WorldWideScience

Sample records for model vertical profiles

  1. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Kwon Ho Lee

    2009-06-01

    Full Text Available The use of Geographic Information Systems (GIS and Remote Sensing (RS by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  2. A multi-model analysis of vertical ozone profiles

    Directory of Open Access Journals (Sweden)

    J. E. Jonson

    2010-06-01

    Full Text Available A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP under the Convention on Long-range Transboundary Air Pollution (LRTAP. Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.

    In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further.

    At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and

  3. Mechanistic modelling of the vertical soil organic matter profile

    NARCIS (Netherlands)

    Braakhekke, M.C.

    2014-01-01

    Soil organic matter (SOM) constitutes a large global pool of carbon that may play a considerable role for future climate. The vertical distribution of SOM in the profile may be important due to depth-dependence of physical, chemical, and biological conditions, and links to physical processes

  4. Model for radial gas fraction profiles in vertical pipe flow

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.M.

    2001-01-01

    A one-dimensional model is presented, which predicts the radial volume fraction profiles from a given bubble size distribution. It bases on the assumption of an equilibrium of the forces acting on a bubble perpendicularly to the flow path (non drag forces). For the prediction of the flow pattern this model could be used within an procedure together with appropriate models for local bubble coalescence and break-up. (orig.)

  5. Analytical models of lateral power devices with arbitrary vertical doping profiles in the drift region

    International Nuclear Information System (INIS)

    Hua Ting-Ting; Guo Yu-Feng; Yu Ying; Jian Tong; Yao Jia-Fei; Sheu Gene

    2013-01-01

    By solving the 2D Poisson's equation, analytical models are proposed to calculate the surface potential and electric field distributions of lateral power devices with arbitrary vertical doping profiles. The vertical and the lateral breakdown voltages are formulized to quantify the breakdown characteristic in completely-depleted and partially-depleted cases. A new reduced surface field (RESURF) criterion which can be used in various drift doping profiles is further derived for obtaining the optimal trade-off between the breakdown voltage and the on-resistance. Based on these models and the numerical simulation, the electric field modulation mechanism and the breakdown characteristics of lateral power devices are investigated in detail for the uniform, linear, Gaussian, and some discrete doping profiles along the vertical direction in the drift region. Then, the mentioned vertical doping profiles of these devices with the same geometric parameters are optimized, and the results show that the optimal breakdown voltages and the effective drift doping concentrations of these devices are identical, which are equal to those of the uniform-doped device, respectively. The analytical results of these proposed models are in good agreement with the numerical results and the previous experimental results, confirming the validity of the models presented here. (interdisciplinary physics and related areas of science and technology)

  6. Analytical models of lateral power devices with arbitrary vertical doping profiles in the drift region

    Science.gov (United States)

    Hua, Ting-Ting; Guo, Yu-Feng; Yu, Ying; Gene, Sheu; Jian, Tong; Yao, Jia-Fei

    2013-05-01

    By solving the 2D Poisson's equation, analytical models are proposed to calculate the surface potential and electric field distributions of lateral power devices with arbitrary vertical doping profiles. The vertical and the lateral breakdown voltages are formulized to quantify the breakdown characteristic in completely-depleted and partially-depleted cases. A new reduced surface field (RESURF) criterion which can be used in various drift doping profiles is further derived for obtaining the optimal trade-off between the breakdown voltage and the on-resistance. Based on these models and the numerical simulation, the electric field modulation mechanism and the breakdown characteristics of lateral power devices are investigated in detail for the uniform, linear, Gaussian, and some discrete doping profiles along the vertical direction in the drift region. Then, the mentioned vertical doping profiles of these devices with the same geometric parameters are optimized, and the results show that the optimal breakdown voltages and the effective drift doping concentrations of these devices are identical, which are equal to those of the uniform-doped device, respectively. The analytical results of these proposed models are in good agreement with the numerical results and the previous experimental results, confirming the validity of the models presented here.

  7. ACTRIS aerosol vertical profile data and observations: potentiality and first examples of integrated studies with models

    Science.gov (United States)

    Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina

    2016-04-01

    The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2

  8. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    Directory of Open Access Journals (Sweden)

    M. C. Braakhekke

    2013-01-01

    Full Text Available The vertical distribution of soil organic matter (SOM in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing due to bioturbation, and organic matter leaching. In this study we quantified the contribution of these three processes using Bayesian parameter estimation for the mechanistic SOM profile model SOMPROF. Based on organic carbon measurements, 13 parameters related to decomposition and transport of organic matter were estimated for two temperate forest soils: an Arenosol with a mor humus form (Loobos, the Netherlands, and a Cambisol with mull-type humus (Hainich, Germany. Furthermore, the use of the radioisotope 210Pbex as tracer for vertical SOM transport was studied. For Loobos, the calibration results demonstrate the importance of organic matter transport with the liquid phase for shaping the vertical SOM profile, while the effects of bioturbation are generally negligible. These results are in good agreement with expectations given in situ conditions. For Hainich, the calibration offered three distinct explanations for the observations (three modes in the posterior distribution. With the addition of 210Pbex data and prior knowledge, as well as additional information about in situ conditions, we were able to identify the most likely explanation, which indicated that root litter input is a dominant process for the SOM profile. For both sites the organic matter appears to comprise mainly adsorbed but potentially leachable material, pointing to the importance of organo-mineral interactions. Furthermore, organic matter in the mineral soil appears to be mainly derived from root litter, supporting previous studies that highlighted the importance of root input for soil carbon sequestration. The 210

  9. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    NARCIS (Netherlands)

    Braakhekke, M.C.; Wutzler, T.; Beer, C.; Kattge, J.; Schrumpf, M.; Schöning, I.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2012-01-01

    The vertical distribution of soil organic matter (SOM) in the profile may constitute a significant factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing

  10. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    NARCIS (Netherlands)

    Braakhekke, M.C.; Wutzler, T.; Beer, C.; Kattge, J.; Schrumpf, M.; Ahrens, B.; Schoning, I.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.; Reichstein, M.

    2013-01-01

    The vertical distribution of soil organic matter (SOM) in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing

  11. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Krepper, E.; Prasser, H.-M. [Forschungszentrum Rossendorf e.V., Institute of Safety Research, Dresden (Germany)

    2001-07-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  12. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.-M.

    2001-01-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  13. Application of vertical advection-diffusion model for studying CO2 and O2 profiles in central Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Singbal, S.Y.S.

    The vertical advection-diffusion model proposed by Craig has been applied to the study of CO sub(2) and O sub(2) profiles in Central Arabian Sea. Distributions of total CO Sub(2) and O sub(2) are explained better by expressions involving exponential...

  14. Measurements and Mesoscale Modeling of Autumnal Vertical Ozone Profiles in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Ping Peng

    2008-01-01

    Full Text Available Vertical measurements of ozone were made using a tethered balloon at the Linyuan site in Kaohsiung County, southern Taiwan. Ozone was monitored at altitudes of 0, 100, 300, 500, and 1000 m from November 23 to 25 in 2005. The potential temperature profiles revealed a stable atmosphere during the study period, largely because of the dominance of the high-pressure system and nocturnal radiation cooling close to the surface. The mixing height was low (50 - 300 m, particularly in the late night and early morning. The surface ozone concentrations that were predicted using TAPM (The Air Pollution Model were high (33.7 - 119 ppbv in the daytime (10:00 - 16:00 and were low (10 - 40 ppbv at other times; the predictions of which were consistent with the observations. The simulated surface ozone concentrations reveal that costal lands typically had higher ozone concentrations than those inland, because most industrial parks are located in or close to the boundaries of Kaohsiung City. Both measurements and simulations indicate that daytime ozone concentrations decreased quickly with increasing height at altitudes below 300 m; while nighttime ozone concentrations were lower at low altitudes (50 to 300 m than at higher altitudes, partly because of dry deposition and titration of surface ozone by the near-surface nitrogen oxides (NOx and partly because of the existence of the residual layer above the stable nocturnal boundary layer. The simulations show a good correlation between the maximum daytime surface ozone concentration and average nighttime ozone concentration above the nocturnal boundary layer.

  15. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon

    International Nuclear Information System (INIS)

    Colls, J.J.; Micallef, A.

    1999-01-01

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM 10 and PM 2.5 ) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data

  16. Vertical grid of retrieved atmospheric profiles

    International Nuclear Information System (INIS)

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera

    2016-01-01

    The choice of the vertical grid of atmospheric profiles retrieved from remote sensing observations is discussed considering the two cases of profiles used to represent the results of individual measurements and of profiles used for subsequent data fusion applications. An ozone measurement of the MIPAS instrument is used to assess, for different vertical grids, the quality of the retrieved profiles in terms of profile values, retrieval errors, vertical resolutions and number of degrees of freedom. In the case of individual retrievals no evident advantage is obtained with the use of a grid finer than the one with a reduced number of grid points, which are optimized according to the information content of the observations. Nevertheless, this instrument dependent vertical grid, which seems to extract all the available information, provides very poor results when used for data fusion applications. A loss of about a quarter of the degrees of freedom is observed when the data fusion is made using the instrument dependent vertical grid relative to the data fusion made using a vertical grid optimized for the data fusion product. This result is explained by the analysis of the eigenvalues of the Fisher information matrix and leads to the conclusion that different vertical grids must be adopted when data fusion is the expected application. - Highlights: • Data fusion application is taken into account for the choice of the vertical grid. • The study is performed using ozone profiles retrieved from MIPAS measurements. • A very fine vertical grid is not needed for the analysis of a single instrument. • The instrument dependent vertical grid is not the best choice for data fusion. • A data fusion dependent vertical grid must be used for profiles that will be fused.

  17. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  18. Autonomous vertical profiler data management

    Digital Repository Service at National Institute of Oceanography (India)

    Afzulpurkar, S.; Navelkar, G.S.; Desa, E.S.; Madhan, R.; Dabholkar, N.; Prabhudesai, S.P.; Mascarenhas, A.A.M.Q.

    the data management. It is expected that there would be multiple profilers operating at various locations, such as coastal seas, dams and other water bodies. Data would be relayed for archival, processing and be made available to the communities who...

  19. Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles.

    Science.gov (United States)

    Soyka, Florian; Giordano, Paolo Robuffo; Barnett-Cowan, Michael; Bülthoff, Heinrich H

    2012-07-01

    Understanding the dynamics of vestibular perception is important, for example, for improving the realism of motion simulation and virtual reality environments or for diagnosing patients suffering from vestibular problems. Previous research has found a dependence of direction discrimination thresholds for rotational motions on the period length (inverse frequency) of a transient (single cycle) sinusoidal acceleration stimulus. However, self-motion is seldom purely sinusoidal, and up to now, no models have been proposed that take into account non-sinusoidal stimuli for rotational motions. In this work, the influence of both the period length and the specific time course of an inertial stimulus is investigated. Thresholds for three acceleration profile shapes (triangular, sinusoidal, and trapezoidal) were measured for three period lengths (0.3, 1.4, and 6.7 s) in ten participants. A two-alternative forced-choice discrimination task was used where participants had to judge if a yaw rotation around an earth-vertical axis was leftward or rightward. The peak velocity of the stimulus was varied, and the threshold was defined as the stimulus yielding 75 % correct answers. In accordance with previous research, thresholds decreased with shortening period length (from ~2 deg/s for 6.7 s to ~0.8 deg/s for 0.3 s). The peak velocity was the determining factor for discrimination: Different profiles with the same period length have similar velocity thresholds. These measurements were used to fit a novel model based on a description of the firing rate of semi-circular canal neurons. In accordance with previous research, the estimates of the model parameters suggest that velocity storage does not influence perceptual thresholds.

  20. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    International Nuclear Information System (INIS)

    Russo, Matthew; Thompson, Christopher

    2015-01-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B r ∼ (10 −4 –10 −2 )(r/ AU) −2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10 −8 M ⊙ yr −1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper

  1. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Matthew [Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada)

    2015-11-10

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  2. A Method for Evaluation of Model-Generated Vertical Profiles of Meteorological Variables

    Science.gov (United States)

    2016-03-01

    evaluated WRF output for the boundary layer over Svalbard in the Arctic in terms of height above ground compared to tower and tethered balloon ...Valparaiso, Chile; 2011. Dutsch ML. Evaluation of the WRF model based on observations made by controlled meteorological balloons in the atmospheric

  3. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    Directory of Open Access Journals (Sweden)

    Siomos N.

    2016-01-01

    Full Text Available Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC, that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E from the period 2013-2014 were used in this study.

  4. Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model

    Directory of Open Access Journals (Sweden)

    C. L. Heald

    2011-12-01

    Full Text Available The global organic aerosol (OA budget is highly uncertain and past studies suggest that models substantially underestimate observed concentrations. Few of these studies have examined the vertical distribution of OA. Furthermore, many model-measurement comparisons have been performed with different models for single field campaigns. We synthesize organic aerosol measurements from 17 aircraft campaigns from 2001–2009 and use these observations to consistently evaluate a GEOS-Chem model simulation. Remote, polluted and fire-influenced conditions are all represented in this extensive dataset. Mean observed OA concentrations range from 0.2–8.2 μg sm−3 and make up 15 to 70% of non-refractory aerosol. The standard GEOS-Chem simulation reproduces the observed vertical profile, although observations are underestimated in 13 of the 17 field campaigns (the median observed to simulated ratio ranges from 0.4 to 4.2, with the largest model bias in anthropogenic regions. However, the model is best able to capture the observed variability in these anthropogenically-influenced regions (R2=0.18−0.57, but has little skill in remote or fire-influenced regions. The model bias increases as a function of relative humidity for 11 of the campaigns, possibly indicative of missing aqueous phase SOA production. However, model simulations of aqueous phase SOA suggest a pronounced signature in the mid-troposphere (2–6 km which is not supported in the observations examined here. Spracklen et al. (2011 suggest adding ~100 Tg yr−1 source of anthropogenically-controlled SOA to close the measurement-model gap, which we add as anthropogenic SOA. This eliminates the model underestimate near source, but leads to overestimates aloft in a few regions and in remote regions, suggesting either additional sinks of OA or higher volatility aerosol at colder temperatures. Sensitivity simulations indicate that fragmentation of organics upon

  5. Extraction of Vertical Profiles of Atmospheric Variables from Gridded Binary, Edition 2 (GRIB2) Model Output Files

    Science.gov (United States)

    2018-01-18

    new_grid will generate a smaller grid interpolated from the fields of the parent grid (http://www.cpc.ncep.noaa.gov/ products/wesley/wgrib2/new_grid.html...the grid or undefined. “latlon” for –new_grid results in a new grid interpolated from the parent (old) grid, where the listed latitude and longitude...by-2 horizontal grid 0.0001° apart, which translates to about a 10-m separation . 2.2 Extract the Vertical Profile Data The second step is to

  6. On-current modeling of short-channel double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile

    International Nuclear Information System (INIS)

    Dubey, Sarvesh; Jit, S.; Tiwari Pramod Kumar

    2013-01-01

    An analytic drain current model is presented for doped short-channel double-gate MOSFETs with a Gaussian-like doping profile in the vertical direction of the channel. The present model is valid in linear and saturation regions of device operation. The drain current variation with various device parameters has been demonstrated. The model is made more physical by incorporating the channel length modulation effect. Parameters like transconductance and drain conductance that are important in assessing the analog performance of the device have also been formulated. The model results are validated by numerical simulation results obtained by using the commercially available ATLAS™, a two dimensional device simulator from SILVACO. (semiconductor devices)

  7. Evaluation of vertical profiles to design continuous descent approach procedure

    Science.gov (United States)

    Pradeep, Priyank

    The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of

  8. Validation of mixing height determined from vertical profiles of wind and temperature from the DMI-HIRLAM NWP model in comparison with readiosoundings

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, A.; Soerensen, J.H.; Nielsen, N.W. [Danish Meteorological Inst., DMI, Copenhagen (Denmark)

    1997-10-01

    A sensitivity study is performed of vertical profiles from the numerical weather prediction model DMI-HIRLAM (DMI-HIgh Resolution Limited Area Model). The study involves profiles of horizontal wind, temperature and humidity in the lower troposphere up to 2500 meter. Detailed comparisons of analysed as well as forecast profiles are made with measured data from several radio-sonde stations throughout Europe. Methods for estimating the Mixing Height (MH) based on a bulk Richardson number method, the Vogelezang and Holtslag method and parcel methods are also studied. The methods are inter-compared, and MH based on data from DMI-HIRLAM are compared with the corresponding MH based on radiosonde data. For convective conditions the MH estimates are also compared with subjective estimates of the MH. In this paper preliminary results mainly based on data from Jaegersborg (Copenhagen) are presented. Results based on data from 1994-95 show that the resemblance between measured profiles and the DMI-HIRLAM profiles is fairly good in general. Also the estimates of the MH based on DMI-HIRLAM data is in general of nearly the same quality as estimations based on observed data. However, especially in convective conditions there is a tendency by DMI-HIRLAM to underestimate the strength of the mixing and thereby relatively large errors in the estimates of the MH can occur. (au)

  9. Modelling horizontal and vertical concentration profiles of ozone and oxides of nitrogen within high-latitude urban areas

    International Nuclear Information System (INIS)

    Nicholson, J.P.; Weston, K.J.

    2001-01-01

    Urban ozone concentrations are determined by the balance between ozone destruction, chemical production and supply through advection and turbulent down-mixing from higher levels. At high latitudes, low levels of solar insolation and high horizontal advection speeds reduce the photochemical production and the spatial ozone concentration patterns are largely determined by the reaction of ozone with nitric oxide and dry deposition to the surface. A Lagrangian column model has been developed to simulate the mean (monthly and annual) three-dimensional structure in ozone and nitrogen oxides (NO x ) concentrations in the boundary-layer within and immediately around an urban area. The short-time-scale photochemical processes of ozone and NO x , as well as emissions and deposition to the ground, are simulated. The model has a horizontal resolution of 1x1km and high resolution in the vertical. It has been applied over a 100x100km domain containing the city of Edinburgh (at latitude 56 o N) to simulate the city-scale processes of pollutants. Results are presented, using averaged wind-flow frequencies and appropriate stability conditions, to show the extent of the depletion of ozone by city emissions. The long-term average spatial patterns in the surface ozone and NO x concentrations over the model domain are reproduced quantitatively. The model shows the average surface ozone concentrations in the urban area to be lower than the surrounding rural areas by typically 50% and that the areas experiencing a 20% ozone depletion are generally restricted to within the urban area. The depletion of the ozone concentration to less than 50% of the rural surface values extends only 20m vertically above the urban area. A series of monitoring sites for ozone, nitric oxide and nitrogen dioxide on a north-south transect through the city - from an urban, through a semi-rural, to a remote rural location - allows the comparison of modelled with observed data for the mean diurnal cycle of ozone

  10. Integration of DAS (distributed acoustic sensing) vertical seismic profile and geostatistically modeled lithology data to characterize an enhanced geothermal system.

    Science.gov (United States)

    Cronin, S. P.; Trainor Guitton, W.; Team, P.; Pare, A.; Jreij, S.; Powers, H.

    2017-12-01

    In March 2016, a 4-week field data acquisition took place at Brady's Natural Lab (BNL), an enhanced geothermal system (EGS) in Fallan, NV. During these 4 weeks, a vibe truck executed 6,633 sweeps, recorded by nodal seismometers, horizontal distributed acoustic sensing (DAS) cable, and 400 meters of vertical DAS cable. DAS provides lower signal to noise ratio than traditional geophones but better spatial resolution. The analysis of DAS VSP included Fourier transform, and filtering to remove all up-going energy. Thus, allowing for accurate first arrival picking. We present an example of the Gradual Deformation Method (GDM) using DAS VSP and lithological data to produce a distribution of valid velocity models of BNL. GDM generates continuous perturbations of prior model realizations seeking the best match to the data (i.e. minimize the misfit). Prior model realizations honoring the lithological data were created using sequential Gaussian simulation, a commonly used noniterative geostatistical method. Unlike least-squares-based methods of inversion, GDM readily incorporates a priori information, such as a variogram calculated from well-based lithology information. Additionally, by producing a distribution of models, as opposed to one optimal model, GDM allows for uncertainty quantification. This project aims at assessing the integrated technologies ability to monitor changes in the water table (possibly to one meter resolution) by exploiting the dependence of seismic wave velocities on water saturation of the subsurface. This project, which was funded in part by the National Science Foundation, is a part of the PoroTomo project, funded by a grant from the U.S. Department of Energy.

  11. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    Directory of Open Access Journals (Sweden)

    Luan Pan

    2014-07-01

    Full Text Available Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  12. The Vertical Profile of Ocean Mixing

    Science.gov (United States)

    Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.

    2014-12-01

    The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have vertical side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.

  13. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    Science.gov (United States)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was

  14. SOMPROF: A vertically explicit soil organic matter model

    NARCIS (Netherlands)

    Braakhekke, M.C.; Beer, M.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2011-01-01

    Most current soil organic matter (SOM) models represent the soil as a bulk without specification of the vertical distribution of SOM in the soil profile. However, the vertical SOM profile may be of great importance for soil carbon cycling, both on short (hours to years) time scale, due to

  15. Estimating tropical vertical motion profile shapes from satellite observations

    Science.gov (United States)

    Back, L. E.; Handlos, Z.

    2013-12-01

    The vertical structure of tropical deep convection strongly influences interactions with larger scale circulations and climate. This research focuses on investigating this vertical structure and its relationship with mesoscale tropical weather states. We test the hypothesis that vertical motion shape varies in association with weather state type. We estimate mean state vertical motion profile shapes for six tropical weather states defined using cloud top pressure and optical depth properties from the International Satellite Cloud Climatology Project. The relationship between vertical motion and the dry static energy budget are utilized to set up a regression analysis that empirically determines two modes of variability in vertical motion from reanalysis data. We use these empirically determined modes, this relationship and surface convergence to estimate vertical motion profile shape from observations of satellite retrievals of rainfall and surface convergence. We find that vertical motion profile shapes vary systematically between different tropical weather states. The "isolated systems" regime exhibits a more ''bottom-heavy'' profile shape compared to the convective/thick cirrus and vigorous deep convective regimes, with maximum upward vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The variability we observe with our method does not coincide with that expected based on conventional ideas about how stratiform rain fraction and vertical motion are related.

  16. In situ profiling of eastern Arabian Sea coastal waters using a new autonomous vertical profiler

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Madhan, R.; Dabholkar, N.A.; Prabhudesai, S.P.; Navelkar, G.S.; Mascarenhas, A.A.M.Q.; Afzulpurkar, S.; Phaldesai, M.; Maurya, P.

    The autonomous vertical profiler (AVP) presented here offers a fast, cost-effective, optimized approach to profiling in coastal waters. It consists of a hands-free, slightly buoyant, motor-driven in situ robot profiler that requires no operator...

  17. Vertical profiles of droplet effective radius in shallow convective clouds

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2011-05-01

    >fad becomes smaller, representing a higher degree of mixing, and re becomes smaller (~10 % and more variable. However, for the clean case, smaller fad corresponds to larger re (and larger re variability, reflecting the additional influence of droplet collision-coalescence and sedimentation on re. Finally, profiles of the vertically inhomogeneous clouds as simulated by the LES and those of the vertically homogeneous clouds are used as input to a radiative transfer model to study the effect of cloud vertical inhomogeneity on shortwave radiative forcing. For clouds that have the same liquid water path, re of a vertically homogeneous cloud must be about 76–90 % of the cloud-top re of the vertically inhomogeneous cloud in order for the two clouds to have the same shortwave radiative forcing.

  18. CAMEX-3 AIRBORNE VERTICAL ATMOSPHERE PROFILING SYSTEM (AVAPS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-3 DC-8 Airborne Vertical Atmosphere Profiling System (AVAPS) uses dropwindsonde and Global Positioning System (GPS) receivers to measure the atmospheric...

  19. Development of an autonomous vertical profiler for oceanographic studies

    Digital Repository Service at National Institute of Oceanography (India)

    Dabholkar, N.; Desa, E.; Afzulpurkar, S.; Madhan, R.; Mascarenhas, A.A.M.Q.; Navelkar, G.; Maurya, P.K.; Prabhudesai, S.; Nagvekar, S.; Martins, H.; Sawkar, G.; Fernandes, P.; Manoj, K.K.

    groups. This paper is based on a concept patent on a thruster driven Autonomous Vertical profiler [AVP], and describes the developmental steps being taken on the integration of sensors, control electronics, communications and a Graphical User interface...

  20. Elastic kirchhoff migration for vertical seismic profiles

    International Nuclear Information System (INIS)

    Keho, T.H.; Wu, R.S.

    1987-01-01

    Elastic Kirchhoff migration is implemented for the VSP recording geometry. The resulting migration formula requires measurement of the stress as well as the displacement. Since stress is not measured in a VSP, and in many cases the horizontal component of displacement is not measured, approximate migration formulas are given for these cases. The elastic migration formula for the case where only the vertical components are available, is the same as the acoustic migration formula, where the pressure data are replaced by the magnitudes of the elastic data as reconstructed from the vertical components, and the acoustic Green's functions are replaced with either the P or S wave elastic Green's functions. Two expressions for migration of two component displacement data are presented. In the first, the terms involving traction data are simply ignored. In the second, an improved backpropagation operator for the displacement field is obtained by replacing the traction data in the Kirchhoff integral by displacement data using Hooke's law. The migration expressions for the cases where two component data are available produce images which are less contaminated by artifacts than the migration images of one component data

  1. Vertical profile of 137Cs in soil.

    Science.gov (United States)

    Krstić, D; Nikezić, D; Stevanović, N; Jelić, M

    2004-12-01

    In this paper, a vertical distribution of 137Cs in undisturbed soil was investigated experimentally and theoretically. Soil samples were taken from the surroundings of the city of Kragujevac in central Serbia during spring-summer of 2001. The sampling locations were chosen in such a way that the influence of soil characteristics on depth distribution of 137Cs in soil could be investigated. Activity of 137Cs in soil samples was measured using a HpGe detector and multi-channel analyzer. Based on vertical distribution of 137Cs in soil which was measured for each of 10 locations, the diffusion coefficient of 137Cs in soil was determined. In the next half-century, 137Cs will remain as the source of the exposure. Fifteen years after the Chernobyl accident, and more than 30 years after nuclear probes, the largest activity of 137Cs is still within 10 cm of the upper layer of the soil. This result confirms that the penetration of 137Cs in soil is a very slow process. Experimental results were compared with two different Green functions and no major differences were found between them. While both functions fit experimental data well in the upper layer of soil, the fitting is not so good in deeper layers. Although the curves obtained by these two functions are very close to each other, there are some differences in the values of parameters acquired by them.

  2. Data driven modelling of vertical atmospheric radiation

    International Nuclear Information System (INIS)

    Antoch, Jaromir; Hlubinka, Daniel

    2011-01-01

    In the Czech Hydrometeorological Institute (CHMI) there exists a unique set of meteorological measurements consisting of the values of vertical atmospheric levels of beta and gamma radiation. In this paper a stochastic data-driven model based on nonlinear regression and on nonhomogeneous Poisson process is suggested. In the first part of the paper, growth curves were used to establish an appropriate nonlinear regression model. For comparison we considered a nonhomogeneous Poisson process with its intensity based on growth curves. In the second part both approaches were applied to the real data and compared. Computational aspects are briefly discussed as well. The primary goal of this paper is to present an improved understanding of the distribution of environmental radiation as obtained from the measurements of the vertical radioactivity profiles by the radioactivity sonde system. - Highlights: → We model vertical atmospheric levels of beta and gamma radiation. → We suggest appropriate nonlinear regression model based on growth curves. → We compare nonlinear regression modelling with Poisson process based modeling. → We apply both models to the real data.

  3. The Naval Ocean Vertical Aerosol Model : Progress Report

    NARCIS (Netherlands)

    Leeuw, G. de; Gathman, S.G.; Davidson, K.L.; Jensen, D.R.

    1990-01-01

    The Naval Oceanic Vertical Aerosol Model (NOVAM) has been formulated to estimate the vertical structure of the optical and infrared extinction coefficients in the marine atmospheric boundary layer (MABL). NOVAM was designed to predict the non-uniform and non-logarithmic extinction profiles which are

  4. Vertically Integrated Models for Carbon Storage Modeling in Heterogeneous Domains

    Science.gov (United States)

    Bandilla, K.; Celia, M. A.

    2017-12-01

    Numerical modeling is an essential tool for studying the impacts of geologic carbon storage (GCS). Injection of carbon dioxide (CO2) into deep saline aquifers leads to multi-phase flow (injected CO2 and resident brine), which can be described by a set of three-dimensional governing equations, including mass-balance equation, volumetric flux equations (modified Darcy), and constitutive equations. This is the modeling approach on which commonly used reservoir simulators such as TOUGH2 are based. Due to the large density difference between CO2 and brine, GCS models can often be simplified by assuming buoyant segregation and integrating the three-dimensional governing equations in the vertical direction. The integration leads to a set of two-dimensional equations coupled with reconstruction operators for vertical profiles of saturation and pressure. Vertically-integrated approaches have been shown to give results of comparable quality as three-dimensional reservoir simulators when applied to realistic CO2 injection sites such as the upper sand wedge at the Sleipner site. However, vertically-integrated approaches usually rely on homogeneous properties over the thickness of a geologic layer. Here, we investigate the impact of general (vertical and horizontal) heterogeneity in intrinsic permeability, relative permeability functions, and capillary pressure functions. We consider formations involving complex fluvial deposition environments and compare the performance of vertically-integrated models to full three-dimensional models for a set of hypothetical test cases consisting of high permeability channels (streams) embedded in a low permeability background (floodplains). The domains are randomly generated assuming that stream channels can be represented by sinusoidal waves in the plan-view and by parabolas for the streams' cross-sections. Stream parameters such as width, thickness and wavelength are based on values found at the Ketzin site in Germany. Results from the

  5. Investigating Methods for Serving Visualizations of Vertical Profiles

    Science.gov (United States)

    Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.

    2017-12-01

    Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.

  6. Estimation of sand dune thickness using a vertical velocity profile

    International Nuclear Information System (INIS)

    Al-Shuhail, Abdullatif A.

    2004-01-01

    Previous field and mathematical studies have shown that sand dunes may have vertical velocity profiles (i.e. continuous increase of velocity with depth). Therefore, computing the dunes thickness using conventional seismic refraction methods that assume a vertically homogeneous layer will likely produce some errors. The purpose of this study is to quantify the effect of the vertical velocity profile in a sand dune on the process of thickness estimation using seismic refraction data. First, the time distance (T-X) data of the direct wave in the dune is calculated using a vertical velocity profile, V (z), derived from Hertz-Mindlin contact theory. Then the thickness is estimated from the calculated T-X data, intercept time and velocity of the refractor at the dune's base assuming a constant velocity in the dune. The error in the estimated thickness due to the constant-velocity assumption increases with increasing thickness and decreasing porosity of the dune. For sand dunes with porosities greater than 0.2 and thickness less than 200 meter, the error is less than 15%. (author)

  7. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    Science.gov (United States)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  8. Mean vertically inhomogeneous models of the uppermost crust along seismic profiles in the Ohře rift and Moravo-Silesian region

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Málek, J.; Novotný, O.; Rušajová, Jana; Valenta, J.

    2006-01-01

    Roč. 6, č. 2 (2006), s. 125-131 ISSN 1213-1962. [Nové poznatky a měření v seismologii, inženýrské geofyzice a geotechnice/15./. Ostrava, 11.04.2006-13.04.2006] R&D Projects: GA ČR GA205/03/0999; GA AV ČR IAA300460602 Institutional research plan: CEZ:AV0Z30860518 Keywords : refraction measurement, * vertically inhomogeneous models, * Weichert-Herglotz method Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  9. Nine-component vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Balch, A.H.; Erdemir, C.; Spengler, R.W.; Hunter, W.C.

    1996-01-01

    Nine-component vertical seismic profiling has been conducted at the UE-25 UZ No. 16 borehole at Yucca Mountain, Nevada, in support of investigation of the hydrologic significance of fault and fracture systems. A large data set from multi-component sources and receivers allows state-of-the-art advances in processing using polarization filtering and reverse time migration, for enhanced interpretation of geologic features

  10. Modeling the Lower Part of the Topside Ionospheric Vertical Electron Density Profile Over the European Region by Means of Swarm Satellites Data and IRI UP Method

    Science.gov (United States)

    Pignalberi, A.; Pezzopane, M.; Rizzi, R.

    2018-03-01

    An empirical method to model the lower part of the ionospheric topside region from the F2 layer peak height to about 500-600 km of altitude over the European region is proposed. The method is based on electron density values recorded from December 2013 to June 2016 by Swarm satellites and on foF2 and hmF2 values provided by IRI UP (International Reference Ionosphere UPdate), which is a method developed to update the IRI model relying on the assimilation of foF2 and M(3000)F2 data routinely recorded by a network of European ionosonde stations. Topside effective scale heights are calculated by fitting some definite analytical functions (α-Chapman, β-Chapman, Epstein, and exponential) through the values recorded by Swarm and the ones output by IRI UP, with the assumption that the effective scale height is constant in the altitude range considered. Calculated effective scale heights are then modeled as a function of foF2 and hmF2, in order to be operationally applicable to both ionosonde measurements and ionospheric models, like IRI. The method produces two-dimensional grids of the median effective scale height binned as a function of foF2 and hmF2, for each of the considered topside profiles. A statistical comparison with Constellation Observing System for Meteorology, Ionosphere, and Climate/FORMOsa SATellite-3 collected Radio Occultation profiles is carried out to assess the validity of the proposed method and to investigate which of the considered topside profiles is the best one. The α-Chapman topside function displays the best performance compared to the others and also when compared to the NeQuick topside option of IRI.

  11. Forest Canopy LAI and Vertical FAVD Profile Inversion from Airborne Full-Waveform LiDAR Data Based on a Radiative Transfer Model

    Directory of Open Access Journals (Sweden)

    Han Ma

    2015-02-01

    Full Text Available Forest canopy leaf area index (LAI is a critical variable for the modeling of climates and ecosystems over both regional and global scales. This paper proposes a physically based method to retrieve LAI and foliage area volume density (FAVD profile directly from full-waveform Light Detection And Ranging (LiDAR data using a radiative transfer (RT model. First, a physical interaction model between LiDAR and a forest scene was built on the basis of radiative transfer theories. Next, FAVD profile of each laser shot of full-waveform LiDAR was inverted using the physical model. In addition, the missing LiDAR data, caused by high-density forest and LiDAR system limitations, were filled in based on the inverted FAVD and the ancillary CHM data. Finally, LAI of the study area was retrieved from the inverted FAVD at a 10-m resolution. CHM derived LAI based on the Beer-Lambert law was compared with the LAI derived from full-waveform data. Also, we compared the results with the field measured LAI. The values of correlation coefficient r and RMSE of the estimated LAI were 0.73 and 0.67, respectively. The results indicate that full-waveform LiDAR data is a reliable data source and represent a useful tool for retrieving forest LAI.

  12. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    Science.gov (United States)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  13. Airborne Vertical Profiling of Mercury Speciation near Tullahoma, TN, USA

    Directory of Open Access Journals (Sweden)

    Steve Brooks

    2014-08-01

    Full Text Available Atmospheric transport and in situ oxidation are important factors influencing mercury concentrations at the surface and wet and dry deposition rates. Contributions of both natural and anthropogenic processes can significantly impact burdens of mercury on local, regional and global scales. To address these key issues in atmospheric mercury research, airborne measurements of mercury speciation and ancillary parameters were conducted over a region near Tullahoma, Tennessee, USA, from August 2012 to June 2013. Here, for the first time, we present vertical profiles of Hg speciation from aircraft for an annual cycle over the same location. These airborne measurements included gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particulate bound mercury (PBM, as well as ozone (O3, sulfur dioxide (SO2, condensation nuclei (CN and meteorological parameters. The flights, each lasting ~3 h, were conducted typically one week out of each month to characterize seasonality in mercury concentrations. Data obtained from 0 to 6 km altitudes show that GEM exhibited a relatively constant vertical profile for all seasons with an average concentration of 1.38 ± 0.17 ng∙m−3. A pronounced seasonality of GOM was observed, with the highest GOM concentrations up to 120 pg∙m−3 in the summer flights and lowest (0–20 pg∙m−3 in the winter flights. Vertical profiles of GOM show the maximum levels at altitudes between 2 and 4 km. Limited PBM measurements exhibit similar levels to GOM at all altitudes. HYSPLIT back trajectories showed that the trajectories for elevated GOM (>70 pg∙m−3 or PBM concentrations (>30 pg∙m−3 were largely associated with air masses coming from west/northwest, while events with low GOM (<20 pg∙m−3 or PBM concentrations (<5 pg∙m−3 were generally associated with winds from a wider range of wind directions. This is the first set of speciated mercury vertical profiles collected in a single location over the course

  14. Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements

    CERN Document Server

    Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt

    2016-01-01

    Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.

  15. Vertical profile of fog microphysics : a case study

    Science.gov (United States)

    Burnet, Frédéric; Brilouet, Pierre-Etienne; Mazoyer, Marie; Bourrianne, Thierry; Etcheberry, Jean-Michel; Gaillard, Brigitte; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Barrau, Sébastien; Defoy, Stephan

    2016-04-01

    The occurrence and development of fogs result from the non-linear interaction of competing radiative, thermodynamic, microphysical and dynamical processes and the forecasting of their life cycle still remains a challenging issue. Several field campaigns have been carried out at the SIRTA observatory in the Paris suburb area (France). These experiments have shown that fog events exhibit large differences of the microphysical properties and various evolutions during their life cycle. To better understand relationships between the different processes and to validate numerical simulations it is necessary however to document the vertical profile of the fog microphysics. A CDP (Cloud Droplet Spectrometer) from DMT (Droplet Measurement Technology, Boulder, CO) has been modified to allow measurements of the droplet size distribution in fog layers with a tethered balloon. This instrumental set-up has been used during a field campaign during the winter 2013-214 in the Landes area in the South West of France. To validate the vertical profiles provided by the modified CDP, a mast was equipped with microphysical instruments at 2 altitude levels with an another CDP at 24 m and a Fog Monitor FM100 at 42 m. The instrumental set-up deployed during this campaign is presented. Data collected during a fog event that occurred during the night of 5-6 March 2014 are analysed. We show that microphysical properties such as droplet number concentration, LWC and mean droplet size, exhibit different time evolution during the fog life cycle depending on the altitude level. Droplet size distribution measurements are also investigated. They reveal sharp variations along the vertical close to the top of the fog layer. In addition it is shown that the shape of the size distributions at the top follows a time evolution typical of a quasi-adiabatic droplet growth.

  16. Vertical and horizontal seismic profiling investigations at Olkiluoto, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Cosma, C.; Enescu, N.; Adam, E.; Balu, L. [Vibrometric Oy (Finland)

    2003-03-01

    Vertical Seismic Profiling (VSP) and Horizontal Seismic Profiling (HSP) surveys were conducted during 2001 at Olkiluoto site in Eurajoki, Finland. The VSP investigations were carried out in four boreholes with ten shot points for each borehole. Two HSP lines were measured with receivers laid on the bottom of an artificial pond and ten source points located around the pond. Different receiver types were used for the VSP and (HSP) a 3-component geophone chain for VSP and a hydrophone chain for HSP. All surveys have been carried out with a VIBSIST-1000 source - a time- distributed swept-impact source - instead of explosives. With this source, the seismic signals are produced as rapid series of impacts, the impact intervals being monotonically increased to achieve a non- repeatable sequence. The VIBSIST-1000 uses a tractor-mounted hydraulic rock-breaker, powered through a computer controlled servo- hydraulic flow regulator. Using standard construction equipment ensures that the VIBSIST sources are safe, nondestructive and environmentally friendly. This also makes the method reliable and cost effective. The new VIBSIST source produces signals with levels of energy comparable to explosives. The VIBSIST appears to be more stable, but its most significant advantages are the low cost of preparation of the shot points and the speed of the acquisition. The wide diversity of reflection angles, the local variations of reflectivity and, generally, the relatively weak seismic response of faults and fractured zones in crystalline rock demand intensive processing. The first stage of the processing sequence focuses on eliminating such wave-fields as the direct P, direct S, tube-waves and ground-roll, so that the weaker later events, e.g. reflections, become visible. The second stage of processing consists mainly of Image Point (IP) filtering techniques, aimed at enhancing the reflected wave fields and at separating events generated by reflectors with different orientations. Imaging

  17. Experimental study of vertical stress profiles of a confined granular bed under static and dynamic conditions.

    Science.gov (United States)

    Mandato, S; Cuq, B; Ruiz, T

    2012-07-01

    In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation.

  18. Is Convection Sensitive to Model Vertical Resolution and Why?

    Science.gov (United States)

    Xie, S.; Lin, W.; Zhang, G. J.

    2017-12-01

    Model sensitivity to horizontal resolutions has been studied extensively, whereas model sensitivity to vertical resolution is much less explored. In this study, we use the US Department of Energy (DOE)'s Accelerated Climate Modeling for Energy (ACME) atmosphere model to examine the sensitivity of clouds and precipitation to the increase of vertical resolution of the model. We attempt to understand what results in the behavior change (if any) of convective processes represented by the unified shallow and turbulent scheme named CLUBB (Cloud Layers Unified by Binormals) and the Zhang-McFarlane deep convection scheme in ACME. A short-term hindcast approach is used to isolate parameterization issues from the large-scale circulation. The analysis emphasizes on how the change of vertical resolution could affect precipitation partitioning between convective- and grid-scale as well as the vertical profiles of convection-related quantities such as temperature, humidity, clouds, convective heating and drying, and entrainment and detrainment. The goal is to provide physical insight into potential issues with model convective processes associated with the increase of model vertical resolution. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams

    Science.gov (United States)

    Cervania, A.; Knack, I. M. W.

    2017-12-01

    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  20. A Remote Sensing Approach to Estimate Vertical Profile Classes of Phytoplankton in a Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Kun Xue

    2015-10-01

    Full Text Available The extension and frequency of algal blooms in surface waters can be monitored using remote sensing techniques, yet knowledge of their vertical distribution is fundamental to determine total phytoplankton biomass and understanding temporal variability of surface conditions and the underwater light field. However, different vertical distribution classes of phytoplankton may occur in complex inland lakes. Identification of the vertical profile classes of phytoplankton becomes the key and first step to estimate its vertical profile. The vertical distribution profile of phytoplankton is based on a weighted integral of reflected light from all depths and is difficult to determine by reflectance data alone. In this study, four Chla vertical profile classes (vertically uniform, Gaussian, exponential and hyperbolic were found to occur in three in situ vertical surveys (28 May, 19–24 July and 10–12 October in a shallow eutrophic lake, Lake Chaohu. We developed and validated a classification and regression tree (CART to determine vertical phytoplankton biomass profile classes. This was based on an algal bloom index (Normalized Difference algal Bloom Index, NDBI applied to both in situ remote sensing reflectance (Rrs and MODIS Rayleigh-corrected reflectance (Rrc data in combination with data of local wind speed. The results show the potential of retrieving Chla vertical profiles information from integrated information sources following a decision tree approach.

  1. On production costs in vertical differentiation models

    OpenAIRE

    Dorothée Brécard

    2009-01-01

    In this paper, we analyse the effects of the introduction of a unit production cost beside a fixed cost of quality improvement in a duopoly model of vertical product differentiation. Thanks to an original methodology, we show that a low unit cost tends to reduce product differentiation and thus prices, whereas a high unit cost leads to widen product differentiation and to increase prices

  2. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan.

    Science.gov (United States)

    Ferrero, L; Mocnik, G; Ferrini, B S; Perrone, M G; Sangiorgi, G; Bolzacchini, E

    2011-06-15

    Vertical profiles of aerosol number-size distribution and black carbon (BC) concentration were measured between ground-level and 500m AGL over Milan. A tethered balloon was fitted with an instrumentation package consisting of the newly-developed micro-Aethalometer (microAeth® Model AE51, Magee Scientific, USA), an optical particle counter, and a portable meteorological station. At the same time, PM(2.5) samples were collected both at ground-level and at a high altitude sampling site, enabling particle chemical composition to be determined. Vertical profiles and PM(2.5) data were collected both within and above the mixing layer. Absorption coefficient (b(abs)) profiles were calculated from the Aethalometer data: in order to do so, an optical enhancement factor (C), accounting for multiple light-scattering within the filter of the new microAeth® Model AE51, was determined for the first time. The value of this parameter C (2.05±0.03 at λ=880nm) was calculated by comparing the Aethalometer attenuation coefficient and aerosol optical properties determined from OPC data along vertical profiles. Mie calculations were applied to the OPC number-size distribution data, and the aerosol refractive index was calculated using the effective medium approximation applied to aerosol chemical composition. The results compare well with AERONET data. The BC and b(abs) profiles showed a sharp decrease at the mixing height (MH), and fairly constant values of b(abs) and BC were found above the MH, representing 17±2% of those values measured within the mixing layer. The BC fraction of aerosol volume was found to be lower above the MH: 48±8% of the corresponding ground-level values. A statistical mean profile was calculated, both for BC and b(abs), to better describe their behaviour; the model enabled us to compute their average behaviour as a function of height, thus laying the foundations for valid parametrizations of vertical profile data which can be useful in both remote sensing

  3. Two Years of Ozone Vertical Profiles Collected from Aircraft over California and the Pacific Ocean

    Science.gov (United States)

    Austerberry, D.; Yates, E. L.; Roby, M.; Chatfield, R. B.; Iraci, L. T.; Pierce, B.; Fairlie, T. D.; Johnson, B. J.; Ives, M.

