WorldWideScience

Sample records for model version includes

  1. Description of the new version 4.0 of the tritium model UFOTRI including user guide

    International Nuclear Information System (INIS)

    Raskob, W.

    1993-08-01

    In view of the future operation of fusion reactors the release of tritium may play a dominant role during normal operation as well as after accidents. Because of its physical and chemical properties which differ significantly from those of other radionuclides, the model UFOTRI for assessing the radiological consequences of accidental tritium releases has been developed. It describes the behaviour of tritium in the biosphere and calculates the radiological impact on individuals and the population due to the direct exposure and by the ingestion pathways. Processes such as the conversion of tritium gas into tritiated water (HTO) in the soil, re-emission after deposition and the conversion of HTO into organically bound tritium, are considered. The use of UFOTRI in its probabilistic mode shows the spectrum of the radiological impact together with the associated probability of occurrence. A first model version was established in 1991. As the ongoing work on investigating the main processes of the tritium behaviour in the environment shows up new results, the model has been improved in several points. The report describes the changes incorporated into the model since 1991. Additionally provides the up-dated user guide for handling the revised UFOTRI version which will be distributed to interested organizations. (orig.) [de

  2. Extensions of MAD Version 8 to Include Beam Acceleration

    International Nuclear Information System (INIS)

    Raubenheimer, Tor O

    2000-01-01

    In this paper, the authors describe modifications to MAD version 8.23 to include linear accelerator cavities and beam acceleration. An additional energy variable has been added which is modified as the beam passes through LCAV elements (linear accelerator cavities) and can be used as a constraint in matching commands. The calculation of the beta functions and phase advance is consistent with that in other codes that treat acceleration such as TRANSPORT or DIMAD. These modifications allow this version of MAD to be used for the design and modeling of linacs and the authors present examples from the Next Linear Collider design as well as a muon acceleration complex. The code is available from CERN or SLAC

  3. Versions of the Waste Reduction Model (WARM)

    Science.gov (United States)

    This page provides a brief chronology of changes made to EPA’s Waste Reduction Model (WARM), organized by WARM version number. The page includes brief summaries of changes and updates since the previous version.

  4. The Unified Extensional Versioning Model

    DEFF Research Database (Denmark)

    Asklund, U.; Bendix, Lars Gotfred; Christensen, H. B.

    1999-01-01

    Versioning of components in a system is a well-researched field where various adequate techniques have already been established. In this paper, we look at how versioning can be extended to cover also the structural aspects of a system. There exist two basic techniques for versioning - intentional...

  5. Cost-effectiveness of breech version by acupuncture-type interventions on BL 67, including moxibustion, for women with a breech foetus at 33 weeks gestation: a modelling approach.

    Science.gov (United States)

    van den Berg, Ineke; Kaandorp, Guido C; Bosch, Johanna L; Duvekot, Johannes J; Arends, Lidia R; Hunink, M G Myriam

    2010-04-01

    To assess, using a modelling approach, the effectiveness and costs of breech version with acupuncture-type interventions on BL67 (BVA-T), including moxibustion, compared to expectant management for women with a foetal breech presentation at 33 weeks gestation. A decision tree was developed to predict the number of caesarean sections prevented by BVA-T compared to expectant management to rectify breech presentation. The model accounted for external cephalic versions (ECV), treatment compliance, and costs for 10,000 simulated breech presentations at 33 weeks gestational age. Event rates were taken from Dutch population data and the international literature, and the relative effectiveness of BVA-T was based on a specific meta-analysis. Sensitivity analyses were conducted to evaluate the robustness of the results. We calculated percentages of breech presentations at term, caesarean sections, and costs from the third-party payer perspective. Odds ratios (OR) and cost differences of BVA-T versus expectant management were calculated. (Probabilistic) sensitivity analysis and expected value of perfect information analysis were performed. The simulated outcomes demonstrated 32% breech presentations after BVA-T versus 53% with expectant management (OR 0.61, 95% CI 0.43, 0.83). The percentage caesarean section was 37% after BVA-T versus 50% with expectant management (OR 0.73, 95% CI 0.59, 0.88). The mean cost-savings per woman was euro 451 (95% CI euro 109, euro 775; p=0.005) using moxibustion. Sensitivity analysis showed that if 16% or more of women offered moxibustion complied, it was more effective and less costly than expectant management. To prevent one caesarean section, 7 women had to use BVA-T. The expected value of perfect information from further research was euro0.32 per woman. The results suggest that offering BVA-T to women with a breech foetus at 33 weeks gestation reduces the number of breech presentations at term, thus reducing the number of caesarean sections

  6. The COG database: an updated version includes eukaryotes

    Directory of Open Access Journals (Sweden)

    Sverdlov Alexander V

    2003-09-01

    Full Text Available Abstract Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens, one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the

  7. Model-based version management system framework

    International Nuclear Information System (INIS)

    Mehmood, W.

    2016-01-01

    In this paper we present a model-based version management system. Version Management System (VMS) a branch of software configuration management (SCM) aims to provide a controlling mechanism for evolution of software artifacts created during software development process. Controlling the evolution requires many activities to perform, such as, construction and creation of versions, identification of differences between versions, conflict detection and merging. Traditional VMS systems are file-based and consider software systems as a set of text files. File based VMS systems are not adequate for performing software configuration management activities such as, version control on software artifacts produced in earlier phases of the software life cycle. New challenges of model differencing, merge, and evolution control arise while using models as central artifact. The goal of this work is to present a generic framework model-based VMS which can be used to overcome the problem of tradition file-based VMS systems and provide model versioning services. (author)

  8. Modeling report of DYMOND code (DUPIC version)

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Yacout, Abdellatif M.

    2003-04-01

    The DYMOND code employs the ITHINK dynamic modeling platform to assess the 100-year dynamic evolution scenarios for postulated global nuclear energy parks. Firstly, DYMOND code has been developed by ANL(Argonne National Laboratory) to perform the fuel cycle analysis of LWR once-through and LWR-FBR mixed plant. Since the extensive application of DYMOND code has been requested, the first version of DYMOND has been modified to adapt the DUPIC, MSR and RTF fuel cycle. DYMOND code is composed of three parts; the source language platform, input supply and output. But those platforms are not clearly distinguished. This report described all the equations which were modeled in the modified DYMOND code (which is called as DYMOND-DUPIC version). It divided into five parts;Part A deals model in reactor history which is included amount of the requested fuels and spent fuels. Part B aims to describe model of fuel cycle about fuel flow from the beginning to the end of fuel cycle. Part C is for model in re-processing which is included recovery of burned uranium, plutonium, minor actinide and fission product as well as the amount of spent fuels in storage and disposal. Part D is for model in other fuel cycle which is considered the thorium fuel cycle for MSR and RTF reactor. Part E is for model in economics. This part gives all the information of cost such as uranium mining cost, reactor operating cost, fuel cost etc

  9. Modeling report of DYMOND code (DUPIC version)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan [KAERI, Taejon (Korea, Republic of); Yacout, Abdellatif M [Argonne National Laboratory, Ilinois (United States)

    2003-04-01

    The DYMOND code employs the ITHINK dynamic modeling platform to assess the 100-year dynamic evolution scenarios for postulated global nuclear energy parks. Firstly, DYMOND code has been developed by ANL(Argonne National Laboratory) to perform the fuel cycle analysis of LWR once-through and LWR-FBR mixed plant. Since the extensive application of DYMOND code has been requested, the first version of DYMOND has been modified to adapt the DUPIC, MSR and RTF fuel cycle. DYMOND code is composed of three parts; the source language platform, input supply and output. But those platforms are not clearly distinguished. This report described all the equations which were modeled in the modified DYMOND code (which is called as DYMOND-DUPIC version). It divided into five parts;Part A deals model in reactor history which is included amount of the requested fuels and spent fuels. Part B aims to describe model of fuel cycle about fuel flow from the beginning to the end of fuel cycle. Part C is for model in re-processing which is included recovery of burned uranium, plutonium, minor actinide and fission product as well as the amount of spent fuels in storage and disposal. Part D is for model in other fuel cycle which is considered the thorium fuel cycle for MSR and RTF reactor. Part E is for model in economics. This part gives all the information of cost such as uranium mining cost, reactor operating cost, fuel cost etc.

  10. Forsmark - site descriptive model version 0

    International Nuclear Information System (INIS)

    2002-10-01

    area identified in the feasibility study as favourable for further study. This rectangular area has now been designated the Forsmark regional model area. An important component of the present work is a data inventory, in which the location and scope of all potential sources of data is detailed and evaluated with respect to prospective usefulness for future site descriptive modelling for deep disposal. Data sources relevant to the Forsmark regional model area which still, to some degree, need to be evaluated/converted/inserted include the siting and construction of the three nuclear reactors (Forsmark 1-3), the feasibility study for an underground spent nuclear fuel interim storage facility at Forsmark, the pre-investigations and construction of the SFR, and the SAFE project. The present report describes the current level of knowledge of the surface ecosystems in the Forsmark regional model area, in a highly condensed form. It refers to, and draws its examples from, a series of SKB background reports which have been produced since the completion of the Oesthammar feasibility study, and a number of other sources of information which are gathered here for the first time. The data sources are outlined with reference to a series of functional ecosystem types: drainage areas, forest, wetland, agricultural land, lakes and rivers, and sea, each further subdivided into appropriate entities. A systematic approach has been used, even though, at the current level of knowledge, the information in many subdivisions is inadequate or lacking. The aims of biosphere studies within the site investigation programme are to define baseline (preconstruction) conditions, to provide the necessary data base for the environmental impact statement, and to contribute to the dose estimations in the safety analysis. The main emphasis of the report is on the preparation of a site descriptive model, version 0, for the geosphere, since data acquisition and processing in this area, in contrast to the

  11. International Spinal Cord Injury Core Data Set (version 2.0)-including standardization of reporting

    NARCIS (Netherlands)

    Biering-Sorensen, F.; DeVivo, M. J.; Charlifue, S.; Chen, Y.; New, P. W.; Noonan, V.; Post, M. W. M.; Vogel, L.

    Study design: The study design includes expert opinion, feedback, revisions and final consensus. Objectives: The objective of the study was to present the new knowledge obtained since the International Spinal Cord Injury (SCI) Core Data Set (Version 1.0) published in 2006, and describe the

  12. International Spinal Cord Injury Core Data Set (version 2.0)-including standardization of reporting

    NARCIS (Netherlands)

    Biering-Sørensen, F; DeVivo, M J; Charlifue, Susan; Chen, Y; New, P.W.; Noonan, V.; Post, M W M; Vogel, L.

    STUDY DESIGN: The study design includes expert opinion, feedback, revisions and final consensus. OBJECTIVES: The objective of the study was to present the new knowledge obtained since the International Spinal Cord Injury (SCI) Core Data Set (Version 1.0) published in 2006, and describe the

  13. Performance Tests of Snow-Related Variables Over the Tibetan Plateau and Himalayas Using a New Version of NASA GEOS-5 Land Surface Model that Includes the Snow Darkening Effect

    Science.gov (United States)

    Yasunari, Tppei J.; Lau, K.-U.; Koster, Randal D.; Suarez, Max; Mahanama, Sarith; Dasilva, Arlindo M.; Colarco, Peter R.

    2011-01-01

    The snow darkening effect, i.e. the reduction of snow albedo, is caused by absorption of solar radiation by absorbing aerosols (dust, black carbon, and organic carbon) deposited on the snow surface. This process is probably important over Himalayan and Tibetan glaciers due to the transport of highly polluted Atmospheric Brown Cloud (ABC) from the Indo-Gangetic Plain (IGP). This effect has been incorporated into the NASA Goddard Earth Observing System model, version 5 (GEOS-5) atmospheric transport model. The Catchment land surface model (LSM) used in GEOS-5 considers 3 snow layers. Code was developed to track the mass concentration of aerosols in the three layers, taking into account such processes as the flushing of the compounds as liquid water percolates through the snowpack. In GEOS-5, aerosol emissions, transports, and depositions are well simulated in the Goddard Chemistry Aerosol Radiation and Transport (GO CART) module; we recently made the connection between GOCART and the GEOS-5 system fitted with the revised LSM. Preliminary simulations were performed with this new system in "replay" mode (i.e., with atmospheric dynamics guided by reanalysis) at 2x2.5 degree horizontal resolution, covering the period 1 November 2005 - 31 December 2009; we consider the final three years of simulation here. The three simulations used the following variants of the LSM: (1) the original Catchment LSM with a fixed fresh snowfall density of 150 kg m-3 ; (2) the LSM fitted with the new snow albedo code, used here without aerosol deposition but with changes in density formulation and melting water effect on snow specific surface area, (3) the LSM fitted with the new snow albedo code as same as (2) but with fixed aerosol deposition rates (computed from GOCART values averaged over the Tibetan Plateau domain [Ion.: 60-120E; lat.: 20-50N] during March-May 2008) applied to all grid points at every time step. For (2) and (3), the same setting on the fresh snowfall density as in (1

  14. Simpevarp - site descriptive model version 0

    International Nuclear Information System (INIS)

    2002-11-01

    During 2002, SKB is starting detailed investigations at two potential sites for a deep repository in the Precambrian rocks of the Fennoscandian Shield. The present report concerns one of those sites, Simpevarp, which lies in the municipality of Oskarshamn, on the southeast coast of Sweden, about 250 kilometres south of Stockholm. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. SKB maintains two main databases at the present time, a site characterisation database called SICADA and a geographic information system called SKB GIS. The site descriptive model will be developed and presented with the aid of the SKB GIS capabilities, and with SKBs Rock Visualisation System (RVS), which is also linked to SICADA. The version 0 model forms an important framework for subsequent model versions, which are developed successively, as new information from the site investigations becomes available. Version 0 is developed out of the information available at the start of the site investigation. In the case of Simpevarp, this is essentially the information which was compiled for the Oskarshamn feasibility study, which led to the choice of that area as a favourable object for further study, together with information collected since its completion. This information, with the exception of the extensive data base from the nearby Aespoe Hard Rock Laboratory, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. Against this background, the present report consists of the following components: an overview of the present content of the databases

  15. Forsmark - site descriptive model version 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    area identified in the feasibility study as favourable for further study. This rectangular area has now been designated the Forsmark regional model area. An important component of the present work is a data inventory, in which the location and scope of all potential sources of data is detailed and evaluated with respect to prospective usefulness for future site descriptive modelling for deep disposal. Data sources relevant to the Forsmark regional model area which still, to some degree, need to be evaluated/converted/inserted include the siting and construction of the three nuclear reactors (Forsmark 1-3), the feasibility study for an underground spent nuclear fuel interim storage facility at Forsmark, the pre-investigations and construction of the SFR, and the SAFE project. The present report describes the current level of knowledge of the surface ecosystems in the Forsmark regional model area, in a highly condensed form. It refers to, and draws its examples from, a series of SKB background reports which have been produced since the completion of the Oesthammar feasibility study, and a number of other sources of information which are gathered here for the first time. The data sources are outlined with reference to a series of functional ecosystem types: drainage areas, forest, wetland, agricultural land, lakes and rivers, and sea, each further subdivided into appropriate entities. A systematic approach has been used, even though, at the current level of knowledge, the information in many subdivisions is inadequate or lacking. The aims of biosphere studies within the site investigation programme are to define baseline (preconstruction) conditions, to provide the necessary data base for the environmental impact statement, and to contribute to the dose estimations in the safety analysis. The main emphasis of the report is on the preparation of a site descriptive model, version 0, for the geosphere, since data acquisition and processing in this area, in contrast to the

  16. Simpevarp - site descriptive model version 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    During 2002, SKB is starting detailed investigations at two potential sites for a deep repository in the Precambrian rocks of the Fennoscandian Shield. The present report concerns one of those sites, Simpevarp, which lies in the municipality of Oskarshamn, on the southeast coast of Sweden, about 250 kilometres south of Stockholm. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. SKB maintains two main databases at the present time, a site characterisation database called SICADA and a geographic information system called SKB GIS. The site descriptive model will be developed and presented with the aid of the SKB GIS capabilities, and with SKBs Rock Visualisation System (RVS), which is also linked to SICADA. The version 0 model forms an important framework for subsequent model versions, which are developed successively, as new information from the site investigations becomes available. Version 0 is developed out of the information available at the start of the site investigation. In the case of Simpevarp, this is essentially the information which was compiled for the Oskarshamn feasibility study, which led to the choice of that area as a favourable object for further study, together with information collected since its completion. This information, with the exception of the extensive data base from the nearby Aespoe Hard Rock Laboratory, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. Against this background, the present report consists of the following components: an overview of the present content of the databases

  17. Performance tests of snow-related variables over the Tibetan Plateau and Himalayas using a new version of NASA GEOS-5 land surface model that includes the snow darkening effect

    Science.gov (United States)

    Yasunari, T. J.; Lau, W. K.; Koster, R. D.; Suarez, M.; Mahanama, S. P.; da Silva, A.; Colarco, P. R.

    2011-12-01

    The snow darkening effect, i.e. the reduction of snow albedo, is caused by absorption of solar radiation by absorbing aerosols (dust, black carbon, and organic carbon) deposited on the snow surface. This process is probably important over Himalayan and Tibetan glaciers due to the transport of highly polluted Atmospheric Brown Cloud (ABC) from the Indo-Gangetic Plain (IGP). This effect has been incorporated into the NASA Goddard Earth Observing System model, version 5 (GEOS-5) atmospheric transport model. The Catchment land surface model (LSM) used in GEOS-5 considers 3 snow layers. Code was developed to track the mass concentration of aerosols in the three layers, taking into account such processes as the flushing of the compounds as liquid water percolates through the snowpack. In GEOS-5, aerosol emissions, transports, and depositions are well simulated in the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module; we recently made the connection between GOCART and the GEOS-5 system fitted with the revised LSM. Preliminary simulations were performed with this new system in "replay" mode (i.e., with atmospheric dynamics guided by reanalysis) at 2x2.5 degree horizontal resolution, covering the period 1 November 2005 - 31 December 2009; we consider the final three years of simulation here. The three simulations used the following variants of the LSM: (1) the original Catchment LSM with a fixed fresh snowfall density of 150 kg m-3; (2) the LSM fitted with the new snow albedo code, used here without aerosol deposition but with changes in density formulation and melting water effect on snow specific surface area, (3) the LSM fitted with the new snow albedo code as same as (2) but with fixed aerosol deposition rates (computed from GOCART values averaged over the Tibetan Plateau domain [lon.: 60-120E; lat.: 20-50N] during March-May 2008) applied to all grid points at every time step. For (2) and (3), the same setting on the fresh snowfall density as in (1) was

  18. MOS modeling hierarchy including radiation effects

    International Nuclear Information System (INIS)

    Alexander, D.R.; Turfler, R.M.

    1975-01-01

    A hierarchy of modeling procedures has been developed for MOS transistors, circuit blocks, and integrated circuits which include the effects of total dose radiation and photocurrent response. The models were developed for use with the SCEPTRE circuit analysis program, but the techniques are suitable for other modern computer aided analysis programs. The modeling hierarchy permits the designer or analyst to select the level of modeling complexity consistent with circuit size, parametric information, and accuracy requirements. Improvements have been made in the implementation of important second order effects in the transistor MOS model, in the definition of MOS building block models, and in the development of composite terminal models for MOS integrated circuits

  19. ONKALO rock mechanics model (RMM). Version 2.3

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, T.; Merjama, S.; Moenkkoenen, H. [WSP Finland, Helsinki (Finland)

    2014-07-15

    The Rock Mechanics Model of the ONKALO rock volume includes the most important rock mechanics features and parameters at the Olkiluoto site. The main objective of the model is to be a tool to predict rock properties, rock quality and hence provide an estimate for the rock stability of the potential repository at Olkiluoto. The model includes a database of rock mechanics raw data and a block model in which the rock mechanics parameters are estimated through block volumes based on spatial rock mechanics raw data. In this version 2.3, special emphasis was placed on refining the estimation of the block model. The model was divided into rock mechanics domains which were used as constraints during the block model estimation. During the modelling process, a display profile and toolbar were developed for the GEOVIA Surpac software to improve visualisation and access to the rock mechanics data for the Olkiluoto area. (orig.)

  20. Latest NASA Instrument Cost Model (NICM): Version VI

    Science.gov (United States)

    Mrozinski, Joe; Habib-Agahi, Hamid; Fox, George; Ball, Gary

    2014-01-01

    The NASA Instrument Cost Model, NICM, is a suite of tools which allow for probabilistic cost estimation of NASA's space-flight instruments at both the system and subsystem level. NICM also includes the ability to perform cost by analogy as well as joint confidence level (JCL) analysis. The latest version of NICM, Version VI, was released in Spring 2014. This paper will focus on the new features released with NICM VI, which include: 1) The NICM-E cost estimating relationship, which is applicable for instruments flying on Explorer-like class missions; 2) The new cluster analysis ability which, alongside the results of the parametric cost estimation for the user's instrument, also provides a visualization of the user's instrument's similarity to previously flown instruments; and 3) includes new cost estimating relationships for in-situ instruments.

  1. Computerized transportation model for the NRC Physical Protection Project. Versions I and II

    International Nuclear Information System (INIS)

    Anderson, G.M.

    1978-01-01

    Details on two versions of a computerized model for the transportation system of the NRC Physical Protection Project are presented. The Version I model permits scheduling of all types of transport units associated with a truck fleet, including truck trailers, truck tractors, escort vehicles and crews. A fixed-fleet itinerary construction process is used in which iterations on fleet size are required until the service requirements are satisfied. The Version II model adds an aircraft mode capability and provides for a more efficient non-fixed-fleet itinerary generation process. Test results using both versions are included

  2. The ONKALO area model. Version 1

    International Nuclear Information System (INIS)

    Kemppainen, K.; Ahokas, T.; Ahokas, H.; Paulamaeki, S.; Paananen, M.; Gehoer, S.; Front, K.

    2007-11-01

    The geological model of the ONKALO area consists of three submodels: the lithological model, the brittle deformation model and the alteration model. The lithological model gives properties of definite rock units that can be defined on the basis the migmatite structures, textures and modal compositions. The brittle deformation model describes the results of brittle deformation, where geophysical and hydrogeological results are added. The alteration model describes occurrence of different alteration types and its possible effects. The rocks of Olkiluoto can be divided into two major classes: (1) supracrustal high-grade metamorphic rocks including various migmatitic gneisses, tonalitic-granodioriticgranitic gneisses, mica gneisses, quartz gneisses and mafic gneisses, and (2) igneous rocks including pegmatitic granites and diabase dykes. The migmatitic gneisses can further be divided into three subgroups in terms of the type of migmatite structure: veined gneisses, stromatic gneisses and diatexitic gneisses. On the basis of refolding and crosscutting relationships, the metamorphic supracrustal rocks have been subject to polyphased ductile deformation, including five stages. In 3D modelling of the lithological units, an assumption has been made, on the basis of measurements in outcrops, investigation trenches and drill cores, that the pervasive, composite foliation produced as a result a polyphase ductile deformation has a rather constant attitude in the ONKALO area. Consequently, the strike and dip of the foliation has been used as a tool, through which the lithologies have been correlated between the drillholes and from the surface to the drillholes. The bedrock in the Olkiluoto site has been subject to extensive hydrothermal alteration, which has taken place at reasonably low temperature conditions, the estimated temperature interval being from slightly over 300 deg C to less than 100 deg C. Two types of alteration can be observed: (1) pervasive (disseminated

  3. GROGi-F. Modified version of GROGi 2 nuclear evaporation computer code including fission decay channel

    International Nuclear Information System (INIS)

    Delagrange, H.

    1977-01-01

    This report is the user manual of the GR0GI-F code, modified version of the GR0GI-2 code. It calculates the cross sections for heavy ion induced fission. Fission probabilities are calculated via the Bohr-Wheeler formalism

  4. H2A Production Model, Version 2 User Guide

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Ramsden, T.; Zuboy, J.

    2008-09-01

    The H2A Production Model analyzes the technical and economic aspects of central and forecourt hydrogen production technologies. Using a standard discounted cash flow rate of return methodology, it determines the minimum hydrogen selling price, including a specified after-tax internal rate of return from the production technology. Users have the option of accepting default technology input values--such as capital costs, operating costs, and capacity factor--from established H2A production technology cases or entering custom values. Users can also modify the model's financial inputs. This new version of the H2A Production Model features enhanced usability and functionality. Input fields are consolidated and simplified. New capabilities include performing sensitivity analyses and scaling analyses to various plant sizes. This User Guide helps users already familiar with the basic tenets of H2A hydrogen production cost analysis get started using the new version of the model. It introduces the basic elements of the model then describes the function and use of each of its worksheets.

  5. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    Science.gov (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    purity of the final preparation. Using mini-gels (BioRad Mini-Protean II apparatus), each group can pour, run, and stain their own 8 7.3-cm gel within the lab period; destaining can be carried out at any time afterward. The main contaminating band observed is ovalbumin, at a molecular weight of 46,000. Computer Modeling Using the program Quanta (MSI, Burlington, MA) on Indigo workstations (Silicon Graphics, Hudson, MA), the students retrieve coordinates from an MSI version of the Protein Data Bank, display the structure, and rationalize what changes would occur with a mutated form of the protein. Even for those who do not have Quanta or analogous programs, structural coordinates are available through the Internet. Students are prepared for their independent use of the molecular modeling workstations through a series of tutorials during the course of the semester. These exercises require that the students become familiar with specific applications of Quanta, including setting secondary conformation and hydrogen bonds, energy calculations, selectively displaying parts of molecules, measuring interatomic distances, and editing existing proteins. This introduction to macromolecular modeling is comparable to that suggested by Harvey and Tan (17) as a brief introduction to the field. Peer Review For each writing assignment (short paper and grant proposal), one week of lab is devoted to the peer review process. Students are to come to lab with a draft of their paper and a cover letter to their reviewers, which states how far they believe they are in the writing process; what they like and don't like about their work at this stage; and in what specific areas they need help (e.g., audience level, organization, use of references). They exchange papers, reading two or three during the course of the lab period. For each paper, they fill out a peer review form, which requires that they summarize the paper; look for clarity of presentation, appropriate citations, and use of others

  6. Model for safety reports including descriptive examples

    International Nuclear Information System (INIS)

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository

  7. Version control of pathway models using XML patches.

    Science.gov (United States)

    Saffrey, Peter; Orton, Richard

    2009-03-17

    Computational modelling has become an important tool in understanding biological systems such as signalling pathways. With an increase in size complexity of models comes a need for techniques to manage model versions and their relationship to one another. Model version control for pathway models shares some of the features of software version control but has a number of differences that warrant a specific solution. We present a model version control method, along with a prototype implementation, based on XML patches. We show its application to the EGF/RAS/RAF pathway. Our method allows quick and convenient storage of a wide range of model variations and enables a thorough explanation of these variations. Trying to produce these results without such methods results in slow and cumbersome development that is prone to frustration and human error.

  8. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  9. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-01-01

    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  10. Model Adequacy Analysis of Matching Record Versions in Nosql Databases

    Directory of Open Access Journals (Sweden)

    E. V. Tsviashchenko

    2015-01-01

    Full Text Available The article investigates a model of matching record versions. The goal of this work is to analyse the model adequacy. This model allows estimating a user’s processing time distribution of the record versions and a distribution of the record versions count. The second option of the model was used, according to which, for a client the time to process record versions depends explicitly on the number of updates, performed by the other users between the sequential updates performed by a current client. In order to prove the model adequacy the real experiment was conducted in the cloud cluster. The cluster contains 10 virtual nodes, provided by DigitalOcean Company. The Ubuntu Server 14.04 was used as an operating system (OS. The NoSQL system Riak was chosen for experiments. In the Riak 2.0 version and later provide “dotted vector versions” (DVV option, which is an extension of the classic vector clock. Their use guarantees, that the versions count, simultaneously stored in DB, will not exceed the count of clients, operating in parallel with a record. This is very important while conducting experiments. For developing the application the java library, provided by Riak, was used. The processes run directly on the nodes. In experiment two records were used. They are: Z – the record, versions of which are handled by clients; RZ – service record, which contains record update counters. The application algorithm can be briefly described as follows: every client reads versions of the record Z, processes its updates using the RZ record counters, and saves treated record in database while old versions are deleted form DB. Then, a client rereads the RZ record and increments counters of updates for the other clients. After that, a client rereads the Z record, saves necessary statistics, and deliberates the results of processing. In the case of emerging conflict because of simultaneous updates of the RZ record, the client obtains all versions of that

  11. Solar Advisor Model User Guide for Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Blair, N.; Mehos, M.; Christensen, C.; Janzou, S.; Cameron, C.

    2008-08-01

    The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.

  12. Plasma Cell Neoplasms (Including Multiple Myeloma)—Health Professional Version

    Science.gov (United States)

    There are several types of plasma cell neoplasms, including monoclonal gammopathy of undetermined significance (MGUS), isolated plasmacytoma of the bone, extramedullary plasmacytoma, and multiple myeloma. Find evidence-based information on plasma cell neoplasms treatment, research, and statistics.

  13. Micro dosimetry model. An extended version

    International Nuclear Information System (INIS)

    Vroegindewey, C.

    1994-07-01

    In an earlier study a relative simple mathematical model has been constructed to simulate the energy transfer on a cellular scale and thus gain insight in the fundamental processes of BNCT. Based on this work, a more realistic micro dosimetry model is developed. The new facets of the model are: the treatment of proton recoil, the calculation of the distribution of energy depositions, and the determination of the number of particles crossing the target nucleus subdivided in place of origin. Besides these extensions, new stopping power tables for the emitted particles are generated and biased Monte Carlo techniques are used to reduce computer time. (orig.)

  14. Seepage Model for PA Including Drift Collapse

    International Nuclear Information System (INIS)

    Li, G.; Tsang, C.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  15. Seepage Model for PA Including Dift Collapse

    Energy Technology Data Exchange (ETDEWEB)

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in

  16. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a

  17. Smart Grid Interoperability Maturity Model Beta Version

    Energy Technology Data Exchange (ETDEWEB)

    Widergren, Steven E.; Drummond, R.; Giroti, Tony; Houseman, Doug; Knight, Mark; Levinson, Alex; longcore, Wayne; Lowe, Randy; Mater, J.; Oliver, Terry V.; Slack, Phil; Tolk, Andreas; Montgomery, Austin

    2011-12-02

    The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across an information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.

  18. IDC Use Case Model Survey Version 1.1.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, James Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carr, Dorthe B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    This document contains the brief descriptions for the actors and use cases contained in the IDC Use Case Model. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 SNL IDC Reengineering Project Team Initial delivery M. Harris V1.1 2/2015 SNL IDC Reengineering Project Team Iteration I2 Review Comments M. Harris

  19. IDC Use Case Model Survey Version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Dorthe B.; Harris, James M.

    2014-12-01

    This document contains the brief descriptions for the actors and use cases contained in the IDC Use Case Model Survey. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

  20. A conceptual model specification language (CMSL Version 2)

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    1992-01-01

    Version 2 of a language (CMSL) to specify conceptual models is defined. CMSL consists of two parts, the value specification language VSL and the object spercification language OSL. There is a formal semantics and an inference system for CMSL but research on this still continues. A method for

  1. RELAP5-3D Code Includes ATHENA Features and Models

    International Nuclear Information System (INIS)

    Riemke, Richard A.; Davis, Cliff B.; Schultz, Richard R.

    2006-01-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, SF 6 , xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5-3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper. (authors)

  2. Fiscal impacts model documentation. Version 1.0

    International Nuclear Information System (INIS)

    Beck, S.L.; Scott, M.J.

    1986-05-01

    The Fiscal Impacts (FI) Model, Version 1.0 was developed under Pacific Northwest Laboratory's Monitored Retrievable Storage (MRS) Program to aid in development of the MRS Reference Site Environmental Document (PNL 5476). It computes estimates of 182 fiscal items for state and local government jurisdictions, using input data from the US Census Bureau's 1981 Survey of Governments and local population forecasts. The model can be adapted for any county or group of counties in the United States

  3. Detailed analysis of the supermarket task included on the Japanese version of the Rapid Dementia Screening Test.

    Science.gov (United States)

    Moriyama, Yasushi; Yoshino, Aihide; Muramatsu, Taro; Mimura, Masaru

    2017-05-01

    The supermarket task, which is included in the Japanese version of the Rapid Dementia Screening Test, requires the quick (1 min) generation of words for things that can be bought in a supermarket. Cluster size and switches are investigated during this task. We investigated how the severity of dementia related to cluster size and switches on the supermarket task in patients with Alzheimer's disease. We administered the Japanese version of the Rapid Dementia Screening Test to 250 patients with very mild to severe Alzheimer's disease and to 49 healthy volunteers. Patients had Mini-Mental State Examination scores from 12 to 26 and Clinical Dementia Rating scale scores from 0.5 to 3. Patients were divided into four groups based on their Clinical Dementia Rating score (0.5, 1, 2, 3). We performed statistical analyses between the four groups and control subjects based on cluster size and switch scores on the supermarket task. The score for cluster size and switches deteriorated according to the severity of dementia. Moreover, for subjects with a Clinical Dementia Rating score of 0.5, cluster size was impaired, but switches were intact. Our findings indicate that the scores for cluster size and switches on the supermarket task may be useful for detecting the severity of symptoms of dementia in patients with Alzheimer's disease. © 2016 The Authors. Psychogeriatrics © 2016 Japanese Psychogeriatric Society.

  4. Solid Waste Projection Model: Database (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement

  5. Some Remarks on Stochastic Versions of the Ramsey Growth Model

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2012-01-01

    Roč. 19, č. 29 (2012), s. 139-152 ISSN 1212-074X R&D Projects: GA ČR GAP402/10/1610; GA ČR GAP402/10/0956; GA ČR GAP402/11/0150 Institutional support: RVO:67985556 Keywords : Economic dynamics * Ramsey growth model with disturbance * stochastic dynamic programming * multistage stochastic programs Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/sladky-some remarks on stochastic versions of the ramsey growth model.pdf

  6. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  7. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, T. [WaterHope, Helsinki (Finland)

    2013-11-15

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  8. Integrated Farm System Model Version 4.3 and Dairy Gas Emissions Model Version 3.3 Software development and distribution

    Science.gov (United States)

    Modeling routines of the Integrated Farm System Model (IFSM version 4.2) and Dairy Gas Emission Model (DairyGEM version 3.2), two whole-farm simulation models developed and maintained by USDA-ARS, were revised with new components for: (1) simulation of ammonia (NH3) and greenhouse gas emissions gene...

  9. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4

    Directory of Open Access Journals (Sweden)

    L. K. Emmons

    2010-01-01

    Full Text Available The Model for Ozone and Related chemical Tracers, version 4 (MOZART-4 is an offline global chemical transport model particularly suited for studies of the troposphere. The updates of the model from its previous version MOZART-2 are described, including an expansion of the chemical mechanism to include more detailed hydrocarbon chemistry and bulk aerosols. Online calculations of a number of processes, such as dry deposition, emissions of isoprene and monoterpenes and photolysis frequencies, are now included. Results from an eight-year simulation (2000–2007 are presented and evaluated. The MOZART-4 source code and standard input files are available for download from the NCAR Community Data Portal (http://cdp.ucar.edu.

  10. Break model comparison in different RELAP5 versions

    International Nuclear Information System (INIS)

    Parzer, I.

    2003-01-01

    The presented work focuses on the break flow prediction in RELAP5/MOD3 code, which is crucial to predict core uncovering and heatup during the Small Break Loss-of-Coolant Accidents (SB LOCA). The code prediction has been compared to the IAEA-SPE-4 experiments conducted on the PMK-2 integral test facilities in Hungary. The simulations have been performed with MOD3.2.2 Beta, MOD3.2.2 Gamma, MOD3.3 Beta and MOD3.3 frozen code version. In the present work we have compared the Ransom-Trapp and Henry-Fauske break model predictions. Additionally, both model predictions have been compared to itself, when used as the main modeling tool or when used as another code option, as so-called 'secret developmental options' on input card no.1. (author)

  11. GLEAM version 3: Global Land Evaporation Datasets and Model

    Science.gov (United States)

    Martens, B.; Miralles, D. G.; Lievens, H.; van der Schalie, R.; de Jeu, R.; Fernandez-Prieto, D.; Verhoest, N.

    2015-12-01

    Terrestrial evaporation links energy, water and carbon cycles over land and is therefore a key variable of the climate system. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to limitations in in situ measurements. As a result, several methods have risen to estimate global patterns of land evaporation from satellite observations. However, these algorithms generally differ in their approach to model evaporation, resulting in large differences in their estimates. One of these methods is GLEAM, the Global Land Evaporation: the Amsterdam Methodology. GLEAM estimates terrestrial evaporation based on daily satellite observations of meteorological variables, vegetation characteristics and soil moisture. Since the publication of the first version of the algorithm (2011), the model has been widely applied to analyse trends in the water cycle and land-atmospheric feedbacks during extreme hydrometeorological events. A third version of the GLEAM global datasets is foreseen by the end of 2015. Given the relevance of having a continuous and reliable record of global-scale evaporation estimates for climate and hydrological research, the establishment of an online data portal to host these data to the public is also foreseen. In this new release of the GLEAM datasets, different components of the model have been updated, with the most significant change being the revision of the data assimilation algorithm. In this presentation, we will highlight the most important changes of the methodology and present three new GLEAM datasets and their validation against in situ observations and an alternative dataset of terrestrial evaporation (ERA-Land). Results of the validation exercise indicate that the magnitude and the spatiotemporal variability of the modelled evaporation agree reasonably well with the estimates of ERA-Land and the in situ

  12. Impact of including surface currents on simulation of Indian Ocean variability with the POAMA coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei; Wang, Guomin; Hendon, Harry H.; Alves, Oscar [Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne (Australia)

    2011-04-15

    Impacts on the coupled variability of the Indo-Pacific by including the effects of surface currents on surface stress are explored in four extended integrations of an experimental version of the Bureau of Meteorology's coupled seasonal forecast model POAMA. The first pair of simulations differs only in their treatment of momentum coupling: one version includes the effects of surface currents on the surface stress computation and the other does not. The version that includes the effect of surface currents has less mean-state bias in the equatorial Pacific cold tongue but produces relatively weak coupled variability in the Tropics, especially that related to the Indian Ocean dipole (IOD) and El Nino/Southern Oscillation (ENSO). The version without the effects of surface currents has greater bias in the Pacific cold tongue but stronger IOD and ENSO variability. In order to diagnose the role of changes in local coupling from changes in remote forcing by ENSO for causing changes in IOD variability, a second set of simulations is conducted where effects of surface currents are included only in the Indian Ocean and only in the Pacific Ocean. IOD variability is found to be equally reduced by inclusion of the local effects of surface currents in the Indian Ocean and by the reduction of ENSO variability as a result of including effects of surface currents in the Pacific. Some implications of these results for predictability of the IOD and its dependence on ENSO, and for ocean subsurface data assimilation are discussed. (orig.)

  13. Solid Waste Projection Model: Database (Version 1.4)

    International Nuclear Information System (INIS)

    Blackburn, C.; Cillan, T.

    1993-09-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User's Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193)

  14. The Hamburg Oceanic Carbon Cycle Circulation Model. Version 1. Version 'HAMOCC2s' for long time integrations

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, C.; Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-11-01

    The Hamburg Ocean Carbon Cycle Circulation Model (HAMOCC, configuration HAMOCC2s) predicts the atmospheric carbon dioxide partial pressure (as induced by oceanic processes), production rates of biogenic particulate matter, and geochemical tracer distributions in the water column as well as the bioturbated sediment. Besides the carbon cycle this model version includes also the marine silicon cycle (silicic acid in the water column and the sediment pore waters, biological opal production, opal flux through the water column and opal sediment pore water interaction). The model is based on the grid and geometry of the LSG ocean general circulation model (see the corresponding manual, LSG=Large Scale Geostrophic) and uses a velocity field provided by the LSG-model in 'frozen' state. In contrast to the earlier version of the model (see Report No. 5), the present version includes a multi-layer sediment model of the bioturbated sediment zone, allowing for variable tracer inventories within the complete model system. (orig.)

  15. A Constrained and Versioned Data Model for TEAM Data

    Science.gov (United States)

    Andelman, S.; Baru, C.; Chandra, S.; Fegraus, E.; Lin, K.

    2009-04-01

    The objective of the Tropical Ecology Assessment and Monitoring Network (www.teamnetwork.org) is "To generate real time data for monitoring long-term trends in tropical biodiversity through a global network of TEAM sites (i.e. field stations in tropical forests), providing an early warning system on the status of biodiversity to effectively guide conservation action". To achieve this, the TEAM Network operates by collecting data via standardized protocols at TEAM Sites. The standardized TEAM protocols include the Climate, Vegetation and Terrestrial Vertebrate Protocols. Some sites also implement additional protocols. There are currently 7 TEAM Sites with plans to grow the network to 15 by June 30, 2009 and 50 TEAM Sites by the end of 2010. At each TEAM Site, data is gathered as defined by the protocols and according to a predefined sampling schedule. The TEAM data is organized and stored in a database based on the TEAM spatio-temporal data model. This data model is at the core of the TEAM Information System - it consumes and executes spatio-temporal queries, and analytical functions that are performed on TEAM data, and defines the object data types, relationships and operations that maintain database integrity. The TEAM data model contains object types including types for observation objects (e.g. bird, butterfly and trees), sampling unit, person, role, protocol, site and the relationship of these object types. Each observation data record is a set of attribute values of an observation object and is always associated with a sampling unit, an observation timestamp or time interval, a versioned protocol and data collectors. The operations on the TEAM data model can be classified as read operations, insert operations and update operations. Following are some typical operations: The operation get(site, protocol, [sampling unit block, sampling unit,] start time, end time) returns all data records using the specified protocol and collected at the specified site, block

  16. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features.

    Science.gov (United States)

    Iwata, Hiroaki; Gotoh, Osamu

    2012-11-01

    Spliced alignment plays a central role in the precise identification of eukaryotic gene structures. Even though many spliced alignment programs have been developed, recent rapid progress in DNA sequencing technologies demands further improvements in software tools. Benchmarking algorithms under various conditions is an indispensable task for the development of better software; however, there is a dire lack of appropriate datasets usable for benchmarking spliced alignment programs. In this study, we have constructed two types of datasets: simulated sequence datasets and actual cross-species datasets. The datasets are designed to correspond to various real situations, i.e. divergent eukaryotic species, different types of reference sequences, and the wide divergence between query and target sequences. In addition, we have developed an extended version of our program Spaln, which incorporates two additional features to the scoring scheme of the original version, and examined this extended version, Spaln2, together with the original Spaln and other representative aligners based on our benchmark datasets. Although the effects of the modifications are not individually striking, Spaln2 is consistently most accurate and reasonably fast in most practical cases, especially for plants and fungi and for increasingly divergent pairs of target and query sequences.

  17. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  18. Unsteady panel method for complex configurations including wake modeling

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2008-01-01

    Full Text Available implementations of the DLM are however not very versatile in terms of geometries that can be modeled. The ZONA6 code offers a versatile surface panel body model including a separated wake model, but uses a pressure panel method for lifting surfaces. This paper...

  19. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...

  20. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  1. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  2. Land-Use Portfolio Modeler, Version 1.0

    Science.gov (United States)

    Taketa, Richard; Hong, Makiko

    2010-01-01

    -on-investment. The portfolio model, now known as the Land-Use Portfolio Model (LUPM), provided the framework for the development of the Land-Use Portfolio Modeler, Version 1.0 software (LUPM v1.0). The software provides a geographic information system (GIS)-based modeling tool for evaluating alternative risk-reduction mitigation strategies for specific natural-hazard events. The modeler uses information about a specific natural-hazard event and the features exposed to that event within the targeted study region to derive a measure of a given mitigation strategy`s effectiveness. Harnessing the spatial capabilities of a GIS enables the tool to provide a rich, interactive mapping environment in which users can create, analyze, visualize, and compare different

  3. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2004-11-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  4. BehavePlus fire modeling system, version 5.0: Variables

    Science.gov (United States)

    Patricia L. Andrews

    2009-01-01

    This publication has been revised to reflect updates to version 4.0 of the BehavePlus software. It was originally published as the BehavePlus fire modeling system, version 4.0: Variables in July, 2008.The BehavePlus fire modeling system is a computer program based on mathematical models that describe wildland fire behavior and effects and the...

  5. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  6. Integrated Baseline System (IBS) Version 2.0: Models guide

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Models Guide summarizes the IBS use of several computer models for predicting the results of emergency situations. These include models for predicting dispersion/doses of airborne contaminants, traffic evacuation, explosion effects, heat radiation from a fire, and siren sound transmission. The guide references additional technical documentation on the models when such documentation is available from other sources. The audience for this manual is chiefly emergency management planners and analysts, but also data managers and system managers.

