WorldWideScience

Sample records for model utilises satellite

  1. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    DEFF Research Database (Denmark)

    Demirel, Mehmet C.; Mai, Juliane; Mendiguren Gonzalez, Gorka

    2018-01-01

    Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target...... and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance...

  2. Techno-Economic Models for Optimised Utilisation of Jatropha curcas Linnaeus under an Out-Grower Farming Scheme in Ghana

    Directory of Open Access Journals (Sweden)

    Isaac Osei

    2016-11-01

    Full Text Available Techno-economic models for optimised utilisation of jatropha oil under an out-grower farming scheme were developed based on different considerations for oil and by-product utilisation. Model 1: Out-grower scheme where oil is exported and press cake utilised for compost. Model 2: Out-grower scheme with six scenarios considered for the utilisation of oil and by-products. Linear programming models were developed based on outcomes of the models to optimise the use of the oil through profit maximisation. The findings revealed that Model 1 was financially viable from the processors’ perspective but not for the farmer at seed price of $0.07/kg. All scenarios considered under Model 2 were financially viable from the processors perspective but not for the farmer at seed price of $0.07/kg; however, at seed price of $0.085/kg, financial viability was achieved for both parties. Optimising the utilisation of the oil resulted in an annual maximum profit of $123,300.

  3. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  4. ICT and OTs: a model of information and communication technology acceptance and utilisation by occupational therapists.

    Science.gov (United States)

    Schaper, Louise K; Pervan, Graham P

    2007-06-01

    There is evidence to suggest that health professionals are reluctant to accept and utilise information and communication technologies (ICT) and concern is growing within health informatics research that this is contributing to the lag in adoption and utilisation of ICT across the health sector. Technology acceptance research within the field of information systems has been limited in its application to health and there is a concurrent need to develop and gain empirical support for models of technology acceptance within health and to examine acceptance and utilisation issues amongst health professionals to improve the success of information system implementation in this arena. This paper outlines a project that examines ICT acceptance and utilisation by Australian occupational therapists. It describes the theoretical basis behind the development of a research model and the methodology being employed to empirically validate the model using substantial quantitative, qualitative and longitudinal data. Preliminary results from Phase II of the study are presented. The theoretical significance of this work is that it uses a thoroughly constructed research model, with potentially the largest sample size ever tested, to extend technology acceptance research into the health sector.

  5. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  6. High accuracy satellite drag model (HASDM)

    Science.gov (United States)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  7. Inflation and capacity utilisation in Nigeria's manufacturing sector ...

    African Journals Online (AJOL)

    This study analysed the relationship between inflation and capacity utilisation empirically leaning on the model employed by Baylor (2001). It utilised time series secondary data using least square multiple regression technique. The quarterly data utilised were tested for stationarity using ADF test. The multiple regression ...

  8. MODELLING OF AN INEXPENSIVE 9M SATELLITE DISH FROM 3D POINT CLOUDS CAPTURED BY TERRESTRIAL LASER SCANNERS

    Directory of Open Access Journals (Sweden)

    D. Belton

    2012-09-01

    Full Text Available This paper presents the use of Terrestrial laser scanners (TLS to model the surface of satellite dish. In this case, the dish was an inexpensive 9m parabolic satellite dish with a mesh surface, and was to be utilised in radio astronomy. The aim of the modelling process was to determine the deviation of the surface away from its true parabolic shape, in order to estimate the surface efficiency with respect to its principal receiving frequency. The main mathematical problems were the optimal and unbiased estimation the orientation of the dish and the fitting of a parabola to the local orientation or coordinate system, which were done by both orthogonal and algebraic minimization using the least-squares method. Due to the mesh structure of the dish, a classification method was also applied to filter out erroneous points being influenced by the supporting structure behind the dish. Finally, a comparison is performed between the ideal parabolic shape, and the data collected from three different temporal intervals.

  9. Capacity Utilisation of Vehicles for Road Freight Transport

    DEFF Research Database (Denmark)

    Kveiborg, Ole; Abate, Megersa Abera

    to their analytical approach and origin of research. Findings The first approach looks at utilisation based on economic theories such as the firms’ objective to maximise profitability and considers how various firm and haul (market) characteristics influence utilisation. The second approach stems from the transport...... modelling literature and its main aim is analysing vehicle movement and usage in transport demand modelling context. A strand of this second group of contributions is the modelling of trip-chain and its implication on the level of capacity utilisation. Research limitations The review is not a comprehensive...... by combining different strands of this literature....