    2012-12-01

    Tropospheric ozone transported across the Pacific Ocean has been strongly suggested to contribute substantially to surface ozone levels at several sites within Northern California's Sacramento Valley. Because this contribution can affect a city's ability to meet regulatory ozone limits, the influence of Pacific ozone transport has implications for air quality control strategies in the San Joaquin Valley (SJV). The Alpha Jet Atmospheric Experiment is designed to collect a multi-year data set of tropospheric ozone vertical profiles. Forty-four flights with ozone profiles were conducted between February 2nd, 2011 and August 9th, 2012, and approximately ten more flights are expected in the remainder of 2012. Twenty marine air profiles have been collected at sites including Trinidad Head and two locations tens of kilometers offshore at 37° N latitude. Good agreement is seen with ozonesondes launched from Trinidad Head. Additional profiles over Merced, California were obtained on many of these flight days. These in-situ measurements were conducted during spiral descents of H211's Alpha Jet at mid-day local times using a 2B Technologies Dual Beam Ozone Monitor. Hourly surface ambient ozone data were obtained from the California Air Resources Board's SJV monitoring sites. For each site, the Pearson linear correlation coefficient was calculated between ozone in a 300m vertical layer of an offshore profile and the surface site at varying time offsets from the time of the profile. Each site's local and regional ozone production component was estimated and removed. The resulting correlations suggest instances of Pacific ozone transport following some of the offshore observations. Real-Time Air Quality Modeling System (RAQMS) products constrained by assimilated satellite data model the transport of ozone enhancements and guide flight planning. RAQMS hindcasts also suggest that ozone transport to the surface of the SJV basin occurred following some of these offshore profiles

  4. Importance of A Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals

    Science.gov (United States)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Zoogman, P.; Newchurch, M.; Kuang, S.; McGee, T. J.; Leblanc, T.

    2017-12-01

    Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's operational GEOS-5 FP model and reanalysis data from MERRA2) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from

  5. Modeling equilibrium bed profiles of short tidal embayments : On the effect of the vertical distribution of suspended sediment and the influence of the boundary conditions

    NARCIS (Netherlands)

    Ter Brake, M.C.; Schuttelaars, H.M.

    2009-01-01

    In many tidal embayments, bottom patterns, such as the channel-shoal systems of the Wadden Sea, are observed. To gain understanding of the mechanisms that result in these bottom patterns, an idealized model is developed and analyzed for short tidal embayments. In this model, the water motion is

  6. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    Science.gov (United States)

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  7. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, Claudie

    1995-01-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tri dimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows. (author) [fr

  8. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, C.

    1995-12-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tridimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows

  9. Modeling shoreface profile evolution

    NARCIS (Netherlands)

    Stive, M.J.F.; De Vriend, H.J.

    1995-01-01

    Current knowledge of hydro-, sediment and morpho-dynamics in the shoreface environment is insufficient to undertake shoreface-profile evolution modelling on the basis of first physical principles. We propose a simple, panel-type model to map observed behaviour. The internal dynamics are determined

  10. Modelling shoreface profile evolution

    NARCIS (Netherlands)

    Stive, Marcel J.F.; de Vriend, Huib J.

    1995-01-01

    Current knowledge of hydro-, sediment and morpho-dynamics in the shoreface environment is insufficient to undertake shoreface-profile evolution modelling on the basis of first physical principles. We propose a simple, panel-type model to map observed behaviour. The internal dynamics are determined

  11. Vertical distribution of ectomycorrhizal fungal taxa in a podzol profile

    NARCIS (Netherlands)

    Rosling, A.; Landeweert, R.; Lindahl, B.D.; Larsson, K.H.; Kuyper, T.W.; Taylor, A.F.S.; Finlay, R.F.

    2003-01-01

    Studies of ectomycorrhizal fungal communities in forest soils are usually restricted to the uppermost organic horizons. Boreal forest podzols are highly stratified and little is known about the vertical distribution of ectomycorrhizal communities in the underlying mineral horizons. Ectomycorrhizal

  12. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    Science.gov (United States)

    Barbre, Robert E., Jr.

    2015-01-01

    This paper describes in detail the QC and splicing methodology for KSC's 50- and 915-MHz DRWP measurements that generates an extensive archive of vertically complete profiles from 0.20-18.45 km. The concurrent POR from each archive extends from April 2000 to December 2009. MSFC NE applies separate but similar QC processes to each of the 50- and 915-MHz DRWP archives. DRWP literature and data examination provide the basis for developing and applying the automated and manual QC processes on both archives. Depending on the month, the QC'ed 50- and 915-MHz DRWP archives retain 52-65% and 16-30% of the possible data, respectively. The 50- and 915-MHz DRWP QC archives retain 84-91% and 85-95%, respectively, of all the available data provided that data exist in the non- QC'ed archives. Next, MSFC NE applies an algorithm to splice concurrent measurements from both DRWP sources. Last, MSFC NE generates a composite profile from the (up to) five available spliced profiles to effectively characterize boundary layer winds and to utilize all possible 915-MHz DRWP measurements at each timestamp. During a given month, roughly 23,000-32,000 complete profiles exist from 0.25-18.45 km from the composite profiles' archive, and approximately 5,000- 27,000 complete profiles exist from an archive utilizing an individual 915-MHz DRWP. One can extract a variety of profile combinations (pairs, triplets, etc.) from this sample for a given application. The sample of vertically complete DRWP wind measurements not only gives launch vehicle customers greater confidence in loads and trajectory assessments versus using balloon output, but also provides flexibility to simulate different DOL situations across applicable altitudes. In addition to increasing sample size and providing more flexibility for DOL simulations in the vehicle design phase, the spliced DRWP database provides any upcoming launch vehicle program with the capability to utilize DRWP profiles on DOL to compute vehicle steering

  13. Comparison of the inversion algorithms applied to the ozone vertical profile retrieval from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2007-09-01

    Full Text Available This paper is devoted to an intercomparison of ozone vertical profiles retrieved from the measurements of scattered solar radiation performed by the SCIAMACHY instrument in the limb viewing geometry. Three different inversion algorithms including the prototype of the operational Level 1 to 2 processor to be operated by the European Space Agency are considered. Unlike usual validation studies, this comparison removes the uncertainties arising when comparing measurements made by different instruments probing slightly different air masses and focuses on the uncertainties specific to the modeling-retrieval problem only. The intercomparison was performed for 5 selected orbits of SCIAMACHY showing a good overall agreement of the results in the middle stratosphere, whereas considerable discrepancies were identified in the lower stratosphere and upper troposphere altitude region. Additionally, comparisons with ground-based lidar measurements are shown for selected profiles demonstrating an overall correctness of the retrievals.

  14. Vertical dispersion from surface and elevated releases: An investigation of a Non-Gaussian plume model

    International Nuclear Information System (INIS)

    Brown, M.J.; Arya, S.P.; Snyder, W.H.

    1993-01-01

    The vertical diffusion of a passive tracer released from surface and elevated sources in a neutrally stratified boundary layer has been studied by comparing field and laboratory experiments with a non-Gaussian K-theory model that assumes power-law profiles for the mean velocity and vertical eddy diffusivity. Several important differences between model predictions and experimental data were discovered: (1) the model overestimated ground-level concentrations from surface and elevated releases at distances beyond the peak concentration; (2) the model overpredicted vertical mixing near elevated sources, especially in the upward direction; (3) the model-predicted exponent α in the exponential vertical concentration profile for a surface release [bar C(z)∝ exp(-z α )] was smaller than the experimentally measured exponent. Model closure assumptions and experimental short-comings are discussed in relation to their probable effect on model predictions and experimental measurements. 42 refs., 13 figs., 3 tabs

  15. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  16. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    Directory of Open Access Journals (Sweden)

    K. W. Wong

    2011-04-01

    Full Text Available Nitrous acid (HONO often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP, near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations.

    Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced by the model for 1–2 and 7–8 September in the nocturnal boundary layer (NBL. The unobserved increase of HONO to NO2 ratio (HONO/NO2 with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed an increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of

  17. A measurement system for vertical seawater profiles close to the air-sea interface

    Science.gov (United States)

    Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.

    2017-09-01

    This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  18. A measurement system for vertical seawater profiles close to the air–sea interface

    Directory of Open Access Journals (Sweden)

    R. P. Sims

    2017-09-01

    Full Text Available This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s−1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  19. Low profile, high load vertical rolling positioning stage

    Science.gov (United States)

    Shu, Deming; Barraza, Juan

    1996-01-01

    A stage or support platform assembly for use in a synchrotron accurately positions equipment to be used in the beam line of the synchrotron. The support platform assembly includes an outer housing in which is disposed a lifting mechanism having a lifting platform or stage at its upper extremity on which the equipment is mounted. A worm gear assembly is located in the housing and is adapted to raise and lower a lifting shaft that is fixed to the lifting platform by an anti-binding connection. The lifting platform is moved vertically as the lifting shaft is moved vertically. The anti-binding connection prevents the shaft from rotating with respect to the platform, but does permit slight canting of the shaft with respect to the lifting platform so as to eliminate binding and wear due to possible tolerance mismatches. In order to ensure that the lifting mechanism does not move in a horizontal direction as it is moved vertically, at least three linear roller bearing assemblies are arranged around the outer-periphery of the lifting mechanism. One of the linear roller bearing assemblies can be adjusted so that the roller bearings apply a loading force against the lifting mechanism. Alternatively, a cam mechanism can be used to provide such a loading force.

  20. Global mapping of vertical injection profiles of wild-fire emission

    Science.gov (United States)

    Sofiev, M.; Vankevich, R.; Ermakova, T.; Hakkarainen, J.

    2012-08-01

    A problem of a characteristic vertical profile of smoke released from wild-land fires is considered. A methodology for bottom-up evaluation of this profile is suggested and a corresponding global dataset is calculated. The profile estimation is based on: (i) a semi-empirical formula for plume-top height recently suggested by the authors, (ii) MODIS satellite observations of active wild-land fires, and (iii) meteorological conditions evaluated at each fireplace using output of ECMWF weather prediction model. Plumes from all fires recorded globally during two arbitrarily picked years 2001 and 2008 are evaluated and their smoke injection profiles are estimated with a time step of 3 h. The resulting 4-dimensional dataset is split to day- and night-time subsets. Each of the subsets is projected to global grid with resolution 1° × 1° × 500 m, averaged to monthly level, and normalised with total emission. Evaluation of the obtained dataset was performed at several levels. Firstly, the quality of the semi-empirical formula for plume-top computations was evaluated using recent additions to the MISR fire plume-height dataset. Secondly, the obtained maps of injection profiles are compared with another global distribution available from literature. Thirdly, the upper percentiles of the profiles are compared with an independent dataset of space-based lidar CALIOP. Finally, the stability of the calculated profiles with regard to inter-annual variations of the fire activity and meteorological conditions is roughly estimated by comparing the sub-sets for 2001 and 2008.

  1. Retrieval of vertical wind profiles during monsoon from satellite ...

    Indian Academy of Sciences (India)

    Complex EOF analysis; cloud motion vector winds; wind profiles; retrieval; monsoon. Proc. Indian Acad. Sci. .... The data gaps are removed using simple linear interpolation .... retrieved via standard linear regression using the two independent ...

  2. Modeling tides and vertical tidal mixing: A reality check

    International Nuclear Information System (INIS)

    Robertson, Robin

    2010-01-01

    Recently, there has been a great interest in the tidal contribution to vertical mixing in the ocean. In models, vertical mixing is estimated using parameterization of the sub-grid scale processes. Estimates of the vertical mixing varied widely depending on which vertical mixing parameterization was used. This study investigated the performance of ten different vertical mixing parameterizations in a terrain-following ocean model when simulating internal tides. The vertical mixing parameterization was found to have minor effects on the velocity fields at the tidal frequencies, but large effects on the estimates of vertical diffusivity of temperature. Although there was no definitive best performer for the vertical mixing parameterization, several parameterizations were eliminated based on comparison of the vertical diffusivity estimates with observations. The best performers were the new generic coefficients for the generic length scale schemes and Mellor-Yamada's 2.5 level closure scheme.

  3. Quantitative precipitation estimation in complex orography using quasi-vertical profiles of dual polarization radar variables

    Science.gov (United States)

    Montopoli, Mario; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Baldini, Luca

    2017-04-01

    Weather radars are nowadays a unique tool to estimate quantitatively the rain precipitation near the surface. This is an important task for a plenty of applications. For example, to feed hydrological models, mitigate the impact of severe storms at the ground using radar information in modern warning tools as well as aid the validation studies of satellite-based rain products. With respect to the latter application, several ground validation studies of the Global Precipitation Mission (GPM) products have recently highlighted the importance of accurate QPE from ground-based weather radars. To date, a plenty of works analyzed the performance of various QPE algorithms making use of actual and synthetic experiments, possibly trained by measurement of particle size distributions and electromagnetic models. Most of these studies support the use of dual polarization variables not only to ensure a good level of radar data quality but also as a direct input in the rain estimation equations. Among others, one of the most important limiting factors in radar QPE accuracy is the vertical variability of particle size distribution that affects at different levels, all the radar variables acquired as well as rain rates. This is particularly impactful in mountainous areas where the altitudes of the radar sampling is likely several hundred of meters above the surface. In this work, we analyze the impact of the vertical profile variations of rain precipitation on several dual polarization radar QPE algorithms when they are tested a in complex orography scenario. So far, in weather radar studies, more emphasis has been given to the extrapolation strategies that make use of the signature of the vertical profiles in terms of radar co-polar reflectivity. This may limit the use of the radar vertical profiles when dual polarization QPE algorithms are considered because in that case all the radar variables used in the rain estimation process should be consistently extrapolated at the surface

  4. Time changes of vertical profile of neutron fluence rate in LVR-15 reactor

    International Nuclear Information System (INIS)

    Viererbl, L.; Stehno, J.; Erben, O.; Lahodova, Z.; Marek, M.

    2003-01-01

    The LVR-15 reactor is a light water research type reactor, which is situated, in Nuclear Research Institute, Rez near Prague. The reactor is used as a multipurpose facility. For some experiments and material productions, e.g. for homogeneity of silicon resistance in production of radiation doped silicon, the time changes of vertical profile of neutron fluence rate are particularly important. The assembly used for silicon irradiation has two self-powered neutron detectors installed in a vertical irradiation channel in LVR-15 reactor. Vertical profile of thermal neutron fluence rate was automatically scanned during reactor operation. The results of measurements made in 2002 and 2003 with these detectors are presented. A set of vertical profile measurements was made during two 21-days reactor cycles. During the cycle the vertical profile slightly changes both in the position of its maximum and in the shape. The time dependences of the position of profile maximum and the profile width at half maximum during the cycle are given. (author)

  5. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Energy Technology Data Exchange (ETDEWEB)

    Caccia, J.L.; Guenard, V. [LSEET, CNRS/Univ. de Toulon, La Garde (France); Benech, B.; Campistron, B. [CRA/LA, CNRS/Obs. Midi-Pyrenees, Campistrous (France); Drobinski, P. [IPSL/SA, CNRS/Univ. de Paris VI, Paris (France)

    2004-07-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhone-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhone-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (mesoscale alpine program) in autumn 1999, and ESCOMPTE (Experience sur Site pour COntraindre les Modeles de Pollution atmospheriques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhone valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of ''flow around'' and ''flow over'' mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with

  6. EFFECTS OF NITROGEN PHOTOABSORPTION CROSS SECTION RESOLUTION ON MINOR SPECIES VERTICAL PROFILES IN TITAN’S UPPER ATMOSPHERE

    International Nuclear Information System (INIS)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K.; Plessis, S.

    2015-01-01

    The significant variations in both measured and modeled densities of minor species in Titan’s atmosphere call for the evaluation of possible influencing factors in photochemical modeling. The effect of nitrogen photoabsorption cross section selection on the modeled vertical profiles of minor species is analyzed here, with particular focus on C 2 H 6 and HCN. Our results show a clear impact of cross sections used on all neutral and ion species studied. Affected species include neutrals and ions that are not primary photochemical products, including species that do not even contain nitrogen. The results indicate that photochemical models that employ low-resolution cross sections may significantly miscalculate the vertical profiles of minor species. Such differences are expected to have important implications for Titan’s overall atmospheric structure and chemistry

  7. EFFECTS OF NITROGEN PHOTOABSORPTION CROSS SECTION RESOLUTION ON MINOR SPECIES VERTICAL PROFILES IN TITAN’S UPPER ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K. [Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Plessis, S., E-mail: aluspaykuti@swri.edu [ICES, The University of Texas at Austin, 201 East 24th Street, Austin, TX 78712 (United States)

    2015-03-01

    The significant variations in both measured and modeled densities of minor species in Titan’s atmosphere call for the evaluation of possible influencing factors in photochemical modeling. The effect of nitrogen photoabsorption cross section selection on the modeled vertical profiles of minor species is analyzed here, with particular focus on C{sub 2}H{sub 6} and HCN. Our results show a clear impact of cross sections used on all neutral and ion species studied. Affected species include neutrals and ions that are not primary photochemical products, including species that do not even contain nitrogen. The results indicate that photochemical models that employ low-resolution cross sections may significantly miscalculate the vertical profiles of minor species. Such differences are expected to have important implications for Titan’s overall atmospheric structure and chemistry.

  8. Retrieval of vertical wind profiles during monsoon from satellite ...

    Indian Academy of Sciences (India)

    large number of radiosonde observations of wind profiles over the Indian Ocean during the monsoon months. It has been found that the first ... include several sources of both systematic and random errors. Among them cloud top height .... highly correlated with the pseudo-winds at levels between 850mb and 600mb (r ј 0:8) ...

  9. Ice-Tethered Profiler observations: Vertical profiles of temperature, salinity, oxygen, and ocean velocity from an Ice-Tethered Profiler buoy system

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains repeated vertical profiles of ocean temperature and salinity versus pressure, as well as oxygen and velocity for some instruments. Data were...

  10. Retrieval of vertical concentration profiles from OSIRIS UV-visible limb spectra

    International Nuclear Information System (INIS)

    Strong, K.; Joseph, B.M.; Dosanjh, R.; McDade, I.C.; McLinden, C.A.; McConnell, J.C.; Stegman, J.; Murtagh, D.P.; Llewellyn, E.J.

    2002-01-01

    The OSIRIS instrument, launched on the Odin satellite in February 2001, includes an optical spectrograph that will record UV-visible spectra of sunlight scattered from the limb over a range of tangent heights. These spectra will be used to retrieve vertical profiles of ozone, NO 2 , OC1O, BrO, NO 3 , O 2 , and aerosols, for the investigation of both stratospheric and mesospheric processes, particularly those related to ozone chemistry. In this work, the retrieval of vertical profiles of trace-gas concentrations from OSIRIS limb-radiance spectra is described. A forward model has been developed to simulate these spectra, and it consists of a single-scattering radiative-transfer model with partial spherical geometry, trace-gas absorption, Mic scattering by stratospheric aerosols, a Lambertian surface contribution, and OSIRIS instrument response and noise. Number-density profiles have been retrieved by using optimal estimation (OE) to combine an a priori profile with the information from sets of synthetic 'measurements'. For ozone, OE has been applied both to limb radiances at one or more discrete wavelengths and to effective-column abundances retrieved over a broad spectral range using differential optical absorption spectroscopy (DOAS). The results suggest that, between 15 and 35 km, ozone number densities can be retrieved to 10% accuracy or better on 1 and 2 km grids and to 5% on a 5 km grid. The combined DOAS-OE approach has also been used to retrieve NO 2 number densities, yielding 13% accuracy or better for altitudes from 18 to 36 km (in a 2 km grid. Differential optical absorption spectroscopy - optimal estimation retrievals of BrO and OC1O reproduce the true profiles above 15 km in the noise-free case, but the quality of the retrievals is highly sensitive to noise on the simulated OSIRIS spectra because of the weak absorption of these two gases. The development of inversion methods for the retrieval of trace-gas concentrations from OSIRIS spectra is continuing

  11. Simple suggestions for including vertical physics in oil spill models

    International Nuclear Information System (INIS)

    D'Asaro, Eric; University of Washington, Seatle, WA

    2001-01-01

    Current models of oil spills include no vertical physics. They neglect the effect of vertical water motions on the transport and concentration of floating oil. Some simple ways to introduce vertical physics are suggested here. The major suggestion is to routinely measure the density stratification of the upper ocean during oil spills in order to develop a database on the effect of stratification. (Author)

  12. Surface influence upon vertical profiles in the nocturnal boundary layer

    Science.gov (United States)

    Garratt, J. R.

    1983-05-01

    Near-surface wind profiles in the nocturnal boundary layer, depth h, above relatively flat, tree-covered terrain are described in the context of the analysis of Garratt (1980) for the unstable atmospheric boundary layer. The observations at two sites imply a surface-based transition layer, of depth z *, within which the observed non-dimensional profiles Φ M 0 are a modified form of the inertial sub-layer relation Φ _M ( {{z L}} = ( {{{1 + 5_Z } L}} ) according to Φ _M^{{0}} ˜eq ( {{{1 + 5z} L}} )exp [ { - 0.7( {{{1 - z} z}_ * } )] , where z is height above the zero-plane displacement and L is the Monin-Obukhov length. At both sites the depth z * is significantly smaller than the appropriate neutral value ( z * N ) found from the previous analysis, as might be expected in the presence of a buoyant sink for turbulent kinetic energy.

  13. PHL10/460: Cancerfacts.com - Vertical Portal with Newly Developed Health Profiler

    OpenAIRE

    Lenz, C; Brucksch, M

    1999-01-01

    Introduction Unlike general health portals such as WebMD and Drkoop.com that cover everything from the flu to heart disease, Silicon Valley-based cancerfacts.com is a so-called vertical portal. It covers only one small vertical niche of health care: cancer, and in particular, prostate cancer. As a value-added proprietary technology, the company offers its newly developed profile engine to health information retrievers. Methods Users are enabled to insert their specific medical information - r...

  14. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    Science.gov (United States)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  15. Tropospheric mercury vertical profiles between 500 and 10 000 m in central Europe

    Directory of Open Access Journals (Sweden)

    A. Weigelt

    2016-03-01

    Full Text Available The knowledge of the vertical distribution of atmospheric mercury (Hg plays an important role in determining the transport and cycling of mercury. However, measurements of the vertical distribution are rare, because airborne measurements are expensive and labour intensive. Consequently, only a few vertical Hg profile measurements have been reported since the 1970s. Besides the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC observations, the latest vertical profile over Europe was measured in 1996. Within the Global Mercury Observation System (GMOS project, four vertical profiles were taken on board research aircraft (CASA-212 in August 2013 in background air over different locations in Slovenia and Germany. Each vertical profile consists of at least seven 5 min horizontal flight sections from 500 m above ground to 3000 m a.s.l. Gaseous elemental mercury (GEM and total gaseous mercury (TGM were measured with Tekran 2537X and Tekran 2537B analysers. In addition to the mercury measurements, SO2, CO, O3, NO, and NO2, basic meteorological parameters (pressure, temperature, relative humidity have been measured. Additional ground-based mercury measurements at the GMOS master site in Waldhof, Germany and measurements onboard the CARIBIC passenger aircraft were used to extend the profile to the ground and upper troposphere respectively. No vertical gradient was found inside the well-mixed boundary layer (variation of less than 0.1 ng m−3 at different sites, with GEM varying from location to location between 1.4 and 1.6 ng m−3 (standard temperature and pressure, STP: T  =  273.15 K, p  =  1013.25 hPa. At all locations GEM dropped to 1.3 ng m−3 (STP when entering the free troposphere and remained constant at higher altitudes. The combination of the vertical profile, measured on 21 August 2013 over Leipzig, Germany, with the CARIBIC measurements during ascent and descent to

  16. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    Science.gov (United States)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  17. The influence of turbulence and vertical wind profile in wind turbine power curve

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia, A.; Gomez-Lazaro, E. [Castilla-La Mancha Univ., Albacete (Spain). Renewable Energy Research Inst.; Vigueras-Rodriguez, A. [Albacete Science and Technolgy Park, Albacete (Spain)

    2012-07-01

    To identify the influence of turbulence and vertical wind profile in wind turbine performance, wind speed measurements at different heights have been performed. Measurements have been developed using a cup anemometer and a LIDAR equipment, specifically a pulsed wave one. The wind profile has been recorded to study the effect of the atmospheric conditions over the energy generated by a wind turbine located close to the LIDAR system. The changes in the power production of the wind turbine are relevant. (orig.)

  18. Impact of the vertical emission profiles on background gas-phase pollution simulated from the EMEP emissions over Europe

    Directory of Open Access Journals (Sweden)

    S. Mailler

    2013-06-01

    Full Text Available Five one-year air quality simulations over a domain covering Europe have been performed using the CHIMERE chemistry transport model and the EMEP emission dataset for Europe. These five simulations differ only by the representation of the effective emission heights for anthropogenic emissions: one has been run using the EMEP standard recommendations, three others with vertical injection profiles derived from the EMEP recommendations but multiplying the injection height by 0.75, 0.50 and 0.25, respectively, while the last one uses vertical profiles derived from the recent literature. It is shown that using injection heights lower than the EMEP recommendations leads to significantly improved simulation of background SO2, NO2 and O3 concentrations when compared to the Airbase station measurements.

  19. One Year of Vertical Wind Profiles Measurements at a Mediterranean Coastal Site of South Italy

    DEFF Research Database (Denmark)

    Calidonna, Claudia Roberta; Gullì, Daniel; Avolio, Elenio

    2015-01-01

    To exploit wind energy both onshore and offshore in coastal area the effect of the coastal discontinuity is important. The shape of the vertical wind profiles and the related c parameter of the Weibull distribution are impacted by the atmospheric internal boundary layers developing from the coast...

  20. A new software suite for NO2 vertical profile retrieval from ground-based zenith-sky spectrometers

    International Nuclear Information System (INIS)

    Denis, L.; Roscoe, H.K.; Chipperfield, M.P.; Roozendael, M. van; Goutail, F.

    2005-01-01

    Here we present an operational method to improve accuracy and information content of ground-based measurements of stratospheric NO 2 . The motive is to improve the investigation of trends in NO 2 , and is important because the current trend in NO 2 appears to contradict the trend in its source, suggesting that the stratospheric circulation has changed. To do so, a new software package for retrieving NO 2 vertical profiles from slant columns measured by zenith-sky spectrometers has been created. It uses a Rodgers optimal linear inverse method coupled with a radiative transfer model for calculations of transfer functions between profiles and columns, and a chemical box model for taking into account the NO 2 variations during twilight and during the day. Each model has parameters that vary according to season and location. Forerunners of each model have been previously validated. The scheme maps random errors in the measurements and systematic errors in the models and their parameters on to the retrieved profiles. Initialisation for models is derived from well-established climatologies. The software has been tested by comparing retrieved profiles to simultaneous balloon-borne profiles at mid-latitudes in spring

  1. A new software suite for NO{sub 2} vertical profile retrieval from ground-based zenith-sky spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Denis, L. [British Antarctic Survey/NERC, Madingley Road, Cambridge CB3 0ET (United Kingdom); Roscoe, H.K. [British Antarctic Survey/NERC, Madingley Road, Cambridge CB3 0ET (United Kingdom)]. E-mail: h.roscoe@bas.ac.uk; Chipperfield, M.P. [Environment Centre, University of Leeds, Leeds LS2 9JT (United Kingdom); Roozendael, M. van [Belgian Institute for Space Aeronomy (BIRA/IASB), 1180 Brussels (Belgium); Goutail, F. [Service d' Aeronomie du CNRS, BP3, 91271 Verrieres le Buisson (France)

    2005-05-15

    Here we present an operational method to improve accuracy and information content of ground-based measurements of stratospheric NO{sub 2}. The motive is to improve the investigation of trends in NO{sub 2}, and is important because the current trend in NO{sub 2} appears to contradict the trend in its source, suggesting that the stratospheric circulation has changed. To do so, a new software package for retrieving NO{sub 2} vertical profiles from slant columns measured by zenith-sky spectrometers has been created. It uses a Rodgers optimal linear inverse method coupled with a radiative transfer model for calculations of transfer functions between profiles and columns, and a chemical box model for taking into account the NO{sub 2} variations during twilight and during the day. Each model has parameters that vary according to season and location. Forerunners of each model have been previously validated. The scheme maps random errors in the measurements and systematic errors in the models and their parameters on to the retrieved profiles. Initialisation for models is derived from well-established climatologies. The software has been tested by comparing retrieved profiles to simultaneous balloon-borne profiles at mid-latitudes in spring.

  2. Verification of the Naval Oceanic Vertical Aerosol Model During Fire

    NARCIS (Netherlands)

    Davidson, K.L.; Leeuw, G. de; Gathman, S.G.; Jensen, D.R.

    1990-01-01

    The Naval Oceanic Vertical Aerosol Model (NOVAM) has been formulated to estimate the vertical structure of the optical and infrared extinction coefficients in the marine atmospheric boundary layer (MABL), for waverengths between 0,2 and 40 um. NOVAM was designed to predict, utilizing a set of

  3. CREATING EFFECTIVE MODELS OF VERTICAL INTEGRATED STRUCTURES IN UKRAINE

    Directory of Open Access Journals (Sweden)

    D. V. Koliesnikov

    2011-01-01

    Full Text Available The results of scientific research aimed at development of methodology-theoretical mechanisms of building the effective models of vertically-integrated structures are presented. A presence of vertically-integrated structures on natural-monopolistic markets at private and governmental sectors of economy and priority directions of integration are given.

  4. Field evaluation of a direct push deployed sensor probe for vertical soil water content profiling

    Science.gov (United States)

    Vienken, Thomas; Reboulet, Ed; Leven, Carsten; Kreck, Manuel; Zschornack, Ludwig; Dietrich, Peter

    2015-04-01

    Reliable high-resolution information about vertical variations in soil water content, i.e. total porosity in the saturated zone, is essential for flow and transport predictions within the subsurface. However, porosity measurements are often associated with high efforts and high uncertainties, e.g. caused by soil disturbance during sampling or sensor installation procedures. In hydrogeological practice, commonly applied tools for the investigation of vertical soil water content distribution include gravimetric laboratory analyses of soil samples and neutron probe measurements. A yet less well established technique is the use of direct push-deployed sensor probes. Each of these methods is associated with inherent advantages and limitations due to their underlying measurement principles and operation modes. The presented study describes results of a joint field evaluation of the individual methods under different depositional and hydrogeological conditions with special focus on the performance on the direct push-deployed water content profiler. Therefore, direct push-profiling results from three different test sites are compared with results obtained from gravimetric analysis of soil cores and neutron probe measurements. In direct comparison, the applied direct push-based sensor probe proved to be a suitable alternative for vertical soil water content profiling to neutron probe technology, and, in addition, proved to be advantageous over gravimetric analysis in terms vertical resolution and time efficiency. Results of this study identify application-specific limitations of the methods and thereby highlight the need for careful data evaluation, even though neutron probe measurements and gravimetric analyses of soil samples are well established techniques (see Vienken et al. 2013). Reference: Vienken, T., Reboulet, E., Leven, C., Kreck, M., Zschornack, L., Dietrich, P., 2013. Field comparison of selected methods for vertical soil water content profiling. Journal of

  5. Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling

    Science.gov (United States)

    Barrera-Verdejo, María; Crewell, Susanne; Löhnert, Ulrich; Orlandi, Emiliano; Di Girolamo, Paolo

    2016-08-01

    Continuous monitoring of atmospheric humidity profiles is important for many applications, e.g., assessment of atmospheric stability and cloud formation. Nowadays there are a wide variety of ground-based sensors for atmospheric humidity profiling. Unfortunately there is no single instrument able to provide a measurement with complete vertical coverage, high vertical and temporal resolution and good performance under all weather conditions, simultaneously. For example, Raman lidar (RL) measurements can provide water vapor with a high vertical resolution, albeit with limited vertical coverage, due to sunlight contamination and the presence of clouds. Microwave radiometers (MWRs) receive water vapor information throughout the troposphere, though their vertical resolution is poor. In this work, we present an MWR and RL system synergy, which aims to overcome the specific sensor limitations. The retrieval algorithm combining these two instruments is an optimal estimation method (OEM), which allows for an uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information, taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied to a 2-month field campaign around Jülich (Germany), focusing on clear sky periods. Different experiments are performed to analyze the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity uncertainty is reduced above the last usable lidar range by a factor of ˜ 2 with respect to the case where only RL measurements are used. The analysis in terms of degrees of freedom per signal reveal that most information is gained above the usable lidar range, especially important during daytime when the lidar vertical coverage is limited. The retrieved profiles are further evaluated using

  6. More vertical etch profile using a Faraday cage in plasma etching

    Science.gov (United States)

    Cho, Byeong-Ok; Hwang, Sung-Wook; Ryu, Jung-Hyun; Moon, Sang Heup

    1999-05-01

    Scanning electron microscope images of sidewalls obtained by plasma etching of an SiO2 film with and without a Faraday cage have been compared. When the substrate film is etched in the Faraday cage, faceting is effectively suppressed and the etch profile becomes more vertical regardless of the process conditions. This is because the electric potential in the cage is nearly uniform and therefore distortion of the electric field at the convex corner of a microfeature is prevented. The most vertical etch profile is obtained when the cage is used in fluorocarbon plasmas, where faceting is further suppressed due to the decrease in the chemical sputtering yield and the increase in the radical/ion flux on the substrate.

  7. Global vertical mass transport by clouds - A two-dimensional model study

    International Nuclear Information System (INIS)

    Olofsson, Mats

    1988-05-01

    A two-dimensional global dispersion model, where vertical transport in the troposphere carried out by convective as well as by frontal cloud systems is explicitly treated, is developed from an existing diffusion model. A parameterization scheme for the cloud transport, based on global cloud statistics, is presented. The model has been tested by using Kr-85, Rn-222 and SO 2 as tracers. Comparisons have been made with observed distributions of these tracers, but also with model results without the cloud transport, using eddy diffusion as the primary means of vertical transport. The model results indicate that for trace species with a turnover time of days to weeks, the introduction of cloud-transport gives much more realistic simulations of their vertical distribution. Layers of increased mixing ratio with height, which can be found in real atmosphere, are reproduced in our cloud-transport model profiles, but can never be simulated with a pure eddy diffusion model. The horizontal transport in the model, by advection and eddy diffusion, gives a realistic distribution between the hemispheres of the more long-lived tracers (Kr-85). A combination of vertical transport by convective and frontal cloud systems is shown to improve the model simulations, compared to limiting it to convective transport only. The importance of including cumulus clouds in the convective transport scheme, in addition to the efficient transport by cumulonimbus clouds, is discussed. The model results are shown to be more sensitive to the vertical detrainment distribution profile than to the absolute magnitude of the vertical mass transport. The scavenging processes for SO 2 are parameterized without the introduction of detailed chemistry. An enhanced removal, due to the increased contact with droplets in the in-cloud lifting process, is introduced in the model. (author)

  8. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine....... This integrated dynamic model takes into account the wind inflow, aerodynamics, hydrodynamics, structural dynamics (wind turbine, floating platform and the mooring lines) and a generator control. This approach calculates dynamic equilibrium at each time step and takes account of the interaction between the rotor...

  9. Vertical profile of aerosols in the Himalayan region using an ultralight aircraft platform

    Science.gov (United States)

    Singh, A.; Mahata, K.; Rupakheti, M.; Lawrence, M. G.; Junkermann, W.

    2017-12-01

    Indo-gangetic plain (IGP) and Himalayan foothills have large spatial and temporal heterogeneity in aerosols characteristics. Regional meteorology around 850-500 mb plays an important role in the transformation and transportation of aerosols from west Asia to IGP, into Himalayan foothill, as well to high-altitude region of the Himalayas. In order to quantify the vertical and horizontal variation of aerosol properties in the Himalayan , an airborne campaign was carried out in the Pokhara Valley/Nepal (83°50'-84°10' E, 25°7'-28°15' N, 815 masl ) in two phases: test flights during May 2016 and an intensive airborne sampling flight in December-January 2017. This paper provides an overview of airborne measurement campaign from the first phase of measurements in May 2016. A two-seater microlight aircraft (IKARUS C 42) was used as the aerial platform. This was deemed the feasible option in Nepal for an aerial campaign; technical specification of the aircraft include an approximately 6 hrs of flying time, short-take off run, > 100 kgs of payload, suitable for spiral upward and downward profiling. The instrument package consist of GRIMM 1.108 for particle size distribution from 0.3 to 20 um at 6 seconds time resolution, and TSI CPC 3375 for total ultrafine particle (UFP) concentration at 1 s. The package also includes a Magee Scientific Aethalometer (AE42) for aerosol absorption at seven different wavelengths. Meteorological parameters include temperature and dew point at a sampling rate of 1 Hz or higher. The paper provides a snapshot of observed vertical profile (from 800 to 4500masl) of aerosols size, number and black carbon over one of populated mountain valley in Nepal during the pre-monsoon season. During the airborne measurement, local fires- mostly agriculture burn were observed, however no large scale forest fire was captured. Sharp morning and afternoon gradients were observed in the vertical profile for aerosol number and size, mostly dominated by 2000 masl

  10. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  11. How Informative are the Vertical Buoyancy and the Prone Gliding Tests to Assess Young Swimmers’ Hydrostatic and Hydrodynamic Profiles?

    Science.gov (United States)

    Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.

    2012-01-01

    The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, vertical buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the vertical buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, vertical buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic profile, respectively. PMID:23486528

  12. The WZNW model on PSU(1, 1 vertical stroke 2)

    International Nuclear Information System (INIS)

    Goetz, G.

    2006-10-01

    According to the work of Berkovits, Vafa and Witten, the non-linear sigma model on the supergroup PSU(1,1 vertical stroke 2) is the essential building block for string theory on AdS 3 xS 3 xT 4 . Models associated with a non-vanishing value of the RR flux can be obtained through a psu(1,1 vertical stroke 2) invariant marginal deformation of the WZNW model on PSU(1,1 vertical stroke 2). We take this as a motivation to present a manifestly psu(1,1 vertical stroke 2) covariant construction of the model at the Wess-Zumino point, corresponding to a purely NSNS background 3-form flux. At this point the model possesses an enhanced psu(1,1 vertical stroke 2) current algebra symmetry whose representation theory, including explicit character formulas, is developed systematically in the first part of the paper. The space of vertex operators and a free fermion representation for their correlation functions is our main subject in the second part. Contrary to a widespread claim, bosonic and fermionic fields are necessarily coupled to each other. The interaction changes the supersymmetry transformations, with drastic consequences for the multiplets of localized normalizable states in the model. It is only this fact which allows us to decompose the full state space into multiplets of the global supersymmetry. We analyze these decompositions systematically as a preparation for a forthcoming study of the RR deformation. (orig.)

  13. The WZNW model on PSU(1, 1 vertical stroke 2)

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, G. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique; Quella, T. [King' s College London (United Kingdom). Dept. of Mathematics]|[Amsterdam Univ. (Netherlands). KdV Institute for Mathematics; Schomerus, V. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-10-15

    According to the work of Berkovits, Vafa and Witten, the non-linear sigma model on the supergroup PSU(1,1 vertical stroke 2) is the essential building block for string theory on AdS{sub 3}xS{sup 3}xT{sup 4}. Models associated with a non-vanishing value of the RR flux can be obtained through a psu(1,1 vertical stroke 2) invariant marginal deformation of the WZNW model on PSU(1,1 vertical stroke 2). We take this as a motivation to present a manifestly psu(1,1 vertical stroke 2) covariant construction of the model at the Wess-Zumino point, corresponding to a purely NSNS background 3-form flux. At this point the model possesses an enhanced psu(1,1 vertical stroke 2) current algebra symmetry whose representation theory, including explicit character formulas, is developed systematically in the first part of the paper. The space of vertex operators and a free fermion representation for their correlation functions is our main subject in the second part. Contrary to a widespread claim, bosonic and fermionic fields are necessarily coupled to each other. The interaction changes the supersymmetry transformations, with drastic consequences for the multiplets of localized normalizable states in the model. It is only this fact which allows us to decompose the full state space into multiplets of the global supersymmetry. We analyze these decompositions systematically as a preparation for a forthcoming study of the RR deformation. (orig.)

  14. Effects of wall roughness and entry length on void profile in vertical bubbly flow

    International Nuclear Information System (INIS)

    Takamasa, Tomoji

    1988-01-01

    An experimental study of upward air-water bubbly two-phase flow in an entry region was performed with various rough wall test tubes. The objective of the work is to clarify the effects of wall roughness and entry length on void profile. The fluid flows in the vertical circular test tube of 25 mm I.D. under nearly atmospheric pressure, at room temperature. The void profile changes from a pattern similar in appearance to the saddle shape which has local void peaks near the wall, into the power law shape whose curve is approximated by a power law formula, with increasing wall roughness and/or entry length. That is, wall roughness and entry length have a similar effect upon void profile. There are two patterns in the power law shape, a pattern with sharp center peak and a pattern with obtuse center peak. As wall roughness and/or entry length increase, the void profile changes from the former pattern to the latter pattern. At enough long entry length (L/D ≅ 150), every void profile has almost the same power law shape independent of wall roughness. Some void profiles are asymmetric to the axis. (author)

  15. Spectra and gross features of vertical temperature and salinity profiles off the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Nagarajan, R.

    Continuous vertical profiles of temperature and salinity recorded by a CTD-system from the continental slope and the continental rise off Goa, west coast of India, were used for delineating the gross statistical features of the fine structure...

  16. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK ADVANCED VERTICAL ATMOSPHERIC PROFILING SYSTEM (AVAPS) DROPSONDE SYSTEM V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk Advanced Vertical Atmospheric Profiling System (AVAPS) Dropsonde System dataset was collected by the...

  17. IRI-2012 MODEL ADAPTABILITY ESTIMATION FOR AUTOMATED PROCESSING OF VERTICAL SOUNDING IONOGRAMS

    Directory of Open Access Journals (Sweden)

    V. D. Nikolaeva

    2014-01-01

    Full Text Available The paper deals with possibility of IRI-2012 global empirical model applying to the vertical sounding of the ionosphere semiautomatic data processing. Main ionosphere characteristics from vertical sounding data at IZMIRAN Voeikovo station in February 2013 were compared with IRI-2012 model calculation results. 2688 model values and 1866 real values of f0F2, f0E, hmF2, hmE were processed. E and F2 layers critical frequency (f0E, f0F2 and the maximum altitudes (hmF2, hmE were determined from the ionograms. Vertical profiles of the electron concentration were restored with IRI-2012 model by measured frequency and height. The model calculation was also made without the inclusion of the real vertical sounding data. Monthly averages and standard deviations (σ for the parameters f0F2, f0E, hmF2, hmE for each hour of the day were calculated according to the vertical sounding and model values. Model applicability conditions for automated processing of ionograms for subauroral ionosphere were determined. Initial IRI-2012 model can be applied in the sub-auroral ionograms processing at daytime with undisturbed conditions in the absence of sporadic ionization. In this case model calculations can be adjusted by the near-time vertical sounding data. IRI-2012 model values for f0E (in daytime and hmF2 can be applied to reduce computational costs in the systems of automatic parameters search and preliminary determination of the searching area range for the main parameters. IRI-2012 model can be used for a more accurate approximation of the real data series in the absence of the real values. In view of sporadic ionization, ionosphere models of the high latitudes must be applied with corpuscular ions formation unit.

  18. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  19. Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing

    Science.gov (United States)

    Laio, Francesco

    2014-05-01

    The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.

  20. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    Science.gov (United States)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  1. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Ferreira, C. Simão; Aagaard Madsen, Helge; Barone, M.

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple...

  2. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Directory of Open Access Journals (Sweden)

    G. M. Siqueira

    2013-07-01

    Full Text Available Soil penetration resistance (PR is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV, skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  3. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Science.gov (United States)

    Siqueira, G. M.; Silva, E. F. F.; Montenegro, A. A. A.; Vidal Vázquez, E.; Paz-Ferreiro, J.

    2013-07-01

    Soil penetration resistance (PR) is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV), skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  4. A look inside the San Andreas Fault at Parkfield through vertical seismic profiling.

    Science.gov (United States)

    Chavarria, J Andres; Malin, Peter; Catchings, Rufus D; Shalev, Eylon

    2003-12-05

    The San Andreas Fault Observatory at Depth pilot hole is located on the southwestern side of the Parkfield San Andreas fault. This observatory includes a vertical seismic profiling (VSP) array. VSP seismograms from nearby microearthquakes contain signals between the P and S waves. These signals may be P and S waves scattered by the local geologic structure. The collected scattering points form planar surfaces that we interpret as the San Andreas fault and four other secondary faults. The scattering process includes conversions between P and S waves, the strengths of which suggest large contrasts in material properties, possibly indicating the presence of cracks or fluids.

  5. Profile vertical of temperature in an atmosphere semi-gray with a layer of clouds

    International Nuclear Information System (INIS)

    Pelkowski, Joaquin; Anduckia Avila, Juan Carlos

    2000-01-01

    We extend earlier models of planetary layers in radioactive equilibrium by including scattering within a homogeneous cloud layer in a single direction. The atmospheric layers above and below the cloud layer are taken to be in radioactive equilibrium, whose temperature profiles may be calculated. Though the resulting profile, being discontinuous, is unrealistic, the model adds to the effects of the earlier models a cloud albedo, resulting from the scattering of short-wave radiation

  6. The SU(2 vertical stroke 3) spin chain sigma model

    International Nuclear Information System (INIS)

    Hernandez, R.; Lopez, E.

    2005-01-01

    The one-loop planar dilatation operator of N = 4 supersymmetric Yang-Mills is isomorphic to the hamiltonian of an integrable PSU(2,2 vertical stroke 4) spin chain. We construct the non-linear sigma model describing the continuum limit of the SU(2 vertical stroke 3) subsector of the N = 4 chain. We explicitly identify the spin chain sigma model with the one for a superstring moving in AdS 5 x S 5 with large angular momentum along the five-sphere. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  7. Measurement of the wetting profile in concrete samples with vertical water by gamma radiation transmission method

    International Nuclear Information System (INIS)

    Silva, L.M. da; Rocha, M.C. da; Appoloni, C.R.; Portezan Filho, O.; Lopes, F.; Melquiades, F.L.; Santos, E.A. dos; Santos, A.O. dos; Moreira, A.C.; Poetker, W.E.; Almeida, E. de; Tannous, C.Q.; Kuramoto, R.; Cavalcante, F.H. de M.; Barbieri, P.F.