  7. NETPATH-WIN: an interactive user version of the mass-balance model, NETPATH

    Science.gov (United States)

    El-Kadi, A. I.; Plummer, Niel; Aggarwal, P.

    2011-01-01

    NETPATH-WIN is an interactive user version of NETPATH, an inverse geochemical modeling code used to find mass-balance reaction models that are consistent with the observed chemical and isotopic composition of waters from aquatic systems. NETPATH-WIN was constructed to migrate NETPATH applications into the Microsoft WINDOWS® environment. The new version facilitates model utilization by eliminating difficulties in data preparation and results analysis of the DOS version of NETPATH, while preserving all of the capabilities of the original version. Through example applications, the note describes some of the features of NETPATH-WIN as applied to adjustment of radiocarbon data for geochemical reactions in groundwater systems.

  8. Digital elevation models for site investigation programme in Oskarshamn. Site description version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars; Stroemgren, Maarten [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science

    2005-06-01

    In the Oskarshamn area, a digital elevation model has been produced using elevation data from many elevation sources on both land and sea. Many elevation model users are only interested in elevation models over land, so the model has been designed in three versions: Version 1 describes land surface, lake water surface, and sea bottom. Version 2 describes land surface, sediment levels at lake bottoms, and sea bottoms. Version 3 describes land surface, sediment levels at lake bottoms, and sea surface. In cases where the different sources of data were not in point form 'such as existing elevation models of land or depth lines from nautical charts' they have been converted to point values using GIS software. Because data from some sources often overlaps with data from other sources, several tests were conducted to determine if both sources of data or only one source would be included in the dataset used for the interpolation procedure. The tests resulted in the decision to use only the source judged to be of highest quality for most areas with overlapping data sources. All data were combined into a database of approximately 3.3 million points unevenly spread over an area of about 800 km{sup 2}. The large number of data points made it difficult to construct the model with a single interpolation procedure, the area was divided into 28 sub-models that were processed one by one and finally merged together into one single model. The software ArcGis 8.3 and its extension Geostatistical Analysis were used for the interpolation. The Ordinary Kriging method was used for interpolation. This method allows both a cross validation and a validation before the interpolation is conducted. Cross validation with different Kriging parameters were performed and the model with the most reasonable statistics was chosen. Finally, a validation with the most appropriate Kriging parameters was performed in order to verify that the model fit unmeasured localities. Since both the

  9. Digital elevation models for site investigation programme in Oskarshamn. Site description version 1.2

    International Nuclear Information System (INIS)

    Brydsten, Lars; Stroemgren, Maarten

    2005-06-01

    In the Oskarshamn area, a digital elevation model has been produced using elevation data from many elevation sources on both land and sea. Many elevation model users are only interested in elevation models over land, so the model has been designed in three versions: Version 1 describes land surface, lake water surface, and sea bottom. Version 2 describes land surface, sediment levels at lake bottoms, and sea bottoms. Version 3 describes land surface, sediment levels at lake bottoms, and sea surface. In cases where the different sources of data were not in point form 'such as existing elevation models of land or depth lines from nautical charts' they have been converted to point values using GIS software. Because data from some sources often overlaps with data from other sources, several tests were conducted to determine if both sources of data or only one source would be included in the dataset used for the interpolation procedure. The tests resulted in the decision to use only the source judged to be of highest quality for most areas with overlapping data sources. All data were combined into a database of approximately 3.3 million points unevenly spread over an area of about 800 km 2 . The large number of data points made it difficult to construct the model with a single interpolation procedure, the area was divided into 28 sub-models that were processed one by one and finally merged together into one single model. The software ArcGis 8.3 and its extension Geostatistical Analysis were used for the interpolation. The Ordinary Kriging method was used for interpolation. This method allows both a cross validation and a validation before the interpolation is conducted. Cross validation with different Kriging parameters were performed and the model with the most reasonable statistics was chosen. Finally, a validation with the most appropriate Kriging parameters was performed in order to verify that the model fit unmeasured localities. Since both the quality and the

  10. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    Science.gov (United States)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  11. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  12. Main modelling features of the ASTEC V2.1 major version

    International Nuclear Information System (INIS)

    Chatelard, P.; Belon, S.; Bosland, L.; Carénini, L.; Coindreau, O.; Cousin, F.; Marchetto, C.; Nowack, H.; Piar, L.; Chailan, L.

    2016-01-01

    Highlights: • Recent modelling improvements of the ASTEC European severe accident code are outlined. • Key new physical models now available in the ASTEC V2.1 major version are described. • ASTEC progress towards a multi-design reactor code is illustrated for BWR and PHWR. • ASTEC strong link with the on-going EC CESAM FP7 project is emphasized. • Main remaining modelling issues (on which IRSN efforts are now directing) are given. - Abstract: A new major version of the European severe accident integral code ASTEC, developed by IRSN with some GRS support, was delivered in November 2015 to the ASTEC worldwide community. Main modelling features of this V2.1 version are summarised in this paper. In particular, the in-vessel coupling technique between the reactor coolant system thermal-hydraulics module and the core degradation module has been strongly re-engineered to remove some well-known weaknesses of the former V2.0 series. The V2.1 version also includes new core degradation models specifically addressing BWR and PHWR reactor types, as well as several other physical modelling improvements, notably on reflooding of severely damaged cores, Zircaloy oxidation under air atmosphere, corium coolability during corium concrete interaction and source term evaluation. Moreover, this V2.1 version constitutes the back-bone of the CESAM FP7 project, which final objective is to further improve ASTEC for use in Severe Accident Management analysis of the Gen.II–III nuclear power plants presently under operation or foreseen in near future in Europe. As part of this European project, IRSN efforts to continuously improve both code numerical robustness and computing performances at plant scale as well as users’ tools are being intensified. Besides, ASTEC will continue capitalising the whole knowledge on severe accidents phenomenology by progressively keeping physical models at the state of the art through a regular feed-back from the interpretation of the current and

  13. Modelling a linear PM motor including magnetic saturation

    NARCIS (Netherlands)

    Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.

    2002-01-01

    The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important

  14. Simple suggestions for including vertical physics in oil spill models

    International Nuclear Information System (INIS)

    D'Asaro, Eric; University of Washington, Seatle, WA

    2001-01-01

    Current models of oil spills include no vertical physics. They neglect the effect of vertical water motions on the transport and concentration of floating oil. Some simple ways to introduce vertical physics are suggested here. The major suggestion is to routinely measure the density stratification of the upper ocean during oil spills in order to develop a database on the effect of stratification. (Author)

  15. ONKALO rock mechanics model (RMM) - Version 2.0

    International Nuclear Information System (INIS)

    Moenkkoenen, H.; Hakala, M.; Paananen, M.; Laine, E.

    2012-02-01

    The Rock Mechanics Model of the ONKALO rock volume is a description of the significant features and parameters related to rock mechanics. The main objective is to develop a tool to predict the rock properties, quality and hence the potential for stress failure which can then be used for continuing design of the ONKALO and the repository. This is the second implementation of the Rock Mechanics Model and it includes sub-models of the intact rock strength, in situ stress, thermal properties, rock mass quality and properties of the brittle deformation zones. Because of the varying quantities of available data for the different parameters, the types of presentations also vary: some data sets can be presented in the style of a 3D block model but, in other cases, a single distribution represents the whole rock volume hosting the ONKALO. (orig.)

  16. The Oak Ridge Competitive Electricity Dispatch (ORCED) Model Version 9

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baek, Young Sun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    The Oak Ridge Competitive Electricity Dispatch (ORCED) model dispatches power plants in a region to meet the electricity demands for any single given year up to 2030. It uses publicly available sources of data describing electric power units such as the National Energy Modeling System and hourly demands from utility submittals to the Federal Energy Regulatory Commission that are projected to a future year. The model simulates a single region of the country for a given year, matching generation to demands and predefined net exports from the region, assuming no transmission constraints within the region. ORCED can calculate a number of key financial and operating parameters for generating units and regional market outputs including average and marginal prices, air emissions, and generation adequacy. By running the model with and without changes such as generation plants, fuel prices, emission costs, plug-in hybrid electric vehicles, distributed generation, or demand response, the marginal impact of these changes can be found.

  17. Geological model of the Olkiluoto site Version O

    International Nuclear Information System (INIS)

    Paulamaeki, S.; Paananen, M.; Gehoer, S.

    2006-05-01

    The geological model of the Olkiluoto site consists of four submodels: the lithological model, the ductile deformation model, the brittle deformation model and the alteration model. The lithological model gives properties of definite rock units that can be defined on the basis the migmatite structures, textures and modal compositions. The ductile deformation model describes and models the products of polyphase ductile deformation, which enables to define the dimensions and geometrical properties of individual lithological units determined in the lithological model. The brittle deformation model describes the products of multiple phases of brittle deformation. The alteration model describes the types, occurrence and the effects of the hydrothermal alteration. The rocks of Olkiluoto can be divided into two major classes: (1) supracrustal high-grade metamorphic rocks including various migmatitic gneisses, tonalitic-granodioriticgranitic gneisses, mica gneisses, quartz gneisses and mafic gneisses, and (2) igneous rocks including pegmatitic granites and diabase dykes. The migmatitic gneisses can further be divided into three subgroups in terms of the type of migmatite structure: veined gneisses, stromatic gneisses and diatexitic gneisses. On the basis of refolding and crosscutting relationships, the metamorphic supracrustal rocks have been subject to polyphased ductile deformation, including five stages. In 3D modelling of the lithological units, an assumption has been made, on the basis of measurements in outcrops, investigation trenches and drill cores, that the pervasive, composite foliation produced as a result a polyphase ductile deformation has a rather constant attitude in the ONKALO area. Consequently, the strike and dip of the foliation has been used as a tool, through which the lithologies have been correlated between the drillholes and from the surface to the drillholes. The bedrock in the Olkiluoto site has been subject to extensive hydrothermal alteration

  18. ANLECIS-1: Version of ANLECIS Program for Calculations with the Asymetric Rotational Model

    International Nuclear Information System (INIS)

    Lopez Mendez, R.; Garcia Moruarte, F.

    1986-01-01

    A new modified version of the ANLECIS Code is reported. This version allows to fit simultaneously the cross section of the direct process by the asymetric rotational model, and the cross section of the compound nucleus process by the Hauser-Feshbach formalism with the modern statistical corrections. The calculations based in this version show a dependence of the compound nucleus cross section with respect to the asymetric parameter γ. (author). 19 refs

  19. Geological model of the ONKALO area version 0

    International Nuclear Information System (INIS)

    Paananen, M.; Paulamaeki, S.; Gehoer, S.; Kaerki, A.

    2006-03-01

    The geological model of the ONKALO area is composed of four submodels: ductile deformation model, lithological model, brittle deformation model and alteration model. The ductile deformation model describes and models the products of polyphase ductile deformation, which facilitates the definition of dimensions and geometrical properties of individual lithological units determined in the lithological model. The lithological model describes the properties of rock units that can be defined on the basis the migmatite structures, textures and modal compositions. The brittle deformation model describes the products of multiple phases of brittle deformation, and the alteration model describes the types, occurrence and the effects of the hydrothermal alteration. On the basis of refolding and crosscutting relationships, the metamorphic supracrustal rocks have been subject to five stages of ductile deformation. This resulted in a pervasive, composite foliation which shows a rather constant attitude in the ONKALO area. Based on observations in outcrops, investigation trenches and drill cores, 3D modelling of the lithological units is carried out assuming that the contacts are quasiconcordant. Using this assumption, the strike and dip of the foliation has been used as a tool to correlate the lithologies between the drillholes, and from surface and tunnel outcrops to drillholes. Consequently, the strike and dip of the foliation has been used as a tool, through which the lithologies have been correlated between the drillholes and from surface to drillholes. The rocks at Olkiluoto can be divided into two major groups: (1) supracrustal high-grade metamorphic rocks including various migmatitic gneisses, homogeneous tonaliticgranodioritic- granitic gneisses, mica gneisses and quartzitic gneisses, and mafic gneisses, (2) igneous rocks, including pegmatitic granites and diabase dykes. The migmatitic gneisses can further be divided into three subgroups in terms of the type of migmatite

  20. Aggregated Demand Modelling Including Distributed Generation, Storage and Demand Response

    OpenAIRE

    Marzooghi, Hesamoddin; Hill, David J.; Verbic, Gregor

    2014-01-01

    It is anticipated that penetration of renewable energy sources (RESs) in power systems will increase further in the next decades mainly due to environmental issues. In the long term of several decades, which we refer to in terms of the future grid (FG), balancing between supply and demand will become dependent on demand actions including demand response (DR) and energy storage. So far, FG feasibility studies have not considered these new demand-side developments for modelling future demand. I...

  1. CENTURY: Modeling Ecosystem Responses to Climate Change, Version 4 (VEMAP 1995)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The CENTURY model, Version 4, is a general model of plant-soil nutrient cycling that is being used to simulate carbon and nutrient dynamics for different...

  2. CENTURY: Modeling Ecosystem Responses to Climate Change, Version 4 (VEMAP 1995)

    Data.gov (United States)

    National Aeronautics and Space Administration — The CENTURY model, Version 4, is a general model of plant-soil nutrient cycling that is being used to simulate carbon and nutrient dynamics for different types of...

  3. Institutional Transformation Version 2.5 Modeling and Planning.

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mizner, Jack H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Gerald R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peplinski, William John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vetter, Douglas W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evans, Christopher A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Addison, Marlin [Arizona State Univ., Mesa, AZ (United States); Schaffer, Matthew A. [Bridgers and Paxton Engineering Firm, Albuquerque, NM (United States); Higgins, Matthew W. [Vibrantcy, Albuquerque, NM (United States)

    2017-02-01

    Reducing the resource consumption and emissions of large institutions is an important step toward a sustainable future. Sandia National Laboratories' (SNL) Institutional Transformation (IX) project vision is to provide tools that enable planners to make well-informed decisions concerning sustainability, resource conservation, and emissions reduction across multiple sectors. The building sector has been the primary focus so far because it is the largest consumer of resources for SNL. The IX building module allows users to define the evolution of many buildings over time. The module has been created so that it can be generally applied to any set of DOE-2 ( http://doe2.com ) building models that have been altered to include parameters and expressions required by energy conservation measures (ECM). Once building models have been appropriately prepared, they are checked into a Microsoft Access (r) database. Each building can be represented by many models. This enables the capability to keep a continuous record of models in the past, which are replaced with different models as changes occur to the building. In addition to this, the building module has the capability to apply climate scenarios through applying different weather files to each simulation year. Once the database has been configured, a user interface in Microsoft Excel (r) is used to create scenarios with one or more ECMs. The capability to include central utility buildings (CUBs) that service more than one building with chilled water has been developed. A utility has been created that joins multiple building models into a single model. After using the utility, several manual steps are required to complete the process. Once this CUB model has been created, the individual contributions of each building are still tracked through meters. Currently, 120 building models from SNL's New Mexico and California campuses have been created. This includes all buildings at SNL greater than 10,000 sq. ft

  4. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential...... are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...

  5. SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM

    Science.gov (United States)

    Porod, W.; Staub, F.

    2012-11-01

    We describe recent extensions of the program SPhenoincluding flavour aspects, CP-phases, R-parity violation and low energy observables. In case of flavour mixing all masses of supersymmetric particles are calculated including the complete flavour structure and all possible CP-phases at the 1-loop level. We give details on implemented seesaw models, low energy observables and the corresponding extension of the SUSY Les Houches Accord. Moreover, we comment on the possibilities to include MSSM extensions in SPheno. Catalogue identifier: ADRV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRV_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154062 No. of bytes in distributed program, including test data, etc.: 1336037 Distribution format: tar.gz Programming language: Fortran95. Computer: PC running under Linux, should run in every Unix environment. Operating system: Linux, Unix. Classification: 11.6. Catalogue identifier of previous version: ADRV_v1_0 Journal reference of previous version: Comput. Phys. Comm. 153(2003)275 Does the new version supersede the previous version?: Yes Nature of problem: The first issue is the determination of the masses and couplings of supersymmetric particles in various supersymmetric models, the R-parity conserved MSSM with generation mixing and including CP-violating phases, various seesaw extensions of the MSSM and the MSSM with bilinear R-parity breaking. Low energy data on Standard Model fermion masses, gauge couplings and electroweak gauge boson masses serve as constraints. Radiative corrections from supersymmetric particles to these inputs must be calculated. Theoretical constraints on the soft SUSY breaking parameters from a high scale theory are imposed and the parameters at the electroweak scale are obtained from the

  6. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins.

    Science.gov (United States)

    Couvin, David; Bernheim, Aude; Toffano-Nioche, Claire; Touchon, Marie; Michalik, Juraj; Néron, Bertrand; C Rocha, Eduardo P; Vergnaud, Gilles; Gautheret, Daniel; Pourcel, Christine

    2018-05-22

    CRISPR (clustered regularly interspaced short palindromic repeats) arrays and their associated (Cas) proteins confer bacteria and archaea adaptive immunity against exogenous mobile genetic elements, such as phages or plasmids. CRISPRCasFinder allows the identification of both CRISPR arrays and Cas proteins. The program includes: (i) an improved CRISPR array detection tool facilitating expert validation based on a rating system, (ii) prediction of CRISPR orientation and (iii) a Cas protein detection and typing tool updated to match the latest classification scheme of these systems. CRISPRCasFinder can either be used online or as a standalone tool compatible with Linux operating system. All third-party software packages employed by the program are freely available. CRISPRCasFinder is available at https://crisprcas.i2bc.paris-saclay.fr.

  7. Exclusive queueing model including the choice of service windows

    Science.gov (United States)

    Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2018-01-01

    In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.

  8. A hybrid version of swan for fast and efficient practical wave modelling

    NARCIS (Netherlands)

    M. Genseberger (Menno); J. Donners

    2016-01-01

    htmlabstractIn the Netherlands, for coastal and inland water applications, wave modelling with SWAN has become a main ingredient. However, computational times are relatively high. Therefore we investigated the parallel efficiency of the current MPI and OpenMP versions of SWAN. The MPI version is

  9. Implementation of a parallel version of a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Gerstengarbe, F.W. [ed.; Kuecken, M. [Potsdam-Institut fuer Klimafolgenforschung (PIK), Potsdam (Germany); Schaettler, U. [Deutscher Wetterdienst, Offenbach am Main (Germany). Geschaeftsbereich Forschung und Entwicklung

    1997-10-01

    A regional climate model developed by the Max Planck Institute for Meterology and the German Climate Computing Centre in Hamburg based on the `Europa` and `Deutschland` models of the German Weather Service has been parallelized and implemented on the IBM RS/6000 SP computer system of the Potsdam Institute for Climate Impact Research including parallel input/output processing, the explicit Eulerian time-step, the semi-implicit corrections, the normal-mode initialization and the physical parameterizations of the German Weather Service. The implementation utilizes Fortran 90 and the Message Passing Interface. The parallelization strategy used is a 2D domain decomposition. This report describes the parallelization strategy, the parallel I/O organization, the influence of different domain decomposition approaches for static and dynamic load imbalances and first numerical results. (orig.)

  10. Red Storm usage model :Version 1.12.

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, Karen L.; Sturtevant, Judith E.

    2005-12-01

    Red Storm is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Sandia National Laboratories (SNL). The Red Storm Usage Model (RSUM) documents the capabilities and the environment provided for the FY05 Tri-Lab Level II Limited Availability Red Storm User Environment Milestone and the FY05 SNL Level II Limited Availability Red Storm Platform Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and SNL. Additionally, the Red Storm Usage Model maps the provided capabilities to the Tri-Lab ASC Computing Environment (ACE) requirements. The ACE requirements reflect the high performance computing requirements for the ASC community and have been updated in FY05 to reflect the community's needs. For each section of the RSUM, Appendix I maps the ACE requirements to the Limited Availability User Environment capabilities and includes a description of ACE requirements met and those requirements that are not met in that particular section. The Red Storm Usage Model, along with the ACE mappings, has been issued and vetted throughout the Tri-Lab community.

  11. A magnetic version of the Smilansky-Solomyak model

    Czech Academy of Sciences Publication Activity Database

    Barseghyan, Diana; Exner, Pavel

    2017-01-01

    Roč. 50, č. 48 (2017), č. článku 485203. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : Smilansky-Solomyak model * spectral transition * homegeneous magnetic field * discrete spectrum * essential spectrum Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016

  12. Kinetic models of gene expression including non-coding RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r

    2011-03-15

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  13. A Systems Engineering Capability Maturity Model, Version 1.1,

    Science.gov (United States)

    1995-11-01

    of a sequence of actions to be taken to perform a given task. [SECMM] 1. A set of activities ( ISO 12207 ). 2. A set of practices that address the...standards One of the design goals of the SE-CMM effort was to capture the salient concepts from emerging standards and initiatives (e.g.; ISO 9001...history for the SE-CMM: Version Designator Content Change Notes Release 1 • architecture rationale • Process Areas • ISO (SPICE) BPG 0.05 summary

  14. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  15. Progress Towards an LES Wall Model Including Unresolved Roughness

    Science.gov (United States)

    Craft, Kyle; Redman, Andrew; Aikens, Kurt

    2015-11-01

    Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  16. Extending Primitive Spatial Data Models to Include Semantics

    Science.gov (United States)

    Reitsma, F.; Batcheller, J.

    2009-04-01

    Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.

  17. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    Science.gov (United States)

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  18. Geological Model of the Olkiluoto Site. Version 2.0

    International Nuclear Information System (INIS)

    Aaltonen, I.

    2010-10-01

    The rocks of Olkiluoto can be divided into two major classes: 1) supracrustal high-grade metamorphic rocks including various migmatitic gneisses, tonalitic-granodioriticgranitic gneisses, mica gneisses, quartz gneisses and mafic gneisses, and 2) igneous rocks including pegmatitic granites and diabase dykes. The migmatitic gneisses can further be divided into three subgroups in terms of the type of migmatite structure: veined gneisses, stromatic gneisses and diatexitic gneisses. On the basis of refolding and crosscutting relationships, the metamorphic supracrustal rocks have been subjected to polyphased ductile deformation, consisting of five stages, the D2 being locally the most intensive phase, producing thrust-related folding, strong migmatisation and pervasive foliation. In 3D modelling of the lithological units, an assumption has been made, on the basis of measurements in the outcrops, investigation trenches and drill cores, that the pervasive, composite foliation produced as a result of polyphase ductile deformation has a rather constant attitude in the ONKALO area. Consequently, the strike and dip of the foliation has been used as a tool, through which the lithologies have been correlated between the drillholes and from the surface to the drillholes. In addition, the largest ductile deformation zones and tectonic units are described in 3D model. The bedrock at the Olkiluoto site has been subjected to extensive hydrothermal alteration, which has taken place at reasonably low temperature conditions, the estimated temperature interval being from slightly over 300 deg C to less than 100 deg C. Two types of alteration can be observed: firstly, pervasive alteration and secondly fracturecontrolled alteration. Clay mineralisation and sulphidisation are the most prominent alteration events in the site area. Sulphides are located in the uppermost part of the model volume following roughly the foliation and lithological trend. Kaolinite is also mainly located in the

  19. GOOSE Version 1.4: A powerful object-oriented simulation environment for developing reactor models

    International Nuclear Information System (INIS)

    Nypaver, D.J.; March-Leuba, C.; Abdalla, M.A.; Guimaraes, L.

    1992-01-01

    A prototype software package for a fully interactive Generalized Object-Oriented Simulation Environment (GOOSE) is being developed at Oak Ridge National Laboratory. Dynamic models are easily constructed and tested; fully interactive capabilities allow the user to alter model parameters and complexity without recompilation. This environment provides assess to powerful tools such as numerical integration packages, graphical displays, and online help. In GOOSE, portability has been achieved by creating the environment in Objective-C 1 , which is supported by a variety of platforms including UNIX and DOS. GOOSE Version 1.4 introduces new enhancements like the capability of creating ''initial,'' ''dynamic,'' and ''digital'' methods. The object-oriented approach to simulation used in GOOSE combines the concept of modularity with the additional features of allowing precompilation, optimization, testing, and validation of individual modules. Once a library of classes has been defined and compiled, models can be built and modified without recompilation. GOOSE Version 1.4 is primarily command-line driven

  20. A speech production model including the nasal Cavity

    DEFF Research Database (Denmark)

    Olesen, Morten

    In order to obtain articulatory analysis of speech production the model is improved. the standard model, as used in LPC analysis, to a large extent only models the acoustic properties of speech signal as opposed to articulatory modelling of the speech production. In spite of this the LPC model...... is by far the most widely used model in speech technology....

  1. Tier I Rice Model - Version 1.0 - Guidance for Estimating Pesticide Concentrations in Rice Paddies

    Science.gov (United States)

    Describes a Tier I Rice Model (Version 1.0) for estimating surface water exposure from the use of pesticides in rice paddies. The concentration calculated can be used for aquatic ecological risk and drinking water exposure assessments.

  2. Thermal site descriptive model. A strategy for the model development during site investigations - version 2

    Energy Technology Data Exchange (ETDEWEB)

    Back, Paer-Erik; Sundberg, Jan [Geo Innova AB (Sweden)

    2007-09-15

    This report presents a strategy for describing, predicting and visualising the thermal aspects of the site descriptive model. The strategy is an updated version of an earlier strategy applied in all SDM versions during the initial site investigation phase at the Forsmark and Oskarshamn areas. The previous methodology for thermal modelling did not take the spatial correlation fully into account during simulation. The result was that the variability of thermal conductivity in the rock mass was not sufficiently well described. Experience from earlier thermal SDMs indicated that development of the methodology was required in order describe the spatial distribution of thermal conductivity in the rock mass in a sufficiently reliable way, taking both variability within rock types and between rock types into account. A good description of the thermal conductivity distribution is especially important for the lower tail. This tail is important for the design of a repository because it affects the canister spacing. The presented approach is developed to be used for final SDM regarding thermal properties, primarily thermal conductivity. Specific objectives for the strategy of thermal stochastic modelling are: Description: statistical description of the thermal conductivity of a rock domain. Prediction: prediction of thermal conductivity in a specific rock volume. Visualisation: visualisation of the spatial distribution of thermal conductivity. The thermal site descriptive model should include the temperature distribution and thermal properties of the rock mass. The temperature is the result of the thermal processes in the repository area. Determination of thermal transport properties can be made using different methods, such as laboratory investigations, field measurements, modelling from mineralogical composition and distribution, modelling from density logging and modelling from temperature logging. The different types of data represent different scales, which has to be

  3. Thermal site descriptive model. A strategy for the model development during site investigations - version 2

    International Nuclear Information System (INIS)

    Back, Paer-Erik; Sundberg, Jan

    2007-09-01

    This report presents a strategy for describing, predicting and visualising the thermal aspects of the site descriptive model. The strategy is an updated version of an earlier strategy applied in all SDM versions during the initial site investigation phase at the Forsmark and Oskarshamn areas. The previous methodology for thermal modelling did not take the spatial correlation fully into account during simulation. The result was that the variability of thermal conductivity in the rock mass was not sufficiently well described. Experience from earlier thermal SDMs indicated that development of the methodology was required in order describe the spatial distribution of thermal conductivity in the rock mass in a sufficiently reliable way, taking both variability within rock types and between rock types into account. A good description of the thermal conductivity distribution is especially important for the lower tail. This tail is important for the design of a repository because it affects the canister spacing. The presented approach is developed to be used for final SDM regarding thermal properties, primarily thermal conductivity. Specific objectives for the strategy of thermal stochastic modelling are: Description: statistical description of the thermal conductivity of a rock domain. Prediction: prediction of thermal conductivity in a specific rock volume. Visualisation: visualisation of the spatial distribution of thermal conductivity. The thermal site descriptive model should include the temperature distribution and thermal properties of the rock mass. The temperature is the result of the thermal processes in the repository area. Determination of thermal transport properties can be made using different methods, such as laboratory investigations, field measurements, modelling from mineralogical composition and distribution, modelling from density logging and modelling from temperature logging. The different types of data represent different scales, which has to be

  4. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  5. Estimating Parameters for the PVsyst Version 6 Photovoltaic Module Performance Model

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    We present an algorithm to determine parameters for the photovoltaic module perf ormance model encoded in the software package PVsyst(TM) version 6. Our method operates on current - voltage (I - V) measured over a range of irradiance and temperature conditions. We describe the method and illustrate its steps using data for a 36 cell crystalli ne silicon module. We qualitatively compare our method with one other technique for estimating parameters for the PVsyst(TM) version 6 model .

  6. Geological model of the Olkiluoto site. Version 1.0

    International Nuclear Information System (INIS)

    Mattila, J.; Aaltonen, I.; Kemppainen, K.

    2008-01-01

    The rocks of Olkiluoto can be divided into two major classes: (1) supracrustal high-grade metamorphic rocks including various migmatitic gneisses, tonalitic-granodioriticgranitic gneisses, mica gneisses, quartz gneisses and mafic gneisses, and (2) igneous rocks including pegmatitic granites and diabase dykes. The migmatitic gneisses can further be divided into three subgroups in terms of the type of migmatite structure: veined gneisses, stromatic gneisses and diatexitic gneisses. On the basis of refolding and crosscutting relationships, the metamorphic supracrustal rocks have been subjected to polyphased ductile deformation, consisting of five stages, the D2 being locally the most intensive phase, producing thrust-related folding, strong migmatisation and pervasive foliation. In 3D modelling of the lithological units, an assumption has been made, on the basis of measurements in the outcrops, investigation trenches and drill cores, that the pervasive, composite foliation produced as a result of polyphase ductile deformation has a rather constant attitude in the ONKALO area. Consequently, the strike and dip of the foliation has been used as a tool, through which the lithologies have been correlated between the drillholes and from the surface to the drillholes. The bedrock at the Olkiluoto site has been subjected to extensive hydrothermal alteration, which has taken place at reasonably low temperature conditions, the estimated temperature interval being from slightly over 300 deg C to less than 100 deg C. Two types of alteration can be observed: (1) pervasive (disseminated) alteration and (2) fracture-controlled (veinlet) alteration. Kaolinisation and sulphidisation are the most prominent alteration events in the site area. Sulphides are located in the uppermost part of the model volume following roughly the lithological trend (slightly dipping to the SE). Kaolinite is also located in the uppermost part, but the orientation is opposite to the main lithological trend

  7. New Source Term Model for the RESRAD-OFFSITE Code Version 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Charley [Argonne National Lab. (ANL), Argonne, IL (United States); Gnanapragasam, Emmanuel [Argonne National Lab. (ANL), Argonne, IL (United States); Cheng, Jing-Jy [Argonne National Lab. (ANL), Argonne, IL (United States); Kamboj, Sunita [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Shih-Yew [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-06-01

    This report documents the new source term model developed and implemented in Version 3 of the RESRAD-OFFSITE code. This new source term model includes: (1) "first order release with transport" option, in which the release of the radionuclide is proportional to the inventory in the primary contamination and the user-specified leach rate is the proportionality constant, (2) "equilibrium desorption release" option, in which the user specifies the distribution coefficient which quantifies the partitioning of the radionuclide between the solid and aqueous phases, and (3) "uniform release" option, in which the radionuclides are released from a constant fraction of the initially contaminated material during each time interval and the user specifies the duration over which the radionuclides are released.

  8. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  9. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (MACINTOSH VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  10. BioModels: expanding horizons to include more modelling approaches and formats.

    Science.gov (United States)

    Glont, Mihai; Nguyen, Tung V N; Graesslin, Martin; Hälke, Robert; Ali, Raza; Schramm, Jochen; Wimalaratne, Sarala M; Kothamachu, Varun B; Rodriguez, Nicolas; Swat, Maciej J; Eils, Jurgen; Eils, Roland; Laibe, Camille; Malik-Sheriff, Rahuman S; Chelliah, Vijayalakshmi; Le Novère, Nicolas; Hermjakob, Henning

    2018-01-04

    BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of...

  12. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of processes,...

  13. Construct validity and parent-child agreement of the six new or modified disorders included in the Spanish version of the Kiddie Schedule for Affective Disorders and Schizophrenia present and Lifetime Version DSM-5 (K-SADS-PL-5).

    Science.gov (United States)

    de la Peña, Francisco R; Rosetti, Marcos F; Rodríguez-Delgado, Andrés; Villavicencio, Lino R; Palacio, Juan D; Montiel, Cecilia; Mayer, Pablo A; Félix, Fernando J; Larraguibel, Marcela; Viola, Laura; Ortiz, Silvia; Fernández, Sofía; Jaímes, Aurora; Feria, Miriam; Sosa, Liz; Palacios-Cruz, Lino; Ulloa, Rosa E

    2018-06-01

    Changes to the Diagnostic and Statistical Manual of Mental Disorders fifth edition (DSM-5) incorporate the inclusion or modification of six disorders: Autism Spectrum Disorder, Social Anxiety Disorder, Intermittent Explosive Disorder, Disruptive Mood Dysregulation Disorder, Avoidant/Restrictive Food Intake Disorder and Binge Eating Disorder. The objectives of this study were to assess the construct validity and parent-child agreement of these six disorders in the Spanish language Schedule for Affective Disorders and Schizophrenia for School Age Children Present and Lifetime Version (K-SADS-PL-5) in a clinical population of children and adolescents from Latin America. The Spanish version of the K-SADS-PL was modified to integrate changes made to the DSM-5. Clinicians received training in the K-SADS-PL-5 and 90% agreement between raters was obtained. A total of 80 patients were recruited in four different countries in Latin America. All items from each of the six disorders were included in a factor analysis. Parent-child agreement was calculated for every item of the six disorders, including the effect of sex and age. The factor analysis revealed 6 factors separately grouping the items defining each of the new or modified disorders, with Eigenvalues greater than 2. Very good parent-child agreements (r>0.8) were found for the large majority of the items (93%), even when considering the sex or age of the patient. This independent grouping of disorders suggests that the manner in which the disorders were included into the K-SADS-PL-5 reflects robustly the DSM-5 constructs and displayed a significant inter-informant reliability. These findings support the use of K-SADS-PL-5 as a clinical and research tool to evaluate these new or modified diagnoses. Copyright © 2018. Published by Elsevier Ltd.

  14. Including spatial data in nutrient balance modelling on dairy farms

    Science.gov (United States)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies

  15. Prediction models for successful external cephalic version: a systematic review.

    Science.gov (United States)

    Velzel, Joost; de Hundt, Marcella; Mulder, Frederique M; Molkenboer, Jan F M; Van der Post, Joris A M; Mol, Ben W; Kok, Marjolein

    2015-12-01

    To provide an overview of existing prediction models for successful ECV, and to assess their quality, development and performance. We searched MEDLINE, EMBASE and the Cochrane Library to identify all articles reporting on prediction models for successful ECV published from inception to January 2015. We extracted information on study design, sample size, model-building strategies and validation. We evaluated the phases of model development and summarized their performance in terms of discrimination, calibration and clinical usefulness. We collected different predictor variables together with their defined significance, in order to identify important predictor variables for successful ECV. We identified eight articles reporting on seven prediction models. All models were subjected to internal validation. Only one model was also validated in an external cohort. Two prediction models had a low overall risk of bias, of which only one showed promising predictive performance at internal validation. This model also completed the phase of external validation. For none of the models their impact on clinical practice was evaluated. The most important predictor variables for successful ECV described in the selected articles were parity, placental location, breech engagement and the fetal head being palpable. One model was assessed using discrimination and calibration using internal (AUC 0.71) and external validation (AUC 0.64), while two other models were assessed with discrimination and calibration, respectively. We found one prediction model for breech presentation that was validated in an external cohort and had acceptable predictive performance. This model should be used to council women considering ECV. Copyright © 2015. Published by Elsevier Ireland Ltd.

  16. Comparison of three ice cloud optical schemes in climate simulations with community atmospheric model version 5

    Science.gov (United States)

    Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan

    2018-05-01

    A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.

  17. A description of the FAMOUS (version XDBUA climate model and control run

    Directory of Open Access Journals (Sweden)

    A. Osprey

    2008-12-01

    Full Text Available FAMOUS is an ocean-atmosphere general circulation model of low resolution, capable of simulating approximately 120 years of model climate per wallclock day using current high performance computing facilities. It uses most of the same code as HadCM3, a widely used climate model of higher resolution and computational cost, and has been tuned to reproduce the same climate reasonably well. FAMOUS is useful for climate simulations where the computational cost makes the application of HadCM3 unfeasible, either because of the length of simulation or the size of the ensemble desired. We document a number of scientific and technical improvements to the original version of FAMOUS. These improvements include changes to the parameterisations of ozone and sea-ice which alleviate a significant cold bias from high northern latitudes and the upper troposphere, and the elimination of volume-averaged drifts in ocean tracers. A simple model of the marine carbon cycle has also been included. A particular goal of FAMOUS is to conduct millennial-scale paleoclimate simulations of Quaternary ice ages; to this end, a number of useful changes to the model infrastructure have been made.

  18. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

  19. The MiniBIOS model (version 1A4) at the RIVM

    NARCIS (Netherlands)

    Uijt de Haag PAM; Laheij GMH

    1993-01-01

    This report is the user's guide of the MiniBIOS model, version 1A4. The model is operational at the Laboratory of Radiation Research of the RIVM. MiniBIOS is a simulation model for calculating the transport of radionuclides in the biosphere and the consequential radiation dose to humans. The

  20. Microsoft Repository Version 2 and the Open Information Model.

    Science.gov (United States)

    Bernstein, Philip A.; Bergstraesser, Thomas; Carlson, Jason; Pal, Shankar; Sanders, Paul; Shutt, David

    1999-01-01

    Describes the programming interface and implementation of the repository engine and the Open Information Model for Microsoft Repository, an object-oriented meta-data management facility that ships in Microsoft Visual Studio and Microsoft SQL Server. Discusses Microsoft's component object model, object manipulation, queries, and information…

  1. Prediction models for successful external cephalic version: a systematic review

    NARCIS (Netherlands)

    Velzel, Joost; de Hundt, Marcella; Mulder, Frederique M.; Molkenboer, Jan F. M.; van der Post, Joris A. M.; Mol, Ben W.; Kok, Marjolein

    2015-01-01

    To provide an overview of existing prediction models for successful ECV, and to assess their quality, development and performance. We searched MEDLINE, EMBASE and the Cochrane Library to identify all articles reporting on prediction models for successful ECV published from inception to January 2015.

  2. Efficient Modelling and Generation of Markov Automata (extended version)

    NARCIS (Netherlands)

    Timmer, Mark; Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette

    2012-01-01

    This paper introduces a framework for the efficient modelling and generation of Markov automata. It consists of (1) the data-rich process-algebraic language MAPA, allowing concise modelling of systems with nondeterminism, probability and Markovian timing; (2) a restricted form of the language, the

  3. STORM WATER MANAGEMENT MODEL USER'S MANUAL VERSION 5.0

    Science.gov (United States)

    The EPA Storm Water Management Model (SWMM) is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. SWMM was first developed in 1971 and has undergone several major upgrade...

  4. A unitarized meson model including color Coulomb interaction

    International Nuclear Information System (INIS)

    Metzger, Kees.

    1990-01-01

    Ch. 1 gives a general introduction into the problem field of the thesis. It discusses in how far the internal structure of mesons is understood theoretically and which models exist. It discusses from a phenomenological point of view the problem of confinement indicates how quark models of mesons may provide insight in this phenomenon. In ch. 2 the formal theory of scattering in a system with confinement is given. It is shown how a coupled channel (CC) description and the work of other authors fit into this general framework. Explicit examples and arguments are given to support the CC treatment of such a system. In ch. 3 the full coupled-channel model as is employed in this thesis is presented. On the basis of arguments from the former chapters and the observed regularities in the experimental data, the choices underlying the model are supported. In this model confinement is described with a mass-dependent harmonic-oscillator potential and the presence of open (meson-meson) channels plays an essential role. In ch. 4 the unitarized model is applied to light scalar meson resonances. In this regime the contribution of the open channels is considerable. It is demonstrated that the model parameters as used for the description of the pseudo-scalar and vector mesons, unchanged can be used for the description of these mesons. Ch. 5 treats the color-Coulomb interaction. There the effect of the Coulomb interaction is studied in simple models without decay. The results of incorporating the color-Coulomb interaction into the full CC model are given in ch.6. Ch. 7 discusses the results of the previous chapters and the present status of the model. (author). 182 refs.; 16 figs.; 33 tabs

  5. Integrated Baseline Bystem (IBS) Version 1.03: Models guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Integrated Baseline System)(IBS), operated by the Federal Emergency Management Agency (FEMA), is a system of computerized tools for emergency planning and analysis. This document is the models guide for the IBS and explains how to use the emergency related computer models. This document provides information for the experienced system user, and is the primary reference for the computer modeling software supplied with the system. It is designed for emergency managers and planners, and others familiar with the concepts of computer modeling. Although the IBS manual set covers basic and advanced operations, it is not a complete reference document set. Emergency situation modeling software in the IBS is supported by additional technical documents. Some of the other IBS software is commercial software for which more complete documentation is available. The IBS manuals reference such documentation where necessary.

  6. Flipped version of the supersymmetric strongly coupled preon model

    Energy Technology Data Exchange (ETDEWEB)

    Fajfer, S. (Institut za Fiziku, University of Sarajevo, Sarajevo, (Yugoslavia)); Milekovic, M.; Tadic, D. (Zavod za Teorijsku Fiziku, Prirodoslovno-Matematicki Fakultet, University of Zagreb, Croatia, (Yugoslavia))

    1989-12-01

    In the supersymmetric SU(5) (SUSY SU(5)) composite model (which was described in an earlier paper) the fermion mass terms can be easily constructed. The SUSY SU(5){direct product}U(1), i.e., flipped, composite model possesses a completely analogous composite-particle spectrum. However, in that model one cannot construct a renormalizable superpotential which would generate fermion mass terms. This contrasts with the standard noncomposite grand unified theories (GUT's) in which both the Georgi-Glashow electrical charge embedding and its flipped counterpart lead to the renormalizable theories.

  7. The prediction of the cavitation phenomena including population balance modeling

    Science.gov (United States)

    Bannari, Rachid; Hliwa, Ghizlane Zineb; Bannari, Abdelfettah; Belghiti, Mly Taib

    2017-07-01

    Cavitation is the principal reason behind the behavior's modification of the hydraulic turbines. However, the experimental observations can not be appropriate to all cases due to the limitations in the measurement techniques. The mathematical models which have been implemented, use the mixture multiphase frame. As well as, most of the published work is limited by considering a constant bubble size distribution. However, this assumption is not realist. The aim of this article is the implementation and the use of a non-homogeneous multiphase model which solve two phases transport equation. The evolution of bubble size is considered by the population balance equation. This study is based on the eulerian-eulerian model, associated to the cavitation model. All the inter-phase forces such as drag, lift and virtual mass are used.

  8. Including model uncertainty in risk-informed decision making

    International Nuclear Information System (INIS)

    Reinert, Joshua M.; Apostolakis, George E.

    2006-01-01

    Model uncertainties can have a significant impact on decisions regarding licensing basis changes. We present a methodology to identify basic events in the risk assessment that have the potential to change the decision and are known to have significant model uncertainties. Because we work with basic event probabilities, this methodology is not appropriate for analyzing uncertainties that cause a structural change to the model, such as success criteria. We use the risk achievement worth (RAW) importance measure with respect to both the core damage frequency (CDF) and the change in core damage frequency (ΔCDF) to identify potentially important basic events. We cross-check these with generically important model uncertainties. Then, sensitivity analysis is performed on the basic event probabilities, which are used as a proxy for the model parameters, to determine how much error in these probabilities would need to be present in order to impact the decision. A previously submitted licensing basis change is used as a case study. Analysis using the SAPHIRE program identifies 20 basic events as important, four of which have model uncertainties that have been identified in the literature as generally important. The decision is fairly insensitive to uncertainties in these basic events. In three of these cases, one would need to show that model uncertainties would lead to basic event probabilities that would be between two and four orders of magnitude larger than modeled in the risk assessment before they would become important to the decision. More detailed analysis would be required to determine whether these higher probabilities are reasonable. Methods to perform this analysis from the literature are reviewed and an example is demonstrated using the case study

  9. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The high-resolution Radarsat Antarctic Mapping Project (RAMP) Digital Elevation Model (DEM) combines topographic data from a variety of sources to provide consistent...

  10. U.S. Coastal Relief Model - Southern California Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides a comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a seamless...

