in genome-wide association studies (GWAS) is unified mixed model analysis (MMA). This approach is very flexible, can be applied to both family-based and population-based samples, and can...

  2. A metabolic system-wide characterisation of the pig: a model for human physiology.

    Science.gov (United States)

    Merrifield, Claire A; Lewis, Marie; Claus, Sandrine P; Beckonert, Olaf P; Dumas, Marc-Emmanuel; Duncker, Swantje; Kochhar, Sunil; Rezzi, Serge; Lindon, John C; Bailey, Mick; Holmes, Elaine; Nicholson, Jeremy K

    2011-09-01

    The pig is a single-stomached omnivorous mammal and is an important model of human disease and nutrition. As such, it is necessary to establish a metabolic framework from which pathology-based variation can be compared. Here, a combination of one and two-dimensional (1)H and (13)C nuclear magnetic resonance spectroscopy (NMR) and high-resolution magic angle spinning (HR-MAS) NMR was used to provide a systems overview of porcine metabolism via characterisation of the urine, serum, liver and kidney metabolomes. The metabolites observed in each of these biological compartments were found to be qualitatively comparable to the metabolic signature of the same biological matrices in humans and rodents. The data were modelled using a combination of principal components analysis and Venn diagram mapping. Urine represented the most metabolically distinct biological compartment studied, with a relatively greater number of NMR detectable metabolites present, many of which are implicated in gut-microbial co-metabolic processes. The major inter-species differences observed were in the phase II conjugation of extra-genomic metabolites; the pig was observed to conjugate p-cresol, a gut microbial metabolite of tyrosine, with glucuronide rather than sulfate as seen in man. These observations are important to note when considering the translatability of experimental data derived from porcine models.

  3. Exploring Direct to Indirect Bandgap Transition in Silicon Nanowires: Size Effect

    Science.gov (United States)

    Shi, Lihong; Zhang, Gang

    2016-10-01

    We have investigated the electronic band structure of [110] silicon nanowires (SiNWs) using first-principles calculations. We find that, in the ultrathin diameter regime, SiNWs have a direct bandgap, but the energy difference between the indirect and direct fundamental bandgaps decreases as the nanowire diameter increases. This indicates that larger [110] SiNWs could have an indirect bandgap. Fundamentally, a series of quantitative direct-indirect bandgap transitional diameters are obtained for different cross-sectional geometries, with the largest values for SiNWs with triangular cross section.

  4. Urbach's rule derived from thermal fluctuations in the band-gap energy

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1978-01-01

    The exponential absorption edge (known as Urbach's rule) observed in most materials is interpreted in terms of thermal fluctuations in the band-gap energy. The main contribution to the temperature shift of the band-gap energy is due to the temperature-dependent self-energies of the electrons...... and holes interacting with the phonons. Since the phonon number is fluctuating in thermal equilibrium, the band-gap energy is also fluctuating resulting in an exponential absorption tail below the average band-gap energy. These simple considerations are applied to derive Urbach's rule at high temperatures...

  5. Monte Carlo approach to assess the uncertainty of wide-angle layered models: Application to the Santos Basin, Brazil

    Science.gov (United States)

    Loureiro, Afonso; Afilhado, Alexandra; Matias, Luís; Moulin, Maryline; Aslanian, Daniel

    2016-06-01

    In the Santos Basin (Brazil), two parallel wide-angle refraction profiles show different crustal structures. One shows moderate crustal velocity gradient, and a clear Moho with topography. The other has an anomalous velocity zone, and no clear Moho reflections. This has large implications on the geological and geodynamical interpretation of the basin. Model uncertainties must be excluded as a source of these differences. We developed VMONTECARLO, a tool to assess model uncertainty of layered velocity models using a Monte Carlo approach and simultaneous parameter perturbation using all picked refracted and reflected arrivals. It gives insights into the acceptable geological interpretations allowed by data and model uncertainty through velocity-depth plots that provide: a) the velocity-depth profile range that is consistent with the travel times; b) the random model that provides the best fit, keeping most of the observations covered by ray-tracing; c) insight into valid models dispersion; d) main model features unequivocally required by the travel times, e.g., first-order versus second-order discontinuities, and velocity gradient magnitudes; e) parameter value probability distribution histograms. VMONTECARLO is seamlessly integrated into a RAYINVR-based modelling work-flow, and can be used to assess final models or sound the solution space for alternate models, and is also capable of evaluating forward models without the need for inversion, thus avoiding local minima that may trap the inversion algorithms and providing information for models still not well-parametrised. Results for the Brazilian models show that the imaged structures are indeed geologically different and are not due to different interpretations of the same features within the model uncertainty bounds. These differences highlight the strong heterogeneity of the crust in the middle of the Santos Basin, where the rift is supposed to have failed.

  6. Numerical study and topology optimization of 1D periodic bimaterial phononic crystal plates for bandgaps of low order Lamb waves.

    Science.gov (United States)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, Mohammad

    2015-03-01

    The optimum topology of bimaterial phononic crystal (PhCr) plates with one-dimensional (1D) periodicity to attain maximum relative bandgap width of low order Lamb waves is computationally investigated. The evolution of optimized topology with respect to filling fraction of constituents, alternatively stiff scattering inclusion, is explored. The underlying idea is to develop PhCr plate structures with high specific bandgap efficiency at particular filling fraction, or further with multiscale functionality through gradient of optimized PhCr unitcell all over the lattice array. Multiobjective genetic algorithm (GA) is employed in this research in conjunction with finite element method (FEM) for topology optimization of silicon-tungsten PhCr plate unitcells. A specialized FEM model is developed and verified for dispersion analysis of plate waves and calculation of modal response. Modal band structure of regular PhCr plate unitcells with centric scattering layer is studied as a function of aspect ratio and filling fraction. Topology optimization is then carried out for a few aspect ratios, with and without prescribed symmetry, over various filling fractions. The efficiency of obtained solutions is verified as compared to corresponding regular centric PhCr plate unitcells. Moreover, being inspired by the obtained optimum topologies, definite and easy to produce topologies are proposed with enhanced bandgap efficiency as compared to centric unitcells. Finally a few cases are introduced to evaluate the frequency response of finite PhCr plate structures produced by achieved topologies and also to confirm the reliability of calculated modal band structures. Cases made by consecutive unitcells of different filling fraction are examined in order to attest the bandgap efficiency and multiscale functionality of such graded PhCr plate structures. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  7. High bandgap III-V alloys for high efficiency optoelectronics

    Science.gov (United States)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  8. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...

  9. Surface band-gap narrowing in quantized electron accumulation layers.

    Science.gov (United States)

    King, P D C; Veal, T D; McConville, C F; Zúñiga-Pérez, J; Muñoz-Sanjosé, V; Hopkinson, M; Rienks, E D L; Jensen, M Fuglsang; Hofmann, Ph

    2010-06-25

    An energy gap between the valence and the conduction band is the defining property of a semiconductor, and the gap size plays a crucial role in the design of semiconductor devices. We show that the presence of a two-dimensional electron gas near to the surface of a semiconductor can significantly alter the size of its band gap through many-body effects caused by its high electron density, resulting in a surface band gap that is much smaller than that in the bulk. Apart from reconciling a number of disparate previous experimental findings, the results suggest an entirely new route to spatially inhomogeneous band-gap engineering.

  10. Liquid-impermeable inverse opals with invariant photonic bandgap.

    Science.gov (United States)

    Kang, Hyelim; Lee, Joon-Seok; Chang, Won Seok; Kim, Shin-Hyun

    2015-02-18

    Omniphobic inverse opals are created by structurally and chemically modifying the surface of inverse opals through reactive ion etching. During the etching, void arrays of the inverse opal surface evolves to a triangular post array with re-entrant geometry. The elaborate structure can efficiently pin the air-liquid interface and retain air cavities against water and oil, thereby providing liquid-impermeable inverse opals with invariant photonic bandgap. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optoelectronic devices based on graded bandgap structures utilising electroplated semiconductors

    OpenAIRE

    2016-01-01

    The main aim of the work presented in this thesis is to develop low-cost multi-junction graded bandgap solar cells using electroplated semiconductors. The semiconductor materials explored in this research are CdSe, ZnTe, CdS, CdMnTe and CdTe thin films. These layers were characterised for their structural, compositional, morphological, optical, and electrical features using XRD, Raman spectroscopy, EDX, SEM, UV-Vis spectroscopy, PEC cell, C-V, I-V and UPS measurement techniques respectively. ...

  12. High bandgap III-V alloys for high efficiency optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  13. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil;

    1999-01-01

    Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...... technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction...

  14. When water saving limits recycling: Modelling economy-wide linkages of wastewater use.

    Science.gov (United States)

    Luckmann, Jonas; Grethe, Harald; McDonald, Scott

    2016-01-01

    The reclamation of wastewater is an increasingly important water source in parts of the world. It is claimed that wastewater recycling is a cheap and reliable form of water supply, which preserves water resources and is economically efficient. However, the quantity of reclaimed wastewater depends on water consumption by economic agents connected to a sewage system. This study uses a Computable General Equilibrium (CGE) model to analyse such a cascading water system. A case study of Israel shows that failing to include this linkage can lead to an overestimation of the potential of wastewater recycling, especially when economic agents engage in water saving.

  15. Time-resolved measurements of charge carrier dynamics and optical nonlinearities in narrow-bandgap semiconductors

    Science.gov (United States)

    Olson, Benjamin Varberg

    generating excess carriers near one end of a MWIR T2SL and measuring the transit time to a thin, 2 lower-bandgap superlattice placed at the other end, the time-of-flight of vertically diffusing carriers is determined. Through investigation of both unintentionally doped and p-type superlattices at 77 K, the vertical hole and electron diffusion coefficients are determined to be 0.04+/-0.03 cm2/s and 4.7+/-0.5 cm2/s, corresponding to vertical mobilities of 6+/-5 cm 2/Vs and 700+/-80 cm2/Vs, respectively. These measurements are, to my knowledge, the first direct measurements of vertical transport properties in narrow-bandgap superlattices. Lastly, the widely tunable two-color ultrafast laser system used in this research allowed for the investigation of nonlinear optical properties in narrow-bandgap semiconductors. Time-resolved measurements taken at 77 K of the nondegenerate two-photon absorption spectrum of bulk n-type GaSb have provided new information about the nonresonant change in absorption and two-photon absorption coefficients in this material. Furthermore, as the nondegenerate spectrum was measured over a wide range of optical frequencies, a Kramers-Kronig transformation allowed the dispersion of the nondegenerate nonlinear refractive index to be calculated.