    2000-01-01

    Samples of concrete for popular habitation (0,1x0,03x0,1 m) and cellular concrete (0,1x0,05x0,1 m) were submitted to water vertical ascending infiltration. The moisture content spatial and temporal evolution of each sample it was monitored in three halfway positions in a same horizontal line, applying the gamma rays transmission method. The data were taken with a 137 Cs (3,7x10 10 Bq, 0662 MeV) source, NaI (Tl) of 2x2' detector coupled to between wetting profiles and concrete strength. The cellular concrete showed a wetting profile compatible to its greater porosity. (author)

  8. Vertical seismic profile data from well Mallik 2L-38 for gas hydrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics; Walia, R [Victoria Univ., BC (Canada) School of Earth and Ocean Sciences; Hyndman, R [Geological Survey of Canada, Sidney, BC (Canada) Pacific Geoscience Centre

    1999-07-01

    A gas hydrate research well was drilled in the Canadian Arctic to study gas hydrates in a permafrost setting in a collaborative research project between the Japan National Oil Corp., the Geological Survey of Canada and other agencies. The multidisciplinary study included an electromagnetic survey, permafrost and gas hydrate coring, comprehensive downhole geophysical logging and measurement. Laboratory studies concerned studies on recovered cuttings and core including sedimentology, physical properties, geochemistry, and reservoir characteristics of the Mallik gas accumulation. As part of the Mallik 2L-38 field program, a vertical seismic profiling survey was conducted at zero and other offset source positions with three component receiver tools and horizontal and vertical vibration sources. A special effort was made to record shear wave data, which will be used to estimate the effect of gas hydrate on formation velocities and to determine gas hydrate concentration as a function of the Mallik gas accumulation. From the initial VSP analysis, certain conclusions follow: 1) zero offset vertical vibration component Z and horizontal X component data give reliable velocity determination within the gas hydrate formation zone. P wave velocities from offset VSP data show an excellent consistency with that from offset data and with the sonic log. And 2) the VSP data permit reliable identification of gas hydrate bearing zones. Abstract only included.

  9. Vertical seismic profile data from well Mallik 2L-38 for gas hydrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y [Calgary Univ., AB (Canada); Walia, R [Victoria Univ., BC (Canada); Hyndman, R D; Sakai, A

    1999-01-01

    A gas hydrate research well was drilled in the Canadian Arctic to determine gas hydrates in a permafrost setting in a collaborative research project between the Japan National Oil Corp., and the Geological Survey of Canada with the participation of other agencies. The multidisciplinary study included an electromagnetic survey, permafrost and gas hydrate coring, and comprehensive downhole geophysical logging and measurement. Laboratory studies on recovered cores and cuttings included sedimentology, physical properties, geochemistry, and reservoir characteristics of the Mallik gas accumulation. As part of the field program, a vertical seismic profiling survey was conducted at zero and offset source positions with 3 component receiver tools and horizontal and vertical vibration sources. A special effort was made to record shear wave data, and results from this work were combined with down hole logs and regional surface seismic data. The data will be used also to determine the effect of gas hydrates on formation velocities and to measure gas hydrate concentrations as a function of depth in the formation penetrated by the well. Certain conclusions followed from the initial VSP analysis. 1) Zero offset vertical vibration Z component and horizontal X component data give reliable velocity estimation within the gas hydrate formation zone, and P wave velocities from offset data indicate excellent consistency with that from zero offset data and with the sonic log. 2) The VSP data permitted reliable identification of gas hydrate bearing zones. 4 refs.

  10. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  11. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Science.gov (United States)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are

  12. 3-D x-ray mirror metrology with a vertical scanning long trace profiler

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Li, H.; Li, X.; Grindel, M.W.

    1996-01-01

    The long trace profiler (LTP) was originally developed at Brookhaven National Laboratory for the specific purpose of measuring the surface figure of large cylindrical mirrors used at grazing incidence in synchrotron radiation (SR) beamlines. In its original configuration, it could measure only along one line down the center of the cylinder. A single linear profile is often sufficient to gauge the quality of the optical surface on these kinds of mirrors. For some applications it is necessary to measure the topography of the entire surface, not just along one line but over a grid that covers the entire surface area. We have modified a standard LTP to enable measurement of the complete surface of Wolter telescope optics in a vertical configuration. The vertical scanning LTP (VSLTP) is capable of producing a complete 3-D map of the surface topography errors relative to the ideal desired surface on complete segments of paraboloids and hyperboloids. The instrument uses a penta prism assembly to scan the probe beam in the longitudinal direction parallel to the mirror symmetry axis and uses a precision rotary stage to provide scans in the azimuthal direction. A Risley prism pair and a dove prism are used to orient the probe beam in the proper direction for the azimuthal scans. The repeatability of the prototype instrument is better than 20 nm over trace lengths of 35 mm with a slope measurement accuracy of about 1 microradian. copyright 1996 American Institute of Physics

  13. Validation of vertical profile from atmosphere using ATOVS products and its impact over Indian region.

    Science.gov (United States)

    Mahandru, Riddhi; Kumar, Adarsh; Mitra, Ashim kumar

    This research paper summarizes the validation of atmospheric vertical profile using NOAA(National Oceanic and Atmospheric Administration)/ MetOp satellite derived data over India with radiosonde observations over a span of 8 months. NOAA's International Advanced Television and Infrared Observations satellite Vertical Sounder (ATOVS) processing package (IAPP) obtains temperature and moisture profiles in different pressure levels ranging from 1000hpa to 10hpa from real time direct broadcast (DB) receiving system installed at India Meteorological department. Different pressure levels were substituted to the same pressure levels for calculations of standard deviation, bias and RMSE (root mean square error) The sounder derived products like Total precipitable water vapor (TPW) and Lifting index(LI) from NOAA Satellite was also validated with radiosonde data which provided significant results for weather forecasting. The validation shows that the sounder provides unique information about the state of atmosphere and monitoring the convective environment for severe weather forecasting In addition to this, case study on severe weather events was analyzed using ATOVS products.

  14. Moisture profile measurements of concrete samples in vertical flow by gamma ray attenuation method. Medidas do perfil de umidade de amostras de concreto em infiltracao vertical, atraves da atenuacao de raios gama

    Energy Technology Data Exchange (ETDEWEB)

    Appoloni, C R; Nardocci, A C; Obuti, M M [Universidade Estadual de Londrina, PR (Brazil). Dept. de Fisica

    1988-04-01

    This work deals with the study of the water diffusion in concrete by the gamma ray attenuation method. The moisture profiles, [theta] (z,t), of the vertical water flow were determined in concrete samples of different trace and porosity. The data were taken with a vertical and horizontal measurement table, a [sup 60] Co gamma ray source, a NaI (T) scintillation detector and the standard gamma ray spectrometry electronic. The [theta] (z,t) data analysis is presented using a phenomenological model of the moisture profile temporal evolution in heterogeneous materials. Two other models, Cell and Sandwich, were also applied to determine the attenuation coefficient of a non-homogeneous media from the attenuation coefficients of the components, taking into account particles-size effects. (author).

  15. Modeling of Changing Electrode Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, Geoffrey Allen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1980-12-01

    A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

  16. High-Latitude Topside Ionospheric Vertical Electron Density Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-01-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  17. Vertical-aware click model-based effectiveness metrics

    NARCIS (Netherlands)

    Markov, I.; Kharitonov, E.; Nikulin, V.; Serdyukov, P.; de Rijke, M.; Crestani, F.; Li, J.; Wang, X.S.

    2014-01-01

    Today's web search systems present users with heterogeneous information coming from sources of different types, also known as verticals. Evaluating such systems is an important but complex task, which is still far from being solved. In this paper we examine the hypothesis that the use of models that

  18. 3D elastic inversion of vertical seismic profiles in horizontally stratified media; Inversion elastique 3D de profils sismiques verticaux en milieux stratifies horizontalement

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J.L.

    1997-07-21

    This thesis is devoted to the inversion of VSP (vertical seismic profile) seismic data in order to determine the elastic properties of horizontally stratified media. The VSP records are computed using the full wave elastic modelling in isotropic and transversely isotropic media using Hankel transform, a finite difference scheme and an inverse Hankel transform algorithm, and the propagation equations are determined and numerically solved; the importance of considering a 3D wave propagation model instead of a 1 D one is emphasized. The theoretical VSP inverse problem is then considered, with the seismic waveform inversion set as a least-squares problem, consisting in recovering the distribution of physical parameters which minimize the misfit between calculated and observed VSP. The corresponding problem requires the knowledge of the source function

  19. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    Directory of Open Access Journals (Sweden)

    A. Cherkasheva

    2013-04-01

    Full Text Available Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database for the years 1957–2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL exceeding 0.7 mg C m−3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll

  20. Ray Tracing modelling of reflector for vertical bifacial panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...... with a refractive medium, and shows the refractive medium improves the reflector performance since it directs almost all the light incident on the incoming plane into the PV panel....

  1. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan

    2012-12-01

    Full Text Available Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1 measure the in situ aerosol properties and determine their vertical and temporal variability and (2 relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc., however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and

  2. Modelling magnetic forces during asymmetric vertical displacement events at JET

    International Nuclear Information System (INIS)

    Riccardo, V.; Walker, S.; Noll, P.

    2000-01-01

    Asymmetric vertical disruption events (AVDEs) are fortunately rare, but can induce large lateral forces which can cause significant mechanical damage to tokamaks. In this paper we present a simple model which allows the lateral forces generated during such a disruption to be estimated as a function of relatively easily obtained electromagnetic parameters: the asymmetries in the vertical current moment. This model is validated by using it to predict the displacement history of the JET tokamak caused by a number of major AVDEs. It is shown that the predicted forces and displacements agree well with quantities measured during these disruptions. One conclusion from the model is that the maximum sideways displacement scales with the product of the plasma current and the toroidal field, and this recipe is now used at JET to assess a priori the hazards of performing high current and high field pulses when they are known to be likely to disrupt. (author)

  3. The Design of Ocean Turbulence Measurement with a Free Fall Vertical Profiler

    Science.gov (United States)

    Luan, Xin; Xin, Jia; Zhu, Tieyi; Yang, Hua; Teng, Yuru; Song, Dalei

    2018-03-01

    The newly designed instrument Free Fall Vertical Profiler (FFVP) developed by Ocean University of China (OUC) had been deployed in the Western Pacific in March 08, 2017 and succeed to collect turbulence signals about 350-m-deep water. According to the requirements of turbulence measurement, the mechanical design was developed for turbulence platform to achieve stability and good flow tracking. By analysing the Heading, Pitch and Roll, the results suggested that the platform satisfies the requirements of stability. The power spectrum of the cleaned shear signals using the noise correction algorithm match well with the theoretical Nasmyth spectrum and the rate of turbulence dissipation are approximately 10-8 W/kg. In general, the FFVP was rationally designed and provided a good measurement platform for turbulence observation.

  4. Plutonium and americium concentrations and vertical profiles in some Italian mosses used as bioindicators

    International Nuclear Information System (INIS)

    Testa, C.; Desideri, D.; Meli, M.A.; Guerra, F.; Degetto, S.; Jia, G.; Gerdol, R.

    1998-01-01

    We have examined the uptake of actinide elements Am and Pu by different species of lichen and moss collected in two locations (Urbino, Central Italy; Alps region, North-east Italy). Plutonium and americium were separated and determined by extraction chromatography, electrodeposition and alpha-spectrometry. This paper summarizes our results with a special emphasis on the vertical profiles of these actinides in two different species of mosses. Several 1-2 cm depth sections were obtained and dated by 210 Pb method. A typical peak for 239,240 Pu and 241 Am was found in the very old moss species ('Sphagnum Compactum') at a depth corresponding to the period 1960-1970 which was the period characterized by the maximum nuclear weapon tests. In a younger moss species ('Neckeria Crispa') no peak was observed and the regression curves showed that Am is more mobile than 239,240 Pu and 238 Pu. (author)

  5. Light hydrocarbons vertical profiles and fluxes in a french rural area

    Science.gov (United States)

    Kanakidou, M.; Bonsang, B.; Lambert, G.

    By means of manned hot air balloon flights, in July 1986, an experiment was conducted in a rural area of southwest France in order to determine the production at ground level of non-methane hydrocarbons in the C 2-C 6 range. Flux determinations were based on vertical profiles before and after the development of a temperature inversion layer which allowed the measurement of the NMHC accumulation close to ground level. The main species produced in the late afternoon were acetylene, propane, ethene, propene and ethane with production rates of the order of 0.5 to 2 × 10 -4g of C m -2 h -1. Isoprene was found to be the main other unsaturated species also produced. The fluxes and the atmospheric content of the air column before the inversion are consistent with an average OH radical concentration of 2 × 10 6 cm -3.

  6. Spatial distribution and vertical variation of arsenic in Guangdong soil profiles, China

    International Nuclear Information System (INIS)

    Zhang, H.H.; Yuan, H.X.; Hu, Y.G.; Wu, Z.F.; Zhu, L.A.; Zhu, L.; Li, F.B.; LI, D.Q.

    2006-01-01

    Total of 260 soil profiles were reported to investigate the arsenic spatial distribution and vertical variation in Guangdong province. The arsenic concentration followed an approximately lognormal distribution. The arsenic geometric mean concentration of 10.4 mg/kg is higher than that of China. An upper baseline concentration of 23.4 mg/kg was estimated for surface soils. The influence of soil properties on arsenic concentration was not important. Arsenic spatial distributions presented similar patterns that high arsenic concentration mainly located in limestone, and sandshale areas, indicating that soil arsenic distribution was dependent on bedrock properties than anthropogenic inputs. Moreover, from A- to C-horizon arsenic geometric mean concentrations had an increasing tendency of 10.4, 10.7 to 11.3 mg/kg. This vertical variation may be related to the lower soil organic matter and soil degradation and erosion. Consequently, the soil arsenic export into surface and groundwaters would reach 1040 t year -1 in the study area. - Soil arsenic movement export is a potential threat to the water quality of the study area

  7. Vertical distribution of organochlorine pesticides in humus along Alpine altitudinal profiles in relation to ambiental parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, M., E-mail: kirchner@helmholtz-muenchen.d [Helmholtz Zentrum Muenchen, GmbH, Institutes of Ecological Chemistry, Developmental Genetics and Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Faus-Kessler, T.; Jakobi, G.; Levy, W.; Henkelmann, B.; Bernhoeft, S.; Kotalik, J.; Zsolnay, A. [Helmholtz Zentrum Muenchen, GmbH, Institutes of Ecological Chemistry, Developmental Genetics and Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Bassan, R. [Regional Agency for Environmental Prevention and Protection of Veneto (Italy); Belis, C. [Regional Agency for Environmental Protection of Lombardy (Italy); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Moche, W. [Federal Environment Agency Ltd. (Austria); Simoncic, P. [Slovenian Forestry Institute (Slovenia); Uhl, M.; Weiss, P. [Federal Environment Agency Ltd. (Austria); Schramm, K.-W. [Helmholtz Zentrum Muenchen, GmbH, Institutes of Ecological Chemistry, Developmental Genetics and Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)

    2009-12-15

    In forest soils along vertical profiles located in different parts of the Alps, concentrations of persistent organic pollutants (POPs), namely organochlorine pesticides (OCPs) like dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCH), heptachlor, aldrin, dieldrin and mirex, were measured. Though local characteristics of the sites are influenced by numerous factors like orographic and meteorological parameters, forest stand characteristics and humus parameters, we ascertained a marked vertical increase of concentrations of some organochlorine compounds in the soil. On the basis of climatological values of each site, we found that the contamination increase with altitude can be ascribed to a certain 'cold condensation effect'. In addition, the perennial atmospheric deposition of POPs is controlled by precipitation. Other key parameters explaining the accumulation of POPs are the soil organic carbon stocks, the turnover times, the re-volatilisation and degradation processes, which vary with altitude. - Caused by temperature-dependent processes regarding deposition, re-volatilization and decomposition of POPs, the concentration of organochlorine pesticides varies in the Alpine region with altitude.

  8. Vertical distribution of deuterium in atmospheric water vapour: problems in application to assess atmospheric condensation models

    International Nuclear Information System (INIS)

    Taylor, C.B.

    1984-01-01

    The paper assesses the use of the author's data by Rozanski and Sonntag to support a multi-box model of the vertical distribution of deuterium in atmospheric water vapour, in which exchange between vapour and falling precipitation produces a steeper deuterium concentration profile than simpler condensation models. The mean deuterium/altitude profile adopted by Rozanski and Sonntag for this purpose is only one of several very different mean profiles obtainable from the data by arbitrary selection and weighting procedures; although it can be made to match the specified multi-box model calculations for deuterium, there is a wide discrepancy between the actual and model mean mixing ratio profiles which cannot be ignored. Taken together, the mixing ratio and deuterium profiles indicate that mean vapour of the middle troposphere has been subjected to condensation at greater heights and lower temperatures than those considered in the model calculations. When this is taken into account, the data actually fit much better to the simpler condensation models. But the vapour samples represent meteorological situations too remote in time from primary precipitation events to permit definite conclusions on cloud system mechanisms. (Auth.)

  9. Vertical circulation and thermospheric composition: a modelling study

    OpenAIRE

    H. Rishbeth; I. C. F. Müller-Wodarg; I. C. F. Müller-Wodarg

    1999-01-01

    The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produc...

  10. A skeleton model for the MJO with refined vertical structure

    Science.gov (United States)

    Thual, Sulian; Majda, Andrew J.

    2016-05-01

    The Madden-Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on intraseasonal timescales and planetary spatial scales. The skeleton model is a minimal dynamical model that recovers robustly the most fundamental MJO features of (I) a slow eastward speed of roughly 5 {ms}^{-1}, (II) a peculiar dispersion relation with dω /dk ≈ 0, and (III) a horizontal quadrupole vortex structure. This model depicts the MJO as a neutrally-stable atmospheric wave that involves a simple multiscale interaction between planetary dry dynamics, planetary lower-tropospheric moisture and the planetary envelope of synoptic-scale activity. Here we propose and analyse an extended version of the skeleton model with additional variables accounting for the refined vertical structure of the MJO in nature. The present model reproduces qualitatively the front-to-rear vertical structure of the MJO found in nature, with MJO events marked by a planetary envelope of convective activity transitioning from the congestus to the deep to the stratiform type, in addition to a front-to-rear structure of moisture, winds and temperature. Despite its increased complexity the present model retains several interesting features of the original skeleton model such as a conserved energy and similar linear solutions. We further analyze a model version with a simple stochastic parametrization for the unresolved details of synoptic-scale activity. The stochastic model solutions show intermittent initiation, propagation and shut down of MJO wave trains, as in previous studies, in addition to MJO events with a front-to-rear vertical structure of varying intensity and characteristics from one event to another.

  11. Computer Profiling Based Model for Investigation

    OpenAIRE

    Neeraj Choudhary; Nikhil Kumar Singh; Parmalik Singh

    2011-01-01

    Computer profiling is used for computer forensic analysis, and proposes and elaborates on a novel model for use in computer profiling, the computer profiling object model. The computer profiling object model is an information model which models a computer as objects with various attributes and inter-relationships. These together provide the information necessary for a human investigator or an automated reasoning engine to make judgments as to the probable usage and evidentiary value of a comp...

  12. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    Profile of capillary bridges between two vertically stacked cylindrical fibers under gravitational effect

    Science.gov (United States)

    Sun, Xiaohang; Lee, Hoon Joo; Michielsen, Stephen; Wilusz, Eugene

    2018-05-01

    Although profiles of axisymmetric capillary bridges between two cylindrical fibers have been extensively studied, little research has been reported on capillary bridges under external forces such as the gravitational force. This is because external forces add significant complications to the Laplace-Young equation, making it difficult to predict drop profiles based on analytical approaches. In this paper, simulations of capillary bridges between two vertically stacked cylindrical fibers with gravitational effect taken into consideration are studied. The asymmetrical structure of capillary bridges that are hard to predict based on analytical approaches was studied via a numerical approach based on Surface Evolver (SE). The axial and the circumferential spreading of liquids on two identical fibers in the presence of gravitational effects are predicted to determine when the gravitational effects are significant or can be neglected. The effect of liquid volume, equilibrium contact angle, the distance between two fibers and fiber radii. The simulation results were verified by comparing them with experimental measurements. Based on SE simulations, curves representing the spreading of capillary bridges along the two cylindrical fibers were obtained. The gravitational effect was scaled based on the difference of the spreading on upper and lower fibers.

  13. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    Science.gov (United States)

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Nitrous oxide emission estimates using atmospheric observations of vertical profiles in a polluted agricultural region

    Science.gov (United States)

    Herrera, S.; Diskin, G. S.; Pusede, S.

    2016-12-01

    Nitrous oxide (N2O) is a long-lived and highly potent greenhouse gas that also destroys stratospheric ozone. Largely attributed to changes in agricultural sources, N2O concentrations are increasing at a steady rate of 0.8 ppb y-1 globally. Emission rates of N2O remain poorly constrained, with N2O sources arguably among the most uncertain of the long-lived greenhouse gases. This study quantifies N2O emissions at the kilometer-spatial scale in the wintertime in a region with both agricultural and urban sources, the San Joaquin Valley of California. To do this, we use the large number vertical profiles of N2O and other relevant trace gases measured by the P3 aircraft during the NASA DISCOVER-AQ campaign that took place throughout the San Joaquin Valley in January-February 2013. We exploit the observed variability in profile shape by time of day, day to day, and location (over urban versus agricultural sources), along with chemical and physical constraints on mixing and the timing of decoupling between the surface boundary layer and residual layers aloft.

  15. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  16. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.

    Science.gov (United States)

    Kong, Weiping; Huang, Wenjiang; Casa, Raffaele; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying

    2017-11-23

    Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R² of 0.84-0.69, and RMSE of 5.37-5.56 µg/cm² from the top to the bottom layers

  17. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  18. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    Science.gov (United States)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness

  19. Distributed support modelling for vertical track dynamic analysis

    Science.gov (United States)

    Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.

    2018-04-01

    The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.

  1. Modeling vertical loads in pools resulting from fluid injection

    International Nuclear Information System (INIS)

    Lai, W.; McCauley, E.W.

    1978-01-01

    Table-top model experiments were performed to investigate pressure suppression pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peachbottom Mark I boiling water reactor containment system. The results guided subsequent conduct of experiments in the 1 / 5 -scale facility and provided new insight into the vertical load function (VLF). Model experiments show an oscillatory VLF with the download typically double-spiked followed by a more gradual sinusoidal upload. The load function contains a high frequency oscillation superimposed on a low frequency one; evidence from measurements indicates that the oscillations are initiated by fluid dynamics phenomena

  2. Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer

    Science.gov (United States)

    Kudo, Rei; Aoyagi, Toshinori; Nishizawa, Tomoaki

    2018-05-01

    Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means and on transport events, were investigated in Tsukuba, Japan, by a synergistic remote sensing method that uses lidar and sky radiometer data. The retrieved aerosol vertical profiles of the springtime mean and five transport events were input to our developed one-dimensional atmospheric model, and the impacts of the aerosol vertical profiles on the evolution of the atmospheric boundary layer (ABL) were studied by numerical sensitivity experiments. The characteristics of the aerosol vertical profiles in Tsukuba are as follows: (1) the retrieval results in the spring showed that aerosol optical thickness at 532 nm in the free atmosphere (FA) was 0.13, greater than 0.08 in the ABL owing to the frequent occurrence of transported aerosols in the FA. In other seasons, optical thickness in the FA was almost the same as that in the ABL. (2) The aerosol optical and physical properties in the ABL showed a dependency on the extinction coefficient. With an increase in the extinction coefficient from 0.00 to 0.24 km-1, the Ångström exponent increased from 0.0 to 2.0, the single-scattering albedo increased from 0.87 to 0.99, and the asymmetry factor decreased from 0.75 to 0.50. (3) The large variability in the physical and optical properties of aerosols in the FA were attributed to transport events, during which the transported aerosols consisted of varying amounts of dust and smoke particles depending on where they originated (China, Mongolia, or Russia). The results of the numerical sensitivity experiments using the aerosol vertical profiles of the springtime mean and five transport events in the FA are as follows: (1) numerical sensitivity experiments based on simulations conducted with and without aerosols showed that aerosols caused the net downward radiation and the sensible and latent heat fluxes at the surface to decrease. The decrease in temperature in the ABL (-0.2 to -0

  3. Modelling vertical human walking forces using self-sustained oscillator

    Science.gov (United States)

    Kumar, Prakash; Kumar, Anil; Racic, Vitomir; Erlicher, Silvano

    2018-01-01

    This paper proposes a model of a self-sustained oscillator which can generate reliably the vertical contact force between the feet of a healthy pedestrian and the supporting flat rigid surface. The model is motivated by the self-sustained nature of the walking process, i.e. a pedestrian generates the required inner energy to sustain its repetitive body motion. The derived model is a fusion of the well-known Rayleigh, Van der Pol and Duffing oscillators. Some additional nonlinear terms are added to produce both the odd and even harmonics observed in the experimentally measured force data. The model parameters were derived from force records due to twelve pedestrians walking on an instrumented treadmill at ten speeds using a linear least square technique. The stability analysis was performed using the energy balance method and perturbation method. The results obtained from the model show a good agreement with the experimental results.

  4. Simplified hydraulic model of French vertical-flow constructed wetlands.

    Science.gov (United States)

    Arias, Luis; Bertrand-Krajewski, Jean-Luc; Molle, Pascal

    2014-01-01

    Designing vertical-flow constructed wetlands (VFCWs) to treat both rain events and dry weather flow is a complex task due to the stochastic nature of rain events. Dynamic models can help to improve design, but they usually prove difficult to handle for designers. This study focuses on the development of a simplified hydraulic model of French VFCWs using an empirical infiltration coefficient--infiltration capacity parameter (ICP). The model was fitted using 60-second-step data collected on two experimental French VFCW systems and compared with Hydrus 1D software. The model revealed a season-by-season evolution of the ICP that could be explained by the mechanical role of reeds. This simplified model makes it possible to define time-course shifts in ponding time and outlet flows. As ponding time hinders oxygen renewal, thus impacting nitrification and organic matter degradation, ponding time limits can be used to fix a reliable design when treating both dry and rain events.

  5. Total solar eclipse of 16 February 1980 and the vertical profiles of atmospheric parameters in the lowest 200M

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Sastry, J.S.

    Vertical profiles of air temperature, wind and humidity at Raichur (16 degrees 12'N and 77 degrees 21'E) in the lowest 200m of the atmosphere are presented for the period 15-18 February 1980. The effect of the total solar eclipse, on 16 February...

  6. Modelling the observed vertical transport of {sup 7}Be in specific soils with advection dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Torres Astorga, Romina; Velasco, Hugo; Valladares, Diego L.; Lohaiza, Flavia; Ayub, Jimena Juri; Rizzotto, Marcos [Grupo de Estudios Ambientales. Instituto de Matematica Aplicada San Luis - Universidad Nacional de San Luis - CONICET, San Luis (Argentina)

    2014-07-01

    {sup 7}Be is a short-lived environmental radionuclide, produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic rays. After of the production by the nuclear reaction, {sup 7}Be diffuses through the atmosphere until it attaches to atmospheric aerosols. Subsequently, it is deposited on the earth surface mainly as wet fallout. The main physical processes which transport {sup 7}Be in soil are diffusion and advection by water. Migration parameters and measurements confirm that sorption is the main physical process, which confines {sup 7}Be concentration to soil surface. The literature data show that in soils, {sup 7}Be is concentrated near the surface (0-2 cm) as it is adsorbed onto clay minerals after its deposition on the soil surface and does not penetrate deeper into soils due to its short half-life. The maximum mass activity density of {sup 7}Be is found at the point of input of the radionuclide, i.e. at the surface of the soil column, showing a exponential distribution profile typical of a purely diffusive transport. Many studies applying the advection dispersion models have been reported in the literature in order to modelling the transport of {sup 137}Cs in soils. On them, the models are used to achieve information of the mechanisms that govern the transport, i. e. the model is used to explain the soil profile of radionuclide. The effective dispersion coefficient and the apparent advection velocity of radionuclide in soil are also obtained by fitting the analytical solution of the model equation to measured depth distributions of the radionuclide. In this work, the advective dispersive transport model with linear sorption is used to analyze the vertical migration process of {sup 7}Be in soils of undisturbed or reference sites. The deposition history is approximated by pulse-like input functions and time dependent analytical solution of equation model is obtained. The values of dispersion coefficient and apparent advection velocity obtained

  7. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    Science.gov (United States)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  8. Modelling the long-term vertical dynamics of salt marshes

    Science.gov (United States)

    Zoccarato, Claudia; Teatini, Pietro

    2017-04-01

    Salt marshes are vulnerable environments hosting complex interactions between physical and biological processes with a strong influence on the dynamics of the marsh evolution. The estimation and prediction of the elevation of a salt-marsh platform is crucial to forecast the marsh growth or regression under different scenarios considering, for example, the potential climate changes. The long-term vertical dynamics of a salt marsh is predicted with the aid of an original finite-element (FE) numerical model accounting for the marsh accretion and compaction and for the variation rates of the relative sea level rise, i.e., land subsidence of the marsh basement and eustatic rise of the sea level. The accretion term considers the vertical sedimentation of organic and inorganic material over the marsh surface, whereas the compaction reflects the progressive consolidation of the porous medium under the increasing load of the overlying younger deposits. The modelling approach is based on a 2D groundwater flow simulator, which provides the pressure evolution within a compacting/accreting vertical cross-section of the marsh assuming that the groundwater flow obeys the relative Darcy's law, coupled to a 1D vertical geomechanical module following Terzaghi's principle of effective intergranular stress. Soil porosity, permeability, and compressibility may vary with the effective intergranular stress according to empirically based relationships. The model also takes into account the geometric non-linearity arising from the consideration of large solid grain movements by using a Lagrangian approach with an adaptive FE mesh. The element geometry changes in time to follow the deposit consolidation and the element number increases in time to follow the sedimentation of new material. The numerical model is tested on different realistic configurations considering the influence of (i) the spatial distribution of the sedimentation rate in relation to the distance from the marsh margin, (ii

  9. Fatty acid profile in vertical strata of elephant grass subjected to intermittent stocking

    Directory of Open Access Journals (Sweden)

    KAMILA M. DIAS

    2017-08-01

    Full Text Available ABSTRACT The milk and meat from animals with a pasture-based diet have higher proportions of CLA and C18:3 and lower omega-6:omega-3 ratios than products from animals with diets based on corn silage and concentrate. However, most of the published studies have evaluated fatty acid profiles in temperate climate grasses and the literature with tropical grasses is scarce. Thus, the aim of this study was to evaluate the morphological and fatty acid compositions in the vertical strata of elephant grass (Pennisetum purpureum Schum. swards subjected to grazing heights (90 or 120 cm pre-grazing heights and levels of defoliation (50% or 70% removal of the initial pre-grazing height. There were no interactions among pre-grazing height, the level of defoliation and grazing stratum. However, higher proportion of C18:3 (58% and 63% was found in the 90-cm swards and in the half upper stratum. A higher proportion of C18:3 was associated with a higher leaf proportion and crude protein content. Thus, the upper stratum of sward or a grazing management scheme (e.g. first-last stocking resulting in a higher proportion of leaves and crude protein both provide higher proportions of C18:3 to animals grazing in elephant grass swards.

  10. A multi-offset vertical profiling (VSP) experiment for anisotropy analysis and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grech, G. K.; Lawton, D. [Calgary Univ., AB (Canada)

    2000-09-01

    Vertical seismic profiling (VSP) and surface seismic data are used to image and locate hydrocarbon targets in the subsurface, hence the importance of assessing which formations exhibit seismic velocity anisotropy and quantify their parameters for use during seismic imaging. The purpose of the experiments described in this paper was to determine whether the multiple dipping thin shale beds overlying the target area in the Rocky Mountain Foothills in southern Alberta exhibit seismic velocity anisotropy and if so, how this phenomenon affects the image of the underlying target. Traveltime inversion of the first arrival data from the multi-offset VSP in the study area has revealed that the Cretaceous shales exhibit velocity anisotropy of about 10 degrees. For a target depth of 3000 m and moderate dips of 30 to 50 degrees in the anisotropic overburden, it would be reasonable to expect a lateral shift in the imaged location of the target of up to 300 m in the up-direction of overlying bedding. 8 refs., 9 figs.

  11. Vertical Profiles and Chemical Properties of Aerosol Particles upon Ny-Ålesund (Svalbard Islands

    Directory of Open Access Journals (Sweden)

    B. Moroni

    2015-01-01

    Full Text Available Size-segregated particle samples were collected in the Arctic (Ny-Ålesund, Svalbard in April 2011 both at ground level and in the free atmosphere exploiting a tethered balloon equipped also with an optical particle counter (OPC and meteorological sensors. Individual particle properties were investigated by scanning electron microscopy coupled with energy dispersive microanalysis (SEM-EDS. Results of the SEM-EDS were integrated with particle size and optical measurements of the aerosols properties at ground level and along the vertical profiles. Detailed analysis of two case studies reveals significant differences in composition despite the similar structure (layering and the comparable texture (grain size distribution of particles in the air column. Differences in the mineral chemistry of samples point at both local (plutonic/metamorphic complexes in Svalbard and remote (basic/ultrabasic magmatic complexes in Greenland and/or Iceland geological source regions for dust. Differences in the particle size and shape are put into relationship with the mechanism of particle formation, that is, primary (well sorted, small or secondary (idiomorphic, fine to coarse grained origin for chloride and sulfate crystals and transport/settling for soil (silicate, carbonate and metal oxide particles. The influence of size, shape, and mixing state of particles on ice nucleation and radiative properties is also discussed.

  12. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Ferreira, C Simão; Madsen, H Aagaard; Barone, M; Roscher, B; Deglaire, P; Arduin, I

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed

  13. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    Science.gov (United States)

    Simão Ferreira, C.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-06-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.

  14. The ins and outs of modelling vertical displacement events

    Science.gov (United States)

    Pfefferle, David

    2017-10-01

    Of the many reasons a plasma discharge disrupts, Vertical Displacement Events (VDEs) lead to the most severe forces and stresses on the vacuum vessel and Plasma Facing Components (PFCs). After loss of positional control, the plasma column drifts across the vacuum vessel and comes in contact with the first wall, at which point the stored magnetic and thermal energy is abruptly released. The vessel forces have been extensively modelled in 2D but, with the constraint of axisymmetry, the fundamental 3D effects that lead to toroidal peaking, sideways forces, field-line stochastisation and halo current rotation have been vastly overlooked. In this work, we present the main results of an intense VDE modelling activity using the implicit 3D extended MHD code M3D-C1 and share our experience with the multi-domain and highly non-linear physics encountered. At the culmination of code development by the M3D-C1 group over the last decade, highlighted by the inclusion of a finite-thickness resistive vacuum vessel within the computational domain, a series of fully 3D non-linear simulations are performed using realistic transport coefficients based on the reconstruction of so-called NSTX frozen VDEs, where the feedback control was purposely switched off to trigger a vertical instability. The vertical drift phase, the evolution of the current quench and the onset of 3D halo/eddy currents are diagnosed and investigated in detail. The sensitivity of the current quench to parameter changes is assessed via 2D non-linear runs. The growth of individual toroidal modes is monitored via linear-complex runs. The intricate evolution of the plasma, which is decaying to large extent in force-balance with induced halo/wall currents, is carefully resolved via 3D non-linear runs. The location, amplitude and rotation of normal currents and wall forces are analysed and compared with experimental traces.

  15. Topside ionospheric vertical electron density profile reconstruction using GPS and ionosonde data: possibilities for South Africa

    Directory of Open Access Journals (Sweden)

    P. Sibanda

    2011-02-01

    Full Text Available Successful empirical modeling of the topside ionosphere relies on the availability of good quality measured data. The Alouette, ISIS and Intercosmos-19 satellite missions provided large amounts of topside sounder data, but with limited coverage of relevant geophysical conditions (e.g., geographic location, diurnal, seasonal and solar activity by each individual mission. Recently, methods for inferring the electron density distribution in the topside ionosphere from Global Positioning System (GPS-based total electron content (TEC measurements have been developed. This study is focused on the modeling efforts in South Africa and presents the implementation of a technique for reconstructing the topside ionospheric electron density (Ne using a combination of GPS-TEC and ionosonde measurements and empirically obtained Upper Transition Height (UTH. The technique produces reasonable profiles as determined by the global models already in operation. With the added advantage that the constructed profiles are tied to reliable measured GPS-TEC and the empirically determined upper transition height, the technique offers a higher level of confidence in the resulting Ne profiles.

  16. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    Science.gov (United States)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-11-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions, as a result of increased soil moisture accelerating microbial nitrification and denitrification processes. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  17. Simulation-Based Optimization of a Vector Showerhead System for the Control of Flow Field Profile in a Vertical Reactor Chamber

    Directory of Open Access Journals (Sweden)

    Huanxiong Xia

    2014-03-01

    Full Text Available Optimization of a vector showerhead in a vertical reactor involves thousands of holes on the showerhead face plate and the spatial distribution of physical fields, so parameterizing the geometry configuration of the holes in high resolution is very difficult, which makes the conventional optimization methods hard to deal with. To solve this problem, a profile error feedback (PEF optimization solution was proposed to optimize a vector showerhead gas delivery system for the control of mass transport. The gas velocity profile in the reactor and the continuous-feature impedance distribution profile on the showerhead face plate are defined as design objective and variables, respectively. A cyclic iterative approximation idea was implemented in this solution. The algorithm was started from a guessed initial design model and then cyclically adjusted the design variables by the constructed PEF iterative formula to generate a better model and to make the gas velocity profile in the critical domain of the new model continually approximate to the expected profile, until it could be accepted. Finally, the optimized impedance profile was mapped to the holes geometry configuration through the established equivalent impedance model for the showerhead face plate.

  18. What Controls the Vertical Distribution of Aerosol? Relationships Between Process Sensitivity in HadGEM3-UKCA and Inter-Model Variation from AeroCom Phase II

    Science.gov (United States)

    Kipling, Zak; Stier, Philip; Johnson, Colin E.; Mann, Graham W.; Bellouin, Nicolas; Bauer, Susanne E.; Bergman, Tommi; Chin, Mian; Diehl, Thomas; Ghan, Steven J.; hide

    2016-01-01

    The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN >3 nm), while the profiles of larger particles (e.g. CN>100 nm) are controlled by the

  19. Modeling of subcooled boiling in the vertical flow

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    1999-01-01

    A two-dimensional model of subcooled boiling in a vertical channel was developed. Its basic idea is that the vapor phase generation has a similar effect on the flow field as a hypothetical liquid phase generation. The bubble volume, generated due to evaporation process, was filled with liquid and included as a source term in the continuity equation for the liquid phase. Thus, the single-phase from of transport equations was preserved and bubbles were retained in the boundary layer near the heated surface. Time development of subcooled boiling was simulated and effects of governing physical mechanisms (evaporation, condensation, vapor-phase convection, vapor-phase diffusion) on the flow field and pressure drop were analyzed. The Results of the proposed two-dimensional model were compared with experimental data and RELAP5/MOD3.2 calculations. The presented model represents a contribution to the two-dimensional simulation of the subcooled boiling phenomenon.(author)

  20. Inversely estimating the vertical profile of the soil CO2 production rate in a deciduous broadleaf forest using a particle filtering method.

    Science.gov (United States)

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the "actual" values by decreasing the variance of the posterior distribution of the values.

  1. Analysis of photonic spot profile converter and bridge structure on SOI platform for horizontal and vertical integration

    Science.gov (United States)

    Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib

    2017-08-01

    Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.

  2. Mathematical model of Zika virus with vertical transmission

    Directory of Open Access Journals (Sweden)

    F.B. Agusto

    2017-05-01

    Full Text Available Zika is a flavivirus transmitted to humans through either the bites of infected Aedes mosquitoes or sexual transmission. Zika has been linked to congenital anomalies such as microcephaly. In this paper, we analyze a new system of ordinary differential equations which incorporates human vertical transmission of Zika virus, the birth of babies with microcephaly and asymptomatically infected individuals. The Zika model is locally and globally asymptotically stable when the basic reproduction number is less than unity. Our model shows that asymptomatic individuals amplify the disease burden in the community, and the most important parameters for ZIKV spread are the death rate of mosquitoes, the mosquito biting rate, the mosquito recruitment rate, and the transmission per contact to mosquitoes and to adult humans. Scenario exploration indicates that personal-protection is a more effective control strategy than mosquito-reduction strategy. It also shows that delaying conception reduces the number of microcephaly cases, although this does little to prevent Zika transmission in the broader community. However, by coupling aggressive vector control and personal protection use, it is possible to reduce both microcephaly and Zika transmission. 2000 Mathematics Subject Classifications: 92B05, 93A30, 93C15. Keywords: Zika virus, Vertical transmission, Microcephaly, Stability, Control

  3. Solving vertical transport and chemistry in air pollution models

    International Nuclear Information System (INIS)

    Berkvens, P.J.F.; Botchev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    2000-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species. This complicates the chemistry solution, easily causing large errors for such species. In the framework of an operational global air pollution model, we focus on the problem formed by chemistry and vertical transport, which is based on diffusion, cloud-related vertical winds, and wet deposition. Its specific nature leads to full Jacobian matrices, ruling out standard implicit integration. We compare Strang operator splitting with two alternatives: source splitting and an (unsplit) Rosenbrock method with approximate matrix factorization, all having equal computational cost. The comparison is performed with real data. All methods are applied with half-hour time steps, and give good accuracies. Rosenbrock is the most accurate, and source splitting is more accurate than Strang splitting. Splitting errors concentrate in short-lived species sensitive to solar radiation and species with strong emissions and depositions. 30 refs

  4. Simplified analytical model for thermal transfer in vertical hollow brick

    Energy Technology Data Exchange (ETDEWEB)

    Lorente, S [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France); Petit, M [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France); Javelas, R [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France)

    1996-12-01

    A modern building envelope has a lot of little cavities. Most of them are vertical with a high height to thickness ratio. We present here the conception of a software to determine heat transfer through terra-cotta bricks full of large vertical cavities. After a bibliographic study on convective heat transfer in such cavities, we made an analytical model based on Karman-Polhausen`s method for convection and on the radiosity method for radiative heat transfer. We used a test apparatus of a single cavity to determine the temperature field inside the cavity. Using these experimental results, we showed that the exchange was two-dimensional. We also realised heat flux measurements. Then we expose our theoretical study: We propose relations between central core temperatures and active face temperatures, then between outside and inside active face temperatures. We calculate convective superficial heat transfer because we noticed we have boundary layers along the active faces. We realise a heat flux balance between convective plus radiative heat transfer and conductive heat transfer, so we propose an algorithm to calculate global heat transfer through a single cavity. Finally, we extend our model to a whole hollow brick with lined-up cavities and propose an algorithm to calculate heat flux and thermal resistance with a good accuracy ({approx}7.5%) compared to previous experimental results. (orig.)

  5. Implementation of Dynamic Smart Decision Model for Vertical Handoff

    Science.gov (United States)

    Sahni, Nidhi

    2010-11-01

    International Mobile Telecommunications-Advanced (IMT Advanced), better known as 4G is the next level of evolution in the field of wireless communications. 4G Wireless networks enable users to access information anywhere, anytime, with a seamless connection to a wide range of information and services, and receiving a large volume of information, data, pictures, video and thus increasing the demand for High Bandwidth and Signal Strength. The mobility among various networks is achieved through Vertical Handoff. Vertical handoffs refer to the automatic failover from one technology to another in order to maintain communication. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the "best" available network at "best" time for handoff. In this paper, we implemented the proposed Dynamic and Smart Decision model to decide the "best" network interface and "best" time moment to handoff. The proposed model implementation not only demonstrates the individual user needs but also improve the whole system performance i.e. Quality of Service by reducing the unnecessary handoffs and maintain mobility.

  6. A model of strategic marketing alliances for hospices: vertical, internal, osmotic alliances and the complete model.

    Science.gov (United States)

    Starnes, B J; Self, D R

    1999-01-01

    This article develops two previous research efforts. William J. Winston (1994, 1995) has proposed a set of strategies by which health care organizations can benefit from forging strategic alliances. Raadt and Self (1997) have proposed a classification model of alliances including horizontal, vertical, internal, and osmotic. In the second of two articles, this paper presents a model of vertical, internal, and osmotic alliances. Advantages and disadvantages of each are discussed. Finally, the complete alliance system model is presented.

  7. Modelling of Condensation in Vertical Tubes for Passive Safety System

    International Nuclear Information System (INIS)

    Papini, D.; Ricotti, M.; Santini, L.; Grgic, D.

    2008-01-01

    Condensation in vertical tubes plays an important role in the performance of heat exchangers in passive safety systems, widely adopted in next generation reactors. Vertical pipe condensers are implemented in the GE-SBWR1000 Isolation Condenser as well as in the Emergency Heat Removal System (EHRS) of the IRIS reactor. The transient and safety analysis is usually carried out by means of best-estimate, thermalhydraulic codes, as RELAP. Suitable heat transfer correlations are required to duly model the two-phase processes. As far as the condensation process is concerned, RELAP5/MOD3.3 adopts the Nusselt correlation to calculate the heat transfer coefficient in laminar conditions and the Shah correlation for turbulent conditions; the maximum of the predictions from laminar and turbulent regimes is used to calculate the condensation heat transfer coefficient. Shah correlation is generally considered as the best empirical correlation for turbulent annular film condensation, but suitable in proper ranges of the various parameters. Nevertheless, recent investigations have pointed out that its validity is highly questionable for high pressure and large diameter tube applications with water, as should be for the utilization for vertical tube condensers in passive safety systems. Thus, a best-estimate model, based on the theory of film condensation on a plain wall, is proposed. Condensate velocity, expressed in terms of Reynolds number, governs the development of three different regime zones: laminar, laminar wavy and turbulent. The best correlation for each regime (Nusselt's for laminar, Kutateladze's for laminar wavy and Chen's for turbulent) is considered and then implemented in RELAP code. Comparison between the Nusselt-Shah and the proposed model shows substantial differences in heat transfer coefficient prediction. Especially, a trend of increasing value of the heat transfer coefficient with tube abscissa (and quality decreasing) is predicted, when turbulence

  8. A New Profile Learning Model for Recommendation System based on Machine Learning Technique

    Directory of Open Access Journals (Sweden)

    Shereen H. Ali

    2016-03-01

    Full Text Available Recommender systems (RSs have been used to successfully address the information overload problem by providing personalized and targeted recommendations to the end users. RSs are software tools and techniques providing suggestions for items to be of use to a user, hence, they typically apply techniques and methodologies from Data Mining. The main contribution of this paper is to introduce a new user profile learning model to promote the recommendation accuracy of vertical recommendation systems. The proposed profile learning model employs the vertical classifier that has been used in multi classification module of the Intelligent Adaptive Vertical Recommendation (IAVR system to discover the user’s area of interest, and then build the user’s profile accordingly. Experimental results have proven the effectiveness of the proposed profile learning model, which accordingly will promote the recommendation accuracy.