  11. Due Regard Encounter Model Version 1.0

    Science.gov (United States)

    2013-08-19

    Note that no existing model covers encoun- ters between two IFR aircraft in oceanic airspace. The reason for this is that one cannot observe encounters...encounters between instrument flight rules ( IFR ) and non- IFR traffic beyond 12NM. 2 TABLE 1 Encounter model categories. Aircraft of Interest Intruder...Aircraft Location Flight Rule IFR VFR Noncooperative Noncooperative Conventional Unconventional CONUS IFR C C U X VFR C U U X Offshore IFR C C U X VFR C U

  12. Overview of the Meso-NH model version 5.4 and its applications

    Directory of Open Access Journals (Sweden)

    C. Lac

    2018-05-01

    Full Text Available This paper presents the Meso-NH model version 5.4. Meso-NH is an atmospheric non hydrostatic research model that is applied to a broad range of resolutions, from synoptic to turbulent scales, and is designed for studies of physics and chemistry. It is a limited-area model employing advanced numerical techniques, including monotonic advection schemes for scalar transport and fourth-order centered or odd-order WENO advection schemes for momentum. The model includes state-of-the-art physics parameterization schemes that are important to represent convective-scale phenomena and turbulent eddies, as well as flows at larger scales. In addition, Meso-NH has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling. Here, we present the main innovations to the dynamics and physics of the code since the pioneer paper of Lafore et al. (1998 and provide an overview of recent applications and couplings.

  13. VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 3 OVER THE CONTERMINOUS UNITED STATES

    Directory of Open Access Journals (Sweden)

    D. Gesch

    2016-06-01

    Full Text Available The ASTER Global Digital Elevation Model Version 3 (GDEM v3 was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1 in 2009 and GDEM Version 2 (v2 in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of −1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters, the mean error (bias does appear to be affected by land cover type, ranging from −2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2 and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.

  14. Validation of the ASTER Global Digital Elevation Model version 3 over the conterminous United States

    Science.gov (United States)

    Gesch, Dean B.; Oimoen, Michael J.; Danielson, Jeffrey J.; Meyer, David; Halounova, L; Šafář, V.; Jiang, J.; Olešovská, H.; Dvořáček, P.; Holland, D.; Seredovich, V.A.; Muller, J.P.; Pattabhi Rama Rao, E.; Veenendaal, B.; Mu, L.; Zlatanova, S.; Oberst, J.; Yang, C.P.; Ban, Y.; Stylianidis, S.; Voženílek, V.; Vondráková, A.; Gartner, G.; Remondino, F.; Doytsher, Y.; Percivall, George; Schreier, G.; Dowman, I.; Streilein, A.; Ernst, J.

    2016-01-01

    The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of −1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from −2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.

  15. Transport modelling including radial electric field and plasma rotation

    International Nuclear Information System (INIS)

    Fukuyama, A.; Fuji, Y.; Itoh, S.-I.

    1994-01-01

    Using a simple turbulent transport model with a constant diffusion coefficient and a fixed temperature profile, the density profile in a steady state and the transient behaviour during the co and counter neutral beam injection are studied. More consistent analysis has been initiated with a turbulent transport model based on the current diffusive high-n ballooning mode. The enhancement of the radial electric field due to ion orbit losses and the reduction of the transport due to the poloidal rotation shear are demonstrated. The preliminary calculation indicates a sensitive temperature dependence of the density profile. (author)

  16. Identifying Clusters with Mixture Models that Include Radial Velocity Observations

    Science.gov (United States)

    Czarnatowicz, Alexis; Ybarra, Jason E.

    2018-01-01

    The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).

  17. Probabilistic Model for Integrated Assessment of the Behavior at the T.D.P. Version 2

    International Nuclear Information System (INIS)

    Hurtado, A.; Eguilior, S.; Recreo, F

    2015-01-01

    This report documents the completion of the first phase of the implementation of the methodology ABACO2G (Bayes Application to Geological Storage of CO2) and the final version of the ABACO2G probabilistic model for the injection phase before its future validation in the experimental field of the Technology Development Plant in Hontom (Burgos). The model, which is based on the determination of the probabilistic risk component of a geological storage of CO2 using the formalism of Bayesian networks and Monte Carlo probability yields quantitative probability functions of the total system CO2 storage and of each one of their subsystems (storage subsystem and the primary seal; secondary containment subsystem and dispersion subsystem or tertiary one); the implementation of the stochastic time evolution of the CO2 plume during the injection period, the stochastic time evolution of the drying front, the probabilistic evolution of the pressure front, decoupled from the CO2 plume progress front, and the implementation of submodels and leakage probability functions through major leakage risk elements (fractures / faults and wells / deep boreholes) which together define the space of events to estimate the risks associated with the CO2 geological storage system. The activities included in this report have been to replace the previous qualitative estimation submodels of former ABACO2G version developed during Phase I of the project ALM-10-017, by analytical, semi-analytical or numerical submodels for the main elements of risk (wells and fractures), to obtain an integrated probabilistic model of a CO2 storage complex in carbonate formations that meets the needs of the integrated behavior evaluation of the Technology Development Plant in Hontomín

  18. Constitutive modeling of multiphase materials including phase transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B

    2011-01-01

    A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP

  19. Development of realistic concrete models including scaling effects

    International Nuclear Information System (INIS)

    Carpinteri, A.

    1989-09-01

    Progressive cracking in structural elements of concrete is considered. Two simple models are applied, which, even though different, lead to similar predictions for the fracture behaviour. Both Virtual Crack Propagation Model and Cohesive Limit Analysis (Section 2), show a trend towards brittle behaviour and catastrophical events for large structural sizes. A numerical Cohesive Crack Model is proposed (Section 3) to describe strain softening and strain localization in concrete. Such a model is able to predict the size effects of fracture mechanics accurately. Whereas for Mode I, only untieing of the finite element nodes is applied to simulate crack growth, for Mixed Mode a topological variation is required at each step (Section 4). In the case of the four point shear specimen, the load vs. deflection diagrams reveal snap-back instability for large sizes. By increasing the specimen sizes, such instability tends to reproduce the classical LEFM instability. Remarkable size effects are theoretically predicted and experimentally confirmed also for reinforced concrete (Section 5). The brittleness of the flexural members increases by increasing size and/or decreasing steel content. On the basis of these results, the empirical code rules regarding the minimum amount of reinforcement could be considerably revised

  20. Dynamic model including piping acoustics of a centrifugal compression system

    NARCIS (Netherlands)

    Helvoirt, van J.; Jager, de A.G.

    2007-01-01

    This paper deals with low frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the

  1. Zig-zag version of the Frenkel-Kontorova model

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A.V.; Zolotaryuk, Alexander

    1996-01-01

    We study a generalization of the Frenkel-Kontorova model which describes a zig-zag chain of particles coupled by both the first- and second-neighbor harmonic forces and subjected to a planar substrate with a commensurate potential relief. The particles are supposed to have two degrees of freedom...

  2. Simulated pre-industrial climate in Bergen Climate Model (version 2: model description and large-scale circulation features

    Directory of Open Access Journals (Sweden)

    O. H. Otterå

    2009-11-01

    Full Text Available The Bergen Climate Model (BCM is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

  3. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  4. The ``KILDER`` air pollution modelling system, version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Gram, F.

    1996-12-31

    This report describes the KILDER Air Pollution Modelling System, which is a system of small PC-programs for calculation of long-term emission, dispersion, concentration and exposure from different source categories. The system consists of three parts: (1) The dispersion models POI-KILD and ARE-KILD for point- and area-sources, respectively, (2) Meterological programs WINDFREC, STABFREC and METFREC, (3) Supporting programs for calculating emissions and exposure and for operating with binary data fields. The file structure is based on binary files with data fields. The data fields are matrices with different types of values and may be read into the computer or be calculated in other programs. 19 refs., 22 figs., 3 tabs.

  5. External Validation of a Prediction Model for Successful External Cephalic Version

    NARCIS (Netherlands)

    de Hundt, Marcella; Vlemmix, Floortje; Kok, Marjolein; van der Steeg, Jan W.; Bais, Joke M.; Mol, Ben W.; van der Post, Joris A.

    2012-01-01

    We sought external validation of a prediction model for the probability of a successful external cephalic version (ECV). We evaluated the performance of the prediction model with calibration and discrimination. For clinical practice, we developed a score chart to calculate the probability of a

  6. Regularized integrable version of the one-dimensional quantum sine-Gordon model

    International Nuclear Information System (INIS)

    Japaridze, G.I.; Nersesyan, A.A.; Wiegmann, P.B.

    1983-01-01

    The authors derive a regularized exactly solvable version of the one-dimensional quantum sine-Gordon model proceeding from the exact solution of the U(1)-symmetric Thirring model. The ground state and the excitation spectrum are obtained in the region ν 2 < 8π. (Auth.)

  7. Connected Equipment Maturity Model Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Butzbaugh, Joshua B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whalen, Scott A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-01

    The Connected Equipment Maturity Model (CEMM) evaluates the high-level functionality and characteristics that enable equipment to provide the four categories of energy-related services through communication with other entities (e.g., equipment, third parties, utilities, and users). The CEMM will help the U.S. Department of Energy, industry, energy efficiency organizations, and research institutions benchmark the current state of connected equipment and identify capabilities that may be attained to reach a more advanced, future state.

  8. System cost model user's manual, version 1.2

    International Nuclear Information System (INIS)

    Shropshire, D.

    1995-06-01

    The System Cost Model (SCM) was developed by Lockheed Martin Idaho Technologies in Idaho Falls, Idaho and MK-Environmental Services in San Francisco, California to support the Baseline Environmental Management Report sensitivity analysis for the U.S. Department of Energy (DOE). The SCM serves the needs of the entire DOE complex for treatment, storage, and disposal (TSD) of mixed low-level, low-level, and transuranic waste. The model can be used to evaluate total complex costs based on various configuration options or to evaluate site-specific options. The site-specific cost estimates are based on generic assumptions such as waste loads and densities, treatment processing schemes, existing facilities capacities and functions, storage and disposal requirements, schedules, and cost factors. The SCM allows customization of the data for detailed site-specific estimates. There are approximately forty TSD module designs that have been further customized to account for design differences for nonalpha, alpha, remote-handled, and transuranic wastes. The SCM generates cost profiles based on the model default parameters or customized user-defined input and also generates costs for transporting waste from generators to TSD sites

  9. Parton recombination model including resonance production. RL-78-040

    International Nuclear Information System (INIS)

    Roberts, R.G.; Hwa, R.C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references

  10. Parton recombination model including resonance production. RL-78-040

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R. G.; Hwa, R. C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references.

  11. Extending PSA models including ageing and asset management - 15291

    International Nuclear Information System (INIS)

    Martorell, S.; Marton, I.; Carlos, S.; Sanchez, A.I.

    2015-01-01

    This paper proposes a new approach to Ageing Probabilistic Safety Assessment (APSA) modelling, which is intended to be used to support risk-informed decisions on the effectiveness of maintenance management programs and technical specification requirements of critical equipment of Nuclear Power Plants (NPP) within the framework of the Risk Informed Decision Making according to R.G. 1.174 principles. This approach focuses on the incorporation of not only equipment ageing but also effectiveness of maintenance and efficiency of surveillance testing explicitly into APSA models and data. This methodology is applied to a motor-operated valve of the auxiliary feed water system (AFWS) of a PWR. This simple example of application focuses on a critical safety-related equipment of a NPP in order to evaluate the risk impact of considering different approaches to APSA and the combined effect of equipment ageing and maintenance and testing alternatives along NPP design life. The risk impact of several alternatives in maintenance strategy is discussed

  12. PUMA Version 6 Multiplatform with Facilities to be coupled with other Simulation Models

    International Nuclear Information System (INIS)

    Grant, Carlos

    2013-01-01

    PUMA is a code for nuclear reactor calculation used in all nuclear installations in Argentina for simulation of fuel management, power cycles and transient events by means of spatial kinetic diffusion theory in 3D. For the versions used up to now the WINDOWS platform was used with very good results. Nowadays PUMA must work in different operative systems, LINUX among others, and must also have facilities to be coupled with other models. For this reason this new version was reprogrammed in ADA, language oriented to a safe programming and be found in any operative system. In former versions PUMA was executed through macro instructions written in LOGO. For this version it is possible to use also PYTHON, which makes also possible the access in execution time to internal data of PUMA. The use of PYTHON allows a easy way to couple PUMA with other codes. The possibilities of this new version of PUMA are shown by means of examples of input data and process control using PYTHON and LOGO. It is discussed the implementation of this methodology in other codes to be coupled with PUMA for versions run in WINDOWS and LINUX. (author)

  13. Systems Biology Markup Language (SBML Level 2 Version 5: Structures and Facilities for Model Definitions

    Directory of Open Access Journals (Sweden)

    Hucka Michael

    2015-06-01

    Full Text Available Computational models can help researchers to interpret data, understand biological function, and make quantitative predictions. The Systems Biology Markup Language (SBML is a file format for representing computational models in a declarative form that can be exchanged between different software systems. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Version 5 of SBML Level 2. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project web site, http://sbml.org/.

  14. Systems Biology Markup Language (SBML) Level 2 Version 5: Structures and Facilities for Model Definitions.

    Science.gov (United States)

    Hucka, Michael; Bergmann, Frank T; Dräger, Andreas; Hoops, Stefan; Keating, Sarah M; Le Novère, Nicolas; Myers, Chris J; Olivier, Brett G; Sahle, Sven; Schaff, James C; Smith, Lucian P; Waltemath, Dagmar; Wilkinson, Darren J

    2015-09-04

    Computational models can help researchers to interpret data, understand biological function, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that can be exchanged between different software systems. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Version 5 of SBML Level 2. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project web site, http://sbml.org.

  15. Conceptual Model of an Application for Automated Generation of Webpage Mobile Versions

    Directory of Open Access Journals (Sweden)

    Todor Rachovski

    2017-11-01

    Full Text Available Accessing webpages through various types of mobile devices with different screen sizes and using different browsers has put new demands on web developers. The main challenge is the development of websites with responsive design that is adaptable depending on the mobile device used. The article presents a conceptual model of an app for automated generation of mobile pages. It has five-layer architecture: database, database management layer, business logic layer, web services layer and a presentation layer. The database stores all the data needed to run the application. The database management layer uses an ORM model to convert relational data into an object-oriented format and control the access to them. The business logic layer contains components that perform the actual work on building a mobile version of the page, including parsing, building a hierarchical model of the page and a number of transformations. The web services layer provides external applications with access to lower-level functionalities, and the presentation layer is responsible for choosing and using the appropriate CSS. A web application that uses the proposed model was developed and experiments were conducted.

  16. Response Surface Modeling Tool Suite, Version 1.x

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-05

    The Response Surface Modeling (RSM) Tool Suite is a collection of three codes used to generate an empirical interpolation function for a collection of drag coefficient calculations computed with Test Particle Monte Carlo (TPMC) simulations. The first code, "Automated RSM", automates the generation of a drag coefficient RSM for a particular object to a single command. "Automated RSM" first creates a Latin Hypercube Sample (LHS) of 1,000 ensemble members to explore the global parameter space. For each ensemble member, a TPMC simulation is performed and the object drag coefficient is computed. In the next step of the "Automated RSM" code, a Gaussian process is used to fit the TPMC simulations. In the final step, Markov Chain Monte Carlo (MCMC) is used to evaluate the non-analytic probability distribution function from the Gaussian process. The second code, "RSM Area", creates a look-up table for the projected area of the object based on input limits on the minimum and maximum allowed pitch and yaw angles and pitch and yaw angle intervals. The projected area from the look-up table is used to compute the ballistic coefficient of the object based on its pitch and yaw angle. An accurate ballistic coefficient is crucial in accurately computing the drag on an object. The third code, "RSM Cd", uses the RSM generated by the "Automated RSM" code and the projected area look-up table generated by the "RSM Area" code to accurately compute the drag coefficient and ballistic coefficient of the object. The user can modify the object velocity, object surface temperature, the translational temperature of the gas, the species concentrations of the gas, and the pitch and yaw angles of the object. Together, these codes allow for the accurate derivation of an object's drag coefficient and ballistic coefficient under any conditions with only knowledge of the object's geometry and mass.

  17. RALOC Mod 1/81: Program description of RALOC version by the structural heat model HECU

    International Nuclear Information System (INIS)

    Pham, V.T.

    1984-01-01

    In the version RALOC-Mod 1/81 an expanded heat transfer model and structure heat model is included. This feature allows for a realistic simulation of the thermodynamic and fluiddynamic characteristics of the containment atmosphere. Steel and concrete substructures with a plain or rotational symmetry can be represented. The treat transfer calculations for the structures are problem oriented, taking into account, the time- and space dependencies. The influence of the heat transfer on the gas transport (in particular convection) in the reactor vessel is demonstrated by the numerical calculations. In contrast to the calculations without a simulation of the heat storage effects of the container structures showing a widely homogenious hydrogen distribution, the results on the basis of the HECU-model give an inhomogenious distribution during the first 8 to 12 days. However these results are only examples for the application of the RALOC-Mod 1/81 -code, which have not been intended to contribute to the discussion of hydrogen distributions in a PWR-type reactor. (orig./GL) [de

  18. Thermal modelling. Preliminary site description Simpevarp subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Back, Paer-Erik; Bengtsson, Anna; Laendell, Maerta [Geo Innova AB, Linkoeping (Sweden)

    2005-08-15

    This report presents the thermal site descriptive model for the Simpevarp subarea, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at possible canister scale has been modelled for four different lithological domains (RSMA01 (Aevroe granite), RSMB01 (Fine-grained dioritoid), RSMC01 (mixture of Aevroe granite and Quartz monzodiorite), and RSMD01 (Quartz monzodiorite)). A main modelling approach has been used to determine the mean value of the thermal conductivity. Three alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological model for the Simpevarp subarea, version 1.2 together with rock type models constituted from measured and calculated (from mineral composition) thermal conductivities. For one rock type, the Aevroe granite (501044), density loggings within the specific rock type has also been used in the domain modelling in order to consider the spatial variability within the Aevroe granite. This has been possible due to the presented relationship between density and thermal conductivity, valid for the Aevroe granite. Results indicate that the mean of thermal conductivity is expected to exhibit only a small variation between the different domains, from 2.62 W/(m.K) to 2.80 W/(m.K). The standard deviation varies according to the scale considered and for the canister scale it is expected to range from 0.20 to 0.28 W/(m.K). Consequently, the lower confidence limit (95% confidence) for the canister scale is within the range 2.04-2.35 W/(m.K) for the different domains. The temperature dependence is rather small with a decrease in thermal conductivity of 1.1-3.4% per 100 deg C increase in temperature for the dominating rock

  19. Thermal modelling. Preliminary site description Simpevarp subarea - version 1.2

    International Nuclear Information System (INIS)

    Sundberg, Jan; Back, Paer-Erik; Bengtsson, Anna; Laendell, Maerta

    2005-08-01

    This report presents the thermal site descriptive model for the Simpevarp subarea, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at possible canister scale has been modelled for four different lithological domains (RSMA01 (Aevroe granite), RSMB01 (Fine-grained dioritoid), RSMC01 (mixture of Aevroe granite and Quartz monzodiorite), and RSMD01 (Quartz monzodiorite)). A main modelling approach has been used to determine the mean value of the thermal conductivity. Three alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological model for the Simpevarp subarea, version 1.2 together with rock type models constituted from measured and calculated (from mineral composition) thermal conductivities. For one rock type, the Aevroe granite (501044), density loggings within the specific rock type has also been used in the domain modelling in order to consider the spatial variability within the Aevroe granite. This has been possible due to the presented relationship between density and thermal conductivity, valid for the Aevroe granite. Results indicate that the mean of thermal conductivity is expected to exhibit only a small variation between the different domains, from 2.62 W/(m.K) to 2.80 W/(m.K). The standard deviation varies according to the scale considered and for the canister scale it is expected to range from 0.20 to 0.28 W/(m.K). Consequently, the lower confidence limit (95% confidence) for the canister scale is within the range 2.04-2.35 W/(m.K) for the different domains. The temperature dependence is rather small with a decrease in thermal conductivity of 1.1-3.4% per 100 deg C increase in temperature for the dominating rock

  20. Thermal modelling. Preliminary site description Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Wrafter, John; Back, Paer-Erik; Laendell, Maerta [Geo Innova AB, Linkoeping (Sweden)

    2006-02-15

    This report presents the thermal site descriptive model for the Laxemar subarea, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at canister scale has been modelled for five different lithological domains: RSMA (Aevroe granite), RSMBA (mixture of Aevroe granite and fine-grained dioritoid), RSMD (quartz monzodiorite), RSME (diorite/gabbro) and RSMM (mix domain with high frequency of diorite to gabbro). A base modelling approach has been used to determine the mean value of the thermal conductivity. Four alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological domain model for the Laxemar subarea, version 1.2 together with rock type models based on measured and calculated (from mineral composition) thermal conductivities. For one rock type, Aevroe granite (501044), density loggings have also been used in the domain modelling in order to evaluate the spatial variability within the Aevroe granite. This has been possible due to an established relationship between density and thermal conductivity, valid for the Aevroe granite. Results indicate that the means of thermal conductivity for the various domains are expected to exhibit a variation from 2.45 W/(m.K) to 2.87 W/(m.K). The standard deviation varies according to the scale considered, and for the 0.8 m scale it is expected to range from 0.17 to 0.29 W/(m.K). Estimates of lower tail percentiles for the same scale are presented for all five domains. The temperature dependence is rather small with a decrease in thermal conductivity of 1.1-5.3% per 100 deg C increase in temperature for the dominant rock types. There are a number of important uncertainties associated with these

  1. Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model

    Directory of Open Access Journals (Sweden)

    O. Morgenstern

    2008-03-01

    Full Text Available We present a "nudged" version of the Met Office general circulation model, the Unified Model. We constrain this global climate model using ERA-40 re-analysis data with the aim of reproducing the observed "weather" over a year from September 1999. Quantitative assessments are made of its performance, focusing on dynamical aspects of nudging and demonstrating that the "weather" is well simulated.

  2. The Community WRF-Hydro Modeling System Version 4 Updates: Merging Toward Capabilities of the National Water Model

    Science.gov (United States)

    McAllister, M.; Gochis, D.; Dugger, A. L.; Karsten, L. R.; McCreight, J. L.; Pan, L.; Rafieeinasab, A.; Read, L. K.; Sampson, K. M.; Yu, W.

    2017-12-01

    The community WRF-Hydro modeling system is publicly available and provides researchers and operational forecasters a flexible and extensible capability for performing multi-scale, multi-physics options for hydrologic modeling that can be run independent or fully-interactive with the WRF atmospheric model. The core WRF-Hydro physics model contains very high-resolution descriptions of terrestrial hydrologic process representations such as land-atmosphere exchanges of energy and moisture, snowpack evolution, infiltration, terrain routing, channel routing, basic reservoir representation and hydrologic data assimilation. Complementing the core physics components of WRF-Hydro are an ecosystem of pre- and post-processing tools that facilitate the preparation of terrain and meteorological input data, an open-source hydrologic model evaluation toolset (Rwrfhydro), hydrologic data assimilation capabilities with DART and advanced model visualization capabilities. The National Center for Atmospheric Research (NCAR), through collaborative support from the National Science Foundation and other funding partners, provides community support for the entire WRF-Hydro system through a variety of mechanisms. This presentation summarizes the enhanced user support capabilities that are being developed for the community WRF-Hydro modeling system. These products and services include a new website, open-source code repositories, documentation and user guides, test cases, online training materials, live, hands-on training sessions, an email list serve, and individual user support via email through a new help desk ticketing system. The WRF-Hydro modeling system and supporting tools which now include re-gridding scripts and model calibration have recently been updated to Version 4 and are merging toward capabilities of the National Water Model.

  3. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan (Golder Associates AB (Sweden)); Follin, Sven (SF GeoLogic (Sweden))

    2010-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  4. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven

    2010-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  5. A new version of code Java for 3D simulation of the CCA model

    Science.gov (United States)

    Zhang, Kebo; Xiong, Hailing; Li, Chao

    2016-07-01

    In this paper we present a new version of the program of CCA model. In order to benefit from the advantages involved in the latest technologies, we migrated the running environment from JDK1.6 to JDK1.7. And the old program was optimized into a new framework, so promoted extendibility.

  6. Development of a comprehensive survey of sexuality issues including a self-report version of the International Spinal Cord Injury sexual function basic data sets.

    Science.gov (United States)

    New, P W; Currie, K E

    2016-08-01

    Questionnaire development, validation and completion. Develop comprehensive survey of sexuality issues including validated self-report versions of the International Spinal Cord Injury male sexual function and female sexual and reproductive function basic data sets (SR-iSCI-sexual function). People with spinal cord damage (SCD) living in the community, Australia from August 2013 to June 2014. An iterative process involving rehabilitation medicine clinicians, a nurse specialising in sexuality issues in SCD and people with SCD who developed a comprehensive survey that included the SR-iSCI-sexual function. Participants recruitment through spinal rehabilitation review clinic and community organisations that support people with SCD. Surveys completed by 154 people. Most were male (n=101, 65.6%). Respondents' median age was 50 years (interquartile range (IQR) 38-58), and they were a median of 10 years (IQR 4-20) after the onset of SCD. Sexual problems unrelated to SCD were reported by 12 (8%) respondents, and 114 (n=75.5%) reported sexual problems because of SCD. Orgasms were much less likely (χ(2)=13.1, P=0.006) to be normal in males (n=5, 5%) compared with females (n=11, 22%). Males had significantly worse (χ(2)=26.0, P=0.001) psychogenic genital functioning (normal n=9, 9%) than females (normal n=13, 26%) and worse (χ(2)=10.8, P=0.013) reflex genital functioning. Normal ejaculation was reported in only three (3%) men. Most (n=26, 52%) women reported reduced or absent menstruation pattern since SCD. The SR-iSCI-sexual function provides a useful tool for researchers and clinicians to collect information regarding patient-reported sexual functioning after SCD and to facilitate comparative studies.

  7. User's guide to the Yucca Mountain Integrating Model (YMIM) Version 2.1

    International Nuclear Information System (INIS)

    Gansemer, J.; Lamont, A.

    1995-04-01

    The Yucca Mountain Integrating Model (YMIM) is an integrated model of the engineered barrier system. It contains models of the processes of waste container failure and nuclide release from the fuel rods. YMIM is driven by scenarios of container and rod temperature, near-field chemistry, and near-field hydrology provided by other modules. It is designed to be highly modular so that a model of an individual process can be easily modified to replaced without interfering with the models of other processes. This manual describes the process models and provides instructions for setting up and running YMIM Version 2.1

  8. Energy Integration for 2050 - A Strategic Impact Model (2050 SIM), Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-01

    The United States (U.S.) energy infrastructure is among the most reliable, accessible, and economic in the world. On the other hand, it is also excessively reliant on foreign energy sources, experiences high volatility in energy prices, does not always practice good stewardship of finite indigenous energy resources, and emits significant quantities of greenhouse gas. The U.S. Department of Energy is conducting research and development on advanced nuclear reactor concepts and technologies, including High Temperature Gas Reactor (HTGR) technologies, directed at helping the United States meet its current and future energy challenges. This report discusses the Draft Strategic Impact Model (SIM), an initial version of which was created during the later part of FY-2010. SIM was developed to analyze and depict the benefits of various energy sources in meeting the energy demand and to provide an overall system understanding of the tradeoffs between building and using HTGRs versus other existing technologies for providing energy (heat and electricity) to various energy-use sectors in the United States. This report also provides the assumptions used in the model, the rationale for the methodology, and the references for the source documentation and source data used in developing the SIM.

  9. Energy Integration for 2050 - A Strategic Impact Model (2050 SIM), Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2011-09-01

    The United States (U.S.) energy infrastructure is among the most reliable, accessible, and economic in the world. On the other hand, it is also excessively reliant on foreign energy sources, experiences high volatility in energy prices, does not always practice good stewardship of finite indigenous energy resources, and emits significant quantities of greenhouse gas. The U.S. Department of Energy is conducting research and development on advanced nuclear reactor concepts and technologies, including High Temperature Gas Reactor (HTGR) technologies, directed at helping the United States meet its current and future energy challenges. This report discusses the Draft Strategic Impact Model (SIM), an initial version of which was created during the later part of FY-2010. SIM was developed to analyze and depict the benefits of various energy sources in meeting the energy demand and to provide an overall system understanding of the tradeoffs between building and using HTGRs versus other existing technologies for providing energy (heat and electricity) to various energy-use sectors in the United States. This report also provides the assumptions used in the model, the rationale for the methodology, and the references for the source documentation and source data used in developing the SIM.

  10. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  11. Overlaid Alice: a statistical model computer code including fission and preequilibrium models

    International Nuclear Information System (INIS)

    Blann, M.

    1976-01-01

    The most recent edition of an evaporation code originally written previously with frequent updating and improvement. This version replaces the version Alice described previously. A brief summary is given of the types of calculations which can be done. A listing of the code and the results of several sample calculations are presented

  12. Towards New Empirical Versions of Financial and Accounting Models Corrected for Measurement Errors

    OpenAIRE

    Francois-Éric Racicot; Raymond Théoret; Alain Coen

    2006-01-01

    In this paper, we propose a new empirical version of the Fama and French Model based on the Hausman (1978) specification test and aimed at discarding measurement errors in the variables. The proposed empirical framework is general enough to be used for correcting other financial and accounting models of measurement errors. Removing measurement errors is important at many levels as information disclosure, corporate governance and protection of investors.

  13. Approaches in highly parameterized inversion—PEST++ Version 3, a Parameter ESTimation and uncertainty analysis software suite optimized for large environmental models

    Science.gov (United States)

    Welter, David E.; White, Jeremy T.; Hunt, Randall J.; Doherty, John E.

    2015-09-18

    The PEST++ Version 1 object-oriented parameter estimation code is here extended to Version 3 to incorporate additional algorithms and tools to further improve support for large and complex environmental modeling problems. PEST++ Version 3 includes the Gauss-Marquardt-Levenberg (GML) algorithm for nonlinear parameter estimation, Tikhonov regularization, integrated linear-based uncertainty quantification, options of integrated TCP/IP based parallel run management or external independent run management by use of a Version 2 update of the GENIE Version 1 software code, and utilities for global sensitivity analyses. The Version 3 code design is consistent with PEST++ Version 1 and continues to be designed to lower the barriers of entry for users as well as developers while providing efficient and optimized algorithms capable of accommodating large, highly parameterized inverse problems. As such, this effort continues the original focus of (1) implementing the most popular and powerful features of the PEST software suite in a fashion that is easy for novice or experienced modelers to use and (2) developing a software framework that is easy to extend.

  14. Uniform California earthquake rupture forecast, version 3 (UCERF3): the time-independent model

    Science.gov (United States)

    Field, Edward H.; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David D.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin R.; Page, Morgan T.; Parsons, Thomas; Powers, Peter M.; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua; ,

    2013-01-01

    In this report we present the time-independent component of the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), which provides authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes in California. The primary achievements have been to relax fault segmentation assumptions and to include multifault ruptures, both limitations of the previous model (UCERF2). The rates of all earthquakes are solved for simultaneously, and from a broader range of data, using a system-level "grand inversion" that is both conceptually simple and extensible. The inverse problem is large and underdetermined, so a range of models is sampled using an efficient simulated annealing algorithm. The approach is more derivative than prescriptive (for example, magnitude-frequency distributions are no longer assumed), so new analysis tools were developed for exploring solutions. Epistemic uncertainties were also accounted for using 1,440 alternative logic tree branches, necessitating access to supercomputers. The most influential uncertainties include alternative deformation models (fault slip rates), a new smoothed seismicity algorithm, alternative values for the total rate of M≥5 events, and different scaling relationships, virtually all of which are new. As a notable first, three deformation models are based on kinematically consistent inversions of geodetic and geologic data, also providing slip-rate constraints on faults previously excluded because of lack of geologic data. The grand inversion constitutes a system-level framework for testing hypotheses and balancing the influence of different experts. For example, we demonstrate serious challenges with the Gutenberg-Richter hypothesis for individual faults. UCERF3 is still an approximation of the system, however, and the range of models is limited (for example, constrained to stay close to UCERF2). Nevertheless, UCERF3 removes the apparent UCERF2 overprediction of

  15. UNSAT-H Version 3.0: Unsaturated Soil Water and Heat Flow Model Theory, User Manual, and Examples

    International Nuclear Information System (INIS)

    Fayer, M.J.

    2000-01-01

    The UNSAT-H model was developed at Pacific Northwest National Laboratory (PNNL) to assess the water dynamics of arid sites and, in particular, estimate recharge fluxes for scenarios pertinent to waste disposal facilities. During the last 4 years, the UNSAT-H model received support from the Immobilized Waste Program (IWP) of the Hanford Site's River Protection Project. This program is designing and assessing the performance of on-site disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site (LMHC 1999). The IWP is interested in estimates of recharge rates for current conditions and long-term scenarios involving the vadose zone disposal of tank wastes. Simulation modeling with UNSAT-H is one of the methods being used to provide those estimates (e.g., Rockhold et al. 1995; Fayer et al. 1999). To achieve the above goals for assessing water dynamics and estimating recharge rates, the UNSAT-H model addresses soil water infiltration, redistribution, evaporation, plant transpiration, deep drainage, and soil heat flow as one-dimensional processes. The UNSAT-H model simulates liquid water flow using Richards' equation (Richards 1931), water vapor diffusion using Fick's law, and sensible heat flow using the Fourier equation. This report documents UNSAT-H .Version 3.0. The report includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plants, and the code manual. Version 3.0 is an, enhanced-capability update of UNSAT-H Version 2.0 (Fayer and Jones 1990). New features include hysteresis, an iterative solution of head and temperature, an energy balance check, the modified Picard solution technique, additional hydraulic functions, multiple-year simulation capability, and general enhancements

  16. A one-dimensional material transfer model for HECTR version 1.5

    International Nuclear Information System (INIS)

    Geller, A.S.; Wong, C.C.

    1991-08-01

    HECTR (Hydrogen Event Containment Transient Response) is a lumped-parameter computer code developed for calculating the pressure-temperature response to combustion in a nuclear power plant containment building. The code uses a control-volume approach and subscale models to simulate the mass, momentum, and energy transfer occurring in the containment during a loss-of-collant-accident (LOCA). This document describes one-dimensional subscale models for mass and momentum transfer, and the modifications to the code required to implement them. Two problems were analyzed: the first corresponding to a standard problem studied with previous HECTR versions, the second to experiments. The performance of the revised code relative to previous HECTR version is discussed as is the ability of the code to model the experiments. 8 refs., 5 figs., 3 tabs

  17. Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ model version 5.0

    Directory of Open Access Journals (Sweden)

    K. W. Appel

    2013-07-01

    Full Text Available The Community Multiscale Air Quality (CMAQ model is a state-of-the-science air quality model that simulates the emission, transformation, transport, and fate of the many different air pollutant species that comprise particulate matter (PM, including dust (or soil. The CMAQ model version 5.0 (CMAQv5.0 has several enhancements over the previous version of the model for estimating the emission and transport of dust, including the ability to track the specific elemental constituents of dust and have the model-derived concentrations of those elements participate in chemistry. The latest version of the model also includes a parameterization to estimate emissions of dust due to wind action. The CMAQv5.0 modeling system was used to simulate the entire year 2006 for the continental United States, and the model estimates were evaluated against daily surface-based measurements from several air quality networks. The CMAQ modeling system overall did well replicating the observed soil concentrations in the western United States (mean bias generally around ±0.5 μg m−3; however, the model consistently overestimated the observed soil concentrations in the eastern United States (mean bias generally between 0.5–1.5 μg m−3, regardless of season. The performance of the individual trace metals was highly dependent on the network, species, and season, with relatively small biases for Fe, Al, Si, and Ti throughout the year at the Interagency Monitoring of Protected Visual Environments (IMPROVE sites, while Ca, K, and Mn were overestimated and Mg underestimated. For the urban Chemical Speciation Network (CSN sites, Fe, Mg, and Mn, while overestimated, had comparatively better performance throughout the year than the other trace metals, which were consistently overestimated, including very large overestimations of Al (380%, Ti (370% and Si (470% in the fall. An underestimation of nighttime mixing in the urban areas appears to contribute to the overestimation of

  18. Planned development and evaluation protocol of two versions of a web-based computer-tailored nutrition education intervention aimed at adults, including cognitive and environmental feedback.

    Science.gov (United States)

    Springvloet, Linda; Lechner, Lilian; Oenema, Anke

    2014-01-17

    Despite decades of nutrition education, the prevalence of unhealthy dietary patterns is still high and inequalities in intake between high and low socioeconomic groups still exist. Therefore, it is important to innovate and improve existing nutrition education interventions. This paper describes the development, design and evaluation protocol of a web-based computer-tailored nutrition education intervention for adults targeting fruit, vegetable, high-energy snack and fat intake. This intervention innovates existing computer-tailored interventions by not only targeting motivational factors, but also volitional and self-regulation processes and environmental-level factors. The intervention development was guided by the Intervention Mapping protocol, ensuring a theory-informed and evidence-based intervention. Two versions of the intervention were developed: a basic version targeting knowledge, awareness, attitude, self-efficacy and volitional and self-regulation processes, and a plus version additionally addressing the home environment arrangement and the availability and price of healthy food products in supermarkets. Both versions consist of four modules: one for each dietary behavior, i.e. fruit, vegetables, high-energy snacks and fat. Based on the self-regulation phases, each module is divided into three sessions. In the first session, feedback on dietary behavior is provided to increase awareness, feedback on attitude and self-efficacy is provided and goals and action plans are stated. In the second session goal achievement is evaluated, reasons for failure are explored, coping plans are stated and goals can be adapted. In the third session, participants can again evaluate their behavioral change and tips for maintenance are provided. Both versions will be evaluated in a three-group randomized controlled trial with measurements at baseline, 1-month, 4-months and 9-months post-intervention, using online questionnaires. Both versions will be compared with a generic

  19. Hydrogeochemical evaluation for Simpevarp model version 1.2. Preliminary site description of the Simpevarp area

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (ed.) [Geopoint AB, Stockholm (Sweden)

    2004-12-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Simpevarp and Forsmark, to determine their geological, hydrogeochemical and hydrogeological characteristics. Present work completed has resulted in Model version 1.2 which represents the second evaluation of the available Simpevarp groundwater analytical data collected up to April, 2004. The deepest fracture groundwater samples with sufficient analytical data reflected depths down to 1.7 km. Model version 1.2 focusses on geochemical and mixing processes affecting the groundwater composition in the uppermost part of the bedrock, down to repository levels, and eventually extending to 1000 m depth. The groundwater flow regimes at Laxemar/Simpevarp are considered local and extend down to depths of around 600-1000 m depending on local topography. The marked differences in the groundwater flow regimes between Laxemar and Simpevarp are reflected in the groundwater chemistry where four major hydrochemical groups of groundwaters (types A-D) have been identified: TYPE A: This type comprises dilute groundwaters (< 1000 mg/L Cl; 0.5-2.0 g/L TDS) of Na-HCO{sub 3} type present at shallow (<200 m) depths at Simpevarp, but at greater depths (0-900 m) at Laxemar. At both localities the groundwaters are marginally oxidising close to the surface, but otherwise reducing. Main reactions involve weathering, ion exchange (Ca, Mg), surface complexation, and dissolution of calcite. Redox reactions include precipitation of Fe-oxyhydroxides and some microbially mediated reactions (SRB). Meteoric recharge water is mainly present at Laxemar whilst at Simpevarp potential mixing of recharge meteoric water and a modern sea component is observed. Localised mixing of meteoric water with deeper saline groundwaters is indicated at both Laxemar and Simpevarp. TYPE B: This type comprises brackish groundwaters (1000-6000 mg/L Cl; 5-10 g/L TDS) present at

  20. Thermal modelling. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Back, Paer-Erik; Bengtsson, Anna; Laendell, Maerta [Geo Innova AB, Linkoeping (Sweden)

    2005-08-01

    This report presents the thermal site descriptive model for the Forsmark area, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at canister scale has been modelled for two different lithological domains (RFM029 and RFM012, both dominated by granite to granodiorite (101057)). A main modelling approach has been used to determine the mean value of the thermal conductivity. Two alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological model for the Forsmark area, version 1.2 together with rock type models constituted from measured and calculated (from mineral composition) thermal conductivities. Results indicate that the mean of thermal conductivity is expected to exhibit a small variation between the different domains, 3.46 W/(mxK) for RFM012 to 3.55 W/(mxK) for RFM029. The spatial distribution of the thermal conductivity does not follow a simple model. Lower and upper 95% confidence limits are based on the modelling results, but have been rounded of to only two significant figures. Consequently, the lower limit is 2.9 W/(mxK), while the upper is 3.8 W/(mxK). This is applicable to both the investigated domains. The temperature dependence is rather small with a decrease in thermal conductivity of 10.0% per 100 deg C increase in temperature for the dominating rock type. There are a number of important uncertainties associated with these results. One of the uncertainties considers the representative scale for the canister. Another important uncertainty is the methodological uncertainties associated with the upscaling of thermal conductivity from cm-scale to canister scale. In addition, the representativeness of rock samples is

  1. Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models

    Directory of Open Access Journals (Sweden)

    Robert B. Gramacy

    2010-02-01

    Full Text Available This document describes the new features in version 2.x of the tgp package for R, implementing treed Gaussian process (GP models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of tgp across all models in the hierarchy: from Bayesian linear models, to classification and regression trees (CART, to treed Gaussian processes with jumps to the limiting linear model. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette (Gramacy 2007.

  2. Framework of cloud parameterization including ice for 3-D mesoscale models

    Energy Technology Data Exchange (ETDEWEB)

    Levkov, L; Jacob, D; Eppel, D; Grassl, H

    1989-01-01

    A parameterization scheme for the simulation of ice in clouds incorporated into the hydrostatic version of the GKSS three-dimensional mesoscale model. Numerical simulations of precipitation are performed: over the Northe Sea, the Hawaiian trade wind area and in the region of the intertropical convergence zone. Not only some major features of convective structures in all three areas but also cloud-aerosol interactions have successfully been simulated. (orig.) With 19 figs., 2 tabs.

  3. COMODI: an ontology to characterise differences in versions of computational models in biology.

    Science.gov (United States)

    Scharm, Martin; Waltemath, Dagmar; Mendes, Pedro; Wolkenhauer, Olaf

    2016-07-11

    Open model repositories provide ready-to-reuse computational models of biological systems. Models within those repositories evolve over time, leading to different model versions. Taken together, the underlying changes reflect a model's provenance and thus can give valuable insights into the studied biology. Currently, however, changes cannot be semantically interpreted. To improve this situation, we developed an ontology of terms describing changes in models. The ontology can be used by scientists and within software to characterise model updates at the level of single changes. When studying or reusing a model, these annotations help with determining the relevance of a change in a given context. We manually studied changes in selected models from BioModels and the Physiome Model Repository. Using the BiVeS tool for difference detection, we then performed an automatic analysis of changes in all models published in these repositories. The resulting set of concepts led us to define candidate terms for the ontology. In a final step, we aggregated and classified these terms and built the first version of the ontology. We present COMODI, an ontology needed because COmputational MOdels DIffer. It empowers users and software to describe changes in a model on the semantic level. COMODI also enables software to implement user-specific filter options for the display of model changes. Finally, COMODI is a step towards predicting how a change in a model influences the simulation results. COMODI, coupled with our algorithm for difference detection, ensures the transparency of a model's evolution, and it enhances the traceability of updates and error corrections. COMODI is encoded in OWL. It is openly available at http://comodi.sems.uni-rostock.de/ .

  4. GARUSO - Version 1.0. Uncertainty model for multipath ultrasonic transit time gas flow meters

    Energy Technology Data Exchange (ETDEWEB)

    Lunde, Per; Froeysa, Kjell-Eivind; Vestrheim, Magne

    1997-09-01

    This report describes an uncertainty model for ultrasonic transit time gas flow meters configured with parallel chords, and a PC program, GARUSO Version 1.0, implemented for calculation of the meter`s relative expanded uncertainty. The program, which is based on the theoretical uncertainty model, is used to carry out a simplified and limited uncertainty analysis for a 12`` 4-path meter, where examples of input and output uncertainties are given. The model predicts a relative expanded uncertainty for the meter at a level which further justifies today`s increasing tendency to use this type of instruments for fiscal metering of natural gas. 52 refs., 15 figs., 11 tabs.