  16. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R., E-mail: shane.johnson@asu.edu [Center for Photonics Innovation and School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Steenbergen, E. H. [U. S. Air Force Research Laboratory, AFRL/RXAN, Wright Patterson, Ohio 45433 (United States); Synowicki, R. A. [J. A. Woollam Co., Inc., 645 M. Street, Suite 102, Lincoln, Nebraska 68508 (United States)

    2015-12-28

    The structural and optical properties of lattice-matched InAs{sub 0.911}Sb{sub 0.089} bulk layers and strain-balanced InAs/InAs{sub 1−x}Sb{sub x} (x ∼ 0.1–0.4) superlattices grown on (100)-oriented GaSb substrates by molecular beam epitaxy are examined using X-ray diffraction, spectroscopic ellipsometry, and temperature dependent photoluminescence spectroscopy. The photoluminescence and ellipsometry measurements determine the ground state bandgap energy and the X-ray diffraction measurements determine the layer thickness and mole fraction of the structures studied. Detailed modeling of the X-ray diffraction data is employed to quantify unintentional incorporation of approximately 1% Sb into the InAs layers of the superlattices. A Kronig-Penney model of the superlattice miniband structure is used to analyze the valence band offset between InAs and InAsSb, and hence the InAsSb band edge positions at each mole fraction. The resulting composition dependence of the bandgap energy and band edge positions of InAsSb are described using the bandgap bowing model; the respective low and room temperature bowing parameters for bulk InAsSb are 938 and 750 meV for the bandgap, 558 and 383 meV for the conduction band, and −380 and −367 meV for the valence band.

  17. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy

    Science.gov (United States)

    Webster, P. T.; Riordan, N. A.; Liu, S.; Steenbergen, E. H.; Synowicki, R. A.; Zhang, Y.-H.; Johnson, S. R.

    2015-12-01

    The structural and optical properties of lattice-matched InAs0.911Sb0.089 bulk layers and strain-balanced InAs/InAs1-xSbx (x ˜ 0.1-0.4) superlattices grown on (100)-oriented GaSb substrates by molecular beam epitaxy are examined using X-ray diffraction, spectroscopic ellipsometry, and temperature dependent photoluminescence spectroscopy. The photoluminescence and ellipsometry measurements determine the ground state bandgap energy and the X-ray diffraction measurements determine the layer thickness and mole fraction of the structures studied. Detailed modeling of the X-ray diffraction data is employed to quantify unintentional incorporation of approximately 1% Sb into the InAs layers of the superlattices. A Kronig-Penney model of the superlattice miniband structure is used to analyze the valence band offset between InAs and InAsSb, and hence the InAsSb band edge positions at each mole fraction. The resulting composition dependence of the bandgap energy and band edge positions of InAsSb are described using the bandgap bowing model; the respective low and room temperature bowing parameters for bulk InAsSb are 938 and 750 meV for the bandgap, 558 and 383 meV for the conduction band, and -380 and -367 meV for the valence band.

  18. On the Bandgap quantum coupler and the harmonic oscillator interacting with a reservoir

    CERN Document Server

    Quijas, P C G

    2007-01-01

    In order to be able to study dissipation, the interaction between a single system and their environment was introduced in quantum mechanics. Master and quantum Langeving equations was derived and, also, decoherence was studied using this approach. One of the most used model in this field of research is a single harmonic oscillator interacting with an infinite number of harmonic oscillators. In this work we analytically solve, with the evolution operator method, the Schrodinger equation for this model in the case of resonance. Also we address a different aspect of the quantum computing with linear optics. That is, we propose the linear bandgap quantum coupler, in the cases N=2 and N=3, to generate a new phase operator $U_{dp}^{\\pi} $ working on the two and three qubits basis like an alternative realization of a quantum phase gate.

  19. Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum.

    Science.gov (United States)

    Qian, Jun; Xu, Haibin; Song, Jingyuan; Xu, Jiang; Zhu, Yingjie; Chen, Shilin

    2013-01-10

    Simple sequence repeats (SSRs) or microsatellites are one of the most popular sources of genetic markers and play a significant role in gene function and genome organization. We identified SSRs in the genome of Ganoderma lucidum and analyzed their frequency and distribution in different genomic regions. We also compared the SSRs in G. lucidum with six other Agaricomycetes genomes: Coprinopsis cinerea, Laccaria bicolor, Phanerochaete chrysosporium, Postia placenta, Schizophyllum commune and Serpula lacrymans. Based on our search criteria, the total number of SSRs found ranged from 1206 to 6104 and covered from 0.04% to 0.15% of the fungal genomes. The SSR abundance was not correlated with the genome size, and mono- to tri-nucleotide repeats outnumbered other SSR categories in all of the species examined. In G. lucidum, a repertoire of 2674 SSRs was detected, with mono-nucleotides being the most abundant. SSRs were found in all genomic regions and were more abundant in non-coding regions than coding regions. The highest SSR relative abundance was found in introns (108 SSRs/Mb), followed by intergenic regions (84 SSRs/Mb). A total of 684 SSRs were found in the protein-coding sequences (CDSs) of 588 gene models, with 81.4% of them being tri- or hexa-nucleotides. After scanning for InterPro domains, 280 of these genes were successfully annotated, and 215 of them could be assigned to Gene Ontology (GO) terms. SSRs were also identified in 28 bioactive compound synthesis-related gene models, including one 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), three polysaccharide biosynthesis genes and 24 cytochrome P450 monooxygenases (CYPs). Primers were designed for the identified SSR loci, providing the basis for the future development of SSR markers of this medicinal fungus.

  20. Modeling and Implementation of Omnidirectional Soccer Robot with Wide Vision Scope Applied in Robocup-MSL

    Directory of Open Access Journals (Sweden)

    Mohsen Taheri

    2010-04-01

    Full Text Available The purpose of this paper is to design and implement a middle size soccer robot to conform RoboCup MSL league. First, according to the rules of RoboCup, we design the middle size soccer robot, The proposed autonomous soccer robot consists of the mechanical platform, motion control module, omni-directional vision module, front vision module, image processing and recognition module, investigated target object positioning and real coordinate reconstruction, robot path planning, competition strategies, and obstacle avoidance. And this soccer robot equips the laptop computer system and interface circuits to make decisions. In fact, the omnidirectional vision sensor of the vision system deals with the image processing and positioning for obstacle avoidance and
    target tracking. The boundary-following algorithm (BFA is applied to find the important features of the field. We utilize the sensor data fusion method in the control system parameters, self localization and world modeling. A vision-based self-localization and the conventional odometry
    systems are fused for robust selflocalization. The localization algorithm includes filtering, sharing and integration of the data for different types of objects recognized in the environment. In the control strategies, we present three state modes, which include the Attack Strategy, Defense Strategy and Intercept Strategy. The methods have been tested in the many Robocup competition field middle size robots.

  1. LXCat: A web-based, community-wide project on data for modeling low temperature plasmas

    Science.gov (United States)

    Pitchford, L. C.

    2014-10-01

    LXCat is an open-access website (www.lxcat.net) for exchanging data related to ion and electron transport and scattering cross sections in cold, neutral gases. At present 30 people from 12 countries have contributed to the LXCat project. This presentation will focus on the status of the data available for electrons on LXCat. These data are primarily in the form of ``complete'' sets of cross sections, compiled or calculated by different contributors, covering a range of energies from thermal up to about 1 keV. The cross section data can be used directly in Monte Carlo simulations and can also be used as input to Boltzmann equation solvers. Solution of the homogeneous, steady-state Boltzmann equation yields electron energy distribution functions (edf) as a function of reduced electric field strength, E/N, integrals over which yield electron transport and rate coefficients. The transport and rate coefficient data are required input for fluid models of low temperature plasmas. Evaluation of the cross section data sets available on LXCat is a key issue. To this end, the LXCat team has been making systematic intercomparisons of cross section data and comparisons of calculated and measured transport and rate coefficients. Our evaluations have been reported previously for noble gases and for common atmospheric gases. The LXCat team is now evaluating data for more complex molecules.

  2. Dissecting systems-wide data using mixture models: application to identify affected cellular processes

    Directory of Open Access Journals (Sweden)

    Giphart-Gassler Micheline

    2005-07-01

    Full Text Available Abstract Background Functional analysis of data from genome-scale experiments, such as microarrays, requires an extensive selection of differentially expressed genes. Under many conditions, the proportion of differentially expressed genes is considerable, making the selection criteria a balance between the inclusion of false positives and the exclusion of false negatives. Results We developed an analytical method to determine a p-value threshold from a microarray experiment that is dependent on the quality and design of the data set. To this aim, populations of p-values are modeled as mathematical functions in which the parameters to describe these functions are estimated in an unsupervised manner. The strength of the method is exemplified by its application to a published gene expression data set of sporadic and familial breast tumors with BRCA1 or BRCA2 mutations. Conclusion We present an objective and unsupervised way to set thresholds adapted to the quality and design of the experiment. The resulting mathematical description of the data sets of genome-scale experiments enables a probabilistic approach in systems biology.

  3. Electronic structure characterization and bandgap engineeringofsolar hydrogen materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jinghua

    2007-11-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe{sub 2}O{sub 3} and ZnO.

  4. Genome-wide transcriptional comparison of MPP+ treated human neuroblastoma cells with the state space model

    Directory of Open Access Journals (Sweden)

    Jin Hwan Do

    2015-10-01

    Full Text Available This study compared a parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+ response in two distinct phenotypes of human neuroblastoma cell lines: neuronal N-type SH-SY5Y cells and flat substrate-adherent S-type SH-EP cells. SH-SY5Y and SH-EP cells shared only 14% of their own MPP+ response genes, and their gene ontology (GO analysis revealed significant endoplasmic reticulum (ER stress by misfolded proteins. Gene modules, which are groups of transcriptionally co-expressed genes with similar biological functions, were identified for SH-SY5Y and SH-EP cells by using time-series microarray data with the state space model (SSM. All modules of SH-SY5Y and SH-EP cells showed strong positive auto-regulation that was often mediated via signal molecules and may cause bi-stability. Interactions in gene levels were calculated by using SSM parameters obtained in the process of module identification. Gene networks that were constructed from the gene interaction matrix showed different hub genes with high node degrees between SH-SY5Y and SH-EP cells. That is, key hub genes of SH-SY5Y cells were DCN, HIST1H2BK, and C5orf40, whereas those of SH-EP cells were MSH6, RBCK1, MTHFD2, ZNF26, CTH, and CARS. These results suggest that inhibition of the mitochondrial complex I by MPP+ might induce different downstream processes that are cell type dependent.

  5. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.

    Science.gov (United States)

    Ekama, G A

    2009-05-01

    Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery

  6. Genome-wide prediction, display and refinement of binding sites with information theory-based models

    Directory of Open Access Journals (Sweden)

    Leeder J Steven

    2003-09-01

    . Conclusions Delila-Genome was used to scan the human genome sequence with information weight matrices of transcription factor binding sites, including PXR/RXRα, AHR and NF-κB p50/p65, and matrices for RNA binding sites including splice donor, acceptor, and SC35 recognition sites. Comparisons of genome scans with the original and refined PXR/RXRα information weight matrices indicate that the refined model more accurately predicts the strengths of known binding sites and is more sensitive for detection of novel binding sites.

  7. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    Directory of Open Access Journals (Sweden)

    Yaser Abdulraheem

    2014-05-01

    Full Text Available An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si wafers by plasma enhanced chemical vapor deposition (PECVD. The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause

  8. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Abdulraheem, Yaser, E-mail: yaser.abdulraheem@kuniv.edu.kw [Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University. P.O. Box 5969, 13060 Safat (Kuwait); Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef [IMEC, Kapeldreef 75, 3001, Leuven (Belgium)

    2014-05-15

    An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H) layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si) wafers by plasma enhanced chemical vapor deposition (PECVD). The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc) bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause of the observed

  9. [The effect of betahistine on histological changes in rabbit brain in model of whole body wide-frequency vibration].