  9. Numerical Modeling of Scour at the Head of a Vertical-Wall Breakwater in Waves

    Science.gov (United States)

    Baykal, C.; Balcı, H. B.; Sumer, B. M.; Fuhrman, D. R.

    2017-12-01

    This study presents a 3D numerical modeling study on the flow and scour at the head of a vertical-wall breakwater in regular waves. The numerical model utilized in the study is based on that given by Jacobsen (2011). The present model has been applied successfully to the scour and backfilling beneath submarine pipelines by Fuhrman et al. (2014), and around a vertical cylindrical pile mounted on a horizontal plane sediment bed by Baykal et al. (2015, 2017). The model is composed of two main modules. The first module is the hydrodynamic model where Reynolds Averaged Navier Stokes (RANS) equations are solved with a k-ω turbulence closure. The second module is the morphologic model which comprises five sub-modules, namely; bed load, suspended load, sand slide, bed evolution and 3D mesh motion. The model is constructed in open-source CFD toolbox OpenFOAM. In this study, the model is applied to experimental data sets of Sumer and Fredsoe (1997) on the scour around a vertical-wall breakwater with a circular round head. Here, it is given the preliminary results of bed evolution of Test-8 of Sumer and Fredsoe (1997) in which a vertical-wall breakwater head with a width of B=140 mm is subjected to oscillatory flow with Tw=2.0 s and maximum orbital velocity at the bed Um=22cm/s, resulting in a Keulegan-Carpenter number, KC=3.14, close to KC experienced in real-life situations (KC = O(1)). The grain size is d=0.17 mm. The Shields parameter in the test case is given as θc=0.11, larger than the critical value for the initiation of motion implying that the scour is in the live-bed regime. The computational domain used in the simulations has the following dimensions: Length, l=40B, Width, w=20B, and Height, h=2B. The total number of cells is O(105) in the simulations. The scoured bed profile computed at the end of 3 periods of oscillatory flow of Test-8 is given in the figure below. The color scale in the figure is given for the ratio of bed elevation to the width of breakwater

  10. Constraining the 0-20 km Vertical Profile of Water Vapor in the Martian Atmosphere with MGS-TES Limb Sounding

    Science.gov (United States)

    McConnochie, T. H.; Smith, M. D.; McDonald, G. D.

    2016-12-01

    The vertical profile of water vapor in the lower atmosphere of Mars is a crucial but poorly-measured detail of the water cycle. Most of our existing water vapor data sets (e.g. Smith, 2002, JGR 107; Smith et al., 2009, JGR 114; Maltagliati et al., 2011, Icarus 213) rely on the traditional assumption of uniform mass mixing from the surface up to a saturation level, but GCM models (Richardson et al., 2002, JGR 107; Navarro et al., 2014, JGR 119) imply that this is not the case in at least some important seasons and locations. For example at the equator during northern summer the water vapor mixing ratio in aforementioned GCMs increases upwards by a factor of two to three in the bottom scale height. This might influence the accuracy of existing precipitable water column (PWC) data sets. Even if not, the correct vertical distribution is critical for determining the extent to which high-altitude cold trapping interferes with inter-hemispheric transport, and its details in the lowest scale heights will be a critical test of the accuracy of modeled water vapor transport. Meanwhile attempts to understand apparent interactions of water vapor with surface soils (e.g. Ojha et al. 2015, Nature Geoscience 8; Savijärvi et al., 2016, Icarus 265) need an estimate for the amount of water vapor in the boundary layer, and existing PWC data sets can't provide this unless the lower atmospheric vertical distribution is known or constrained. Maltagliati et al. (2013, Icarus 223) have obtained vertical profiles of water vapor at higher altitudes with SPICAM on Mars Express, but these are commonly limited to altitudes greater 20 km and they never extend below 10 km. We have previously used Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb-sounding to measure the vertical profile of water vapor (e.g. McConnochie and Smith, 2009, Fall AGU #P54B-06), but these preliminary results were clearly not quantitatively accurate in the lower atmosphere. We will present improved TES

  11. Vertical circulation and thermospheric composition: a modelling study

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    Full Text Available The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produces regions of large [O/N2] ratio. Because the thermospheric circulation is influenced by the high-latitude energy inputs, which are related to the geometry of the Earth's magnetic field, the latitude of the downwelling regions varies with longitude. The downwelling regions give rise to large F2-layer electron densities when they are sunlit, but not when they are in darkness, with implications for the distribution of seasonal and semiannual variations of the F2-layer. It is also found that the vertical distributions of O and N2 may depart appreciably from diffusive equilibrium at heights up to about 160 km, especially in the summer hemisphere where there is strong upwelling.

    Atmospheric composition and structure (thermosphere · composition and chemistry · Ionosphere (ionosphere · atmosphere interactions

  12. Vertical circulation and thermospheric composition: a modelling study

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    1999-06-01

    Full Text Available The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produces regions of large [O/N2] ratio. Because the thermospheric circulation is influenced by the high-latitude energy inputs, which are related to the geometry of the Earth's magnetic field, the latitude of the downwelling regions varies with longitude. The downwelling regions give rise to large F2-layer electron densities when they are sunlit, but not when they are in darkness, with implications for the distribution of seasonal and semiannual variations of the F2-layer. It is also found that the vertical distributions of O and N2 may depart appreciably from diffusive equilibrium at heights up to about 160 km, especially in the summer hemisphere where there is strong upwelling. Atmospheric composition and structure (thermosphere · composition and chemistry · Ionosphere (ionosphere · atmosphere interactions

  13. Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma

    Directory of Open Access Journals (Sweden)

    E. Andrews

    2011-10-01

    Full Text Available A small airplane made 597 aerosol optical property (light absorption and light scattering vertical profile measurements over a rural Oklahoma site between March 2000 and December 2007. The aerosol profiles obtained during these 8 yr of measurements suggest significant seasonal differences in aerosol loading (scattering and absorption. The highest amounts of scattering and absorbing aerosol are observed during the summer and the lowest loading occurs during the winter. The relative contribution of aerosol absorption is highest in the winter (i.e., single scattering albedo is lowest in winter, particularly aloft. Aerosol absorption generally decreased with altitude below ~1.5 km and then was relatively constant or decreased more gradually above that. Aerosol scattering decreased sharply with altitude below ~1.5 km but, unlike absorption, also decreased at higher altitudes, albeit less sharply. Scattering Ångström exponents suggest that the aerosol was dominated by sub-micron aerosol during the summer at all altitudes, but that larger particles were present, especially in the spring and winter above 1 km. The seasonal variability observed for aerosol loading is consistent with AERONET aerosol optical depth (AOD although the AOD values calculated from in situ adjusted to ambient conditions and matching wavelengths are up to a factor of two lower than AERONET AOD values depending on season. The column averaged single scattering albedo derived from in situ airplane measurements are similar in value to the AERONET single scattering albedo inversion product but the seasonal patterns are different – possibly a consequence of the strict constraints on obtaining single scattering albedo from AERONET data. A comparison of extinction Ångström exponent and asymmetry parameter from the airplane and AERONET platforms suggests similar seasonal variability with smaller particles observed in the summer and fall and larger particles observed in spring and

  14. Investigation for vertical, two-phase steam-water flow of three turbine models

    International Nuclear Information System (INIS)

    Silverman, S.; Goodrich, L.D.

    1977-01-01

    One of the basic quantities of interest during a loss-of-coolant experiment (LOCE) is the primary system mass flow rate. Presently, there are no transducers commercially available which continuously measure this parameter. Therefore, a transducer was designed at EG and G Idaho, Inc. which combines a drag-disc and turbine into a single unit. The basis for the design was that the drag-disc would measure momentum flux (rhoV 2 ), the turbine would measure velocity and the mass flow rate could then be calculated from the two quantities by assuming a flow profile. For two-phase flow, the outputs are approximately proportional to the desired parameter, but rather large errors can be expected under those assumptions. Preliminary evaluation of the experimental two- and single-phase calibration data has resulted in uncertainty estimates of +-8% of range for the turbine and +-20% of range for the drag-disc. In an effort to reduce the errors, further investigations were made to determine what the drag-disc and turbine really measure. In the present paper, three turbine models for vertical, two-phase, steam/water flow are investigated; the Aya Model, the Rouhani Model, and a volumetric flow model. Theoretical predictions are compared with experimental data for vertical, two-phase steam/water flow. For the purposes of the mass flow calculation, velocity profiles were assumed to be flat for the free-field condition. It is appreciated that this may not be true for all cases investigated, but for an initial inspection, flat profiles were assumed

  15. Wet gas flow modeling for a vertically mounted Venturi meter

    International Nuclear Information System (INIS)

    Xu, Lijun; Zhou, Wanlu; Li, Xiaomin

    2012-01-01

    Venturi meters are playing an increasingly important role in wet gas metering in natural gas and oil industries. Due to the effect of liquid in a wet gas, the differential pressure over the converging section of a Venturi meter is higher than that when a pure gas flows through with the same flow rate. This phenomenon is referred to as over-reading. Thus, a correction for the over-reading is required. Most of the existing wet gas models are more suitable for higher pressure (>2 MPa) than lower pressure ( 0.5) than lower quality (<0.5) in recent years. However, conditions of lower pressure and lower quality also widely exist in the gas and oil industries. By comparing the performances of eight existing wet gas models in low-pressure range of 0.26–0.86 MPa and low-quality range of 0.07–0.36 with a vertically mounted Venturi meter of diameter ratio 0.45, de Leeuw's model was proven to perform best. Derived from de Leeuw's model, a modified model with better performance for the low-pressure and low-quality ranges was obtained. Experimental data showed that the root mean square of the relative errors of the over-reading was 2.30%. (paper)

  16. Water Vapor on Titan: The Stratospheric Vertical Profile from Cassini/CIRS Infrared Spectra

    Science.gov (United States)

    Cottini, V.; Jennings, D. E.; Nixon, C. A.; Anderson, C. M.; Gorius, N.; Bjoraker, G. L.; Coustenis, A.; Achterberg, R. K.; Teanby, N. A.; deKok, R.; hide

    2012-01-01

    Water vapor in Titan's middle atmosphere has previously been detected only by disk-average observations from the Infrared Space Observatory (Coustenis et al., 1998). We report here the successful detection of stratospheric water vapor using the Cassini Composite Infrared Spectrometer (CIRS, Flasar et al., 2004) following an earlier null result (de Kok et al., 2007a). CIRS senses water emissions in the far-infrared spectral region near 50 microns, which we have modeled using two independent radiative transfer and inversion codes (NEMESIS, Irwin et al 2008 and ART, Coustenis et al., 2010). From the analysis of nadir spectra we have derived a mixing ratio of (0.14 plus or minus 0.05) ppb at 100 km, corresponding to a column abundance of approximately (3.7 plus or minus 1.3) x 10(exp 14) moles per square centimeter. Using limb observations, we obtained mixing ratios of (0.13 plus or minus 0.04) ppb at 125 km and (0.45 plus or minus 0.15) ppb at 225 km of altitude, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models. In the latitude range (80 deg. S - 30 deg. N) we see no evidence for latitudinal variations in these abundances within the error bars.

  17. Enhancement of a Turbulence Sub-Model for More Accurate Predictions of Vertical Stratifications in 3D Coastal and Estuarine Modeling

    Directory of Open Access Journals (Sweden)

    Wenrui Huang

    2010-03-01

    Full Text Available This paper presents an improvement of the Mellor and Yamada's 2nd order turbulence model in the Princeton Ocean Model (POM for better predictions of vertical stratifications of salinity in estuaries. The model was evaluated in the strongly stratified estuary, Apalachicola River, Florida, USA. The three-dimensional hydrodynamic model was applied to study the stratified flow and salinity intrusion in the estuary in response to tide, wind, and buoyancy forces. Model tests indicate that model predictions over estimate the stratification when using the default turbulent parameters. Analytic studies of density-induced and wind-induced flows indicate that accurate estimation of vertical eddy viscosity plays an important role in describing vertical profiles. Initial model revision experiments show that the traditional approach of modifying empirical constants in the turbulence model leads to numerical instability. In order to improve the performance of the turbulence model while maintaining numerical stability, a stratification factor was introduced to allow adjustment of the vertical turbulent eddy viscosity and diffusivity. Sensitivity studies indicate that the stratification factor, ranging from 1.0 to 1.2, does not cause numerical instability in Apalachicola River. Model simulations show that increasing the turbulent eddy viscosity by a stratification factor of 1.12 results in an optimal agreement between model predictions and observations in the case study presented in this study. Using the proposed stratification factor provides a useful way for coastal modelers to improve the turbulence model performance in predicting vertical turbulent mixing in stratified estuaries and coastal waters.

  18. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer

    2017-02-24

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in wind profiling aimed at reducing uncertainty and increasing data availability are introduced.

  19. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  20. Influence of Saharan dust outbreaks and atmospheric stability upon vertical profiles of size-segregated aerosols and water vapor

    Science.gov (United States)

    Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración

    2010-01-01

    Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.

  1. Outsourcing versus Vertical Integration: A Dynamic Model of Industry Equilibrium

    OpenAIRE

    Roman Fossati

    2012-01-01

    Why do supply relations vary across industries and across firms within industries? Recent evidence by Hortaçsu and Syverson (2009) shows that vertically integrated producers are more productive, their size distribution dominates (in first order stochastic dominance sense) the size distribution of not vertically integrated manufacturers and there is assortative matching of upstream and downstream plants by productivity and size. Besides vertical integration (VI) and procurement of inputs from ...

  2. Vertical profiles for SO2 and SO on Venus from different one-dimensional simulations

    Science.gov (United States)

    Mills, Franklin P.; Jessup, Kandis-Lea; Yung, Yuk

    2017-10-01

    Sulfur dioxide (SO2) plays many roles in Venus’ atmosphere. It is a precursor for the sulfuric acid that condenses to form the global cloud layers and is likely a precursor for the unidentified UV absorber, which, along with CO2 near the tops of the clouds, appears to be responsible for absorbing about half of the energy deposited in Venus’ atmosphere [1]. Most published simulations of Venus’ mesospheric chemistry have used one-dimensional numerical models intended to represent global-average or diurnal-average conditions [eg, 2, 3, 4]. Observations, however, have found significant variations of SO and SO2 with latitude and local time throughout the mesosphere [eg, 5, 6]. Some recent simulations have examined local time variations of SO and SO2 using analytical models [5], one-dimensional steady-state solar-zenith-angle-dependent numerical models [6], and three-dimensional general circulation models (GCMs) [7]. As an initial step towards a quantitative comparison among these different types of models, this poster compares simulated SO, SO2, and SO/SO2 from global-average, diurnal-average, and solar-zenith-angle (SZA) dependent steady-state models for the mesosphere.The Caltech/JPL photochemical model [8] was used with vertical transport via eddy diffusion set based on observations and observationally-defined lower boundary conditions for HCl, CO, and OCS. Solar fluxes are based on SORCE SOLSTICE and SORCE SIM measurements from 26 December 2010 [9, 10]. The results indicate global-average and diurnal-average models may have significant limitations when used to interpret latitude- and local-time-dependent observations of SO2 and SO.[1] Titov D et al (2007) in Exploring Venus as a Terrestrial Planet, 121-138. [2] Zhang X et al (2012) Icarus, 217, 714-739. [3] Krasnopolsky V A (2012) Icarus, 218, 230-246. [4] Parkinson C D et al (2015) Planet Space Sci, 113-114, 226-236. [5] Sandor B J et al (2010) Icarus, 208, 49-60. [6] Jessup K-L et al (2015) Icarus, 258, 309

  3. Building CX peanut-shaped disk galaxy profiles. The relative importance of the 3D families of periodic orbits bifurcating at the vertical 2:1 resonance

    Science.gov (United States)

    Patsis, P. A.; Harsoula, M.

    2018-05-01

    Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.

  4. Low order physical models of vertical axis wind turbines

    Science.gov (United States)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2016-11-01

    In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experiments were conducted on rotating turbine models, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). From examination of the patterns of mean flow, the wake turbulence spectra, and several quantitative metrics, it was concluded that the rotating cylinders represent a reasonably accurate analog for the rotating turbines. In contrast, from examination of the patterns of mean flow, it was found that the porous flat plates represent only a limited analog for rotating turbines (for the parameters examined). These findings have implications for both laboratory experiments and numerical simulations, which have previously used analogous low order models in order to reduce experimental/computational costs. NSF GRF and SGF to A.C; ONR N000141211047 and the Gordon and Betty Moore Foundation Grant GBMF2645 to J.D.; and the Bob and Norma Street Environmental Fluid Mechanics Laboratory at Stanford University.

  5. Study of Variable Turbulent Prandtl Number Model for Heat Transfer to Supercritical Fluids in Vertical Tubes

    Science.gov (United States)

    Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin

    2018-06-01

    In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.

  6. Modelling clustering of vertically aligned carbon nanotube arrays.

    Science.gov (United States)

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-06

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.

  7. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    International Nuclear Information System (INIS)

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; Chang, Ping

    2017-01-01

    Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the global average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.

  8. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    Science.gov (United States)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  9. Analytical Model of Steam Chamber Evolution from Vertical Well

    Science.gov (United States)

    Shevchenko, D. V.; Usmanov, S. A.; Shangaraeva, A. I.; Murtaizin, T. A.

    2018-05-01

    This paper is aimed to check the possibility of applying the Steam Assisted Gravity Drainage in vertical wells. This challenge seems to be vital because most of the natural bitumen reservoirs are found to occur above the oil fields being developed so that a well system is already available at the stage of field management. The existing vertical wells are hard to be used for horizontal sidetracking in most of cases as the bitumen reservoir occurs at a shallow depth. The matter is to use the existing wells as vertical ones. At the same time, it is possible to drill an additional sidetrack as a producer or an injector.

  10. Preliminary tests of a high speed vertical axis windmill model

    Energy Technology Data Exchange (ETDEWEB)

    South, P; Rangi, R S

    1971-01-01

    This report discusses a fixed-pitch vertical axis windmill that combines the inherent simplicity of this type of machine with a high aerodynamic efficiency and a high relative velocity. A three-bladed rotor was selected as the basic design, having constant chord symmetric airfoil blades configured in a catenary curve such that the rotor diameter is equal to the rotor height. In wind tunnel tests using a 30 inch scale model, it was found that once this rotor was given a very low rotational speed, it picked up speed and ran at a rotor tip velocity/wind speed ratio greater than 1. The number of blades was varied in the testing. A maximum power coefficient of 0.67 was achieved at 17 ft/s wind speed at a tip speed/wind speed ratio of 7.25 for a 2-bladed rotor. Increasing the number of blades above 3 did not result in higher power. The rotor could operate in gusts which double the mean wind velocity. Examination of Reynolds number effects, and taking into account the scale of the model, it was concluded that a full-scale windmill could run at lower velocity ratios than those predicted by the model tests, and that it could self-start under no-load conditions if the cut-in rpm are at least half the rpm for maximum power at the prevailing wind speed. Preliminary estimates show that a 15 ft diameter windmill of this design, designed to operate with a safety factor of 2.5 up to a maximum wind speed of 60 ft/s, would weigh ca 150 lb and could be marketed for ca $60.00, excluding the driven unit, if sufficient quantities were produced to make tooling costs negligible. Similarly, a 30 ft windmill would weigh ca 1000 lb and cost ca $400.00. 2 refs., 6 figs.

  11. The potential of apatite fission track dating of vertical profiles in Namibia and the implications for passive margin evolution

    International Nuclear Information System (INIS)

    Raab, M.J.; Brown, R.W.; Cockburn, H.A.P.

    1999-01-01

    Full text: The on- and offshore geology of the Namibian passive continental margin has experienced kilometer scale erosion since South Atlantic opening in Lower Cretaceous times. A vertical apatite fission track profile of four samples in the Namibian highland has been analysed to constrain the low temperature thermal history of that area since the Pan-African Damara Orogeny at about 550 Ma. As a temperature sensitive thermochronological technique apatite fission track analysis is a powerful tool in constraining the low temperature history of rocks over a range of 60-110 deg C. These temperatures, depending on the geothermal gradient, equal a burial depth of 3-5 km so the method can reconstruct the cooling history of rocks as they approached the surface in response to erosion and tectonic processes. The four apparent apatite cooling ages are taken over a vertical distance of 300 m from the Windhoek Graben 40 km north of Windhoek. Forward modelling of the age and track length distribution has shown that these samples experienced high palaeotemperatures from ca. 90 to 95 deg C in the Late Cretaceous. This information was used to calculate the palaeogeothermal gradient at that time (20 deg C/km) which gives an estimate of the sedimentary cover of about 4.5 km which has been removed over a few million years in the Late Cretaceous. It was previously thought that the Namibian highland has been exposed at the surface more or less since the Permo-Carboniferous. In fact the samples provide evidence for a post Carboniferous reburial history of several kilometers followed by a short period of accelerated denudation in the Late Cretaceous at about 70 Ma. This might imply a far larger extent of the Etendeka flood basalts (132 Ma) and/or an underestimated sedimentary Karoo (Permian to Jurassic) thickness. The wider importance of these four data is that they detect the geomorphic impact of a global change of plate motion along the passive margin of Namibia which is known from a

  12. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Bergman, B. [Uppsala Univ. (Sweden); Cosma, C.; Keskinen, J.; Enescu, N. [Vibrometric Oy, Helsinki (Finland)

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  13. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    International Nuclear Information System (INIS)

    Juhlin, C.; Bergman, B.; Cosma, C.; Keskinen, J.; Enescu, N.

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  14. Evaluating vertical concentration profile of carbon source released from slow-releasing carbon source tablets and in situ biological nitrate denitrification activity

    Science.gov (United States)

    Yeum, Y.; HAN, K.; Yoon, J.; Lee, J. H.; Song, K.; Kang, J. H.; Park, C. W.; Kwon, S.; Kim, Y.

    2017-12-01

    Slow-releasing carbon source tablets were manufactured during the design of a small-scale in situ biological denitrification system to reduce high-strength nitrate (> 30 mg N/L) from a point source such as livestock complexes. Two types of slow-releasing tablets, precipitating tablet (PT, apparent density of 2.0 g/mL) and floating tablet (FT), were prepared to achieve a vertically even distribution of carbon source (CS) in a well and an aquifer. Hydroxypropyl methylcellulose (HPMC) was used to control the release rate, and microcrystalline cellulose pH 101 (MCC 101) was added as a binder. The #8 sand was used as a precipitation agent for the PTs, and the floating agents for the FTs were calcium carbonate and citric acid. FTs floated within 30 min. and remained in water because of the buoyance from carbon dioxide, which formed during the acid-base reaction between citric acid and calcium carbonate. The longevities of PTs with 300 mg of HPMC and FTs with 400 mg of HPMC were 25.4 days and 37.3 days, respectively. We assessed vertical CS profile in a continuous flowing physical aquifer model (release test, RT) and its efficiency on biological nitrate denitrification (denitrification test, DT). During the RT, PTs, FTs and a tracer (as 1 mg rhodamine B/L) were initially injected into a well of physical aquifer model (PAM). Concentrations of CS and the tracer were monitored along the streamline in the PAM to evaluate vertical profile of CS. During the DT, the same experiment was performed as RT, except continuous injection of solution containing 30 mg N/L into the PAM to evaluate biological denitrification activity. As a result of RT, temporal profiles of CS were similar at 3 different depths of monitoring wells. These results suggest that simultaneous addition of PT and FT be suitable for achieving a vertically even distribution of the CS in the injection well and an aquifer. In DT, similar profile of CS was detected in the injection well, and nitrate was biologically

  15. LIMS/Nimbus-7 Level 2 Vertical Profiles of O3, NO2, H2O, HNO3, Geopotential Height, and Temperature V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Limb Infrared Monitor of the Stratosphere (LIMS) version 6 Level-2 data product consists of daily, geolocated, vertical profiles of temperature, geopotential...

  16. Numerical modelling of isothermal gas-liquid two-phase bubbly flow in vertical pipes

    International Nuclear Information System (INIS)

    Yamoah, S.

    2014-07-01

    In order to qualify CFD codes for accurate numerical predictions of transient evolution of flow regimes in a vertical gas-liquid two-phase flow, suitable closure models are needed. The current study focuses on detailed numerical investigation of the interfacial driving force models and assessment of two population balance model approaches viz. the MUltiple-Size-Group (MUSIG) and one-group Interfacial Area Transport Equation (lATE) using the two-fluid modelling approach. Numerical predictions of five primitive variables: gas volume fraction, interfacial area concentration, Sauter mean bubble diameter, gas velocity and liquid velocity; have been validated against experimental data of Monros et al., (2013). Three specific objectives have been completed in this study. Firstly, under the assumption of mono-disperse bubbles, a consistent set of interfacial force models have been investigated. The effect of drag, lift, wall lubrication and turbulent dispersion forces has been assessed. New parameters have been introduced in the wall lubrication force models of Antal et al., (1991) and Frank et al., (2004, 2008) as well as implementing additional drag coefficient models using CFX Expression Language (CEl). The Tomiyama, (1998) lift coefficient model has been modified in this study. In general, the predictions from the sets of interfacial force models yielded satisfactory agreement with the experimental data. A set of Grace drag coefficient model, Tomiyama lift coefficient model, Antal wall force model, and Favre averaged turbulent dispersion force were found to provide the best agreement with the experimental data. Secondly, a model validation study to assess the performance of existing coalescence and breakup models of the MUSIG model in simulating bubbly flow in vertical configuration has been conducted. The breakup model of Luo and Svendsen, (1996) and coalescence model of Prince and Blanch, (1990) have been implemented. Detailed analysis has been performed for the wall

  17. Crack-induced anisotropy and its effect on vertical seismic profiling

    NARCIS (Netherlands)

    Douma, J.

    1988-01-01

    Media containing aligned rotationally symmetrical inclusions show transverse isotropy with respect to elastic wave propagation. The characteristics of this type of anisotropy have been investigated in the first part of this thesis (chapters 2, 3, and 4) while its implications on Vertical Seismic

  18. Implications of sensor configuration and topography on vertical plant profiles derived from terrestrial LiDAR

    NARCIS (Netherlands)

    Calders, K.; Armston, J.; Newnham, G.; Herold, M.; Goodwin, N.

    2014-01-01

    The vertical distribution of plant constituents is a key parameter to describe vegetation structure and influences several processes, such as radiation interception, growth and habitat. Terrestrial laser scanning (TLS), also referred to as terrestrial LiDAR, has the potential to measure the canopy

  19. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  20. Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain

    Science.gov (United States)

    Ran, Liang; Deng, Zhaoze; Xu, Xiaobin; Yan, Peng; Lin, Weili; Wang, Ying; Tian, Ping; Wang, Pucai; Pan, Weilin; Lu, Daren

    2016-08-01

    Black carbon (BC) is a dominant absorber in the visible spectrum and a potent factor in climatic effects. Vertical profiles of BC were measured using a micro-aethalometer attached to a tethered balloon during the Vertical Observations of trace Gases and Aerosols (VOGA) field campaign, in summer 2014 at a semirural site in the North China Plain (NCP). The diurnal cycle of BC vertical distributions following the evolution of the mixing layer (ML) was investigated for the first time in the NCP region. Statistical parameters including identified mixing height (Hm) and average BC mass concentrations within the ML (Cm) and in the free troposphere (Cf) were obtained for a selected dataset of 67 vertical profiles. Hm was usually lower than 0.2 km in the early morning and rapidly rose thereafter due to strengthened turbulence. The maximum height of the ML was reached in the late afternoon. The top of a full developed ML exceeded 1 km on sunny days in summer, while it stayed much lower on cloudy days. The sunset triggered the collapse of the ML, and a stable nocturnal boundary layer (NBL) gradually formed. Accordingly, the highest level Cm was found in the early morning and the lowest was found in the afternoon. In the daytime, BC was almost uniformly distributed within the ML and significantly decreased above the ML. During the field campaign, Cm averaged about 5.16 ± 2.49 µg m-3, with a range of 1.12 to 14.49 µg m-3, comparable with observational results in many polluted urban areas such as Milan in Italy and Shanghai in China. As evening approached, BC gradually built up near the surface and exponentially declined with height. In contrast to the large variability found both in Hm and Cm, Cf stayed relatively unaffected through the day. Cf was less than 10 % of the ground level under clean conditions, while it amounted to half of the ground level in some polluted cases. In situ measurements of BC vertical profiles would hopefully have an important implication for

  1. Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain

    Directory of Open Access Journals (Sweden)

    L. Ran

    2016-08-01

    Full Text Available Black carbon (BC is a dominant absorber in the visible spectrum and a potent factor in climatic effects. Vertical profiles of BC were measured using a micro-aethalometer attached to a tethered balloon during the Vertical Observations of trace Gases and Aerosols (VOGA field campaign, in summer 2014 at a semirural site in the North China Plain (NCP. The diurnal cycle of BC vertical distributions following the evolution of the mixing layer (ML was investigated for the first time in the NCP region. Statistical parameters including identified mixing height (Hm and average BC mass concentrations within the ML (Cm and in the free troposphere (Cf were obtained for a selected dataset of 67 vertical profiles. Hm was usually lower than 0.2 km in the early morning and rapidly rose thereafter due to strengthened turbulence. The maximum height of the ML was reached in the late afternoon. The top of a full developed ML exceeded 1 km on sunny days in summer, while it stayed much lower on cloudy  days. The sunset triggered the collapse of the ML, and a stable nocturnal boundary layer (NBL gradually formed. Accordingly, the highest level Cm was found in the early morning and the lowest was found in the afternoon. In the daytime, BC was almost uniformly distributed within the ML and significantly decreased above the ML. During the field campaign, Cm averaged about 5.16 ± 2.49 µg m−3, with a range of 1.12 to 14.49 µg m−3, comparable with observational results in many polluted urban areas such as Milan in Italy and Shanghai in China. As evening approached, BC gradually built up near the surface and exponentially declined with height. In contrast to the large variability found both in Hm and Cm, Cf stayed relatively unaffected through the day. Cf was less than 10 % of the ground level under clean conditions, while it amounted to half of the ground level in some polluted cases. In situ measurements of BC vertical profiles would hopefully

  2. CFD modelling and validation of upward bubbly flow in an adiabatic vertical pipe using the quadrature method of moments

    International Nuclear Information System (INIS)

    Peña-Monferrer, C.; Passalacqua, A.; Chiva, S.; Muñoz-Cobo, J.L.

    2016-01-01

    Highlights: • A population balance equation solved with QMOM approximation is implemented in OpenFOAM. • Available models for interfacial forces and bubble induced turbulence are analyzed. • A vertical pipe flow is simulated for different bubbly flow conditions. • Two-phase flow characteristics in vertical pipes are properly predicted. - Abstract: An Eulerian–Eulerian approach was investigated to model adiabatic bubbly flow with CFD techniques. In the framework of the OpenFOAM"® software, a two-fluid model solver was modified to include a population balance equation, solved with the quadrature method of moments approximation to predict upward bubbly flow in vertical pipes considering the polydisperse nature of two-phase flow. Some progress have been made recently solving population balance equations in OpenFOAM"® and this research aims to extend its application to the case of vertical pipes under different conditions of liquid and gas velocities. In order to test the solver for nuclear applications, interfacial forces and bubble induced turbulence models were included to provide to this solver the capability to correctly predict the behavior of the continuous and disperse phases. Two-phase flow experiments with different superficial velocities of gas and liquid are used to validate the model and its implementation. Radial profiles of void fraction, gas and liquid velocities, Sauter mean diameter and turbulence intensity are compared to the computational results. These results are in satisfactory agreement with the experiments, showing the capability of the solver to predict two-phase flow characteristics.

  3. An Integrated Approach to Study Mud Banks of Alleppey Kerala using the Autonomous Vertical Profiler (AVP)

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.A.M.Q.; Afzulpurkar, S.; Navelkar, G.S.; Madhan, R; Maurya, P.; Desa, E.S.; Prabhudesai, S.P.; Dabholkar, N.A.; Lamani, V.; Manoharan, V.; Naik, N.; Thottam, T.J.; DineshKumar, P.K.; deAraujo, B.A.

    , M2 and M3. These profiles are presented in this paper. This effort was complemented by deploying a surface mooring with an identical AVP profiling on a taut line at a fixed location, M2 at about 6m water depth. AVP was programmed to perform 4 dives...

  4. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    Science.gov (United States)

    Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

  5. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    Science.gov (United States)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  6. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon.

    Science.gov (United States)

    Kuuluvainen, Heino; Poikkimäki, Mikko; Järvinen, Anssi; Kuula, Joel; Irjala, Matti; Dal Maso, Miikka; Keskinen, Jorma; Timonen, Hilkka; Niemi, Jarkko V; Rönkkö, Topi

    2018-05-23

    The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 μm 2 /cm 3 measured close to the ground level to 36-40 μm 2 /cm 3 measured close to the rooftop level of the street canyon, and further to 16-26 μm 2 /cm 3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic.

    Science.gov (United States)

    Hemsley, Victoria S; Smyth, Timothy J; Martin, Adrian P; Frajka-Williams, Eleanor; Thompson, Andrew F; Damerell, Gillian; Painter, Stuart C

    2015-10-06

    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope ((13)C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.

  8. The vertical structure of the Saharan boundary layer: Observations and modelling

    Science.gov (United States)

    Garcia-Carreras, L.; Parker, D. J.; Marsham, J. H.; Rosenberg, P.; Marenco, F.; Mcquaid, J.

    2012-04-01

    The vertical structure of the Saharan atmospheric boundary layer (SABL) is investigated with the use of aircraft data from the Fennec observational campaign, and high-resolution large-eddy model (LEM) simulations. The SABL is one of the deepest on Earth, and crucial in controlling the vertical redistribution and long-range transport of dust in the Sahara. The SABL is typically made up of an actively growing convective region driven by high sensible heating at the surface, with a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ~500hPa. These two layers are usually separated by a weak (≤1K) temperature inversion, making the vertical structure very sensitive to the surface fluxes. Large-eddy model (LEM) simulations initialized with radiosonde data from Bordj Bardji Mokhtar (BBM), southern Algeria, are used to improve our understanding of the turbulence structure of the stratification of the SABL, and any mixing or exchanges between the different layers. The model can reproduce the typical SABL structure from observations, and a tracer is used to illustrate the growth of the convective boundary layer into the residual layer above. The heat fluxes show a deep entrainment zone between the convective region and the SRL, potentially enhanced by the combination of a weak lid and a neutral layer above. The horizontal variability in the depth of the convective layer was also significant even with homogeneous surface fluxes. Aircraft observations from a number of flights are used to validate the model results, and to highlight the variability present in a more realistic setting, where conditions are rarely homogeneous in space. Stacked legs were performed to get an estimate of the mean flux profile of the boundary layer, as well as the variations in the vertical structure of the SABL with heterogeneous atmospheric and surface conditions. Regular radiosondes from BBM put

  9. Analysis of cesium-137 vertical distribution in the profile of plowed chernozems at different schemes of their assaying

    International Nuclear Information System (INIS)

    Paramonova, T.A.; Komissarova, O.L.; Belyaev, V.R.; Ivanov, M.M.

    2016-01-01

    In 2011-2015 the assessment of profile cesium-137 distribution in agrocenosis of chernozem zone on the territory of the Plavsk radioactive spot in Tula region formed after the Chernobyl accident has been carried out. It is shown that up until now non-uniformity of cesium-137 vertical distribution over the plowed chernozems profile may be occurred, it should be taken into account at radioecological survey of post-Chernobyl landscapes. For correct evaluation of radioecological state of plowed soils their systematic monitoring on the base of preliminary analysis of cesium-137 distribution and also with the account of agrotechnical peculiarities of various crops cultivation is recommended. On the Plavsk radioactive spot territory the most adequate assessments of cesium-137 stores in plowed chernozems one can obtain on the base of assaying the upper 30-cm soil depth, including not only current topsoil, but also old-arable horizon formed by deep rehabilitation plowing [ru

  10. On the SU(2 vertical stroke 1) WZNW model and its statistical mechanics applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleur, H [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique; [University of Southern California, Los Angeles, CA (United States). Dept. of Physics; Schomerus, V [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-11-15

    Motivated by a careful analysis of the Laplacian on the supergroup SU(2 vertical stroke 1) we formulate a proposal for the state space of the SU(2 vertical stroke 1) WZNW model. We then use properties of sl(2 vertical stroke 1) characters to compute the partition function of the theory. In the special case of level k=1 the latter is found to agree with the properly regularized partition function for the continuum limit of the integrable sl(2 vertical stroke 1)3- anti 3 super-spin chain. Some general conclusions applicable to other WZNW models (in particular the case k=-1/2) are also drawn. (orig.)

  11. Oxygen profile and clogging in vertical flow sand filters for on-site wastewater treatment.

    Science.gov (United States)

    Petitjean, A; Forquet, N; Boutin, C

    2016-04-01

    13 million people (about 20% of the population) use on-site wastewater treatment in France. Buried vertical sand filters are often built, especially when the soil permeability is not sufficient for septic tank effluent infiltration in undisturbed soil. Clogging is one of the main problems deteriorating the operation of vertical flow filters for wastewater treatment. The extent of clogging is not easily assessed, especially in buried vertical flow sand filters. We suggest examining two possible ways of detecting early clogging: (1) NH4-N/NO3-N outlet concentration ratio, and (2) oxygen measurement within the porous media. Two pilot-scale filters were equipped with probes for oxygen concentration measurements and samples were taken at different depths for pollutant characterization. Influent and effluent grab-samples were taken three times a week. The systems were operated using batch-feeding of septic tank effluent. Qualitative description of oxygen transfer processes under unclogged and clogged conditions is presented. NH4-N outlet concentration appears to be useless for early clogging detection. However, NO3-N outlet concentration and oxygen content allows us to diagnose the early clogging of the system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Transmission of vertical stress in a real soil profile. Part III

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2011-01-01

    The transmission of stress in soils is extremely sensitive to changes in water content. According to the elasticity theory, for a given load applied to a given soil, an increase in soil water content yields a higher concentration of stresses under the centre of the load and a deeper propagation...... of stresses. We quantified the effect of soil water content of topsoil/subsoil layers (wet/wet, wet/dry, and dry/dry) on stress transmission. 3D measurements of vertical stresses under a towed wheel (800/50R34) were performed in situ in a Stagnic Luvisol. The tyre was loaded with 60 kN, and we used...... were measured in separate tests. Increase of water content in the topsoil by 114% increased the contact area by 149%, decreased the vertical stresses at the tyre–soil interface by 50%, and decreased the maximum vertical stress at 0.3 and 0.6 m depth by 46 and 63%, respectively. Stress attenuation...

  13. Experimental investigations and modelling on the transition from bubble to slug flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.M.

    2003-01-01

    To qualify CFD codes for two-phase flows, they have to be equipped with constitutive laws describing the interaction between the gaseous and the liquid phases. In the case of bubble flow this particularly concerns the forces acting on the bubbles and bubble coalescence and break-up. To obtain detailed experimental data, an electrode wire-mesh sensor was used, which enables the measurement of the phase distribution with a very high resolution in space and in time. Air-water flow at ambient conditions in a vertical pipe (51.2 mm inner diameter) is investigated to have well defined boundary conditions. Local bubble size distributions are calculated from the data. The measurements were done in different distances from the gas injection device. As a result the development of bubble size distributions as well as the development of the radial gas fraction profiles can be studied. It was found, that the bubble size distribution as well as local effects determine the transition from bubble flow to slug flow. The data are used for the development of a model, which predicts the development of the bubble size distribution and the transition from bubble flow to slug flow in case of stationary flow in a vertical pipe. (orig.)

  14. Dynamic vertical profiles of peat porewater chemistry in a northern peatland

    Science.gov (United States)

    Natalie A. Griffiths; Stephen D. Sebestyen

    2016-01-01

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large...

  15. Vertical distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings

    Science.gov (United States)

    Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.

    2005-03-01

    Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in observations of dust vertical profiles. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar observations to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar vertical profiles collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed vertical profiles, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust vertical distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume profiles. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect

  16. Modelling vertical uniform contact stress of heavy vehicle tyres

    CSIR Research Space (South Africa)

    Steenkamp, Anton J

    2016-07-01

    Full Text Available over the selected operating range of 25 kN to 45 kN which is the typical load range for heavy vehicle tyres due to legal axle load limits. The polynomial formulas require only the tyre inflation pressure and vertical tyre load as inputs, in order...

  17. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    Science.gov (United States)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  18. A COMPARITIVE STUDY USING GEOMETRIC AND VERTICAL PROFILE FEATURES DERIVED FROM AIRBORNE LIDAR FOR CLASSIFYING TREE GENERA

    Directory of Open Access Journals (Sweden)

    C. Ko

    2012-07-01

    Full Text Available We present a comparative study between two different approaches for tree genera classification using descriptors derived from tree geometry and those derived from the vertical profile analysis of LiDAR point data. The different methods provide two perspectives for processing LiDAR point clouds for tree genera identification. The geometric perspective analyzes individual tree crowns in relation to valuable information related to characteristics of clusters and line segments derived within crowns and overall tree shapes to highlight the spatial distribution of LiDAR points within the crown. Conversely, analyzing vertical profiles retrieves information about the point distributions with respect to height percentiles; this perspective emphasizes of the importance that point distributions at specific heights express, accommodating for the decreased point density with respect to depth of canopy penetration by LiDAR pulses. The targeted species include white birch, maple, oak, poplar, white pine and jack pine at a study site northeast of Sault Ste. Marie, Ontario, Canada.

  19. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds

    Science.gov (United States)

    Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.

    2018-01-01

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques. PMID:29637042

  20. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds.

    Science.gov (United States)

    Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A

    2016-04-27

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.

  1. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    Science.gov (United States)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy

  2. A local-circulation model for Darrieus vertical-axis wind turbines

    Science.gov (United States)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  3. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations

    KAUST Repository

    Ott, Lesley E.

    2010-02-18

    A three-dimensional (3-D) cloud-scale chemical transport model that includes a parameterized source of lightning NOx on the basis of observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (PIC) and cloud-to-ground (PCG) flash is estimated by assuming various values of PIC and PCG for each storm and determining which production scenario yields NOx mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean PCG value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, PIC may be nearly equal to PCG, which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NOx after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NOx remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a “C-shaped” profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NOx mass may place too much mass near the surface and too little in the middle troposphere.

  4. A study of the horizontal and vertical profile of submicrometer particles in relation to a busy road

    Science.gov (United States)

    Morawska, Lidia; Thomas, Stephen; Gilbert, Dale; Greenaway, Chris; Rijnders, Esther

    Epidemiological studies are consistently reporting an association between fine particulate pollution and ill-health. Motor vehicle emissions are considered to be the main source of fine particles in ambient urban air of cities which are not directly influenced by industrial emissions. The aim of this work was to assess the influence of a major arterial road on concentration levels of airborne fine particles in its vicinity. Measurements of over 500 particle size distributions in the particle size range 16-626 nm, were made using two scanning mobility particle sizers (SMPS). A subsequent comparison of the recorded values from differing locations is discussed, with reference made to topographic and climatic influences. Both horizontal and vertical profile measurements of fine particle number size distributions are described; the combination of the two yielding information as to the relative exposures of occupants of buildings in the vicinity of a major arterial route. With the exception of measurements in close proximity to the freeway (about 15 m), the horizontal profile measurements did not provide any evidence of a statistically significant difference in fine particle number concentration with respect to distance at ground level up to a distance of 200 m within the study area. The vertical profile measurements also revealed no significant correlation between particle concentration and height. However, for buildings in the immediate proximity to the arterial road (about 15 m) concentrations around the building envelope are very high, comparable to those in the immediate vicinity of the road, indicating undiluted concentrations drawn directly from the freeway. This finding has a significant implication for management of indoor air quality in the buildings located in the immediate vicinity of major roads.

  5. Vertical integration models to prepare health systems for capitation.

    Science.gov (United States)

    Cave, D G

    1995-01-01

    Health systems will profit most under capitation if their vertical integration strategy provides operational stability, a strong primary care physician base, efficient delivery of medical services, and geographic access to physicians. Staff- and equity-based systems best meet these characteristics for success because they have one governance structure and a defined mission statement. Moreover, physician bonds are strong because these systems maximize physicians' income potential and control the revenue stream.

  6. Vertical Integration of Biochemistry and Clinical Medicine Using a Near-Peer Learning Model

    Science.gov (United States)

    Gallan, Alexander J.; Offner, Gwynneth D.; Symes, Karen

    2016-01-01

    Vertical integration has been extensively implemented across medical school curricula but has not been widely attempted in the field of biochemistry. We describe a novel curricular innovation in which a near-peer learning model was used to implement vertical integration in our medical school biochemistry course. Senior medical students developed…

  7. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    Science.gov (United States)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  8. Electric Circuit Model for the Aerodynamic Performance Analysis of a Three-Blade Darrieus-Type Vertical Axis Wind Turbine: The Tchakoua Model

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2016-10-01

    Full Text Available The complex and unsteady aerodynamics of vertical axis wind turbines (VAWTs pose significant challenges for simulation tools. Recently, significant research efforts have focused on the development of new methods for analysing and optimising the aerodynamic performance of VAWTs. This paper presents an electric circuit model for Darrieus-type vertical axis wind turbine (DT-VAWT rotors. The novel Tchakoua model is based on the mechanical description given by the Paraschivoiu double-multiple streamtube model using a mechanical‑electrical analogy. Model simulations were conducted using MATLAB for a three-bladed rotor architecture, characterized by a NACA0012 profile, an average Reynolds number of 40,000 for the blade and a tip speed ratio of 5. The results obtained show strong agreement with findings from both aerodynamic and computational fluid dynamics (CFD models in the literature.

  9. Leaf water 18 O and 2 H enrichment along vertical canopy profiles in a broadleaved and a conifer forest tree.

    Science.gov (United States)

    Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar

    2017-07-01

    Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.

  10. Vertical and horizontal differences of soil parameters and radiocaesium contents in soil profiles (dystric cambisol) under spruce

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M.