  5. A multisensor evaluation of the asymmetric convective model, version 2, in southeast Texas.

    Science.gov (United States)

    Kolling, Jenna S; Pleim, Jonathan E; Jeffries, Harvey E; Vizuete, William

    2013-01-01

    There currently exist a number of planetary boundary layer (PBL) schemes that can represent the effects of turbulence in daytime convective conditions, although these schemes remain a large source of uncertainty in meteorology and air quality model simulations. This study evaluates a recently developed combined local and nonlocal closure PBL scheme, the Asymmetric Convective Model, version 2 (ACM2), against PBL observations taken from radar wind profilers, a ground-based lidar, and multiple daytime radiosonde balloon launches. These observations were compared against predictions of PBLs from the Weather Research and Forecasting (WRF) model version 3.1 with the ACM2 PBL scheme option, and the Fifth-Generation Meteorological Model (MM5) version 3.7.3 with the Eta PBL scheme option that is currently being used to develop ozone control strategies in southeast Texas. MM5 and WRF predictions during the regulatory modeling episode were evaluated on their ability to predict the rise and fall of the PBL during daytime convective conditions across southeastern Texas. The MM5 predicted PBLs consistently underpredicted observations, and were also less than the WRF PBL predictions. The analysis reveals that the MM5 predicted a slower rising and shallower PBL not representative of the daytime urban boundary layer. Alternatively, the WRF model predicted a more accurate PBL evolution improving the root mean square error (RMSE), both temporally and spatially. The WRF model also more accurately predicted vertical profiles of temperature and moisture in the lowest 3 km of the atmosphere. Inspection of median surface temperature and moisture time-series plots revealed higher predicted surface temperatures in WRF and more surface moisture in MM5. These could not be attributed to surface heat fluxes, and thus the differences in performance of the WRF and MM5 models are likely due to the PBL schemes. An accurate depiction of the diurnal evolution of the planetary boundary layer (PBL) is

  6. Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms.

    Science.gov (United States)

    Nguyen, Thang Tat; Yeom, Yeon Soo; Kim, Han Sung; Wang, Zhao Jun; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E; Lee, Choonsik; Chung, Beom Sun

    2015-11-21

    The dose coefficients for the eye lens reported in ICRP 2010 Publication 116 were calculated using both a stylized model and the ICRP-110 reference phantoms, according to the type of radiation, energy, and irradiation geometry. To maintain consistency of lens dose assessment, in the present study we incorporated the ICRP-116 detailed eye model into the converted polygon-mesh (PM) version of the ICRP-110 reference phantoms. After the incorporation, the dose coefficients for the eye lens were calculated and compared with those of the ICRP-116 data. The results showed generally a good agreement between the newly calculated lens dose coefficients and the values of ICRP 2010 Publication 116. Significant differences were found for some irradiation cases due mainly to the use of different types of phantoms. Considering that the PM version of the ICRP-110 reference phantoms preserve the original topology of the ICRP-110 reference phantoms, it is believed that the PM version phantoms, along with the detailed eye model, provide more reliable and consistent dose coefficients for the eye lens.

  7. Incremental testing of the Community Multiscale Air Quality (CMAQ modeling system version 4.7

    Directory of Open Access Journals (Sweden)

    K. M. Foley

    2010-03-01

    Full Text Available This paper describes the scientific and structural updates to the latest release of the Community Multiscale Air Quality (CMAQ modeling system version 4.7 (v4.7 and points the reader to additional resources for further details. The model updates were evaluated relative to observations and results from previous model versions in a series of simulations conducted to incrementally assess the effect of each change. The focus of this paper is on five major scientific upgrades: (a updates to the heterogeneous N2O5 parameterization, (b improvement in the treatment of secondary organic aerosol (SOA, (c inclusion of dynamic mass transfer for coarse-mode aerosol, (d revisions to the cloud model, and (e new options for the calculation of photolysis rates. Incremental test simulations over the eastern United States during January and August 2006 are evaluated to assess the model response to each scientific improvement, providing explanations of differences in results between v4.7 and previously released CMAQ model versions. Particulate sulfate predictions are improved across all monitoring networks during both seasons due to cloud module updates. Numerous updates to the SOA module improve the simulation of seasonal variability and decrease the bias in organic carbon predictions at urban sites in the winter. Bias in the total mass of fine particulate matter (PM2.5 is dominated by overpredictions of unspeciated PM2.5 (PMother in the winter and by underpredictions of carbon in the summer. The CMAQv4.7 model results show slightly worse performance for ozone predictions. However, changes to the meteorological inputs are found to have a much greater impact on ozone predictions compared to changes to the CMAQ modules described here. Model updates had little effect on existing biases in wet deposition predictions.

  8. Vortex dynamics in nonrelativistic version of Abelian Higgs model: Effects of the medium on the vortex motion

    Directory of Open Access Journals (Sweden)

    Kozhevnikov Arkadii

    2016-01-01

    Full Text Available The closed vortex dynamics is considered in the nonrelativistic version of the Abelian Higgs Model. The effect of the exchange of excitations propagating in the medium on the vortex string motion is taken into account. The obtained are the effective action and the equation of motion both including the exchange of the propagating excitations between the distant segments of the vortex and the possibility of its interaction with the static fermion asymmetric background. They are applied to the derivation of the time dependence of the basic geometrical contour characteristics.

  9. BALANCED SCORECARDS EVALUATION MODEL THAT INCLUDES ELEMENTS OF ENVIRONMENTAL MANAGEMENT SYSTEM USING AHP MODEL

    Directory of Open Access Journals (Sweden)

    Jelena Jovanović

    2010-03-01

    Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.

  10. Result Summary for the Area 5 Radioactive Waste Management Site Performance Assessment Model Version 4.110

    International Nuclear Information System (INIS)

    2011-01-01

    Results for Version 4.110 of the Area 5 Radioactive Waste Management Site (RWMS) performance assessment (PA) model are summarized. Version 4.110 includes the fiscal year (FY) 2010 inventory estimate, including a future inventory estimate. Version 4.110 was implemented in GoldSim 10.11(SP4). The following changes have been implemented since the last baseline model, Version 4.105: (1) Updated the inventory and disposal unit configurations with data through the end of FY 2010. (1) Implemented Federal Guidance Report 13 Supplemental CD dose conversion factors (U.S. Environmental Protection Agency, 1999). Version 4.110 PA results comply with air pathway and all-pathways annual total effective dose (TED) performance objectives (Tables 2 and 3, Figures 1 and 2). Air pathways results decrease moderately for all scenarios. The time of the maximum for the air pathway open rangeland scenario shifts from 1,000 to 100 years (y). All-pathways annual TED increases for all scenarios except the resident scenario. The maximum member of public all-pathways dose occurs at 1,000 y for the resident farmer scenario. The resident farmer dose was predominantly due to technetium-99 (Tc-99) (82 percent) and lead-210 (Pb-210) (13 percent). Pb-210 present at 1,000 y is produced predominantly by radioactive decay of uranium-234 (U-234) present at the time of disposal. All results for the postdrilling and intruder-agriculture scenarios comply with the performance objectives (Tables 4 and 5, Figures 3 and 4). The postdrilling intruder results are similar to Version 4.105 results. The intruder-agriculture results are similar to Version 4.105, except for the Pit 6 Radium Disposal Unit (RaDU). The intruder-agriculture result for the Shallow Land Burial (SLB) disposal units is a significant fraction of the performance objective and exceeds the performance objective at the 95th percentile. The intruder-agriculture dose is due predominantly to Tc-99 (75 percent) and U-238 (9.5 percent). The acute

  11. Simulations of the Mid-Pliocene Warm Period Using Two Versions of the NASA-GISS ModelE2-R Coupled Model

    Science.gov (United States)

    Chandler, M. A.; Sohl, L. E.; Jonas, J. A.; Dowsett, H. J.; Kelley, M.

    2013-01-01

    The mid-Pliocene Warm Period (mPWP) bears many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change (IPCC, 2007). Both marine and terrestrial data point to high-latitude temperature amplification, including large decreases in sea ice and land ice, as well as expansion of warmer climate biomes into higher latitudes. Here we present our most recent simulations of the mid-Pliocene climate using the CMIP5 version of the NASAGISS Earth System Model (ModelE2-R). We describe the substantial impact associated with a recent correction made in the implementation of the Gent-McWilliams ocean mixing scheme (GM), which has a large effect on the simulation of ocean surface temperatures, particularly in the North Atlantic Ocean. The effect of this correction on the Pliocene climate results would not have been easily determined from examining its impact on the preindustrial runs alone, a useful demonstration of how the consequences of code improvements as seen in modern climate control runs do not necessarily portend the impacts in extreme climates.Both the GM-corrected and GM-uncorrected simulations were contributed to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. The corrected version yields results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene, especially the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea, which in the new simulation appears to be far more realistic than previously found with older versions of the GISS model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterisations in the ocean model, have led

  12. Statistical model of fractures and deformation zones. Preliminary site description, Laxemar subarea, version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hermanson, Jan; Forssberg, Ola [Golder Associates AB, Stockholm (Sweden); Fox, Aaron; La Pointe, Paul [Golder Associates Inc., Redmond, WA (United States)

    2005-10-15

    The goal of this summary report is to document the data sources, software tools, experimental methods, assumptions, and model parameters in the discrete-fracture network (DFN) model for the local model volume in Laxemar, version 1.2. The model parameters presented herein are intended for use by other project modeling teams. Individual modeling teams may elect to simplify or use only a portion of the DFN model, depending on their needs. This model is not intended to be a flow model or a mechanical model; as such, only the geometrical characterization is presented. The derivations of the hydraulic or mechanical properties of the fractures or their subsurface connectivities are not within the scope of this report. This model represents analyses carried out on particular data sets. If additional data are obtained, or values for existing data are changed or excluded, the conclusions reached in this report, and the parameter values calculated, may change as well. The model volume is divided into two subareas; one located on the Simpevarp peninsula adjacent to the power plant (Simpevarp), and one further to the west (Laxemar). The DFN parameters described in this report were determined by analysis of data collected within the local model volume. As such, the final DFN model is only valid within this local model volume and the modeling subareas (Laxemar and Simpevarp) within.

  13. A computationally efficient description of heterogeneous freezing: A simplified version of the Soccer ball model

    Science.gov (United States)

    Niedermeier, Dennis; Ervens, Barbara; Clauss, Tina; Voigtländer, Jens; Wex, Heike; Hartmann, Susan; Stratmann, Frank

    2014-01-01

    In a recent study, the Soccer ball model (SBM) was introduced for modeling and/or parameterizing heterogeneous ice nucleation processes. The model applies classical nucleation theory. It allows for a consistent description of both apparently singular and stochastic ice nucleation behavior, by distributing contact angles over the nucleation sites of a particle population assuming a Gaussian probability density function. The original SBM utilizes the Monte Carlo technique, which hampers its usage in atmospheric models, as fairly time-consuming calculations must be performed to obtain statistically significant results. Thus, we have developed a simplified and computationally more efficient version of the SBM. We successfully used the new SBM to parameterize experimental nucleation data of, e.g., bacterial ice nucleation. Both SBMs give identical results; however, the new model is computationally less expensive as confirmed by cloud parcel simulations. Therefore, it is a suitable tool for describing heterogeneous ice nucleation processes in atmospheric models.

  14. Community Land Model Version 3.0 (CLM3.0) Developer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, FM

    2004-12-21

    This document describes the guidelines adopted for software development of the Community Land Model (CLM) and serves as a reference to the entire code base of the released version of the model. The version of the code described here is Version 3.0 which was released in the summer of 2004. This document, the Community Land Model Version 3.0 (CLM3.0) User's Guide (Vertenstein et al., 2004), the Technical Description of the Community Land Model (CLM) (Oleson et al., 2004), and the Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User's Guide (Levis et al., 2004) provide the developer, user, or researcher with details of implementation, instructions for using the model, a scientific description of the model, and a scientific description of the Dynamic Global Vegetation Model integrated with CLM respectively. The CLM is a single column (snow-soil-vegetation) biogeophysical model of the land surface which can be run serially (on a laptop or personal computer) or in parallel (using distributed or shared memory processors or both) on both vector and scalar computer architectures. Written in Fortran 90, CLM can be run offline (i.e., run in isolation using stored atmospheric forcing data), coupled to an atmospheric model (e.g., the Community Atmosphere Model (CAM)), or coupled to a climate system model (e.g., the Community Climate System Model Version 3 (CCSM3)) through a flux coupler (e.g., Coupler 6 (CPL6)). When coupled, CLM exchanges fluxes of energy, water, and momentum with the atmosphere. The horizontal land surface heterogeneity is represented by a nested subgrid hierarchy composed of gridcells, landunits, columns, and plant functional types (PFTs). This hierarchical representation is reflected in the data structures used by the model code. Biophysical processes are simulated for each subgrid unit (landunit, column, and PFT) independently, and prognostic variables are maintained for each subgrid unit

  15. The modified version of the centre-of-mass correction to the bag model

    International Nuclear Information System (INIS)

    Bartelski, J.; Tatur, S.

    1986-01-01

    We propose the improvement of the recently considered version of the centre-of-mass correction to the bag model. We identify a nucleon bag with physical nucleon confined in an external fictitious spherical well potential with an additional external fictitious pressure characterized by the parameter b. The introduction of such a pressure restores the conservation of the canonical energy-momentum tensor, which was lost in the former model. We propose several methods to determine the numerical value of b. We calculate the Roper resonance mass as well as static electroweak parameters of a nucleon with centre-of-mass corrections taken into account. 7 refs., 1 tab. (author)

  16. MESOI Version 2.0: an interactive mesoscale Lagrangian puff dispersion model with deposition and decay

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.

    1983-11-01

    MESOI Version 2.0 is an interactive Lagrangian puff model for estimating the transport, diffusion, deposition and decay of effluents released to the atmosphere. The model is capable of treating simultaneous releases from as many as four release points, which may be elevated or at ground-level. The puffs are advected by a horizontal wind field that is defined in three dimensions. The wind field may be adjusted for expected topographic effects. The concentration distribution within the puffs is initially assumed to be Gaussian in the horizontal and vertical. However, the vertical concentration distribution is modified by assuming reflection at the ground and the top of the atmospheric mixing layer. Material is deposited on the surface using a source depletion, dry deposition model and a washout coefficient model. The model also treats the decay of a primary effluent species and the ingrowth and decay of a single daughter species using a first order decay process. This report is divided into two parts. The first part discusses the theoretical and mathematical bases upon which MESOI Version 2.0 is based. The second part contains the MESOI computer code. The programs were written in the ANSI standard FORTRAN 77 and were developed on a VAX 11/780 computer. 43 references, 14 figures, 13 tables

  17. A p-version embedded model for simulation of concrete temperature fields with cooling pipes

    Directory of Open Access Journals (Sweden)

    Sheng Qiang

    2015-07-01

    Full Text Available Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.

  18. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2017-07-01

    Full Text Available The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs and Earth system models (ESMs to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx, HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect

  19. The Extrapolar SWIFT model (version 1.0): fast stratospheric ozone chemistry for global climate models

    Science.gov (United States)

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2018-03-01

    The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends.The Extrapolar SWIFT model employs a repro-modelling approach, in which algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equation system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, overhead ozone column and the mixing ratio of ozone and of the ozone-depleting families (Cly, Bry, NOy and HOy). We will show that these nine variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month, which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading).For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model, replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the

  20. Recent extensions and use of the statistical model code EMPIRE-II - version: 2.17 Millesimo

    International Nuclear Information System (INIS)

    Herman, M.

    2003-01-01

    This lecture notes describe new features of the modular code EMPIRE-2.17 designed to perform comprehensive calculations of nuclear reactions using variety of nuclear reaction models. Compared to the version 2.13, the current release has been extended by including Coupled-Channel mechanism, exciton model, Monte Carlo approach to preequilibrium emission, use of microscopic level densities, widths fluctuation correction, detailed calculation of the recoil spectra, and powerful plotting capabilities provided by the ZVView package. The second part of this lecture concentrates on the use of the code in practical calculations, with emphasis on the aspects relevant to nuclear data evaluation. In particular, adjusting model parameters is discussed in details. (author)

  1. Dynamic Computation of Change Operations in Version Management of Business Process Models

    Science.gov (United States)

    Küster, Jochen Malte; Gerth, Christian; Engels, Gregor

    Version management of business process models requires that changes can be resolved by applying change operations. In order to give a user maximal freedom concerning the application order of change operations, position parameters of change operations must be computed dynamically during change resolution. In such an approach, change operations with computed position parameters must be applicable on the model and dependencies and conflicts of change operations must be taken into account because otherwise invalid models can be constructed. In this paper, we study the concept of partially specified change operations where parameters are computed dynamically. We provide a formalization for partially specified change operations using graph transformation and provide a concept for their applicability. Based on this, we study potential dependencies and conflicts of change operations and show how these can be taken into account within change resolution. Using our approach, a user can resolve changes of business process models without being unnecessarily restricted to a certain order.

  2. QMM – A Quarterly Macroeconomic Model of the Icelandic Economy. Version 2.0

    DEFF Research Database (Denmark)

    Ólafsson, Tjörvi

    This paper documents and describes Version 2.0 of the Quarterly Macroeconomic Model of the Central Bank of Iceland (QMM). QMM and the underlying quarterly database have been under construction since 2001 at the Research and Forecasting Division of the Economics Department at the Bank and was first...... implemented in the forecasting round for the Monetary Bulletin 2006/1 in March 2006. QMM is used by the Bank for forecasting and various policy simulations and therefore plays a key role as an organisational framework for viewing the medium-term future when formulating monetary policy at the Bank. This paper...

  3. Online dynamical downscaling of temperature and precipitation within the iLOVECLIM model (version 1.1)

    Science.gov (United States)

    Quiquet, Aurélien; Roche, Didier M.; Dumas, Christophe; Paillard, Didier

    2018-02-01

    This paper presents the inclusion of an online dynamical downscaling of temperature and precipitation within the model of intermediate complexity iLOVECLIM v1.1. We describe the following methodology to generate temperature and precipitation fields on a 40 km × 40 km Cartesian grid of the Northern Hemisphere from the T21 native atmospheric model grid. Our scheme is not grid specific and conserves energy and moisture in the same way as the original climate model. We show that we are able to generate a high-resolution field which presents a spatial variability in better agreement with the observations compared to the standard model. Although the large-scale model biases are not corrected, for selected model parameters, the downscaling can induce a better overall performance compared to the standard version on both the high-resolution grid and on the native grid. Foreseen applications of this new model feature include the improvement of ice sheet model coupling and high-resolution land surface models.

  4. Online dynamical downscaling of temperature and precipitation within the iLOVECLIM model (version 1.1

    Directory of Open Access Journals (Sweden)

    A. Quiquet

    2018-02-01

    Full Text Available This paper presents the inclusion of an online dynamical downscaling of temperature and precipitation within the model of intermediate complexity iLOVECLIM v1.1. We describe the following methodology to generate temperature and precipitation fields on a 40 km  ×  40 km Cartesian grid of the Northern Hemisphere from the T21 native atmospheric model grid. Our scheme is not grid specific and conserves energy and moisture in the same way as the original climate model. We show that we are able to generate a high-resolution field which presents a spatial variability in better agreement with the observations compared to the standard model. Although the large-scale model biases are not corrected, for selected model parameters, the downscaling can induce a better overall performance compared to the standard version on both the high-resolution grid and on the native grid. Foreseen applications of this new model feature include the improvement of ice sheet model coupling and high-resolution land surface models.

  5. A RETRAN-02 model of the Sizewell B PCSR design - the Winfrith one-loop model, version 3.0

    International Nuclear Information System (INIS)

    Kinnersly, S.R.

    1983-11-01

    A one-loop RETRAN-02 model of the Sizewell B Pre Construction Safety Report (PCSR) design, set up at Winfrith, is described and documented. The model is suitable for symmetrical pressurised transients. Comparison with data from the Sizewell B PCSR shows that the model is a good representation of that design. Known errors, limitations and deficiencies are described. The mode of storage and maintenance at Winfrith using PROMUS (Program Maintenance and Update System) is noted. It is recommended that users modify the standard data by adding replacement cards to the end so as to aid in identification, use and maintenance of local versions. (author)

  6. The Systems Biology Markup Language (SBML) Level 3 Package: Qualitative Models, Version 1, Release 1.

    Science.gov (United States)

    Chaouiya, Claudine; Keating, Sarah M; Berenguier, Duncan; Naldi, Aurélien; Thieffry, Denis; van Iersel, Martijn P; Le Novère, Nicolas; Helikar, Tomáš

    2015-09-04

    Quantitative methods for modelling biological networks require an in-depth knowledge of the biochemical reactions and their stoichiometric and kinetic parameters. In many practical cases, this knowledge is missing. This has led to the development of several qualitative modelling methods using information such as, for example, gene expression data coming from functional genomic experiments. The SBML Level 3 Version 1 Core specification does not provide a mechanism for explicitly encoding qualitative models, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactical constructs. The SBML Qualitative Models package for SBML Level 3 adds features so that qualitative models can be directly and explicitly encoded. The approach taken in this package is essentially based on the definition of regulatory or influence graphs. The SBML Qualitative Models package defines the structure and syntax necessary to describe qualitative models that associate discrete levels of activities with entity pools and the transitions between states that describe the processes involved. This is particularly suited to logical models (Boolean or multi-valued) and some classes of Petri net models can be encoded with the approach.

  7. A psychometric evaluation of the Swedish version of the Research Utilization Questionnaire using a Rasch measurement model.

    Science.gov (United States)

    Lundberg, Veronica; Boström, Anne-Marie; Malinowsky, Camilla

    2017-07-30

    Evidence-based practice and research utilisation has become a commonly used concept in health care. The Research Utilization Questionnaire (RUQ) has been recognised to be a widely used instrument measuring the perception of research utilisation among nursing staff in clinical practice. Few studies have however analysed the psychometric properties of the RUQ. The aim of this study was to examine the psychometric properties of the Swedish version of the three subscales in RUQ using a Rasch measurement model. This study has a cross-sectional design using a sample of 163 staff (response rate 81%) working in one nursing home in Sweden. Data were collected using the Swedish version of RUQ in 2012. The three subscales Attitudes towards research, Availability of and support for research use and Use of research findings in clinical practice were investigated. Data were analysed using a Rasch measurement model. The results indicate presence of multidimensionality in all subscales. Moreover, internal scale validity and person response validity also provide some less satisfactory results, especially for the subscale Use of research findings. Overall, there seems to be a problem with the negatively worded statements. The findings suggest that clarification and refining of items, including additional psychometric evaluation of the RUQ, are needed before using the instrument in clinical practice and research studies among staff in nursing homes. © 2017 Nordic College of Caring Science.

  8. Implementation of methane cycling for deep time, global warming simulations with the DCESS Earth System Model (Version 1.2)

    DEFF Research Database (Denmark)

    Shaffer, Gary; Villanueva, Esteban Fernández; Rondanelli, Roberto

    2017-01-01

    Geological records reveal a number of ancient, large and rapid negative excursions of carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth System over a short duration. These injections may have forced strong global warming events, sometimes....... With this improved DCESS model version and paleo-reconstructions, we are now better armed to gauge the amounts, types, time scales and locations of methane injections driving specific, observed deep time, global warming events......., or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth System models should include a comprehensive treatment of methane cycling but such a treatment...

  9. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3 ...

    Science.gov (United States)

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfills in evaluating the economic and financial feasibility of LFG energy project development. In 2014, LMOP developed a public version of the model, LFGcost-Web (Version 3.0), to allow landfill and industry stakeholders to evaluate project feasibility on their own. LFGcost-Web can analyze costs for 12 energy recovery project types. These project costs can be estimated with or without the costs of a gas collection and control system (GCCS). The EPA used select equations from LFGcost-Web to estimate costs of the regulatory options in the 2015 proposed revisions to the MSW Landfills Standards of Performance (also known as New Source Performance Standards) and the Emission Guidelines (herein thereafter referred to collectively as the Landfill Rules). More specifically, equations derived from LFGcost-Web were applied to each landfill expected to be impacted by the Landfill Rules to estimate annualized installed capital costs and annual O&M costs of a gas collection and control system. In addition, after applying the LFGcost-Web equations to the list of landfills expected to require a GCCS in year 2025 as a result of the proposed Landfill Rules, the regulatory analysis evaluated whether electr

  10. Study of a diffusion flamelet model, with preferential diffusion effects included

    NARCIS (Netherlands)

    Delhaye, S.; Somers, L.M.T.; Bongers, H.; Oijen, van J.A.; Goey, de L.P.H.; Dias, V.

    2005-01-01

    The non-premixed flamelet model of Peters [1] (model1), which does not include preferential diffusion effects is investigated. Two similar models are presented, but without the assumption of unity Lewis numbers. One of these models was derived by Peters & Pitsch [2] (model2), while the other one was

  11. Integrated Medical Model (IMM) Optimization Version 4.0 Functional Improvements

    Science.gov (United States)

    Arellano, John; Young, M.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Goodenow, D. A.; Myers, J. G.

    2016-01-01

    The IMMs ability to assess mission outcome risk levels relative to available resources provides a unique capability to provide guidance on optimal operational medical kit and vehicle resources. Post-processing optimization allows IMM to optimize essential resources to improve a specific model outcome such as maximization of the Crew Health Index (CHI), or minimization of the probability of evacuation (EVAC) or the loss of crew life (LOCL). Mass and or volume constrain the optimized resource set. The IMMs probabilistic simulation uses input data on one hundred medical conditions to simulate medical events that may occur in spaceflight, the resources required to treat those events, and the resulting impact to the mission based on specific crew and mission characteristics. Because IMM version 4.0 provides for partial treatment for medical events, IMM Optimization 4.0 scores resources at the individual resource unit increment level as opposed to the full condition-specific treatment set level, as done in version 3.0. This allows the inclusion of as many resources as possible in the event that an entire set of resources called out for treatment cannot satisfy the constraints. IMM Optimization version 4.0 adds capabilities that increase efficiency by creating multiple resource sets based on differing constraints and priorities, CHI, EVAC, or LOCL. It also provides sets of resources that improve mission-related IMM v4.0 outputs with improved performance compared to the prior optimization. The new optimization represents much improved fidelity that will improve the utility of the IMM 4.0 for decision support.

  12. Validity study of the Beck Anxiety Inventory (Portuguese version by the Rasch Rating Scale model

    Directory of Open Access Journals (Sweden)

    Sónia Quintão

    2013-01-01

    Full Text Available Our objective was to conduct a validation study of the Portuguese version of the Beck Anxiety Inventory (BAI by means of the Rasch Rating Scale Model, and then compare it with the most used scales of anxiety in Portugal. The sample consisted of 1,160 adults (427 men and 733 women, aged 18-82 years old (M=33.39; SD=11.85. Instruments were Beck Anxiety Inventory, State-Trait Anxiety Inventory and Zung Self-Rating Anxiety Scale. It was found that Beck Anxiety Inventory's system of four categories, the data-model fit, and people reliability were adequate. The measure can be considered as unidimensional. Gender and age-related differences were not a threat to the validity. BAI correlated significantly with other anxiety measures. In conclusion, BAI shows good psychometric quality.

  13. The SGHWR version of the Monte Carlo code W-MONTE. Part 1. The theoretical model

    International Nuclear Information System (INIS)

    Allen, F.R.

    1976-03-01

    W-MONTE provides a multi-group model of neutron transport in the exact geometry of a reactor lattice using Monte Carlo methods. It is currently restricted to uniform axial properties. Material data is normally obtained from a preliminary WIMS lattice calculation in the transport group structure. The SGHWR version has been required for analysis of zero energy experiments and special aspects of power reactor lattices, such as the unmoderated lattice region above the moderator when drained to dump height. Neutron transport is modelled for a uniform infinite lattice, simultaneously treating the cases of no leakage, radial leakage or axial leakage only, and the combined effects of radial and axial leakage. Multigroup neutron balance edits are incorporated for the separate effects of radial and axial leakage to facilitate the analysis of leakage and to provide effective diffusion theory parameters for core representation in reactor cores. (author)

  14. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    Science.gov (United States)

    Wang, Yong; Liu, Xiaohong

    2014-12-01

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736-741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments.

  15. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    International Nuclear Information System (INIS)

    Wang, Yong; Liu, Xiaohong

    2014-01-01

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736–741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments. (letter)

  16. Incorporating remote sensing-based ET estimates into the Community Land Model version 4.5

    Directory of Open Access Journals (Sweden)

    D. Wang

    2017-07-01

    Full Text Available Land surface models bear substantial biases in simulating surface water and energy budgets despite the continuous development and improvement of model parameterizations. To reduce model biases, Parr et al. (2015 proposed a method incorporating satellite-based evapotranspiration (ET products into land surface models. Here we apply this bias correction method to the Community Land Model version 4.5 (CLM4.5 and test its performance over the conterminous US (CONUS. We first calibrate a relationship between the observational ET from the Global Land Evaporation Amsterdam Model (GLEAM product and the model ET from CLM4.5, and assume that this relationship holds beyond the calibration period. During the validation or application period, a simulation using the default CLM4.5 (CLM is conducted first, and its output is combined with the calibrated observational-vs.-model ET relationship to derive a corrected ET; an experiment (CLMET is then conducted in which the model-generated ET is overwritten with the corrected ET. Using the observations of ET, runoff, and soil moisture content as benchmarks, we demonstrate that CLMET greatly improves the hydrological simulations over most of the CONUS, and the improvement is stronger in the eastern CONUS than the western CONUS and is strongest over the Southeast CONUS. For any specific region, the degree of the improvement depends on whether the relationship between observational and model ET remains time-invariant (a fundamental hypothesis of the Parr et al. (2015 method and whether water is the limiting factor in places where ET is underestimated. While the bias correction method improves hydrological estimates without improving the physical parameterization of land surface models, results from this study do provide guidance for physically based model development effort.

  17. 78 FR 32224 - Availability of Version 3.1.2 of the Connect America Fund Phase II Cost Model; Additional...

    Science.gov (United States)

    2013-05-29

    ... Version 3.1.2 of the Connect America Fund Phase II Cost Model; Additional Discussion Topics in Connect America Cost Model Virtual Workshop AGENCY: Federal Communications Commission. ACTION: Proposed rule... America Cost Model (CAM v3.1.2), which allows Commission staff and interested parties to calculate costs...

  18. Version 2.0 of the European Gas Model. Changes and their impact on the German gas sector

    International Nuclear Information System (INIS)

    Balmert, David; Petrov, Konstantin

    2015-01-01

    In January 2015 ACER, the European Agency for the Cooperation of Energy Regulators, presented an updated version of its target model for the inner-European natural gas market, also referred to as version 2.0 of the Gas Target Model. During 2014 the existing model, originally developed by the Council of European Energy Regulators (CEER) and launched in 2011, had been analysed, revised and updated in preparation of the new version. While it has few surprises to offer, the new Gas Target Model contains specifies and goes into greater detail on many elements of the original model. Some of the new content is highly relevant to the German gas sector, not least the deliberations on the current key issues, which are security of supply and the ability of the gas markets to function.

  19. Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency

    Directory of Open Access Journals (Sweden)

    Moonen Marie

    2011-09-01

    Full Text Available Abstract Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves.

  20. Hydrogeochemical evaluation for Simpevarp model version 1.2. Preliminary site description of the Simpevarp area

    International Nuclear Information System (INIS)

    Laaksoharju, Marcus

    2004-12-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Simpevarp and Forsmark, to determine their geological, hydrogeochemical and hydrogeological characteristics. Present work completed has resulted in Model version 1.2 which represents the second evaluation of the available Simpevarp groundwater analytical data collected up to April, 2004. The deepest fracture groundwater samples with sufficient analytical data reflected depths down to 1.7 km. Model version 1.2 focusses on geochemical and mixing processes affecting the groundwater composition in the uppermost part of the bedrock, down to repository levels, and eventually extending to 1000 m depth. The groundwater flow regimes at Laxemar/Simpevarp are considered local and extend down to depths of around 600-1000 m depending on local topography. The marked differences in the groundwater flow regimes between Laxemar and Simpevarp are reflected in the groundwater chemistry where four major hydrochemical groups of groundwaters (types A-D) have been identified: TYPE A: This type comprises dilute groundwaters ( 3 type present at shallow ( 300 m) levels at Simpevarp, and at even greater depths (approx. 1200 m) at Laxemar. At Simpevarp the groundwaters are mainly Na-Ca-Cl with increasingly enhanced Br and SO 4 with depth. At Laxemar they are mainly Ca-Na-Cl also with increasing enhancements of Br and SO 4 with depth. Main reactions involve ion exchange (Ca). At both sites a glacial component and a deep saline component are present. At Simpevarp the saline component may be potentially non marine and/or non-marine/old Littorina marine in origin; at Laxemar it is more likely to be non-marine in origin. TYPE D: This type comprises reducing highly saline groundwaters (> 20 000 mg/L Cl; to a maximum of ∼70 g/L TDS) and only has been identified at Laxemar at depths exceeding 1200 m. It is mainly Ca-Na-Cl with higher Br but lower SO 4 compared

  1. Evaluation of a new CNRM-CM6 model version for seasonal climate predictions

    Science.gov (United States)

    Volpi, Danila; Ardilouze, Constantin; Batté, Lauriane; Dorel, Laurant; Guérémy, Jean-François; Déqué, Michel

    2017-04-01

    This work presents the quality assessment of a new version of the Météo-France coupled climate prediction system, which has been developed in the EU COPERNICUS Climate Change Services framework to carry out seasonal forecast. The system is based on the CNRM-CM6 model, with Arpege-Surfex 6.2.2 as atmosphere/land component and Nemo 3.2 as ocean component, which has directly embedded the sea-ice component Gelato 6.0. In order to have a robust diagnostic, the experiment is composed by 60 ensemble members generated with stochastic dynamic perturbations. The experiment has been performed over a 37-year re-forecast period from 1979 to 2015, with two start dates per year, respectively in May 1st and November 1st. The evaluation of the predictive skill of the model is shown under two perspectives: on the one hand, the ability of the model to faithfully respond to positive or negative ENSO, NAO and QBO events, independently of the predictability of these events. Such assessment is carried out through a composite analysis, and shows that the model succeeds in reproducing the main patterns for 2-meter temperature, precipitation and geopotential height at 500 hPa during the winter season. On the other hand, the model predictive skill of the same events (positive and negative ENSO, NAO and QBO) is evaluated.

  2. Hydrogeochemical evaluation of the Forsmark site, model version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (ed.) [GeoPoint AB, Sollentuna (Sweden); Gimeno, Maria; Auque, Luis; Gomez, Javier [Univ. of Zaragoza (Spain). Dept. of Earth Sciences; Smellie, John [Conterra AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Gurban, Ioana [3D-Terra, Montreal (Canada)

    2004-01-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Forsmark and Simpevarp, on the eastern coast of Sweden to determine their geological, geochemical and hydrogeological characteristics. Present work completed has resulted in model version 1.1 which represents the first evaluation of the available Forsmark groundwater analytical data collected up to May 1, 2003 (i.e. the first 'data freeze'). The HAG group had access to a total of 456 water samples collected mostly from the surface and sub-surface environment (e.g. soil pipes in the overburden, streams and lakes); only a few samples were collected from drilled boreholes. The deepest samples reflected depths down to 200 m. Furthermore, most of the waters sampled (74%) lacked crucial analytical information that restricted the evaluation. Consequently, model version 1.1 focussed on the processes taking place in the uppermost part of the bedrock rather than at repository levels. The complex groundwater evolution and patterns at Forsmark are a result of many factors such as: a) the flat topography and closeness to the Baltic Sea resulting in relative small hydrogeological driving forces which can preserve old water types from being flushed out, b) the changes in hydrogeology related to glaciation/deglaciation and land uplift, c) repeated marine/lake water regressions/transgressions, and d) organic or inorganic alteration of the groundwater caused by microbial processes or water/rock interactions. The sampled groundwaters reflect to various degrees modern or ancient water/rock interactions and mixing processes. Based on the general geochemical character and the apparent age two major water types occur in Forsmark: fresh-meteoric waters with a bicarbonate imprint and low residence times (tritium values above detection limit), and brackish-marine waters with Cl contents up to 6,000 mg/L and longer residence times (tritium

  3. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    Science.gov (United States)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  4. Solid waste projection model: Database user's guide (Version 1.0)

    International Nuclear Information System (INIS)

    Carr, F.; Stiles, D.

    1991-01-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for preparing to use Version 1 of the SWPM database, for entering and maintaining data, and for performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions, and does not provide instructions in the use of Paradox, the database management system in which the SWPM database is established. 3 figs., 1 tab

  5. Solid Waste Projection Model: Database user's guide (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for preparing to use Version 1.3 of the SWPM database, for entering and maintaining data, and for performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  6. HAM Construction modeling using COMSOL with MatLab Modeling Guide version 1.0.

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2006-01-01

    This paper presents a first modeling guide for the modeling and simulation of up to full 3D dynamic Heat, Air & Moisture (HAM) transport of building constructions using COMSOL with Matlab. The modeling scripts are provided at the appendix. Furthermore, all modeling files and results are published at

  7. HAM Construction modeling using COMSOL with MatLab Modeling Guide, version 1.0

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2006-01-01

    This paper presents a first modeling guide for the modeling and simulation of up to full 3D dynamic Heat, Air & Moisture (HAM) transport of building constructions using COMSOL with Matlab. The modeling scripts are provided at the appendix. Furthermore, all modeling files and results are published at

  8. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    International Nuclear Information System (INIS)

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the open-quotes constructionclose quotes of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc

  9. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  10. ATEFlap aerodynamic model, a dynamic stall model including the effects of trailing edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.; Gaunaa, M.

    2012-02-15

    The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)

  11. VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 2 OVER THE CONTERMINOUS UNITED STATES

    Directory of Open Access Journals (Sweden)

    D. Gesch

    2012-07-01

    Full Text Available The ASTER Global Digital Elevation Model Version 2 (GDEM v2 was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1 in 2009. The absolute vertical accuracy of GDEM v2 was calculated by comparison with more than 18,000 independent reference geodetic ground control points from the National Geodetic Survey. The root mean square error (RMSE measured for GDEM v2 is 8.68 meters. This compares with the RMSE of 9.34 meters for GDEM v1. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v2 mean error of –0.20 meters is a significant improvement over the GDEM v1 mean error of –3.69 meters. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover to examine the effects of cover types on measured errors. The GDEM v2 mean errors by land cover class verify that the presence of aboveground features (tree canopies and built structures cause a positive elevation bias, as would be expected for an imaging system like ASTER. In open ground classes (little or no vegetation with significant aboveground height, GDEM v2 exhibits a negative bias on the order of 1 meter. GDEM v2 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM dataset. In many forested areas, GDEM v2 has elevations that are higher in the canopy than SRTM.

  12. Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States

    Science.gov (United States)

    Gesch, Dean B.; Oimoen, Michael J.; Zhang, Zheng; Meyer, David J.; Danielson, Jeffrey J.

    2012-01-01

    The ASTER Global Digital Elevation Model Version 2 (GDEM v2) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009. The absolute vertical accuracy of GDEM v2 was calculated by comparison with more than 18,000 independent reference geodetic ground control points from the National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v2 is 8.68 meters. This compares with the RMSE of 9.34 meters for GDEM v1. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v2 mean error of -0.20 meters is a significant improvement over the GDEM v1 mean error of -3.69 meters. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover to examine the effects of cover types on measured errors. The GDEM v2 mean errors by land cover class verify that the presence of aboveground features (tree canopies and built structures) cause a positive elevation bias, as would be expected for an imaging system like ASTER. In open ground classes (little or no vegetation with significant aboveground height), GDEM v2 exhibits a negative bias on the order of 1 meter. GDEM v2 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v2 has elevations that are higher in the canopy than SRTM.

  13. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  14. A generic method for automatic translation between input models for different versions of simulation codes

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2014-01-01

    A computer code was developed for the semi-automatic translation of input models for the VSOP-A diffusion neutronics simulation code to the format of the newer VSOP 99/05 code. In this paper, this algorithm is presented as a generic method for producing codes for the automatic translation of input models from the format of one code version to another, or even to that of a completely different code. Normally, such translations are done manually. However, input model files, such as for the VSOP codes, often are very large and may consist of many thousands of numeric entries that make no particular sense to the human eye. Therefore the task, of for instance nuclear regulators, to verify the accuracy of such translated files can be very difficult and cumbersome. This may cause translation errors not to be picked up, which may have disastrous consequences later on when a reactor with such a faulty design is built. Therefore a generic algorithm for producing such automatic translation codes may ease the translation and verification process to a great extent. It will also remove human error from the process, which may significantly enhance the accuracy and reliability of the process. The developed algorithm also automatically creates a verification log file which permanently record the names and values of each variable used, as well as the list of meanings of all the possible values. This should greatly facilitate reactor licensing applications

  15. A generic method for automatic translation between input models for different versions of simulation codes

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001 (Internal Post Box 360), Potchefstroom 2520 (South Africa); Mulder, Eben J. [School of Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)

    2014-05-01

    A computer code was developed for the semi-automatic translation of input models for the VSOP-A diffusion neutronics simulation code to the format of the newer VSOP 99/05 code. In this paper, this algorithm is presented as a generic method for producing codes for the automatic translation of input models from the format of one code version to another, or even to that of a completely different code. Normally, such translations are done manually. However, input model files, such as for the VSOP codes, often are very large and may consist of many thousands of numeric entries that make no particular sense to the human eye. Therefore the task, of for instance nuclear regulators, to verify the accuracy of such translated files can be very difficult and cumbersome. This may cause translation errors not to be picked up, which may have disastrous consequences later on when a reactor with such a faulty design is built. Therefore a generic algorithm for producing such automatic translation codes may ease the translation and verification process to a great extent. It will also remove human error from the process, which may significantly enhance the accuracy and reliability of the process. The developed algorithm also automatically creates a verification log file which permanently record the names and values of each variable used, as well as the list of meanings of all the possible values. This should greatly facilitate reactor licensing applications.

  16. Extensions of the Rosner-Colditz breast cancer prediction model to include older women and type-specific predicted risk.

    Science.gov (United States)

    Glynn, Robert J; Colditz, Graham A; Tamimi, Rulla M; Chen, Wendy Y; Hankinson, Susan E; Willett, Walter W; Rosner, Bernard

    2017-08-01

    A breast cancer risk prediction rule previously developed by Rosner and Colditz has reasonable predictive ability. We developed a re-fitted version of this model, based on more than twice as many cases now including women up to age 85, and further extended it to a model that distinguished risk factor prediction of tumors with different estrogen/progesterone receptor status. We compared the calibration and discriminatory ability of the original, the re-fitted, and the type-specific models. Evaluation used data from the Nurses' Health Study during the period 1980-2008, when 4384 incident invasive breast cancers occurred over 1.5 million person-years. Model development used two-thirds of study subjects and validation used one-third. Predicted risks in the validation sample from the original and re-fitted models were highly correlated (ρ = 0.93), but several parameters, notably those related to use of menopausal hormone therapy and age, had different estimates. The re-fitted model was well-calibrated and had an overall C-statistic of 0.65. The extended, type-specific model identified several risk factors with varying associations with occurrence of tumors of different receptor status. However, this extended model relative to the prediction of any breast cancer did not meaningfully reclassify women who developed breast cancer to higher risk categories, nor women remaining cancer free to lower risk categories. The re-fitted Rosner-Colditz model has applicability to risk prediction in women up to age 85, and its discrimination is not improved by consideration of varying associations across tumor subtypes.

  17. Structure function of holographic quark-gluon plasma: Sakai-Sugimoto model versus its noncritical version

    International Nuclear Information System (INIS)

    Bu Yanyan; Yang Jinmin

    2011-01-01

    Motivated by recent studies of deep inelastic scattering off the N=4 super-Yang-Mills (SYM) plasma, holographically dual to an AdS 5 xS 5 black hole, we use the spacelike flavor current to probe the internal structure of one holographic quark-gluon plasma, which is described by the Sakai-Sugimoto model at high temperature phase (i.e., the chiral-symmetric phase). The plasma structure function is extracted from the retarded flavor current-current correlator. Our main aim in this paper is to explore the effect of nonconformality on these physical quantities. As usual, our study is under the supergravity approximation and the limit of large color number. Although the Sakai-Sugimoto model is nonconformal, which makes the calculations more involved than the well-studied N=4 SYM case, the result seems to indicate that the nonconformality has little essential effect on the physical picture of the internal structure of holographic plasma, which is consistent with the intuition from the asymptotic freedom of QCD at high energy. While the physical picture underlying our investigation is same as the deep inelastic scattering off the N=4 SYM plasma with(out) flavor, the plasma structure functions are quantitatively different, especially their scaling dependence on the temperature, which can be recognized as model dependent. As a comparison, we also do the same analysis for the noncritical version of the Sakai-Sugimoto model which is conformal in the sense that it has a constant dilaton vacuum. The result for this noncritical model is quite similar to the conformal N=4 SYM plasma. We therefore attribute the above difference to the effect of nonconformality of the Sakai-Sugimoto model.