  10. Comparative emergency department resource utilisation across age groups.

    Science.gov (United States)

    Burkett, Ellen; Martin-Khan, Melinda G; Gray, Leonard C

    2017-12-11

    Objectives The aim of the present study was to assess comparative emergency department (ED) resource utilisation across age groups. Methods A retrospective analysis of data collected in the National Non-admitted Patient Emergency Department Care Database was undertaken to assess comparative ED resource utilisation across six age groups (0-14, 15-35, 36-64, 65-74, 75-84 and ≥85 years) with previously used surrogate markers of ED resource utilisation. Results Older people had significantly higher resource utilisation for their individual ED episodes of care than younger people, with the effect increasing with advancing age. Conclusion With ED care of older people demonstrated to be more resource intensive than care for younger people, the projected increase in older person presentations anticipated with population aging will have a magnified effect on ED services. These predicted changes in demand for ED care will only be able to be optimally managed if Australian health policy, ED funding instruments and ED models of care are adjusted to take into account the specific care and resource needs of older people. What is known about the topic? Current Australian ED funding models do not adjust for patient age. Several regional studies have suggested higher resource utilisation of ED patients aged ≥65 years. Anticipated rapid population aging mandates that contribution of age to ED visit resource utilisation be further explored. What does this paper add? The present study of national Australian ED presentations compared ED resource utilisation across age groups using surrogate markers of ED cost. Older people were found to have significantly higher resource utilisation in the ED, with the effect increasing further with advancing age. What are the implications for practitioners? The higher resource utilisation of older people in the ED warrants a review of current ED funding models to ensure that they will continue to meet the needs of an aging population.

  11. Environmental Satellite Models for a Macroeconomic Model

    International Nuclear Information System (INIS)

    Moeller, F.; Grinderslev, D.; Werner, M.

    2003-01-01

    To support national environmental policy, it is desirable to forecast and analyse environmental indicators consistently with economic variables. However, environmental indicators are physical measures linked to physical activities that are not specified in economic models. One way to deal with this is to develop environmental satellite models linked to economic models. The system of models presented gives a frame of reference where emissions of greenhouse gases, acid gases, and leaching of nutrients to the aquatic environment are analysed in line with - and consistently with - macroeconomic variables. This paper gives an overview of the data and the satellite models. Finally, the results of applying the model system to calculate the impacts on emissions and the economy are reviewed in a few illustrative examples. The models have been developed for Denmark; however, most of the environmental data used are from the CORINAIR system implemented in numerous countries

  12. Influence of space radiation on satellite magnetics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M K [Vikram Sarabhai Space Centre, Trivandrum (India)

    1978-12-01

    The magnetic circuits and devices used in space-borne systems such as satellites are naturally exposed to space environments having among others, hazardous radiations. Such radiations, in turn, may be of solar, cosmic or nuclear origin depending upon the altitude as well as the propulsion/power systems involving mini atomic reactors when utilised. The influence of such radiations on the magnetic components of the satellite have been analysed revealing the critical hazards in the latter circuits system. Remedial measures by appropriate shielding, etc. necessary for maintaining optimum performance of the satellite have been discussed.

  13. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    Science.gov (United States)

    Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon

    2018-02-01

    Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex

  14. Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling

    Science.gov (United States)

    Schum, William K.; Doolittle, Christina M.; Boyarko, George A.

    2006-05-01

    During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.

  15. Thermospheric density and satellite drag modeling

    Science.gov (United States)

    Mehta, Piyush Mukesh

    The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and

  16. Modelling energy utilisation in broiler breeder hens.

    Science.gov (United States)

    Rabello, C B V; Sakomura, N K; Longo, F A; Couto, H P; Pacheco, C R; Fernandes, J B K

    2006-10-01

    1. The objective of this study was to determine a metabolisable energy (ME) requirement model for broiler breeder hens. The influence of temperature on ME requirements for maintenance was determined in experiments conducted in three environmental rooms with temperatures kept constant at 13, 21 and 30 degrees C using a comparative slaughter technique. The energy requirements for weight gain were determined based upon body energy content and efficiency of energy utilisation for weight gain. The energy requirements for egg production were determined on the basis of egg energy content and efficiency of energy deposition in the eggs. 2. The following model was developed using these results: ME = kgW0.75(806.53-26.45T + 0.50T2) + 31.90G + 10.04EM, where kgW0.75 is body weight (kg) raised to the power 0.75, T is temperature ( degrees C), G is weight gain (g) and EM is egg mass (g). 3. A feeding trial was conducted using 400 Hubbard Hi-Yield broiler breeder hens and 40 Peterson males from 31 to 46 weeks of age in order to compare use of the model with a recommended feeding programme for this strain of bird. The application of the model in breeder hens provided good productive and reproductive performance and better results in feed and energy conversion than in hens fed according to strain recommendation. In conclusion, the model evaluated predicted an ME intake which matched breeder hens' requirements.