    Science.gov (United States)

    Shimkus, Iu Iu; Sapegin, I D

    2013-01-01

    In acute experiments in conscious rabbits was studied protective action of selective blocker of histamine H3-receptor betahistine (2mg/kg i/v) against histological changes in precentral and postcentral gyrus, as well as in temporal lobe of cerebral cortex, thalamus, hypothalamus, and cerebellum, arising in case of modeling of whole body wide-frequency vibration. Betahistine attenuates edematous and degenerative changes in neurons and reciprocal glial reaction, caused by vibration, but does not eliminate edema in perivascular spaces. This effect may be related to the improvement of blood supply as a result of of vasodilatory action and decrease of oxygen consumption via vestibuloprotective effect.

  10. Quantitative models of the mechanisms that control genome-wide patterns of transcription factor binding during early Drosophila development.

    Directory of Open Access Journals (Sweden)

    Tommy Kaplan

    2011-02-01

    Full Text Available Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6-0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription

  11. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, Akira; Maurayama, Hiroki

    2010-01-01

    Ytterbium-doped photonic-bandgap fiber sources operationg at the long-wavelength edge of the ytterbium gain band are being investigated for high power amplification. Artificial shaping of the gain spectrum by the characteristic distributed filtering effect of the photonic bandgap enables...

  12. High Thermal and Electrical Tunability of Negative Dielectric Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Scolari, Lara; Weirich, Johannes;

    2008-01-01

    We infiltrate photonic crystal fibers with negative dielectric liquid crystals. 400nm bandgap shift is obtained in the range 22ºC-80ºC and 119nm shift of the long-wavelength bandgap edge is achieved by applying a voltage of 200V....

  13. True photonic band-gap mode-control in VCSEL structures

    DEFF Research Database (Denmark)

    Romstad, F.; Madsen, M.; Birkedal, Dan;

    2003-01-01

    Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....

  14. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics.

    Science.gov (United States)

    Beiley, Zach M; Christoforo, M Greyson; Gratia, Paul; Bowring, Andrea R; Eberspacher, Petra; Margulis, George Y; Cabanetos, Clément; Beaujuge, Pierre M; Salleo, Alberto; McGehee, Michael D

    2013-12-23

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%.

  15. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    Science.gov (United States)

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  16. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    Science.gov (United States)

    Wanlass, Mark W.; Carapella, Jeffrey J.; Steiner, Myles A.

    2014-07-08

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  17. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W; Carapella, Jeffrey J; Steiner, Myles A

    2016-11-01

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  18. Modeling Hysteresis with Inertial-Dependent Prandtl-Ishlinskii Model in Wide-Band Frequency-Operated Piezoelectric Actuator

    Directory of Open Access Journals (Sweden)

    Vahid Hassani

    2012-01-01

    Full Text Available One of the major problems occurring in many technical applications is the presence of the hysteretic behavior in sensors and actuators, which causes a nonlinear relationship between input and output variables in such devices. Since the nonlinear phenomenon of hysteresis degrades the performance of the piezoelectric materials and piezoelectric drive mechanisms, for example, in positioning control framework, it has to be characterized in order to mitigate the effect of the nonlinearity in the devices. This paper is aimed to characterize and model the hysteresis in typical piezoelectric actuators under load-free and preloaded circumstances incorporating the inertial effect of the system. For this purpose, the piezoelectric actuator is modeled as a mass-spring-damper system, which is expressed in terms of a stop operator as one of the essential yet efficient hysteresis operators in the Prandtl-Ishlinskii (PI model. The reason of utilizing the stop operator in this study is for the sake of control purposes, as the stop operator plays as the inverse of the play operator in the PI model and can be used in a feed-forward controller scheme to suppress the effect of hysteresis in general control framework. The results reveal that this model exhibits better correspondence to the measurement output compared to that of the classical PI model.

  19. Optical function spectra and bandgap energy of Cu{sub 2}SnSe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. G., E-mail: sukgeun.choi@nrel.gov; Kang, J.; Beall, C.; Wei, S.-H.; Christensen, S. T.; Repins, I. L. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Li, J.; Haneef, H.; Podraza, N. J. [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, Ohio 43606 (United States)

    2015-01-26

    We present the optical function spectra of Cu{sub 2}SnSe{sub 3} determined from 0.30 to 6.45 eV by spectroscopic ellipsometry (SE) at room temperature. We analyze the SE data using the Tauc-Lorentz model and obtain the direct-bandgap energy of 0.49 ± 0.02 eV, which is much smaller than the previously known value of 0.84 eV for the monoclinic-phase Cu{sub 2}SnSe{sub 3}. We also perform density-functional theory calculations to obtain the complex dielectric function data, and the results show good agreement with the experimental spectrum. Finally, we discuss the electronic origin of the main optical structures.

  20. Phonon-assisted coherent control of injected carriers in indirect bandgap semiconductors

    Science.gov (United States)

    Rioux, Julien; Nastos, Fred; Sipe, John E.

    2007-03-01

    Charge and spin currents can be generated in direct semiconductors by quantum interference between one- and two-photon absorption. For semiconductors such as Si and Ge, optical injection of carriers over the indirect bandgap must be assisted by momentum transfer from phonon scattering. We consider the optical properties for such 1+2 photon processes in the presence of the electron-phonon interaction. The latter is modelled by acoustic deformation potential. Indirect transitions involve double Brillouin zone integrations, which are computed by a linearized tetrahedron method. We compare our results to those for bulk GaAs. M.J. Stevens, R.D.R. Bhat, A. Najmaie, H.M. van Driel, J.E. Sipe and A.L. Smirl, in Optics of Semiconductors and Their Nanostructures, edited by H. Kalt and M. Hetterich (Springer, Berlin, 2004), vol. 146 of Springer Series in Solid-State Sciences, p. 209.

  1. Impact of structural distortions on the performance of hollow-core photonic bandgap fibers.

    Science.gov (United States)

    Fokoua, Eric Numkam; Richardson, David J; Poletti, Francesco

    2014-02-10

    We present a generic model for studying numerically the performance of hollow-core photonic bandgap fibers (HC-PBGFs) with arbitrary cross-sectional distortions. Fully vectorial finite element simulations reveal that distortions beyond the second ring of air holes have an impact on the leakage loss and bandwidth of the fiber, but do not significantly alter its surface scattering loss which remains the dominant contribution to the overall fiber loss (providing that a sufficient number of rings of air holes (≥ 5) are used). We have found that while most types of distortions in the first two rings are generally detrimental, enlarging the core defect while keeping equidistant and on a circular boundary the glass nodes surrounding the core may produce losses half those compared to "idealized" fiber designs and with no penalty in terms of the transmission bandwidth.

  2. Bandgap engineered graphene and hexagonal boron nitride for resonant tunnelling diode

    Indian Academy of Sciences (India)

    PENCHALAIAH PALLA; GOPI RAJA UPPU; ANITA S ETHIRAJ; J P RAINA

    2016-10-01

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green’s function formalism on an effective mass-Hamiltonian. Both p- and n-type DBRTDs exhibit a negative differential resistance effect, which entails the resonant tunnelling through the hole and electron bound states in the graphene quantum well, respectively. The peak-to-valley ratio of approximately 8 (3) for p-type (n-type) DBRTD with quantum well of 5.1 nm (4.3 nm) at a barrier width of 1.3 nm was achieved for zero bandgap graphene at room temperature.

  3. Considerations of dopant-dependent bandgap narrowing for accurate device simulation in abrupt HBTs

    Institute of Scientific and Technical Information of China (English)

    Zhou Shouli; Xiong Deping; Qin Yali

    2009-01-01

    Heavy doping of the base in HBTs brings about a bandgap narrowing(BGN)effect,which modifies the intrinsic carrier density and disturbs the band offset,and thus leads to the change of the currents.Based on a thermionic-field-diffusion model that is used to the analyze the performance of all abrupt HBT with a heavydoped base,the conclusion is made that,although the BGN effect makes the currents obviously change due to the modification of the intrinsic carrier density,the band offsets disturbed by the BGN effect should also be taken into account in the analysis of the electrical characteristics of abrupt HBTs.In addition,the BGN effect changes the bias voltage for the onset of Kirk effects.

  4. Suported by Replacement Policy for Caching World-Wide Web Documents Based on Site-Graph Model

    Institute of Scientific and Technical Information of China (English)

    庄伟强; 胡敏; 王鼎兴; 郑纬民; 沈美明

    2001-01-01

    The hit rate, a major metric for evaluating proxy caches, is mostly limited by the replacementstrategy of proxy caches. However, in traditional proxy caches, the hit rate does not usually successfullypredict how well a proxy cache will perform because the proxy cache counts any hit in its caching space whichhas many pages without useful information, so its replacement strategy fails to determine which pages to keepand which to release. The proxy cache efficiency can be measured more accurately using the valid hit rateintroduced in this paper. An efficient replacement strategy based on the Site-Graph model for WWW(World-Wide Web) documents is also discussed in this paper. The model analyzes user access behavior as abasis for the replacement strategy. Simulation results demonstrate that the replacement strategy improvesproxy cache efficiency.``

  5. Tunable bandgap in few-layer black phosphorus by electrical field

    Science.gov (United States)

    Li, Dong; Xu, Jin-Rong; Ba, Kun; Xuan, Ningning; Chen, Mingyuan; Sun, Zhengzong; Zhang, Yu-Zhong; Zhang, Zengxing

    2017-09-01

    Dynamically engineering bandgap in semiconductors may enable a flexible design and optimization of electronics and optoelectronics. Layered black phosphorus is a 2D semiconductor with a direct bandgap and promising device characteristics. Theoretical studies indicate that the bandgap in black phosphorus can be tuned by electrical field. Here, through designing a double-gated field-effect transistor device configuration, we experimentally demonstrate that the bandgap in few-layer black phosphorus can be dynamically continually tuned by perpendicular electrical field. With an electrical displacement field of 1 V nm-1, the detailed study indicates that the bandgap can reduce around 100 meV. The finding here should be helpful on the flexible design and optimization of black phosphorus electronics and optoelectronics, and may open up some other new possible applications.

  6. Compressed lead-based perovskites reaching optimal Shockley-Queisser bandgap with prolonged carrier lifetime

    CERN Document Server

    Liu, Gang; Gong, Jue; Yang, Wenge; Mao, Ho-kwang; Liu, Zhenxian; Schaller, Richard D; Zhang, Dongzhou; Xu, Tao

    2016-01-01

    Atomic structure of materials plays a decisive role in the light-matter interaction. Yet, despite its unprecedented progress, further efficiency boost of Lead-based organic-inorganic perovskite solar cells is hampered by its greater bandgap than the optimum value according to Shockley-Queisser limit. Here, we report the experimental achievement of bandgap narrowing in formamidinium lead triiodide from 1.489 to 1.337 eV by modulating the lattice constants under hydraulic compression, reaching the optimized bandgap for single-junction solar cells. Strikingly, such bandgap narrowing is accomplished with improved, instead of sacrificed carrier lifetime. More attractively, the narrowed bandgap is partially retainable after the release of pressure. This work opens a new dimension in basic science understanding of structural photonics and paves an alternative pathway towards more efficient photovoltaic materials.