  18. The SF-8 Spanish Version for Health-Related Quality of Life Assessment: Psychometric Study with IRT and CFA Models.

    Science.gov (United States)

    Tomás, José M; Galiana, Laura; Fernández, Irene

    2018-03-22

    The aim of current research is to analyze the psychometric properties of the Spanish version of the SF-8, overcoming previous shortcomings. A double line of analyses was used: competitive structural equations models to establish factorial validity, and Item Response theory to analyze item psychometric characteristics and information. 593 people aged 60 years or older, attending long life learning programs at the University were surveyed. Their age ranged from 60 to 92 years old. 67.6% were women. The survey included scales on personality dimensions, attitudes, perceptions, and behaviors related to aging. Competitive confirmatory models pointed out two-factors (physical and mental health) as the best representation of the data: χ2(13) = 72.37 (p < .01); CFI = .99; TLI = .98; RMSEA = .08 (.06, .10). Item 5 was removed because of unreliability and cross-loading. Graded response models showed appropriate fit for two-parameter logistic model both the physical and the mental dimensions. Item Information Curves and Test Information Functions pointed out that the SF-8 was more informative for low levels of health. The Spanish SF-8 has adequate psychometric properties, being better represented by two dimensions, once Item 5 is removed. Gathering evidence on patient-reported outcome measures is of crucial importance, as this type of measurement instruments are increasingly used in clinical arena.

  19. Ariadne version 4 - a program for simulation of QCD cascades implementing the colour dipole model

    International Nuclear Information System (INIS)

    Loennblad, L.

    1992-01-01

    The fourth version of the Ariadne program for generating QCD cascades in the colour dipole approximation is presented. The underlying physics issues are discussed and a manual for using the program is given together with a few sample programs. The major changes from previous versions are the introduction of photon radiation from quarks and inclusion of interfaces to the LEPTO and PYTHIA programs. (orig.)

  20. Simulating the 2012 High Plains Drought Using Three Single Column Model Versions of the Community Earth System Model (SCM-CESM)

    Science.gov (United States)

    Medina, I. D.; Denning, S.

    2014-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited in the sense that they use conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought, and will perform numerical simulations using three single column model versions of the Community Earth System Model (SCM-CESM) at multiple sites overlying the Ogallala Aquifer for the 2010-2012 period. In the first version of SCM-CESM, CESM will be used in standard mode (Community Atmospheric Model (CAM) coupled to a single instance of the Community Land Model (CLM)), secondly, CESM will be used in Super-Parameterized mode (SP-CESM), where a cloud resolving model (CRM consists of 32 atmospheric columns) replaces the standard CAM atmospheric parameterization and is coupled to a single instance of CLM, and thirdly, CESM is used in "Multi Instance" SP-CESM mode, where an instance of CLM is coupled to each CRM column of SP-CESM (32 CRM columns coupled to 32 instances of CLM). To assess the physical realism of the land-atmosphere feedbacks simulated at each site by all versions of SCM-CESM, differences in simulated energy and moisture fluxes will be computed between years for the 2010-2012 period, and will be compared to differences calculated using

  1. Planar version of the CPT-even gauge sector of the standard model extension

    International Nuclear Information System (INIS)

    Ferreira Junior, Manoel M.; Casana, Rodolfo; Gomes, Adalto Rodrigues; Carvalho, Eduardo S.

    2011-01-01

    The CPT-even abelian gauge sector of the Standard Model Extension is represented by the Maxwell term supplemented by (K F ) μνρσ F μν F ρσ , where the Lorentz-violating background tensor, (K F ) μνρσ , possesses the symmetries of the Riemann tensor and a double null trace, which renders nineteen independent components. From these ones, ten components yield birefringence while nine are nonbirefringent ones. In the present work, we examine the planar version of this theory, obtained by means of a typical dimensional reduction procedure to (1 + 2) dimensions. We obtain a kind of planar scalar electrodynamics, which is composed of a gauge sector containing six Lorentz-violating coefficients, a scalar field endowed with a noncanonical kinetic term, and a coupling term that links the scalar and gauge sectors. The dispersion relation is exactly determined, revealing that the six parameters related to the pure electromagnetic sector do not yield birefringence at any order. In this model, the birefringence may appear only as a second order effect associated with the coupling tensor linking the gauge and scalar sectors.The equations of motion are written and solved in the stationary regime. The Lorentz-violating parameters do not alter the asymptotic behavior of the fields but induce an angular dependence not observed in the Maxwell planar theory. The energy-momentum tensor was evaluated as well, revealing that the theory presents energy stability. (author)

  2. A multi-sectoral version of the Post-Keynesian growth model

    Directory of Open Access Journals (Sweden)

    Ricardo Azevedo Araujo

    2015-03-01

    Full Text Available Abstract With this inquiry, we seek to develop a disaggregated version of the post-Keynesian approach to economic growth, by showing that indeed it can be treated as a particular case of the Pasinettian model of structural change and economic expansion. By relying upon vertical integration it becomes possible to carry out the analysis initiated by Kaldor (1956 and Robinson (1956, 1962, and followed by Dutt (1984, Rowthorn (1982 and later Bhaduri and Marglin (1990 in a multi-sectoral model in which demand and productivity increase at different paces in each sector. By adopting this approach it is possible to show that the structural economic dynamics is conditioned not only to patterns of evolving demand and diffusion of technological progress but also to the distributive features of the economy, which can give rise to different regimes of economic growth. Besides, we find it possible to determine the natural rate of profit that makes the mark-up rate to be constant over time.

  3. Systems Security Engineering Capability Maturity Model (SSECMM), Model Description, Version 1.1

    National Research Council Canada - National Science Library

    1997-01-01

    This document is designed to acquaint the reader with the SSE-CMM Project as a whole and present the project's major work product - the Systems Security Engineering Capability Maturity Model (SSE- CMM...

  4. Forsmark site investigation. Assessment of the validity of the rock domain model, version 1.2, based on the modelling of gravity and petrophysical data

    International Nuclear Information System (INIS)

    Isaksson, Hans; Stephens, Michael B.

    2007-11-01

    This document reports the results gained by the geophysical modelling of rock domains based on gravity and petrophysical data, which is one of the activities performed within the site investigation work at Forsmark. The main objective with this activity is to assess the validity of the geological rock domain model version 1.2, and to identify discrepancies in the model that may indicate a need for revision of the model or a need for additional investigations. The verification is carried out by comparing the calculated gravity model response, which takes account of the geological model, with a local gravity anomaly that represents the measured data. The model response is obtained from the three-dimensional geometry and the petrophysical data provided for each rock domain in the geological model. Due to model boundary conditions, the study is carried out in a smaller area within the regional model area. Gravity model responses are calculated in three stages; an initial model, a base model and a refined base model. The refined base model is preferred and is used for comparison purposes. In general, there is a good agreement between the refined base model that makes use of the rock domain model, version 1.2 and the measured gravity data, not least where it concerns the depth extension of the critical rock domain RFM029. The most significant discrepancy occurs in the area extending from the SFR office to the SFR underground facility and further to the northwest. It is speculated that this discrepancy is caused by a combination of an overestimation of the volume of gabbro (RFM016) that plunges towards the southeast in the rock domain model, and an underestimation of the volume of occurrence of pegmatite and pegmatitic granite that are known to be present and occur as larger bodies around SFR. Other discrepancies are noted in rock domain RFM022, which is considered to be overestimated in the rock domain model, version 1.2, and in rock domain RFM017, where the gravity

  5. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Stigsson, Martin [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2006-04-15

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  6. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2006-04-01

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  7. Iwamoto-Harada coalescence/pickup model for cluster emission: state density approach including angular momentum variables

    Directory of Open Access Journals (Sweden)

    Běták Emil

    2014-04-01

    Full Text Available For low-energy nuclear reactions well above the resonance region, but still below the pion threshold, statistical pre-equilibrium models (e.g., the exciton and the hybrid ones are a frequent tool for analysis of energy spectra and the cross sections of cluster emission. For α’s, two essentially distinct approaches are popular, namely the preformed one and the different versions of coalescence approaches, whereas only the latter group of models can be used for other types of cluster ejectiles. The original Iwamoto-Harada model of pre-equilibrium cluster emission was formulated using the overlap of the cluster and its constituent nucleons in momentum space. Transforming it into level or state densities is not a straigthforward task; however, physically the same model was presented at a conference on reaction models five years earlier. At that time, only the densities without spin were used. The introduction of spin variables into the exciton model enabled detailed calculation of the γ emission and its competition with nucleon channels, and – at the same time – it stimulated further developments of the model. However – to the best of our knowledge – no spin formulation has been presented for cluster emission till recently, when the first attempts have been reported, but restricted to the first emission only. We have updated this effort now and we are able to handle (using the same simplifications as in our previous work pre-equilibrium cluster emission with spin including all nuclei in the reaction chain.

  8. Mathematical model of thyristor inverter including a series-parallel resonant circuit

    OpenAIRE

    Luft, M.; Szychta, E.

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  9. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    OpenAIRE

    Miroslaw Luft; Elzbieta Szychta

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  10. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Miroslaw Luft

    2008-01-01

    Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  11. Modeling of Pem Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications

    National Research Council Canada - National Science Library

    Boettner, Daisie

    2001-01-01

    .... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...

  12. Infrastructure Upgrades to Support Model Longevity and New Applications: The Variable Infiltration Capacity Model Version 5.0 (VIC 5.0)

    Science.gov (United States)

    Nijssen, B.; Hamman, J.; Bohn, T. J.

    2015-12-01

    The Variable Infiltration Capacity (VIC) model is a macro-scale semi-distributed hydrologic model. VIC development began in the early 1990s and it has been used extensively, applied from basin to global scales. VIC has been applied in a many use cases, including the construction of hydrologic data sets, trend analysis, data evaluation and assimilation, forecasting, coupled climate modeling, and climate change impact analysis. Ongoing applications of the VIC model include the University of Washington's drought monitor and forecast systems, and NASA's land data assimilation systems. The development of VIC version 5.0 focused on reconfiguring the legacy VIC source code to support a wider range of modern modeling applications. The VIC source code has been moved to a public Github repository to encourage participation by the model development community-at-large. The reconfiguration has separated the physical core of the model from the driver, which is responsible for memory allocation, pre- and post-processing and I/O. VIC 5.0 includes four drivers that use the same physical model core: classic, image, CESM, and Python. The classic driver supports legacy VIC configurations and runs in the traditional time-before-space configuration. The image driver includes a space-before-time configuration, netCDF I/O, and uses MPI for parallel processing. This configuration facilitates the direct coupling of streamflow routing, reservoir, and irrigation processes within VIC. The image driver is the foundation of the CESM driver; which couples VIC to CESM's CPL7 and a prognostic atmosphere. Finally, we have added a Python driver that provides access to the functions and datatypes of VIC's physical core from a Python interface. This presentation demonstrates how reconfiguring legacy source code extends the life and applicability of a research model.

  13. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  14. Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics

    DEFF Research Database (Denmark)

    Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.

    2005-01-01

    channel model represents an enhancement of the existing IEEE 802.15.3a/4a PAN channel model, where antenna and user-proximity effects are not included. Our investigations showed that significant variations of the received wideband power and time-delay signal clustering are possible due the human body...

  15. The operational eEMEP model version 10.4 for volcanic SO2 and ash forecasting

    Science.gov (United States)

    Steensen, Birthe M.; Schulz, Michael; Wind, Peter; Valdebenito, Álvaro M.; Fagerli, Hilde

    2017-05-01

    concentrations with more certainty for forecast or scientific analysis purposes, a finer resolution is needed. The model is further developed to simulate ash from highly explosive eruptions. A possibility of increasing the number of vertical layers, achieving finer vertical resolution, as well as a higher model top, is included in the eEMEP version. Ash size distributions may be altered for different volcanic eruptions and assumptions. Since ash particles are larger than typical particles in the standard model, gravitational settling across all vertical layers is included. We attempt finally a specific validation of the simulation of ash and its vertical distribution. Model simulations with and without gravitational settling for the 2010 Eyjafjallajökull eruption are compared to lidar observations over central Europe. The results show that with gravitation the centre of the ash mass can be 1 km lower over central Europe than without gravitation. However, the height variations in the ash layer caused by real weather situations are not captured perfectly well by either of the two simulations, playing down the role of gravitation parameterization imperfections. Both model simulations have on average an ash centre of mass below the observed values. Correlations between the observed and corresponding model centres of mass are higher for the model simulation with gravitational settling for four of the six stations studied here. The inclusion of gravitational settling is suggested to be required for a volcanic ash model.

  16. Architecture Fault Modeling and Analysis with the Error Model Annex, Version 2

    Science.gov (United States)

    2016-06-01

    specification of fault propagation in EMV2 corresponds to the Fault Propagation and Transformation Calculus (FPTC) [Paige 2009]. The following concepts...definition of security includes acci- dental malicious indication of anomalous behavior either from outside a system or by unauthor- ized crossing of a

  17. Influence of structural parameter included in nonlocal rock mass model on stress concentration around circular tunnel

    Science.gov (United States)

    Lavrikov, SV; Mikenina, OA; Revuzhenko, AF

    2018-03-01

    A model of elastic body, including local curvature of elementary volume, is matched with a nonlocal model with a linear structural parameter in the differential approximation. The problem on deformation of rock mass around a circular cross section tunnel is solved numerically. The contours of the calculated stresses are plotted. It is shown that inclusion of local bends in the model results in expansion of influence zone of the tunnel and reduces stress concentration factor at the tunnel boundary.

  18. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  19. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Science.gov (United States)

    Zhuang, Kelin; North, Gerald R.; Stevens, Mark J.

    A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land-sea-ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  20. Including model uncertainty in the model predictive control with output feedback

    Directory of Open Access Journals (Sweden)

    Rodrigues M.A.

    2002-01-01

    Full Text Available This paper addresses the development of an efficient numerical output feedback robust model predictive controller for open-loop stable systems. Stability of the closed loop is guaranteed by using an infinite horizon predictive controller and a stable state observer. The performance and the computational burden of this approach are compared to a robust predictive controller from the literature. The case used for this study is based on an industrial gasoline debutanizer column.

  1. RAMS Model for Terrestrial Pathways Version 3. 0 (for microcomputers). Model-Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Niebla, E.

    1989-01-01

    The RAMS Model for Terrestrial Pathways is a computer program for calculation of numeric criteria for land application and distribution and marketing of sludges under the sewage-sludge regulations at 40 CFR Part 503. The risk-assessment models covered assume that municipal sludge with specified characteristics is spread across a defined area of ground at a known rate once each year for a given number of years. Risks associated with direct land application of sludge applied after distribution and marketing are both calculated. The computer program calculates the maximum annual loading of contaminants that can be land applied and still meet the risk criteria specified as input. Software Description: The program is written in the Turbo/Basic programming language for implementation on IBM PC/AT or compatible machines using DOS 3.0 or higher operating system. Minimum core storage is 512K.

  2. Users' manual for LEHGC: A Lagrangian-Eulerian Finite-Element Model of Hydrogeochemical Transport Through Saturated-Unsaturated Media. Version 1.1

    International Nuclear Information System (INIS)

    Yeh, Gour-Tsyh

    1995-11-01

    The computer program LEHGC is a Hybrid Lagrangian-Eulerian Finite-Element Model of HydroGeo-Chemical (LEHGC) Transport Through Saturated-Unsaturated Media. LEHGC iteratively solves two-dimensional transport and geochemical equilibrium equations and is a descendant of HYDROGEOCHEM, a strictly Eulerian finite-element reactive transport code. The hybrid Lagrangian-Eulerian scheme improves on the Eulerian scheme by allowing larger time steps to be used in the advection-dominant transport calculations. This causes less numerical dispersion and alleviates the problem of calculated negative concentrations at sharp concentration fronts. The code also is more computationally efficient than the strictly Eulerian version. LEHGC is designed for generic application to reactive transport problems associated with contaminant transport in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical element concentrations as a function of time and space and the chemical speciation at user-specified nodes. LEHGC Version 1.1 is a modification of LEHGC Version 1.0. The modification includes: (1) devising a tracking algorithm with the computational effort proportional to N where N is the number of computational grid nodes rather than N 2 as in LEHGC Version 1.0, (2) including multiple adsorbing sites and multiple ion-exchange sites, (3) using four preconditioned conjugate gradient methods for the solution of matrix equations, and (4) providing a model for some features of solute transport by colloids

  3. ASTER Global Digital Elevation Model Version 2 - summary of validation results

    Science.gov (United States)

    Tachikawa, Tetushi; Kaku, Manabu; Iwasaki, Akira; Gesch, Dean B.; Oimoen, Michael J.; Zhang, Z.; Danielson, Jeffrey J.; Krieger, Tabatha; Curtis, Bill; Haase, Jeff; Abrams, Michael; Carabajal, C.; Meyer, Dave

    2011-01-01

    On June 29, 2009, NASA and the Ministry of Economy, Trade and Industry (METI) of Japan released a Global Digital Elevation Model (GDEM) to users worldwide at no charge as a contribution to the Global Earth Observing System of Systems (GEOSS). This “version 1” ASTER GDEM (GDEM1) was compiled from over 1.2 million scenebased DEMs covering land surfaces between 83°N and 83°S latitudes. A joint U.S.-Japan validation team assessed the accuracy of the GDEM1, augmented by a team of 20 cooperators. The GDEM1 was found to have an overall accuracy of around 20 meters at the 95% confidence level. The team also noted several artifacts associated with poor stereo coverage at high latitudes, cloud contamination, water masking issues and the stacking process used to produce the GDEM1 from individual scene-based DEMs (ASTER GDEM Validation Team, 2009). Two independent horizontal resolution studies estimated the effective spatial resolution of the GDEM1 to be on the order of 120 meters.

  4. A constitutive model for the forces of a magnetic bearing including eddy currents

    Science.gov (United States)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  5. Atmospheric radionuclide transport model with radon postprocessor and SBG module. Model description version 2.8.0; ARTM. Atmosphaerisches Radionuklid-Transport-Modell mit Radon Postprozessor und SBG-Modul. Modellbeschreibung zu Version 2.8.0

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Cornelia; Sogalla, Martin; Thielen, Harald; Martens, Reinhard

    2015-04-20

    The study on the atmospheric radionuclide transport model with radon postprocessor and SBG module (model description version 2.8.0) covers the following issues: determination of emissions, radioactive decay, atmospheric dispersion calculation for radioactive gases, atmospheric dispersion calculation for radioactive dusts, determination of the gamma cloud radiation (gamma submersion), terrain roughness, effective source height, calculation area and model points, geographic reference systems and coordinate transformations, meteorological data, use of invalid meteorological data sets, consideration of statistical uncertainties, consideration of housings, consideration of bumpiness, consideration of terrain roughness, use of frequency distributions of the hourly dispersion situation, consideration of the vegetation period (summer), the radon post processor radon.exe, the SBG module, modeling of wind fields, shading settings.

  6. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    Science.gov (United States)

    Gantt, B.; Kelly, J. T.; Bash, J. O.

    2015-11-01

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the fine-mode size distribution, include sea surface temperature (SST) dependency, and reduce surf-enhanced emissions. Predictions from the updated CMAQ model and those of the previous release version, CMAQv5.0.2, were evaluated using several coastal and national observational data sets in the continental US. The updated emissions generally reduced model underestimates of sodium, chloride, and nitrate surface concentrations for coastal sites in the Bay Regional Atmospheric Chemistry Experiment (BRACE) near Tampa, Florida. Including SST dependency to the SSA emission parameterization led to increased sodium concentrations in the southeastern US and decreased concentrations along parts of the Pacific coast and northeastern US. The influence of sodium on the gas-particle partitioning of nitrate resulted in higher nitrate particle concentrations in many coastal urban areas due to increased condensation of nitric acid in the updated simulations, potentially affecting the predicted nitrogen deposition in sensitive ecosystems. Application of the updated SSA emissions to the California Research at the Nexus of Air Quality and Climate Change (CalNex) study period resulted in a modest improvement in the predicted surface concentration of sodium and nitrate at several central and southern California coastal sites. This update of SSA emissions enabled a more realistic simulation of the atmospheric chemistry in coastal environments where marine air mixes with urban pollution.

  7. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer

    International Nuclear Information System (INIS)

    Sitprasert, Chatcharin; Dechaumphai, Pramote; Juntasaro, Varangrat

    2009-01-01

    The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245-254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the 'Leong et al.'s dynamic model'. However, the Leong et al.'s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.'s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for

  8. OBLIMAP 2.0: a fast climate model-ice sheet model coupler including online embeddable mapping routines

    Science.gov (United States)

    Reerink, Thomas J.; van de Berg, Willem Jan; van de Wal, Roderik S. W.

    2016-11-01

    This paper accompanies the second OBLIMAP open-source release. The package is developed to map climate fields between a general circulation model (GCM) and an ice sheet model (ISM) in both directions by using optimal aligned oblique projections, which minimize distortions. The curvature of the surfaces of the GCM and ISM grid differ, both grids may be irregularly spaced and the ratio of the grids is allowed to differ largely. OBLIMAP's stand-alone version is able to map data sets that differ in various aspects on the same ISM grid. Each grid may either coincide with the surface of a sphere, an ellipsoid or a flat plane, while the grid types might differ. Re-projection of, for example, ISM data sets is also facilitated. This is demonstrated by relevant applications concerning the major ice caps. As the stand-alone version also applies to the reverse mapping direction, it can be used as an offline coupler. Furthermore, OBLIMAP 2.0 is an embeddable GCM-ISM coupler, suited for high-frequency online coupled experiments. A new fast scan method is presented for structured grids as an alternative for the former time-consuming grid search strategy, realising a performance gain of several orders of magnitude and enabling the mapping of high-resolution data sets with a much larger number of grid nodes. Further, a highly flexible masked mapping option is added. The limitation of the fast scan method with respect to unstructured and adaptive grids is discussed together with a possible future parallel Message Passing Interface (MPI) implementation.

  9. PVWatts Version 5 Manual

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, A. P.

    2014-09-01

    The NREL PVWatts calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes includes several built-in parameters that are hidden from the user. This technical reference describes the sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimate. This reference is applicable to the significantly revised version of PVWatts released by NREL in 2014.

  10. Hydrogeochemical evaluation of the Simpevarp area, model version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (ed.) [Geopoint AB, Stockholm (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden); Gimeno, Maria; Auque, Luis; Gomez, Javier [Univ. of Zaragoza (Spain). Dept. of Earth Sciences; Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Gurban, Ioana [3D-Terra (Sweden)

    2004-02-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Simpevarp and Forsmark, on the eastern coast of Sweden to determine their geological, hydrogeochemical and hydrogeological characteristics. Present work completed has resulted in model version 1.1 which represents the first evaluation of the available Simpevarp groundwater analytical data collected up to July 1st, 2003 (i.e. the first 'data freeze' of the site). The HAG (Hydrochemical Analytical Group) group had access to a total of 535 water samples collected from the surface and sub-surface environment (e.g. soil pipes in the overburden, streams and lakes); only a few samples were collected from drilled boreholes. The deepest fracture groundwater samples with sufficient analytical data reflected depths down to 250 m. Furthermore, most of the waters sampled (79%) lacked crucial analytical information that restricted the evaluation. Consequently, model version 1.1 focussed on the processes taking place in the uppermost part of the bedrock rather than at repository levels. The complex groundwater evolution and patterns at Simpevarp are a result of many factors such as: a) the flat topography and proximity to the Baltic Sea, b) changes in hydrogeology related to glaciation/deglaciation and land uplift, c) repeated marine/lake water regressions/transgressions, and d) organic or inorganic alteration of the groundwater composition caused by microbial processes or water/rock interactions. The sampled groundwaters reflect to various degrees of modern or ancient water/rock interactions and mixing processes. Higher topography to the west of Simpevarp has resulted in hydraulic gradients which have partially flushed out old water types. Except for sea waters, most surface waters and some groundwaters from percussion boreholes are fresh, non-saline waters according to the classification used for Aespoe groundwaters. The rest

  11. Columbia River Statistical Update Model, Version 4. 0 (COLSTAT4): Background documentation and user's guide

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, G.; Damschen, D.W.; Brockhaus, R.D.

    1987-08-01

    Daily-averaged temperature and flow information on the Columbia River just downstream of Priest Rapids Dam and upstream of river mile 380 were collected and stored in a data base. The flow information corresponds to discharges that were collected daily from October 1, 1959, through July 28, 1986. The temperature information corresponds to values that were collected daily from January 1, 1965, through May 27, 1986. The computer model, COLSTAT4 (Columbia River Statistical Update - Version 4.0 model), uses the temperature-discharge data base to statistically analyze temperature and flow conditions by computing the frequency of occurrence and duration of selected temperatures and flow rates for the Columbia River. The COLSTAT4 code analyzes the flow and temperature information in a sequential time frame (i.e., a continuous analysis over a given time period); it also analyzes this information in a seasonal time frame (i.e., a periodic analysis over a specific season from year to year). A provision is included to enable the user to edit and/or extend the data base of temperature and flow information. This report describes the COLSTAT4 code and the information contained in its data base.

  12. User's guide to the MESOI diffusion model: Version 1.1 (for Data General Eclipse S/230 with AFOS)

    International Nuclear Information System (INIS)

    Athey, G.F.; Ramsdell, J.V.

    1982-09-01

    MESOI is an interactive, Langrangian puff trajectory model. The model theory is documented separately (Ramsdell and Athey, 1981). Version 1.1 is a modified form of the original 1.0. It is designed to run on a Data General Eclipse computer. The model has improved support features which make it useful as an emergency response tool. This report is intended to provide the user with the information necessary to successfully conduct model simulations using MESOI Version 1.1 and to use the support programs STAPREP and EXPLT. The user is also provided information on the use of the data file maintenance and review program UPDATE. Examples are given for the operation of the program. Test data sets are described which allow the user to practice with the programs and to confirm proper implementation and execution

  13. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics

    International Nuclear Information System (INIS)

    Obe, Emeka S.; Binder, A.

    2011-01-01

    A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.

  14. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2012-10-01

    Full Text Available This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation.

    Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced κ-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon, particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker in-cloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6 to 7.7 between accumulation mode and coarse mode emission fluxes of

  15. Regional hydrogeological simulations. Numerical modelling using ConnectFlow. Preliminary site description Simpevarp sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Hunter, Fiona; Jackson, Peter [Serco Assurance, Risley (United Kingdom); Marsic, Niko [Kemakta Konsult, Stockholm (Sweden)

    2005-02-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in situ conditions for a bedrock repository for spent nuclear fuel. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft).An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models.Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that effects the Simpevarp area. Transport calculations are then performed by particle tracking from a local-scale release area (tens of square kilometres) to identify potential discharge areas for the site. The transport from the two site-scale release areas (a few square kilometres) at the Simpevarp site and the Laxemar site are also considered more specifically and using greater grid resolution.The main

  16. The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2

    Science.gov (United States)

    Swales, Dustin J.; Pincus, Robert; Bodas-Salcedo, Alejandro

    2018-01-01

    The Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP) gathers together a collection of observation proxies or satellite simulators that translate model-simulated cloud properties to synthetic observations as would be obtained by a range of satellite observing systems. This paper introduces COSP2, an evolution focusing on more explicit and consistent separation between host model, coupling infrastructure, and individual observing proxies. Revisions also enhance flexibility by allowing for model-specific representation of sub-grid-scale cloudiness, provide greater clarity by clearly separating tasks, support greater use of shared code and data including shared inputs across simulators, and follow more uniform software standards to simplify implementation across a wide range of platforms. The complete package including a testing suite is freely available.

  17. The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2

    Directory of Open Access Journals (Sweden)

    D. J. Swales

    2018-01-01

    Full Text Available The Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP gathers together a collection of observation proxies or satellite simulators that translate model-simulated cloud properties to synthetic observations as would be obtained by a range of satellite observing systems. This paper introduces COSP2, an evolution focusing on more explicit and consistent separation between host model, coupling infrastructure, and individual observing proxies. Revisions also enhance flexibility by allowing for model-specific representation of sub-grid-scale cloudiness, provide greater clarity by clearly separating tasks, support greater use of shared code and data including shared inputs across simulators, and follow more uniform software standards to simplify implementation across a wide range of platforms. The complete package including a testing suite is freely available.

  18. Dipole model analysis of highest precision HERA data, including very low Q"2's

    International Nuclear Information System (INIS)

    Luszczak, A.; Kowalski, H.

    2016-12-01

    We analyse, within a dipole model, the final, inclusive HERA DIS cross section data in the low χ region, using fully correlated errors. We show, that these highest precision data are very well described within the dipole model framework starting from Q"2 values of 3.5 GeV"2 to the highest values of Q"2=250 GeV"2. To analyze the saturation effects we evaluated the data including also the very low 0.35< Q"2 GeV"2 region. The fits including this region show a preference of the saturation ansatz.

  19. Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-05-15

    The conventional PSA techniques cannot adequately evaluate all events. The conventional PSA models usually focus on single internal events such as DBAs, the external hazards such as fire, seismic. However, the Fukushima accident of Japan in 2011 reveals that very rare event is necessary to be considered in the PSA model to prevent the radioactive release to environment caused by poor treatment based on lack of the information, and to improve the emergency operation procedure. Especially, the results from PSA can be used to decision making for regulators. Moreover, designers can consider the weakness of plant safety based on the quantified results and understand accident sequence based on human actions and system availability. This study is for PSA modeling of combined accidents including total loss of feedwater (TLOFW) accident. The TLOFW accident is a representative accident involving the failure of cooling through secondary side. If the amount of heat transfer is not enough due to the failure of secondary side, the heat will be accumulated to the primary side by continuous core decay heat. Transients with loss of feedwater include total loss of feedwater accident, loss of condenser vacuum accident, and closure of all MSIVs. When residual heat removal by the secondary side is terminated, the safety injection into the RCS with direct primary depressurization would provide alternative heat removal. This operation is called feed and bleed (F and B) operation. Combined accidents including TLOFW accident are very rare event and partially considered in conventional PSA model. Since the necessity of F and B operation is related to plant conditions, the PSA modeling for combined accidents including TLOFW accident is necessary to identify the design and operational vulnerabilities.The PSA is significant to assess the risk of NPPs, and to identify the design and operational vulnerabilities. Even though the combined accident is very rare event, the consequence of combined

  20. Single-Column Modeling of Convection During the CINDY2011/DYNAMO Field Campaign With the CNRM Climate Model Version 6

    Science.gov (United States)

    Abdel-Lathif, Ahmat Younous; Roehrig, Romain; Beau, Isabelle; Douville, Hervé

    2018-03-01

    A single-column model (SCM) approach is used to assess the CNRM climate model (CNRM-CM) version 6 ability to represent the properties of the apparent heat source (Q1) and moisture sink (Q2) as observed during the 3 month CINDY2011/DYNAMO field campaign, over its Northern Sounding Array (NSA). The performance of the CNRM SCM is evaluated in a constrained configuration in which the latent and sensible heat surface fluxes are prescribed, as, when forced by observed sea surface temperature, the model is strongly limited by the underestimate of the surface fluxes, most probably related to the SCM forcing itself. The model exhibits a significant cold bias in the upper troposphere, near 200 hPa, and strong wet biases close to the surface and above 700 hPa. The analysis of the Q1 and Q2 profile distributions emphasizes the properties of the convective parameterization of the CNRM-CM physics. The distribution of the Q2 profile is particularly challenging. The model strongly underestimates the frequency of occurrence of the deep moistening profiles, which likely involve misrepresentation of the shallow and congestus convection. Finally, a statistical approach is used to objectively define atmospheric regimes and construct a typical convection life cycle. A composite analysis shows that the CNRM SCM captures the general transition from bottom-heavy to mid-heavy to top-heavy convective heating. Some model errors are shown to be related to the stratiform regimes. The moistening observed during the shallow and congestus convection regimes also requires further improvements of this CNRM-CM physics.

  1. Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.

    Science.gov (United States)

    Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire

    2017-11-01

    Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  2. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y W [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Zhang, L F [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Huang, J P [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China)

    2007-07-20

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property.

  3. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    International Nuclear Information System (INIS)

    Chen, Y W; Zhang, L F; Huang, J P

    2007-01-01

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property

  4. Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects

    International Nuclear Information System (INIS)

    Gupta, Santosh K.; Baishya, Srimanta

    2013-01-01

    A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate (CSG) MOSFETs has been developed. Based on this a subthreshold drain current model has also been derived. This model first computes the charge induced in the drain/source region due to the fringing capacitances and considers an effective charge distribution in the cylindrically extended source/drain region for the development of a simple and compact model. The fringing gate capacitances taken into account are outer fringe capacitance, inner fringe capacitance, overlap capacitance, and sidewall capacitance. The model has been verified with the data extracted from 3D TCAD simulations of CSG MOSFETs and was found to be working satisfactorily. (semiconductor devices)

  5. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...... of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind...

  6. Including Effects of Water Stress on Dead Organic Matter Decay to a Forest Carbon Model

    Science.gov (United States)

    Kim, H.; Lee, J.; Han, S. H.; Kim, S.; Son, Y.

    2017-12-01

    Decay of dead organic matter is a key process of carbon (C) cycling in forest ecosystems. The change in decay rate depends on temperature sensitivity and moisture conditions. The Forest Biomass and Dead organic matter Carbon (FBDC) model includes a decay sub-model considering temperature sensitivity, yet does not consider moisture conditions as drivers of the decay rate change. This study aimed to improve the FBDC model by including a water stress function to the decay sub-model. Also, soil C sequestration under climate change with the FBDC model including the water stress function was simulated. The water stress functions were determined with data from decomposition study on Quercus variabilis forests and Pinus densiflora forests of Korea, and adjustment parameters of the functions were determined for both species. The water stress functions were based on the ratio of precipitation to potential evapotranspiration. Including the water stress function increased the explained variances of the decay rate by 19% for the Q. variabilis forests and 7% for the P. densiflora forests, respectively. The increase of the explained variances resulted from large difference in temperature range and precipitation range across the decomposition study plots. During the period of experiment, the mean annual temperature range was less than 3°C, while the annual precipitation ranged from 720mm to 1466mm. Application of the water stress functions to the FBDC model constrained increasing trend of temperature sensitivity under climate change, and thus increased the model-estimated soil C sequestration (Mg C ha-1) by 6.6 for the Q. variabilis forests and by 3.1 for the P. densiflora forests, respectively. The addition of water stress functions increased reliability of the decay rate estimation and could contribute to reducing the bias in estimating soil C sequestration under varying moisture condition. Acknowledgement: This study was supported by Korea Forest Service (2017044B10-1719-BB01)

  7. Including an ocean carbon cycle model into iLOVECLIM (v1.0)

    NARCIS (Netherlands)

    Bouttes, N.; Roche, D.M.V.A.P.; Mariotti, V.; Bopp, L.

    2015-01-01

    The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a

  8. The Model of the Software Running on a Computer Equipment Hardware Included in the Grid network

    Directory of Open Access Journals (Sweden)

    T. A. Mityushkina

    2012-12-01

    Full Text Available A new approach to building a cloud computing environment using Grid networks is proposed in this paper. The authors describe the functional capabilities, algorithm, model of software running on a computer equipment hardware included in the Grid network, that will allow to implement cloud computing environment using Grid technologies.

  9. Children and adolescents' internal models of food-sharing behavior include complex evaluations of contextual factors.

    Science.gov (United States)

    Markovits, Henry; Benenson, Joyce F; Kramer, Donald L

    2003-01-01

    This study examined internal representations of food sharing in 589 children and adolescents (8-19 years of age). Questionnaires, depicting a variety of contexts in which one person was asked to share a resource with another, were used to examine participants' expectations of food-sharing behavior. Factors that were varied included the value of the resource, the relation between the two depicted actors, the quality of this relation, and gender. Results indicate that internal models of food-sharing behavior showed systematic patterns of variation, demonstrating that individuals have complex contextually based internal models at all ages, including the youngest. Examination of developmental changes in use of individual patterns is consistent with the idea that internal models reflect age-specific patterns of interactions while undergoing a process of progressive consolidation.

  10. Observational constraint on the interacting dark energy models including the Sandage-Loeb test

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2014-05-01

    Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.

  11. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    Directory of Open Access Journals (Sweden)

    M. Proksch

    2015-08-01

    Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  12. A Scalable Version of the Navy Operational Global Atmospheric Prediction System Spectral Forecast Model

    Directory of Open Access Journals (Sweden)

    Thomas E. Rosmond

    2000-01-01

    Full Text Available The Navy Operational Global Atmospheric Prediction System (NOGAPS includes a state-of-the-art spectral forecast model similar to models run at several major operational numerical weather prediction (NWP centers around the world. The model, developed by the Naval Research Laboratory (NRL in Monterey, California, has run operational at the Fleet Numerical Meteorological and Oceanographic Center (FNMOC since 1982, and most recently is being run on a Cray C90 in a multi-tasked configuration. Typically the multi-tasked code runs on 10 to 15 processors with overall parallel efficiency of about 90%. resolution is T159L30, but other operational and research applications run at significantly lower resolutions. A scalable NOGAPS forecast model has been developed by NRL in anticipation of a FNMOC C90 replacement in about 2001, as well as for current NOGAPS research requirements to run on DOD High-Performance Computing (HPC scalable systems. The model is designed to run with message passing (MPI. Model design criteria include bit reproducibility for different processor numbers and reasonably efficient performance on fully shared memory, distributed memory, and distributed shared memory systems for a wide range of model resolutions. Results for a wide range of processor numbers, model resolutions, and different vendor architectures are presented. Single node performance has been disappointing on RISC based systems, at least compared to vector processor performance. This is a common complaint, and will require careful re-examination of traditional numerical weather prediction (NWP model software design and data organization to fully exploit future scalable architectures.

  13. Parameterization Improvements and Functional and Structural Advances in Version 4 of the Community Land Model

    Directory of Open Access Journals (Sweden)

    Andrew G. Slater

    2011-05-01

    Full Text Available The Community Land Model is the land component of the Community Climate System Model. Here, we describe a broad set of model improvements and additions that have been provided through the CLM development community to create CLM4. The model is extended with a carbon-nitrogen (CN biogeochemical model that is prognostic with respect to vegetation, litter, and soil carbon and nitrogen states and vegetation phenology. An urban canyon model is added and a transient land cover and land use change (LCLUC capability, including wood harvest, is introduced, enabling study of historic and future LCLUC on energy, water, momentum, carbon, and nitrogen fluxes. The hydrology scheme is modified with a revised numerical solution of the Richards equation and a revised ground evaporation parameterization that accounts for litter and within-canopy stability. The new snow model incorporates the SNow and Ice Aerosol Radiation model (SNICAR - which includes aerosol deposition, grain-size dependent snow aging, and vertically-resolved snowpack heating –– as well as new snow cover and snow burial fraction parameterizations. The thermal and hydrologic properties of organic soil are accounted for and the ground column is extended to ~50-m depth. Several other minor modifications to the land surface types dataset, grass and crop optical properties, atmospheric forcing height, roughness length and displacement height, and the disposition of snow-capped runoff are also incorporated.Taken together, these augmentations to CLM result in improved soil moisture dynamics, drier soils, and stronger soil moisture variability. The new model also exhibits higher snow cover, cooler soil temperatures in organic-rich soils, greater global river discharge, and lower albedos over forests and grasslands, all of which are improvements compared to CLM3.5. When CLM4 is run with CN, the mean biogeophysical simulation is slightly degraded because the vegetation structure is prognostic rather

  14. Safe distance car-following model including backward-looking and its stability analysis

    Science.gov (United States)

    Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin

    2013-03-01

    The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.

  15. An imprecise Dirichlet model for Bayesian analysis of failure data including right-censored observations

    International Nuclear Information System (INIS)

    Coolen, F.P.A.

    1997-01-01

    This paper is intended to make researchers in reliability theory aware of a recently introduced Bayesian model with imprecise prior distributions for statistical inference on failure data, that can also be considered as a robust Bayesian model. The model consists of a multinomial distribution with Dirichlet priors, making the approach basically nonparametric. New results for the model are presented, related to right-censored observations, where estimation based on this model is closely related to the product-limit estimator, which is an important statistical method to deal with reliability or survival data including right-censored observations. As for the product-limit estimator, the model considered in this paper aims at not using any information other than that provided by observed data, but our model fits into the robust Bayesian context which has the advantage that all inferences can be based on probabilities or expectations, or bounds for probabilities or expectations. The model uses a finite partition of the time-axis, and as such it is also related to life-tables

  16. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  17. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  18. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  19. A New Circuit Model for Spin-Torque Oscillator Including Perpendicular Torque of Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Hyein Lim

    2013-01-01

    Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.

  20. Multicomponent mass transport model: theory and numerical implementation (discrete-parcel-random-walk version)

    International Nuclear Information System (INIS)

    Ahlstrom, S.W.; Foote, H.P.; Arnett, R.C.; Cole, C.R.; Serne, R.J.

    1977-05-01

    The Multicomponent Mass Transfer (MMT) Model is a generic computer code, currently in its third generation, that was developed to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. This model was designed to use the water movement patterns produced by the unsaturated and saturated flow models coupled with dispersion and soil-waste reaction submodels to predict contaminant transport. This report documents the theorical foundation and the numerical solution procedure of the current (third) generation of the MMT Model. The present model simulates mass transport processes using an analog referred to as the Discrete-Parcel-Random-Walk (DPRW) algorithm. The basic concepts of this solution technique are described and the advantages and disadvantages of the DPRW scheme are discussed in relation to more conventional numerical techniques such as the finite-difference and finite-element methods. Verification of the numerical algorithm is demonstrated by comparing model results with known closed-form solutions. A brief error and sensitivity analysis of the algorithm with respect to numerical parameters is also presented. A simulation of the tritium plume beneath the Hanford Site is included to illustrate the use of the model in a typical application. 32 figs

  1. Modeling CANDU type fuel behaviour during extended burnup irradiations using a revised version of the ELESIM code

    International Nuclear Information System (INIS)

    Arimescu, V.I.; Richmond, W.R.

    1992-05-01

    The high-burnup database for CANDU fuel, with a variety of cases, offers a good opportunity to check models of fuel behaviour, and to identify areas for improvement. Good agreement of calculated values of fission-gas release, and sheath hoop strain, with experimental data indicates that the global behaviour of the fuel element is adequately simulated by a computer code. Using, the ELESIM computer code, the fission-gas release, swelling, and fuel pellet expansion models were analysed, and changes made for gaseous swelling, and diffusional release of fission-gas atoms to the grain boundaries. Using this revised version of ELESIM, satisfactory agreement between measured values of fission-gas release was found for most of the high-burnup database cases. It is concluded that the revised version of the ELESIM code is able to simulate with reasonable accuracy high-burnup as well as low-burnup CANDU fuel

  2. Fuzzy Control of Yaw and Roll Angles of a Simulated Helicopter Model Includes Articulated Manipulators

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2015-09-01

    Full Text Available Fuzzy logic controller (FLC is a heuristic method by If-Then Rules which resembles human intelligence and it is a good method for designing Non-linear control systems. In this paper, an arbitrary helicopter model includes articulated manipulators has been simulated with Matlab SimMechanics toolbox. Due to the difficulties of modeling this complex system, a fuzzy controller with simple fuzzy rules has been designed for its yaw and roll angles in order to stabilize the helicopter while it is in the presence of disturbances or its manipulators are moving for a task. Results reveal that a simple FLC can appropriately control this system.

  3. A roller chain drive model including contact with guide-bars

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard; Hansen, John Michael; Ambrósio, J. A. C.

    2004-01-01

    A model of a roller chain drive is developed and applied to the simulation and analysis of roller chain drives of large marine diesel engines. The model includes the impact with guide-bars that are the motion delimiter components on the chain strands between the sprockets. The main components...... and the sprocket centre, i.e. a constraint is added when such distance is less than the pitch radius. The unilateral kinematic constraint is removed when its associated constraint reaction force, applied on the roller, is in the direction of the root of the sprocket teeth. In order to improve the numerical...