  17. Incorporating Satellite Time-Series Data into Modeling

    Science.gov (United States)

    Gregg, Watson

    2008-01-01

    In situ time series observations have provided a multi-decadal view of long-term changes in ocean biology. These observations are sufficiently reliable to enable discernment of even relatively small changes, and provide continuous information on a host of variables. Their key drawback is their limited domain. Satellite observations from ocean color sensors do not suffer the drawback of domain, and simultaneously view the global oceans. This attribute lends credence to their use in global and regional model validation and data assimilation. We focus on these applications using the NASA Ocean Biogeochemical Model. The enhancement of the satellite data using data assimilation is featured and the limitation of tongterm satellite data sets is also discussed.

  18. Geomagnetic field models for satellite angular motion studies

    Science.gov (United States)

    Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.

    2018-03-01

    Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.

  19. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    Directory of Open Access Journals (Sweden)

    M. C. Demirel

    2018-02-01

    Full Text Available Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the

  20. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  1. Surface Runoff Estimation Using SMOS Observations, Rain-gauge Measurements and Satellite Precipitation Estimations. Comparison with Model Predictions

    Science.gov (United States)

    Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy

    Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.

  2. New Methods for Air Quality Model Evaluation with Satellite Data

    Science.gov (United States)

    Holloway, T.; Harkey, M.

    2015-12-01

    Despite major advances in the ability of satellites to detect gases and aerosols in the atmosphere, there remains significant, untapped potential to apply space-based data to air quality regulatory applications. Here, we showcase research findings geared toward increasing the relevance of satellite data to support operational air quality management, focused on model evaluation. Particular emphasis is given to nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Ozone Monitoring Instrument aboard the NASA Aura satellite, and evaluation of simulations from the EPA Community Multiscale Air Quality (CMAQ) model. This work is part of the NASA Air Quality Applied Sciences Team (AQAST), and is motivated by ongoing dialog with state and federal air quality management agencies. We present the response of satellite-derived NO2 to meteorological conditions, satellite-derived HCHO:NO2 ratios as an indicator of ozone production regime, and the ability of models to capture these sensitivities over the continental U.S. In the case of NO2-weather sensitivities, we find boundary layer height, wind speed, temperature, and relative humidity to be the most important variables in determining near-surface NO2 variability. CMAQ agreed with relationships observed in satellite data, as well as in ground-based data, over most regions. However, we find that the southwest U.S. is a problem area for CMAQ, where modeled NO2 responses to insolation, boundary layer height, and other variables are at odds with the observations. Our analyses utilize a software developed by our team, the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS): a free, open-source program designed to make satellite-derived air quality data more usable. WHIPS interpolates level 2 satellite retrievals onto a user-defined fixed grid, in effect creating custom-gridded level 3 satellite product. Currently, WHIPS can process the following data products: OMI NO2 (NASA retrieval); OMI NO2 (KNMI retrieval); OMI

  3. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  4. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  5. A multi-source satellite data approach for modelling Lake Turkana water level: calibration and validation using satellite altimetry data

    Directory of Open Access Journals (Sweden)

    N. M. Velpuri

    2012-01-01

    Full Text Available Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of inter- and intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellite-driven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE of 0.80 during the validation period (2004–2009. Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1–2 m. The lake level fluctuated in the range up to 4 m between the years 1998–2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated

  6. Investigations in Satellite MIMO Channel Modeling: Accent on Polarization

    Directory of Open Access Journals (Sweden)

    Karagiannidis George K

    2007-01-01

    Full Text Available Due to the much different environment in satellite and terrestrial links, possibilities in and design of MIMO systems are rather different as well. After pointing out these differences and problems arising from them, two MIMO designs are shown rather well adapted to satellite link characteristics. Cooperative diversity seems to be applicable; its concept is briefly presented without a detailed discussion, leaving solving particular satellite problems to later work. On the other hand, a detailed discussion of polarization time-coded diversity (PTC is given. A physical-statistical model for dual-polarized satellite links is presented together with measuring results validating the model. The concept of 3D polarization is presented as well as briefly describing compact 3D-polarized antennas known from the literature and applicable in satellite links. A synthetic satellite-to-indoor link is constructed and its electromagnetic behavior is simulated via the FDTD (finite-difference time-domain method. Previous result of the authors states that in 3D-PTC situations, MIMO capacity can be about two times higher than SIMO (single-input multiple-output capacity while a diversity gain of nearly is further verified via extensive FDTD computer simulation.