    1997-05-01

    In a spruce forest stand 9 pooled soil profiles (ten auger cores each, 4 layers) were collected within a homogeneous area of 200 ha. This sampling technique provides sufficient accuracy for the determination of most physico-chemical soil characteristics as well as for the assessment of vertical gradients and horizontal variability within the investigation area. The results reveal the soils' tendency for podsolization and acidification processes. In spite of the small sample sizes cation wash-out (Ca, Mg) due to differences in the orographic situation was determined with high significance. 86 % of 137 Cs-contamination derived from the Chernobyl-fallout in 1986 are still found in the top-soil (10 cm). Nutrient-cycling and the high binding capacity of soil organic matter retard vertical migration of 137 Cs in forest soils effectively. From the present data sets for different soil parameters the minimum number of soil samples ensuring maximum admissible errors of 10 and 20 % were calculated. (author)

  11. Tethered balloon-based particle number concentration, and size distribution vertical profiles within the lower troposphere of Shanghai

    Science.gov (United States)

    Zhang, Kun; Wang, Dongfang; Bian, Qinggen; Duan, Yusen; Zhao, Mengfei; Fei, Dongnian; Xiu, Guangli; Fu, Qingyan

    2017-04-01

    A tethered balloon-based measurement campaign of particle number concentration (PNC) and particle number size distribution (PNSD) in the size range of 15.7-661.2 nm was conducted within the lower troposphere of 1000 m in Shanghai, a Chinese megacity, during December of 2015. The meteorological conditions, PNC, and PNSD were synchronously measured at the ground-based station as well as by the tethered balloon. On ground level, the 88.2 nm particles were found to have the highest PNC. The Pearson correlation analysis based on the ground level data showed NO2 had a strong correlation with PNC. The synchronous measurement of PNC and PNSD at the ground station and on the tethered balloon showed that the 15.7-200 nm particles had higher PNC on ground level, but the PNC of 200-661.2 nm particles was higher at 400 m. One haze event (Dec 22nd-Dec 23rd) was selected for detailed discussion on the variation of vertical profiles of PNSD and PNC. The vertical distribution of characteristics of PNC and PNSD were observed and compared. Results indicated that the highest MaxDm (the diameter with the highest PNC) during those three launches all appeared at a high altitude, usually above 300 m. Compared to the clean days, the relatively bigger MaxDm at each height in the haze days also indicated regional transport of pollutants might contribute to more to that haze event.

  12. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011–2012 of field campaigns

    Directory of Open Access Journals (Sweden)

    L. Ferrero

    2016-10-01

    Full Text Available We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard. The campaign lasted 2 years (2011–2012 and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l. during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.

  13. Transmission of vertical stress in a real soil profile. Part II

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2011-01-01

    used rated tyre inflation pressures for traffic in the field (≤10 km h−1 driving speed). Seven load cells were inserted horizontally from a pit with minimal disturbance of soil at each of three depths (0.3, 0.6 and 0.9 m), covering the width of the wheeled area. The position of the wheel relative...... to the transducers was recorded using a laser sensor. Finally, the vertical stresses near the tyre–soil interface were measured in separate tests by 17 stress transducers across the width of the tyres. The level of maximum stress at 0.3 m depth was related to the surface-related stress expressions like the mean...... ground pressure and the tyre inflation pressure. The maximum stresses measured at 0.9 m depth were correlated with the wheel load (57 and 60 kPa at 60 kN load; 27 and 25 kPa at 30 kN load) and did not reflect the surface-related stress expressions. Our results show that the use of wide, low pressure...

  14. RESEARCH AND MODEL DEVELOPMENT OF DRILLING AND BLASTING TECHNOLOGY PENETRATIONS OF VERTICAL SHAFTS

    OpenAIRE

    O. I. Rubleva

    2007-01-01

    The model of destruction of rocks by explosion in vertical shafts is presented. On its basis the most important parameters of technical-and-economical indices of the drilling-and-blasting technology are calculated.

  15. Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters

    Science.gov (United States)

    Heinbockel, John H.; Walker, Gilbert H.

    1988-01-01

    Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.

  16. RESEARCH AND MODEL DEVELOPMENT OF DRILLING AND BLASTING TECHNOLOGY PENETRATIONS OF VERTICAL SHAFTS

    Directory of Open Access Journals (Sweden)

    O. I. Rubleva

    2007-10-01

    Full Text Available The model of destruction of rocks by explosion in vertical shafts is presented. On its basis the most important parameters of technical-and-economical indices of the drilling-and-blasting technology are calculated.

  17. Structure constants of the OSP(1 vertical stroke 2) WZNW model

    Energy Technology Data Exchange (ETDEWEB)

    Hikida, Y.; Schomerus, V.

    2007-11-15

    We propose exact formulas for the 2- and 3-point functions of the WZNW model on the non-compact supergroup OSP(1 vertical stroke 2). Using the path integral approach that was recently developed in arXiv:0706.1030 we show how local correlation functions in the OSP(p vertical stroke 2) WZNW models can be obtained from those of N=p supersymmetric Liouville field theory for p=1,2. We then employ known results on correlators in N=1 Liouville theory to determine the structure constants of the OSP(1 vertical stroke 2) theory. (orig.)

  18. Vertical profile of branch CO2 efflux in a Norway spruce tree: a case study

    Science.gov (United States)

    Acosta, M.; Pavelka, M.

    2012-04-01

    Despite woody-tissue CO2 effluxes having been recognized as an important component of forest carbon budget due to the fraction of assimilates used and the dramatic increase in woody with stand development, there is limited research to determine the CO2 efflux vertical variability of woody-tissue components. For a better understanding and quantification of branch woody-tissue CO2 efflux in forest ecosystems, it is necessary to identify the environmental factors influencing it and the role of the branch distribution within the canopy. The proper assessment of this forest component will improve the knowledge of the ratio between ecosystem respiration and gross primary production at forest ecosystem. In order to achieve this goal, branch CO2 efflux of Norway spruce tree was measured in ten branches at five different whorls during the growing season 2004 (from June till October) in campaigns of 3-4 times per month at the Beskydy Mts., the Czech Republic, using a portable infrared gas analyzer operating as a closed system. Branch woody tissue temperature was measured continuously in ten minutes intervals for each sample position during the whole experiment period. On the basis of relation between CO2 efflux rate and woody tissue temperature a value of Q10 and normalized CO2 efflux rate (E10 - CO2 efflux rate at 10° C) were calculated for each sampled position. Estimated Q10 values ranged from 2.12 to 2.89 and E10 ranged from 0.41 to 1.19 ?molCO2m-2 s-1. Differences in branch CO2 efflux were found between orientations; East side branches presented higher efflux rate than west side branches. The highest branch CO2 efflux rate values were measured in August and the lowest in October, which were connected with woody tissue temperature and ontogenetic processes during these periods. Branch CO2 efflux was significantly and positively correlated with branch position within canopy and woody tissue temperature. Branches from the upper whorls showed higher respiration activity

  19. Modeling of self-potential anomalies near vertical dikes.

    Science.gov (United States)

    Fitterman, D.V.

    1983-01-01

    The self-potential (SP) Green's function for an outcropping vertical dike is derived from solutions for the dc resistivity problem for the same geometry. The Green's functions are numerically integrated over rectangular source regions on the contacts between the dike and the surrounding material to obtain the SP anomaly. The analysis is valid for thermoelectrical source mechanisms. Two types of anomalies can be produced by this geometry. When the two source planes are polarized in opposite directions, a monopolar anomaly is produced. This corresponds to the thermoelectrical properties of the dike being in contrast with the surrounding material. When the thermoelectric coefficients change monotonically across the dike, a dipolar anomaly is produced. In either case positive and negative anomalies are possible, and the greatest variation in potential will occur in the most resistive regions. -Author

  20. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Daley, T.M.; Majer, E.L.; Karageorgi, E.

    1994-08-01

    This report presents results from surface and borehole seismic profiling performed by the Lawrence Berkeley Laboratory (LBL) on Yucca Mountain. This work was performed as part of the site characterization effort for the potential high-level nuclear waste repository. Their objective was to provide seismic imaging from the near surface (200 to 300 ft. depth) to the repository horizon and below, if possible. Among the issues addressed by this seismic imaging work are location and depth of fracturing and faulting, geologic identification of reflecting horizons, and spatial continuity of reflecting horizons. The authors believe their results are generally positive, with tome specific successes. This was the first attempt at this scale using modem seismic imaging techniques to determine geologic features on Yucca Mountain. The principle purpose of this report is to present the interpretation of the seismic reflection section in a geologic context. Three surface reflection profiles were acquired and processed as part of this study. Because of environmental concerns, all three lines were on preexisting roads. Line 1 crossed the mapped surface trace of the Ghost Dance fault and it was intended to study the dip and depth extent of the fault system. Line 2 was acquired along Drill Hole wash and was intended to help the ESF north ramp design activities. Line 3 was acquired along Yucca Crest and was designed to image geologic horizons which were thought to be less faulted along the ridge. Unfortunately, line 3 proved to have poor data quality, in part because of winds, poor field conditions and limited time. Their processing and interpretation efforts were focused on lines 1 and 2 and their associated VSP studies

  1. Computer model verification for seismic analysis of vertical pumps and motors

    International Nuclear Information System (INIS)

    McDonald, C.K.

    1993-01-01

    The general principles of modeling vertical pumps and motors are discussed and then two examples of verifying the models are presented in detail. The first examples is a vertical pump and motor assembly. The model and computer analysis are presented and the first four modes (frequencies) calculated are compared to the values of the same modes obtained from a shaker test. The model used for this example is a lumped mass connected by massless beams model. The shaker test was performed by National Technical Services, Los Angeles, CA. The second example is a larger vertical motor. The model used for this example is a finite element three dimensional shell model. The first frequency obtained from this model is compared to the first frequency obtained from shop tests for several different motors. The shop tests were performed by Reliance Electric, Stratford, Ontario and Siemens-Allis, Inc., Norwood, Ohio

  2. CFD modelling and validation of upward bubbly flow in an adiabatic vertical pipe using the quadrature method of moments

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Monferrer, C., E-mail: cmonfer@upv.es [Institute for Energy Engineering, Universitat Politècnica de València, 46022 València (Spain); Passalacqua, A., E-mail: albertop@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States); Chiva, S., E-mail: schiva@emc.uji.es [Department of Mechanical Engineering and Construction, Universitat Jaume I, 12080 Castelló de la Plana (Spain); Muñoz-Cobo, J.L., E-mail: jlcobos@iqn.upv.es [Institute for Energy Engineering, Universitat Politècnica de València, 46022 València (Spain)

    2016-05-15

    Highlights: • A population balance equation solved with QMOM approximation is implemented in OpenFOAM. • Available models for interfacial forces and bubble induced turbulence are analyzed. • A vertical pipe flow is simulated for different bubbly flow conditions. • Two-phase flow characteristics in vertical pipes are properly predicted. - Abstract: An Eulerian–Eulerian approach was investigated to model adiabatic bubbly flow with CFD techniques. In the framework of the OpenFOAM{sup ®} software, a two-fluid model solver was modified to include a population balance equation, solved with the quadrature method of moments approximation to predict upward bubbly flow in vertical pipes considering the polydisperse nature of two-phase flow. Some progress have been made recently solving population balance equations in OpenFOAM{sup ®} and this research aims to extend its application to the case of vertical pipes under different conditions of liquid and gas velocities. In order to test the solver for nuclear applications, interfacial forces and bubble induced turbulence models were included to provide to this solver the capability to correctly predict the behavior of the continuous and disperse phases. Two-phase flow experiments with different superficial velocities of gas and liquid are used to validate the model and its implementation. Radial profiles of void fraction, gas and liquid velocities, Sauter mean diameter and turbulence intensity are compared to the computational results. These results are in satisfactory agreement with the experiments, showing the capability of the solver to predict two-phase flow characteristics.

  3. Stable carbon and nitrogen isotopes in vertical peat profiles of natural and drained boreal peatlands

    Science.gov (United States)

    Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki

    2015-04-01

    Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.

  4. Improving the Automatic Inversion of Digital ISIS-2 Ionogram Reflection Traces into Topside Vertical Electron-Density Profiles

    Science.gov (United States)

    Benson, R. F.; Truhlik, V.; Huang, X.; Wang, Y.; Bilitza, D.

    2011-01-01

    The topside-sounders on the four satellites of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35-mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the TOPside Ionogram Scalar with True-height (TOPIST) algorithm has been produced that enables the automatic inversion of ISIS-2 ionogram reflection traces into topside vertical electron-density profiles Ne(h). More than million digital Alouette/ISIS topside ionograms have been produced and over 300,000 are from ISIS 2. Many of these ISIS-2 ionograms correspond to a passive mode of operation for the detection of natural radio emissions and thus do not contain ionospheric reflection traces. TOPIST, however, is not able to produce Ne(h) profiles from all of the ISIS-2 ionograms with reflection traces because some of them did not contain frequency information. This information was missing due to difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame-sync pulse and/or the frequency markers. Of the many digital topside ionograms that TOPIST was able to process, over 200 were found where direct comparisons could be made with Ne(h) profiles that were produced by manual scaling in the early days of the ISIS program. While many of these comparisons indicated excellent agreement (inversion process: (1) improve the quality of the digital ionogram database by remedying the missing frequency-information problem when possible, and (2) using the above-mentioned comparisons as teaching examples of how to improve the original TOPIST software.

  5. Vertical profiles of ozone, carbon monoxide, and dew-point temperature obtained during GTE/CITE 1, October-November 1983. [Chemical Instrumentation Test and Evaluation

    Science.gov (United States)

    Fishman, Jack; Gregory, Gerald L.; Sachse, Glen W.; Beck, Sherwin M.; Hill, Gerald F.

    1987-01-01

    A set of 14 pairs of vertical profiles of ozone and carbon monoxide, obtained with fast-response instrumentation, is presented. Most of these profiles, which were measured in the remote troposphere, also have supporting fast-response dew-point temperature profiles. The data suggest that the continental boundary layer is a source of tropospheric ozone, even in October and November, when photochemical activity should be rather small. In general, the small-scale vertical variability between CO and O3 is in phase. At low latitudes this relationship defines levels in the atmosphere where midlatitude air is being transported to lower latitudes, since lower dew-point temperatures accompany these higher CO and O3 concentrations. A set of profiles which is suggestive of interhemispheric transport is also presented. Independent meteorological analyses support these interpretations.

  6. A free wake vortex lattice model for vertical axis wind turbines: Modeling, verification and validation

    International Nuclear Information System (INIS)

    Meng, Fanzhong; Schwarze, Holger; Vorpahl, Fabian; Strobel, Michael

    2014-01-01

    Since the 1970s several research activities had been carried out on developing aerodynamic models for Vertical Axis Wind Turbines (VAWTs). In order to design large VAWTs of MW scale, more accurate aerodynamic calculation is required to predict their aero-elastic behaviours. In this paper, a 3D free wake vortex lattice model for VAWTs is developed, verified and validated. Comparisons to the experimental results show that the 3D free wake vortex lattice model developed is capable of making an accurate prediction of the general performance and the instantaneous aerodynamic forces on the blades. The comparison between momentum method and the vortex lattice model shows that free wake vortex models are needed for detailed loads calculation and for calculating highly loaded rotors

  7. Branes in the GL(1 vertical stroke 1) WZNW-Model

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, T.; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quella, T. [Amsterdam Univ. (Netherlands). KdV Inst. for Mathematics

    2007-08-15

    We initiate a systematic study of boundary conditions in conformal field theories with target space supersymmetry. The WZNW model on GL(1 vertical stroke 1) is used as a prototypical example for which we find the complete set of maximally symmetric branes. This includes a unique brane of maximal super-dimension 2 vertical stroke 2, a 2-parameter family of branes with super-dimension 0 vertical stroke 2 and an infinite set of fully localized branes possessing a single modulus. Members of the latter family can only exist along certain lines on the bosonic base, much like fractional branes at orbifold singularities. Our results establish that all essential algebraic features of Cardy-type boundary theories carry over to the non-rational logarithmic WZNW model on GL(1 vertical stroke 1). (orig.)

  8. Revisiting Vertical Models To Simulate the Line Shape of Electronic Spectra Adopting Cartesian and Internal Coordinates.

    Science.gov (United States)

    Cerezo, Javier; Santoro, Fabrizio

    2016-10-11

    Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q 1 -frame, where Q 1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q 1 -frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal

  9. Comparisons of Crosswind Velocity Profile Estimates Used in Fast-Time Wake Vortex Prediction Models

    Science.gov (United States)

    Pruis, Mathew J.; Delisi, Donald P.; Ahmad, Nashat N.

    2011-01-01

    Five methods for estimating crosswind profiles used in fast-time wake vortex prediction models are compared in this study. Previous investigations have shown that temporal and spatial variations in the crosswind vertical profile have a large impact on the transport and time evolution of the trailing vortex pair. The most important crosswind parameters are the magnitude of the crosswind and the gradient in the crosswind shear. It is known that pulsed and continuous wave lidar measurements can provide good estimates of the wind profile in the vicinity of airports. In this study comparisons are made between estimates of the crosswind profiles from a priori information on the trajectory of the vortex pair as well as crosswind profiles derived from different sensors and a regional numerical weather prediction model.

  10. Vertical profiles of fine and coarse aerosol particles over Cyprus: Comparison between in-situ drone measurements and remote sensing observations

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Pikridas, Michael; Kottas, Michael; Binietoglou, Ioannis; Kokkalis, Panagiotis; Tsekeri, Aleksandra; Amiridis, Vasilis; Sciare, Jean; Keleshis, Christos; Engelmann, Ronny; Ansmann, Albert; Russchenberg, Herman W. J.; Biskos, George

    2017-04-01

    Vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) measurements were compared to airborne dried optical particle counter (OPC MetOne; Model 212) measurements during the INUIT-BACCHUS-ACTRIS campaign. The campaign took place in April 2016 and its main focus was the study of aerosol dust particles. During the campaign the NOA Polly-XT Raman lidar located at Nicosia (35.08° N, 33.22° E) was providing round-the-clock vertical profiles of aerosol optical properties. In addition, an unmanned aerial vehicle (UAV) carrying an OPC flew on 7 days during the first morning hours. The flights were performed at Orounda (35.1018° N, 33.0944° E) reaching altitudes of 2.5 km a.s.l, which allows comparison with a good fraction of the recorded lidar data. The polarization lidar photometer networking method (POLIPHON) was used for the estimation of the fine (non-dust) and coarse (dust) mode aerosol mass concentration profiles. This method uses as input the particle backscatter coefficient and the particle depolarization profiles of the lidar at 532 nm wavelength and derives the aerosol mass concentration. The first step in this approach makes use of the lidar observations to separate the backscatter and extinction contributions of the weakly depolarizing non-dust aerosol components from the contributions of the strongly depolarizing dust particles, under the assumption of an externally mixed two-component aerosol. In the second step, sun photometer retrievals of the fine and the coarse modes aerosol optical thickness (AOT) and volume concentration are used to calculate the associated concentrations from the extinction coefficients retrieved from the lidar. The estimated aerosol volume concentrations were converted into mass concentration with an assumption for the bulk aerosol density, and compared with the OPC measurements. The first results show agreement within the experimental uncertainty. This project received funding from the

  11. Modeling study on axial wetting length of meniscus in vertical rectangular microgrooves

    International Nuclear Information System (INIS)

    Nie, Xuelei; Hu, Xuegong; Tang, Dawei

    2013-01-01

    In this work, the traditional model for predicting axial wetting length of meniscus in vertical microgrooves is introduced firstly. The traditional model may cause inaccurate results in predicting wetting length in vertical microgrooves because of the assumption of round meniscus in cross sections of microgrooves and the way of calculating curvature. In order to develop this model and make it more accurate, a revised micro-PIV system is built to test the meniscus shapes in cross sections of vertical and horizontal microgrooves, and the experimental results prove that the real shapes of meniscus are parabolic other than round. The fitting formulas of meniscus shapes are obtained with software Origin 7.5. Based on experimental results and fitting formulas, the traditional model is revised by changing the way to calculate curvature. In the modified model, the curvature for calculating axial wetting length of meniscus equals average curvature of meniscus in cross section of vertical microgrooves minus the average curvature of meniscus in cross section of horizontal microgrooves. It is proved that the modified model can predict the wetting length in vertical microgrooves better than the original model. The average difference between experiment and modified model is 2.5% while that between experiment and traditional model is 174.2%. The disadvantage of the modified model is that using the new model to predict wetting length needs to know the real shapes of meniscus in vertical and horizontal microgrooves. -- Highlights: ► An experimental system is designed to test the shapes of meniscus in microgrooves. ► The real shapes of meniscus in microgrooves are obtained for first time. ► The shapes of meniscus in microgrooves is compared and analyzed. ► The model for predicting wetting length of meniscus in microgrooves is developed

  12. A Vertical Channel Model of Molecular Communication based on Alcohol Molecules

    Directory of Open Access Journals (Sweden)

    Pengfei Lu

    2016-05-01

    Full Text Available The study of Molecular Communication(MC is more and more prevalence, and channel model of MC plays an important role in the MC System. Since different propagation environment and modulation techniques produce different channel model, most of the research about MC are in horizontal direction,but in nature the communications between nano machines are in short range and some of the information transportation are in the vertical direction, such as transpiration of plants, biological pump in ocean, and blood transportation from heart to brain. Therefore, this paper we propose a vertical channel model which nano-machines communicate with each other in the vertical direction based on pure diffusion. We rst propose a vertical molecular communication model, we mainly considered the gravity as the factor, though the channel model is also affected by other main factors, such as the ow of the medium, the distance between the transmitter and the receiver, the delay or sensitivity of the transmitter and the receiver. Secondly, we set up a test-bed for this vertical channel model, in order to verify the difference between the theory result and the experiment data. At last, we use the data we get from the experiment and the non-linear least squares method to get the parameters to make our channel model more accurate.

  13. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    Science.gov (United States)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using

  14. An analytical model for displacement velocity of liquid film on a hot vertical surface

    International Nuclear Information System (INIS)

    Yoshioka, Keisuke; Hasegawa, Shu

    1975-01-01

    The downward progress of the advancing front of a liquid film streaming down a heated vertical surface, as it would occur in emergency core cooling, is much slower than in the case of ordinary streaming down along a heated surface already wetted with the liquid. A two-dimensional heat conduction model is developed for evaluating this velocity of the liquid front, which takes account of the heat removal by ordinary flow boiling mechanism. In the analysis, the maximum heat flux and the calefaction temperature are taken up as parameters in addition to the initial dry heated wall temperature, the flow rate and the velocity of downward progress of the liquid front. The temperature profile is calculated for various combinations of these parameters. Two criteria are proposed for choosing the most suitable combination of the parameters. One is to reject solutions that represent an oscillating wall temperature distribution, and the second criterion requires that the length of the zone of violent boiling immediately following the liquid front should not be longer than about 1 mm, this value being determined from comparisons made between experiment and calculation. Application of the above two criteria resulted in reasonable values obtained for the calefaction temperature and the maximum heat flux, and the velocity of the liquid front derived therefrom showed good agreement with experiment. (auth.)

  15. Study on vertical seismic response model of BWR-type reactor building

    International Nuclear Information System (INIS)

    Konno, T.; Motohashi, S.; Izumi, M.; Iizuka, S.

    1993-01-01

    A study on advanced seismic design for LWR has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan. As a part of the study, it has been investigated to construct an accurate analytical model of reactor buildings for a seismic response analysis, which can reasonably represent dynamic characteristics of the building. In Japan, vibration models of reactor buildings for horizontal ground motion have been studied and examined through many simulation analyses for forced vibration tests and earthquake observations of actual buildings. And now it is possible to establish a reliable horizontal vibration model on the basis of multi-lumped mass and spring model. However, vertical vibration models have not been so much studied as horizontal models, due to less observed data for vertical motions. In this paper, the vertical seismic response models of a BWR-type reactor building including soil-structure interaction effect are numerically studied, by comparing the dynamic characteristics of (1) three dimensional finite element model, (2) multi-stick lumped mass model with a flexible base-mat, (3) multi-stick lumped mass model with a rigid base-mat and (4) single-stick lumped mass model. In particular, the BWR-type reactor building has the long span truss roof which is considered to be one of the critical members to vertical excitation. The modelings of the roof trusses are also studied

  16. Aerodynamic modeling of floating vertical axis wind turbines using the actuator cylinder flow method

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2016-01-01

    Recently the interest in developing vertical axis wind turbines (VAWTs) for offshore application has been increasing. Among the aerodynamic models of VAWTs, double multi-streamtube (DMST) and actuator cylinder (AC) models are two favorable methods for fully coupled modeling and dynamic analysis...

  17. A potential flow 2-D vortex panel model: Applications to vertical axis straight blade tidal turbine

    International Nuclear Information System (INIS)

    Wang, L.B.; Zhang, L.; Zeng, N.D.

    2007-01-01

    A potential flow 2-D vortex panel model (VPM2D) for unsteady hydrodynamics calculation of the vertical axis straight blade variable pitch turbine was given for tidal streams energy conversion. Numerical results of predicted instantaneous blade forces and wake flow of the rotor showed good agreement with the test data. The model was also compared with the previous classic free vortex model (V-DART) and vortex method combined with finite element analysis (FEVDTM). It showed that the present model was much better than the former, less complex than the latter and suitable for designing and optimization of the vertical axis straight blade turbine

  18. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    Science.gov (United States)

    Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.

    2018-05-01

    Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  19. An enhanced fire hazard assessment model and validation experiments for vertical cable trays

    International Nuclear Information System (INIS)

    Li, Lu; Huang, Xianjia; Bi, Kun; Liu, Xiaoshuang

    2016-01-01

    Highlights: • An enhanced model was developed for vertical cable fire hazard assessment in NPP. • The validated experiments on vertical cable tray fires were conducted. • The capability of the model for cable tray with different cable spacing were tested. - Abstract: The model, referred to as FLASH-CAT (Flame Spread over Horizontal Cable Trays), was developed to estimate the heat release rate for vertical cable tray fire. The focus of this work is to investigate the application of an enhanced model to the single vertical cable tray fires with different cable spacing. The experiments on vertical cable tray fires with three typical cable spacing were conducted. The histories of mass loss rate and flame length were recorded during the cable fire. From the experimental results, it is found that the space between cable lines intensifies the cable combustion and accelerates the flame spread. The predictions by the enhanced model show good agreements with the experimental data. At the same time, it is shown that the enhanced model is capable of predicting the different behaviors of cable fires with different cable spacing by adjusting the flame spread speed only.

  20. An enhanced fire hazard assessment model and validation experiments for vertical cable trays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Sate Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027 (China); Huang, Xianjia, E-mail: huangxianjia@gziit.ac.cn [Joint Laboratory of Fire Safety in Nuclear Power Plants, Institute of Industry Technology Guangzhou & Chinese Academy of Sciences, Guangzhou 511458 (China); Bi, Kun; Liu, Xiaoshuang [China Nuclear Power Design Co., Ltd., Shenzhen 518045 (China)

    2016-05-15

    Highlights: • An enhanced model was developed for vertical cable fire hazard assessment in NPP. • The validated experiments on vertical cable tray fires were conducted. • The capability of the model for cable tray with different cable spacing were tested. - Abstract: The model, referred to as FLASH-CAT (Flame Spread over Horizontal Cable Trays), was developed to estimate the heat release rate for vertical cable tray fire. The focus of this work is to investigate the application of an enhanced model to the single vertical cable tray fires with different cable spacing. The experiments on vertical cable tray fires with three typical cable spacing were conducted. The histories of mass loss rate and flame length were recorded during the cable fire. From the experimental results, it is found that the space between cable lines intensifies the cable combustion and accelerates the flame spread. The predictions by the enhanced model show good agreements with the experimental data. At the same time, it is shown that the enhanced model is capable of predicting the different behaviors of cable fires with different cable spacing by adjusting the flame spread speed only.

  1. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    Directory of Open Access Journals (Sweden)

    J. Zhuang

    2018-05-01

    Full Text Available Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx or vertical resolution (Δz. Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx ∕ Δzopt ∼ 1000 for simulating the plumes. This is considerably higher than current global models (Δx ∕ Δz ∼ 20 and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3 over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz  ≈  80 m preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  2. Long-term post-Chernobyl 90Sr and 137Cs profiles as the indicators of the large scale vertical water mixing in the Black Sea

    International Nuclear Information System (INIS)

    Egorov, V.N.; Stokozov, N.A.; Mirzoyeva, N.Y.

    2002-01-01

    The radioactive and chemical pollutions, eutrophic elements come to the surface water layer of the Black Sea from the territory of 22 countries. The self-purification of the surface water layer essentially depends from the vertical water mixing. The atmospheric fallout in the May 1986 after Chernobyl NPP accident were main source of the 137 Cs input in the Black Sea. The 90 Sr input to the Black Sea was caused by atmospheric fallout as well as the Dnieper River and Danube River runoff during of consequent years. 90 Sr and 137 Cs are conservative elements in a marine environment and could be used as tracers of the hydrological processes, including vertical water mixing. The aim of our investigations was an assessment of the large-scale vertical water exchange in the Black Sea on base of analysis time-series 90 Sr and 137 Cs vertical profiles

  3. The HAWK Highway: A Vertical Model for Student IEP Participation

    Science.gov (United States)

    Quann, Monica; Lyman, Jennifer; Crumlish, Jamie; Hines, Sally; Williams, Lynn; Pleet-Odle, Amy; Eisenman, Laura

    2015-01-01

    Special educators at an inclusive career-technical high school created a model to support annually increasing expectations for self-determination and levels of student participation in Individualized Education Program (IEP) planning and implementation. The grade-specific components of the model and supporting context are described. Students were…

  4. Dynamic response modelling and characterization of a vertical electrothermal actuator

    International Nuclear Information System (INIS)

    Li, Lijie; Uttamchandani, Deepak

    2009-01-01

    Mathematical modelling and characterization of the dynamic response of a microelectromechanical system (MEMS) electrothermal actuator are presented in this paper. The mathematical model is based on a second-order partial differential equation (one-dimensional heat transfer) and a second-order ordinary differential equation (mechanical dynamic equation). The simulations are implemented using the piecewise finite difference method and the Runge–Kutta algorithm. The electrothermal modelling includes thermal conduction, convective thermal loss and radiation effects. The temperature dependence of resistivity and thermal conductivity of single crystal silicon have also been taken into consideration in the electrothermal modelling. It is calculated from the simulation results that the 'cold' beam of the electrothermal actuator is not only a mechanical constraint but also a thermal response compensation structure. The 0–90% electrothermal rise times for the individual 'hot' and 'cold' beams are calculated to be 32.9 ms and 42.8 ms, respectively, while the 0–90% electrothermal rise time for the whole actuator is calculated to be 17.3 ms. Nonlinear cubic stiffness has been considered in the thermal-mechanical modelling. Dynamic performances of the device have been characterized using a laser vibrometer, and the 0–90% thermal response time of the whole structure has been measured to be 16.8 ms, which matches well with the modelling results. The displacements of the device under different driving conditions and at resonant frequency have been modelled and measured, and the results from both modelling and experiment agree reasonably well. This work provides a comprehensive understanding of the dynamic behaviour of the electrothermal actuation mechanism. The model will be useful for designing control systems for microelectrothermal actuated devices

  5. VSP [Vertical Seismic Profiling] and cross hole tomographic imaging for fracture characterization

    International Nuclear Information System (INIS)

    Majer, E.L.; Peterson, J.E.; Myer, L.R.; Karasaki, K.; Daley, T.M.; Long, J.C.S.

    1989-09-01

    For the past several years LBL has been carrying out experiments at various fractured rock sites to determine the fundamental nature of the propagation of seismic waves in fractured media. These experiments have been utilizing high frequency (1000 to 10000 Hz.) signals in a cross-hole configuration at scales of several tens of meters. Three component sources and receivers are used to map fracture density, and orientation. The goal of the experiments has been to relate the seismological parameters to the hydrological parameters, if possible, in order to provide a more accurate description of a starting model for hydrological characterization. The work is ultimately aimed at the characterization and monitoring of the Yucca Mountain site for the storage of nuclear waste. In addition to these controlled experiments multicomponent VSP work has been carried out at several sites to determine fracture characteristics. The results to date indicate that both P-wave and S-wave can be used to map the location of fractures. In addition, fractures that are open and conductive are much more visible to seismic waves that non-conductive fractures. The results of these tests indicate direct use in an unsaturated environment. 12 refs., 10 figs

  6. Vertical Descent and Landing Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in Still Air, TED No. NACA DE 368

    Science.gov (United States)

    Smith, Charlee C., Jr.; Lovell, Powell M., Jr.

    1954-01-01

    An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.

  7. Identification and uncertainty estimation of vertical reflectivity profiles using a Lagrangian approach to support quantitative precipitation measurements by weather radar

    Science.gov (United States)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.

    2013-09-01

    This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.

  8. The application of vertical seismic profiling and cross-hole tomographic imaging for fracture characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Majer, E.L.; Peterson, J.E.; Tura, M.A.; McEvilly, T.V.

    1990-01-01

    In order to obtain the necessary characterization for the storage of nuclear waste, much higher resolution of the features likely to affect the transport of radionuclides will be required than is normally achieved in conventional surface seismic reflection used in the exploration and characterization of petroleum and geothermal resources. Because fractures represent a significant mechanical anomaly seismic methods using are being investigated as a means to image and characterize the subsurface. Because of inherent limitations in applying the seismic methods solely from the surface, state-of-the-art borehole methods are being investigated to provide high resolution definition within the repository block. Therefore, Vertical Seismic Profiling (VSP) and cross-hole methods are being developed to obtain maximum resolution of the features that will possible affect the transport of fluids. Presented here will be the methods being developed, the strategy being pursued, and the rational for using VSP and crosshole methods at Yucca Mountain. The approach is intended to be an integrated method involving improvements in data acquisition, processing, and interpretation as well as improvements in the fundamental understanding of seismic wave propagation in fractured rock. 33 refs., 4 figs

  9. Vertical profiles of 239(240)Pu, 238Pu and 241Am in some peculiar Italian mosses

    International Nuclear Information System (INIS)

    Testa, C.; Desideri, D.; Guerra, F.; Meli, M.A.; Roselli, C.; Jia, G.; Degetto, S.

    2000-01-01

    During the last two years the Urbino University and the Padua ICTIMA CNR were working on a special radioecological program having the aim to study the Pu and Am retention behaviour in different species of mosses growing in two Italian regions (Urbino, Central Italy, 450 m a.s.l. and Alps region, Northern Italy, 1500 m a.s.l.). 239,240 Pu, 238 Pu and 241 Am were separated and determined by extraction chromatography, electroplating and alpha spectrometry; 242 Pu and 243 Am were used as the yield tracers. The paper summarizes the results dealing with the vertical profiles of the radionuclides in three different species of mosses. Several 1-2 cm high sections were obtained and dated by 210 Pb determination. Typical concentration peaks for Pu and Am were found for very old moss species ('Sphagnum Compactum' and 'Sphagnum Nemoreum') at a depth corresponding to the early 1960's which is the period characterized by the maximum nuclear weapon tests. In more recent moss species ('Neckeria Crispa') no peak was observed and the regression curves showed that Am is more mobile than Pu. (author)

  10. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Daniel [Hebrew Univ. of Jerusalem (Israel)

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  11. Modeling Vertical Plasma Flows in Solar Filament Barbs

    Science.gov (United States)

    Litvinenko, Y.

    2003-12-01

    Speeds of observed flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a local magnetostatic solution describing the balance between the Lorentz force, gravity, and gas pressure in a barb. Similarly, large-scale filament flows can be treated as adiabatically slow deformations of a force-free magnetic equilibrium that describes the global structure of a filament. This approach reconciles current theoretical models with the puzzling observational result that some of the flows appear to be neither aligned with the magnetic field nor controlled by gravity.

  12. Elastic full-waveform inversion and parameterization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    Science.gov (United States)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-03-01

    Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^'), and velocity-impedance-II (α″, β″ and I_S^'). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density

  13. Elastic full-waveform inversion and parametrization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    Science.gov (United States)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-06-01

    Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density

  14. Modelling the tides and their impacts on the vertical stratification ...

    African Journals Online (AJOL)

    The Sofala Bank, a wide shelf located along the central coast of Mozambique, hosts tides with high amplitudes. The Regional Ocean Modelling System (ROMS) was used to analyse the tidal currents on the bank and to investigate their effects on the stratification and generation of tidal fronts. During spring tides, barotropic ...

  15. Solving vertical transport and chemistry in air pollution models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, M.A.; Krol, M.C.; Peters, W.; Verwer, J.G.; Chock, David P.; Carmichael, Gregory R.; Brick, Patricia

    2002-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  16. Solving Vertical Transport and Chemistry in Air Pollution Models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  17. Assessing the vertical structure of baroclinic tidal currents in a global model

    Science.gov (United States)

    Timko, Patrick; Arbic, Brian; Scott, Robert

    2010-05-01

    Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.

  18. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    Science.gov (United States)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  19. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    Science.gov (United States)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  20. High Resolution Vertical Seismic Profile from the Chicxulub IODP/ICDP Expedition 364 Borehole: Wave Speeds and Seismic Reflectivity.

    Science.gov (United States)

    Nixon, C.; Kofman, R.; Schmitt, D. R.; Lofi, J.; Gulick, S. P. S.; Christeson, G. L.; Saustrup, S., Sr.; Morgan, J. V.

    2017-12-01

    We acquired a closely-spaced vertical seismic profile (VSP) in the Chicxulub K-Pg Impact Crater drilling program borehole to calibrate the existing surface seismic profiles and provide complementary measurements of in situ seismic wave speeds. Downhole seismic records were obtained at spacings ranging from 1.25 m to 5 m along the borehole from 47.5 m to 1325 mwsf (meters wireline below sea floor) (Fig 1a) using a Sercel SlimwaveTM geophone chain (University of Alberta). The seismic source was a 30/30ci Sercel Mini GI airgun (University of Texas), fired a minimum of 5 times per station. Seismic data processing used a combination of a commercial processing package (Schlumberger's VISTA) and MatlabTM codes. The VSP displays detailed reflectivity (Fig. 1a) with the strongest reflection seen at 600 mwsf (280 ms one-way time), geologically corresponding to the sharp contact between the post-impact sediments and the target peak ring rock, thus confirming the pre-drilling interpretations of the seismic profiles. A two-way time trace extracted from the separated up-going wavefield matches the major reflection both in travel time and character. In the granitic rocks that form the peak ring of the Chicxulub impact crater, we observe P-wave velocities of 4000-4500 m/s which are significantly less than the expected values of granitoids ( 6000 m/s) (Fig. 1b). The VSP measured wave speeds are confirmed against downhole sonic logging and in laboratory velocimetry measurements; these data provide additional evidence that the crustal material displaced by the impact experienced a significant amount of damage. Samples and data provided by IODP. Samples can be requested at http://web.iodp.tamu.edu/sdrm after 19 October 2017. Expedition 364 was jointly funded by ECORD, ICDP, and IODP with contributions and logistical support from the Yucatan State Government and UNAM. The downhole seismic chain and wireline system is funded by grants to DRS from the Canada Foundation for Innovation and

  1. Observations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness beds using a prototype wideband coherent Doppler profiler: 1. The oscillatory component of the flow

    Science.gov (United States)

    Hay, Alex E.; Zedel, Len; Cheel, Richard; Dillon, Jeremy

    2012-03-01

    Results are presented from an experimental investigation of rough turbulent oscillatory boundary layers using a prototype wideband bistatic coherent Doppler profiler. The profiler operates in the 1.2 MHz to 2.3 MHz frequency band and uses software-defined radio technologies for digital control of the frequency content and shape of the transmit pulse and for digital complex demodulation of the received signals. Velocity profiles are obtained at sub-millimeter range resolution and 100 Hz profiling rates (each profile being an ensemble average of 10 pulse pairs). The measurements were carried out above beds of fixed sand or gravel particles, with median grain diameters of 0.37 mm and 3.9 mm, respectively, oscillating sinusoidally at a 10 s period through excursions of 0.75 m to 1.5 m. The resulting vertical profiles of horizontal velocity magnitude and phase, with the vertical axis scaled by ℓ = κu∗m/ω, are comparable to similarly scaled profiles obtained using laser Doppler anemometry by Sleath (1987) and Jensen (1988). A key objective of the comparisons between the previous experiments and those reported here was to establish how close to the bed reliable velocity measurements can be made with the sonar. This minimum distance above the bed is estimated to be 5 ± 1 mm, a value approaching the 3 to 4 mm limit set by the path of least time.

  2. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, S G [Physics Department, University of Auckland (New Zealand); Huenerbein, S v; Waddington, D [Research Institute for the Built and Human Environment, University of Salford (United Kingdom)], E-mail: s.vonhunerbein@salford.ac.uk

    2008-05-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group.

  3. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    International Nuclear Information System (INIS)

    Bradley, S G; Huenerbein, S v; Waddington, D

    2008-01-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group

  4. High-gradient operators in the psl(2 vertical stroke 2) Gross-Neveu model

    International Nuclear Information System (INIS)

    Cagnazzo, Alessandra; Schomerus, Volker; Tlapak, Vaclav

    2014-10-01

    It has been observed more than 25 years ago that sigma model perturbation theory suffers from strongly RG-relevant high-gradient operators. The phenomenon was first seen in 1-loop calculations for the O(N) vector model and it is known to persist at least to two loops. More recently, Ryu et al. suggested that a certain deformation of the psl(N vertical stroke N) WZNW-model at level k=1, or equivalently the psl(N vertical stroke N) Gross-Neveu model, could be free of RG-relevant high-gradient operators and they tested their suggestion to leading order in perturbation theory. In this note we establish the absence of strongly RG-relevant high-gradient operators in the psl(2 vertical stroke 2) Gross-Neveu model to all loops. In addition, we determine the spectrum for a large subsector of the model at infinite coupling and observe that all scaling weights become half-integer. Evidence for a conjectured relation with the CP 1 vertical stroke 2 sigma model is not found.

  5. A Vertically Flow-Following, Icosahedral Grid Model for Medium-Range and Seasonal Prediction. Part 1: Model Description

    Science.gov (United States)

    Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques; hide

    2015-01-01

    A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.

  6. Study on particle deposition in vertical square ventilation duct flows by different models

    International Nuclear Information System (INIS)

    Zhang Jinping; Li Angui

    2008-01-01

    A proper representation of the air flow in a ventilation duct is crucial for adequate prediction of the deposition velocity of particles. In this paper, the mean turbulent air flow fields are predicted by two different numerical models (the Reynolds stress transport model (RSM) and the realizable k-εmodel). Contours of mean streamwise velocity deduced from the k-ε model are compared with those obtained from the Reynolds stress transport model. Dimensionless deposition velocities of particles in downward and upward ventilation duct flows are also compared based on the flow fields presented by the two different numerical models. Trajectories of the particles are tracked using a one way coupling Lagrangian eddy-particle interaction model. Thousands of individual particles are released in the represented flow, and dimensionless deposition velocities are evaluated for the vertical walls in fully developed smooth vertical downward and upward square duct flows generated by the RSM and realizable k-ε model. The effects of particle diameter, dimensionless relaxation time, flow direction and air speed in vertical upward and downward square duct flows on the particle deposition velocities are discussed. The effects of lift and gravity on the particle deposition velocities are evaluated in vertical flows presented by the RSM. It is shown that the particle deposition velocities based on the RSM and realizable k-εmodel have subtle differences. The flow direction and the lift force significantly affect the particle deposition velocities in vertical duct flows. The simulation results are compared with earlier experimental data and the numerical results for fully developed duct flows. It is shown that the deposition velocities predicted are in agreement with the experimental data and the numerical results

  7. Interpretation of ozone vertical profiles and their variations in the Northern hemisphere on the basis of GOME satellite data. Final report; Interpretation von Ozon-Vertikalprofilen und deren Variationen in der noerdlichen Hemisphaere unter Benutzung von GOME Satellitendaten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eichmann, K.U.; Bramstedt, K.; Weber, M.; Rozanov, V.; Debeek, R.; Hoogen, R.; Burrows, J.P.

    2000-07-04

    Semiglobal ozone vertical profiles based on GOME measurements were established and evaluated systematically. GOME (Global Ozone Monitoring Experiment), carried by the ERS-2 satellite, is the first European passive optical sensor for long-term monitoring of ozone, other trace elements, and aerosols. Especially the vertical distribution of ozone in the Arctic region was measured and interpreted with a view to enhanced ozone degradation in the Arctic winter and spring seasons. Apart from the regional variations, also the time variations of the profiles are to provide further information on the dynamics and chemical processes in the polar vortex. The retrieval algorithm used for assessing the ozone vertical profiles, FURM (FUll Retrieval Method), is based on the GOMETRAN radiation transport model developed at Bremen university especially for evaluation of the GOME data. The GOME ozone profiles were validated with ozone probes and other satellite experiments. [German] Ziel des Projektes war eine systematische Bestimmung und Auswertung von semiglobalen Ozonvertikalprofilen aus den Messdaten von GOME. Das auf dem Satelliten ERS-2 fliegende Spektrometer GOME (Global Ozone Monitoring Experiment) ist der erste europaeische, passive, optische Sensor, der fuer Langzeitmessungen von Ozon, anderen Spurenstoffen und Aerosolen konzipiert wurde. Im Projekt wurde insbesondere die vertikale Verteilung von Ozon in der Arktis bestimmt und interpretiert hinsichtlich des verstaerkten Ozonabbaus im arktischen Winter und Fruehjahr. Neben der raeumlichen Variation sollen auch die zeitlichen Ablaeufe und Veraenderungen der Profile weitere Erkenntnise hinsichtlich der Dynamik und der chemischen Prozesse im Polarwirbel liefern. Der Retrievalalgorithmus zur Bestimmung des Ozonhoehenprofils, FURM (Full Retrieval Method) genannt, basiert auf dem Strahlungstransportmodell GOMETRAN, das an der Universitaet Bremen speziell fuer die Auswertung der Daten des GOME Instrumentes entwickelt wurde

  8. Flight Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane with the Lower Vertical Tail Removed, TED No.DE 368

    Science.gov (United States)

    Lovell, Powell M., Jr.

    1954-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.