  4. TS Fuzzy Model-Based Controller Design for a Class of Nonlinear Systems Including Nonsmooth Functions

    DEFF Research Database (Denmark)

    Vafamand, Navid; Asemani, Mohammad Hassan; Khayatiyan, Alireza

    2018-01-01

    This paper proposes a novel robust controller design for a class of nonlinear systems including hard nonlinearity functions. The proposed approach is based on Takagi-Sugeno (TS) fuzzy modeling, nonquadratic Lyapunov function, and nonparallel distributed compensation scheme. In this paper, a novel...... criterion, new robust controller design conditions in terms of linear matrix inequalities are derived. Three practical case studies, electric power steering system, a helicopter model and servo-mechanical system, are presented to demonstrate the importance of such class of nonlinear systems comprising...

  5. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Directory of Open Access Journals (Sweden)

    Kelin Zhuang

    2017-01-01

    Full Text Available A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land–sea–ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  6. Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine.

    Science.gov (United States)

    Actis, Jason A; Honegger, Jasmin D; Gates, Deanna H; Petrella, Anthony J; Nolasco, Luis A; Silverman, Anne K

    2018-02-08

    Low back mechanics are important to quantify to study injury, pain and disability. As in vivo forces are difficult to measure directly, modeling approaches are commonly used to estimate these forces. Validation of model estimates is critical to gain confidence in modeling results across populations of interest, such as people with lower-limb amputation. Motion capture, ground reaction force and electromyographic data were collected from ten participants without an amputation (five male/five female) and five participants with a unilateral transtibial amputation (four male/one female) during trunk-pelvis range of motion trials in flexion/extension, lateral bending and axial rotation. A musculoskeletal model with a detailed lumbar spine and the legs including 294 muscles was used to predict L4-L5 loading and muscle activations using static optimization. Model estimates of L4-L5 intervertebral joint loading were compared to measured intradiscal pressures from the literature and muscle activations were compared to electromyographic signals. Model loading estimates were only significantly different from experimental measurements during trunk extension for males without an amputation and for people with an amputation, which may suggest a greater portion of L4-L5 axial load transfer through the facet joints, as facet loads are not captured by intradiscal pressure transducers. Pressure estimates between the model and previous work were not significantly different for flexion, lateral bending or axial rotation. Timing of model-estimated muscle activations compared well with electromyographic activity of the lumbar paraspinals and upper erector spinae. Validated estimates of low back loading can increase the applicability of musculoskeletal models to clinical diagnosis and treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Statistical analysis of fracture data, adapted for modelling Discrete Fracture Networks-Version 2

    Energy Technology Data Exchange (ETDEWEB)

    Munier, Raymond

    2004-04-01

    The report describes the parameters which are necessary for DFN modelling, the way in which they can be extracted from the data base acquired during site investigations, and their assignment to geometrical objects in the geological model. The purpose here is to present a methodology for use in SKB modelling projects. Though the methodology is deliberately tuned to facilitate subsequent DFN modelling with other tools, some of the recommendations presented here are applicable to other aspects of geo-modelling as well. For instance, we here recommend a nomenclature to be used within SKB modelling projects, which are truly multidisciplinary, to ease communications between scientific disciplines and avoid misunderstanding of common concepts. This report originally occurred as an appendix to a strategy report for geological modelling (SKB-R--03-07). Strategy reports were intended to be successively updated to include experience gained during site investigations and site modelling. Rather than updating the entire strategy report, we choose to present the update of the appendix as a stand-alone document. This document thus replaces Appendix A2 in SKB-R--03-07. In short, the update consists of the following: The target audience has been broadened and as a consequence thereof, the purpose of the document. Correction of errors found in various formulae. All expressions have been rewritten. Inclusion of more worked examples in each section. A new section describing area normalisation. A new section on spatial correlation. A new section describing anisotropy. A new chapter describing the expected output from DFN modelling, within SKB projects.

  8. Statistical analysis of fracture data, adapted for modelling Discrete Fracture Networks-Version 2

    International Nuclear Information System (INIS)

    Munier, Raymond

    2004-04-01

    The report describes the parameters which are necessary for DFN modelling, the way in which they can be extracted from the data base acquired during site investigations, and their assignment to geometrical objects in the geological model. The purpose here is to present a methodology for use in SKB modelling projects. Though the methodology is deliberately tuned to facilitate subsequent DFN modelling with other tools, some of the recommendations presented here are applicable to other aspects of geo-modelling as well. For instance, we here recommend a nomenclature to be used within SKB modelling projects, which are truly multidisciplinary, to ease communications between scientific disciplines and avoid misunderstanding of common concepts. This report originally occurred as an appendix to a strategy report for geological modelling (SKB-R--03-07). Strategy reports were intended to be successively updated to include experience gained during site investigations and site modelling. Rather than updating the entire strategy report, we choose to present the update of the appendix as a stand-alone document. This document thus replaces Appendix A2 in SKB-R--03-07. In short, the update consists of the following: The target audience has been broadened and as a consequence thereof, the purpose of the document. Correction of errors found in various formulae. All expressions have been rewritten. Inclusion of more worked examples in each section. A new section describing area normalisation. A new section on spatial correlation. A new section describing anisotropy. A new chapter describing the expected output from DFN modelling, within SKB projects

  9. Modifications to the steady-state 41-node thermoregulatory model including validation of the respiratory and diffusional water loss equations

    Science.gov (United States)

    1974-01-01

    After the simplified version of the 41-Node Stolwijk Metabolic Man Model was implemented on the Sigma 3 and UNIVAC 1110 computers in batch mode, it became desirable to make certain revisions. First, the availability of time-sharing terminals makes it possible to provide the capability and flexibility of conversational interaction between user and model. Secondly, recent physiological studies show the need to revise certain parameter values contained in the model. Thirdly, it was desired to make quantitative and accurate predictions of evaporative water loss for humans in an orbiting space station. The result of the first phase of this effort are reported.

  10. Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

    Directory of Open Access Journals (Sweden)

    P. Anandan

    2014-01-01

    Full Text Available Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resistance shows significant improvement as the channel length decreases. The effects of thermal noise including self-heating of the device are explored. Moreover, significant reduction in noise with respect to channel thermal resistance, gate length, and biasing is analyzed.

  11. Programs OPTMAN and SHEMMAN Version 6 (1999) - Coupled-Channels optical model and collective nuclear structure calculation -

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jong Hwa; Lee, Jeong Yeon; Lee, Young Ouk; Sukhovitski, Efrem Sh [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Programs SHEMMAN and OPTMAN (Version 6) have been developed for determinations of nuclear Hamiltonian parameters and for optical model calculations, respectively. The optical model calculations by OPTMAN with coupling schemes built on wave functions functions of non-axial soft-rotator are self-consistent, since the parameters of the nuclear Hamiltonian are determined by adjusting the energies of collective levels to experimental values with SHEMMAN prior to the optical model calculation. The programs have been installed at Nuclear Data Evaluation Laboratory of KAERI. This report is intended as a brief manual of these codes. 43 refs., 9 figs., 1 tabs. (Author)

  12. MIG version 0.0 model interface guidelines: Rules to accelerate installation of numerical models into any compliant parent code

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, R.M.; Wong, M.K.

    1996-08-01

    A set of model interface guidelines, called MIG, is presented as a means by which any compliant numerical material model can be rapidly installed into any parent code without having to modify the model subroutines. Here, {open_quotes}model{close_quotes} usually means a material model such as one that computes stress as a function of strain, though the term may be extended to any numerical operation. {open_quotes}Parent code{close_quotes} means a hydrocode, finite element code, etc. which uses the model and enforces, say, the fundamental laws of motion and thermodynamics. MIG requires the model developer (who creates the model package) to specify model needs in a standardized but flexible way. MIG includes a dictionary of technical terms that allows developers and parent code architects to share a common vocabulary when specifying field variables. For portability, database management is the responsibility of the parent code. Input/output occurs via structured calling arguments. As much model information as possible (such as the lists of required inputs, as well as lists of precharacterized material data and special needs) is supplied by the model developer in an ASCII text file. Every MIG-compliant model also has three required subroutines to check data, to request extra field variables, and to perform model physics. To date, the MIG scheme has proven flexible in beta installations of a simple yield model, plus a more complicated viscodamage yield model, three electromechanical models, and a complicated anisotropic microcrack constitutive model. The MIG yield model has been successfully installed using identical subroutines in three vectorized parent codes and one parallel C++ code, all predicting comparable results. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort, thereby reducing the cost of installing and sharing models in diverse new codes.

  13. Model for safety reports including descriptive examples; Mall foer saekerhetsrapporter med beskrivande exempel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository.

  14. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  15. Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Final Report, Version 2)

    Science.gov (United States)

    EPA's announced the availability of the final report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Version 2). This update furthered land change modeling by providing nationwide housing developmen...

  16. Air Force Systems Engineering Assessment Model (AF SEAM) Management Guide, Version 2

    Science.gov (United States)

    2010-09-21

    gleaned from experienced professionals who assisted with the model’s development. Examples of the references used include the following: • ISO /IEC...Defense Acquisition Guidebook, Chapter 4 • AFI 63-1201, Life Cycle Systems Engineering • IEEE/EIA 12207 , Software Life Cycle Processes • Air...Selection criteria Reference Material: IEEE/EIA 12207 , MIL-HDBK-514 Other Considerations: Modeling, simulation and analysis techniques can be

  17. Collisional-radiative model including recombination processes for W27+ ion★

    Science.gov (United States)

    Murakami, Izumi; Sasaki, Akira; Kato, Daiji; Koike, Fumihiro

    2017-10-01

    We have constructed a collisional-radiative (CR) model for W27+ ions including 226 configurations with n ≤ 9 and ł ≤ 5 for spectroscopic diagnostics. We newly include recombination processes in the model and this is the first result of extreme ultraviolet spectrum calculated for recombining plasma component. Calculated spectra in 40-70 Å range in ionizing and recombining plasma components show similar 3 strong lines and 1 line weak in recombining plasma component at 45-50 Å and many weak lines at 50-65 Å for both components. Recombination processes do not contribute much to the spectrum at around 60 Å for W27+ ion. Dielectronic satellite lines are also minor contribution to the spectrum of recombining plasma component. Dielectronic recombination (DR) rate coefficient from W28+ to W27+ ions is also calculated with the same atomic data in the CR model. We found that larger set of energy levels including many autoionizing states gave larger DR rate coefficients but our rate agree within factor 6 with other works at electron temperature around 1 keV in which W27+ and W28+ ions are usually observed in plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  18. How to include frequency dependent complex permeability Into SPICE models to improve EMI filters design?

    Science.gov (United States)

    Sixdenier, Fabien; Yade, Ousseynou; Martin, Christian; Bréard, Arnaud; Vollaire, Christian

    2018-05-01

    Electromagnetic interference (EMI) filters design is a rather difficult task where engineers have to choose adequate magnetic materials, design the magnetic circuit and choose the size and number of turns. The final design must achieve the attenuation requirements (constraints) and has to be as compact as possible (goal). Alternating current (AC) analysis is a powerful tool to predict global impedance or attenuation of any filter. However, AC analysis are generally performed without taking into account the frequency-dependent complex permeability behaviour of soft magnetic materials. That's why, we developed two frequency-dependent complex permeability models able to be included into SPICE models. After an identification process, the performances of each model are compared to measurements made on a realistic EMI filter prototype in common mode (CM) and differential mode (DM) to see the benefit of the approach. Simulation results are in good agreement with the measured ones especially in the middle frequency range.

  19. Double-gate junctionless transistor model including short-channel effects

    International Nuclear Information System (INIS)

    Paz, B C; Pavanello, M A; Ávila-Herrera, F; Cerdeira, A

    2015-01-01

    This work presents a physically based model for double-gate junctionless transistors (JLTs), continuous in all operation regimes. To describe short-channel transistors, short-channel effects (SCEs), such as increase of the channel potential due to drain bias, carrier velocity saturation and mobility degradation due to vertical and longitudinal electric fields, are included in a previous model developed for long-channel double-gate JLTs. To validate the model, an analysis is made by using three-dimensional numerical simulations performed in a Sentaurus Device Simulator from Synopsys. Different doping concentrations, channel widths and channel lengths are considered in this work. Besides that, the series resistance influence is numerically included and validated for a wide range of source and drain extensions. In order to check if the SCEs are appropriately described, besides drain current, transconductance and output conductance characteristics, the following parameters are analyzed to demonstrate the good agreement between model and simulation and the SCEs occurrence in this technology: threshold voltage (V TH ), subthreshold slope (S) and drain induced barrier lowering. (paper)

  20. Refitting density dependent relativistic model parameters including Center-of-Mass corrections

    International Nuclear Information System (INIS)

    Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern

    2011-01-01

    Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)

  1. Including policy and management in socio-hydrology models: initial conceptualizations

    Science.gov (United States)

    Hermans, Leon; Korbee, Dorien

    2017-04-01

    Socio-hydrology studies the interactions in coupled human-water systems. So far, the use of dynamic models that capture the direct feedback between societal and hydrological systems has been dominant. What has not yet been included with any particular emphasis, is the policy or management layer, which is a central element in for instance integrated water resources management (IWRM) or adaptive delta management (ADM). Studying the direct interactions between human-water systems generates knowledges that eventually helps influence these interactions in ways that may ensure better outcomes - for society and for the health and sustainability of water systems. This influence sometimes occurs through spontaneous emergence, uncoordinated by societal agents - private sector, citizens, consumers, water users. However, the term 'management' in IWRM and ADM also implies an additional coordinated attempt through various public actors. This contribution is a call to include the policy and management dimension more prominently into the research focus of the socio-hydrology field, and offers first conceptual variables that should be considered in attempts to include this policy or management layer in socio-hydrology models. This is done by drawing on existing frameworks to study policy processes throughout both planning and implementation phases. These include frameworks such as the advocacy coalition framework, collective learning and policy arrangements, which all emphasis longer-term dynamics and feedbacks between actor coalitions in strategic planning and implementation processes. A case about longter-term dynamics in the management of the Haringvliet in the Netherlands is used to illustrate the paper.

  2. Water, Energy, and Biogeochemical Model (WEBMOD), user’s manual, version 1

    Science.gov (United States)

    Webb, Richard M.T.; Parkhurst, David L.

    2017-02-08

    The Water, Energy, and Biogeochemical Model (WEBMOD) uses the framework of the U.S. Geological Survey (USGS) Modular Modeling System to simulate fluxes of water and solutes through watersheds. WEBMOD divides watersheds into model response units (MRU) where fluxes and reactions are simulated for the following eight hillslope reservoir types: canopy; snowpack; ponding on impervious surfaces; O-horizon; two reservoirs in the unsaturated zone, which represent preferential flow and matrix flow; and two reservoirs in the saturated zone, which also represent preferential flow and matrix flow. The reservoir representing ponding on impervious surfaces, currently not functional (2016), will be implemented once the model is applied to urban areas. MRUs discharge to one or more stream reservoirs that flow to the outlet of the watershed. Hydrologic fluxes in the watershed are simulated by modules derived from the USGS Precipitation Runoff Modeling System; the National Weather Service Hydro-17 snow model; and a topography-driven hydrologic model (TOPMODEL). Modifications to the standard TOPMODEL include the addition of heterogeneous vertical infiltration rates; irrigation; lateral and vertical preferential flows through the unsaturated zone; pipe flow draining the saturated zone; gains and losses to regional aquifer systems; and the option to simulate baseflow discharge by using an exponential, parabolic, or linear decrease in transmissivity. PHREEQC, an aqueous geochemical model, is incorporated to simulate chemical reactions as waters evaporate, mix, and react within the various reservoirs of the model. The reactions that can be specified for a reservoir include equilibrium reactions among water; minerals; surfaces; exchangers; and kinetic reactions such as kinetic mineral dissolution or precipitation, biologically mediated reactions, and radioactive decay. WEBMOD also simulates variations in the concentrations of the stable isotopes deuterium and oxygen-18 as a result of

  3. Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2015-11-01

    The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with

  4. SHADOW3: a new version of the synchrotron X-ray optics modelling package

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, Manuel, E-mail: srio@esrf.eu [European Synchrotron Radiation Facility, 6 Jules Horowitz, 38000 Grenoble (France); Canestrari, Niccolo [CNRS, Grenoble (France); European Synchrotron Radiation Facility, 6 Jules Horowitz, 38000 Grenoble (France); Jiang, Fan; Cerrina, Franco [Boston University, 8 St Mary’s Street, Boston, MA 02215 (United States)

    2011-09-01

    SHADOW3, a new version of the X-ray tracing code SHADOW, is introduced. A new version of the popular X-ray tracing code SHADOW is presented. An important step has been made in restructuring the code following new computer engineering standards, ending with a modular Fortran 2003 structure and an application programming interface (API). The new code has been designed to be compatible with the original file-oriented SHADOW philosophy, but simplifying the compilation, installation and use. In addition, users can now become programmers using the newly designed SHADOW3 API for creating scripts, macros and programs; being able to deal with optical system optimization, image simulation, and also low transmission calculations requiring a large number of rays (>10{sup 6}). Plans for future development and questions on how to accomplish them are also discussed.

  5. SHADOW3: a new version of the synchrotron X-ray optics modelling package

    International Nuclear Information System (INIS)

    Sanchez del Rio, Manuel; Canestrari, Niccolo; Jiang, Fan; Cerrina, Franco

    2011-01-01

    SHADOW3, a new version of the X-ray tracing code SHADOW, is introduced. A new version of the popular X-ray tracing code SHADOW is presented. An important step has been made in restructuring the code following new computer engineering standards, ending with a modular Fortran 2003 structure and an application programming interface (API). The new code has been designed to be compatible with the original file-oriented SHADOW philosophy, but simplifying the compilation, installation and use. In addition, users can now become programmers using the newly designed SHADOW3 API for creating scripts, macros and programs; being able to deal with optical system optimization, image simulation, and also low transmission calculations requiring a large number of rays (>10 6 ). Plans for future development and questions on how to accomplish them are also discussed

  6. Modeling of in-vessel fission product release including fuel morphology effects for severe accident analyses

    International Nuclear Information System (INIS)

    Suh, K.Y.

    1989-10-01

    A new in-vessel fission product release model has been developed and implemented to perform best-estimate calculations of realistic source terms including fuel morphology effects. The proposed bulk mass transfer correlation determines the product of fission product release and equiaxed grain size as a function of the inverse fuel temperature. The model accounts for the fuel-cladding interaction over the temperature range between 770 K and 3000 K in the steam environment. A separate driver has been developed for the in-vessel thermal hydraulic and fission product behavior models that were developed by the Department of Energy for the Modular Accident Analysis Package (MAAP). Calculational results of these models have been compared to the results of the Power Burst Facility Severe Fuel Damage tests. The code predictions utilizing the mass transfer correlation agreed with the experimentally determined fractional release rates during the course of the heatup, power hold, and cooldown phases of the high temperature transients. Compared to such conventional literature correlations as the steam oxidation model and the NUREG-0956 correlation, the mass transfer correlation resulted in lower and less rapid releases in closer agreement with the on-line and grab sample data from the Severe Fuel Damage tests. The proposed mass transfer correlation can be applied for best-estimate calculations of fission products release from the UO 2 fuel in both nominal and severe accident conditions. 15 refs., 10 figs., 2 tabs

  7. Health Promotion Behavior of Chinese International Students in Korea Including Acculturation Factors: A Structural Equation Model.

    Science.gov (United States)

    Kim, Sun Jung; Yoo, Il Young

    2016-03-01

    The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.

  8. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    Science.gov (United States)

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-09

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  9. S5-4: Formal Modeling of Affordance in Human-Included Systems

    Directory of Open Access Journals (Sweden)

    Namhun Kim

    2012-10-01

    Full Text Available In spite of it being necessary for humans to consider modeling, analysis, and control of human-included systems, it has been considered a challenging problem because of the critical role of humans in complex systems and of humans' capability of executing unanticipated actions–both beneficial and detrimental ones. Thus, to provide systematic approaches to modeling human actions as a part of system behaviors, a formal modeling framework for human-involved systems in which humans play a controlling role based on their perceptual information is presented. The theory of affordance provides definitions of human actions and their associated properties; Finite State Automata (FSA based modeling is capable of mapping nondeterministic humans into computable components in the system representation. In this talk, we investigate the role of perception in human actions in the system operation and examine the representation of perceptual elements in affordance-based modeling formalism. The proposed framework is expected to capture the natural ways in which humans participate in the system as part of its operation. A human-machine cooperative manufacturing system control example and a human agent simulation example will be introduced for the illustrative purposes at the end of the presentation.

  10. CHROMAT trademark Version 1.1--Soil Chromium Attenuation Evaluation Model

    International Nuclear Information System (INIS)

    Felmy, A.R.; Rai, D.; Zachara, J.M.; Thapa, M.; Gold, M.

    1992-07-01

    This document is the user's manual and technical reference for the Soil Chromium Attenuation Model (CHROMAT trademark), a computer code designed to calculate both the dissolved Cr concentration and the amount of Cr attenuated in soils as a result of the geochemical reactions that occur as Cr-containing leachates migrate through porous soils. The dissolved Cr concentration and the amount of Cr attenuated are calculated using thermodynamic (mechanistic) data for aqueous complexation reactions, adsorption/ desorption reactions, and precipitation/dissolution reactions involving both CR(III) and Cr(VI) species. Use of this mechanistic approach means that CHROMAT trademark requires a minimum amount of site-specific data on leachate and soil characteristics. CHROMAT trademark is distributed in executable form for IBM and IBM-compatible personal computers through a license from the Electric Power Research Institute (EPRI). The user interacts with CHROMAT trademark using menu-driven screen displays. Interactive on-line help options are available. Output from the code can be obtained in tabular or graphic form. This manual describes the development of CHROMAT trademark, including experimental data development in support of the model and model validation studies. The thermodynamic data and computational algorithm are also described. Example problems and results are included

  11. Item and response-category functioning of the Persian version of the KIDSCREEN-27: Rasch partial credit model

    Directory of Open Access Journals (Sweden)

    Jafari Peyman

    2012-10-01

    Full Text Available Abstract Background The purpose of the study was to determine whether the Persian version of the KIDSCREEN-27 has the optimal number of response category to measure health-related quality of life (HRQoL in children and adolescents. Moreover, we aimed to determine if all the items contributed adequately to their own domain. Findings The Persian version of the KIDSCREEN-27 was completed by 1083 school children and 1070 of their parents. The Rasch partial credit model (PCM was used to investigate item statistics and ordering of response categories. The PCM showed that no item was misfitting. The PCM also revealed that, successive response categories for all items were located in the expected order except for category 1 in self- and proxy-reports. Conclusions Although Rasch analysis confirms that all the items belong to their own underlying construct, response categories should be reorganized and evaluated in further studies, especially in children with chronic conditions.

  12. A new model for including the effect of fly ash on biochemical methane potential.

    Science.gov (United States)

    Gertner, Pablo; Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna

    2017-10-01

    The modelling of the effect of trace elements on anaerobic digestion, and specifically the effect of fly ash, has been scarcely studied. Thus, the present work was aimed at the development of a new function that allows accumulated methane models to predict the effect of FA on the volume of methane accumulation. For this, purpose five fly ash concentrations (10, 25, 50, 250 and 500mg/L) using raw and pre-treated sewage sludge were used to calibrate the new function, while three fly ash concentrations were used (40, 150 and 350mg/L) for validation. Three models for accumulated methane volume (the modified Gompertz equation, the logistic function, and the transfer function) were evaluated. The results showed that methane production increased in the presence of FA when the sewage sludge was not pre-treated, while with pretreated sludge there is inhibition of methane production at FA concentrations higher than 50mg/L. In the calibration of the proposed function, it fits well with the experimental data under all the conditions, including the inhibition and stimulating zones, with the values of the parameters of the methane production models falling in the range of those reported in the literature. For validation experiments, the model succeeded in representing the behavior of new experiments in both the stimulating and inhibiting zones, with NRMSE and R 2 ranging from 0.3577 to 0.03714 and 0.2209 to 0.9911, respectively. Thus, the proposed model is robust and valid for the studied conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Models of epidemics: when contact repetition and clustering should be included

    Directory of Open Access Journals (Sweden)

    Scholz Roland W

    2009-06-01

    Full Text Available Abstract Background The spread of infectious disease is determined by biological factors, e.g. the duration of the infectious period, and social factors, e.g. the arrangement of potentially contagious contacts. Repetitiveness and clustering of contacts are known to be relevant factors influencing the transmission of droplet or contact transmitted diseases. However, we do not yet completely know under what conditions repetitiveness and clustering should be included for realistically modelling disease spread. Methods We compare two different types of individual-based models: One assumes random mixing without repetition of contacts, whereas the other assumes that the same contacts repeat day-by-day. The latter exists in two variants, with and without clustering. We systematically test and compare how the total size of an outbreak differs between these model types depending on the key parameters transmission probability, number of contacts per day, duration of the infectious period, different levels of clustering and varying proportions of repetitive contacts. Results The simulation runs under different parameter constellations provide the following results: The difference between both model types is highest for low numbers of contacts per day and low transmission probabilities. The number of contacts and the transmission probability have a higher influence on this difference than the duration of the infectious period. Even when only minor parts of the daily contacts are repetitive and clustered can there be relevant differences compared to a purely random mixing model. Conclusion We show that random mixing models provide acceptable estimates of the total outbreak size if the number of contacts per day is high or if the per-contact transmission probability is high, as seen in typical childhood diseases such as measles. In the case of very short infectious periods, for instance, as in Norovirus, models assuming repeating contacts will also behave

  14. Particle-based modeling of heterogeneous chemical kinetics including mass transfer

    Science.gov (United States)

    Sengar, A.; Kuipers, J. A. M.; van Santen, Rutger A.; Padding, J. T.

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  15. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  16. Particle-based modeling of heterogeneous chemical kinetics including mass transfer.

    Science.gov (United States)

    Sengar, A; Kuipers, J A M; van Santen, Rutger A; Padding, J T

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  17. Effect of including decay chains on predictions of equilibrium-type terrestrial food chain models

    International Nuclear Information System (INIS)

    Kirchner, G.

    1990-01-01

    Equilibrium-type food chain models are commonly used for assessing the radiological impact to man from environmental releases of radionuclides. Usually these do not take into account build-up of radioactive decay products during environmental transport. This may be a potential source of underprediction. For estimating consequences of this simplification, the equations of an internationally recognised terrestrial food chain model have been extended to include decay chains of variable length. Example calculations show that for releases from light water reactors as expected both during routine operation and in the case of severe accidents, the build-up of decay products during environmental transport is generally of minor importance. However, a considerable number of radionuclides of potential radiological significance have been identified which show marked contributions of decay products to calculated contamination of human food and resulting radiation dose rates. (author)

  18. A temperature dependent cyclic plasticity model for hot work tool steel including particle coarsening

    Science.gov (United States)

    Jilg, Andreas; Seifert, Thomas

    2018-05-01

    Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.

  19. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    Science.gov (United States)

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. A generalized model for optimal transport of images including dissipation and density modulation

    KAUST Repository

    Maas, Jan

    2015-11-01

    © EDP Sciences, SMAI 2015. In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly varying image contrast and explicitly allows for sources and sinks in the transport equations which are incorporated in the metric related to the metamorphosis approach by Trouvé and Younes. In the non-viscous case with source term existence of geodesic paths is proven in the space of measures. The proposed model is explored on the range from merely optimal transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals. These functionals are defined on corresponding pairs of intensity functions and on associated pairwise matching deformations. Existence of time discrete geodesics is demonstrated. Furthermore, a finite element implementation is proposed and applied to instructive test cases and to real images. In the non-viscous case this is compared to the algorithm proposed by Benamou and Brenier including a discretization of the source term. Finally, the model is generalized to define discrete weighted barycentres with applications to textures and objects.

  1. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  2. Empirical Validation of a Thermal Model of a Complex Roof Including Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Stéphane Guichard

    2015-12-01

    Full Text Available This paper deals with the empirical validation of a building thermal model of a complex roof including a phase change material (PCM. A mathematical model dedicated to PCMs based on the heat apparent capacity method was implemented in a multi-zone building simulation code, the aim being to increase the understanding of the thermal behavior of the whole building with PCM technologies. In order to empirically validate the model, the methodology is based both on numerical and experimental studies. A parametric sensitivity analysis was performed and a set of parameters of the thermal model has been identified for optimization. The use of the generic optimization program called GenOpt® coupled to the building simulation code enabled to determine the set of adequate parameters. We first present the empirical validation methodology and main results of previous work. We then give an overview of GenOpt® and its coupling with the building simulation code. Finally, once the optimization results are obtained, comparisons of the thermal predictions with measurements are found to be acceptable and are presented.

  3. Business models for renewable energy in the built environment. Updated version

    Energy Technology Data Exchange (ETDEWEB)

    Wuertenberger, L.; Menkveld, M.; Vethman, P.; Van Tilburg, X. [ECN Policy Studies, Amsterdam (Netherlands); Bleyl, J.W. [Energetic Solutions, Graz (Austria)

    2012-04-15

    The project RE-BIZZ aims to provide insight to policy makers and market actors in the way new and innovative business models (and/or policy measures) can stimulate the deployment of renewable energy technologies (RET) and energy efficiency (EE) measures in the built environment. The project is initiated and funded by the IEA Implementing Agreement for Renewable Energy Technology Deployment (IEA-RETD). It analysed ten business models in three categories (amongst others different types of Energy Service Companies (ESCOs), Developing properties certified with a 'green' building label, Building owners profiting from rent increases after EE measures, Property Assessed Clean Energy (PACE) financing, On-bill financing, and Leasing of RET equipment) including their organisational and financial structure, the existing market and policy context, and an analysis of Strengths, Weaknesses, Opportunities and Threats (SWOT). The study concludes with recommendations for policy makers and other market actors.

  4. SITE-94. The CRYSTAL Geosphere Transport Model: Technical documentation version 2.1

    International Nuclear Information System (INIS)

    Worgan, K.; Robinson, P.

    1995-12-01

    CRYSTAL, a one-dimensional contaminant transport model of a densely fissured geosphere, was originally developed for the SKI Project-90 performance assessment program. It has since been extended to include matrix blocks of alternative basic geometries. CRYSTAL predicts the transport of arbitrary-length decay chains by advection, diffusion and surface sorption in the fissures and diffusion into the rock matrix blocks. The model equations are solved in Laplace transform space, and inverted numerically to the time domain. This approach avoids time-stepping and consequently is numerically very efficient. The source term for crystal may be supplied internally using either simple leaching or band release submodels or by input of a general time-series output from a near-field model. The time series input is interfaced with the geosphere model using the method of convolution. The response of the geosphere to delta-function inputs from each nuclide is combined with the time series outputs from the near-field, to obtain the nuclide flux emerging from the far-field. 14 refs

  5. Standardized Competencies for Parenteral Nutrition Order Review and Parenteral Nutrition Preparation, Including Compounding: The ASPEN Model.

    Science.gov (United States)

    Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi

    2016-08-01

    Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff. © 2016 American Society for Parenteral and Enteral Nutrition.

  6. Analytical and numerical modelling of thermoviscous shocks in their interactions in nonlinear fluids including dissipation

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2010-01-01

    A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. The equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non dissipative limit. An exact...... thermoviscous shock solution is derived. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation, the model equation considered here is capable to describe waves propagating in opposite directions. Studies of head...

  7. A model for Huanglongbing spread between citrus plants including delay times and human intervention

    Science.gov (United States)

    Vilamiu, Raphael G. d'A.; Ternes, Sonia; Braga, Guilherme A.; Laranjeira, Francisco F.

    2012-09-01

    The objective of this work was to present a compartmental deterministic mathematical model for representing the dynamics of HLB disease in a citrus orchard, including delay in the disease's incubation phase in the plants, and a delay period on the nymphal stage of Diaphorina citri, the most important HLB insect vector in Brazil. Numerical simulations were performed to assess the possible impacts of human detection efficiency of symptomatic plants, as well as the influence of a long incubation period of HLB in the plant.

  8. Validation Evidence for the Elementary School Version of the MUSIC® Model of Academic Motivation Inventory (Pruebas de validación para el Modelo MUSIC® de Inventario de Motivación Educativa para Escuela Primaria)

    Science.gov (United States)

    Jones, Brett D.; Sigmon, Miranda L.

    2016-01-01

    Introduction: The purpose of our study was to assess whether the Elementary School version of the MUSIC® Model of Academic Motivation Inventory was valid for use with elementary students in classrooms with regular classroom teachers and student teachers enrolled in a university teacher preparation program. Method: The participants included 535…

  9. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    Science.gov (United States)

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  10. EIA model documentation: World oil refining logistics demand model,``WORLD`` reference manual. Version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-11

    This manual is intended primarily for use as a reference by analysts applying the WORLD model to regional studies. It also provides overview information on WORLD features of potential interest to managers and analysts. Broadly, the manual covers WORLD model features in progressively increasing detail. Section 2 provides an overview of the WORLD model, how it has evolved, what its design goals are, what it produces, and where it can be taken with further enhancements. Section 3 reviews model management covering data sources, managing over-optimization, calibration and seasonality, check-points for case construction and common errors. Section 4 describes in detail the WORLD system, including: data and program systems in overview; details of mainframe and PC program control and files;model generation, size management, debugging and error analysis; use with different optimizers; and reporting and results analysis. Section 5 provides a detailed description of every WORLD model data table, covering model controls, case and technology data. Section 6 goes into the details of WORLD matrix structure. It provides an overview, describes how regional definitions are controlled and defines the naming conventions for-all model rows, columns, right-hand sides, and bounds. It also includes a discussion of the formulation of product blending and specifications in WORLD. Several Appendices supplement the main sections.

  11. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS

    Science.gov (United States)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2010-12-01

    With 4 million ha currently grown for ethanol in Brazil only, approximately half the global bioethanol production in 2005 (Smeets 2008), and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Indeed, ethanol made from biomass is currently the most widespread option for alternative transportation fuels. It was originally promoted as a carbon neutral energy resource that could bring energy independence to countries and local opportunities to farmers, until attention was drawn to its environmental and socio-economical drawbacks. It is still not clear to which extent it is a solution or a contributor to climate change mitigation. Dynamic Global Vegetation models can help address these issues and quantify the potential impacts of biofuels on ecosystems at scales ranging from on-site to global. The global agro-ecosystem model ORCHIDEE describes water, carbon and energy exchanges at the soil-atmosphere interface for a limited number of natural and agricultural vegetation types. In order to integrate agricultural management to the simulations and to capture more accurately the specificity of crops' phenology, ORCHIDEE has been coupled with the agronomical model STICS. The resulting crop-oriented vegetation model ORCHIDEE-STICS has been used so far to simulate temperate crops such as wheat, corn and soybean. As a generic ecosystem model, each grid cell can include several vegetation types with their own phenology and management practices, making it suitable to spatial simulations. Here, ORCHIDEE-STICS is altered to include sugar cane as a new agricultural Plant functional Type, implemented and parametrized using the STICS approach. An on-site calibration and validation is then performed based on biomass and flux chamber measurements in several sites in Australia and variables such as LAI, dry weight, heat fluxes and respiration are used to evaluate the ability of the model to simulate the specific

  12. Geological discrete fracture network model for the Olkiluoto site, Eurajoki, Finland. Version 2.0

    International Nuclear Information System (INIS)

    Fox, A.; Forchhammer, K.; Pettersson, A.; La Pointe, P.; Lim, D-H.

    2012-06-01

    This report describes the methods, analyses, and conclusions of the modeling team in the production of the 2010 revision to the geological discrete fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 565m; deformation zones are expressly excluded from the DFN model. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modeling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is selected to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches, geological and structural data from cored drillholes, and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory. Unlike the initial geological DFN, which was focused on the vicinity of the ONKALO tunnel, the 2010 revisions present a model parameterization for the entire island. Fracture domains are based on the tectonic subdivisions at the site (northern, central, and southern tectonic units) presented in the Geological Site Model (GSM), and are further subdivided along the intersection of major brittle-ductile zones. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east that is subparallel to the mean bedrock foliation direction, a subvertically-dipping fracture set striking roughly north-south, and a subvertically-dipping fracture set striking approximately east-west. The subhorizontally-dipping fractures

  13. Geological discrete fracture network model for the Olkiluoto site, Eurajoki, Finland. Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Fox, A.; Forchhammer, K.; Pettersson, A. [Golder Associates AB, Stockholm (Sweden); La Pointe, P.; Lim, D-H. [Golder Associates Inc. (Finland)

    2012-06-15

    This report describes the methods, analyses, and conclusions of the modeling team in the production of the 2010 revision to the geological discrete fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 565m; deformation zones are expressly excluded from the DFN model. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modeling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is selected to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches, geological and structural data from cored drillholes, and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory. Unlike the initial geological DFN, which was focused on the vicinity of the ONKALO tunnel, the 2010 revisions present a model parameterization for the entire island. Fracture domains are based on the tectonic subdivisions at the site (northern, central, and southern tectonic units) presented in the Geological Site Model (GSM), and are further subdivided along the intersection of major brittle-ductile zones. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east that is subparallel to the mean bedrock foliation direction, a subvertically-dipping fracture set striking roughly north-south, and a subvertically-dipping fracture set striking approximately east-west. The subhorizontally-dipping fractures

  14. Land Boundary Conditions for the Goddard Earth Observing System Model Version 5 (GEOS-5) Climate Modeling System: Recent Updates and Data File Descriptions

    Science.gov (United States)

    Mahanama, Sarith P.; Koster, Randal D.; Walker, Gregory K.; Takacs, Lawrence L.; Reichle, Rolf H.; De Lannoy, Gabrielle; Liu, Qing; Zhao, Bin; Suarez, Max J.

    2015-01-01

    The Earths land surface boundary conditions in the Goddard Earth Observing System version 5 (GEOS-5) modeling system were updated using recent high spatial and temporal resolution global data products. The updates include: (i) construction of a global 10-arcsec land-ocean lakes-ice mask; (ii) incorporation of a 10-arcsec Globcover 2009 land cover dataset; (iii) implementation of Level 12 Pfafstetter hydrologic catchments; (iv) use of hybridized SRTM global topography data; (v) construction of the HWSDv1.21-STATSGO2 merged global 30 arc second soil mineral and carbon data in conjunction with a highly-refined soil classification system; (vi) production of diffuse visible and near-infrared 8-day MODIS albedo climatologies at 30-arcsec from the period 2001-2011; and (vii) production of the GEOLAND2 and MODIS merged 8-day LAI climatology at 30-arcsec for GEOS-5. The global data sets were preprocessed and used to construct global raster data files for the software (mkCatchParam) that computes parameters on catchment-tiles for various atmospheric grids. The updates also include a few bug fixes in mkCatchParam, as well as changes (improvements in algorithms, etc.) to mkCatchParam that allow it to produce tile-space parameters efficiently for high resolution AGCM grids. The update process also includes the construction of data files describing the vegetation type fractions, soil background albedo, nitrogen deposition and mean annual 2m air temperature to be used with the future Catchment CN model and the global stream channel network to be used with the future global runoff routing model. This report provides detailed descriptions of the data production process and data file format of each updated data set.

  15. Geological discrete-fracture network model (version 1) for the Olkiluoto site, Finland

    International Nuclear Information System (INIS)

    Fox, A.; Buoro, A.; Dahlbo, K.; Wiren, L.

    2009-10-01

    This report describes the methods, analyses, and conclusions of the modelling team in the production of a discrete-fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 500 m; an upper scale limit is not expressly defined, but the DFN model explicitly excludes structures at deformation-zone scales (∼ 500 m) and larger. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modelling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is currently planned to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches (as of July 2007), geological and structural data from cored boreholes (as of July 2007), and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory (January 2008). The modelling results suggest that the rock volume at Olkiluoto surrounding the ONKALO tunnel can be separated into three distinct volumes (fracture domains): an upper block, an intermediate block, and a lower block. The three fracture domains are bounded horizontally and vertically by large deformation zones. Fracture properties, such as fracture orientation and relative orientation set intensity, vary between fracture domains. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east, a subvertically-dipping fracture set striking roughly north-south, and a subverticallydipping fracture set

  16. Web-accessible molecular modeling with Rosetta: The Rosetta Online Server that Includes Everyone (ROSIE).

    Science.gov (United States)

    Moretti, Rocco; Lyskov, Sergey; Das, Rhiju; Meiler, Jens; Gray, Jeffrey J

    2018-01-01

    The Rosetta molecular modeling software package provides a large number of experimentally validated tools for modeling and designing proteins, nucleic acids, and other biopolymers, with new protocols being added continually. While freely available to academic users, external usage is limited by the need for expertise in the Unix command line environment. To make Rosetta protocols available to a wider audience, we previously created a web server called Rosetta Online Server that Includes Everyone (ROSIE), which provides a common environment for hosting web-accessible Rosetta protocols. Here we describe a simplification of the ROSIE protocol specification format, one that permits easier implementation of Rosetta protocols. Whereas the previous format required creating multiple separate files in different locations, the new format allows specification of the protocol in a single file. This new, simplified protocol specification has more than doubled the number of Rosetta protocols available under ROSIE. These new applications include pK a determination, lipid accessibility calculation, ribonucleic acid redesign, protein-protein docking, protein-small molecule docking, symmetric docking, antibody docking, cyclic toxin docking, critical binding peptide determination, and mapping small molecule binding sites. ROSIE is freely available to academic users at http://rosie.rosettacommons.org. © 2017 The Protein Society.

  17. The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy?

    Directory of Open Access Journals (Sweden)

    Go Myong-Hyun

    2011-07-01

    Full Text Available Abstract Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagues found that increasing model complexity did not always increase accuracy. Specifically, the most detailed contact network and a simplified version of this network generated very similar results. These results are extremely interesting and require further exploration to determine their generalizability. Please see related article BMC Medicine, 2011, 9:87

  18. The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy?

    Science.gov (United States)

    Blower, Sally; Go, Myong-Hyun

    2011-07-19

    Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagues found that increasing model complexity did not always increase accuracy. Specifically, the most detailed contact network and a simplified version of this network generated very similar results. These results are extremely interesting and require further exploration to determine their generalizability.

  19. Land-total and Ocean-total Precipitation and Evaporation from a Community Atmosphere Model version 5 Perturbed Parameter Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Covey, Curt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trenberth, Kevin E. [National Center for Atmospheric Research, Boulder, CO (United States)

    2016-03-02

    This document presents the large scale water budget statistics of a perturbed input-parameter ensemble of atmospheric model runs. The model is Version 5.1.02 of the Community Atmosphere Model (CAM). These runs are the “C-Ensemble” described by Qian et al., “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5” (Journal of Advances in Modeling the Earth System, 2015). As noted by Qian et al., the simulations are “AMIP type” with temperature and sea ice boundary conditions chosen to match surface observations for the five year period 2000-2004. There are 1100 ensemble members in addition to one run with default inputparameter values.

  20. MHD model including small-scale perturbations in a plasma with temperature variations

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhailovskii, A.B.

    1996-01-01

    The possibility is studied of using a hydrodynamic model to describe a magnetized plasma with density and temperature variations on scales that are arbitrary with respect to the ion Larmor radius. It is shown that the inertial component of the transverse ion thermal flux should be taken into account. This component is found from the collisionless kinetic equation. It can also be obtained from the equations of the Grad type. A set of two-dimensional hydrodynamic equations for ions is obtained with this component taken into account. These equations are used to derive model hydrodynamic expressions for the density and temperature variations. It is shown that, for large-scale perturbations (when the wavelengths are longer than the ion Larmor radius), the expressions derived coincide with the corresponding kinetic expressions and, for perturbations on sub-Larmor scales (when the wavelengths are shorter than the Larmor radius), they agree qualitatively. Hydrodynamic dispersion relations are derived for several types of drift waves with arbitrary wavenumbers. The range of applicability of the MHD model is determined from a comparison of these dispersion relations with the kinetic ones. It is noted that, on the basis of results obtained, drift effects can be included in numerical MHD codes for studying plasma instabilities in high-temperature regimes in tokamaks

  1. Integrated Sachs-Wolfe effect in a quintessence cosmological model: Including anisotropic stress of dark energy

    International Nuclear Information System (INIS)

    Wang, Y. T.; Xu, L. X.; Gui, Y. X.

    2010-01-01

    In this paper, we investigate the integrated Sachs-Wolfe effect in the quintessence cold dark matter model with constant equation of state and constant speed of sound in dark energy rest frame, including dark energy perturbation and its anisotropic stress. Comparing with the ΛCDM model, we find that the integrated Sachs-Wolfe (ISW)-power spectrums are affected by different background evolutions and dark energy perturbation. As we change the speed of sound from 1 to 0 in the quintessence cold dark matter model with given state parameters, it is found that the inclusion of dark energy anisotropic stress makes the variation of magnitude of the ISW source uncertain due to the anticorrelation between the speed of sound and the ratio of dark energy density perturbation contrast to dark matter density perturbation contrast in the ISW-source term. Thus, the magnitude of the ISW-source term is governed by the competition between the alterant multiple of (1+3/2xc-circumflex s 2 ) and that of δ de /δ m with the variation of c-circumflex s 2 .