  7. Environmental assessment of incinerator residue utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Toller, Susanna

    2008-10-15

    binding than previously understood. Differences were also observed between MSWI bottom ash DOM and the natural DOM for which the geochemical speciation models SHM and NICA-Donnan are calibrated. Revised parameter values for speciation modelling are therefore suggested. Additions of salt or natural DOM in the influent did not change the leachate concentration of Cu. Thus, although Cl and natural DOM might be present in the influent in the field due to road salting or infiltration of soil water, this is of minor importance for the potential environmental impact from MSWI bottom ash. This thesis allows estimates of long-term leaching and toxicity to be improved and demonstrates the need for broadening the system boundaries in order to highlight the tradeoffs between different types of impact. For decisions on whether incinerator residues should be utilised or landfilled, the use of a life cycle perspective in combination with more detailed assessments is recommended

  8. Factors affecting Japanese retirees' healthcare service utilisation in Malaysia: a qualitative study.

    Science.gov (United States)

    Kohno, Ayako; Nik Farid, Nik Daliana; Musa, Ghazali; Abdul Aziz, Norlaili; Nakayama, Takeo; Dahlui, Maznah

    2016-03-22

    While living overseas in another culture, retirees need to adapt to a new environment but often this causes difficulties, particularly among those elderly who require healthcare services. This study examines factors affecting healthcare service utilisation among Japanese retirees in Malaysia. We conducted 6 focus group discussions with Japanese retirees and interviewed 8 relevant medical services providers in-depth. Guided by the Andersen Healthcare Utilisation Model, we managed and analysed the data, using QSR NVivo 10 software and the directed content analysis method. We interviewed participants at Japan Clubs and their offices. 30 Japanese retirees who live in Kuala Lumpur and Ipoh, and 8 medical services providers. We identified health beliefs, medical symptoms and health insurance as the 3 most important themes, respectively, representing the 3 dimensions within the Andersen Healthcare Utilisation Model. Additionally, language barriers, voluntary health repatriation to Japan and psychological support were unique themes that influence healthcare service utilisation among Japanese retirees. The healthcare service utilisation among Japanese retirees in Malaysia could be partially explained by the Andersen Healthcare Utilisation Model, together with some factors that were unique findings to this study. Healthcare service utilisation among Japanese retirees in Malaysia could be improved by alleviating negative health beliefs through awareness programmes for Japanese retirees about the healthcare systems and cultural aspects of medical care in Malaysia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. The role of satellite remote sensing in structured ecosystem risk assessments.

    Science.gov (United States)

    Murray, Nicholas J; Keith, David A; Bland, Lucie M; Ferrari, Renata; Lyons, Mitchell B; Lucas, Richard; Pettorelli, Nathalie; Nicholson, Emily

    2018-04-01

    The current set of global conservation targets requires methods for monitoring the changing status of ecosystems. Protocols for ecosystem risk assessment are uniquely suited to this task, providing objective syntheses of a wide range of data to estimate the likelihood of ecosystem collapse. Satellite remote sensing can deliver ecologically relevant, long-term datasets suitable for analysing changes in ecosystem area, structure and function at temporal and spatial scales relevant to risk assessment protocols. However, there is considerable uncertainty about how to select and effectively utilise remotely sensed variables for risk assessment. Here, we review the use of satellite remote sensing for assessing spatial and functional changes of ecosystems, with the aim of providing guidance on the use of these data in ecosystem risk assessment. We suggest that decisions on the use of satellite remote sensing should be made a priori and deductively with the assistance of conceptual ecosystem models that identify the primary indicators representing the dynamics of a focal ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data

    Science.gov (United States)

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2012-01-01

    Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of interand intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellitedriven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of 0.80 during the validation period (2004-2009). Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1-2m. The lake level fluctuated in the range up to 4m between the years 1998-2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated satellite-driven water balance

  11. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  12. Determinants of utilisation differences for cancer medicines in Belgium, Scotland and Sweden.

    Science.gov (United States)

    Ferrario, Alessandra

    2017-12-01

    Little comparative evidence is available on utilisation of cancer medicines in different countries and its determinants. The aim of this study was to develop a statistical model to test the correlation between utilisation and possible determinants in selected European countries. A sample of 31 medicines for cancer treatment that obtained EU-wide marketing authorisation between 2000 and 2012 was selected. Annual data on medicines' utilisation covering the in- and out-patient public sectors were obtained from national authorities between 2008 and 2013. Possible determinants of utilisation were extracted from HTA reports and complemented by contacts with key informants. A longitudinal mixed effect model was fitted to test possible determinants of medicines utilisation in Belgium, Scotland and Sweden. In the all-country model, the number of indications reimbursed positively correlated with increased consumption of medicines [one indication 2.6, 95% CI (1.8-3.6); two indications 2.4, 95% CI (1.4-4.3); three indications 4.9, 95% CI (2.2-10.9); all P marketing authorisation [1.2, 95% CI (1.02-1.4); p marketing authorisation. Prices had a negative effect on consumption in Belgium and Sweden. The positive impact of financial MEAs in Scotland suggests that the latter may remove the regressive effect of list prices on consumption.