  7. Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splitting

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2013-01-01

    Computational screening is becoming increasingly useful in the search for new materials. We are interested in the design of new semiconductors to be used for light harvesting in a photoelectrochemical cell. In the present paper, we study the double perovskite structures obtained by combining 46...... stable cubic perovskites which was found to have a finite bandgap in a previous screening-study. The four-metal double perovskite space is too large to be investigated completely. For this reason we propose a method for combining different metals to obtain a desired bandgap. We derive some bandgap design...... rules on how to combine two cubic perovskites to generate a new combination with a larger or smaller bandgap compared with the constituent structures. Those rules are based on the type of orbitals involved in the conduction bands and on the size of the two cubic bandgaps. We also see that a change...

  8. On topology optimization of acoustic metamaterial lattices for locally resonant bandgaps of flexural waves

    CERN Document Server

    Hedayatrasa, Saeid; Uddin, Mohammad

    2016-01-01

    Optimized topology of bi-material acoustic metamaterial lattice plates is studied for maximized locally resonant bandgap of flexural guided waves. Optimized layout of the two relatively stiff and compliant material phases in the design domain is explored, free from any restrictions on the topology and shape of the relevant domains. Multiobjective optimization is performed through which maximized effective stiffness or minimized overall mass of the bandgap topology is additionally ensured. Extreme and selected intermediate optimized topologies of Pareto fronts are presented and their bandgap efficiencies and effective stiffness are compared. The bi-material constitution of selected topologies are further altered and modal band structure of resultant multilateral and porous designs are evaluated. Novel, core-shell like, locally resonant bandgaps are introduced. It is shown that how the bandgap efficiency and structural mass and/or stiffness can be optimized through optimized microstructural design of the matrix...

  9. Universal dispersion model for characterization of optical thin films over a wide spectral range: application to hafnia.

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Ohlídal, Ivan

    2015-11-01

    A dispersion model capable of expressing the dielectric response of a broad class of optical materials in a wide spectral range from far IR to vacuum UV is described in detail. The application of this universal dispersion model to a specific material is demonstrated using the ellipsometric and spectrophotometric characterization of a hafnia film prepared by vacuum evaporation on silicon substrate. The characterization utilizes simultaneous processing of data from multiple techniques and instruments covering the wide spectral range and includes the characterization of roughness, nonuniformity, transition layer, and native oxide layer on the back of the substrate. It is shown how the combination of measurements in light reflected from both sides of the sample and transmitted light allows the separation of weak absorption in films and substrates. This approach is particularly useful in the IR region where the absorption structures in films and substrates often overlap and a prior measurement of the bare substrate may be otherwise necessary for precise separation. Individual phenomena that contribute to the dielectric response, i.e., interband electronic transitions, electronic excitations involving the localized states, and phonon absorption, are discussed in detail. A quantitative analysis of absorption on localized states, permitting the separation of transitions between localized states from transitions between localized and extended states, is utilized to obtain estimates of the density of localized states and film stoichiometry.

  10. Quantifying river response to landsliding: experiments in DEM differencing using wide-area, structure-from-motion terrain models.

    Science.gov (United States)

    James, Joe; Brasington, James; Cook, Simon; Cox, Simon; Lotsari, Eliisa; McColl, Sam; Lehane, Niall; Williams, Richard; Vericat, Damia

    2017-04-01

    Sediment delivery to alpine rivers is characterized by large but infrequent pulses of material sourced from landslides and debris flows. In extreme cases, when the rate of sediment supply exceeds the transport capacity of channels, a landslide dam forms; impounding river flows and creating an inline lake. These rare events play a crucial but weakly understood role in the evolution of catchment drainage, channel morphology and sediment flux from mountain catchments to their sedimentary sinks. Until recently, insights into the response of river systems to such sediment overloading have been based on either localized ground surveys or expensive airborne lidar campaigns. The recent development of structure-from-motion photogrammetric methods offers the potential to bridge this scale-cost barrier, but has yet to be applied over wide-area (101-2 km2) extents which push the boundaries of traditional SfM workflows based on dense ground-control and low-altitude or terrestrial imagery. Here, we present preliminary insights into the response of the braided Dart River, Otago as it adjusts to a major pulse of sediment supplied by landsliding at Slip Stream (44.59 S 168.34 E) in January 2014. DEM differencing (DoD) is used to develop a sediment budget for this extreme slope-channel coupling, using wide-area (>80 km2) terrain models derived from SfM photogrammetry based on aerial helicopter surveys in May 2014 and 2015. Contrasting camera networks, image density and camera models were used in the two surveys providing an opportunity to evaluate the sensitivity of the resulting terrain model to data acquisition strategy. In both cases, georeferencing was based on a network of ground-control distributed along the 40 km valley floor which was also used to provide cross-validation tests on horizontal and vertical model reliability. Both models were subject to inherent systematic bias associated with compensation between the inferred interior and exterior model geometry. The use of a

  11. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hung T. [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Case, David A., E-mail: case@biomaps.rutgers.edu [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2014-12-14

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb{sup +} and Sr{sup 2+}) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein–Zernike equations, with results from the Kovalenko–Hirata closure being closest to experiment for the cases studied here.

  12. STEMS-Air: a simple GIS-based air pollution dispersion model for city-wide exposure assessment.

    Science.gov (United States)

    Gulliver, John; Briggs, David

    2011-05-15

    Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM(10) to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM(10) from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM(10). For daily modelling, STEMS-Air achieved r(2) values in the range 0.19-0.43 (pmaps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies.

  13. A plant wide aqueous phase chemistry model describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores-Alsina, X.; Mbamba, C. Kazadi; Solon, K.;

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics (Batstone et al., 2012). Indeed, future modelling needs, such as a plant-wide phosphorus (P) description......, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems (Ikumi et al., 2014). In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation......). Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 (Henze et al., 2000) comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under...

  14. Deep Structure and Evolution of the Northeastern Gulf of Aden Margin From Wide-Angle Seismic and Thermomechanical Modeling

    Science.gov (United States)

    Watremez, L.; Leroy, S.; Rouzo, S.; D'Acremont, E.; Burov, E. B.

    2009-12-01

    The Encens survey wide-angle and gravity data (Leroy et al., Feb. March 2006) allow us to determine the deep structure of the northeastern Gulf of Aden non-volcanic passive margin. The Gulf of Aden is a young oceanic basin. Its accretion began at least 17.6 Ma ago. Its current geometry shows 1st and 2nd order segmentation. Our study focus on the second order Ashawq-Salalah segment. We studied six wide-angle seismic (WAS) and gravity profiles (three along and three across the margin). Modeling of the WAS and gravity data gives insights on the first and second orders structures : (1) Continental thinning is abrupt (15-20 km thinning along 50-100 km distance). It is accommodated by four tilted blocks. (2) The OCT is narrow (15 km wide). Its geometry is determined by the velocity models: oceanic-type upper-crust (4.5 km/s) and continental-type lower-crust (> 6.5 km/s). (3) The thickness of the oceanic crust decreases from West (10 km) to East (5.5 km). This pattern is probably linked to a variation of magma supply along the paleo-slow-spreading ridge axis. (4) A 5 km thick intermediate velocity body (7.6 to 7.8 km/s) is present at the crust-mantle interface below the margin. It is interpreted as post-rift underplated, or partly intruded, mafic material. This interpretation is consistent with the presence of a volcano evidenced by heat flow measurement and multichannel seismic reflection (Encens surveys). The studied segment is mainly characterized by abrupt continental thinning and narrow OCT. Moreover, this non-volcanic passive margin is affected by post-rift volcanism evidenced by the mafic body. We then suggest that the evolution of non-volcanic passive margins may be influenced by post-rift thermal anomalies. We will compare these above results with thermomechanical models in order to constrain the margin evolution and factors leading to the Gulf of Aden formation. Modeling is processed using Para(o)voz/Flamar code. This allows us to experiment the influence of

  15. Development of a wide band radiative transfer model based on a fast correlated k-distributions generation

    Science.gov (United States)

    Croize, Laurence; Pierro, Jean; Huet, Thierry; Labarre, Luc

    2016-04-01

    MATISSE which acronym means Advanced Modeling of the Earth for Environment and Scenes Simulation is developed by ONERA since the mid 1990's. The code main functionality is to compute spectral or integrated natural background radiance images. Natural backgrounds include the atmosphere, low and high altitude clouds, sea and land. It can also provide specific radiative atmospheric terms as path transmission, path radiances, sky radiances or local illumination around a target point. Spectral bandwidth ranges from 700 to 25000 cm-1 wavenumber (i.e. from 0.4 to 14 μm). As far as molecular absorption is concerned, MATISSE v2.0 is based on a correlated K (CK) model and needs a pre-generation of the k-distributions. This method is very precise but is time consuming and is done as an offline calculation. In answer to the increasing need of rapid radiative transfer codes, the future version of the MATISSE v3.0 will include a fast radiative transfer model at low and at medium spectral resolution. This work aims to develop a fast wide band CK model for the acceleration of radiative transfer calculation. As a first step, a statistical k-distributions fast generator was developed. It allows generating k-distributions from 700 to 25000 cm-1 with a spectral resolution of 1 cm-1 in less than 30 ms(*) for one altitude (that means about three orders of magnitude faster than before). Such speed allows generating k-distributions online. To validate the model, we have compared the obtained transmission spectra with reference spectra using a mix of 6 molecules (H2O, CO2, O3, N2O, CO, CH4) in homogenous atmosphere corresponding to different altitudes from 0 to 105 km. Reference spectra were calculated as the convolution of a spectrum obtained with a line by line model and a gate function of 1 cm-1 wide. An average difference of 3×10-3 % and a standard deviation of 3.3% were typically obtained. As a second step, this method of rapid k-distributions generation is now being coupled with a

  16. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    Science.gov (United States)

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Low voltage bandgap reference with closed loop curvature compensation

    Science.gov (United States)

    Tao, Fan; Bo, Du; Zheng, Zhang; Guoshun, Yuan

    2009-03-01

    A new low-voltage CMOS bandgap reference (BGR) that achieves high temperature stability is proposed. It feeds back the output voltage to the curvature compensation circuit that constitutes a closed loop circuit to cancel the logarithmic term of voltage VBE. Meanwhile a low voltage amplifier with the 0.5 μm low threshold technology is designed for the BGR. A high temperature stability BGR circuit is fabricated in the CSMC 0.5 μm CMOS technology. The measured result shows that the BGR can operate down to 1 V, while the temperature coefficient and line regulation are only 9 ppm/°C and 1.2 mV/V, respectively.

  18. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    CERN Document Server

    Vos, W L

    2015-01-01

    This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a "full and complete" 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka "a nanobox for light"), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.

  19. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    In this ph.d. work, an experimental and theoretical study on Liquid Crystal (LC) infiltrated Photonic Crystal Fibers (PCFs) has been carried out. PCFs usually, consists of an air/silica microstructure of air holes arranged in a triangular lattice surrounding a core defect defined by a missing air...... hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...... of LCs combined with the unique waveguiding features of PBG fibers gives the LC filled PCFs unique tunable properties. PBG guidance has been demonstrated for different mesophases of LCs and various functional compact fibers has been demonstrated, which utilitzes the high thermo-optical and electro...