  9. Threshold Dynamics of a Stochastic SIR Model with Vertical Transmission and Vaccination

    OpenAIRE

    Miao, Anqi; Zhang, Jian; Zhang, Tongqian; Pradeep, B. G. Sampath Aruna

    2017-01-01

    A stochastic SIR model with vertical transmission and vaccination is proposed and investigated in this paper. The threshold dynamics are explored when the noise is small. The conditions for the extinction or persistence of infectious diseases are deduced. Our results show that large noise can lead to the extinction of infectious diseases which is conducive to epidemic diseases control.

  10. The Threshold of a Stochastic SIRS Model with Vertical Transmission and Saturated Incidence

    Directory of Open Access Journals (Sweden)

    Chunjuan Zhu

    2017-01-01

    Full Text Available The threshold of a stochastic SIRS model with vertical transmission and saturated incidence is investigated. If the noise is small, it is shown that the threshold of the stochastic system determines the extinction and persistence of the epidemic. In addition, we find that if the noise is large, the epidemic still prevails. Finally, numerical simulations are given to illustrate the results.

  11. Threshold Dynamics of a Stochastic SIR Model with Vertical Transmission and Vaccination

    Directory of Open Access Journals (Sweden)

    Anqi Miao

    2017-01-01

    Full Text Available A stochastic SIR model with vertical transmission and vaccination is proposed and investigated in this paper. The threshold dynamics are explored when the noise is small. The conditions for the extinction or persistence of infectious diseases are deduced. Our results show that large noise can lead to the extinction of infectious diseases which is conducive to epidemic diseases control.

  12. Vertical Integration of Geographic Information Sciences: A Recruitment Model for GIS Education

    Science.gov (United States)

    Yu, Jaehyung; Huynh, Niem Tu; McGehee, Thomas Lee

    2011-01-01

    An innovative vertical integration model for recruiting to GIS education was introduced and tested following four driving forces: curriculum development, GIS presentations, institutional collaboration, and faculty training. Curriculum development was a useful approach to recruitment, student credit hour generation, and retention-rate improvement.…

  13. Creating a benchmark of vertical axis wind turbines in dynamic stall for validating numerical models

    DEFF Research Database (Denmark)

    Castelein, D.; Ragni, D.; Tescione, G.

    2015-01-01

    An experimental campaign using Particle Image Velocimetry (2C-PIV) technique has been conducted on a H-type Vertical Axis Wind Turbine (VAWT) to create a benchmark for validating and comparing numerical models. The turbine is operated at tip speed ratios (TSR) of 4.5 and 2, at an average chord...

  14. Reliability Based Optimal Design of Vertical Breakwaters Modelled as a Series System Failure

    DEFF Research Database (Denmark)

    Christiani, E.; Burcharth, H. F.; Sørensen, John Dalsgaard

    1996-01-01

    Reliability based design of monolithic vertical breakwaters is considered. Probabilistic models of important failure modes such as sliding and rupture failure in the rubble mound and the subsoil are described. Characterisation of the relevant stochastic parameters are presented, and relevant design...... variables are identified and an optimal system reliability formulation is presented. An illustrative example is given....

  15. Stability analysis of a general age-dependent vaccination model of a vertically transmitted disease

    International Nuclear Information System (INIS)

    El Doma, M.

    1995-07-01

    An SIR epidemic model of a general age-dependent vaccination of a vertically as well as horizontally transmitted disease is investigated when the population is in steady state and the fertility, mortality and removal rates depends on age. We determine the steady states and examine their stabilities. (author). 24 refs

  16. Applied Research Consultants (ARC): A Vertical Practicum Model of Training Applied Research

    Science.gov (United States)

    Nadler, Joel T.; Cundiff, Nicole L.

    2009-01-01

    The demand for highly trained evaluation consultants is increasing. Furthermore, the gap between job seekers' evaluation competencies and job recruiters' expectations suggests a need for providing practical training experiences. A model using a vertical practicum (advanced students assisting in the training of newer students) is suggested as an…

  17. The mathematical model of vertical solt transfer on mine dumps Western Donbass

    Directory of Open Access Journals (Sweden)

    H. P. Yevhrashkina,

    2011-11-01

    Full Text Available On the based theory of physical-chemical hydrodynamics of porous media offer a range of mathematical models of vertical salt transfer on mine dumps Western Donbass. designed several variants of dumps free overgrowth for the optimal performance for transpiration of wild plants.

  18. Vertical sorting and the morphodynamics of bed form-dominated rivers : a sorting evolution model

    NARCIS (Netherlands)

    Blom, Astrid; Ribberink, Jan S.; Parker, Gary

    2008-01-01

    Existing sediment continuity models for nonuniform sediment suffer from a number of shortcomings, as they fail to describe vertical sorting fluxes other than through net aggradation or degradation of the bed and are based on a discrete representation of the bed material interacting with the flow. We

  19. Vertical Instability in EAST: Comparison of Model Predictions with Experimental Results

    International Nuclear Information System (INIS)

    Qian Jinping; Wan Baonian; Shen Biao; Xiao Bingjia; Sun Youwen; Shi Yuejiang; Lin Shiyao; Li Jiangang; Gong Xianzu

    2008-01-01

    Growth rates of the axisymmetric mode in elongated plasmas in the experimental advanced superconducting tokamak (EAST) are measured with zero feedback gains and then compared with numerically calculated growth rates for the reconstructed shapes. The comparison is made after loss of vertical position control. The open-loop growth rates were scanned with the number of vessel eigenmodes, which up to 20 is enough to make the growth rates settled. The agreement between the growth rates measured experimentally and the growth rates determined numerically is good. The results show that a linear RZIP model is essentially good enough for the vertical position feedback control.

  20. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    Science.gov (United States)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  1. The influence of snow grain size and impurities on the vertical profiles of actinic flux and associated NOx emissions on the Antarctic and Greenland ice sheets

    Directory of Open Access Journals (Sweden)

    M. C. Zatko

    2013-04-01

    Full Text Available We use observations of the absorption properties of black carbon and non-black carbon impurities in near-surface snow collected near the research stations at South Pole and Dome C, Antarctica, and Summit, Greenland, combined with a snowpack actinic flux parameterization to estimate the vertical profile and e-folding depth of ultraviolet/near-visible (UV/near-vis actinic flux in the snowpack at each location. We have developed a simple and broadly applicable parameterization to calculate depth and wavelength dependent snowpack actinic flux that can be easily integrated into large-scale (e.g., 3-D models of the atmosphere. The calculated e-folding depths of actinic flux at 305 nm, the peak wavelength of nitrate photolysis in the snowpack, are 8–12 cm near the stations and 15–31 cm away (>11 km from the stations. We find that the e-folding depth is strongly dependent on impurity content and wavelength in the UV/near-vis region, which explains the relatively shallow e-folding depths near stations where local activities lead to higher snow impurity levels. We calculate the lifetime of NOx in the snowpack interstitial air produced by photolysis of snowpack nitrate against wind pumping (τwind pumping from the snowpack, and compare this to the calculated lifetime of NOx against chemical conversion to HNO3 (τchemical to determine whether the NOx produced at a given depth can escape from the snowpack to the overlying atmosphere. Comparison of τwind pumping and τchemical suggests efficient escape of photoproduced NOx in the snowpack to the overlying atmosphere throughout most of the photochemically active zone. Calculated vertical actinic flux profiles and observed snowpack nitrate concentrations are used to estimate the potential flux of NOx from the snowpack. Calculated NOx fluxes of 4.4 × 108–3.8 × 109 molecules cm−2 s−1 in remote polar locations and 3.2–8.2 × 108 molecules cm−2 s−1 near polar stations for January at Dome C and

  2. Gauge-invariant three-boson vertices and their Ward identities in the standard model

    International Nuclear Information System (INIS)

    Papavassiliou, J.; Philippides, K.

    1995-01-01

    In the context of the standard model we extend the S-matrix pinch technique for nonconserved currents to the case of three-boson vertices. We outline in detail how effective gauge-invariant three-boson vertices can be constructed, with all three incoming momenta off shell. Explicit closed expressions for the vertices γW - W + , ZW - W + , and χW - W + are reported. The three-boson vertices so constructed satisfy naive QED-like Ward identities which relate them to the gauge-invariant gauge boson self-energies previously constructed by the same method. The derivation of the aforementioned Ward identities relies on the sole requirement of complete gauge invariance of the S-matrix element considered; in particular, no knowledge of the explicit closed form of the three-boson vertices involved is necessary. The validity of one of these Ward identities is demonstrated explicitly, through a detailed diagrammatic one-loop analysis, in the context of three different gauges

  3. Modernization of vertical Pelton turbines with the help of CFD and model testing

    International Nuclear Information System (INIS)

    Mack, Reiner; Gola, Bartlomiej; Smertnig, Martin; Wittwer, Bernhard; Meusburger, Peter

    2014-01-01

    The modernization of water turbines bears a high potential of increasing the already installed hydropower capacity. In many projects the existing waterways allow a substantial increase of the available flow capacity and with it the energy output. But also the upgrading onto a state of the art hydraulic, mechanical and electrical design will increase the available power considerably after the rehabilitation. The two phase nature of the flow in Pelton turbines requires for the hydraulic refurbishment special care in the application of the available design methods. Where the flow in the high pressure section of the turbine is mainly of one phase nature, CFD has been used as a standard tool for many years. Also the jet quality, and with it the exploration of the source of flow disturbances that cause poor free surface quality can be investigated with CFD. The interaction of the jet with the buckets of the runner is also examined by means of CFD. However, its accuracy with respect to hydraulic efficiency is, because of the two phase flow and the transient flow process, in very few cases good enough for a reliable and accurate prediction of absolute numbers. The optimization of hydraulic bucket profiles is therefore always checked with measurements in homologous scaled model turbines. A similar situation exists for the housing flow after the water is discharged from the runner. Here also CFD techniques are available to explore the general mechanisms. However, due to the two phase flow nature, where only a very small space is filled with moving water, the experimental setup in a model turbine is always the final proof for optimizations of housing inserts and modifications. The hydraulic design of a modernization project for a power station equipped with vertical Pelton turbines of two different designs is described in the proposed paper. It will be shown, how CFD is applied to determine the losses in the high pressure section and how these results are combined with the

  4. Modernization of vertical Pelton turbines with the help of CFD and model testing

    Science.gov (United States)

    Mack, Reiner; Gola, Bartlomiej; Smertnig, Martin; Wittwer, Bernhard; Meusburger, Peter

    2014-03-01

    The modernization of water turbines bears a high potential of increasing the already installed hydropower capacity. In many projects the existing waterways allow a substantial increase of the available flow capacity and with it the energy output. But also the upgrading onto a state of the art hydraulic, mechanical and electrical design will increase the available power considerably after the rehabilitation. The two phase nature of the flow in Pelton turbines requires for the hydraulic refurbishment special care in the application of the available design methods. Where the flow in the high pressure section of the turbine is mainly of one phase nature, CFD has been used as a standard tool for many years. Also the jet quality, and with it the exploration of the source of flow disturbances that cause poor free surface quality can be investigated with CFD. The interaction of the jet with the buckets of the runner is also examined by means of CFD. However, its accuracy with respect to hydraulic efficiency is, because of the two phase flow and the transient flow process, in very few cases good enough for a reliable and accurate prediction of absolute numbers. The optimization of hydraulic bucket profiles is therefore always checked with measurements in homologous scaled model turbines. A similar situation exists for the housing flow after the water is discharged from the runner. Here also CFD techniques are available to explore the general mechanisms. However, due to the two phase flow nature, where only a very small space is filled with moving water, the experimental setup in a model turbine is always the final proof for optimizations of housing inserts and modifications. The hydraulic design of a modernization project for a power station equipped with vertical Pelton turbines of two different designs is described in the proposed paper. It will be shown, how CFD is applied to determine the losses in the high pressure section and how these results are combined with the

  5. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air

    International Nuclear Information System (INIS)

    Zhang Yuzhong; Deng Shuxing; Liu Yanan; Shen Guofeng; Li Xiqing; Cao Jun; Wang Xilong; Reid, Brian; Tao Shu

    2011-01-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH LMW4 ) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH LMW4 within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. - Research highlights: → Design, field test and calibration of the novel passive air sampler, PAS-V-I. → Vertical concentration gradients of PAH LMW4 within a thin layer close to soil. → Comparison of results between PAS-V-I measurement and fugacity approach. → Potential application of PAS-V-I and further modifications. - A novel passive sampling device was developed and tested for measuring vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

  6. Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination

    International Nuclear Information System (INIS)

    Meng Xinzhu; Jiao Jianjun; Chen Lansun

    2009-01-01

    Since the investigation of impulsive delay differential equations is beginning, the literature on delay epidemic models with pulse vaccination is not extensive. In this paper, we propose a new SEIRS epidemic disease model with two profitless delays and vertical transmission, and analyze the dynamics behaviors of the model under pulse vaccination. Using the discrete dynamical system determined by the stroboscopic map, we obtain a 'infection-free' periodic solution, further, show that the 'infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using a new modeling method, we obtain sufficient condition for the permanence of the epidemic model with pulse vaccination. We show that time delays, pulse vaccination and vertical transmission can bring different effects on the dynamics behaviors of the model by numerical analysis. Our results also show the delays are 'profitless'. In this paper, the main feature is to introduce two discrete time delays, vertical transmission and impulse into SEIRS epidemic model and to give pulse vaccination strategies.

  7. Architecture oriented modeling and simulation method for combat mission profile

    Directory of Open Access Journals (Sweden)

    CHEN Xia

    2017-05-01

    Full Text Available In order to effectively analyze the system behavior and system performance of combat mission profile, an architecture-oriented modeling and simulation method is proposed. Starting from the architecture modeling,this paper describes the mission profile based on the definition from National Military Standard of China and the US Department of Defense Architecture Framework(DoDAFmodel, and constructs the architecture model of the mission profile. Then the transformation relationship between the architecture model and the agent simulation model is proposed to form the mission profile executable model. At last,taking the air-defense mission profile as an example,the agent simulation model is established based on the architecture model,and the input and output relations of the simulation model are analyzed. It provides method guidance for the combat mission profile design.

  8. Comparison of a vertically-averaged and a vertically-resolved model for hyporheic flow beneath a pool-riffle bedform

    Science.gov (United States)

    Ibrahim, Ahmad; Steffler, Peter; She, Yuntong

    2018-02-01

    The interaction between surface water and groundwater through the hyporheic zone is recognized to be important as it impacts the water quantity and quality in both flow systems. Three-dimensional (3D) modeling is the most complete representation of a real-world hyporheic zone. However, 3D modeling requires extreme computational power and efforts; the sophistication is often significantly compromised by not being able to obtain the required input data accurately. Simplifications are therefore often needed. The objective of this study was to assess the accuracy of the vertically-averaged approximation compared to a more complete vertically-resolved model of the hyporheic zone. The groundwater flow was modeled by either a simple one-dimensional (1D) Dupuit approach or a two-dimensional (2D) horizontal/vertical model in boundary fitted coordinates, with the latter considered as a reference model. Both groundwater models were coupled with a 1D surface water model via the surface water depth. Applying the two models to an idealized pool-riffle sequence showed that the 1D Dupuit approximation gave comparable results in determining the characteristics of the hyporheic zone to the reference model when the stratum thickness is not very large compared to the surface water depth. Conditions under which the 1D model can provide reliable estimate of the seepage discharge, upwelling/downwelling discharges and locations, the hyporheic flow, and the residence time were determined.

  9. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    Science.gov (United States)

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  10. Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    Science.gov (United States)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.

    2015-05-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

  11. Geological affinity of reflecting boundaries in the intermediate structural stage of the Chu Sarysuyskiy depression based on results of vertical seismic profilling

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, N.G.; Kiselevskiy, Yu.N.

    1983-01-01

    A computer (EVM) and an ASOI-VSP-SK program complex are used to analyze data from seismic exploration and acoustical logging with interval by interval calculation of the velocity every four meters. Vertical seismic profilling (VSP) results are used to identify all the upper layers as reference layers. The basic reference level, the third, which corresponds to the floor of the carbonate middle to upper Visean series, is not sustained due to the thin layered state of the terrigeneous section. Based on data from vertical seismic profilling, the reflected wave method (MOV) and the common depth point method (MOGT), the reference 3-a and 6-a levels are identified. Deep reflections of the seventh, 7-a and Rf, approximately confined to the roof and floor of the lower Paleozoic deposits and the upper part of the upper reef series, are noted in the series of the Caledonian cap of the Prebaykal massifs based on vertical seismic profilling. Collector levels are noted on the basis of the frequency of the wave spectra and from the absorption coefficient in the Testas structure and in other low amplitude structures. The insufficiency of the depth capability of the common depth point method and the poor knowledge level of seismic exploration of the section of the lower Paleozoa and the upper Proterozoa of the Chu Sarysuyskiy depresion are noted.

  12. A simple ideal magnetohydrodynamical model of vertical disruption events in tokamaks

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    2009-01-01

    A simple model of axisymmetric vertical disruption events (VDEs) in tokamaks is presented in which the halo current force exerted on the vacuum vessel is calculated directly from linear, marginally stable, ideal-magnetohydrodynamical (MHD) stability analysis. The basic premise of the model is that the halo current force modifies pressure balance at the edge of the plasma, and therefore also modifies ideal-MHD plasma stability. In order to prevent the ideal vertical instability, responsible for the VDE, from growing on the very short Alfven time scale, the halo current force must adjust itself such that the instability is rendered marginally stable. The model predicts halo currents which are similar in magnitude to those observed experimentally. An approximate nonaxisymmetric version of the model is developed in order to calculate the toroidal peaking factor for the halo current force.

  13. Double-multiple streamtube model for studying vertical-axis wind turbines

    Science.gov (United States)

    Paraschivoiu, Ion

    1988-08-01

    This work describes the present state-of-the-art in double-multiple streamtube method for modeling the Darrieus-type vertical-axis wind turbine (VAWT). Comparisons of the analytical results with the other predictions and available experimental data show a good agreement. This method, which incorporates dynamic-stall and secondary effects, can be used for generating a suitable aerodynamic-load model for structural design analysis of the Darrieus rotor.

  14. Baroclinic Instability in the Solar Tachocline for Continuous Vertical Profiles of Rotation, Effective Gravity, and Toroidal Field

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, Peter A., E-mail: gilman@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2017-06-20

    We present results from an MHD model for baroclinic instability in the solar tachocline that includes rotation, effective gravity, and toroidal field that vary continuously with height. We solve the perturbation equations using a shooting method. Without toroidal fields but with an effective gravity declining linearly from a maximum at the bottom to much smaller values at the top, we find instability at all latitudes except at the poles, at the equator, and where the vertical rotation gradient vanishes (32.°3) for longitude wavenumbers m from 1 to >10. High latitudes are much more unstable than low latitudes, but both have e -folding times that are much shorter than a sunspot cycle. The higher the m and the steeper the decline in effective gravity, the closer the unstable mode peak to the top boundary, where the energy available to drive instability is greatest. The effect of the toroidal field is always stabilizing, shrinking the latitude ranges of instability as the toroidal field is increased. The larger the toroidal field, the smaller the longitudinal wavenumber of the most unstable disturbance. All latitudes become stable for a toroidal field exceeding about 4 kG. The results imply that baroclinic instability should occur in the tachocline at latitudes where the toroidal field is weak or is changing sign, but not where the field is strong.

  15. Vertical and horizontal integration of knowledge and skills - a working model.

    Science.gov (United States)

    Snyman, W D; Kroon, J

    2005-02-01

    The new integrated outcomes-based curriculum for dentistry was introduced at the University of Pretoria in 1997. The first participants graduated at the end of 2001. Educational principles that underpin the new innovative dental curriculum include vertical and horizontal integration, problem-oriented learning, student-centred learning, a holistic attitude to patient care and the promotion of oral health. The aim of this research project was to develop and assay a model to facilitate vertical integration of knowledge and skills thereby justifying the above mentioned action. The learning methodology proposed for the specific outcome of the Odontology module, namely the diagnosis of dental caries and the design of a primary preventive programme, included problem-solving as the driving force for the facilitation of vertical and horizontal integration, and an instructional design for the integration of the basic knowledge and clinical skills into a single learning programme. The paper describes the methodology of problem-oriented learning as applied in this study together with the detail of the programme. The consensus of those teachers who represent the basic and clinical sciences and who participate in this learning programme is that this model is practical and can assist vertical as well as horizontal integration of knowledge.

  16. Optimizing the design of vertical seismic profiling (VSP) for imaging fracture zones over hardrock basement geothermal environments

    Science.gov (United States)

    Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf

    2017-04-01

    A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions

  17. Modelling of the UV Index on vertical and 40° tilted planes for different orientations.

    Science.gov (United States)

    Serrano, D; Marín, M J; Utrillas, M P; Tena, F; Martínez-Lozano, J A

    2012-02-01

    In this study, estimated data of the UV Index on vertical planes are presented for the latitude of Valencia, Spain. For that purpose, the UVER values have been generated on vertical planes by means of four different geometrical models a) isotropic, b) Perez, c) Gueymard, d) Muneer, based on values of the global horizontal UVER and the diffuse horizontal UVER, measured experimentally. The UVER values, obtained by any model, overestimate the experimental values for all orientations, with the exception of the Perez model for the East plane. The results show statistical values of the MAD parameter (Mean Absolute Deviation) between 10% and 25%, the Perez model being the one that obtained a lower MAD for all levels. As for the statistic RMSD parameter (Root Mean Square Deviation), the results show values between 17% and 32%, and again the Perez model provides the best results in all vertical planes. The difference between the estimated UV Index and the experimental UV Index, for vertical and 40° tilted planes, was also calculated. 40° is an angle close to the latitude of Burjassot, Valencia, (39.5°), which, according to various studies, is the optimum angle to capture maximum radiation on tilted planes. We conclude that the models provide a good estimate of the UV Index, as they coincide or differ in one unit compared to the experimental values in 99% of cases, and this is valid for all orientations. Finally, we examined the relation between the UV Index on vertical and 40° tilted planes, both the experimental and estimated by the Perez model, and the experimental UV Index on a horizontal plane at 12 GMT. Based on the results, we can conclude that it is possible to estimate with a good approximation the UV Index on vertical and 40° tilted planes in different directions on the basis of the experimental horizontal UVI value, thus justifying the interest of this study. This journal is © The Royal Society of Chemistry and Owner Societies 2012

  18. Parent Prevention Communication Profiles and Adolescent Substance Use: A Latent Profile Analysis and Growth Curve Model

    Science.gov (United States)

    Choi, Hye Jeong; Miller-Day, Michelle; Shin, YoungJu; Hecht, Michael L.; Pettigrew, Jonathan; Krieger, Janice L.; Lee, JeongKyu; Graham, John W.

    2017-01-01

    This current study identifies distinct parent prevention communication profiles and examines whether youth with different parental communication profiles have varying substance use trajectories over time. Eleven schools in two rural school districts in the Midwestern United States were selected, and 784 students were surveyed at three time points from the beginning of 7th grade to the end of 8th grade. A series of latent profile analyses were performed to identify discrete profiles/subgroups of substance-specific prevention communication (SSPC). The results revealed a 4-profile model of SSPC: Active-Open, Passive-Open, Active-Silent, and Passive-Silent. A growth curve model revealed different rates of lifetime substance use depending on the youth’s SSPC profile. These findings have implications for parenting interventions and tailoring messages for parents to fit specific SSPC profiles. PMID:29056872

  19. Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Krysiński Tomasz

    2015-03-01

    Full Text Available The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.

  20. Development and Evaluation of an Aerodynamic Model for a Novel Vertical Axis Wind Turbine Concept

    Directory of Open Access Journals (Sweden)

    Andrew Shires

    2013-05-01

    Full Text Available There has been a resurgence of interest in the development of vertical axis wind turbines which have several inherent attributes that offer some advantages for offshore operations, particularly their scalability and low over-turning moments with better accessibility to drivetrain components. This paper describes an aerodynamic performance model for vertical axis wind turbines specifically developed for the design of a novel offshore V-shaped rotor with multiple aerodynamic surfaces. The model is based on the Double-Multiple Streamtube method and includes a number of developments for alternative complex rotor shapes. The paper compares predicted results with measured field data for five different turbines with both curved and straight blades and rated powers in the range 100–500 kW. Based on these comparisons, the paper proposes modifications to the Gormont dynamic stall model that gives improved predictions of rotor power for the turbines considered.

  1. Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model

    Science.gov (United States)

    Monastero, Marianne; Lindstrom, Annika; Beyar, Michael; Amitay, Michael

    2015-11-01

    Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.

  2. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    International Nuclear Information System (INIS)

    Banas, A.O.; Carver, M.B.; Unrau, D.

    1995-01-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the open-quotes standardclose quotes κ-ε transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels

  3. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    Energy Technology Data Exchange (ETDEWEB)

    Banas, A.O.; Carver, M.B. [Chalk River Laboratories (Canada); Unrau, D. [Univ. of Toronto (Canada)

    1995-09-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.

  4. A diffusive model for halo width growth during vertical displacement events

    International Nuclear Information System (INIS)

    Eidietis, N.W.; Humphreys, D.A.

    2011-01-01

    The electromagnetic loads produced by halo currents during vertical displacement events (VDEs) impose stringent requirements on the strength of ITER in-vessel components. A predictive understanding of halo current evolution is essential for ensuring the robust design of these components. A significant factor determining that evolution is the plasma resistance, which is a function of three quantities: the resistivities of the core and halo regions, and the halo region width. A diffusive model of halo width growth during VDEs has been developed, which provides one part of a physics basis for predictive halo current simulations. The diffusive model was motivated by DIII-D observations that VDEs with cold post-thermal quench plasma and a current decay time much faster than the vertical motion (type I VDE) possess much wider halo region widths than warmer plasma VDEs, where the current decay is much slower than the vertical motion (type II). A 2D finite element code is used to model the diffusion of toroidal halo current during selected type I and type II DIII-D VDEs. The model assumes a core plasma region within the last closed flux surface (LCFS) diffusing current into a halo plasma filling the vessel outside the LCFS. LCFS motion and plasma temperature are prescribed from experimental observations. The halo width evolution produced by this model compares favourably with experimental measurements of type I and type II toroidal halo current width evolution.

  5. HMMEditor: a visual editing tool for profile hidden Markov model

    Directory of Open Access Journals (Sweden)

    Cheng Jianlin

    2008-03-01

    Full Text Available Abstract Background Profile Hidden Markov Model (HMM is a powerful statistical model to represent a family of DNA, RNA, and protein sequences. Profile HMM has been widely used in bioinformatics research such as sequence alignment, gene structure prediction, motif identification, protein structure prediction, and biological database search. However, few comprehensive, visual editing tools for profile HMM are publicly available. Results We develop a visual editor for profile Hidden Markov Models (HMMEditor. HMMEditor can visualize the profile HMM architecture, transition probabilities, and emission probabilities. Moreover, it provides functions to edit and save HMM and parameters. Furthermore, HMMEditor allows users to align a sequence against the profile HMM and to visualize the corresponding Viterbi path. Conclusion HMMEditor provides a set of unique functions to visualize and edit a profile HMM. It is a useful tool for biological sequence analysis and modeling. Both HMMEditor software and web service are freely available.

  6. Rain cell-based identification of the vertical profile of reflectivity as observed by weather radar and its use for precipitation uncertainty estimation

    Science.gov (United States)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Uijlenhoet, R.

    2012-04-01

    The wide scale implementation of weather radar systems over the last couple of decades has increased our understanding concerning spatio-temporal precipitation dynamics. However, the quantitative estimation of precipitation by these devices is affected by many sources of error. A very dominant source of error results from vertical variations in the hydrometeor size distribution known as the vertical profile of reflectivity (VPR). Since the height of the measurement as well as the beam volume increases with distance from the radar, for stratiform precipitation this results in a serious underestimation (overestimation) of the surface reflectivity while sampling within the snow (bright band) region. This research presents a precipitation cell-based implementation to correct volumetric weather radar measurements for VPR effects. Using the properties of a flipping carpenter square, a contour-based identification technique was developed, which is able to identify and track precipitation cells in real time, distinguishing between convective, stratiform and undefined precipitation. For the latter two types of systems, for each individual cell, a physically plausible vertical profile of reflectivity is estimated using a Monte Carlo optimization method. Since it can be expected that the VPR will vary within a given precipitation cell, a method was developed to take the uncertainty of the VPR estimate into account. As a result, we are able to estimate the amount of precipitation uncertainty as observed by weather radar due to VPR for a given precipitation type and storm cell. We demonstrate the possibilities of this technique for a number of winter precipitation systems observed within the Belgian Ardennes. For these systems, in general, the precipitation uncertainty estimate due to vertical reflectivity profile variations varies between 10-40%.

  7. Technical Note: Variance-covariance matrix and averaging kernels for the Levenberg-Marquardt solution of the retrieval of atmospheric vertical profiles

    Directory of Open Access Journals (Sweden)

    S. Ceccherini

    2010-03-01

    Full Text Available The variance-covariance matrix (VCM and the averaging kernel matrix (AKM are widely used tools to characterize atmospheric vertical profiles retrieved from remote sensing measurements. Accurate estimation of these quantities is essential for both the evaluation of the quality of the retrieved profiles and for the correct use of the profiles themselves in subsequent applications such as data comparison, data assimilation and data fusion. We propose a new method to estimate the VCM and AKM of vertical profiles retrieved using the Levenberg-Marquardt iterative technique. We apply the new method to the inversion of simulated limb emission measurements. Then we compare the obtained VCM and AKM with those resulting from other methods already published in the literature and with accurate estimates derived using statistical and numerical estimators. The proposed method accounts for all the iterations done in the inversion and provides the most accurate VCM and AKM. Furthermore, it correctly estimates the VCM and the AKM also if the retrieval iterations are stopped when a physically meaningful convergence criterion is fulfilled, i.e. before achievement of the numerical convergence at machine precision. The method can be easily implemented in any Levenberg-Marquardt iterative retrieval scheme, either constrained or unconstrained, without significant computational overhead.

  8. Psychological profile: the problem of modeling the unknown criminal personality

    Directory of Open Access Journals (Sweden)

    Г. М. Гетьман

    2013-10-01

    Full Text Available The article investigates the problem of modeling an unknown person in the preparation of criminal psychological profile. Some approaches to the concept of "psychological profile" and "psychological portrait", in particular the proposed delineation of these terms. We consider the system steps in the development of the psychological profile of an unknown perpetrator.

  9. Vertical profile of tropospheric ozone derived from synergetic retrieval using three different wavelength ranges, UV, IR, and microwave: sensitivity study for satellite observation

    Science.gov (United States)

    Sato, Tomohiro O.; Sato, Takao M.; Sagawa, Hideo; Noguchi, Katsuyuki; Saitoh, Naoko; Irie, Hitoshi; Kita, Kazuyuki; Mahani, Mona E.; Zettsu, Koji; Imasu, Ryoichi; Hayashida, Sachiko; Kasai, Yasuko

    2018-03-01

    We performed a feasibility study of constraining the vertical profile of the tropospheric ozone by using a synergetic retrieval method on multiple spectra, i.e., ultraviolet (UV), thermal infrared (TIR), and microwave (MW) ranges, measured from space. This work provides, for the first time, a quantitative evaluation of the retrieval sensitivity of the tropospheric ozone by adding the MW measurement to the UV and TIR measurements. Two observation points in East Asia (one in an urban area and one in an ocean area) and two observation times (one during summer and one during winter) were assumed. Geometry of line of sight was nadir down-looking for the UV and TIR measurements, and limb sounding for the MW measurement. The retrieval sensitivities of the ozone profiles in the upper troposphere (UT), middle troposphere (MT), and lowermost troposphere (LMT) were estimated using the degree of freedom for signal (DFS), the pressure of maximum sensitivity, reduction rate of error from the a priori error, and the averaging kernel matrix, derived based on the optimal estimation method. The measurement noise levels were assumed to be the same as those for currently available instruments. The weighting functions for the UV, TIR, and MW ranges were calculated using the SCIATRAN radiative transfer model, the Line-By-Line Radiative Transfer Model (LBLRTM), and the Advanced Model for Atmospheric Terahertz Radiation Analysis and Simulation (AMATERASU), respectively. The DFS value was increased by approximately 96, 23, and 30 % by adding the MW measurements to the combination of UV and TIR measurements in the UT, MT, and LMT regions, respectively. The MW measurement increased the DFS value of the LMT ozone; nevertheless, the MW measurement alone has no sensitivity to the LMT ozone. The pressure of maximum sensitivity value for the LMT ozone was also increased by adding the MW measurement. These findings indicate that better information on LMT ozone can be obtained by adding constraints

  10. Vertical profile of tropospheric ozone derived from synergetic retrieval using three different wavelength ranges, UV, IR, and microwave: sensitivity study for satellite observation

    Directory of Open Access Journals (Sweden)

    T. O. Sato

    2018-03-01

    Full Text Available We performed a feasibility study of constraining the vertical profile of the tropospheric ozone by using a synergetic retrieval method on multiple spectra, i.e., ultraviolet (UV, thermal infrared (TIR, and microwave (MW ranges, measured from space. This work provides, for the first time, a quantitative evaluation of the retrieval sensitivity of the tropospheric ozone by adding the MW measurement to the UV and TIR measurements. Two observation points in East Asia (one in an urban area and one in an ocean area and two observation times (one during summer and one during winter were assumed. Geometry of line of sight was nadir down-looking for the UV and TIR measurements, and limb sounding for the MW measurement. The retrieval sensitivities of the ozone profiles in the upper troposphere (UT, middle troposphere (MT, and lowermost troposphere (LMT were estimated using the degree of freedom for signal (DFS, the pressure of maximum sensitivity, reduction rate of error from the a priori error, and the averaging kernel matrix, derived based on the optimal estimation method. The measurement noise levels were assumed to be the same as those for currently available instruments. The weighting functions for the UV, TIR, and MW ranges were calculated using the SCIATRAN radiative transfer model, the Line-By-Line Radiative Transfer Model (LBLRTM, and the Advanced Model for Atmospheric Terahertz Radiation Analysis and Simulation (AMATERASU, respectively. The DFS value was increased by approximately 96, 23, and 30 % by adding the MW measurements to the combination of UV and TIR measurements in the UT, MT, and LMT regions, respectively. The MW measurement increased the DFS value of the LMT ozone; nevertheless, the MW measurement alone has no sensitivity to the LMT ozone. The pressure of maximum sensitivity value for the LMT ozone was also increased by adding the MW measurement. These findings indicate that better information on LMT ozone can be obtained by adding

  11. Economic Integration and Quality Standards in a Duopoly Model with Horizontal and Vertical Product Differentiation

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Ulff-Møller; Hansen, Jørgen Drud

    This paper examines the effects of trade barriers on quality levels in a duopoly model for two countries with one producer in each country. The products are both vertically and horizontally differentiated. In absence of quality regulation, the two producers determine prices and quality levels...... standards are also ambiguous depending on the parameters of the model. Keywords: Vertical product differentiation; horizontal product differentiation; market integration; duopoly; minimum quality standard. JEL: F12, F13, F14....... product. On the unregulated markets, integration increases welfare in both countries if they are almost of similar size. However, if the countries are very asymmetrical with respect to size, market integration may harm welfare in the large country. Welfare effects by introduction of minimum quality...

  12. Mathematically modelling the power requirement for a vertical shaft mowing machine

    Directory of Open Access Journals (Sweden)

    Jorge Simón Pérez de Corcho Fuentes

    2008-09-01

    Full Text Available This work describes a mathematical model for determining the power demand for a vertical shaft mowing machine, particularly taking into account the influence of speed on cutting power, which is different from that of other models of mowers. The influence of the apparatus’ rotation and translation speeds was simulated in determining power demand. The results showed that no chan-ges in cutting power were produced by varying the knives’ angular speed (if translation speed was constant, while cutting power became increased if translation speed was increased. Variations in angular speed, however, influenced other parameters deter-mining total power demand. Determining this vertical shaft mower’s cutting pattern led to obtaining good crop stubble quality at the mower’s lower rotation speed, hence reducing total energy requirements.

  13. Modelling of the urban wind profile

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina

    2008-01-01

    Analysis of meteorological measurements from tall masts in rural and urban areas show that the height of the boundary layer influences the wind profile even in the lowest hundreds of meters. A parameterization of the wind profile for the entire boundary layer is formulated with emphasis on the lo...

  14. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  15. A dynamic optimization model of the diel vertical distribution of a pelagic planktivorous fish

    Science.gov (United States)

    Rosland, Rune; Giske, Jarl

    A stochastic dynamic optimization model for the diel depth distribution of juveniles and adults of the mesopelagic planktivore Maurolicus muelleri (Gmelin) is developed and used for a winter situation. Observations from Masfjorden, western Norway, reveal differences in vertical distribution, growth and mortality between juveniles and adults in January. Juveniles stay within the upper 100m with high feeding rates, while adults stay within the 100-150m zone with very low feeding rates during the diel cycle. The difference in depth profitability is assumed to be caused by age-dependent processes, and are calculated from a mechanistic model for visual feeding. The environment is described as a set of habitats represented by discrete depth intervals along the vertical axis, differing with respect to light intensity, food abundance, predation risk and temperature. The short time interval (24h) allows fitness to be linearly related to growth (feeding), assuming that growth increases the future reproductive output of the fish. Optimal depth position is calculated from balancing feeding opportunity against mortality risk, where the fitness reward gained by feeding is weighted against the danger of being killed by a predator. A basic run is established, and the model is validated by comparing predictions and observations. The sensitivity for different parameter values is also tested. The modelled vertical distributions and feeding patterns of juvenile and adult fish correspond well with the observations, and the assumption of age differences in mortality-feeding trade-offs seems adequate to explain the different depth profitability of the two age groups. The results indicate a preference for crepuscular feeding activity of the juveniles, and the vertical distribution of zooplankton seems to be the most important environmental factor regulating the adult depth position during the winter months in Masfjorden.

  16. Analysis of a general age-dependent vaccination model for a vertically transmitted disease

    International Nuclear Information System (INIS)

    El Doma, M.

    1995-05-01

    A SIR epidemic model of a general age-dependent vaccination for a vertically as well as horizontally transmitted disease is investigated when the total population is time dependent, and fertility, mortality and removal rates depend on age. We establish the existence and the uniqueness of the solution and obtain the asymptotic behaviour for the solution. For the steady state solution a critical vaccination coverage which will eventually eradicate the disease is determined. (author). 18 refs

  17. Positioning for capitation in long-term care: a profile of vertical integration strategies in health and social service organizations.

    Science.gov (United States)

    Walsh, A M

    1998-01-01

    During the next decade, the population over age 65 is expected to increase by 11% while the population over age 85 is expected to increase by 42%. These projections suggest that many organizations which currently provide services to the aged will be required to design a range of new products and services for this diverse population. Vertically integrated services provide a viable opportunity to competitively position an organization to respond to the diverse needs of an aged market. Since vertical integration will be essential in negotiating capitate contracts for the aged in the future, this study examined the extent of vertical integration in 116 health and social service organizations in an urban market with an expanding geriatric population.

  18. A Co-Opetitive Automated Negotiation Model for Vertical Allied Enterprises Teams and Stakeholders

    Directory of Open Access Journals (Sweden)

    Taiguang Gao

    2018-04-01

    Full Text Available Upstream and downstream of supply chain enterprises often form a tactic vertical alliance to enhance their operational efficiency and maintain their competitive edges in the market. Hence, it is critical for an alliance to collaborate over their internal resources and resolve the profit conflicts among members, so that the functionality required by stakeholders can be fulfilled. As an effective solution, automated negotiation for the vertical allied enterprises team and stakeholder will sufficiently make use of emerging team advantages and significantly reduce the profit conflicts in teams with grouping decisions rather than unilateral decisions by some leader. In this paper, an automated negotiation model is designed to describe both the collaborative game process among the team members and the competitive negotiation process between the allied team and the stakeholder. Considering the co-competitiveness of the vertical allied team, the designed model helps the team members making decision for their own sake, and the team counter-offers for the ongoing negotiation are generated with non-cooperative game process, where the profit derived from negotiation result is distributed with Shapley value method according to contribution or importance contributed by each team member. Finally, a case study is given to testify the effectiveness of the designed model.

  19. Modeling on bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng

    2011-01-01

    A theoretical model was developed to predict the bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel. The model was developed based on the imbalance theory of Helmholtz and some reasonable assumptions. The maximum ideal bubble in narrow rectangular channel and the thermal hydraulics boundary condition leading to bubbly flow to churn flow pattern transition was calculated. The model was validated by experimental data from previous researches. Comparison between predicted result and experimental result shows a reasonable good agreement. (author)

  20. Modeling and experimental study of resistive switching in vertically aligned carbon nanotubes

    Science.gov (United States)

    Ageev, O. A.; Blinov, Yu F.; Ilina, M. V.; Ilin, O. I.; Smirnov, V. A.

    2016-08-01

    Model of the resistive switching in vertically aligned carbon nanotube (VA CNT) taking into account the processes of deformation, polarization and piezoelectric charge accumulation have been developed. Origin of hysteresis in VA CNT-based structure is described. Based on modeling results the VACNTs-based structure has been created. The ration resistance of high-resistance to low-resistance states of the VACNTs-based structure amounts 48. The correlation the modeling results with experimental studies is shown. The results can be used in the development nanoelectronics devices based on VA CNTs, including the nonvolatile resistive random-access memory.

  1. Modeling and experimental study of resistive switching in vertically aligned carbon nanotubes

    International Nuclear Information System (INIS)

    Ageev, O A; Blinov, Yu F; Ilina, M V; Ilin, O I; Smirnov, V A

    2016-01-01

    Model of the resistive switching in vertically aligned carbon nanotube (VA CNT) taking into account the processes of deformation, polarization and piezoelectric charge accumulation have been developed. Origin of hysteresis in VA CNT-based structure is described. Based on modeling results the VACNTs-based structure has been created. The ration resistance of high-resistance to low-resistance states of the VACNTs-based structure amounts 48. The correlation the modeling results with experimental studies is shown. The results can be used in the development nanoelectronics devices based on VA CNTs, including the nonvolatile resistive random-access memory. (paper)

  2. A geodesic atmospheric model with a quasi-Lagrangian vertical coordinate

    International Nuclear Information System (INIS)

    Heikes, Ross; Konor, Celal; Randall, David A

    2006-01-01

    The development of the Coupled Colorado State Model (CCoSM) is ultimately motivated by the need to predict and study climate change. All components of CCoSM innovatively blend unique design ideas and advanced computational techniques. The atmospheric model combines a geodesic horizontal grid with a quasi-Lagrangian vertical coordinate to improve the quality of simulations, particularly that of moisture and cloud distributions. Here we briefly describe the dynamical core, physical parameterizations and computational aspects of the atmospheric model, and present our preliminary numerical results. We also briefly discuss the rational behind our design choices and selection of computational techniques

  3. Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-02-01

    Full Text Available The complex unsteady aerodynamics of vertical axis wind turbines (VAWT poses significant challenges to the simulation tools. Dynamic stall is one of the phenomena associated with the unsteady conditions for VAWTs, and it is in the focus of the study. Two dynamic stall models are compared: the widely-used Gormont model and a Leishman–Beddoes-type model. The models are included in a double multiple streamtube model. The effects of flow curvature and flow expansion are also considered. The model results are assessed against the measured data on a Darrieus turbine with curved blades. To study the dynamic stall effects, the comparison of force coefficients between the simulations and experiments is done at low tip speed ratios. Simulations show that the Leishman–Beddoes model outperforms the Gormont model for all tested conditions.

  4. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    Science.gov (United States)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  5. A Polytime Algorithm Based on a Primal LP Model for the Scheduling Problem 1 vertical bar pmtn;p(j)=2;r(j)vertical bar Sigma w(j)C(j)

    NARCIS (Netherlands)

    Bouma, Harmen W.; Goldengorin, Boris; Lagakos, S; Perlovsky, L; Jha, M; Covaci, B; Zaharim, A; Mastorakis, N

    2009-01-01

    In this paper a Boolean Linear Programming (BLP) model is presented for the single machine scheduling problem 1 vertical bar pmtn; p(j) = 2;r(j)vertical bar Sigma w(j)C(j). The problem is a special case of the open problem 1 vertical bar pmtn; p(j) = p; r(j)vertical bar Sigma wj(g)C(j). We show that

  6. Wind lidar profile measurements in the coastal boundary layer: comparison with WRF modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Pena Diaz, Alfredo; Vincent, Claire Louise

    2012-01-01

    the sensitivity of PBL schemes of mesoscale models to both lower and upper boundary conditions. We therefore run the mesoscale weather research and forecasting (WRF) model using two different roughness descriptions, two different synoptic forcings and two different PBL schemes at two vertical resolutions. When...... in the amount of observed low level jet. The wind speed predicted by WRF does not improve when a higher resolution is used. Therefore, both the inhomogeneous (westerly) and homogeneous (easterly) flow contribute to a large negative bias in the mean wind speed profile at heights between 100 and 200 m....

  7. "Atmospheric Measurements by Ultra-Light SpEctrometer" (AMULSE) dedicated to vertical profile measurements of greenhouse gases (CO2, CH4) under stratospheric balloons: instrumental development and field application.

    Science.gov (United States)

    Maamary, Rabih; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albora, Grégory; Chauvin, Nicolas; Miftah-El-Khair, Zineb; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Moulin, Eric; Ramonet, Michel; Bréon, François-Marie; Durry, Georges

    2016-04-01

    Human activities disrupt natural biogeochemical cycles such as the carbon and contribute to an increase in the concentrations of the greenhouse gases (carbone dioxide and methane) in the atmosphere. The current atmospheric transport modeling (the vertical trade) still represents an important source of uncertainty in the determination of regional flows of greenhouse gases, which means that a good knowledge of the vertical distribution of CO2 is necessary to (1) make the link between the ground measurements and spatial measurements that consider an integrated concentration over the entire column of the atmosphere, (2) validate and if possible improve CO2 transport model to make the link between surface emissions and observed concentration. The aim of this work is to develop a lightweight instrument (based on mid-infrared laser spectrometry principles) for in-situ measuring at high temporal/spatial resolution (5 Hz) the vertical profiles of the CO2 and the CH4 using balloons (meteorological and BSO at high precision levels (costs and logistics flights. These laser spectrometers are built on recent instrumental developments. Several flights were successfully done in the region Champagne-Ardenne and in Canada recently. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS défi instrumental and the region Champagne-Ardenne.