  2. A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE

    Directory of Open Access Journals (Sweden)

    Giuliana Zanchi

    2016-03-01

    Full Text Available The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows simulation of a saturated and an unsaturated zone in the soil as well as water flow that reaches the stream comparable to measurements. The most relevant differences compared to streamflow measurements are that the model simulates a higher base flow in winter and lower flow peaks after snowmelt. These differences are mainly caused by the assumptions made to regulate the percolation at the bottom of the simulated soil columns. The capability for simulating lateral flows and a saturated zone in ForSAFE can greatly improve the simulation of chemical exchange in the soil and export of elements from the soil to watercourses. Such a model can help improve the understanding of how environmental changes in the forest landscape will influence chemical loads to surface waters.

  3. Refinement and evaluation of the Massachusetts firm-yield estimator model version 2.0

    Science.gov (United States)

    Levin, Sara B.; Archfield, Stacey A.; Massey, Andrew J.

    2011-01-01

    The firm yield is the maximum average daily withdrawal that can be extracted from a reservoir without risk of failure during an extended drought period. Previously developed procedures for determining the firm yield of a reservoir were refined and applied to 38 reservoir systems in Massachusetts, including 25 single- and multiple-reservoir systems that were examined during previous studies and 13 additional reservoir systems. Changes to the firm-yield model include refinements to the simulation methods and input data, as well as the addition of several scenario-testing capabilities. The simulation procedure was adapted to run at a daily time step over a 44-year simulation period, and daily streamflow and meteorological data were compiled for all the reservoirs for input to the model. Another change to the model-simulation methods is the adjustment of the scaling factor used in estimating groundwater contributions to the reservoir. The scaling factor is used to convert the daily groundwater-flow rate into a volume by multiplying the rate by the length of reservoir shoreline that is hydrologically connected to the aquifer. Previous firm-yield analyses used a constant scaling factor that was estimated from the reservoir surface area at full pool. The use of a constant scaling factor caused groundwater flows during periods when the reservoir stage was very low to be overestimated. The constant groundwater scaling factor used in previous analyses was replaced with a variable scaling factor that is based on daily reservoir stage. This change reduced instability in the groundwater-flow algorithms and produced more realistic groundwater-flow contributions during periods of low storage. Uncertainty in the firm-yield model arises from many sources, including errors in input data. The sensitivity of the model to uncertainty in streamflow input data and uncertainty in the stage-storage relation was examined. A series of Monte Carlo simulations were performed on 22 reservoirs

  4. Theoretical modelling of epigenetically modified DNA sequences [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Alexandra Teresa Pires Carvalho

    2015-05-01

    Full Text Available We report herein a set of calculations designed to examine the effects of epigenetic modifications on the structure of DNA. The incorporation of methyl, hydroxymethyl, formyl and carboxy substituents at the 5-position of cytosine is shown to hardly affect the geometry of CG base pairs, but to result in rather larger changes to hydrogen-bond and stacking binding energies, as predicted by dispersion-corrected density functional theory (DFT methods. The same modifications within double-stranded GCG and ACA trimers exhibit rather larger structural effects, when including the sugar-phosphate backbone as well as sodium counterions and implicit aqueous solvation. In particular, changes are observed in the buckle and propeller angles within base pairs and the slide and roll values of base pair steps, but these leave the overall helical shape of DNA essentially intact. The structures so obtained are useful as a benchmark of faster methods, including molecular mechanics (MM and hybrid quantum mechanics/molecular mechanics (QM/MM methods. We show that previously developed MM parameters satisfactorily reproduce the trimer structures, as do QM/MM calculations which treat bases with dispersion-corrected DFT and the sugar-phosphate backbone with AMBER. The latter are improved by inclusion of all six bases in the QM region, since a truncated model including only the central CG base pair in the QM region is considerably further from the DFT structure. This QM/MM method is then applied to a set of double-stranded DNA heptamers derived from a recent X-ray crystallographic study, whose size puts a DFT study beyond our current computational resources. These data show that still larger structural changes are observed than in base pairs or trimers, leading us to conclude that it is important to model epigenetic modifications within realistic molecular contexts.

  5. Modelling and control of a microgrid including photovoltaic and wind generation

    Science.gov (United States)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  6. A surplus production model including environmental effects: Application to the Senegalese white shrimp stocks

    Science.gov (United States)

    Thiaw, Modou; Gascuel, Didier; Jouffre, Didier; Thiaw, Omar Thiom

    2009-12-01

    In Senegal, two stocks of white shrimp ( Penaeusnotialis) are intensively exploited, one in the north and another in the south. We used surplus production models including environmental effects to analyse their changes in abundance over the past 10 years and to estimate their Maximum Sustainable Yield (MSY) and the related fishing effort ( EMSY). First, yearly abundance indices were estimated from commercial statistics using GLM techniques. Then, two environmental indices were alternatively tested in the model: the coastal upwelling intensity from wind speeds provided by the SeaWifs database and the primary production derived from satellite infrared images of chlorophyll a. Models were fitted, with or without the environmental effect, to the 1996-2005 time series. They express stock abundance and catches as functions of the fishing effort and the environmental index (when considered). For the northern stock, fishing effort and abundance fluctuate over the period without any clear trends. The model based on the upwelling index explains 64.9% of the year-to-year variability. It shows that the stock was slightly overexploited in 2002-2003 and is now close to full exploitation. Stock abundance strongly depends on environmental conditions; consequently, the MSY estimate varies from 300 to 900 tons according to the upwelling intensity. For the southern stock, fishing effort has strongly increased over the past 10 years, while abundance has been reduced 4-fold. The environment has a significant effect on abundance but only explains a small part of the year-to-year variability. The best fit is obtained using the primary production index ( R2 = 0.75), and the stock is now significantly overfished regardless of environmental conditions. MSY varies from 1200 to 1800 tons according to environmental conditions. Finally, in northern Senegal, the upwelling is highly variable from year to year and constitutes the major factor determining productivity. In the south, hydrodynamic

  7. Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO

    Science.gov (United States)

    Reffray, G.; Bourdalle-Badie, R.; Calone, C.

    2015-01-01

    Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k+l from Blanke and Delecluse, 1993, and two equation models: generic length scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a 1-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However, the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (PAPA">http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.

  8. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    International Nuclear Information System (INIS)

    Pupurs, A; Varna, J

    2012-01-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate G II . A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  9. Challenges of including nitrogen effects on decomposition in earth system models

    Science.gov (United States)

    Hobbie, S. E.

    2011-12-01

    Despite the importance of litter decomposition for ecosystem fertility and carbon balance, key uncertainties remain about how this fundamental process is affected by nitrogen (N) availability. Nevertheless, resolving such uncertainties is critical for mechanistic inclusion of such processes in earth system models, towards predicting the ecosystem consequences of increased anthropogenic reactive N. Towards that end, we have conducted a series of experiments examining nitrogen effects on litter decomposition. We found that both substrate N and externally supplied N (regardless of form) accelerated the initial decomposition rate. Faster initial decomposition rates were linked to the higher activity of carbohydrate-degrading enzymes associated with externally supplied N and the greater relative abundances of Gram negative and Gram positive bacteria associated with green leaves and externally supplied organic N (assessed using phospholipid fatty acid analysis, PLFA). By contrast, later in decomposition, externally supplied N slowed decomposition, increasing the fraction of slowly decomposing litter and reducing lignin-degrading enzyme activity and relative abundances of Gram negative and Gram positive bacteria. Our results suggest that elevated atmospheric N deposition may have contrasting effects on the dynamics of different soil carbon pools, decreasing mean residence times of active fractions comprising very fresh litter, while increasing those of more slowly decomposing fractions including more processed litter. Incorporating these contrasting effects of N on decomposition processes into models is complicated by lingering uncertainties about how these effects generalize across ecosystems and substrates.

  10. Exergoeconomic performance optimization for a steady-flow endoreversible refrigeration model including six typical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2013-07-01

    The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.

  11. Model for Analysis of the Energy Demand (MAED) users' manual for version MAED-1

    International Nuclear Information System (INIS)

    1986-09-01

    This manual is organized in two major parts. The first part includes eight main sections describing how to use the MAED-1 computer program and the second one consists of five appendices giving some additional information about the program. Concerning the main sections of the manual, Section 1 gives a summary description and some background information about the MAED-1 model. Section 2 extends the description of the MAED-1 model in more detail. Section 3 introduces some concepts, mainly related to the computer requirements imposed by the program, that are used throughout this document. Sections 4 to 7 describe how to execute each of the various programs (or modules) of the MAED-1 package. The description for each module shows the user how to prepare the control and data cards needed to execute the module and how to interpret the printed output produced. Section 8 recapitulates about the use of MAED-1 for carrying out energy and electricity planning studies, describes the several phases normally involved in this type of study and provides the user with practical hints about the most important aspects that need to be verified at each phase while executing the various MAED modules

  12. High performance computation of landscape genomic models including local indicators of spatial association.

    Science.gov (United States)

    Stucki, S; Orozco-terWengel, P; Forester, B R; Duruz, S; Colli, L; Masembe, C; Negrini, R; Landguth, E; Jones, M R; Bruford, M W; Taberlet, P; Joost, S

    2017-09-01

    With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an F ST outlier method (FDIST approach in arlequin) and compare their results. samβada - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  13. CFD simulations and reduced order modeling of a refrigerator compartment including radiation effects

    International Nuclear Information System (INIS)

    Bayer, Ozgur; Oskay, Ruknettin; Paksoy, Akin; Aradag, Selin

    2013-01-01

    Highlights: ► Free convection in a refrigerator is simulated including radiation effects. ► Heat rates are affected drastically when radiation effects are considered. ► 95% of the flow energy can be represented by using one spatial POD mode. - Abstract: Considering the engineering problem of natural convection in domestic refrigerator applications, this study aims to simulate the fluid flow and temperature distribution in a single commercial refrigerator compartment by using the experimentally determined temperature values as the specified constant wall temperature boundary conditions. The free convection in refrigerator applications is evaluated as a three-dimensional (3D), turbulent, transient and coupled non-linear flow problem. Radiation heat transfer mode is also included in the analysis. According to the results, taking radiation effects into consideration does not change the temperature distribution inside the refrigerator significantly; however the heat rates are affected drastically. The flow inside the compartment is further analyzed with a reduced order modeling method called Proper Orthogonal Decomposition (POD) and the energy contents of several spatial and temporal modes that exist in the flow are examined. The results show that approximately 95% of all the flow energy can be represented by only using one spatial mode

  14. Implementation of methane cycling for deep time, global warming simulations with the DCESS Earth System Model (Version 1.2)

    DEFF Research Database (Denmark)

    Shaffer, Gary; Villanueva, Esteban Fernández; Rondanelli, Roberto

    2017-01-01

    Geological records reveal a number of ancient, large and rapid negative excursions of carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth System over a short duration. These injections may have forced strong global warming events, sometimes....... With this improved DCESS model version and paleo-reconstructions, we are now better armed to gauge the amounts, types, time scales and locations of methane injections driving specific, observed deep time, global warming events....

  15. GENII Version 2 Users’ Guide

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.

    2004-03-08

    The GENII Version 2 computer code was developed for the Environmental Protection Agency (EPA) at Pacific Northwest National Laboratory (PNNL) to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) and the radiological risk estimating procedures of Federal Guidance Report 13 into updated versions of existing environmental pathway analysis models. The resulting environmental dosimetry computer codes are compiled in the GENII Environmental Dosimetry System. The GENII system was developed to provide a state-of-the-art, technically peer-reviewed, documented set of programs for calculating radiation dose and risk from radionuclides released to the environment. The codes were designed with the flexibility to accommodate input parameters for a wide variety of generic sites. Operation of a new version of the codes, GENII Version 2, is described in this report. Two versions of the GENII Version 2 code system are available, a full-featured version and a version specifically designed for demonstrating compliance with the dose limits specified in 40 CFR 61.93(a), the National Emission Standards for Hazardous Air Pollutants (NESHAPS) for radionuclides. The only differences lie in the limitation of the capabilities of the user to change specific parameters in the NESHAPS version. This report describes the data entry, accomplished via interactive, menu-driven user interfaces. Default exposure and consumption parameters are provided for both the average (population) and maximum individual; however, these may be modified by the user. Source term information may be entered as radionuclide release quantities for transport scenarios, or as basic radionuclide concentrations in environmental media (air, water, soil). For input of basic or derived concentrations, decay of parent radionuclides and ingrowth of radioactive decay products prior to the start of the exposure scenario may be considered. A single code run can

  16. Calculation of Brown Carbon Optical Properties in the Fifth version Community Atmospheric Model (CAM5) and Validation with a Case Study in Kanpur, India

    Science.gov (United States)

    Xu, L.; Peng, Y.; Ram, K.

    2017-12-01

    The presence of absorbing component of organic carbon in atmospheric aerosols (Brown Carbon, BrC) has recently received much attention to the scientific community because of its absorbing nature, especially in the UV and Visible region. Attempts to account for BrC in radiative forcing calculations in climate model are rather scarce, primarily due to observational constrain as well as its incorporation in the model-based studies. Due to non-treatment of BrC in the off-line models, there exists a large discrepancy between model- and observational- based estimate of direct radiative effect of carbonaceous aerosols. In this study, we have included BrC absorption and optical characteristics in the fifth version of Community Atmospheric Model (CAM5) for the better understanding of radiative impact of BrC over northern India, also for improving the performance of aerosol radiative calculation in climate model. We have used the inputs of aerosol chemical composition measurements conducted at an urban site, Kanpur, in the Indo-Gangetic Plain (IGP) during 2007-2008 to construct the optical properties of BrC in CAM5 model. Model radiative simulations of sensitive tests showed good agreement with observations. Effects of varying imaginary part of BrC refractive index, relative mass ratio of BrC to organic aerosol in combination with core-shell mixing style of BrC with other anthropogenic aerosols are also analyzed for understanding BrC impact on simulated aerosol absorption in model.

  17. User's guide to revised method-of-characteristics solute-transport model (MOC--version 31)

    Science.gov (United States)

    Konikow, Leonard F.; Granato, G.E.; Hornberger, G.Z.

    1994-01-01

    The U.S. Geological Survey computer model to simulate two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978; Goode and Konikow, 1989) has been modified to improve management of input and output data and to provide progressive run-time information. All opening and closing of files are now done automatically by the program. Names of input data files are entered either interactively or using a batch-mode script file. Names of output files, created automatically by the program, are based on the name of the input file. In the interactive mode, messages are written to the screen during execution to allow the user to monitor the status and progress of the simulation and to anticipate total running time. Information reported and updated during a simulation include the current pumping period and time step, number of particle moves, and percentage completion of the current time step. The batch mode enables a user to run a series of simulations consecutively, without additional control. A report of the model's activity in the batch mode is written to a separate output file, allowing later review. The user has several options for creating separate output files for different types of data. The formats are compatible with many commercially available applications, which facilitates graphical postprocessing of model results. Geohydrology and Evaluation of Stream-Aquifer Relations in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern Alabama, Northwestern Florida, and Southwestern Georgia By Lynn J. Torak, Gary S. Davis, George A. Strain, and Jennifer G. Herndon Abstract The lower Apalachieola-Chattahoochec-Flint River Basin is underlain by Coastal Plain sediments of pre-Cretaceous to Quaternary age consisting of alternating units of sand, clay, sandstone, dolomite, and limestone that gradually thicken and dip gently to the southeast. The stream-aquifer system consism of carbonate (limestone and dolomite) and elastic sediments

  18. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  19. A new version of the CNRM Chemistry-Climate Model, CNRM-CCM: description and improvements from the CCMVal-2 simulations

    Directory of Open Access Journals (Sweden)

    M. Michou

    2011-10-01

    Full Text Available This paper presents a new version of the Météo-France CNRM Chemistry-Climate Model, so-called CNRM-CCM. It includes some fundamental changes from the previous version (CNRM-ACM which was extensively evaluated in the context of the CCMVal-2 validation activity. The most notable changes concern the radiative code of the GCM, and the inclusion of the detailed stratospheric chemistry of our Chemistry-Transport model MOCAGE on-line within the GCM. A 47-yr transient simulation (1960–2006 is the basis of our analysis. CNRM-CCM generates satisfactory dynamical and chemical fields in the stratosphere. Several shortcomings of CNRM-ACM simulations for CCMVal-2 that resulted from an erroneous representation of the impact of volcanic aerosols as well as from transport deficiencies have been eliminated.

    Remaining problems concern the upper stratosphere (5 to 1 hPa where temperatures are too high, and where there are biases in the NO2, N2O5 and O3 mixing ratios. In contrast, temperatures at the tropical tropopause are too cold. These issues are addressed through the implementation of a more accurate radiation scheme at short wavelengths. Despite these problems we show that this new CNRM CCM is a useful tool to study chemistry-climate applications.

  20. The natural defense system and the normative self model [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Philippe Kourilsky

    2016-05-01

    Full Text Available Infectious agents are not the only agressors, and the immune system is not the sole defender of the organism. In an enlarged perspective, the ‘normative self model’ postulates that a ‘natural defense system’ protects man and other complex organisms against the environmental and internal hazards of life, including infections and cancers. It involves multiple error detection and correction mechanisms that confer robustness to the body at all levels of its organization. According to the model, the self relies on a set of physiological norms, and NONself (meaning : Non Obedient to the Norms of the self is anything ‘off-norms’. The natural defense system comprises a set of ‘civil defenses’ (to which all cells in organs and tissues contribute, and a ‘professional army ‘, made of a smaller set of mobile cells. Mobile and non mobile cells differ in their tuning abilities. Tuning extends the recognition capabilities of NONself by the mobile cells, which increase their defensive function. To prevent them to drift, which would compromise self/NONself discrimination, the more plastic mobile cells need to periodically refer to the more stable non mobile cells to keep within physiological standards.

  1. Validation of the malaysian versions of parents and children health survey for asthma by using rasch-model.

    Science.gov (United States)

    Hussein, Maryam Se; Akram, Waqas; Mamat, Mohd Nor; Majeed, Abu Bakar Abdul; Ismail, Nahlah Elkudssiah Binti

    2015-04-01

    In recent years, health-related quality of life (HRQOL) has become an important outcome measure in epidemiologic studies and clinical trials. For patients with asthma there are many instruments but most of them have been developed in English. With the increase in research project, researchers working in other languages have two options; either to develop a new measure or to translate an already developed measure. Children Health Survey for Asthma is developed by American Academy of Paediatrics which has two versions one for the parents (CHSA) and the other for the child (CHSA-C). However, there is no Malay version of the CHSA or the CHSA-C. The aim of this study was to translate and determine the validity and reliability of the Malaysian versions of Parent and Children Health Survey for Asthma. Questionnaires were translated to Bahasa Malayu using previously established guidelines, data from 180 respondents (asthmatic children and their parent) were analysed using Rasch-Model; as, it is an approach that has been increasingly used in health field and also it explores the performance of each item rather than total set score. The internal consistency was high for the parent questionnaire (CHSA) (reliability score for persons = 0.88 and for items was 0.97), and good for child questionnaire (CHSA-C) (reliability score for persons = 0.83 and for items was 0.94). Also, this study shows that all items measure for both questionnaires (CHSA and CHSA-C) are fitted to Rasch-Model. This study produced questionnaires that are conceptually equivalent to the original, easy to understand for the children and their parents, and good in terms of internal consistency. Because of the questionnaire has two versions one for the child and the other for the parents, they could be used in clinical practice to measure the effect of asthma on the child and their families. This current research had translated two instruments to other language (BahasaMalayu) and evaluated their reliability and

  2. Accounting for observation uncertainties in an evaluation metric of low latitude turbulent air-sea fluxes: application to the comparison of a suite of IPSL model versions

    Science.gov (United States)

    Servonnat, Jérôme; Găinuşă-Bogdan, Alina; Braconnot, Pascale

    2017-09-01

    Turbulent momentum and heat (sensible heat and latent heat) fluxes at the air-sea interface are key components of the whole energetic of the Earth's climate. The evaluation of these fluxes in the climate models is still difficult because of the large uncertainties associated with the reference products. In this paper we present an objective metric accounting for reference uncertainties to evaluate the annual cycle of the low latitude turbulent fluxes of a suite of IPSL climate models. This metric consists in a Hotelling T 2 test between the simulated and observed field in a reduce space characterized by the dominant modes of variability that are common to both the model and the reference, taking into account the observational uncertainty. The test is thus more severe when uncertainties are small as it is the case for sea surface temperature (SST). The results of the test show that for almost all variables and all model versions the model-reference differences are not zero. It is not possible to distinguish between model versions for sensible heat and meridional wind stress, certainly due to the large observational uncertainties. All model versions share similar biases for the different variables. There is no improvement between the reference versions of the IPSL model used for CMIP3 and CMIP5. The test also reveals that the higher horizontal resolution fails to improve the representation of the turbulent surface fluxes compared to the other versions. The representation of the fluxes is further degraded in a version with improved atmospheric physics with an amplification of some of the biases in the Indian Ocean and in the intertropical convergence zone. The ranking of the model versions for the turbulent fluxes is not correlated with the ranking found for SST. This highlights that despite the fact that SST gradients are important for the large-scale atmospheric circulation patterns, other factors such as wind speed, and air-sea temperature contrast play an

  3. Assessment of two versions of regional climate model in simulating the Indian Summer Monsoon over South Asia CORDEX domain

    Science.gov (United States)

    Pattnayak, K. C.; Panda, S. K.; Saraswat, Vaishali; Dash, S. K.

    2018-04-01

    This study assess the performance of two versions of Regional Climate Model (RegCM) in simulating the Indian summer monsoon over South Asia for the period 1998 to 2003 with an aim of conducting future climate change simulations. Two sets of experiments were carried out with two different versions of RegCM (viz. RegCM4.2 and RegCM4.3) with the lateral boundary forcings provided from European Center for Medium Range Weather Forecast Reanalysis (ERA-interim) at 50 km horizontal resolution. The major updates in RegCM4.3 in comparison to the older version RegCM4.2 are the inclusion of measured solar irradiance in place of hardcoded solar constant and additional layers in the stratosphere. The analysis shows that the Indian summer monsoon rainfall, moisture flux and surface net downward shortwave flux are better represented in RegCM4.3 than that in the RegCM4.2 simulations. Excessive moisture flux in the RegCM4.2 simulation over the northern Arabian Sea and Peninsular India resulted in an overestimation of rainfall over the Western Ghats, Peninsular region as a result of which the all India rainfall has been overestimated. RegCM4.3 has performed well over India as a whole as well as its four rainfall homogenous zones in reproducing the mean monsoon rainfall and inter-annual variation of rainfall. Further, the monsoon onset, low-level Somali Jet and the upper level tropical easterly jet are better represented in the RegCM4.3 than RegCM4.2. Thus, RegCM4.3 has performed better in simulating the mean summer monsoon circulation over the South Asia. Hence, RegCM4.3 may be used to study the future climate change over the South Asia.

  4. The MIRAB Model of Small Island Economies in the Pacific and their Security Issues: Revised Version

    OpenAIRE

    Tisdell, Clem

    2014-01-01

    The MIRAB model of Pacific island micro-economies was developed in the mid-1980s by the New Zealand economists, Bertram and Watters, and dominated the literature on the economics of small island nations and economies until alternative models were proposed two decades later. Nevertheless, it is still an influential theory. MIRAB is an acronym for migration (MI), remittance (R) and foreign aid (A) and the public bureaucracy (B); the main components of the MIRAB model. The nature of this model i...

  5. A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jia Kan; Sun Weifeng; Shi Longxing, E-mail: jiakan.01@gmail.com [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2011-06-15

    A sub-circuit SPICE model of a MOSFET for low temperature operation is presented. Two resistors are introduced for the freeze-out effect, and the explicit behavioral models are developed for them. The model can be used in a wide temperature range covering both cryogenic temperature and regular temperatures. (semiconductor devices)

  6. Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model

    Science.gov (United States)

    Li, Weidong; Rukavina, Paul

    2012-01-01

    In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…

  7. A methodology for including wall roughness effects in k-ε low-Reynolds turbulence models

    International Nuclear Information System (INIS)

    Ambrosini, W.; Pucciarelli, A.; Borroni, I.

    2015-01-01

    Highlights: • A model for taking into account wall roughness in low-Reynolds k-ε models is presented. • The model is subjected to a first validation to show its potential in general applications. • The application of the model in predicting heat transfer to supercritical fluids is also discussed. - Abstract: A model accounting for wall roughness effects in k-ε low-Reynolds turbulence models is described in the present paper. In particular, the introduction in the transport equations of k and ε of additional source terms related to roughness, based on simple assumptions and dimensional relationships, is proposed. An objective of the present paper, in addition to obtaining more realistic predictions of wall friction, is the application of the proposed model to the study of heat transfer to supercritical fluids. A first validation of the model is reported. The model shows the capability of predicting, at least qualitatively, some of the most important trends observed when dealing with rough pipes in very different flow conditions. Qualitative comparisons with some DNS data available in literature are also performed. Further analyses provided promising results concerning the ability of the model in reproducing the trend of friction factor when varying the flow conditions, though improvements are necessary for achieving better quantitative accuracy. First applications of the model in simulating heat transfer to supercritical fluids are also described, showing the capability of the model to affect the predictions of these heat transfer phenomena, in particular in the vicinity of the pseudo-critical conditions. A more extended application of the model to relevant deteriorated heat transfer conditions will clarify the usefulness of this modelling methodology in improving predictions of these difficult phenomena. Whatever the possible success in this particular application that motivated its development, this approach suggests a general methodology for accounting

  8. Measurement network design including traveltime determinations to minimize model prediction uncertainty

    NARCIS (Netherlands)

    Janssen, G.M.C.M.; Valstar, J.R.; Zee, van der S.E.A.T.M.

    2008-01-01

    Traveltime determinations have found increasing application in the characterization of groundwater systems. No algorithms are available, however, to optimally design sampling strategies including this information type. We propose a first-order methodology to include groundwater age or tracer arrival

  9. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    Science.gov (United States)

    Fahey, Kathleen M.; Carlton, Annmarie G.; Pye, Havala O. T.; Baek, Jaemeen; Hutzell, William T.; Stanier, Charles O.; Baker, Kirk R.; Wyat Appel, K.; Jaoui, Mohammed; Offenberg, John H.

    2017-04-01

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM - KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosenbrock solver (Rodas3) to integrate the stiff system of ordinary differential equations (ODEs) that describe the mass transfer, chemical kinetics, and scavenging processes of CMAQ clouds. CMAQ's standard cloud chemistry module (AQCHEM) is structurally limited to the treatment of a simple chemical mechanism. This work advances our ability to test and implement more sophisticated aqueous chemical mechanisms in CMAQ and further investigate the impacts of microphysical parameters on cloud chemistry. Box model cloud chemistry simulations were performed to choose efficient solver and tolerance settings, evaluate the implementation of the KPP solver, and assess the direct impacts of alternative solver and kinetic mass transfer on predicted concentrations for a range of scenarios. Month-long CMAQ simulations for winter and summer periods over the US reveal the changes in model predictions due to these cloud module updates within the full chemical transport model. While monthly average CMAQ predictions are not drastically altered between AQCHEM and AQCHEM - KMT, hourly concentration differences can be significant. With added in-cloud secondary organic aerosol (SOA) formation from biogenic epoxides (AQCHEM - KMTI), normalized mean error and bias statistics are slightly improved for 2-methyltetrols and 2-methylglyceric acid at the Research Triangle Park measurement site in North Carolina during the Southern Oxidant and Aerosol Study (SOAS) period. The added in-cloud chemistry leads to a monthly average increase of 11-18 % in cloud SOA at the surface in the eastern United States for June 2013.

  10. Validation on groundwater flow model including sea level change. Modeling on groundwater flow in coastal granite area

    International Nuclear Information System (INIS)

    Hasegawa, Takuma; Miyakawa, Kimio

    2009-01-01

    It is important to verify the groundwater flow model that reproduces pressure head, water chemistry, and groundwater age. However, water chemistry and groundwater age are considered to be influenced by historical events. In this study, sea level change during glacial-interglacial cycle was taken into account for simulating salinity and groundwater age at coastal granite area. As a result of simulation, salinity movement could not catch up with sea level changes, and mixing zone was formed below the fresh-water zone. This mixing zone was observed in the field measurement, and the observed salinities were agreed with simulated results including sea level change. The simulated residence time including sea level change is one-tenth of steady state. The reason is that the saline water was washed out during regression and modern sea-water was infiltrated during transgression. As mentioned before, considering sea level change are important to reproduce salinity and helium age at coastal area. (author)

  11. Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review

    Directory of Open Access Journals (Sweden)

    Jones Anne E

    2011-02-01

    Full Text Available Abstract Background A warm and humid climate triggers several water-associated diseases such as malaria. Climate- or weather-driven malaria models, therefore, allow for a better understanding of malaria transmission dynamics. The Liverpool Malaria Model (LMM is a mathematical-biological model of malaria parasite dynamics using daily temperature and precipitation data. In this study, the parameter settings of the LMM are refined and a new mathematical formulation of key processes related to the growth and size of the vector population are developed. Methods One of the most comprehensive studies to date in terms of gathering entomological and parasitological information from the literature was undertaken for the development of a new version of an existing malaria model. The knowledge was needed to allow the justification of new settings of various model parameters and motivated changes of the mathematical formulation of the LMM. Results The first part of the present study developed an improved set of parameter settings and mathematical formulation of the LMM. Important modules of the original LMM version were enhanced in order to achieve a higher biological and physical accuracy. The oviposition as well as the survival of immature mosquitoes were adjusted to field conditions via the application of a fuzzy distribution model. Key model parameters, including the mature age of mosquitoes, the survival probability of adult mosquitoes, the human blood index, the mosquito-to-human (human-to-mosquito transmission efficiency, the human infectious age, the recovery rate, as well as the gametocyte prevalence, were reassessed by means of entomological and parasitological observations. This paper also revealed that various malaria variables lack information from field studies to be set properly in a malaria modelling approach. Conclusions Due to the multitude of model parameters and the uncertainty involved in the setting of parameters, an extensive

  12. Hardware-in-the-loop vehicle system including dynamic fuel cell model

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Z.; Lenhart, T.; Braun, M.; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Darmstadt (Germany)

    2005-07-01

    In order to reduce costs and accelerate the development of fuel cells and systems the usage of hardware-in-the-loop (HIL) testing and dynamic modelling opens new possibilities. The dynamic model of a proton exchange membrane fuel cell (PEMFC) together with a vehicle model is used to carry out a comprehensive system investigation, which allows designing and optimising the behaviour of the components and the entire fuel cell system. The set-up of a HIL system enables real time interaction between the selected hardware and the model. (orig.)

  13. Transverse Crack Modeling and Validation in Rotor Systems, Including Thermal Effects

    Directory of Open Access Journals (Sweden)

    N. Bachschmid

    2003-01-01

    Full Text Available This article describes a model that allows the simulation of the static behavior of a transverse crack in a horizontal rotor under the action of weight and other possible static loads and the dynamic behavior of cracked rotating shaft. The crack breathes—that is, the mechanism of the crack's opening and closing is ruled by the stress on the cracked section exerted by the external loads. In a rotor, the stresses are time-dependent and have a period equal to the period of rotation; thus, the crack periodically breathes. An original, simplified model allows cracks of various shapes to be modeled and thermal stresses to be taken into account, as they may influence the opening and closing mechanism. The proposed method was validated by using two criteria. First the crack's breathing mechanism, simulated by the model, was compared with the results obtained by a nonlinear, threedimensional finite element model calculation, and a good agreement in the results was observed. Then the proposed model allowed the development of the equivalent cracked beam. The results of this model were compared with those obtained by the three-dimensional finite element model. Also in this case, there was a good agreement in the results.

  14. A model for firm-specific strategic wisdom : including illustrations and 49 guiding questions

    NARCIS (Netherlands)

    van Straten, Roeland Peter

    2017-01-01

    This PhD thesis provides an answer to the question ‘How may one think strategically’. It does so by presenting a new prescriptive ‘Model for Firm-Specific Strategic Wisdom’. This Model aims to guide any individual strategist in his or her thinking from a state of firm-specific ‘ignorance’ to a state

  15. A two-dimensional simulation model of phosphorus uptake including crop growth and P-response

    NARCIS (Netherlands)

    Mollier, A.; Willigen, de P.; Heinen, M.; Morel, C.; Schneider, A.; Pellerin, S.

    2008-01-01

    Modelling nutrient uptake by crops implies considering and integrating the processes controlling the soil nutrient supply, the uptake by the root system and relationships between the crop growth response and the amount of nutrient absorbed. We developed a model that integrates both dynamics of maize

  16. Deterministic Model for Rubber-Metal Contact Including the Interaction Between Asperities

    NARCIS (Netherlands)

    Deladi, E.L.; de Rooij, M.B.; Schipper, D.J.

    2005-01-01

    Rubber-metal contact involves relatively large deformations and large real contact areas compared to metal-metal contact. Here, a deterministic model is proposed for the contact between rubber and metal surfaces, which takes into account the interaction between neighboring asperities. In this model,

  17. Development of numerical dispersion model for radioactive nuclei including resuspension processes

    International Nuclear Information System (INIS)

    Chiba, Masaru; Kurita, Susumu; Sasaki, Hidetaka

    2003-01-01

    Global-scale and local-scale dispersion model are developed combining to global and local scale meteorological forecasting model. By applying this system to another miner constituent such as mineral dust blowing by strong wind in arid region, this system shows very good performance to watch and predict the distribution of it. (author)

  18. On-the-fly confluence detection for statistical model checking (extended version)

    NARCIS (Netherlands)

    Hartmanns, Arnd; Timmer, Mark

    Statistical model checking is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can only provide sound results if the

  19. Technical documentation and user's guide for City-County Allocation Model (CCAM). Version 1.0

    International Nuclear Information System (INIS)

    Clark, L.T. Jr.; Scott, M.J.; Hammer, P.

    1986-05-01

    The City-County Allocation Model (CCAM) was developed as part of the Monitored Retrievable Storage (MRS) Program. The CCAM model was designed to allocate population changes forecasted by the MASTER model to specific local communities within commuting distance of the MRS facility. The CCAM model was designed to then forecast the potential changes in demand for key community services such as housing, police protection, and utilities for these communities. The CCAM model uses a flexible on-line data base on demand for community services that is based on a combination of local service levels and state and national service standards. The CCAM model can be used to quickly forecast the potential community service consequence of economic development for local communities anywhere in the country. The remainder of this document is organized as follows. The purpose of this manual is to assist the user in understanding and operating the City-County Allocation Model (CCAM). The annual explains the data sources for the model and code modifications as well as the operational procedures

  20. Comments on a time-dependent version of the linear-quadratic model

    International Nuclear Information System (INIS)

    Tucker, S.L.; Travis, E.L.

    1990-01-01

    The accuracy and interpretation of the 'LQ + time' model are discussed. Evidence is presented, based on data in the literature, that this model does not accurately describe the changes in isoeffect dose occurring with protraction of the overall treatment time during fractionated irradiation of the lung. This lack of fit of the model explains, in part, the surprisingly large values of γ/α that have been derived from experimental lung data. The large apparent time factors for lung suggested by the model are also partly explained by the fact that γT/α, despite having units of dose, actually measures the influence of treatment time on the effect scale, not the dose scale, and is shown to consistently overestimate the change in total dose. The unusually high values of α/β that have been derived for lung using the model are shown to be influenced by the method by which the model was fitted to data. Reanalyses of the data using a more statistically valid regression procedure produce estimates of α/β more typical of those usually cited for lung. Most importantly, published isoeffect data from lung indicate that the true deviation from the linear-quadratic (LQ) model is nonlinear in time, instead of linear, and also depends on other factors such as the effect level and the size of dose per fraction. Thus, the authors do not advocate the use of the 'LQ + time' expression as a general isoeffect model. (author). 32 refs.; 3 figs.; 1 tab

  1. Hydrogen Macro System Model User Guide, Version 1.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

    2009-07-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  2. An investigation of FLUENT's fan model including the effect of swirl velocity

    International Nuclear Information System (INIS)

    El Saheli, A.; Barron, R.M.

    2002-01-01

    The purpose of this paper is to investigate and discuss the reliability of simplified models for the computational fluid dynamics (CFD) simulation of air flow through automotive engine cooling fans. One of the most widely used simplified fan models in industry is a variant of the actuator disk model which is available in most commercial CFD software, such as FLUENT. In this model, the fan is replaced by an infinitely thin surface on which pressure rise across the fan is specified as a polynomial function of normal velocity or flow rate. The advantages of this model are that it is simple, it accurately predicts the pressure rise through the fan and the axial velocity, and it is robust

  3. Model Package Report: Central Plateau Vadose Zone Geoframework Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Sarah D.

    2018-03-27

    The purpose of the Central Plateau Vadose Zone (CPVZ) Geoframework model (GFM) is to provide a reasonable, consistent, and defensible three-dimensional (3D) representation of the vadose zone beneath the Central Plateau at the Hanford Site to support the Composite Analysis (CA) vadose zone contaminant fate and transport models. The GFM is a 3D representation of the subsurface geologic structure. From this 3D geologic model, exported results in the form of point, surface, and/or volumes are used as inputs to populate and assemble the various numerical model architectures, providing a 3D-layered grid that is consistent with the GFM. The objective of this report is to define the process used to produce a hydrostratigraphic model for the vadose zone beneath the Hanford Site Central Plateau and the corresponding CA domain.

  4. Spatial modelling of marine organisms in Forsmark and Oskarshamn. Including calculation of physical predictor variables

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin (AquaBiota Water Research, Stockholm (SE))

    2007-06-15

    GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All

  5. Spatial modelling of marine organisms in Forsmark and Oskarshamn. Including calculation of physical predictor variables

    International Nuclear Information System (INIS)

    Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin

    2007-06-01

    GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All

  6. A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk

    Directory of Open Access Journals (Sweden)

    Ninna Reitzel Jensen

    2015-06-01

    Full Text Available Using a two-account model with event risk, we model life insurance contracts taking into account both guaranteed and non-guaranteed payments in participating life insurance as well as in unit-linked insurance. Here, event risk is used as a generic term for life insurance events, such as death, disability, etc. In our treatment of participating life insurance, we have special focus on the bonus schemes “consolidation” and “additional benefits”, and one goal is to formalize how these work and interact. Another goal is to describe similarities and differences between participating life insurance and unit-linked insurance. By use of a two-account model, we are able to illustrate general concepts without making the model too abstract. To allow for complicated financial markets without dramatically increasing the mathematical complexity, we focus on economic scenarios. We illustrate the use of our model by conducting scenario analysis based on Monte Carlo simulation, but the model applies to scenarios in general and to worst-case and best-estimate scenarios in particular. In addition to easy computations, our model offers a common framework for the valuation of life insurance payments across product types. This enables comparison of participating life insurance products and unit-linked insurance products, thus building a bridge between the two different ways of formalizing life insurance products. Finally, our model distinguishes itself from the existing literature by taking into account the Markov model for the state of the policyholder and, hereby, facilitating event risk.

  7. Potential transformation of trace species including aircraft exhaust in a cloud environment. The `Chedrom model`

    Energy Technology Data Exchange (ETDEWEB)

    Ozolin, Y.E.; Karol, I.L. [Main Geophysical Observatory, St. Petersburg (Russian Federation); Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    Box model for coupled gaseous and aqueous phases is used for sensitivity study of potential transformation of trace gases in a cloud environment. The rate of this transformation decreases with decreasing of pH in droplets, with decreasing of photodissociation rates inside the cloud and with increasing of the droplet size. Model calculations show the potential formation of H{sub 2}O{sub 2} in aqueous phase and transformation of gaseous HNO{sub 3} into NO{sub x} in a cloud. This model is applied for exploration of aircraft exhausts evolution in plume inside a cloud. (author) 10 refs.

  8. Potential transformation of trace species including aircraft exhaust in a cloud environment. The `Chedrom model`

    Energy Technology Data Exchange (ETDEWEB)

    Ozolin, Y E; Karol, I L [Main Geophysical Observatory, St. Petersburg (Russian Federation); Ramaroson, R [Office National d` Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1998-12-31

    Box model for coupled gaseous and aqueous phases is used for sensitivity study of potential transformation of trace gases in a cloud environment. The rate of this transformation decreases with decreasing of pH in droplets, with decreasing of photodissociation rates inside the cloud and with increasing of the droplet size. Model calculations show the potential formation of H{sub 2}O{sub 2} in aqueous phase and transformation of gaseous HNO{sub 3} into NO{sub x} in a cloud. This model is applied for exploration of aircraft exhausts evolution in plume inside a cloud. (author) 10 refs.

  9. ETM documentation update – including modelling conventions and manual for software tools

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik

    This is the final report for the DTU contribution to Socio Economic Research on Fusion (SERF), EFDA Technology Work programme 2013. The structure and contents of this report was presented at the EFDA-TIMES workshop in Garching 12-13 December 2013. This report gives further background and references......, it summarises the work done during 2013, and it also contains presentations for promotion of fusion as a future element in the electricity generation mix and presentations for the modelling community concerning model development and model documentation – in particular for TIAM collaboration workshops....

  10. On a discrete version of the CP 1 sigma model and surfaces immersed in R3

    International Nuclear Information System (INIS)

    Grundland, A M; Levi, D; Martina, L

    2003-01-01

    We present a discretization of the CP 1 sigma model. We show that the discrete CP 1 sigma model is described by a nonlinear partial second-order difference equation with rational nonlinearity. To derive discrete surfaces immersed in three-dimensional Euclidean space a 'complex' lattice is introduced. The so-obtained surfaces are characterized in terms of the quadrilateral cross-ratio of four surface points. In this way we prove that all surfaces associated with the discrete CP 1 sigma model are of constant mean curvature. An explicit example of such discrete surfaces is constructed

  11. A generalized model for optimal transport of images including dissipation and density modulation

    KAUST Repository

    Maas, Jan; Rumpf, Martin; Schö nlieb, Carola; Simon, Stefan

    2015-01-01

    transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals

  12. Advanced Modeling of Ramp Operations including Departure Status at Secondary Airports, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses three modeling elements relevant to NASA's IADS research and ATD-2 project, two related to ramp operations at primary airports and one related...

  13. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  14. Extending the formal model of a spatial data infrastructure to include volunteered geographical information

    CSIR Research Space (South Africa)

    Cooper, Antony K

    2011-07-01

    Full Text Available , Information and Computational Viewpoints of the Reference Model for Open Distributed Processing (RM-ODP). We identified six stakeholders: Policy Maker, Producer, Provider, Broker, Value-added Reseller and End User. The Internet has spawned the development...

  15. Technical manual for basic version of the Markov chain nest productivity model (MCnest)

    Science.gov (United States)

    The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...

  16. FMCSA safety program effectiveness measurement : carrier intervention effectiveness model, version 1.0 : [analysis brief].

    Science.gov (United States)

    2015-01-01

    The Carrier Intervention Effectiveness Model (CIEM) : provides the Federal Motor Carrier Safety : Administration (FMCSA) with a tool for measuring : the safety benefits of carrier interventions conducted : under the Compliance, Safety, Accountability...

  17. Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a modeled radar attenuation rate profile, showing the predicted contributions from pure ice and impurities to radar attenuation at the Vostok...

  18. User’s manual for basic version of MCnest Markov chain nest productivity model

    Science.gov (United States)

    The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...

  19. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere...

  20. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere impacts and...

  1. Illustrating and homology modeling the proteins of the Zika virus [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2016-09-01

    Full Text Available The Zika virus (ZIKV is a flavivirus of the family Flaviviridae, which is similar to dengue virus, yellow fever and West Nile virus. Recent outbreaks in South America, Latin America, the Caribbean and in particular Brazil have led to concern for the spread of the disease and potential to cause Guillain-Barré syndrome and microcephaly. Although ZIKV has been known of for over 60 years there is very little in the way of knowledge of the virus with few publications and no crystal structures. No antivirals have been tested against it either in vitro or in vivo. ZIKV therefore epitomizes a neglected disease. Several suggested steps have been proposed which could be taken to initiate ZIKV antiviral drug discovery using both high throughput screens as well as structure-based design based on homology models for the key proteins. We now describe preliminary homology models created for NS5, FtsJ, NS4B, NS4A, HELICc, DEXDc, peptidase S7, NS2B, NS2A, NS1, E stem, glycoprotein M, propeptide, capsid and glycoprotein E using SWISS-MODEL. Eleven out of 15 models pass our model quality criteria for their further use. While a ZIKV glycoprotein E homology model was initially described in the immature conformation as a trimer, we now describe the mature dimer conformer which allowed the construction of an illustration of the complete virion. By comparing illustrations of ZIKV based on this new homology model and the dengue virus crystal structure we propose potential differences that could be exploited for antiviral and vaccine design. The prediction of sites for glycosylation on this protein may also be useful in this regard. While we await a cryo-EM structure of ZIKV and eventual crystal structures of the individual proteins, these homology models provide the community with a starting point for structure-based design of drugs and vaccines as well as a for computational virtual screening.