  20. One-dimensional photonic bandgap structure in abalone shell

    Institute of Scientific and Technical Information of China (English)

    LI Bo; ZHOU Ji; LI Longtu; LI Qi; HAN Shuo; HAO Zhibiao

    2005-01-01

    @@ Photonic bandgap (PBG) materials are periodic com- posites of dielectric materials in which electromagnetic waves of certain frequency range cannot propagate in any or a special direction. Recently, there has been great inter- est in synthetic PBG materials due to their ability in ma- nipulation of photons. Since 500 million years ago, the natural world has been exploiting photonic structures for specific biological purposes[1]. Different types of biologi- cal PBG materials have been discovered in recent years, such as the one-dimension PBG structure in the sea mouse Aphrodita[2], and the fruits Elaeocarpus[3,4]; two-dimension PBG structure in the male peacock Pavo muticus feathers[5], Indonesian male Papilio palinurus butterfly[6], Thaumantis diores butterfly[7] and the male Ancyluris meliboeus Fabricius butterflies[8]; and three-dimension PBG structure in the weevil Pachyrhynchus argus[9].

  1. Main Factors for Affecting Photonic Bandgap of Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Xia; XUE Wei; JIANG Yu-rong; YU Zhi-nong; WANG Hua-qing

    2007-01-01

    The factors affecting one dimensional (1D) and two dimensional (2D) photonic crystals (PhCs) are systemically analyzed in this paper by numerical simulation.Transfer matrix method (TMM) is employed for 1D PCs, both finite difference time domain method (FDTD) and plane wave expansion method (PWE) are employed for 2D PCs.The result shows that the photonic bandgaps (PBG) are directly affected by crystal type, crystal lattice constant, modulation of refractive index and periodicity, and it is should be useful for design of different type photonic crystals with the required PBG and functional devices.Finally, as an example, a near-IR 1D PCs narrow filter was designed.

  2. MUTUAL COUPLING REDUCTION BETWEEN MICROSTRIP ANTENNAS USING ELECTROMAGNETIC BANDGAP STRUCTURE

    Directory of Open Access Journals (Sweden)

    G.N. Gaikwad

    2011-03-01

    Full Text Available When the number of antenna elements is placed in forming the arrays, mutual coupling between the antenna elements is a critical issue. This is particularly concern in phase array antennas. Mutual coupling is a potential source of performance degradation in the form of deviation of the radiation pattern from the desired one, gain reduction due to excitation of surface wave, increased side lobe levels etc. EBG (Electromagnetic Band Gap structure (also called as Photonic Bandgap Structure PBG not only enhances the performance of the patch antennas but also provides greater amount of isolation when placed between the microstrip arrays. This greatly reduces the mutual coupling between the antenna elements. The radiation efficiency, gain, antenna efficiency, VSWR, frequency, directivity etc greatly improves over the conventional patch antennas using EBG. The EBG structure and normal patch antenna is simulated using IE3D antenna simulation software.

  3. Low voltage bandgap reference with closed loop curvature compensation

    Institute of Scientific and Technical Information of China (English)

    Fan Tao; Du Bo; Zhang Zheng; Yuan Guoshun

    2009-01-01

    A new low-voltage CMOS bandgap reference (BGR) that achieves high temperature stability is proposed. It feeds back the output voltage to the curvature compensation circuit that constitutes a closed loop circuit to cancel the logarithmic term of voltage VBE. Meanwhile a low voltage amplifier with the 0.5μm low threshold technology is designed for the BGR. A high temperature stability BGR circuit is fabricated in the CSMC 0.5μm CMOS tech-nology. The measured result shows that the BGR can operate down to 1 V, while the temperature coefficient and line regulation are only 9 ppm/℃ and 1.2 mV/V, respectively.

  4. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    Energy Technology Data Exchange (ETDEWEB)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  5. Plant-wide modelling of phosphorus transformations in wastewater treatment systems: Impacts of control and operational strategies.

    Science.gov (United States)

    Solon, K; Flores-Alsina, X; Kazadi Mbamba, C; Ikumi, D; Volcke, E I P; Vaneeckhaute, C; Ekama, G; Vanrolleghem, P A; Batstone, D J; Gernaey, K V; Jeppsson, U

    2017-04-15

    The objective of this paper is to report the effects that control/operational strategies may have on plant-wide phosphorus (P) transformations in wastewater treatment plants (WWTP). The development of a new set of biological (activated sludge, anaerobic digestion), physico-chemical (aqueous phase, precipitation, mass transfer) process models and model interfaces (between water and sludge line) were required to describe the required tri-phasic (gas, liquid, solid) compound transformations and the close interlinks between the P and the sulfur (S) and iron (Fe) cycles. A modified version of the Benchmark Simulation Model No. 2 (BSM2) (open loop) is used as test platform upon which three different operational alternatives (A1, A2, A3) are evaluated. Rigorous sensor and actuator models are also included in order to reproduce realistic control actions. Model-based analysis shows that the combination of an ammonium ( [Formula: see text] ) and total suspended solids (XTSS) control strategy (A1) better adapts the system to influent dynamics, improves phosphate [Formula: see text] accumulation by phosphorus accumulating organisms (XPAO) (41%), increases nitrification/denitrification efficiency (18%) and reduces aeration energy (Eaeration) (21%). The addition of iron ( [Formula: see text] ) for chemical P removal (A2) promotes the formation of ferric oxides (XHFO-H, XHFO-L), phosphate adsorption (XHFO-H,P, XHFO-L,P), co-precipitation (XHFO-H,P,old, XHFO-L,P,old) and consequently reduces the P levels in the effluent (from 2.8 to 0.9 g P.m(-3)). This also has an impact on the sludge line, with hydrogen sulfide production ( [Formula: see text] ) reduced (36%) due to iron sulfide (XFeS) precipitation. As a consequence, there is also a slightly higher energy production (Eproduction) from biogas. Lastly, the inclusion of a stripping and crystallization unit (A3) for P recovery reduces the quantity of P in the anaerobic digester supernatant returning to the water line and allows

  6. Combining Genome-Wide Information with a Functional Structural Plant Model to Simulate 1-Year-Old Apple Tree Architecture

    Science.gov (United States)

    Migault, Vincent; Pallas, Benoît; Costes, Evelyne

    2017-01-01

    In crops, optimizing target traits in breeding programs can be fostered by selecting appropriate combinations of architectural traits which determine light interception and carbon acquisition. In apple tree, architectural traits were observed to be under genetic control. However, architectural traits also result from many organogenetic and morphological processes interacting with the environment. The present study aimed at combining a FSPM built for apple tree, MAppleT, with genetic determinisms of architectural traits, previously described in a bi-parental population. We focused on parameters related to organogenesis (phyllochron and immediate branching) and morphogenesis processes (internode length and leaf area) during the first year of tree growth. Two independent datasets collected in 2004 and 2007 on 116 genotypes, issued from a ‘Starkrimson’ × ‘Granny Smith’ cross, were used. The phyllochron was estimated as a function of thermal time and sylleptic branching was modeled subsequently depending on phyllochron. From a genetic map built with SNPs, marker effects were estimated on four MAppleT parameters with rrBLUP, using 2007 data. These effects were then considered in MAppleT to simulate tree development in the two climatic conditions. The genome wide prediction model gave consistent estimations of parameter values with correlation coefficients between observed values and estimated values from SNP markers ranging from 0.79 to 0.96. However, the accuracy of the prediction model following cross validation schemas was lower. Three integrative traits (the number of leaves, trunk length, and number of sylleptic laterals) were considered for validating MAppleT simulations. In 2007 climatic conditions, simulated values were close to observations, highlighting the correct simulation of genetic variability. However, in 2004 conditions which were not used for model calibration, the simulations differed from observations. This study demonstrates the possibility

  7. A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels.

    Science.gov (United States)

    Owens, Brenda F; Lipka, Alexander E; Magallanes-Lundback, Maria; Tiede, Tyler; Diepenbrock, Christine H; Kandianis, Catherine B; Kim, Eunha; Cepela, Jason; Mateos-Hernandez, Maria; Buell, C Robin; Buckler, Edward S; DellaPenna, Dean; Gore, Michael A; Rocheford, Torbert

    2014-12-01

    Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A.

  8. Genome-wide association of coagulation properties, curd firmness modeling, protein percentage, and acidity in milk from Brown Swiss cows.

    Science.gov (United States)

    Dadousis, C; Biffani, S; Cipolat-Gotet, C; Nicolazzi, E L; Rossoni, A; Santus, E; Bittante, G; Cecchinato, A

    2016-05-01

    Cheese production is increasing in many countries, and a desire toward genetic selection for milk coagulation properties in dairy cattle breeding exists. However, measurements of individual cheesemaking properties are hampered by high costs and labor, whereas traditional single-point milk coagulation properties (MCP) are sometimes criticized. Nevertheless, new modeling of the entire curd firmness and syneresis process (CFt equation) offers new insight into the cheesemaking process. Moreover, identification of genomic regions regulating milk cheesemaking properties might enhance direct selection of individuals in breeding programs based on cheese ability rather than related milk components. Therefore, the objective of this study was to perform genome-wide association studies to identify genomic regions linked to traditional MCP and new CFt parameters, milk acidity (pH), and milk protein percentage. Milk and DNA samples from 1,043 Italian Brown Swiss cows were used. Milk pH and 3 MCP traits were grouped together to represent the MCP set. Four CFt equation parameters, 2 derived traits, and protein percentage were considered as the second group of traits (CFt set). Animals were genotyped with the Illumina SNP50 BeadChip v.2 (Illumina Inc., San Diego, CA). Multitrait animal models were used to estimate variance components. For genome-wide association studies, the genome-wide association using mixed model and regression-genomic control approach was used. In total, 106 significant marker traits associations and 66 single nucleotide polymorphisms were identified on 12 chromosomes (1, 6, 9, 11, 13, 15, 16, 19, 20, 23, 26, and 28). Sharp peaks were detected at 84 to 88 Mbp on Bos taurus autosome (BTA) 6, with a peak at 87.4 Mbp in the region harboring the casein genes. Evidence of quantitative trait loci at 82.6 and 88.4 Mbp on the same chromosome was found. All chromosomes but BTA6, BTA11, and BTA28 were associated with only one trait. Only BTA6 was in common between MCP

  9. Implementation of Remaining Useful Lifetime Transformer Models in the Fleet-Wide Prognostic and Health Management Suite

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lybeck, Nancy J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pham, Binh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rusaw, Richard [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Bickford, Randall [Expert Microsystems, Orangevale, CA (United States)

    2015-02-01

    Research and development efforts are required to address aging and reliability concerns of the existing fleet of nuclear power plants. As most plants continue to operate beyond the license life (i.e., towards 60 or 80 years), plant components are more likely to incur age-related degradation mechanisms. To assess and manage the health of aging plant assets across the nuclear industry, the Electric Power Research Institute has developed a web-based Fleet-Wide Prognostic and Health Management (FW-PHM) Suite for diagnosis and prognosis. FW-PHM is a set of web-based diagnostic and prognostic tools and databases, comprised of the Diagnostic Advisor, the Asset Fault Signature Database, the Remaining Useful Life Advisor, and the Remaining Useful Life Database, that serves as an integrated health monitoring architecture. The main focus of this paper is the implementation of prognostic models for generator step-up transformers in the FW-PHM Suite. One prognostic model discussed is based on the functional relationship between degree of polymerization, (the most commonly used metrics to assess the health of the winding insulation in a transformer) and furfural concentration in the insulating oil. The other model is based on thermal-induced degradation of the transformer insulation. By utilizing transformer loading information, established thermal models are used to estimate the hot spot temperature inside the transformer winding. Both models are implemented in the Remaining Useful Life Database of the FW-PHM Suite. The Remaining Useful Life Advisor utilizes the implemented prognostic models to estimate the remaining useful life of the paper winding insulation in the transformer based on actual oil testing and operational data.