  8. A simple steady state model of the distribution of vertical temperature in broiler houses without internal air circulation

    NARCIS (Netherlands)

    Beek, van G.; Beeking, F.F.E.

    1995-01-01

    1. The vertical temperature profile in a broiler house depends on several factors: ground temperature, heat production by the birds, heating of litter by resting birds, stratification and radiation, microbial heat production in the litter, moisture loss from litter and natural convection around the

  9. A model for the performance of a vertical tube condenser in the presence of noncondensable gases

    Energy Technology Data Exchange (ETDEWEB)

    Guentay, A.D.S.

    1995-09-01

    Some proposed vertical tube condensers are designed to operate at high noncondensable fractions, which warrants a simple model to predict their performance. Models developed thus far are usually non self-contained as they require the specification of the wall temperature to predict the local condensation rate. The present model attempts to fill this gap by addressing the secondary side heat transfer as well. Starting with momentum balance which includes the effect of interfacial shear stress, a Nusselt-type algebraic equation is derived for the film thickness as a function of flow and geometry parameters. The heat and mass transfer analogy relations are then invoked to deduce the condensation rate of steam onto the tube wall. Lastly, the heat transfer to the secondary side is modelled to include cooling by forced, free or mixed convection flows. The model is used for parametric simulations to determine the impact on the condenser performance of important factors such as the inlet gas fraction, the mixture inlet flowrate, the total pressure, and the molecular weight of the noncondensable gas. The model performed simulations of some experiments with pure steam and air-steam mixtures flowing down a vertical tube. The model predicts the data quite well.

  10. A nodal model to predict vertical temperature distribution in a room with floor heating and displacement ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2013-01-01

    In this paper, the development of a nodal model that predicts vertical temperature distribution in a typical office room with floor heating and displacement ventilation (FHDV) is described. The vertical air flow distribution is first determined according to the principle of displacement ventilati...

  11. Vertical-borehole ground-coupled heat pumps: A review of models and systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Cui, P. [Renewable Energy Research Group, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Fang, Z. [Ground Source Heat Pump Research Center, Shandong Jianzhu University, Jinan (China)

    2010-01-15

    A large number of ground-coupled heat pump (GCHP) systems have been used in residential and commercial buildings throughout the world due to the attractive advantages of high efficiency and environmental friendliness. This paper gives a detailed literature review of the research and developments of the vertical-borehole GCHP technology for applications in air-conditioning. A general introduction on the ground source heat pump system and its development is briefly presented first. Then, the most typical simulation models of the vertical ground heat exchangers currently available are summarized in detail including the heat transfer processes outside and inside the boreholes. The various design/simulation programs for vertical GCHP systems primarily based on the typical simulation models are also reviewed in this paper. Finally, the various hybrid GCHP systems for cooling or heating-dominated buildings are well described. It is found that the GCHP technology can be used both in cold and hot weather areas and the energy saving potential is significant. (author)

  12. An analytical model for the vertical electric field distribution and optimization of high voltage REBULF LDMOS

    International Nuclear Information System (INIS)

    Hu Xia-Rong; Lü Rui

    2014-01-01

    In this paper, an analytical model for the vertical electric field distribution and optimization of a high voltage-reduced bulk field (REBULF) lateral double-diffused metal—oxide-semiconductor (LDMOS) transistor is presented. The dependences of the breakdown voltage on the buried n-layer depth, thickness, and doping concentration are discussed in detail. The REBULF criterion and the optimal vertical electric field distribution condition are derived on the basis of the optimization of the electric field distribution. The breakdown voltage of the REBULF LDMOS transistor is always higher than that of a single reduced surface field (RESURF) LDMOS transistor, and both analytical and numerical results show that it is better to make a thick n-layer buried deep into the p-substrate. (interdisciplinary physics and related areas of science and technology)

  13. Supermatrix models for M-theory based on osp(1 vertical bar 32, R)

    International Nuclear Information System (INIS)

    Bagnoud, Maxime; Carlevaro, Luca; Bilal, Adel

    2002-01-01

    Taking seriously the hypothesis that the full symmetry algebra of M-theory is osp(1 vertical bar 32, R), we derive the supersymmetry transformations for all fields that appear in 11- and 12-dimensional realizations and give the associated SUSY algebras. We study the background-independent osp(1 vertical bar 32, R) cubic matrix model action expressed in terms of representations of the Lorentz groups SO(10,2) and SO(10,1). We explore further the 11-dimensional case and compute an effective action for the BFSS-like degrees of freedom. We find the usual BFSS action with additional terms incorporating couplings to transverse 5-branes, as well as a mass-term and an infinite tower of higher-order interactions

  14. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances

    Directory of Open Access Journals (Sweden)

    D. Noone

    2012-02-01

    Full Text Available Thermal infrared (IR radiances measured near 8 microns contain information about the vertical distribution of water vapor (H2O, the water isotopologue HDO, and methane (CH4, key gases in the water and carbon cycles. Previous versions (Version 4 or less of the TES profile retrieval algorithm used a "spectral-window" approach to minimize uncertainty from interfering species at the expense of reduced vertical resolution and sensitivity. In this manuscript we document changes to the vertical resolution and uncertainties of the TES version 5 retrieval algorithm. In this version (Version 5, joint estimates of H2O, HDO, CH4 and nitrous oxide (N2O are made using radiances from almost the entire spectral region between 1100 cm−1 and 1330 cm−1. The TES retrieval constraints are also modified in order to better use this information. The new H2O estimates show improved vertical resolution in the lower troposphere and boundary layer, while the new HDO/H2O estimates can now profile the HDO/H2O ratio between 925 hPa and 450 hPa in the tropics and during summertime at high latitudes. The new retrievals are now sensitive to methane in the free troposphere between 800 and 150 mb with peak sensitivity near 500 hPa; whereas in previous versions the sensitivity peaked at 200 hPa. However, the upper troposphere methane concentrations are biased high relative to the lower troposphere by approximately 4% on average. This bias is likely related to temperature, calibration, and/or methane spectroscopy errors. This bias can be mitigated by normalizing the CH4 estimate by the ratio of the N2O estimate relative to the N2O prior, under the assumption that the same systematic error affects both the N2O and CH4 estimates. We demonstrate that applying this ratio theoretically reduces the CH4 estimate for non-retrieved parameters that jointly affect both the N2O and CH4 estimates. The relative upper troposphere to lower troposphere bias is approximately 2.8% after this bias

  15. A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Soledad Le Clainche

    2018-03-01

    Full Text Available We develop a reduced order model to represent the complex flow behaviour around vertical axis wind turbines. First, we simulate vertical axis turbines using an accurate high order discontinuous Galerkin–Fourier Navier–Stokes Large Eddy Simulation solver with sliding meshes and extract flow snapshots in time. Subsequently, we construct a reduced order model based on a high order dynamic mode decomposition approach that selects modes based on flow frequency. We show that only a few modes are necessary to reconstruct the flow behaviour of the original simulation, even for blades rotating in turbulent regimes. Furthermore, we prove that an accurate reduced order model can be constructed using snapshots that do not sample one entire turbine rotation (but only a fraction of it, which reduces the cost of generating the reduced order model. Additionally, we compare the reduced order model based on the high order Navier–Stokes solver to fast 2D simulations (using a Reynolds Averaged Navier–Stokes turbulent model to illustrate the good performance of the proposed methodology.

  16. Superstring sigma models from spin chains: the SU(1,1 vertical bar 1) case

    International Nuclear Information System (INIS)

    Bellucci, S.; Casteill, P.-Y.; Morales, J.F.

    2005-01-01

    We derive the coherent state representation of the integrable spin chain Hamiltonian with non-compact supersymmetry group G=SU(1,1 vertical bar 1). By passing to the continuous limit, we find a spin chain sigma model describing a string moving on the supercoset G/H, H being the stabilizer group. The action is written in a manifestly G-invariant form in terms of the Cartan forms and the string coordinates in the supercoset. The spin chain sigma model is shown to agree with that following from the Green-Schwarz action describing two-charged string spinning on AdS 5 xS 5

  17. CFD-model of the mass transfer in the vertical settler

    Directory of Open Access Journals (Sweden)

    E. K. Nagornaya

    2013-02-01

    Full Text Available Purpose. Nowadays the mathematical models of the secondary settlers are intensively developed. As a rule the engineers use the 0-D models or 1-D models to design settlers. But these models do not take into account the hydrodynamics process inside the settler and its geometrical form. That is why the CFD-models based on Navier - Stokes equations are not widely used in practice now. The use of CFD-models based on Navier - Stokes equations needs to incorporate very refine grid. It is very actually now to develop the CFD-models which permit to take into account the geometrical form of the settler, the most important physical processes and needs small computer time for calculation. That is why the development of the 2-D numerical model for the investigation of the waste waters transfer in the vertical settlers which permits to take into account the geometrical form and the constructive features of the settler is essential. Methodology. The finite - difference schemes are applied. Findings. The new 2-D-CFD-model was developed, which permits to perform the CFD investigation of the vertical settler. This model takes into account the geometrical form of the settler, the central pipe inside it and others peculiarities. The method of «porosity technique» is used to create the geometrical form of the settler in the numerical model. This technique permits to build any geometrical form of the settler for CFD investigation. Originality. Making of CFD-model which permits on the one hand to take into account the geometrical form of the settler, basic physical processes of mass transfer in construction and on the other hand requiring the low time cost in order to obtain results. Practical value. CFD-model is designed and code which is constructed on its basis allows at low cost of computer time and about the same as in the calculation of the 1-D model to solve complex multiparameter problems that arise during the design of vertical settlers with their shape and

  18. Vertical repositioning accuracy of magnetic mounting systems on 4 articulator models.

    Science.gov (United States)

    Lee, Wonsup; Kwon, Ho-Beom

    2018-03-01

    magnetic mounting plate after repositioning did not maintain an identical position in the vertical dimension on any of the 4 articulator models tested. The repositioning accuracy of the mounting plates showed significant differences among the articulators tested in this study. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. OPTIMAL MODEL OF FUNCTIONING OF OLERICULTURE: VERTICAL INTEGRATION, AGRICULTURAL FILIERES, CLUSTERS

    Directory of Open Access Journals (Sweden)

    Y. B. Mindlin

    2016-01-01

    Full Text Available The goal of the present paper is to identify the optimal strategy of development of the Russian olericulture in order to substitute imported products and to build up logistic and transport infrastructure. Existing problems of the Russian olericulture are described. It is demonstrated that these problems can be solved on the basis of big integrated structures. Formation of these structures can be based on hierarchical (vertical  integration or networking (agricultural filieres or clusters models. A comparative analysis of these models of development of olericulture is made. Advantages and inconveniences of each model are described. It is demonstrated that sustainable development of the Russian olericulture can be insured only by a combination of hierarchical and networking tools. Vertical integration will help to reach quick increase of production, while networking models are necessary for inclusion of small producers into production chains, development of product range and development of supporting industries. Networking models are also necessary for social tasks. It means that the optimal strategy of development of the  Russian olericulture should be based on a combination of networking and hierarchical tools. This combination is necessary for agricultural corporation as well as for the Russian olericulture in general.

  20. Formation of vertically aligned carbon nanostructures in plasmas: numerical modelling of growth and energy exchange

    Energy Technology Data Exchange (ETDEWEB)

    Denysenko, I; Azarenkov, N A, E-mail: idenysenko@yahoo.com [School of Physics and Technology, V N Karazin Kharkiv National University, 4 Svobody sq., 61077 Kharkiv (Ukraine)

    2011-05-04

    Results on modelling of the plasma-assisted growth of vertically aligned carbon nanostructures and of the energy exchange between the plasma and the growing nanostructures are reviewed. Growth of carbon nanofibres and single-walled carbon nanotubes is considered. Focus is made on studies that use the models based on mass balance equations for species, which are adsorbed on catalyst nanoparticles or walls of the nanostructures. It is shown that the models can be effectively used for the study and optimization of nanostructure growth in plasma-enhanced chemical vapour deposition. The results from these models are in good agreement with the available experimental data on the growth of nanostructures. It is discussed how input parameters for the models may be obtained.

  1. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    Directory of Open Access Journals (Sweden)

    A. Gallice

    2011-10-01

    Full Text Available A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30–35 km altitude is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s−1 in the troposphere and 0.2 m s−1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects

  2. Vega-1 and Vega-2: vertical profiles of wind velocity according to Doppler measurements data at landing spacecrafts

    International Nuclear Information System (INIS)

    Kerzhanovich, V.V.; Antsibor, N.M.; Bakit'ko, R.V.

    1987-01-01

    Results of the measurements of the Venus atmosphere vertical motion using the ''Vega'' landing spacecrafts are presented. Signal emitted by the landing spacecraft transmitter was received by flying apparatus and retranslated to the Earth. The difference between the measured frequency of the retranslated signal and reference one (Doppler's shift) permitted to determine the velocity of the landing spacecraft with the accuracy of 2 cm/s with the pitch of 1 s

  3. Modelling of NSTX hot vertical displacement events using M 3 D -C 1

    Science.gov (United States)

    Pfefferlé, D.; Ferraro, N.; Jardin, S. C.; Krebs, I.; Bhattacharjee, A.

    2018-05-01

    The main results of an intense vertical displacement event (VDE) modelling activity using the implicit 3D extended MHD code M3D-C1 are presented. A pair of nonlinear 3D simulations are performed using realistic transport coefficients based on the reconstruction of a so-called NSTX frozen VDE where the feedback control was purposely switched off to trigger a vertical instability. The vertical drift phase is solved assuming axisymmetry until the plasma contacts the first wall, at which point the intricate evolution of the plasma, decaying to large extent in force-balance with induced halo/wall currents, is carefully resolved via 3D nonlinear simulations. The faster 2D nonlinear runs allow to assess the sensitivity of the simulations to parameter changes. In the limit of perfectly conducting wall, the expected linear relation between vertical growth rate and wall resistivity is recovered. For intermediate wall resistivities, the halo region contributes to slowing the plasma down, and the characteristic VDE time depends on the choice of halo temperature. The evolution of the current quench and the onset of 3D halo/eddy currents are diagnosed in detail. The 3D simulations highlight a rich structure of toroidal modes, penetrating inwards from edge to core and cascading from high-n to low-n mode numbers. The break-up of flux-surfaces results in a progressive stochastisation of field-lines precipitating the thermalisation of the plasma with the wall. The plasma current then decays rapidly, inducing large currents in the halo region and the wall. Analysis of normal currents flowing in and out of the divertor plate reveals rich time-varying patterns.

  4. Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO

    Science.gov (United States)

    Reffray, G.; Bourdalle-Badie, R.; Calone, C.

    2015-01-01

    Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k+l from Blanke and Delecluse, 1993, and two equation models: generic length scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a 1-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However, the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (PAPA">http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.

  5. Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine.

    Science.gov (United States)

    Bachant, Peter; Wosnik, Martin; Gunawan, Budi; Neary, Vincent S

    The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy's Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor's angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor's NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case-a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding-responsible for mean vertical advection-and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available.

  6. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.

    2014-05-04

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  7. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.; Jackson, Charles S.; Yao, Fengchao; Zedler, Sarah; Hoteit, Ibrahim

    2014-01-01

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  8. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.

    Science.gov (United States)

    Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang

    2018-01-01

    The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.

  9. Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM

    Directory of Open Access Journals (Sweden)

    U. Karstens

    2012-03-01

    Full Text Available One of the dominant uncertainties in inverse estimates of regional CO2 surface-atmosphere fluxes is related to model errors in vertical transport within the planetary boundary layer (PBL. In this study we present the results from a synthetic experiment using the atmospheric model WRF-VPRM to realistically simulate transport of CO2 for large parts of the European continent at 10 km spatial resolution. To elucidate the impact of vertical mixing error on modeled CO2 mixing ratios we simulated a month during the growing season (August 2006 with different commonly used parameterizations of the PBL (Mellor-Yamada-Janjić (MYJ and Yonsei-University (YSU scheme. To isolate the effect of transport errors we prescribed the same CO2 surface fluxes for both simulations. Differences in simulated CO2 mixing ratios (model bias were on the order of 3 ppm during daytime with larger values at night. We present a simple method to reduce this bias by 70–80% when the true height of the mixed layer is known.

  10. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng

    2012-09-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users\\' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users\\' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  11. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng; Masseglia, Florent; Zhang, Xiangliang

    2012-01-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  12. Influence of an urban canopy model and PBL schemes on vertical mixing for air quality modeling over Greater Paris

    Science.gov (United States)

    Kim, Youngseob; Sartelet, Karine; Raut, Jean-Christophe; Chazette, Patrick

    2015-04-01

    Impacts of meteorological modeling in the planetary boundary layer (PBL) and urban canopy model (UCM) on the vertical mixing of pollutants are studied. Concentrations of gaseous chemical species, including ozone (O3) and nitrogen dioxide (NO2), and particulate matter over Paris and the near suburbs are simulated using the 3-dimensional chemistry-transport model Polair3D of the Polyphemus platform. Simulated concentrations of O3, NO2 and PM10/PM2.5 (particulate matter of aerodynamic diameter lower than 10 μm/2.5 μm, respectively) are first evaluated using ground measurements. Higher surface concentrations are obtained for PM10, PM2.5 and NO2 with the MYNN PBL scheme than the YSU PBL scheme because of lower PBL heights in the MYNN scheme. Differences between simulations using different PBL schemes are lower than differences between simulations with and without the UCM and the Corine land-use over urban areas. Regarding the root mean square error, the simulations using the UCM and the Corine land-use tend to perform better than the simulations without it. At urban stations, the PM10 and PM2.5 concentrations are over-estimated and the over-estimation is reduced using the UCM and the Corine land-use. The ability of the model to reproduce vertical mixing is evaluated using NO2 measurement data at the upper air observation station of the Eiffel Tower, and measurement data at a ground station near the Eiffel Tower. Although NO2 is under-estimated in all simulations, vertical mixing is greatly improved when using the UCM and the Corine land-use. Comparisons of the modeled PM10 vertical distributions to distributions deduced from surface and mobile lidar measurements are performed. The use of the UCM and the Corine land-use is crucial to accurately model PM10 concentrations during nighttime in the center of Paris. In the nocturnal stable boundary layer, PM10 is relatively well modeled, although it is over-estimated on 24 May and under-estimated on 25 May. However, PM10 is

  13. Long-term MST radar observations of vertical wave number spectra of gravity waves in the tropical troposphere over Gadanki (13.5° N, 79.2° E: comparison with model spectra

    Directory of Open Access Journals (Sweden)

    S. Vijaya Bhaskara Rao

    2008-06-01

    Full Text Available The potential utility of Mesosphere-Stratosphere-Troposphere (MST radar measurements of zonal, meridional and vertical winds for divulging the gravity wave vertical wave number spectra is discussed. The data collected during the years 1995–2004 are used to obtain the mean vertical wave number spectra of gravity wave kinetic energy in the tropical troposphere over Gadanki (13.5° N, 79.2° E. First, the climatology of 3-dimensional wind components is developed using ten years of radar observations, for the first time, over this latitude. This climatology brought out the salient features of background tropospheric winds over Gadanki. Further, using the second order polynomial fit as background, the day-to-day wind anomalies are estimated. These wind anomalies in the 4–14 km height regions are used to estimate the profiles of zonal, meridional and vertical kinetic energy per unit mass, which are then used to estimate the height profile of total kinetic energy. Finally, the height profiles of total kinetic energy are subjected to Fourier analysis to obtain the monthly mean vertical wave number spectra of gravity wave kinetic energy. The monthly mean vertical wave number spectra are then compared with a saturation spectrum predicted by gravity wave saturation theory. A slope of 5/3 is used for the model gravity wave spectrum estimation. In general, the agreement is good during all the months. However, it is noticed that the model spectrum overestimates the PSD at lower vertical wave numbers and underestimates it at higher vertical wave numbers, which is consistently observed during all the months. The observed discrepancies are attributed to the differences in the slopes of theoretical and observed gravity wave spectra. The slopes of the observed vertical wave number spectra are estimated and compared with the model spectrum slope, which are in good agreement. The estimated slopes of the observed monthly vertical wave number spectra are in the

  14. A Computation Fluid Dynamic Model for Gas Lift Process Simulation in a Vertical Oil Well

    Directory of Open Access Journals (Sweden)

    Kadivar Arash

    2017-03-01

    Full Text Available Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.

  15. Integration of MATLAB Simulink(Registered Trademark) Models with the Vertical Motion Simulator

    Science.gov (United States)

    Lewis, Emily K.; Vuong, Nghia D.

    2012-01-01

    This paper describes the integration of MATLAB Simulink(Registered TradeMark) models into the Vertical Motion Simulator (VMS) at NASA Ames Research Center. The VMS is a high-fidelity, large motion flight simulator that is capable of simulating a variety of aerospace vehicles. Integrating MATLAB Simulink models into the VMS needed to retain the development flexibility of the MATLAB environment and allow rapid deployment of model changes. The process developed at the VMS was used successfully in a number of recent simulation experiments. This accomplishment demonstrated that the model integrity was preserved, while working within the hard real-time run environment of the VMS architecture, and maintaining the unique flexibility of the VMS to meet diverse research requirements.

  16. Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles

    Science.gov (United States)

    Todd Clancy, R.; Smith, Michael D.; Lefèvre, Franck; McConnochie, Timothy H.; Sandor, Brad J.; Wolff, Michael J.; Lee, Steven W.; Murchie, Scott L.; Toigo, Anthony D.; Nair, Hari; Navarro, Thomas

    2017-09-01

    Since July of 2009, The Compact Reconnaissance Imaging Spectral Mapper (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) has periodically obtained pole-to-pole observations (i.e., full MRO orbits) of limb scanned visible/near IR spectra (λ = 0.4 - 4.0 μ m, △λ ∼ 10 nm- Murchie et al., 2007). These CRISM limb observations support the first seasonally and spatially extensive set of Mars 1.27 μm O2(1△g) dayglow profile retrievals (∼ 1100) over ≥ 8-80 km altitudes. Their comparison to Laboratoire de Météorologie Dynamique (LMD) global climate model (GCM) simulated O2(1△g) volume emission rate (VER) profiles, as a function of altitude, latitude, and season (solar longitude, Ls), supports several key conclusions regarding Mars atmospheric water vapor (which is derived from O2(1△g) emission rates), Mars O3, and the collisional de-excitation of O2(1△g) in the Mars CO2 atmosphere. Current (Navarro et al., 2014) LMDGCM simulations of Mars atmospheric water vapor fall 2-3 times below CRISM derived water vapor abundances at 20-40 km altitudes over low-to-mid latitudes in northern spring (Ls = 30-60°), and northern mid-to-high latitudes over northern summer (Ls = 60-140°). In contrast, LMDGCM simulated water vapor is 2-5 times greater than CRISM derived values at all latitudes and seasons above 40 km, within the aphelion cloud belt (ACB), and over high-southern to mid-southern latitudes in southern summer (Ls = 190-340°) at 15-35 km altitudes. Overall, the solstitial summer-to-winter hemisphere gradients in water vapor are reversed between the LMDGCM modeled versus the CRISM derived water vapor abundances above 10-30 km altitudes. LMDGCM-CRISM differences in water vapor profiles correlate with LMDGCM-CRISM differences in cloud mixing profiles; and likely reflect limitations in simulating cloud microphysics and radiative forcing, both of which restrict meridional transport of water from summer-to-winter hemispheres on Mars (Clancy et al., 1996

  17. CFD modeling of a vertical-axis wind turbine for efficiency improvement and climate change mitigation

    International Nuclear Information System (INIS)

    Ajedegba, J.O.; Rosen, M.A.; Naterer, G.F.; Tsang, E.

    2009-01-01

    Wind power can help mitigate climate change. Computational fluid dynamics (CFD) is used here to simulate and analyze the Zephyr vertical axis wind turbine and to assess how it reduces greenhouse gas emissions. Fluid flow through the turbine is simulated to predict its performance. A multiple reference frame model capability of CFD is used to express the turbine power output as a function of the wind free stream velocity and the rotor rotational speed. The results suggest the wind turbine could significantly reduce energy demand and greenhouse gas emissions in urban and rural settings relative to conventional power systems. (author)

  18. Economic Integration and Quality Standards in a Duopoly Model with Horizontal and Vertical Product Differentiation

    DEFF Research Database (Denmark)

    Hansen, Jørgen Drud; Nielsen, Jørgen Ulff-Møller

    2006-01-01

    This paper examines the effects of trade barriers on quality levels in a duopoly model for two countries with one producer in each country. The products are both vertically and horizontally differentiated. In absence of quality regulation, the two producers determine prices and quality levels...... product. On the unregulated markets, integration increases welfare in both countries if they are almost of similar size. However, if the countries are very asymmetrical with respect to size, market integration may harm welfare in the large country. Welfare effects by introduction of minimum quality...

  19. Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field

    International Nuclear Information System (INIS)

    Ishida, T.; Teshima, N.; Sakurai, S.

    1992-01-01

    The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)

  20. Modeling and measurement of the motion of the DIII-D vacuum vessel during vertical instabilities

    International Nuclear Information System (INIS)

    Reis, E.; Blevins, R.D.; Jensen, T.H.; Luxon, J.L.; Petersen, P.I.; Strait, E.J.

    1991-11-01

    The motions of the D3-D vacuum vessel during vertical instabilities of elongated plasmas have been measured and studied over the past five years. The currents flowing in the vessel wall and the plasma scrapeoff layer were also measured and correlated to a physics model. These results provide a time history load distribution on the vessel which were input to a dynamic analysis for correlation to the measured motions. The structural model of the vessel using the loads developed from the measured vessel currents showed that the calculated displacement history correlated well with the measured values. The dynamic analysis provides a good estimate of the stresses and the maximum allowable deflection of the vessel. In addition, the vessel motions produce acoustic emissions at 21 Hertz that are sufficiently loud to be felt as well as heard by the D3-D operators. Time history measurements of the sounds were correlated to the vessel displacements. An analytical model of an oscillating sphere provided a reasonable correlation to the amplitude of the measured sounds. The correlation of the theoretical and measured vessel currents, the dynamic measurements and analysis, and the acoustic measurements and analysis show that: (1) The physics model can predict vessel forces for selected values of plasma resistivity. The model also predicts poloidal and toroidal wall currents which agree with measured values; (2) The force-time history from the above model, used in conjunction with an axisymmetric structural model of the vessel, predicts vessel motions which agree well with measured values; (3) The above results, input to a simple acoustic model predicts the magnitude of sounds emitted from the vessel during disruptions which agree with acoustic measurements; (4) Correlation of measured vessel motions with structural analysis shows that a maximum vertical motion of the vessel up to 0.24 in will not overstress the vessel or its supports. 11 refs., 10 figs., 1 tab

  1. Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jiahang Wang

    2017-01-01

    Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.

  2. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    Science.gov (United States)

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  3. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  4. Modeling the Radial Color Profile of M31

    Directory of Open Access Journals (Sweden)

    Semionov D.

    2003-12-01

    Full Text Available We present a preliminary study of a fragment of the radial color profile of the spiral galaxy M 31 in terms of 2-D model accounting for internal extinction in the disk. The two stellar population disk model was assumed. The old dust-free disk population is represented by the double exponential law, and the young disk population, well mixed with the dust, resides in spiral arms of various scale-heights. We find a good agreement among the radial color B-R profiles produced by this simple model and the profile measured around the spiral arm S4 of M 31.

  5. Modeling the wafer temperature profile in a multiwafer LPCVD furnace

    Energy Technology Data Exchange (ETDEWEB)

    Badgwell, T.A. [Rice Univ., Houston, TX (United States). Dept. of Chemical Engineering; Trachtenberg, I.; Edgar, T.F. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

    1994-01-01

    A mathematical model has been developed to predict wafer temperatures within a hot-wall multiwafer low pressure chemical vapor deposition (LPCVD) reactor. The model predicts both axial (wafer-to-wafer) and radial (across-wafer) temperature profiles. Model predictions compare favorably with in situ wafer temperature measurements described in an earlier paper. Measured axial and radial temperature nonuniformities are explained in terms of radiative heat-transfer effects. A simulation study demonstrates how changes in the outer tube temperature profile and reactor geometry affect wafer temperatures. Reactor design changes which could improve the wafer temperature profile are discussed.

  6. Mathematical Models for the Apparent Mass of the Seated Human Body Exposed to Vertical Vibration

    Science.gov (United States)

    Wei, L.; Griffin, M. J.

    1998-05-01

    Alternative mathematical models of the vertical apparent mass of the seated human body are developed. The optimum parameters of four models (two single-degree-of-freedom models and two two-degree-of-freedom models) are derived from the mean measured apparent masses of 60 subjects (24 men, 24 women, 12 children) previously reported. The best fits were obtained by fitting the phase data with single-degree-of-freedom and two-degree-of-freedom models having rigid support structures. For these two models, curve fitting was performed on each of the 60 subjects (so as to obtain optimum model parameters for each subject), for the averages of each of the three groups of subjects, and for the entire group of subjects. The values obtained are tabulated. Use of a two-degree-of-freedom model provided a better fit to the phase of the apparent mass at frequencies greater than about 8 Hz and an improved fit to the modulus of the apparent mass at frequencies around 5 Hz. It is concluded that the two-degree-of-freedom model provides an apparent mass similar to that of the human body, but this does not imply that the body moves in the same manner as the masses in this optimized two-degree-of-freedom model.

  7. Programs to obtain vertical heights from mean sea level and for computing volume of sand/mineral along beaches:A case study with Kalbadevi beach profiling data and results.

    Digital Repository Service at National Institute of Oceanography (India)

    Ganesan, P.

    vertical heights along profiles from M.S.L.? is given below: The reduced level over the bench mark pillar (BP:1 in this case, from where the profile starts) should be added with the first staff reading taken over it, which forms the height... of collimation (H.C.) of the instrument. From this H.C., all the successive staff readings (taken at regular distance interval, along the profile) should be deducted to get the vertical heights (called reduced level (R.L.) in survey terms). i) R...

  8. Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine

    Science.gov (United States)

    Berg, D. E.

    Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.

  9. Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Saha, U.K. [Indian Institute of Technology Guwahati, Dept. of Mechanical Engineering, Guwahati (India)

    2012-07-01

    An unsteady computational investigation of the static torque characteristics of a drag based vertical axis wind turbine (VAWT) has been carried out using the finite volume based computational fluid dynamics (CFD) software package Fluent 6.3. A comparative study among the various turbulence models was conducted in order to predict the flow over the turbine at static condition and the results are validated with the available experimental results. CFD simulations were carried out at different turbine angular positions between 0 deg.-360 deg. in steps of 15 deg.. Results have shown that due to high static pressure on the returning blade of the turbine, the net static torque is negative at angular positions of 105 deg.-150 deg.. The realizable k-{epsilon} turbulent model has shown a better simulation capability over the other turbulent models for the analysis of static torque characteristics of the drag based VAWT. (Author)

  10. Model tests of wind turbine with a vertical axis of rotation type Lenz 2

    Science.gov (United States)

    Zwierzchowski, Jaroslaw; Laski, Pawel Andrzej; Blasiak, Slawomir; Takosoglu, Jakub Emanuel; Pietrala, Dawid Sebastian; Bracha, Gabriel Filip; Nowakowski, Lukasz

    A building design of vertical axis wind turbines (VAWT) was presented in the article. The construction and operating principle of a wind turbine were described therein. Two VAWT turbine models were compared, i.a. Darrieus and Lenz2, taking their strengths and weaknesses into consideration. 3D solid models of turbine components were presented with the use of SolidWorks software. Using CFD methods, the air flow on two aerodynamic fins, symmetrical and asymmetrical, at different angles of attack were tested. On the basis of flow simulation conducted in FlowSimulation, an asymmetrical fin was chosen as the one showing greater load bearing capacities. Due to the uncertainty of trouble-free operation of Darrieus turbine on construction elements creating the basis thereof, a 3D model of Lenz2 turbine was constructed, which is more reliable and makes turbine self-start possible. On the basis of the research, components were designed and technical docu mentation was compiled.

  11. Direct numerical simulation and modeling of turbulent natural convection in a vertical differentially heated slot

    International Nuclear Information System (INIS)

    Boudjemadi, R.

    1996-03-01

    The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*10 5 and 5.4*10 5 . A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends

  12. Analisa Bentuk Profile Dan Jumlah Blade Vertical Axis Wind Turbine Terhadap Putaran Rotor Untuk Menghasilkan Energi Listrik

    Directory of Open Access Journals (Sweden)

    Saiful Saiful Huda

    2014-03-01

    Full Text Available Turbin angin adalah suatu alat untuk mengkonversi energi angin menjadi energi mekanik yang kemudian dikonversi lagi menjadi energi listrik. Putaran pada poros turbin angin dihubungkan pada generator untuk menghasilkan energi listrik. Berdasarkan penelitian yang dilakukan sebelumnya, banyak jenis turbin angin yang ditemukan untuk meningkatkan effisiensi dan torsi yang dihasilkan salah satu contohnya adalah vertical axis wind turbine (VAWT. VAWT merupakan turbin angin dengan sumbu vertical atau tegak lurus terhadap tanah. Tujuan dari tugas akhir ini adalah mengetahui seberapa besar pengaruh peningkatan panjang chord, jumlah blade, sudut pitch dari blade terhadap torsi dan effisiensi yang dihasilkan oleh VAWT dengan pendekatan CFD (Computational Fluid Dynamic. Analisa yang dilakukan untuk melihat efek peningkatan panjang chord, jumlah blade dan sudt pitch dari blade. Setelah analisa berakhir kita membandingkan hasil analisa dalam grafik. Hasil dari analisa tersebut adalah torsi terbesar terdapat pada variasi panjang chord 1.5 m dengan sudut pitch 10o dan jumlah blade 4 buah dengan nilai 134.9452198   Nm.

  13. Modeling of the evolution of bubble size distribution of gas-liquid flow inside a large vertical pipe. Influence of bubble coalescence and breakup models

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk

    2011-01-01

    The range of gas-liquid flow applications in today's technology is immensely wide. Important examples can be found in chemical reactors, boiling and condensation equipments as well as nuclear reactors. In gas-liquid flows, the bubble size distribution plays an important role in the phase structure and interfacial exchange behaviors. It is therefore necessary to take into account the dynamic change of the bubble size distribution to get good predictions in CFD. An efficient 1D Multi-Bubble-Size-Class Test Solver was introduced in Lucas et al. (2001) for the simulation of the development of the flow structure along a vertical pipe. The model considers a large number of bubble classes. It solves the radial profiles of liquid and gas velocities, bubble-size class resolved gas fraction profiles as well as turbulence parameters on basis of the bubble size distribution present at the given axial position. The evolution of the flow along the height is assumed to be solely caused by the progress of bubble coalescence and break-up resulting in a bubble size distribution changing in the axial direction. In this model, the bubble coalescence and breakup models are very important for reasonable predictions of the bubble size distribution. Many bubble coalescence and breakup models have been proposed in the literature. However, some obvious discrepancies exist in the models; for example, the daughter bubble size distributions are greatly different from different bubble breakup models, as reviewed in our previous publication (Liao and Lucas, 2009a; 2010). Therefore, it is necessary to compare and evaluate typical bubble coalescence and breakup models that have been commonly used in the literature. Thus, this work is aimed to make a comparison of several typical bubble coalescence and breakup models and to discuss in detail the ability of the Test Solver to predict the evolution of bubble size distribution. (orig.)

  14. HCl and ClO in activated Arctic air; first retrieved vertical profiles from TELIS submillimetre limb spectra

    Directory of Open Access Journals (Sweden)

    A. de Lange

    2012-02-01

    Full Text Available The first profile retrieval results of the Terahertz and submillimeter Limb Sounder (TELIS balloon instrument are presented. The spectra are recorded during a 13-h balloon flight on 24 January 2010 from Kiruna, Sweden. The TELIS instrument was mounted on the MIPAS-B2 gondola and shared this platform with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and the mini-Differential Optical Absorption Spectroscopy (mini-DOAS instruments. The flight took place within the Arctic vortex at an altitude of ≈34 km in chlorine activated air, and both active (ClO and inactive chlorine (HCl were measured over an altitude range of respectively ≈16–32 km and ≈10–32 km. In this altitude range, the increase of ClO concentration levels during sunrise has been recorded with a temporal resolution of one minute. During the daytime equilibrium, a maximum ClO level of 2.1 ± 0.3 ppbv has been observed at an altitude of 23.5 km. This equilibrium profile is validated against the ClO profile by the satellite instrument Microwave Limb Sounder (MLS aboard EOS Aura. HCl profiles have been determined from two different isotopes – H35Cl and H37Cl – and are also validated against MLS. The precision of all profiles is well below 0.01 ppbv and the overall accuracy is therefore governed by systematic effects. The total uncertainty of these effects is estimated to be maximal 0.3 ppbv for ClO around its peak value at 23.5 km during the daytime equilibrium, and for HCl it ranges from 0.05 to 0.4 ppbv, depending on altitude. In both cases the main uncertainty stems from a largely unknown non-linear response in the detector.

  15. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    Science.gov (United States)

    Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem

    2016-01-01

    Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  16. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    Directory of Open Access Journals (Sweden)

    Ahmad Tamimi

    Full Text Available Profile Hidden Markov Model (Profile-HMM is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  17. Can CFMIP2 models reproduce the leading modes of cloud vertical structure in the CALIPSO-GOCCP observations?

    Science.gov (United States)

    Wang, Fang; Yang, Song

    2018-02-01

    Using principal component (PC) analysis, three leading modes of cloud vertical structure (CVS) are revealed by the GCM-Oriented CALIPSO Cloud Product (GOCCP), i.e. tropical high, subtropical anticyclonic and extratropical cyclonic cloud modes (THCM, SACM and ECCM, respectively). THCM mainly reflect the contrast between tropical high clouds and clouds in middle/high latitudes. SACM is closely associated with middle-high clouds in tropical convective cores, few-cloud regimes in subtropical anticyclonic clouds and stratocumulus over subtropical eastern oceans. ECCM mainly corresponds to clouds along extratropical cyclonic regions. Models of phase 2 of Cloud Feedback Model Intercomparison Project (CFMIP2) well reproduce the THCM, but SACM and ECCM are generally poorly simulated compared to GOCCP. Standardized PCs corresponding to CVS modes are generally captured, whereas original PCs (OPCs) are consistently underestimated (overestimated) for THCM (SACM and ECCM) by CFMIP2 models. The effects of CVS modes on relative cloud radiative forcing (RSCRF/RLCRF) (RSCRF being calculated at the surface while RLCRF at the top of atmosphere) are studied in terms of principal component regression method. Results show that CFMIP2 models tend to overestimate (underestimated or simulate the opposite sign) RSCRF/RLCRF radiative effects (REs) of ECCM (THCM and SACM) in unit global mean OPC compared to observations. These RE biases may be attributed to two factors, one of which is underestimation (overestimation) of low/middle clouds (high clouds) (also known as stronger (weaker) REs in unit low/middle (high) clouds) in simulated global mean cloud profiles, the other is eigenvector biases in CVS modes (especially for SACM and ECCM). It is suggested that much more attention should be paid on improvement of CVS, especially cloud parameterization associated with particular physical processes (e.g. downwelling regimes with the Hadley circulation, extratropical storm tracks and others), which

  18. Hidden Markov models for the activity profile of terrorist groups

    OpenAIRE

    Raghavan, Vasanthan; Galstyan, Aram; Tartakovsky, Alexander G.

    2012-01-01

    The main focus of this work is on developing models for the activity profile of a terrorist group, detecting sudden spurts and downfalls in this profile, and, in general, tracking it over a period of time. Toward this goal, a $d$-state hidden Markov model (HMM) that captures the latent states underlying the dynamics of the group and thus its activity profile is developed. The simplest setting of $d=2$ corresponds to the case where the dynamics are coarsely quantized as Active and Inactive, re...

  19. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Nuri Yazdani

    2014-03-01

    Full Text Available Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD. Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  20. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    Science.gov (United States)

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  1. Modeling of steady motion and vertical-plane dynamics of a tunnel hull

    Directory of Open Access Journals (Sweden)

    Chaney Christopher S.

    2014-06-01

    Full Text Available High-speed marine vehicles can take advantage of aerodynamically supported platforms or air wings to increase maximum speed or transportation efficiency. However, this also results in increased complexity of boat dynamics, especially in the presence of waves and wind gusts. In this study, a mathematical model based on the fully unsteady aerodynamic extreme-ground-effect theory and the hydrodynamic added-mass strip theory is applied for simulating vertical-plane motions of a tunnel hull in a disturbed environment, as well as determining its steady states in calm conditions. Calculated responses of the boat to wind gusts and surface waves are demonstrated. The present model can be used as a supplementary method for preliminary estimations of performance of aerodynamically assisted marine craft.

  2. Mathematical modelling of the viable epidermis: impact of cell shape and vertical arrangement

    KAUST Repository

    Wittum, Rebecca

    2017-12-07

    In-silico methods are valuable tools for understanding the barrier function of the skin. The key benefit is that mathematical modelling allows the interplay between cell shape and function to be elucidated. This study focuses on the viable (living) epidermis. For this region, previous works suggested a diffusion model and an approximation of the cells by hexagonal prisms. The work at hand extends this in three ways. First, the extracellular space is treated with full spatial resolution. This induces a decrease of permeability by about 10%. Second, cells of tetrakaidecahedral shape are considered, in addition to the original hexagonal prisms. For both cell types, the resulting membrane permeabilities are compared. Third, for the first time, the influence of cell stacking in the vertical direction is considered. This is particularly important for the stratum granulosum, where tight junctions are present.

  3. A COMPARISON BETWEEN ZERO-OFFSET AND VERTICAL RADAR PROFILING GPR TECHNIQUES WITH EMPHASIS ON PROBLEMATIC BOREHOLE EFFECTS

    DEFF Research Database (Denmark)

    Rossi, Matteo; Vignoli, Giulio; Cassiani, Giorgio

    that the dielectric relative permittivity profiles recovered from ZOP and VRP first-break inversions are in strong disagreement, providing very different permittivity profiles. The analysis of synthetic radargrams shows the presence of an electromagnetic (EM) wave established by the joint presence of the air...... of the first recorded event depends on the ratio between the wave length in air and the finite dimension of the borehole. Once these arrivals in the simulated VRP radargrams are recognized, their contribution can be removed by picking the “direct”ù arrivals, that correspond to the waves that directly...... characterizations. Thus, VRP surveys in vadose zone must be accurately interpreted, as the electromagnetic waves may propagate via guided modes along the borehole. Neglecting this phenomenon might generate misleading estimations of geophysical properties and the subsequently translation in hydrological quantities...

  4. Modelling and critical analysis of bubbly flows of dilute nanofluids in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiangdong; Yuan, Yang [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Tu, Jiyuan, E-mail: jiyuan.tu@rmit.edu.au [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Key Laboratory of Ministry of Education for Advanced Reactor Engineering and Safety, Institute of Nuclear and New Energy Technology, Tsinghua University, PO Box 1021, Beijing 100086 (China)

    2016-04-15

    Highlights: • The classic two-fluid model needs improvement for nanofluid bubbly flows. • The nanoparticle self-assembly changes the interfacial behaviours of bubbles. • Key job is to reformulate the interfacial transfer terms. - Abstract: The bubbly flows of air–nanofluid and air–water in a vertical tube were numerically simulated using the two-fluid model. Comparison of the numerical results against the experimental data of Park and Chang (2011) demonstrated that the classic two-fluid model, although agreed well with the air–water data, was not applicable to the air–nanofluid bubbly flow. It was suggested that in a bubbly flow system, the existence of interfaces allows the spontaneous formation of a thin layer of nanoparticle assembly at the interfaces, which significantly changes the interfacial behaviours of the air bubbles and the roles of the interfacial forces. As the conservation equations of the classic two-fluid model are still applicable to nanofluids, the mechanisms underlying the modified interfacial behaviours need to be carefully taken into account when modelling air–nanofluid bubbly flows. Thus, one of the key tasks when modelling bubbly flows of air–nanofluid using the two-fluid model is to reformulate the interfacial transfer terms according to the interfacial behaviour modifications induced by nanoparticles.

  5. On the One-Dimensional Modeling of Vertical Upward Bubbly Flow

    Directory of Open Access Journals (Sweden)

    C. Peña-Monferrer

    2018-01-01

    Full Text Available The one-dimensional two-fluid model approach has been traditionally used in thermal-hydraulics codes for the analysis of transients and accidents in water–cooled nuclear power plants. This paper investigates the performance of RELAP5/MOD3 predicting vertical upward bubbly flow at low velocity conditions. For bubbly flow and vertical pipes, this code applies the drift-velocity approach, showing important discrepancies with the experiments compared. Then, we use a classical formulation of the drag coefficient approach to evaluate the performance of both approaches. This is based on the critical Weber criteria and includes several assumptions for the calculation of the interfacial area and bubble size that are evaluated in this work. A more accurate drag coefficient approach is proposed and implemented in RELAP5/MOD3. Instead of using the Weber criteria, the bubble size distribution is directly considered. This allows the calculation of the interfacial area directly from the definition of Sauter mean diameter of a distribution. The results show that only the proposed approach was able to predict all the flow characteristics, in particular the bubble size and interfacial area concentration. Finally, the computational results are analyzed and validated with cross-section area average measurements of void fraction, dispersed phase velocity, bubble size, and interfacial area concentration.