  2. Formal Analysis of Functional Behaviour for Model Transformations Based on Triple Graph Grammars - Extended Version

    OpenAIRE

    Hermann, Frank; Ehrig, Hartmut; Orejas, Fernando; Ulrike, Golas

    2010-01-01

    Triple Graph Grammars (TGGs) are a well-established concept for the specification of model transformations. In previous work we have formalized and analyzed already crucial properties of model transformations like termination, correctness and completeness, but functional behaviour - especially local confluence - is missing up to now. In order to close this gap we generate forward translation rules, which extend standard forward rules by translation attributes keeping track of the elements whi...

  3. Code-switched English Pronunciation Modeling for Swahili Spoken Term Detection (Pub Version, Open Access)

    Science.gov (United States)

    2016-05-03

    model (JSM), developed using Sequitur16,17 and trained on the CMUDict0.7b18 Amer- ican English dictionary (over 134k words), was used to detect English ...modeled using the closest Swahili vowel or vowel combination. In both cases these English L2P predictions were added to a dictionary as variants to swa... English queries as a function of overlap/correspondence with an existing reference English pronunciation dictionary . As the reference dictionary , we

  4. Transverse Crack Modeling and Validation in Rotor Systems Including Thermal Effects

    Directory of Open Access Journals (Sweden)

    N. Bachschmid

    2004-01-01

    Full Text Available In this article, a model is described that allows one to simulate the static behavior of a transversal crack in a horizontal rotor, under the action of the weight and other possible static loads and the dynamical behavior of the rotating cracked shaft. The crack “breaths,” i.e., the mechanism of opening and closing of the crack, is ruled by the stress acting on the cracked section due to the external loads; in a rotor the stress is time-depending with a period equal to the period of rotation, thus the crack “periodically breaths.” An original simplified model is described that allows cracks of different shape to be modeled and thermal stresses to be taken into account, since they may influence the opening and closing mechanism. The proposed method has been validated using two criteria. Firstly, the crack “breathing” mechanism, simulated with the model, has been compared with the results obtained by a nonlinear 3-D FEM calculation and a good agreement in the results has been observed. Secondly, the proposed model allows the development of the equivalent cracked beam. The results of this model are compared with those obtained by the above-mentioned 3-D FEM. There is a good agreement in the results, of this case as well.

  5. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS: calibration and validation

    Science.gov (United States)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2011-12-01

    Sugarcane is currently the most efficient bioenergy crop with regards to the energy produced per hectare. With approximately half the global bioethanol production in 2005, and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Dynamic global vegetation models coupled with agronomical models are powerful and novel tools to tackle many of the environmental issues related to biofuels if they are carefully calibrated and validated against field observations. Here we adapt the agro-terrestrial model ORCHIDEE-STICS for sugar cane simulations. Observation data of LAI are used to evaluate the sensitivity of the model to parameters of nitrogen absorption and phenology, which are calibrated in a systematic way for six sites in Australia and La Reunion. We find that the optimal set of parameters is highly dependent on the sites' characteristics and that the model can reproduce satisfactorily the evolution of LAI. This careful calibration of ORCHIDEE-STICS for sugar cane biomass production for different locations and technical itineraries provides a strong basis for further analysis of the impacts of bioenergy-related land use change on carbon cycle budgets. As a next step, a sensitivity analysis is carried out to estimate the uncertainty of the model in biomass and carbon flux simulation due to its parameterization.

  6. Simplification and Validation of a Spectral-Tensor Model for Turbulence Including Atmospheric Stability

    Science.gov (United States)

    Chougule, Abhijit; Mann, Jakob; Kelly, Mark; Larsen, Gunner C.

    2018-02-01

    A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate ɛ , the length scale of energy-containing eddies L , a turbulence anisotropy parameter Γ, the Richardson number Ri, and the normalized rate of destruction of temperature variance η _θ ≡ ɛ _θ /ɛ . Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to Ri,η _θ. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale ˜ 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.

  7. A Novel Mean-Value Model of the Cardiovascular System Including a Left Ventricular Assist Device.

    Science.gov (United States)

    Ochsner, Gregor; Amacher, Raffael; Schmid Daners, Marianne

    2017-06-01

    Time-varying elastance models (TVEMs) are often used for simulation studies of the cardiovascular system with a left ventricular assist device (LVAD). Because these models are computationally expensive, they cannot be used for long-term simulation studies. In addition, their equilibria are periodic solutions, which prevent the extraction of a linear time-invariant model that could be used e.g. for the design of a physiological controller. In the current paper, we present a new type of model to overcome these problems: the mean-value model (MVM). The MVM captures the behavior of the cardiovascular system by representative mean values that do not change within the cardiac cycle. For this purpose, each time-varying element is manually converted to its mean-value counterpart. We compare the derived MVM to a similar TVEM in two simulation experiments. In both cases, the MVM is able to fully capture the inter-cycle dynamics of the TVEM. We hope that the new MVM will become a useful tool for researchers working on physiological control algorithms. This paper provides a plant model that enables for the first time the use of tools from classical control theory in the field of physiological LVAD control.

  8. Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2018-06-01

    Full Text Available The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1 model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods for fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model becomes negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors in early V1 versions decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in V1 results in a very thin model layer at the Earth's surface, which amplifies the conservation error associated with the surface moisture flux correction. We note

  9. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    Science.gov (United States)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The

  10. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

    Science.gov (United States)

    Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris

    2017-07-01

    While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.

  11. Warm Season Statistical Verification of the Pennsylvania State University Real Time Mesoscale Model Version 5

    National Research Council Canada - National Science Library

    Fitzgerald, Mark

    1998-01-01

    .... Variables that are verified include temperature, dew point, relative humidity, wind direction, wind speed, geopotential height, sea-level pressure, as well as the total totals severe weather index...

  12. Development of a user-friendly interface version of the Salmonella source-attribution model

    DEFF Research Database (Denmark)

    Hald, Tine; Lund, Jan

    of travel and outbreak-related cases, also per country and subtype, ii) food-animal prevalence data per country and subtype, including the number of units tested and the number of positive units, and iii) data on the production and trade of the different food-animal sources in the EU Member States. The EFSA...... cases by subtype including data on the number of travel, domestic, unknown travel history and outbreak-related cases, also per subtype, ii) food-animal prevalence data per subtype, including the number of units tested and the number of positive units, and iii) data on the amount of the included animal...... for example in future mandates dealing with similar questions. The objective of the work described in this report was, therefore, to develop a flexible and user-friendly interface for attributing human cases of food-borne pathogens to the responsible food-animal reservoirs and/or food sources. The interface...

  13. Uncorrelated Encounter Model of the National Airspace System, Version 2.0

    Science.gov (United States)

    2013-08-19

    can exist to certify avoidance systems for operational use. Evaluations typically include flight tests, operational impact studies, and simulation of...appropriate for large-scale air traffic impact studies— for example, examination of sector loading or conflict rates. The focus here includes two types of...between two IFR aircraft in oceanic airspace. The reason for this is that one cannot observe encounters of sufficient fidelity in the available data

  14. OBLIMAP 2.0: a fast climate model–ice sheet model coupler including online embeddable mapping routines

    Directory of Open Access Journals (Sweden)

    T. J. Reerink

    2016-11-01

    Full Text Available This paper accompanies the second OBLIMAP open-source release. The package is developed to map climate fields between a general circulation model (GCM and an ice sheet model (ISM in both directions by using optimal aligned oblique projections, which minimize distortions. The curvature of the surfaces of the GCM and ISM grid differ, both grids may be irregularly spaced and the ratio of the grids is allowed to differ largely. OBLIMAP's stand-alone version is able to map data sets that differ in various aspects on the same ISM grid. Each grid may either coincide with the surface of a sphere, an ellipsoid or a flat plane, while the grid types might differ. Re-projection of, for example, ISM data sets is also facilitated. This is demonstrated by relevant applications concerning the major ice caps. As the stand-alone version also applies to the reverse mapping direction, it can be used as an offline coupler. Furthermore, OBLIMAP 2.0 is an embeddable GCM–ISM coupler, suited for high-frequency online coupled experiments. A new fast scan method is presented for structured grids as an alternative for the former time-consuming grid search strategy, realising a performance gain of several orders of magnitude and enabling the mapping of high-resolution data sets with a much larger number of grid nodes. Further, a highly flexible masked mapping option is added. The limitation of the fast scan method with respect to unstructured and adaptive grids is discussed together with a possible future parallel Message Passing Interface (MPI implementation.

  15. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    Energy Technology Data Exchange (ETDEWEB)

    García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  16. Results of including geometric nonlinearities in an aeroelastic model of an F/A-18

    Science.gov (United States)

    Buttrill, Carey S.

    1989-01-01

    An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.

  17. Cracked rotors. A survey on static and dynamic behaviour including modelling and diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Bachschmid, Nicolo; Pennacchi, Paolo; Tanzi, Ezio [Politecnico di Milano (Italy). Dept. of Mechanical Engineering

    2010-07-01

    Cracks can develop in rotating shafts and can propagate to relevant depths without affecting consistently the normal operating conditions of the shaft. In order to avoid catastrophic failures, accurate vibration analyses have to be performed for crack detection. The identification of the crack location and depth is possible by means of a model based diagnostic approach, provided that the model of the crack and the model of the cracked shaft dynamical behavior are accurate and reliable. This monograph shows the typical dynamical behavior of cracked shafts and presents tests for detecting cracks. The book describes how to model cracks, how to simulate the dynamical behavior of cracked shaft, and compares the corresponding numerical with experimental results. All effects of cracks on the vibrations of rotating shafts are analyzed, and some results of a numerical sensitivity analysis of the vibrations to the presence and severity of the crack are shown. Finally the book describes some crack identification procedures and shows some results in model based crack identification in position and depth. The book is useful for higher university courses in mechanical and energetic engineering, but also for skilled technical people employed in power generation industries. (orig.)

  18. HIV Model Parameter Estimates from Interruption Trial Data including Drug Efficacy and Reservoir Dynamics

    Science.gov (United States)

    Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan

    2012-01-01

    Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727

  19. A void ratio dependent water retention curve model including hydraulic hysteresis

    Directory of Open Access Journals (Sweden)

    Pasha Amin Y.

    2016-01-01

    Full Text Available Past experimental evidence has shown that Water Retention Curve (WRC evolves with mechanical stress and structural changes in soil matrix. Models currently available in the literature for capturing the volume change dependency of WRC are mainly empirical in nature requiring an extensive experimental programme for parameter identification which renders them unsuitable for practical applications. In this paper, an analytical model for the evaluation of the void ratio dependency of WRC in deformable porous media is presented. The approach proposed enables quantification of the dependency of WRC on void ratio solely based on the form of WRC at the reference void ratio and requires no additional parameters. The effect of hydraulic hysteresis on the evolution process is also incorporated in the model, an aspect rarely addressed in the literature. Expressions are presented for the evolution of main and scanning curves due to loading and change in the hydraulic path from scanning to main wetting/drying and vice versa as well as the WRC parameters such as air entry value, air expulsion value, pore size distribution index and slope of the scanning curve. The model is validated using experimental data on compacted and reconstituted soils subjected to various hydro-mechanical paths. Good agreement is obtained between model predictions and experimental data in all the cases considered.

  20. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.

    Science.gov (United States)

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-08-15

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem.

  1. A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk

    DEFF Research Database (Denmark)

    Jensen, Ninna Reitzel; Schomacker, Kristian Juul

    2015-01-01

    Using a two-account model with event risk, we model life insurance contracts taking into account both guaranteed and non-guaranteed payments in participating life insurance as well as in unit-linked insurance. Here, event risk is used as a generic term for life insurance events, such as death......, disability, etc. In our treatment of participating life insurance, we have special focus on the bonus schemes “consolidation” and “additional benefits”, and one goal is to formalize how these work and interact. Another goal is to describe similarities and differences between participating life insurance...... product types. This enables comparison of participating life insurance products and unit-linked insurance products, thus building a bridge between the two different ways of formalizing life insurance products. Finally, our model distinguishes itself from the existing literature by taking into account...

  2. A new mammalian circadian oscillator model including the cAMP module

    International Nuclear Information System (INIS)

    Jun-Wei, Wang; Tian-Shou, Zhou

    2009-01-01

    In this paper, we develop a new mathematical model for the mammalian circadian clock, which incorporates both transcriptional/translational feedback loops (TTFLs) and a cAMP-mediated feedback loop. The model shows that TTFLs and cAMP signalling cooperatively drive the circadian rhythms. It reproduces typical experimental observations with qualitative similarities, e.g. circadian oscillations in constant darkness and entrainment to light–dark cycles. In addition, it can explain the phenotypes of cAMP-mutant and Rev-erbα −/− -mutant mice, and help us make an experimentally-testable prediction: oscillations may be rescued when arrhythmic mice with constitutively low concentrations of cAMP are crossed with Rev-erbα −/− mutant mice. The model enhances our understanding of the mammalian circadian clockwork from the viewpoint of the entire cell. (cross-disciplinary physics and related areas of science and technology)

  3. A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation

    Directory of Open Access Journals (Sweden)

    David L. Spencer

    2016-10-01

    Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.

  4. Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR community climate model. Technical note. [NCAR (National Center for Atmospheric Research)

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J.

    1993-08-01

    A comprehensive model of land-surface processes has been under development suitable for use with various National Center for Atmospheric Research (NCAR) General Circulation Models (GCMs). Special emphasis has been given to describing properly the role of vegetation in modifying the surface moisture and energy budgets. The result of these efforts has been incorporated into a boundary package, referred to as the Biosphere-Atmosphere Transfer Scheme (BATS). The current frozen version, BATS1e is a piece of software about four thousand lines of code that runs as an offline version or coupled to the Community Climate Model (CCM).

  5. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  6. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  7. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  8. Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy

    Science.gov (United States)

    Radue, Matthew S.

    Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra

  9. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  10. Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects

    International Nuclear Information System (INIS)

    Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe

    2008-01-01

    The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust 2 and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.

  11. Analysis of shallow water experimental acoustic data including normal mode model comparisons

    NARCIS (Netherlands)

    McHugh, R.; Simons, D.G.

    2000-01-01

    Ss part of a propagation model validation exercise experimental acoustic and oceanographic data was collected from a shallow-water, long-range channel, off the west coast of Scotland. Temporal variability effects in this channel were assessed through visual inspection of stacked plots, each of which

  12. 3D numerical surface charge model including relative permeability : the general theory

    NARCIS (Netherlands)

    Casteren, van D.T.E.H.; Paulides, J.J.H.; Lomonova, E.A.

    2014-01-01

    One of the still "open" issues within low-frequency magnetics is the inclusion of µr in the calculations using the magnetic charge method. In this paper a new iterative method to take the relative permeability into account is investigated. Results show that the model accurately accounts for the

  13. Modeling the elastic behavior of ductile cast iron including anisotropy in the graphite nodules

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2016-01-01

    by means of a 3D periodic unit cell model. In this respect, an explicit procedure to enforce both periodic displacement and periodic traction boundary conditions in ABAQUS is presented, and the importance of fulfilling the traction continuity conditions at the unit cell boundaries is discussed. It is shown...

  14. Loss and thermal model for power semiconductors including device rating information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2014-01-01

    The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal models, only the electrical loadings are focused and treated as design variables, while the device rating is normally...

  15. Multiscale modelling of solidification microstructures, including microsegregation and microporosity, in an Al-Si-Cu alloy

    International Nuclear Information System (INIS)

    Lee, P.D.; Chirazi, A.; Atwood, R.C.; Wang, W.

    2004-01-01

    Phase transition phenomena in metallic alloys involve complex physical processes occurring over a wide range of temporal, spatial and energy scales. Multiscale modelling is a powerful methodology for understanding these complex systems. In this paper, a multiscale model of grain and pore formation is presented during solidification. At the microscale, a combined stochastic-deterministic approach based on the cellular automata method is used to solve multicomponent diffusion in a three-phase system (liquid, solid and gas), simulating the nucleation and growth of both grains and pores. The impingement of the growing pores upon the developing solid is also solved to predict the tortuous shape of the porosity, a critical factor for fatigue properties. The micromodel is coupled with a finite element method (FEM) solution of the macroscale heat transfer and fluid flow in industrial castings through the temperature and pressure fields. The result model was used to investigate the influence of local solidification time, hydrogen content, local metallostatic pressure and alloy composition upon the predicted grain structure and pore morphology. Comparison of the model predictions to both laboratory and industrial scale castings are presented

  16. Situational effects of the school factors included in the dynamic model of educational effectiveness

    NARCIS (Netherlands)

    Creerners, Bert; Kyriakides, Leonidas

    We present results of a longitudinal study in which 50 schools, 113 classes and 2,542 Cypriot primary students participated. We tested the validity of the dynamic model of educational effectiveness and especially its assumption that the impact of school factors depends on the current situation of

  17. Non-local modelling of cyclic thermal shock damage including parameter estimation

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    In this paper, rate dependent evolution laws are identified and characterized to model the mechanical (elasticity-based) and thermal damage occurring in coarse grain refractory material subject to cyclic thermal shock. The interacting mechanisms for elastic deformation driven damage induced by

  18. Logical diagnosis model turbojet engine including double-circuit intermittent flow of his injuries

    Directory of Open Access Journals (Sweden)

    О.П. Стьопушкіна

    2007-01-01

    Full Text Available  In this article is considered question of the change quantitative and qualitative factors of the technical condition constructive element running part of jet engine. As a result called on experimental studies diagnostic sign were definite sign with provision for intermittent damages and on base this is built expert model of the turbojet double-circuit engine.

  19. Static aeroelastic analysis including geometric nonlinearities based on reduced order model

    Directory of Open Access Journals (Sweden)

    Changchuan Xie

    2017-04-01

    Full Text Available This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model (ROM. The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities; meanwhile, the non-planar effects of aerodynamics and follower force effect have been considered. ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method (FEM especially in aeroelastic solutions. The approach for structure modeling presented here is on the basis of combined modal/finite element (MFE method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis. Moreover, the non-planar aerodynamic force is computed by the non-planar vortex lattice method (VLM. Structure and aerodynamics can be coupled with the surface spline method. The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.

  20. User's Manual MCnest - Markov Chain Nest Productivity Model Version 2.0

    Science.gov (United States)

    The Markov chain nest productivity model, or MCnest, is a set of algorithms for integrating the results of avian toxicity tests with reproductive life-history data to project the relative magnitude of chemical effects on avian reproduction. The mathematical foundation of MCnest i...

  1. A Functional Model of Sensemaking in a Neurocognitive Architecture (Open Access, Publisher’s Version)

    Science.gov (United States)

    2013-07-08

    updating processes involved in sensemaking. We do this by developing ACT-R models to specify how ele- mentary cognitive modules and processes are marshaled ...13] M. I. Posner, R. Goldsmith , and K. E. Welton Jr., “Perceived distance and the classification of distorted patterns,” Journal of Experimental

  2. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3.0)

    Science.gov (United States)

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfil...

  3. LANDFILL GAS EMISSIONS MODEL (LANDGEM) VERSION 3.02 USER'S GUIDE

    Science.gov (United States)

    The Landfill Gas Emissions Model (LandGEM) is an automated estimation tool with a Microsoft Excel interface that can be used to estimate emission rates for total landfill gas, methane, carbon dioxide, nonmethane organic compounds, and individual air pollutants from municipal soli...

  4. Unit testing, model validation, and biological simulation [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Gopal P. Sarma

    2016-08-01

    Full Text Available The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models.

  5. The GRASP 3: Graphical Reliability Analysis Simulation Program. Version 3: A users' manual and modelling guide

    Science.gov (United States)

    Phillips, D. T.; Manseur, B.; Foster, J. W.

    1982-01-01

    Alternate definitions of system failure create complex analysis for which analytic solutions are available only for simple, special cases. The GRASP methodology is a computer simulation approach for solving all classes of problems in which both failure and repair events are modeled according to the probability laws of the individual components of the system.

  6. A biologically inspired neural model for visual and proprioceptive integration including sensory training.

    Science.gov (United States)

    Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi

    2013-12-01

    Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model

  7. Preliminary site description: Groundwater flow simulations. Simpevarp area (version 1.1) modelled with CONNECTFLOW

    International Nuclear Information System (INIS)

    Hartley, Lee; Worth, David; Gylling, Bjoern; Marsic, Niko; Holmen, Johan

    2004-08-01

    The main objective of this study is to assess the role of known and unknown hydrogeological conditions for the present-day distribution of saline groundwater at the Simpevarp and Laxemar sites. An improved understanding of the paleo-hydrogeology is necessary in order to gain credibility for the Site Descriptive Model in general and the Site Hydrogeological Description in particular. This is to serve as a basis for describing the present hydrogeological conditions as well as predictions of future hydrogeological conditions. This objective implies a testing of: geometrical alternatives in the structural geology and bedrock fracturing, variants in the initial and boundary conditions, and parameter uncertainties (i.e. uncertainties in the hydraulic property assignment). This testing is necessary in order to evaluate the impact on the groundwater flow field of the specified components and to promote proposals of further investigations of the hydrogeological conditions at the site. The general methodology for modelling transient salt transport and groundwater flow using CONNECTFLOW that was developed for Forsmark has been applied successfully also for Simpevarp. Because of time constraints only a key set of variants were performed that focussed on the influences of DFN model parameters, the kinematic porosity, and the initial condition. Salinity data in deep boreholes available at the time of the project was too limited to allow a good calibration exercise. However, the model predictions are compared with the available data from KLX01 and KLX02 below. Once more salinity data is available it may be possible to draw more definite conclusions based on the differences between variants. At the moment though the differences should just be used understand the sensitivity of the models to various input parameters

  8. Groundwater model of the Great Basin carbonate and alluvial aquifer system version 3.0: Incorporating revisions in southwestern Utah and east central Nevada

    Science.gov (United States)

    Brooks, Lynette E.

    2017-12-01

    The groundwater model described in this report is a new version of previously published steady-state numerical groundwater flow models of the Great Basin carbonate and alluvial aquifer system, and was developed in conjunction with U.S. Geological Survey studies in Parowan, Pine, and Wah Wah Valleys, Utah. This version of the model is GBCAAS v. 3.0 and supersedes previous versions. The objectives of the model for Parowan Valley were to simulate revised conceptual estimates of recharge and discharge, to estimate simulated aquifer storage properties and the amount of reduction in storage as a result of historical groundwater withdrawals, and to assess reduction in groundwater withdrawals necessary to mitigate groundwater-level declines in the basin. The objectives of the model for the area near Pine and Wah Wah Valleys were to recalibrate the model using new observations of groundwater levels and evapotranspiration of groundwater; to provide new estimates of simulated recharge, hydraulic conductivity, and interbasin flow; and to simulate the effects of proposed groundwater withdrawals on the regional flow system. Meeting these objectives required the addition of 15 transient calibration stress periods and 14 projection stress periods, aquifer storage properties, historical withdrawals in Parowan Valley, and observations of water-level changes in Parowan Valley. Recharge in Parowan Valley and withdrawal from wells in Parowan Valley and two nearby wells in Cedar City Valley vary for each calibration stress period representing conditions from March 1940 to November 2013. Stresses, including recharge, are the same in each stress period as in the steady-state stress period for all areas outside of Parowan Valley. The model was calibrated to transient conditions only in Parowan Valley. Simulated storage properties outside of Parowan Valley were set the same as the Parowan Valley properties and are not considered calibrated. Model observations in GBCAAS v. 3.0 are

  9. Bifurcation approach to the predator-prey population models (Version of the computer book)

    International Nuclear Information System (INIS)

    Bazykin, A.D.; Zudin, S.L.

    1993-09-01

    Hierarchically organized family of predator-prey systems is studied. The classification is founded on two interacting principles: the biological and mathematical ones. The different combinations of biological factors included correspond to different bifurcations (up to codimension 3). As theoretical so computing methods are used for analysis, especially concerning non-local bifurcations. (author). 6 refs, figs

  10. Storm Water Management Model User’s Manual Version 5.1 - manual

    Science.gov (United States)

    SWMM 5 provides an integrated environment for editing study area input data, running hydrologic, hydraulic and water quality simulations, and viewing the results in a variety of formats. These include color-coded drainage area and conveyance system maps, time series graphs and ta...

  11. People Capability Maturity Model (P-CMM) Version 2.0, Second Edition

    Science.gov (United States)

    2009-07-01

    competency may include a beginner , a novice, a journeyman, a senior practi- tioner, and a master or expert. 1. Competency information is aggregated at the...Textual listings of work activities • Flowcharts or other graphical depictions of work activities • Procedural descriptions of work activities 430

  12. European column buckling curves and finite element modelling including high strength steels

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Stan, Tudor-Cristian

    2017-01-01

    Eurocode allows for finite element modelling of plated steel structures, however the information in the code on how to perform the analysis or what assumptions to make is quite sparse. The present paper investigates the deterministic modelling of flexural column buckling using plane shell elements...... imperfections may be very conservative if considered by finite element analysis as described in the current Eurocode code. A suggestion is given for a slightly modified imperfection formula within the Ayrton-Perry formulation leading to adequate inclusion of modern high grade steels within the original four...... bucking curves. It is also suggested that finite element or frame analysis may be performed with equivalent column bow imperfections extracted directly from the Ayrton-Perry formulation....

  13. Classical model for nuclear collisions including the meson degree of freedom

    International Nuclear Information System (INIS)

    Babinet, R.; Kunz, J.; Mosel, U.; Wilets, L.

    1980-01-01

    Many different approaches have been taken to describe high energy heavy ion collisions. L. Wilets et al proposed a classical treatment of the problem. In his model non-relativistic nucleons move on classical trajectories. However, the Pauli-principle is simulated by a momentum dependent potential acting between the nucleons. This model is extended in two ways. The nucleons are coupled to a pionfield, which enables us to describe inelastic processes. Nucleons and pionfiled are treated completely relativistically, this also assures Lorentz invariance. We aim at a set of classical equations of motion describing the interacting system of nucleons and pionfield. These classical equations should have a quantum mechanical basis. Further, they should contain such fundamental properties of the pion-nucleon system as the Δ(3,3)-resonance, at least in a qualitative manner. (orig./FKS)

  14. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    International Nuclear Information System (INIS)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L.

    2001-01-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  15. The baryonic spectrum in a constituent quark model including a three-body force

    International Nuclear Information System (INIS)

    Desplanques, B.; Gignoux, C.; Silvestre-Brac, B.; Gonzalez, P.; Navarro, J.; Noguera, S.

    1992-01-01

    We analyze, within a non-relativistic quark model, the low energy part of the baryonic spectrum in the octet and decuplet flavour representations. The relevance of a strong Coulomb potential is emphasized in order to explain its general features. The addition of a three-body force allows to solve the 'Roper puzzle', giving a consistent explanation to its relative position in the spectrum. (orig.)

  16. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)

    2001-07-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  17. An Evacuation Model for Passenger Ships That Includes the Influence of Obstacles in Cabins

    Directory of Open Access Journals (Sweden)

    Baocheng Ni

    2017-01-01

    Full Text Available Passenger behavior and ship environment are the key factors affecting evacuation efficiency. However, current studies ignore the interior layout of passenger ship cabins and treat the cabins as empty rooms. To investigate the influence of obstacles (e.g., tables and stools on cabin evacuation, we propose an agent-based social force model for advanced evacuation analysis of passenger ships; this model uses a goal-driven submodel to determine a plan and an extended social force submodel to govern the movement of passengers. The extended social force submodel considers the interaction forces between the passengers, crew, and obstacles and minimises the range of these forces to improve computational efficiency. We drew the following conclusions based on a series of evacuation simulations conducted in this study: (1 the proposed model endows the passenger with the behaviors of bypassing and crossing obstacles, (2 funnel-shaped exits from cabins can improve evacuation efficiency, and (3 as the exit angle increases, the evacuation time also increases. These findings offer ship designers some insight towards increasing the safety of large passenger ships.

  18. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    Science.gov (United States)

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.

  19. A stepped leader model for lightning including charge distribution in branched channels

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Zhang, Li [School of Electrical Engineering, Shandong University, Jinan 250061 (China); Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn [Beijing Key Lab of HV and EMC, North China Electric Power University, Beijing 102206 (China); State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206 (China)

    2014-09-14

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  20. A stepped leader model for lightning including charge distribution in branched channels

    International Nuclear Information System (INIS)

    Shi, Wei; Zhang, Li; Li, Qingmin

    2014-01-01

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  1. Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Version 2) (External Review Draft)

    Science.gov (United States)

    EPA announced the availability of the draft report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) for a 30-day public comment period. The ICLUS version 2 (v2) modeling tool furthered land change mod...

  2. The Everglades Depth Estimation Network (EDEN) surface-water model, version 2

    Science.gov (United States)

    Telis, Pamela A.; Xie, Zhixiao; Liu, Zhongwei; Li, Yingru; Conrads, Paul

    2015-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of water-level gages, interpolation models that generate daily water-level and water-depth data, and applications that compute derived hydrologic data across the freshwater part of the greater Everglades landscape. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN in order for EDEN to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan.

  3. Ion temperature in the outer ionosphere - first version of a global empirical model

    Czech Academy of Sciences Publication Activity Database

    Třísková, Ludmila; Truhlík, Vladimír; Šmilauer, Jan; Smirnova, N. F.

    2004-01-01

    Roč. 34, č. 9 (2004), s. 1998-2003 ISSN 0273-1177 R&D Projects: GA ČR GP205/02/P037; GA AV ČR IAA3042201; GA MŠk ME 651 Institutional research plan: CEZ:AV0Z3042911 Keywords : plasma temperatures * topside ionosphere * empirical models Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.548, year: 2004

  4. Software Design Description for the Navy Coastal Ocean Model (NCOM) Version 4.0

    Science.gov (United States)

    2008-12-31

    Recipes Software, U.S., p. 659. Rood, R. B., (1987). Numerical advection algorithms and their role in atmospheric transport and chemistry models... cstr ,lenc) Data Declaration: Integer lenc Character cstr Coamps_uvg2uv Subroutine COAMPS_UVG2UV...are removed from the substrings. Calling Sequence: strpars(cline, cdelim, nstr, cstr , nsto, ierr) NRL/MR/7320--08-9149

  5. The Canadian Defence Input-Output Model DIO Version 4.41

    Science.gov (United States)

    2011-09-01

    Request to develop DND tailored Input/Output Model. Electronic communication from AllenWeldon to Team Leader, Defence Economics Team onMarch 12, 2011...and similar contain- ers 166 1440 Handbags, wallets and similar personal articles such as eyeglass and cigar cases and coin purses 167 1450 Cotton yarn...408 3600 Radar and radio navigation equipment 409 3619 Semi-conductors 410 3621 Printed circuits 411 3622 Integrated circuits 412 3623 Other electronic

  6. Regional groundwater flow model for a glaciation scenario. Simpevarp subarea - version 1.2

    International Nuclear Information System (INIS)

    Jaquet, O.; Siegel, P.

    2006-10-01

    A groundwater flow model (glaciation model) was developed at a regional scale in order to study long term transient effects related to a glaciation scenario likely to occur in response to climatic changes. Conceptually the glaciation model was based on the regional model of Simpevarp and was then extended to a mega-regional scale (of several hundred kilometres) in order to account for the effects of the ice sheet. These effects were modelled using transient boundary conditions provided by a dynamic ice sheet model describing the phases of glacial build-up, glacial completeness and glacial retreat needed for the glaciation scenario. The results demonstrate the strong impact of the ice sheet on the flow field, in particular during the phases of the build-up and the retreat of the ice sheet. These phases last for several thousand years and may cause large amounts of melt water to reach the level of the repository and below. The highest fluxes of melt water are located in the vicinity of the ice margin. As the ice sheet approaches the repository location, the advective effects gain dominance over diffusive effects in the flow field. In particular, up-coning effects are likely to occur at the margin of the ice sheet leading to potential increases in salinity at repository level. For the base case, the entire salinity field of the model is almost completely flushed out at the end of the glaciation period. The flow patterns are strongly governed by the location of the conductive features in the subglacial layer. The influence of these glacial features is essential for the salinity distribution as is their impact on the flow trajectories and, therefore, on the resulting performance measures. Travel times and F-factor were calculated using the method of particle tracking. Glacial effects cause major consequences on the results. In particular, average travel times from the repository to the surface are below 10 a during phases of glacial build-up and retreat. In comparison

  7. Regional groundwater flow model for a glaciation scenario. Simpevarp subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Siegel, P. [Colenco Power Engineering Ltd, Baden-Daettwil (Switzerland)

    2006-10-15

    A groundwater flow model (glaciation model) was developed at a regional scale in order to study long term transient effects related to a glaciation scenario likely to occur in response to climatic changes. Conceptually the glaciation model was based on the regional model of Simpevarp and was then extended to a mega-regional scale (of several hundred kilometres) in order to account for the effects of the ice sheet. These effects were modelled using transient boundary conditions provided by a dynamic ice sheet model describing the phases of glacial build-up, glacial completeness and glacial retreat needed for the glaciation scenario. The results demonstrate the strong impact of the ice sheet on the flow field, in particular during the phases of the build-up and the retreat of the ice sheet. These phases last for several thousand years and may cause large amounts of melt water to reach the level of the repository and below. The highest fluxes of melt water are located in the vicinity of the ice margin. As the ice sheet approaches the repository location, the advective effects gain dominance over diffusive effects in the flow field. In particular, up-coning effects are likely to occur at the margin of the ice sheet leading to potential increases in salinity at repository level. For the base case, the entire salinity field of the model is almost completely flushed out at the end of the glaciation period. The flow patterns are strongly governed by the location of the conductive features in the subglacial layer. The influence of these glacial features is essential for the salinity distribution as is their impact on the flow trajectories and, therefore, on the resulting performance measures. Travel times and F-factor were calculated using the method of particle tracking. Glacial effects cause major consequences on the results. In particular, average travel times from the repository to the surface are below 10 a during phases of glacial build-up and retreat. In comparison

  8. Two modified versions of the speciation code PHREEQE for modelling macromolecule-proton/cation interaction

    International Nuclear Information System (INIS)

    Falck, W.E.

    1991-01-01

    There is a growing need to consider the influence of organic macromolecules on the speciation of ions in natural waters. It is recognized that a simple discrete ligand approach to the binding of protons/cations to organic macromolecules is not appropriate to represent heterogeneities of binding site distributions. A more realistic approach has been incorporated into the speciation code PHREEQE which retains the discrete ligand approach but modifies the binding intensities using an electrostatic (surface complexation) model. To allow for different conformations of natural organic material two alternative concepts have been incorporated: it is assumed that (a) the organic molecules form rigid, impenetrable spheres, and (b) the organic molecules form flat surfaces. The former concept will be more appropriate for molecules in the smaller size range, while the latter will be more representative for larger size molecules or organic surface coatings. The theoretical concept is discussed and the relevant changes to the standard PHREEQE code are explained. The modified codes are called PHREEQEO-RS and PHREEQEO-FS for the rigid-sphere and flat-surface models respectively. Improved output facilities for data transfer to other computers, e.g. the Macintosh, are introduced. Examples where the model is tested against literature data are shown and practical problems are discussed. Appendices contain listings of the modified subroutines GAMMA and PTOT, an example input file and an example command procedure to run the codes on VAX computers

  9. Modeling and Control of Risley Prism Beam Steering Including BLDC Motors

    OpenAIRE

    Gunnarsson, Oscar

    2016-01-01

    Saab AB Training & Simulation is specialized on military training, including laserbased training. To continue being the world leader in this area, a new generationof laser simulators needs to be developed. To simplify the development of thishighly complex system, this master thesis have resulted in a MATLAB/Simulinkmodel which simulates the electro-opto/mechanical system representing theirlaser based simulation platform. The focus of this master thesis has been to simulateand control the ...

  10. Correlated Encounter Model for Cooperative Aircraft in the National Airspace System; Version 2.0

    Science.gov (United States)

    2018-05-08

    aircraft was in communication with and therefore advised by ATC which would impact the anticipated behavior of the flight: • Discrete Code: The aircraft is...receiving ATC services. This includes aircraft flying under Instrument Flight Rules ( IFR ) and aircraft flying under Visual flight rules (VFR) but...improves the accuracy of the en- counters by ensuring that smoothing, rounding, and interpolation errors do not strongly impact the targeted data in the

  11. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.

    Science.gov (United States)

    Morrison, Ian S; Gowanlock, Michael G

    2015-08-01

    Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.

  12. Presentation, calibration and validation of the low-order, DCESS Earth System Model (Version 1

    Directory of Open Access Journals (Sweden)

    J. O. Pepke Pedersen

    2008-11-01

    Full Text Available A new, low-order Earth System Model is described, calibrated and tested against Earth system data. The model features modules for the atmosphere, ocean, ocean sediment, land biosphere and lithosphere and has been designed to simulate global change on time scales of years to millions of years. The atmosphere module considers radiation balance, meridional transport of heat and water vapor between low-mid latitude and high latitude zones, heat and gas exchange with the ocean and sea ice and snow cover. Gases considered are carbon dioxide and methane for all three carbon isotopes, nitrous oxide and oxygen. The ocean module has 100 m vertical resolution, carbonate chemistry and prescribed circulation and mixing. Ocean biogeochemical tracers are phosphate, dissolved oxygen, dissolved inorganic carbon for all three carbon isotopes and alkalinity. Biogenic production of particulate organic matter in the ocean surface layer depends on phosphate availability but with lower efficiency in the high latitude zone, as determined by model fit to ocean data. The calcite to organic carbon rain ratio depends on surface layer temperature. The semi-analytical, ocean sediment module considers calcium carbonate dissolution and oxic and anoxic organic matter remineralisation. The sediment is composed of calcite, non-calcite mineral and reactive organic matter. Sediment porosity profiles are related to sediment composition and a bioturbated layer of 0.1 m thickness is assumed. A sediment segment is ascribed to each ocean layer and segment area stems from observed ocean depth distributions. Sediment burial is calculated from sedimentation velocities at the base of the bioturbated layer. Bioturbation rates and oxic and anoxic remineralisation rates depend on organic carbon rain rates and dissolved oxygen concentrations. The land biosphere module considers leaves, wood, litter and soil. Net primary production depends on atmospheric carbon dioxide concentration and

  13. Double pendulum model for a tennis stroke including a collision process

    Science.gov (United States)

    Youn, Sun-Hyun

    2015-10-01

    By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.

  14. Model - including thermal creep effects - for the analysis of three-dimensional concrete structures

    International Nuclear Information System (INIS)

    Rodriguez, C.; Rebora, B.; Favrod, J.D.

    1979-01-01

    This article presents the most recent developments and results of research carried out by IPEN to establish a mathematical model for the non-linear rheological three-dimensional analysis of massive prestressed concrete structures. The main point of these latest developments is the simulation of the creep of concrete submitted to high temperatures over a long period of time. This research, financed by the Swiss National Science Foundation, has taken an increased importance with the advent of nuclear reactor vessels of the HHT type and new conceptions concerning the cooling of their concrete (replacement of the thermal insulation by a zone of hot concrete). (orig.)

  15. An Infusion Model for Including Content on Elders with Chronic Illness in the Curriculum

    Directory of Open Access Journals (Sweden)

    Sherry M. Cummings

    2000-05-01

    Full Text Available Older people with chronic mental illness (CMI are experiencing longer life expectancies that parallel those of the general population. Due to their experience of having CMI, these older adults present unique issues that affect service delivery and care provision. Content on this population is often omitted in the curriculum, which leaves students unprepared to practice with these clients. This article proposes an infusion model that can be used in baccalaureate or graduate foundation courses to increase exposure to elders with CMI.

  16. porewater chemistry experiment at Mont Terri rock laboratory. Reactive transport modelling including bacterial activity

    International Nuclear Information System (INIS)

    Tournassat, Christophe; Gaucher, Eric C.; Leupin, Olivier X.; Wersin, Paul

    2010-01-01

    Document available in extended abstract form only. An in-situ test in the Opalinus Clay formation, termed pore water Chemistry (PC) experiment, was run for a period of five years. It was based on the concept of diffusive equilibration whereby traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed off borehole. The main original focus was to obtain reliable data on the pH/pCO 2 of the pore water, but because of unexpected microbially- induced redox reactions, the objective was then changed to elucidate the biogeochemical processes happening in the borehole and to understand their impact on pH/pCO 2 and pH in the low permeability clay formation. The biologically perturbed chemical evolution of the PC experiment was simulated with reactive transport models. The aim of this modelling exercise was to develop a 'minimal-' model able to reproduce the chemical evolution of the PC experiment, i.e. the chemical evolution of solute inorganic and organic compounds (organic carbon, dissolved inorganic carbon etc...) that are coupled with each other through the simultaneous occurrence of biological transformation of solute or solid compounds, in-diffusion and out-diffusion of solute species and precipitation/dissolution of minerals (in the borehole and in the formation). An accurate description of the initial chemical conditions in the surrounding formation together with simplified kinetics rule mimicking the different phases of bacterial activities allowed reproducing the evolution of all main measured parameters (e.g. pH, TOC). Analyses from the overcoring and these simulations evidence the high buffer capacity of Opalinus clay regarding chemical perturbations due to bacterial activity. This pH buffering capacity is mainly attributed to the carbonate system as well as to the clay surfaces reactivity. Glycerol leaching from the pH-electrode might be the primary organic source responsible for

  17. Able but unintelligent: including positively stereotyped black subgroups in the stereotype content model.

    Science.gov (United States)

    Walzer, Amy S; Czopp, Alexander M

    2011-01-01

    The stereotype content model (SCM) posits that warmth and competence are the key components underlying judgments about social groups. Because competence can encompass different components (e.g., intelligence, talent) different group members may be perceived to be competent for different reasons. Therefore, we believe it may be important to specify the type of competence being assessed when examining perceptions of groups that are positively stereotyped (i.e., Black athletes and musical Blacks). Consistent with the SCM, these subgroups were perceived as high in competence-talent but not in competence-intelligence and low in warmth. Both the intelligence and talent frame of competence fit in the SCM's social structural hypothesis.

  18. RadCon: A radiological consequences model. Technical guide - Version 2.0

    International Nuclear Information System (INIS)

    Crawford, J; Domel, R.U.; Harris, F.F.; Twining, J.R.

    2000-05-01

    A Radiological Consequence model (RadCon) is being developed at ANSTO to assess the radiological consequences, after an incident, in any climate, using appropriate meteorological and radiological transfer parameters. The major areas of interest to the developers are tropical and subtropical climates. This is particularly so given that it is anticipated that nuclear energy will become a mainstay for economies in these regions within the foreseeable future. Therefore, data acquisition and use of parameter values have been concentrated primarily on these climate types. Atmospheric dispersion and deposition for Australia can be modelled and supplied by the Regional Specialised Meteorological Centre (RSMC, one of five in the world) which is part of the Bureau of Meteorology Research Centre (BMRC), Puri et al. (1992). RadCon combines these data (i.e. the time dependent air and ground concentration generated by the dispersion model or measured quantities in the case of an actual incident) with specific regional parameter values to determine the dose to people via the major pathways of external and internal irradiation. For the external irradiation calculations, data are needed on lifestyle information such as the time spent indoors/outdoors, the high/low physical activity rates for different groups of people (especially critical groups) and shielding factors for housing types. For the internal irradiation calculations, data are needed on food consumption, effect of food processing, transfer parameters (soil to plant, plant to animal) and interception values appropriate for the region under study. Where the relevant data are not available default temperate data are currently used. The results of a wide ranging literature search has highlighted where specific research will be initiated to determine the information required for tropical and sub-tropical regions. The user is able to initiate sensitivity analyses within RadCon. This allows the parameters to be ranked in

  19. Dayton Aircraft Cabin Fire Model, Version 3, Volume I. Physical Description.

    Science.gov (United States)

    1982-06-01

    contact to any surface directly above a burning element, provided that the current flame length makes contact possible. For fires originating on the...no extension of the flames horizontally beneath the surface is considered. The equation for computing the flame length is presented in Section 5. For...high as 0.3. The values chosen for DACFIR3 are 0.15 for Ec and 0.10 for E P. The Steward model is also used to compute flame length , hf, for the fire