  10. Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models.

    Science.gov (United States)

    Sul, Jae Hoon; Bilow, Michael; Yang, Wen-Yun; Kostem, Emrah; Furlotte, Nick; He, Dan; Eskin, Eleazar

    2016-03-01

    Although genome-wide association studies (GWASs) have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs). Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits. One of the main challenges in these association studies is to control effects of population structure that may cause spurious associations. Many studies have analyzed how population structure influences statistics of genetic variants and developed several statistical approaches to correct for population structure. However, the impact of population structure on GEI statistics in GWASs has not been extensively studied and nor have there been methods designed to correct for population structure on GEI statistics. In this paper, we show both analytically and empirically that population structure may cause spurious GEIs and use both simulation and two GWAS datasets to support our finding. We propose a statistical approach based on mixed models to account for population structure on GEI statistics. We find that our approach effectively controls population structure on statistics for GEIs as well as for genetic variants.

  11. An information system design for watershed-wide modeling of water loss to the atmosphere using remote sensing techniques

    Science.gov (United States)

    Khorram, S.

    1977-01-01

    Results are presented of a study intended to develop a general location-specific remote-sensing procedure for watershed-wide estimation of water loss to the atmosphere by evaporation and transpiration. The general approach involves a stepwise sequence of required information definition (input data), appropriate sample design, mathematical modeling, and evaluation of results. More specifically, the remote sensing-aided system developed to evaluate evapotranspiration employs a basic two-stage two-phase sample of three information resolution levels. Based on the discussed design, documentation, and feasibility analysis to yield timely, relatively accurate, and cost-effective evapotranspiration estimates on a watershed or subwatershed basis, work is now proceeding to implement this remote sensing-aided system.

  12. Using Range-Wide Abundance Modeling to Identify Key Conservation Areas for the Micro-Endemic Bolson Tortoise (Gopherus flavomarginatus.

    Directory of Open Access Journals (Sweden)

    Cinthya A Ureña-Aranda

    Full Text Available A widespread biogeographic pattern in nature is that population abundance is not uniform across the geographic range of species: most occurrence sites have relatively low numbers, whereas a few places contain orders of magnitude more individuals. The Bolson tortoise Gopherus flavomarginatus is endemic to a small region of the Chihuahuan Desert in Mexico, where habitat deterioration threatens this species with extinction. In this study we combined field burrows counts and the approach for modeling species abundance based on calculating the distance to the niche centroid to obtain range-wide abundance estimates. For the Bolson tortoise, we found a robust, negative relationship between observed burrows abundance and distance to the niche centroid, with a predictive capacity of 71%. Based on these results we identified four priority areas for the conservation of this microendemic and threatened tortoise. We conclude that this approach may be a useful approximation for identifying key areas for sampling and conservation efforts in elusive and rare species.

  13. Wide-range and accurate modeling of linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil.

    Science.gov (United States)

    Oliver-Rodríguez, B; Zafra-Gómez, A; Reis, M S; Duarte, B P M; Verge, C; de Ferrer, J A; Pérez-Pascual, M; Vílchez, J L

    2015-11-01

    In this paper, rigorous data and adequate models about linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil are presented, contributing with a substantial improvement over available adsorption works. The kinetics of the adsorption/desorption phenomenon and the adsorption/desorption equilibrium isotherms were determined through batch studies for total LAS amount and also for each homologue series: C10, C11, C12 and C13. The proposed multiple pseudo-first order kinetic model provides the best fit to the kinetic data, indicating the presence of two adsorption/desorption processes in the general phenomenon. Equilibrium adsorption and desorption data have been properly fitted by a model consisting of a Langmuir plus quadratic term, which provides a good integrated description of the experimental data over a wide range of concentrations. At low concentrations, the Langmuir term explains the adsorption of LAS on soil sites which are highly selective of the n-alkyl groups and cover a very small fraction of the soil surface area, whereas the quadratic term describes adsorption on the much larger part of the soil surface and on LAS retained at moderate to high concentrations. Since adsorption/desorption phenomenon plays a major role in the LAS behavior in soils, relevant conclusions can be drawn from the obtained results.

  14. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa.

    Science.gov (United States)

    Kolář, Filip; Fuxová, Gabriela; Záveská, Eliška; Nagano, Atsushi J; Hyklová, Lucie; Lučanová, Magdalena; Kudoh, Hiroshi; Marhold, Karol

    2016-08-01

    Quaternary climatic oscillations profoundly impacted temperate biodiversity. For many diverse yet undersampled areas, however, the consequences of this impact are still poorly known. In Europe, particular uncertainty surrounds the role of Balkans, a major hotspot of European diversity, in postglacial recolonization of more northerly areas, and the Carpathians, a debatable candidate for a northern 'cryptic' glacial refugium. Using genome-wide SNPs and microsatellites, we examined how the interplay of historical processes and niche shifts structured genetic diversity of diploid Arabidopsis arenosa, a little-known member of the plant model genus that occupies a wide niche range from sea level to alpine peaks across eastern temperate Europe. While the northern Balkans hosted one isolated endemic lineage, most of the genetic diversity was concentrated further north in the Pannonian Basin and the Carpathians, where it likely survived the last glaciation in northern refugia. Finally, a distinct postglacial environment in northern Europe was colonized by populations of admixed origin from the two Carpathian lineages. Niche differentiation along altitude-related bioclimatic gradients was the main trend in the phylogeny of A. arenosa. The most prominent niche shifts, however, characterized genetically only slightly divergent populations that expanded into narrowly defined alpine and northern coastal postglacial environments. Our study highlights the role of eastern central European mountains not only as refugia for unique temperate diversity but also sources for postglacial expansion into novel high-altitude and high-latitude niches. Knowledge of distinct genetic substructure of diploid A. arenosa also opens new opportunities for follow-up studies of this emerging model of evolutionary biology.

  15. Parameter-free numerical method for modeling thermal convection in square cavities in a wide range of Rayleigh numbers

    Science.gov (United States)

    Goloviznin, V. M.; Korotkin, I. A.; Finogenov, S. A.

    2016-12-01

    Some numerical results for the two- and three-dimensional de Vahl Davis benchmark are presented. This benchmark describes thermal convection in a square (cubic) cavity with vertical heated walls in a wide range of Rayleigh numbers (104 to 1014), which covers both laminar and highly turbulent f lows. Turbulent f lows are usually described using a turbulence model with parameters that depend on the Rayleigh number and require adjustment. An alternative is Direct Numerical Simulation (DNS) methods, but they demand extremely large computational grids. Recently, there has been an increasing interest in DNS methods with an incomplete resolution, which, in some cases, are able to provide acceptable results without resolving Kolmogorov scales. On the basis of this approach, the so-called parameter-free computational techniques have been developed. These methods cover a wide range of Rayleigh numbers and allow computing various integral properties of heat transport on relatively coarse computational grids. In this paper, a new numerical method based on the CABARET scheme is proposed for solving the Navier-Stokes equations in the Boussinesq approximation. This technique does not involve a turbulence model or any tuning parameters and has a second-order approximation scheme in time and space on uniform and nonuniform grids with a minimal computational stencil. Testing the technique on the de Vahl Davis benchmark and a sequence of refined grids shows that the method yields integral heat f luxes with a high degree of accuracy for both laminar and highly turbulent f lows. For Rayleigh numbers up to 1014, a several percent accuracy is achieved on an extremely coarse grid consisting of 20 × 20 cells refined toward the boundary. No definite or comprehensive explanation of this computational phenomenon has been given. Cautious optimism is expressed regarding the perspectives of using the new method for thermal convection computations at low Prandtl numbers typical of liquid metals.

  16. Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Uskov, Alexander; Gritti, Claudia;

    2014-01-01

    We model the electron photoemission frommetal nanoparticles into a semiconductor in a Schottky diode with a conductive oxide electrode hosting the nanoparticles. We show that plasmonic effects in the nanoparticles lead to a substantial enhancement in photoemission compared with devices with conti....... Such structure can form the dais of the development of plasmonic photoemission enhanced solar cells....... with continuous metal films. Optimally designed metal nanoparticles can provide an effectivemechanismfor the photon absorption in the infrared range below the semiconductor bandgap, resulting in the generation of a photocurrent in addition to the photocurrent from band-to-band absorption in a semiconductor...

  17. Bandgap Engineering of 1300 nm Quantum Dots/Quantum Well Nanostructures Based Devices

    KAUST Repository

    Alhashim, Hala H.

    2016-05-29

    The main objectives of this thesis are to develop viable process and/or device technologies for bandgap tuning of 1300-nm InGaAs/GaAs quantum-dot (QD) laser structures, and broad linewidth 1300-nm InGaAsP/InP quantum well (QW) superluminescent diode structures. The high performance bandgap-engineered QD laser structures were achieved by employing quantum-dot intermixing (QDI) based on impurity free vacancy diffusion (IFVD) technique for eventual seamless active-passive integration, and bandgap-tuned lasers. QDI using various dielectric-capping materials, such as HfO2, SrTiO3, TiO2, Al2O3 and ZnO, etc, were experimented in which the resultant emission wavelength can be blueshifted to ∼ 1100 nm ─ 1200 nm range depending on process conditions. The significant results extracted from the PL characterization were used to perform an extensive laser characterization. The InAs/GaAs quantum-dot lasers with QDs transition energies were blueshifted by ~185 nm, and lasing around ~1070 – 1190 nm was achieved. Furthermore, from the spectral analysis, a simultaneous five-state lasing in the InAs/InGaAs intermixed QD laser was experimentally demonstrated for the first time in the very important wavelength range from 1030 to 1125 nm. The QDI methodology enabled the facile formation of a plethora of devices with various emission wavelengths suitable for a wide range of applications in the infrared. In addition, the wavelength range achieved is also applicable for coherent light generation in the green – yellow – orange visible wavelength band via frequency doubling, which is a cost-effective way of producing compact devices for pico-projectors, semiconductor laser based solid state lighting, etc. [1, 2] In QW-based superluminescent diode, the problem statement lies on achieving a flat-top and ultra-wide emission bandwidth. The approach was to design an inhomogeneous active region with a comparable simultaneous emission from different transition states in the QW stacks, in

  18. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate...... an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm...

  19. 167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178nm

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, A.; Chen, M.