  6. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  7. Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants

    Directory of Open Access Journals (Sweden)

    E. Solazzo

    2013-06-01

    Full Text Available This study is conducted in the framework of the Air Quality Modelling Evaluation International Initiative (AQMEII and aims at the operational evaluation of an ensemble of 12 regional-scale chemical transport models used to predict air quality over the North American (NA and European (EU continents for 2006. The modelled concentrations of ozone and CO, along with the meteorological fields of wind speed (WS and direction (WD, temperature (T, and relative humidity (RH, are compared against high-quality in-flight measurements collected by instrumented commercial aircraft as part of the Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by Airbus In-service airCraft (MOZAIC programme. The evaluation is carried out for five model domains positioned around four major airports in NA (Portland, Philadelphia, Atlanta, and Dallas and one in Europe (Frankfurt, from the surface to 8.5 km. We compare mean vertical profiles of modelled and measured variables for all airports to compute error and variability statistics, perform analysis of altitudinal error correlation, and examine the seasonal error distribution for ozone, including an estimation of the bias introduced by the lateral boundary conditions (BCs. The results indicate that model performance is highly dependent on the variable, location, season, and height (e.g. surface, planetary boundary layer (PBL or free troposphere being analysed. While model performance for T is satisfactory at all sites (correlation coefficient in excess of 0.90 and fractional bias ≤ 0.01 K, WS is not replicated as well within the PBL (exhibiting a positive bias in the first 100 m and also underestimating observed variability, while above 1000 m, the model performance improves (correlation coefficient often above 0.9. The WD at NA airports is found to be biased in the PBL, primarily due to an overestimation of westerly winds. RH is modelled well within the PBL, but in the free troposphere large

  8. Improving MJO Prediction and Simulation Using AGCM Coupled Ocean Model with Refined Vertical Resolution

    Science.gov (United States)

    Tu, Chia-Ying; Tseng, Wan-Ling; Kuo, Pei-Hsuan; Lan, Yung-Yao; Tsuang, Ben-Jei; Hsu, Huang-Hsiung

    2017-04-01

    Precipitation in Taiwan area is significantly influenced by MJO (Madden-Julian Oscillation) in the boreal winter. This study is therefore conducted by toggling the MJO prediction and simulation with a unique model structure. The one-dimensional TKE (Turbulence Kinetic Energy) type ocean model SIT (Snow, Ice, Thermocline) with refined vertical resolution near surface is able to resolve cool skin, as well as diurnal warm layer. SIT can simulate accurate SST and hence give precise air-sea interaction. By coupling SIT with ECHAM5 (MPI-Meteorology), CAM5 (NCAR) and HiRAM (GFDL), the MJO simulations in 20-yrs climate integrations conducted by three SIT-coupled AGCMs are significant improved comparing to those driven by prescribed SST. The horizontal resolutions in ECHAM5, CAM5 and HiRAM are 2-deg., 1-deg and 0.5-deg., respectively. This suggests that the improvement of MJO simulation by coupling SIT is AGCM-resolution independent. This study further utilizes HiRAM coupled SIT to evaluate its MJO forecast skill. HiRAM has been recognized as one of the best model for seasonal forecasts of hurricane/typhoon activity (Zhao et al., 2009; Chen & Lin, 2011; 2013), but was not as successful in MJO forecast. The preliminary result of the HiRAM-SIT experiment during DYNAMO period shows improved success in MJO forecast. These improvements of MJO prediction and simulation in both hindcast experiments and climate integrations are mainly from better-simulated SST diurnal cycle and diurnal amplitude, which is contributed by the refined vertical resolution near ocean surface in SIT. Keywords: MJO Predictability, DYNAMO

  9. A Kinematic Model for Vertical Axis Rotation within the Mina Deflection of the Walker Lane

    Science.gov (United States)

    Gledhill, T.; Pluhar, C. J.; Johnson, S. A.; Lindeman, J. R.; Petronis, M. S.

    2016-12-01

    The Mina Deflection, at the boundary between the Central and Southern Walker Lane, spans the California-Nevada border and includes a heavily-faulted Pliocene volcanic field overlying Miocene ignimbrites. The dextral Walker Lane accommodates 25% of relative Pacific-North America plate motion and steps right across the sinistral Mina deflection. Ours and previous work shows that the Mina Deflection partially accommodates deformation by vertical-axis rotation of up to 99.9o ± 6.1o rotation since 11 Ma. This rotation is evident in latite ignimbrite of Gilbert et al. (1971), which we have formalized as three members of Tuff of Huntoon Creek (THC). The welded, basal, normal-polarity Huntoon Valley Member of THC is overlain by the unwelded to partially-welded, reversed-polarity Adobe Hills Mbr. This member includes internal breaks suggesting multiple eruptive phases, but the paleomagnetic results from each are statistically indistinguishable, meaning that they were likely erupted in rapid succession (within a few centuries of one another). THC ends with a welded member exhibiting very shallow inclination and south declination that we call Excursional Mbr. One of the upper members has been dated at 11.17 ± 0.04 Ma. These Miocene units are overlain by Pliocene basalts, Quaternary alluvium, and lacustrine deposits. Our paleomagnetic results show a gradient between the zero rotation domain and high rotation across a 20km baseline. A micropolar model, based on 25 years of earthquake data from the Northern and Southern California Seismic Network, suggest the Mina Deflection is currently experiencing transpressional seismogenic deformation (Unruh et al., 2003). Accepting Unruh's model and assuming continuous rotation since 11 Ma, we propose a kinematic model for the western Mina Deflection that accommodates 90o of vertical axis rotation from N-S to ENE-WSW oriented blocks.

  10. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

    Science.gov (United States)

    Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu

    2011-03-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Vertical and horizontal variation of carbon pools and fluxes in soil profile of wet southern taiga in European Russia

    Energy Technology Data Exchange (ETDEWEB)

    Santruckova, H.; Kastovska, E.; Liveckova, M. (Univ. of South Bohemia, Faculty of science, Branisovska (CZ)); Kozlov, D. (Lomonosov Moscow State Univ., Geographical Dept., Moscow (Russian Federation)); Kurbatova, J.; Tatarinov, F. (A.N. Severtson Inst. of ecology and evolution RAS, Moscow (Russian Federation)); Shibistova, O. (V.N.Sukachev Forest Inst., Krasnoyarsk (Russian Federation)); Lloyd, J. (Earth and Biosphere Inst., Univ. of Leeds (United Kingdom))

    2010-10-22

    Vertical and horizontal distributions of soil organic carbon, potential microbial activity and basic soil properties were studied in a boreal mixed forest (Central Forest Reserve, TVER region) to elucidate whether the soil CO{sub 2}-efflux is related to basic soil properties that affect the C pool and activity. Soil cores (0-100 cm depth) were taken from two transects every 50 meters (44 points) immediately after completion of soil CO{sub 2}-efflux measurements. Soil was separated into layers and moisture, bulk density, root density and bacterial counts were determined within one day after soil was taken. Microbial respiration, biomass, CN contents and pH were measured within few months. The variability in the soil CO{sub 2}-efflux and microbial activity was mainly explained by soil bulk density. Results further indicate that laboratory measurements of microbial respiration can represent heterotrophic soil respiration of a distinctive ecosystem in natural conditions, if microbial respiration is measured after the effect of soil handling disappears. (orig.)

  12. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  13. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    Science.gov (United States)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  14. Low parameter model to monitor bottom hole pressure in vertical multiphase flow in oil production wells

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2016-09-01

    Full Text Available The importance of the flow patterns through petroleum production wells proved for upstream experts to provide robust production schemes based on the knowledge about flow behavior. To provide accurate flow pattern distribution through production wells, accurate prediction/representation of bottom hole pressure (BHP for determining pressure drop from bottom to surface play important and vital role. Nevertheless enormous efforts have been made to develop mechanistic approach, most of the mechanistic and conventional models or correlations unable to estimate or represent the BHP with high accuracy and low uncertainty. To defeat the mentioned hurdle and monitor BHP in vertical multiphase flow through petroleum production wells, inventive intelligent based solution like as least square support vector machine (LSSVM method was utilized. The evolved first-break approach is examined by applying precise real field data illustrated in open previous surveys. Thanks to the statistical criteria gained from the outcomes obtained from LSSVM approach, the proposed least support vector machine (LSSVM model has high integrity and performance. Moreover, very low relative deviation between the model estimations and the relevant actual BHP data is figured out to be less than 6%. The output gained from LSSVM model are closed the BHP while other mechanistic models fails to predict BHP through petroleum production wells. Provided solutions of this study explicated that implies of LSSVM in monitoring bottom-hole pressure can indicate more accurate monitoring of the referred target which can lead to robust design with high level of reliability for oil and gas production operation facilities.

  15. Proposed model for biomineralization of novel nanohydroxyapatite/vertically aligned multiwalled carbon nanotube scaffolds

    Directory of Open Access Journals (Sweden)

    Tayra Rodrigues Brazil

    2013-06-01

    Full Text Available For the first time, the growth mechanism of biominerals formed on plate-like nanohydroxyapatite (nHAp electrodeposited on superhydrophilic vertically aligned multi-walled carbon nanotubes (VAMWCNT-O2 is presented and a model for the specific growth preference is discussed. VAMWCNT-O2 films were obtained by microwave-assisted chemical vapor deposition method and funcionalized by oxygen plasma. nHAp/VAMWCNT-O2 nanocomposites were fabricated with a direct electrodeposition of the thin nHAp films onto the VAMWCNT-O2 films. The biomineralized "scaffolds" were obtained by soaking nHAp/VAMWCNT-O2 in simulated body fluid for 7, 14 and 21 days. Results show that the carboxyl functional groups directly attached onto VAMWCNT tips after oxygen plasma treatment were essential for the acceleration of the OH- formation and the deposition of plate-like nHAp crystals.

  16. Proposed model for biomineralization of novel nanohydroxyapatite/vertically aligned multiwalled carbon nanotube scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Brazil, Tayra Rodrigues; Neves, Marcele Florencio das; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira, E-mail: aolobo@univap.br [Universidade do Vale do Paraiba (UniVap), Sao Jose dos Campos, SP (Brazil). Lab. de Nanotecnologia Biomedica; Regiani, Inacio [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    For the first time, the growth mechanism of biominerals formed on plate-like nanohydroxyapatite (nHAp) electrodeposited on superhydrophilic vertically aligned multi-walled carbon nanotubes (VAMWCNT-O{sub 2} ) is presented and a model for the specific growth preference is discussed. VAMWCNT-O{sub 2} films were obtained by microwave-assisted chemical vapor deposition method and functionalized by oxygen plasma. nHAp/VAMWCNT-O{sub 2} nanocomposites were fabricated with a direct electrodeposition of the thin nHAp films onto the VAMWCNT-O{sub 2} films. The biomineralized 'scaffolds' were obtained by soaking nHAp/VAMWCNT-O{sub 2} in simulated body fluid for 7, 14 and 21 days. Results show that the carboxyl functional groups directly attached onto VAMWCNT tips after oxygen plasma treatment were essential for the acceleration of the OH- formation and the deposition of plate-like nHAp crystals (author)

  17. Modelling natural convection in a heated vertical channel for room ventilation

    International Nuclear Information System (INIS)

    Rodrigues, A.M.; Canha da Piedade, A.; Lahellec, A.; Grandpeix, J.Y.

    2000-01-01

    Solar-air collectors installed on the south-facing walls of school buildings have been tried out in Portugal as a passive means of improving indoor air quality without prejudice to thermal comfort requirements. A numerical investigation of the behaviour of these systems, typified as vertical channels opened at both ends, is presented for typical geometries and outdoor conditions. The study is carried out with natural convection and assumes that the induced flow is turbulent and two-dimensional. The fully averaged equations of motion and energy, added to a two-equation turbulence model, are discretized and solved following the concepts of TEF (Transfer Evolution Formalism) using a finite volume method. Flow and temperature fields are produced and results presented in terms of temperature and velocity distributions at the exit section of the duct. These enable a better understanding of the developing flow and can be helpful in the design phase of this type of system. (author)

  18. Proposed model for biomineralization of novel nanohydroxyapatite/vertically aligned multiwalled carbon nanotube scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Brazil, Tayra Rodrigues; Neves, Marcele Florencio das; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira, E-mail: aolobo@univap.br [Universidade do Vale do Paraiba (UniVap), Sao Jose dos Campos, SP (Brazil). Lab. de Nanotecnologia Biomedica; Regiani, Inacio [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    For the first time, the growth mechanism of biominerals formed on plate-like nanohydroxyapatite (nHAp) electrodeposited on superhydrophilic vertically aligned multi-walled carbon nanotubes (VAMWCNT-O{sub 2} ) is presented and a model for the specific growth preference is discussed. VAMWCNT-O{sub 2} films were obtained by microwave-assisted chemical vapor deposition method and functionalized by oxygen plasma. nHAp/VAMWCNT-O{sub 2} nanocomposites were fabricated with a direct electrodeposition of the thin nHAp films onto the VAMWCNT-O{sub 2} films. The biomineralized 'scaffolds' were obtained by soaking nHAp/VAMWCNT-O{sub 2} in simulated body fluid for 7, 14 and 21 days. Results show that the carboxyl functional groups directly attached onto VAMWCNT tips after oxygen plasma treatment were essential for the acceleration of the OH- formation and the deposition of plate-like nHAp crystals (author)

  19. Effects of Recombinant Human Bone Morphogenetic Protein-2 on Vertical Bone Augmentation in a Canine Model.

    Science.gov (United States)

    Hsu, Yung-Ting; Al-Hezaimi, Khalid; Galindo-Moreno, Pablo; O'Valle, Francisco; Al-Rasheed, Abdulaziz; Wang, Hom-Lay

    2017-09-01

    Vertical bone augmentation (VBA) remains unpredictable and challenging for most clinicians. This study aims to compare hard tissue outcomes of VBA, with and without recombinant human bone morphogenetic protein (rhBMP)-2, under space-making titanium mesh in a canine model. Eleven male beagle dogs were used in the study. Experimental ridge defects were created to form atrophic ridges. VBA was performed via guided bone regeneration using titanium mesh and allografts. In experimental hemimandibles, rhBMP-2/absorbable collagen sponge was well mixed with allografts prior to procedures, whereas a control buffer was applied within controls. Dogs were euthanized after a 4-month healing period. Clinical and radiographic examinations were performed to assess ridge dimensional changes. In addition, specimens were used for microcomputed tomography (micro-CT) assessment and histologic analysis. Membrane exposure was found on five of 11 (45.5%) rhBMP-2-treated sites, whereas it was found on nine of 11 (81.8%) non-rhBMP-2-treated sites. Within 4 months of healing, rhBMP-2-treated sites showed better radiographic bone density, greater defect fill, and significantly more bone gain in ridge height (P 0.05). Under light microscope, predominant lamellar patterns were found in the specimen obtained from rhBMP-2 sites. With inherent limitations of the canine model and the concern of such a demanding surgical technique, current findings suggest that the presence of rhBMP-2 in a composite graft allows an increase of vertical gain, with formation of ectopic bone over the titanium mesh in comparison with non-rhBMP-2 sites.

  20. Modeling Profiles and Signatures of Enrichments

    Science.gov (United States)

    Ali, A.; Qualls, C.; Lucas, S. G.; Lombari, G.; Appenzeller, O.

    2014-12-01

    Anthropogenic and geochemical enrichment of soils and living matter have been well documented 1, 2, 3.Here we report on geochemical, anthropogenic and biological enrichments with heavy metals in Modern Peru and compared this to Modern and ancient data from New Mexico, USA. We established a signature derived from the quantities of 25 metals in various biological, fossil and soil materials. We also speculate that human adaptation to mercury toxicity may occur in remarkably short time spans during the Holocene. We found mercury concentrations in Modern pigeon feathers and llama wool from free foraging birds and animals in Albuquerque, NM, ranging from 0.006 to 0.019 mg/Kg of tissue. The values for Modern Peru ranged from 22.0 to 556 mg/Kg for the same tissues. We discovered, in 64 million-year-old fossilized plants from New Mexico (Paleocene Nacimiento Formation, San Juan Basin), a mercury concentration of 1.11 mg/Kg of fossil, whereas Modern plant material from the Rio Grande Basin in New Mexico contained no mercury. Profiling of metal content of these samples suggests that mercury is a proxy for anthropogenic rather than geochemical enrichment in the localities we examined. We found no overt signs of mercury toxicity in contemporaneous inhabitants of Huancavelica4, Peru; one of the ten most mercury-polluted places in the world and the mercury concentration in their hair is well below modern admissible levels. However, assessment of their annual scalp hair growth-rate showed marked reduction in growth (~ 5cm/yr) versus ~ 16cm/year for normal scalp hair from other continents4. This is consistent with a toxic effect of heavy metals on human metabolism and especially autonomic nervous system function in Huancavelica, Peru. Contemporaneous anthropogenic activities are known to increase heavy metal content in the biosphere with potentially toxic effects on humans. However, signs of human evolutionary adaptation to such toxins might already be evident in Peru4.

  1. Vertical distribution and temporal changes of 137Cs in soil profiles under various land uses after the Fukushima Dai-ichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Takahashi, Junko; Tamura, Kenji; Suda, Tomoya; Matsumura, Ryo; Onda, Yuichi

    2015-01-01

    We monitored the vertical distribution of 137 Cs in soil profiles under eight different land uses for the 2 y after the Fukushima Dai-ichi Nuclear Power Plant accident, and discussed the temporal changes in the early-stage of the migration and the determinants of the initial distribution. The soil samples were collected for four surveys using a scraper plate at each study site, which consisted of three forests (mixed forest, mature cedar, and young cedar), two grasslands (pasture and meadow) and three abandoned agricultural fields (farm land, tobacco field, and paddy field). The land use patterns have a large influence on some soil properties and the migration processes of 137 Cs above ground, resulting in different distribution of 137 Cs in those soil profiles. Specifically, the secondary deposition of 137 Cs from the coniferous canopy, retention of 137 Cs by litter layer, and the homogenization of 137 Cs concentrations in surface soil by natural soil mixing such as the disturbance by cattle grazing, roots growing and the formation of needle ice were important to cause redistribution of the deposited 137 Cs. Only in the paddy field, the 137 Cs inventory in subsurface soils (5–10 cm) gradually increased and comprised 26% of the total 137 Cs in 2 y, showing the downward migration of 137 Cs to subsurface soil. In the other sites, it was considered that 137 Cs were strongly adsorbed by soil particles and rarely migrated downward as soluble form. Vertical distributions during the first survey were able to be used as the initial distributions and were well fitted to the exponential equation. The distribution parameters α (relaxation depth) and β (relaxation mass depth), calculated by the exponential equation were correlated with RIP (r = −0.806, p < 0.05), macro pore (r = 0.651, p = 0.11), and dispersible fine particle content (r = 0.856, p < 0.05). It indicated that the initial distribution would be influenced by the Cs fixation ability of soil, and the

  2. Modelling the effect of boundary scavenging on Thorium and Protactinium profiles in the ocean

    International Nuclear Information System (INIS)

    Roy-Barman, M.

    2009-01-01

    The 'boundary scavenging' box model is a cornerstone of our understanding of the particle-reactive radionuclide fluxes between the open ocean and the ocean margins. However, it does not describe the radionuclide profiles in the water column. Here, I present the transport-reaction equations for radionuclides transported vertically by reversible scavenging on settling particles and laterally by horizontal currents between the margin and the open ocean. Analytical solutions of these equations are compared with existing data. In the Pacific Ocean, the model produces 'almost' linear 230 Th profiles (as observed in the data) despite lateral transport. However, omitting lateral transport biases the 230 Th based particle flux estimates by as much as 50%. 231 Pa profiles are well reproduced in the whole water column of the Pacific Margin and from the surface down to 3000 m in the Pacific subtropical gyre. Enhanced bottom scavenging or inflow of 231 Pa-poor equatorial water may account for the model-data discrepancy below 3000 m. The lithogenic 232 Th is modelled using the same transport parameters as 230 Th but a different source function. The main source of the 232 Th scavenged in the open Pacific is advection from the ocean margin, whereas a net flux of 230 Th produced in the open Pacific is advected and scavenged at the margin, illustrating boundary exchange. In the Arctic Ocean, the model reproduces 230 Th measured profiles that the uni-dimensional scavenging model or the scavenging-ventilation model failed to explain. Moreover, if lateral transport is ignored, the 230 Th based particle settling speed may by underestimated by a factor 4 at the Arctic Ocean margin. The very low scavenging rate in the open Arctic Ocean combined with the enhanced scavenging at the margin accounts for the lack of high 231 Pa/ 230 Th ratio in arctic sediments. (authors)

  3. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    Science.gov (United States)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing

  4. Modeling Emissions and Vertical Plume Transport of Crop Residue Burning Experiments in the Pacific Northwest

    Science.gov (United States)

    Zhou, L.; Baker, K. R.; Napelenok, S. L.; Pouliot, G.; Elleman, R. A.; ONeill, S. M.; Urbanski, S. P.; Wong, D. C.

    2017-12-01

    Crop residue burning has long been a common practice in agriculture with the smoke emissions from the burning linked to negative health impacts. A field study in eastern Washington and northern Idaho in August 2013 consisted of multiple burns of well characterized fuels with nearby surface and aerial measurements including trace species concentrations, plume rise height and boundary layer structure. The chemical transport model CMAQ (Community Multiscale Air Quality Model) was used to assess the fire emissions and subsequent vertical plume transport. The study first compared assumptions made by the 2014 National Emission Inventory approach for crop residue burning with the fuel and emissions information obtained from the field study and then investigated the sensitivity of modeled carbon monoxide (CO) and PM2.5 concentrations to these different emission estimates and plume rise treatment with CMAQ. The study suggests that improvements to the current parameterizations are needed in order for CMAQ to reliably reproduce smoke plumes from burning. In addition, there is enough variability in the smoke emissions, stemming from variable field-specific information such as field size, that attempts to model crop residue burning should use field-specific information whenever possible.

  5. Application of multiphase modelling for vortex occurrence in vertical pump intake - a review

    Science.gov (United States)

    Samsudin, M. L.; Munisamy, K. M.; Thangaraju, S. K.

    2015-09-01

    Vortex formation within pump intake is one of common problems faced for power plant cooling water system. This phenomenon, categorised as surface and sub-surface vortices, can lead to several operational problems and increased maintenance costs. Physical model study was recommended from published guidelines but proved to be time and resource consuming. Hence, the use of Computational Fluid Dynamics (CFD) is an attractive alternative in managing the problem. At the early stage, flow analysis was conducted using single phase simulation and found to find good agreement with the observation from physical model study. With the development of computers, multiphase simulation found further enhancement in obtaining accurate results for representing air entrainment and sub-surface vortices which were earlier not well predicted from the single phase simulation. The purpose of this paper is to describe the application of multiphase modelling with CFD analysis for investigating vortex formation for a vertically inverted pump intake. In applying multiphase modelling, there ought to be a balance between the acceptable usage for computational time and resources and the degree of accuracy and realism in the results as expected from the analysis.

  6. Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2017-06-01

    Full Text Available Foam has emerged as an efficient drilling fluid for the drilling of low pressure, fractured and matured reservoirs because of its the ability to reduce formation damage, fluid loss, differential sticking etc. However the compressible nature along with its complicated rheology has made its implementation a multifaceted task. Knowledge of the hydrodynamic behavior of drilling fluid within the borehole is the key behind successful implementation of drilling job. However, little effort has been made to develop the hydrodynamic models for the foam flowing with cuttings through pipes of variable diameter. In the present study, hydrodynamics of the foam fluid was investigated through the vertical smooth pipes of different pipe diameters, with variable foam properties in a flow loop system. Effect of cutting loading on pressure drop was also studied. Thus, the present investigation estimates the differential pressure loss across the pipe. The flow loop permits foam flow through 25.4 mm, 38.1 mm and 50.8 mm diameter pipes. The smaller diameter pipes are used to replicate the annular spaces between the drill string and wellbore. The developed model determines the pressure loss along the pipe and the results are compared with a number of existing models. The developed model is able to predict the experimental results more accurately.

  7. Application of multiphase modelling for vortex occurrence in vertical pump intake - a review

    International Nuclear Information System (INIS)

    Samsudin, M L; Munisamy, K M; Thangaraju, S K

    2015-01-01

    Vortex formation within pump intake is one of common problems faced for power plant cooling water system. This phenomenon, categorised as surface and sub-surface vortices, can lead to several operational problems and increased maintenance costs. Physical model study was recommended from published guidelines but proved to be time and resource consuming. Hence, the use of Computational Fluid Dynamics (CFD) is an attractive alternative in managing the problem. At the early stage, flow analysis was conducted using single phase simulation and found to find good agreement with the observation from physical model study. With the development of computers, multiphase simulation found further enhancement in obtaining accurate results for representing air entrainment and sub-surface vortices which were earlier not well predicted from the single phase simulation.The purpose of this paper is to describe the application of multiphase modelling with CFD analysis for investigating vortex formation for a vertically inverted pump intake. In applying multiphase modelling, there ought to be a balance between the acceptable usage for computational time and resources and the degree of accuracy and realism in the results as expected from the analysis. (paper)

  8. Modelling the pelagic nitrogen cycle and vertical particle flux in the Norwegian sea

    Science.gov (United States)

    Haupt, Olaf J.; Wolf, Uli; v. Bodungen, Bodo

    1999-02-01

    A 1D Eulerian ecosystem model (BIological Ocean Model) for the Norwegian Sea was developed to investigate the dynamics of pelagic ecosystems. The BIOM combines six biochemical compartments and simulates the annual nitrogen cycle with specific focus on production, modification and sedimentation of particles in the water column. The external forcing and physical framework is based on a simulated annual cycle of global radiation and an annual mixed-layer cycle derived from field data. The vertical resolution of the model is given by an exponential grid with 200 depth layers, allowing specific parameterization of various sinking velocities, breakdown of particles and the remineralization processes. The aim of the numerical experiments is the simulation of ecosystem dynamics considering the specific biogeochemical properties of the Norwegian Sea, for example the life cycle of the dominant copepod Calanus finmarchicus. The results of the simulations were validated with field data. Model results are in good agreement with field data for the lower trophic levels of the food web. With increasing complexity of the organisms the differences increase between simulated processes and field data. Results of the numerical simulations suggest that BIOM is well adapted to investigate a physically controlled ecosystem. The simulation of grazing controlled pelagic ecosystems, like the Norwegian Sea, requires adaptations of parameterization to the specific ecosystem features. By using seasonally adaptation of the most sensible processes like utilization of light by phytoplankton and grazing by zooplankton results were greatly improved.

  9. Modelling baryonic effects on galaxy cluster mass profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-06-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  10. Modelling Baryonic Effects on Galaxy Cluster Mass Profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-03-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  11. Three-dimensional one-way bubble tracking method for the prediction of developing bubble-slug flows in a vertical pipe. 1st report, models and demonstration

    International Nuclear Information System (INIS)

    Tamai, Hidesada; Tomiyama, Akio

    2004-01-01

    A three-dimensional one-way bubble tracking method is one of the most promising numerical methods for the prediction of a developing bubble flow in a vertical pipe, provided that several constitutive models are prepared. In this study, a bubble shape, an equation of bubble motion, a liquid velocity profile, a pressure field, turbulent fluctuation and bubble coalescence are modeled based on available knowledge on bubble dynamics. Bubble shapes are classified into four types in terms of bubble equivalent diameter. A wake velocity model is introduced to simulate approaching process among bubbles due to wake entrainment. Bubble coalescence is treated as a stochastic phenomenon with the aid of coalescence probabilities that depend on the sizes of two interacting bubbles. The proposed method can predict time-spatial evolution of flow pattern in a developing bubble-slug flow. (author)

  12. Dip and anisotropy effects on flow using a vertically skewed model grid.

    Science.gov (United States)

    Hoaglund, John R; Pollard, David

    2003-01-01

    Darcy flow equations relating vertical and bedding-parallel flow to vertical and bedding-parallel gradient components are derived for a skewed Cartesian grid in a vertical plane, correcting for structural dip given the principal hydraulic conductivities in bedding-parallel and bedding-orthogonal directions. Incorrect-minus-correct flow error results are presented for ranges of structural dip (0 strike and dip, and a solver that can handle off-diagonal hydraulic conductivity terms.

  13. Profiling the biological activity of oxide nanomaterials with mechanistic models

    NARCIS (Netherlands)

    Burello, E.

    2013-01-01

    In this study we present three mechanistic models for profiling the potential biological and toxicological effects of oxide nanomaterials. The models attempt to describe the reactivity, protein adsorption and membrane adhesion processes of a large range of oxide materials and are based on properties

  14. The use of conduction model in laser weld profile computation

    Science.gov (United States)

    Grabas, Bogusław

    2007-02-01

    Profiles of joints resulting from deep penetration laser beam welding of a flat workpiece of carbon steel were computed. A semi-analytical conduction model solved with Green's function method was used in computations. In the model, the moving heat source was attenuated exponentially in accordance with Beer-Lambert law. Computational results were compared with those in the experiment.

  15. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  16. Modeling the North American vertical datum of 1988 errors in the conterminous United States

    Science.gov (United States)

    Li, X.

    2018-02-01

    A large systematic difference (ranging from -20 cm to +130 cm) was found between NAVD 88 (North AmericanVertical Datum of 1988) and the pure gravimetric geoid models. This difference not only makes it very difficult to augment the local geoid model by directly using the vast NAVD 88 network with state-of-the-art technologies recently developed in geodesy, but also limits the ability of researchers to effectively demonstrate the geoid model improvements on the NAVD 88 network. Here, both conventional regression analyses based on various predefined basis functions such as polynomials, B-splines, and Legendre functions and the Latent Variable Analysis (LVA) such as the Factor Analysis (FA) are used to analyze the systematic difference. Besides giving a mathematical model, the regression results do not reveal a great deal about the physical reasons that caused the large differences in NAVD 88, which may be of interest to various researchers. Furthermore, there is still a significant amount of no-Gaussian signals left in the residuals of the conventional regression models. On the other side, the FA method not only provides a better not of the data, but also offers possible explanations of the error sources. Without requiring extra hypothesis tests on the model coefficients, the results from FA are more efficient in terms of capturing the systematic difference. Furthermore, without using a covariance model, a novel interpolating method based on the relationship between the loading matrix and the factor scores is developed for predictive purposes. The prediction error analysis shows that about 3-7 cm precision is expected in NAVD 88 after removing the systematic difference.

  17. Modeling the North American vertical datum of 1988 errors in the conterminous United States

    Directory of Open Access Journals (Sweden)

    Li X.

    2018-02-01

    Full Text Available A large systematic difference (ranging from −20 cm to +130 cm was found between NAVD 88 (North AmericanVertical Datum of 1988 and the pure gravimetric geoid models. This difference not only makes it very difficult to augment the local geoid model by directly using the vast NAVD 88 network with state-of-the-art technologies recently developed in geodesy, but also limits the ability of researchers to effectively demonstrate the geoid model improvements on the NAVD 88 network. Here, both conventional regression analyses based on various predefined basis functions such as polynomials, B-splines, and Legendre functions and the Latent Variable Analysis (LVA such as the Factor Analysis (FA are used to analyze the systematic difference. Besides giving a mathematical model, the regression results do not reveal a great deal about the physical reasons that caused the large differences in NAVD 88, which may be of interest to various researchers. Furthermore, there is still a significant amount of no-Gaussian signals left in the residuals of the conventional regression models. On the other side, the FA method not only provides a better not of the data, but also offers possible explanations of the error sources. Without requiring extra hypothesis tests on the model coefficients, the results from FA are more efficient in terms of capturing the systematic difference. Furthermore, without using a covariance model, a novel interpolating method based on the relationship between the loading matrix and the factor scores is developed for predictive purposes. The prediction error analysis shows that about 3-7 cm precision is expected in NAVD 88 after removing the systematic difference.

  18. PEMBUATAN MODEL PROFIL MAHASISWA FAKULTAS TEKNIK UNIVERSITAS PANCASILA

    Directory of Open Access Journals (Sweden)

    Paryudi Paryudi

    2009-01-01

    Full Text Available Promotion is a must for a university to get students. With the innocence of the promotion team about the existing student profile, it will cause the team does not know which segment should be the promotion target. The consequence is that the promotion cost will be higher. In order to have a better promotion, we can use direct marketing method. In this method, a profile model of the existing students must be first created. With this profile model, promotion team can focus the promotion only to candidate student match with the model. The advantages of this method are: promotion cost can be reduced, response rate increase, and profit also increase. In order to create a model in direct marketing, we need previous promotion data. Since previous promotion data is not available, two methods in creating preliminary models are proposed. Next, the preliminary models will be tested using data mining software available in the market. Model with minimal accuracy of 75% will be chosen. If there are more than one model with minimal accuracy of 75%, then model with the highest accuracy will be chosen. Abstract in Bahasa Indonesia: Promosi merupakan suatu keharusan bagi sebuah universitas untuk mendapatkan mahasiswa. Dengan masih awamnya tim promosi terhadap profil mahasiswa yang sudah ada, maka tim promosi melakukan promosi tanpa melihat segmen pasar yang harus dituju. Konsekuensinya adalah biaya promosi menjadi lebih mahal. Untuk melakukan promosi dengan lebih baik, dapat menggunakan metode direct marketing. Pada metode ini, model profil dari mahasiswa yang sudah ada harus dibuat terlebih dulu. Dengan menggunakan model profil ini, tim promosi dapat memfokuskan promosi hanya pada calon-calon mahasiswa yang sesuai dengan model. Keuntungan dari metode promosi ini adalah biaya promosi dapat dikurangi, tingkat respon meningkat, dan keuntungan juga meningkat. Untuk membuat model pada direct marketing dibutuhkan data dari promosi sebelumnya. Karena data promosi

  19. The development of a balloonborne radiosonde to measure extremely low mixing ratios of nitric oxide in the atmosphere up to the altitude of 40 km first measured and stratospheric vertical profiles

    International Nuclear Information System (INIS)

    Weiler, K.H.

    1979-01-01

    Vertical profiles of NO were measured at midlatitudes by means of a balloonborne payload using the chemiluminescent principle. A newly developed pressure dependent turbofan enables sufficient main flow even under near vacuum conditions, as low as 3 mb a flight duration of 20 hours. The data are continuously transmitted via a PCM-system to the ground station. The whole instrument was sealed prior to the flight and opened above the clouds by telecommand in order to avoid contamination by water vapour. Extensive laboratory and in situ calibration procedures led for the first time to overall errors of less than +-5% for the midday mean value between 3 to 10 mb and +- 25% at 150 mb. The resolving power is better than 20 pptsub(v) (10 -11 ) depending on the actual temperature, maniflow, and pressure. At about 25 mb, the reduction in NO with the setting of the sun was observed. A very slow decrease in the mixing ratio was found, which agrees with measurements of other workers but not with present model predictions. The mixing ratio between 7 and 10 mb was between 3 and 4 ppbsub(v) (10 -9 ). The minimum mixing ratio of about 0.07 ppbsub(v) was observed at about 60 mb. Also a hysteresis between ascent and descent was observed. It is concluded that the different diurnal variations of NO are strongly dependent on vertical exchange processes, scattering processes, and the surface albedo. (orig.) [de

  20. Development of a balloonborne radiosonde to measure extremely low mixing ratios of nitric oxide in the atmosphere up to the altitude of 40 km first measured and stratospheric vertical profiles

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, K H

    1979-01-01

    Vertical profiles of NO were measured at midlatitudes by means of a balloonborne payload using the chemiluminescent principle. A newly developed pressure dependent turbofan enables sufficient main flow even under near vacuum conditions, as low as 3 mb a flight duration of 20 hours. The data are continuously transmitted via a PCM-system to the ground station. The whole instrument was sealed prior to the flight and opened above the clouds by telecommand in order to avoid contamination by water vapour. Extensive laboratory and in situ calibration procedures led for the first time to overall errors of less than +-5% for the midday mean value between 3 to 10 mb and +- 25% at 150 mb. The resolving power is better than 20 pptsub(v) (10/sup -11/) depending on the actual temperature, maniflow, and pressure. At about 25 mb, the reduction in NO with the setting of the sun was observed. A very slow decrease in the mixing ratio was found, which agrees with measurements of other workers but not with present model predictions. The mixing ratio between 7 and 10 mb was between 3 and 4 ppbsub(v) (10/sup -9/). The minimum mixing ratio of about 0.07 ppbsub(v) was observed at about 60 mb. Also a hysteresis between ascent and descent was observed. It is concluded that the different diurnal variations of NO are strongly dependent on vertical exchange processes, scattering processes, and the surface albedo.

  1. Peak Vertical Ground Reaction Force during Two-Leg Landing: A Systematic Review and Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Wenxin Niu

    2014-01-01

    Full Text Available Objectives. (1 To systematically review peak vertical ground reaction force (PvGRF during two-leg drop landing from specific drop height (DH, (2 to construct a mathematical model describing correlations between PvGRF and DH, and (3 to analyze the effects of some factors on the pooled PvGRF regardless of DH. Methods. A computerized bibliographical search was conducted to extract PvGRF data on a single foot when participants landed with both feet from various DHs. An innovative mathematical model was constructed to analyze effects of gender, landing type, shoes, ankle stabilizers, surface stiffness and sample frequency on PvGRF based on the pooled data. Results. Pooled PvGRF and DH data of 26 articles showed that the square root function fits their relationship well. An experimental validation was also done on the regression equation for the medicum frequency. The PvGRF was not significantly affected by surface stiffness, but was significantly higher in men than women, the platform than suspended landing, the barefoot than shod condition, and ankle stabilizer than control condition, and higher than lower frequencies. Conclusions. The PvGRF and root DH showed a linear relationship. The mathematical modeling method with systematic review is helpful to analyze the influence factors during landing movement without considering DH.

  2. Model tests of wind turbine with a vertical axis of rotation type Lenz 2

    Directory of Open Access Journals (Sweden)

    Zwierzchowski Jaroslaw

    2017-01-01

    Full Text Available A building design of vertical axis wind turbines (VAWT was presented in the article. The construction and operating principle of a wind turbine were described therein. Two VAWT turbine models were compared, i.a. Darrieus and Lenz2, taking their strengths and weaknesses into consideration. 3D solid models of turbine components were presented with the use of SolidWorks software. Using CFD methods, the air flow on two aerodynamic fins, symmetrical and asymmetrical, at different angles of attack were tested. On the basis of flow simulation conducted in FlowSimulation, an asymmetrical fin was chosen as the one showing greater load bearing capacities. Due to the uncertainty of trouble-free operation of Darrieus turbine on construction elements creating the basis thereof, a 3D model of Lenz2 turbine was constructed, which is more reliable and makes turbine self-start possible. On the basis of the research, components were designed and technical docu mentation was compiled.

  3. Thermal-economic modeling and optimization of vertical ground-coupled heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, Sepehr; Niroomand, Behzad [Energy Systems Improvement Laboratory (ESIL), Department of Mechanical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16488 (Iran)

    2009-04-15

    The optimal design process of a ground source heat pump includes thermal modeling of the system and selection of optimal design parameters which affect the system performance as well as initial and operational costs. In this paper, the modeling and optimizing processes of a ground-coupled heat pump (GCHP) with closed vertical ground heat exchanger (VGHX) are presented. To verify the modeling procedure of heat pump and VGHX systems, the simulation outputs were compared with the corresponding values reported in the literature and acceptable accuracy was obtained. Then an objective function (the sum of annual operating and investment costs of the system) was defined and minimized, exposed to the specified constraints to estimate the optimum design parameters (decision variables). Two Nelder-Mead and genetic algorithm optimization techniques were applied to guarantee the validity of the optimization results. For the given heating/cooling loads and various climatic conditions, the optimum values of heat pump design parameters (saturated temperature/pressure of condenser and evaporator) as well as VGHX design parameters (inlet and outlet temperatures of the ground water source, pipe diameter, depth and number of boreholes) were predicted. Furthermore, the sensitivity analysis of change in the total annual cost of the system and optimum design parameters with the climatic conditions, cooling/heating capacity, soil type, and number of boreholes were discussed. Finally, the sensitivity analysis of change in optimum design parameters with increase in the investment and electricity costs was performed. (author)

  4. Thermal-economic modeling and optimization of vertical ground-coupled heat pump

    International Nuclear Information System (INIS)

    Sanaye, Sepehr; Niroomand, Behzad

    2009-01-01

    The optimal design process of a ground source heat pump includes thermal modeling of the system and selection of optimal design parameters which affect the system performance as well as initial and operational costs. In this paper, the modeling and optimizing processes of a ground-coupled heat pump (GCHP) with closed vertical ground heat exchanger (VGHX) are presented. To verify the modeling procedure of heat pump and VGHX systems, the simulation outputs were compared with the corresponding values reported in the literature and acceptable accuracy was obtained. Then an objective function (the sum of annual operating and investment costs of the system) was defined and minimized, exposed to the specified constraints to estimate the optimum design parameters (decision variables). Two Nelder-Mead and genetic algorithm optimization techniques were applied to guarantee the validity of the optimization results. For the given heating/cooling loads and various climatic conditions, the optimum values of heat pump design parameters (saturated temperature/pressure of condenser and evaporator) as well as VGHX design parameters (inlet and outlet temperatures of the ground water source, pipe diameter, depth and number of boreholes) were predicted. Furthermore, the sensitivity analysis of change in the total annual cost of the system and optimum design parameters with the climatic conditions, cooling/heating capacity, soil type, and number of boreholes were discussed. Finally, the sensitivity analysis of change in optimum design parameters with increase in the investment and electricity costs was performed

  5. Methodology and consistency of slant and vertical assessments for ionospheric electron content models

    Science.gov (United States)

    Hernández-Pajares, Manuel; Roma-Dollase, David; Krankowski, Andrzej; García-Rigo, Alberto; Orús-Pérez, Raül

    2017-12-01

    A summary of the main concepts on global ionospheric map(s) [hereinafter GIM(s)] of vertical total electron content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the international global navigation satellite systems (GNSS) service (IGS) ionosphere working group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent global positioning system data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM `UQRG' computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centres and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.

  6. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site

    Science.gov (United States)

    Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles

  7. Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models

    Science.gov (United States)

    Bauerle, William L.; Bowden, Joseph D.

    2011-01-01

    A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions. PMID:21617246

  8. An analytical model for particulate deposition on vertical heat transfer surfaces in a boiling environment

    International Nuclear Information System (INIS)

    Keefer, R.H.; Rider, J.L.; Waldman, L.A.

    1993-01-01

    A frequent problem in heat exchange equipment is the deposition of particulates entrained in the working fluid onto heat transfer surfaces. These deposits increase the overall heat transfer resistance and can significantly degrade the performance of the heat exchanger. Accurate prediction of the deposition rate is necessary to ensure that the design and specified operating conditions of the heat exchanger adequately address the effects of this deposit layer. Although the deposition process has been studied in considerable detail, much of the work has focused on investigating individual aspects of the deposition process. This paper consolidates this previous research into a mechanistically based analytical prediction model for particulate deposition from a boiling liquid onto vertical heat transfer surfaces. Consistent with the well known Kern-Seaton approach, the model postulates net particulate accumulation to depend on the relative contributions of deposition and reentrainment processes. Mechanisms for deposition include boiling, momentum, and diffusion effects. Reentrainment is presumed to occur via an intermittent erosion process, with the energy for particle removal being supplied by turbulent flow instabilities. The contributions of these individual mechanisms are integrated to obtain a single equation for the deposit thickness versus time. The validity of the resulting model is demonstrated by comparison with data published in the open literature. Model estimates show good agreement with data obtained over a range of thermal-hydraulic conditions in both flow and pool boiling environments. The utility of the model in performing parametric studies (e.g. to determine the effect of flow velocity on net deposition) is also demonstrated. The initial success of the model suggests that it could prove useful in establishing a range of heat exchanger. operating conditions to minimize deposition

  9. Hall Thruster Modeling with a Given Temperature Profile

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    A quasi one-dimensional steady-state model of the Hall thruster is presented. For given mass flow rate, magnetic field profile, and discharge voltage the unique solution can be constructed, assuming that the thruster operates in one of the two regimes: with or without the anode sheath. It is shown that for a given temperature profile, the applied discharge voltage uniquely determines the operating regime; for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. A good correlation between the quasi one-dimensional model and experimental results can be achieved by selecting an appropriate temperature profile. We also show how the presented model can be used to obtain a two-dimensional potential distribution

  10. Vertical distribution of paracalanus crassirostris (copepoda, calanoidea: analysis by the general linear model

    Directory of Open Access Journals (Sweden)

    Ana Milstein

    1979-01-01

    Full Text Available The vertical distribution of each developmental stage of Paracalanus crassirostris was studied in a shallow water station at Ubatuba, SP, Brazil (23º30'S-45º07'W. Samples were collected monthly at the surface, 2m and near bottom levels . Salinity, temperature, dissolved oxygen, tide height, light penetration arid solar radiation were also recorded. Data were analysed by the general linear model. It showed that the amount of individuals at any developmental stage is affected diversely by hour, depth, hour-depth interaction and environmental factors throughout the year and that these effects are stronger in summer. All developmental stages were spread in the water column showing no regular vertical migrations. On the other hand, the number of organisms caught in a particular hour seemed to dependmore on the tide than on the animals behaviour. The results of the present paper showed, as observed by some other authors, the lack of vertical migration of a coastal copepod which is a grazer of fine particles throughout its life.A distribuição vertical dos diferentes estádios de desenvolvimento de P. crassirostris foi estudada durante um ano (junho 1976 - maio 1977, numa estação pouco profunda (5 m em Ubatuba. As amostras foram coletadas mensalmente, em tres profundidades, cada quatro horas, com garrafa van Dorn de 9 l registrando-se dados ambientais. Os dados foram processados com a técnica dos Mínimos Quadrados, na forma de uma Aralise de Regressão de um Modelo Linear que inclui covariáveis. O modelo foi construído a priori, considerando densidade de organismos por amostra, fatores ambientais, diferenças entre amostras procedentes de diferentes profundidades e horas, também como interações entre hora e profundidade. Para cada estádio de P. crassirostris, o modelo foi repetido 9 vezes, com os dados de dois meses cada vez, a fim de obter a variação das respostas no ano. Os resultados do modelo indicaram que a quantidade de indiv

  11. Soliton wave model for simulating the slug formation in vertical-to-horizontal partially blocked pipes

    International Nuclear Information System (INIS)

    Nihan Onder; Alberto Teyssedou; Danila Roubtsov

    2005-01-01

    Full text of publication follows: In CANDU reactors the fuel channels are connected to inlet and outlet headers by feeder-pipes that consist of vertical and horizontal legs. In some feeders, orifices are installed for flow adjustment. During a postulated Loss of Coolant Accidents, the emergency cooling water injected into the inlet and outlet headers enters the fuel channels through the feeder pipes. Steam produced in the feeders and in the fuel channels may flow in the direction opposite to that of the water, thereby creating vertical to horizontal Counter-Current Flow (CCF). The rate at which the cooling water enters the fuel channel may be substantially limited by the flooding phenomena that entrains the water in the same direction as the steam flow. Steam flowin