    2010-01-01

    An ytterbium-doped photonic bandgap fiber amplifier operating at the long wavelength edge of the ytterbium gain band is investigated for high power amplification. The spectral filtering effect of the photonic bandgap efficiently suppresses amplified spontaneous emission at the conventional...... ytterbium gain wavelengths and thus enables high power amplification at 1178 nm. A record output power of 167 W, a slope efficiency of 61% and 15 dB saturated gain at 1178 nm have been demonstrated using the ytterbium-doped photonic bandgap fiber....

  20. Band-gap narrowing in heavily doped silicon at 20 and 300 K studied by photoluminescence

    Science.gov (United States)

    Wagner, Joachim

    1985-07-01

    The band-gap shrinkage in heavily doped n- and p-type silicon is studied by photoluminescence both at low temperatures (20 K) and at room temperature (300 K). A line-shape analysis was performed to determine the indirect band-gap energy from the emission spectra. Within the experimental accuracy the same band-gap shift is observed at room temperature as at low temperature. The present results are compared with experimental data from other optical studies and with theoretical calculations.

  1. Highly tunable large core single-mode liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard;

    2006-01-01

    We demonstrate a highly tunable photonic bandgap fiber, which has a large-core diameter of 25 mu m and an effective mode area of 440 mu m(2). The tunability is achieved by infiltrating the air holes of a photonic crystal fiber with an optimized liquid-crystal mixture having a large temperature...... gradient of the refractive indices at room temperature. A bandgap tuning sensitivity of 27 nm/degrees C is achieved at room temperature. The insertion loss is estimated to be less than 0.5 dB and caused mainly by coupling loss between the index-guided mode and the bandgap-guided mode. (c) 2006 Optical...

  2. Synthesis and Characterization of Small Band-gap Conjugated Polymers - Poly(pyrrolyl methines)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A kind of small band-gap conjugated polymers-poly (pyrrolyl methines) and their precursors-(poly pyrrolyl methanes) have been synthesized by a simple method and characterized by 1HNMR, FT-IR, TGA and UV-Vis. These polymers can be dissolved in high polar solvents such as DMSO, DMF or NMP. The results reveals that the band-gap of the synthesized conjugated polymers are in the range of 0.96~1.14 eV and they all belong to the small band-gap polymers. The conductivity of doped products with iodine is in the range of semiconductor.

  3. Behaviour and modelling of aluminium alloy AA6060 subjected to a wide range of strain rates and temperatures

    Directory of Open Access Journals (Sweden)

    Vilamosa Vincent

    2015-01-01

    Full Text Available The thermo-mechanical behaviour in tension of an as-cast and homogenized AA6060 alloy was investigated at a wide range of strains (the entire deformation process up to fracture, strain rates (0.01–750 s−1 and temperatures (20–350 ∘C. The tests at strain rates up to 1 s−1 were performed in a universal testing machine, while a split-Hopkinson tension bar (SHTB system was used for strain rates from 350 to 750 s−1. The samples were heated with an induction-based heating system. A typical feature of aluminium alloys at high temperatures is that necking occurs at a rather early stage of the deformation process. In order to determine the true stress-strain curve also after the onset of necking, all tests were instrumented with a digital camera. The experimental tests reveal that the AA6060 material has negligible strain-rate sensitivity (SRS for temperatures lower than 200 ∘C, while both yielding and work hardening exhibit a strong positive SRS at higher temperatures. The coupled strain-rate and temperature sensitivity is challenging to capture with most existing constitutive models. The paper presents an outline of a new semi-physical model that expresses the flow stress in terms of plastic strain, plastic strain rate and temperature. The parameters of the model were determined from the tests, and the stress-strain curves from the tests were compared with the predictions of the model. Good agreement was obtained over the entire strain rate and temperature range.

  4. Genetic model selection in genome-wide association studies: robust methods and the use of meta-analysis.

    Science.gov (United States)

    Bagos, Pantelis G

    2013-06-01

    In genetic association studies (GAS) as well as in genome-wide association studies (GWAS), the mode of inheritance (dominant, additive and recessive) is usually not known a priori. Assuming an incorrect mode of inheritance may lead to substantial loss of power, whereas on the other hand, testing all possible models may result in an increased type I error rate. The situation is even more complicated in the meta-analysis of GAS or GWAS, in which individual studies are synthesized to derive an overall estimate. Meta-analysis increases the power to detect weak genotype effects, but heterogeneity and incompatibility between the included studies complicate things further. In this review, we present a comprehensive summary of the statistical methods used for robust analysis and genetic model selection in GAS and GWAS. We then discuss the application of such methods in the context of meta-analysis. We describe the theoretical properties of the various methods and the foundations on which they are based. We also present the available software implementations of the described methods. Finally, since only few of the available robust methods have been applied in the meta-analysis setting, we present some simple extensions that allow robust meta-analysis of GAS and GWAS. Possible extensions and proposals for future work are also discussed.

  5. AAV9 supports wide-scale transduction of the CNS and TDP-43 disease modeling in adult rats

    Directory of Open Access Journals (Sweden)

    Kasey L Jackson

    2015-01-01

    Full Text Available AAV9 has emerged as an efficient adeno-associated virus (AAV serotype for gene transfer to the central nervous system. We have used this technique to study aspects of amyotrophic lateral sclerosis (ALS by administering AAV encoding the ALS-related gene transactive response DNA binding protein of 43 kDa (TDP-43 to neonatal rats. However, inducing the expression in adult subjects would be preferable to mimic the adult onset of symptoms in ALS. We expressed either green fluorescent protein (GFP or TDP-43 in adult rats after an intravenous (i.v. route of administration to attempt wide-scale transduction of the spinal cord for disease modeling. In order to optimize the gene transfer, we made comparisons of efficiency by age, gender, and across several AAV serotypes (AAV1, AAV8, AAV9, and AAV10. The data indicate more efficient neuronal transduction in neonates, with little evidence of glial transduction at either age, no gender-related differences in transduction, and that AAV9 was efficient in adults relative to the other serotypes tested. Based on these data, AAV9 TDP-43 was expressed at three vector doses in adult female rats yielding highly consistent, dose-dependent motor deficits. AAV9 can be delivered i.v. to adult rats to achieve consistent pathophysiological changes and a relevant adult-onset system for disease modeling.

  6. DOMINO: development of informative molecular markers for phylogenetic and genome-wide population genetic studies in non-model organisms.

    Science.gov (United States)

    Frías-López, Cristina; Sánchez-Herrero, José F; Guirao-Rico, Sara; Mora, Elisa; Arnedo, Miquel A; Sánchez-Gracia, Alejandro; Rozas, Julio

    2016-12-15

    The development of molecular markers is one of the most important challenges in phylogenetic and genome wide population genetics studies, especially in studies with non-model organisms. A highly promising approach for obtaining suitable markers is the utilization of genomic partitioning strategies for the simultaneous discovery and genotyping of a large number of markers. Unfortunately, not all markers obtained from these strategies provide enough information for solving multiple evolutionary questions at a reasonable taxonomic resolution. We have developed Development Of Molecular markers In Non-model Organisms (DOMINO), a bioinformatics tool for informative marker development from both next generation sequencing (NGS) data and pre-computed sequence alignments. The application implements popular NGS tools with new utilities in a highly versatile pipeline specifically designed to discover or select personalized markers at different levels of taxonomic resolution. These markers can be directly used to study the taxa surveyed for their design, utilized for further downstream PCR amplification in a broader set taxonomic scope, or exploited as suitable templates to bait design for target DNA enrichment techniques. We conducted an exhaustive evaluation of the performance of DOMINO via computer simulations and illustrate its utility to find informative markers in an empirical dataset. DOMINO is freely available from www.ub.edu/softevol/domino CONTACT: elsanchez@ub.edu or jrozas@ub.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Gradient Permittivity Meta-Structure model for Wide-field Super-resolution imaging with a sub-45 nm resolution.

    Science.gov (United States)

    Cao, Shun; Wang, Taisheng; Xu, Wenbin; Liu, Hua; Zhang, Hongxin; Hu, Bingliang; Yu, Weixing

    2016-03-21

    A gradient permittivity meta-structure (GPMS) model and its application in super-resolution imaging were proposed and discussed in this work. The proposed GPMS consists of alternate metallic and dielectric films with a gradient permittivity which can support surface plasmons (SPs) standing wave interference patterns with a super resolution. By employing the rigorous numerical FDTD simulation method, the GPMS was carefully simulated to find that the period of the SPs interference pattern is only 84 nm for a 532 nm incident light. Furthermore, the potential application of the GPMS for wide-field super-resolution imaging was also discussed and the simulation results show that an imaging resolution of sub-45 nm can be achieved based on the plasmonic structure illumination microscopic method, which means a 5.3-fold improvement on resolution has been achieved in comparison with conventional epifluorescence microscopy. Moreover, besides the super-resolution imaging application, the proposed GPMS model can also be applied for nanolithography and other areas where super resolution patterns are needed.

  8. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network and pathway analyses

    Directory of Open Access Journals (Sweden)

    Lisette J. A. Kogelman

    2014-07-01

    Full Text Available Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH and differentially wired (DW networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g. NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g. metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways

  9. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses.

    Science.gov (United States)

    Kogelman, Lisette J A; Pant, Sameer D; Fredholm, Merete; Kadarmideen, Haja N

    2014-01-01

    Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie

  10. Constaints on the nature of the SW-Iberia crust from wide-angle P- and S-velocity models

    Science.gov (United States)

    Palomeras, I.; Marti, D.; Carbonell, R.; Ayarza, P.; Simancas, F.; Martinez-Poyatos, D.; Azor, A.; Lodeiro, F.; Perez-Estaun, A.

    2009-12-01

    The SW-Iberian Peninsula was studied with the two wide-angle seismic reflection transects acquired in 2003. Both transects cross the three tectonic provinces in the area that are part of the Variscan Belt: South Portuguesse Zone (SPZ), Ossa-Morena Zone (OMZ) and Central Iberia Zone (CIZ). The data were acquired by 650 vertical component seismographs (TEXANS seismic recorders) from the IRIS-PASSCAL Instrument Center, using explosive sources with charge sizes ranging from 500 to 1000 kg. Both Transects, A and B, are, approximately, 300 km long with station spacing of 400 m and 150 m respectively. The relatively small station spacing favored the lateral correlation of the seismic events and provided resolution enough for the identification of shear-waves arrivals. The most prominent S-wave phase recorded by the vertical component sensors corresponds to the SmS which is nearly horizontal for a velocity reduction of 4600 m/s. This phase can be followed up to normal incidence at 18 s ttwt. Two S-wave velocity models have been derived by iterative forward modeling to provide constraints on the nature of the deep crust beneath the Variscan of SW-Iberia. P and S velocity models show a high velocity area at mid crustal levels, that has been interpreted as a mafic intrusion. Vp/Vs relationship has been also calculated to constraint the crustal composition. The resulting images present a mid- to lower-crust with a Vp/Vs > 1.73 that implies a crust with a high content in mafic components.

  11. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions.

    Science.gov (United States)

    Zhang, Shengli; Yan, Zhong; Li, Yafei; Chen, Zhongfang; Zeng, Haibo

    2015-03-01

    The typical two-dimensional (2D) semiconductors MoS2, MoSe2, WS2, WSe2 and black phosphorus have garnered tremendous interest for their unique electronic, optical, and chemical properties. However, all 2D semiconductors reported thus far feature band gaps that are smaller than 2.0 eV, which has greatly restricted their applications, especially in optoelectronic devices with photoresponse in the blue and UV range. Novel 2D mono-elemental semiconductors, namely monolayered arsenene and antimonene, with wide band gaps and high stability were now developed based on first-principles calculations. Interestingly, although As and Sb are typically semimetals in the bulk, they are transformed into indirect semiconductors with band gaps of 2.49 and 2.28 eV when thinned to one atomic layer. Significantly, under small biaxial strain, these materials were transformed from indirect into direct band-gap semiconductors. Such dramatic changes in the electronic structure could pave the way for transistors with high on/off ratios, optoelectronic devices working under blue or UV light, and mechanical sensors based on new 2D crystals.

  12. Analysis and Design Procedure of LVLP Sub-bandgap Reference - Development and Results

    Directory of Open Access Journals (Sweden)

    T. Urban

    2011-04-01

    Full Text Available This work presents an thorough analysis and design of a low-voltage low-power voltage reference circuit with sub-bandgap output voltage. The outcome of the analysis and the resulting design rules are universal and it is supposed to be general and suitable for similar topologies with just minor modifications. The general analysis is followed by a selection of specific topology. The given topology is analyzed for particular parameters which are standard industrial circuit specifications. These parameters are mathematically expressed, some are simplified and equivalent circuits are used. The analysis and proposed design procedure focuses mainly on versatility of the IP block. The features of the circuit suit to low-voltage low-power design with less than 10μA supply current draw at 1.3V supply voltage. For testing purposes a complex transistor level design was created and verified in wide range of supply voltages (1.3 to 3.3V and temperatures (-45 to 95°C all in concrete 0.35μm IC design process using Mentor Graphics® and Cadence® software.

  13. Anatase (101)-like Structural Model Revealed for Metastable Rutile TiO2(011) Surface.

    Science.gov (United States)

    Xu, Meiling; Shao, Sen; Gao, Bo; Lv, Jian; Li, Quan; Wang, Yanchao; Wang, Hui; Zhang, Lijun; Ma, Yanming

    2017-03-08

    Titanium dioxide has been widely used as an efficient transition metal oxide photocatalyst. However, its photocatalytic activity is limited to the ultraviolet spectrum range due to the large bandgap beyond 3 eV. Efforts to reduce the bandgap to achieve a broader spectrum range of light absorption have been successfully attempted via the experimental synthesis of dopant-free metastable surface structures of rutile-type TiO2 (011) 2 × 1. This new surface phase possesses a reduced bandgap of ∼2.1 eV, showing great potential for an excellent photocatalyst covering a wide range of visible light. There is a need to establish the atomistic structure of this metastable surface to understand the physical cause for the bandgap reduction and to improve the future design of photocatalysts. Here, we report computational investigations in an effort to unravel this surface structure via swarm structure-searching simulations. The established structure adopts the anatase (101)-like structure model, where the topmost 2-fold O atoms form a quasi-hexagonal surface pattern and bond with the unsaturated 5-fold and 4-fold Ti atoms in the next layer. The predicted anatase (101)-like surface model can naturally explain the experimental observation of the STM images, the electronic bandgap, and the oxidation state of Ti(4+). Dangling bonds on the anatase (101)-like surface are abundant making it a superior photocatalyst. First-principles molecular dynamics simulations have supported the high photocatalytic activity by showing that water and formic acid molecules dissociate spontaneously on the anatase (101)-like surface.

  14. Effect of Gd doping on the structural, optical band-gap, dielectric and magnetic properties of ZnO nanoparticles

    Science.gov (United States)

    Franco, A., Jr.; Pessoni, H. V. S.

    2017-02-01

    Nanostructured Zn1-xGdxOδ (0 ≤ x ⩽ 0.02) powders were synthesized by the combustion reaction method (CR) with the purpose to investigate the effect of Gd doping on the structural, optical band-gap, dielectric and magnetic properties at room temperature. The structure and morphology of all samples were characterized by X-ray diffraction (XRD), and transmission electron microscope (TEM). The XRD patterns of all samples exhibited sharp and intensive peaks of hexagonal wurtzite structure of ZnO without any evidence of spurious crystalline phases. The nanoparticles crystalized in roughly spherical morphology with bimodal particle size distribution centered at ∼ 30 , ∼ 100 and ∼ 70 , ∼ 160 nm for undoped and Gd - doped ZnO (x=0.02), respectively. Diffuse reflectance spectrum of each sample was obtained by using a UV/VIS/Near spectrometer and the optical band-gap, Eg, values decreased with increasing Gd doping concentration; being ∼ 3.23 , and ∼ 3.17 eV for x=0 and 0.02, respectively at room temperature. This red shift on the band-gap was discussed in terms of new band levels below the conducting band. Also, the dielectric permittivity data of all samples could be evaluated by the Cole- Cole model. Seems that both oxygen vacancies (VO) or/and interstitial oxygen (O″ı¨) defects present in the Gd - doped ZnO samples play an important rule in the dielectric permittivity at room temperature. Furthermore, all Gd - doped ZnO samples exhibited typical paramagnetic behavior at rom temperature.

  15. Fringe structures and tunable bandgap width of 2D boron nitride nanosheets

    Directory of Open Access Journals (Sweden)

    Peter Feng

    2014-07-01

    Full Text Available We report studies of the surface fringe structures and tunable bandgap width of atomic-thin boron nitride nanosheets (BNNSs. BNNSs are synthesized by using digitally controlled pulse deposition techniques. The nanoscale morphologies of BNNSs are characterized by using scanning electron microscope (SEM, and transmission electron microscopy (TEM. In general, the BNNSs appear microscopically flat in the case of low temperature synthesis, whereas at high temperature conditions, it yields various curved structures. Experimental data reveal the evolutions of fringe structures. Functionalization of the BNNSs is completed with hydrogen plasma beam source in order to efficiently control bandgap width. The characterizations are based on Raman scattering spectroscopy, X-ray diffraction (XRD, and FTIR transmittance spectra. Red shifts of spectral lines are clearly visible after the functionalization, indicating the bandgap width of the BNNSs has been changed. However, simple treatments with hydrogen gas do not affect the bandgap width of the BNNSs.

  16. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field

    Science.gov (United States)

    Lu, Ning; Guo, Hongyan; Li, Lei; Dai, Jun; Wang, Lu; Mei, Wai-Ning; Wu, Xiaojun; Zeng, Xiao Cheng

    2014-02-01

    We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For M = Mo, Cr, W; X = S, Se, all heterobilayers show semiconducting characteristics with an indirect bandgap with the exception of the WSe2/MoS2 heterobilayer which retains the direct-bandgap character of the constituent monolayer. For M = Fe, V; X = S, Se, the MX2/MoS2 heterobilayers exhibit metallic characters. Particular attention of this study has been focused on engineering the bandgap of the TMD heterobilayer materials via application of either a tensile strain or an external electric field. We find that with increasing either the biaxial or uniaxial tensile strain, the MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can undergo a semiconductor-to-metal transition. For the WSe2/MoS2 heterobilayer, a direct-to-indirect bandgap transition may occur beyond a critical biaxial or uniaxial strain. For M (=Fe, V) and X (=S, Se), the magnetic moments of both metal and chalcogen atoms are enhanced when the MX2/MoS2 heterobilayers are under a biaxial tensile strain. Moreover, the bandgap of MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can be reduced by the vertical electric field. For two heterobilayers MSe2/MoS2 (M = Mo, Cr), PBE calculations suggest that the indirect-to-direct bandgap transition may occur under an external electric field. The transition is attributed to the enhanced spontaneous polarization. The tunable bandgaps in general and possible indirect-direct bandgap transitions due to tensile strain or external electric field make the TMD heterobilayer materials a viable candidate for optoelectronic applications.We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For

  17. Bandgaps of the Chalcogenide Glass Hollow-Core Photonic Crystal Fiber

    Science.gov (United States)

    Li, Shu-Guang; Zhou, Hong-Song; Yin, Guo-Bing

    2011-11-01

    Bandgaps of chalcogenide glass hollow-core photonic crystal fibers (GLS HC-PCFs) are analyzed by using the plane-wave expansion method. A mid-infrared laser can propagate in these low confinement loss fibers when the wavelength falls into the bandgaps. For enlarging the bandgap width, an improved GLS HC-PCF is put forward, the normalized frequency kΛ of the improved fiber is from 7.2 to 8.5 in its first bandgap. The improved GLS HC-PCF with pitch of 4.2 μm can transmit the lights with wavelengths ranging from 3.1 μm to 3.7 μm.

  18. Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method

    Science.gov (United States)

    Wu, Zhi-Jing; Li, Feng-Ming; Zhang, Chuanzeng

    2015-04-01

    The spectral element method (SEM) is extended to investigate the vibration band-gap properties of three-dimensional (3D) Kagome lattices. The dynamic stiffness matrix of the 3D element which contains bending, tensional and torsional components is derived. The spectral equations of motion of the whole 3D Kagome lattice are then established. Comparing with frequency-domain solutions calculated by the finite element method (FEM), the accuracy and the feasibility of the SEM solutions are verified. It can be shown that the SEM is suitable for analyzing the vibration band-gap properties. Due to the band-gap characteristics, the periodic 3D Kagome lattice has the performance of vibration isolation. The influences of the structural and material parameters on the vibration band-gaps are discussed and a new type of 3D Kagome lattice is designed to obtain the improved vibration isolation capability.

  19. Bandgap engineering of graphene decorated with randomly distributed ZnO nano-seed

    Science.gov (United States)

    Al-Amin, Chowdhury; Vabbina, Phani Kiran; Karabiyik, Mustafa; Sinha, Raju; Pala, Nezih

    2016-05-01

    In this paper, we have experimentally demonstrated the engineering of semi-metal single layer CVD Graphene's bandgap by decorating with randomly distributed ZnO nano-seed grown by sonication of Zinc acetate dehydrate. The proximity of nanoparticles and Graphene breaks Graphene's sublattice symmetry and opens-up a bandgap. The 2-D/G ratio of Raman spectroscopy of decorated Graphene along with a peak at 432.39 cm-1 confirmed presence of ZnO on single layer Graphene. The introduced bandgap was measured from the slope of Arrhenius plot. Graphene with significant bandgap introduced by the proposed methods could be used for devices intended for digital and logic applications.

  20. Gap formation and guided modes in photonic bandgap fibres with high-index rods

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2004-01-01

    Photonic bandgap fibres fabricated by infiltrating the holes of a microstructured optical fibre with high-index material are investigated numerically in the low- and intermediate-frequency regime. Bandgaps, transmission windows and the distribution of field energy between high- and low-index regi......Photonic bandgap fibres fabricated by infiltrating the holes of a microstructured optical fibre with high-index material are investigated numerically in the low- and intermediate-frequency regime. Bandgaps, transmission windows and the distribution of field energy between high- and low......-index regions are investigated. It is shown that the numerical results found can be rationalized in a simple way by considering the properties of guided modes in a conventional step-index fibre....