  13. Evaluation of Satellite and Model Precipitation Products Over Turkey

    Science.gov (United States)

    Yilmaz, M. T.; Amjad, M.

    2017-12-01

    Satellite-based remote sensing, gauge stations, and models are the three major platforms to acquire precipitation dataset. Among them satellites and models have the advantage of retrieving spatially and temporally continuous and consistent datasets, while the uncertainty estimates of these retrievals are often required for many hydrological studies to understand the source and the magnitude of the uncertainty in hydrological response parameters. In this study, satellite and model precipitation data products are validated over various temporal scales (daily, 3-daily, 7-daily, 10-daily and monthly) using in-situ measured precipitation observations from a network of 733 gauges from all over the Turkey. Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 version 7 and European Center of Medium-Range Weather Forecast (ECMWF) model estimates (daily, 3-daily, 7-daily and 10-daily accumulated forecast) are used in this study. Retrievals are evaluated for their mean and standard deviation and their accuracies are evaluated via bias, root mean square error, error standard deviation and correlation coefficient statistics. Intensity vs frequency analysis and some contingency table statistics like percent correct, probability of detection, false alarm ratio and critical success index are determined using daily time-series. Both ECMWF forecasts and TRMM observations, on average, overestimate the precipitation compared to gauge estimates; wet biases are 10.26 mm/month and 8.65 mm/month, respectively for ECMWF and TRMM. RMSE values of ECMWF forecasts and TRMM estimates are 39.69 mm/month and 41.55 mm/month, respectively. Monthly correlations between Gauges-ECMWF, Gauges-TRMM and ECMWF-TRMM are 0.76, 0.73 and 0.81, respectively. The model and the satellite error statistics are further compared against the gauges error statistics based on inverse distance weighting (IWD) analysis. Both the model and satellite data have less IWD errors (14

  14. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    Science.gov (United States)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  15. Evaluation of Latent Heat Flux Fields from Satellites and Models during SEMAPHORE.

    Science.gov (United States)

    Bourras, Denis; Liu, W. Timothy; Eymard, Laurence; Tang, Wenqing

    2003-02-01

    Latent heat fluxes were derived from satellite observations in the region of Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE), which was conducted near the Azores islands in the North Atlantic Ocean in autumn of 1993. The satellite fluxes were compared with output fields of two atmospheric circulation models and in situ measurements. The rms error of the instantaneous satellite fluxes is between 35 and 40 W m-2 and the bias is 60-85 W m-2. The large bias is mainly attributed to a bias in satellite-derived atmospheric humidity and is related to the particular shape of the vertical humidity profiles during SEMAPHORE. The bias in humidity implies that the range of estimated fluxes is smaller than the range of ship fluxes, by 34%-38%. The rms errors for fluxes from models are 30-35 W m-2, and the biases are smaller than the biases in satellite fluxes (14-18 W m-2). Two case studies suggest that the satellites detect horizontal gradients of wind speed and specific humidity if the magnitude of the gradients exceeds a detection threshold, which is 1.27 g kg-1 (100 km)-1 for specific humidity and between 0.35 and 0.82 m s-1 (30 km)-1 for wind speed. In contrast, the accuracy of the spatial gradients of bulk variables from models always varies as a function of the location and number of assimilated observations. A comparison between monthly fluxes from satellites and models reveals that satellite-derived flux anomaly fields are consistent with reanalyzed fields, whereas operational model products lack part of the mesoscale structures present in the satellite fields.

  16. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  17. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gotseff, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  18. Aspects of biogas utilisation

    International Nuclear Information System (INIS)

    Luning, L.

    1992-01-01

    Utilisation of biogas has received considerable attention over the last decade, its full potential has not been reached however. The paper discusses various options for utilisation of biogas and the limitations that may occur as far as they are associated with the characteristics of biogas. As a result the prospects for the future are presented. (au)

  19. Geomagnetic core field models in the satellite era

    DEFF Research Database (Denmark)

    Lesur, Vincent; Olsen, Nils; Thomson, Alan W. P.

    2011-01-01

    After a brief review of the theoretical basis and difficulties that modelers are facing, we present three recent models of the geomagnetic field originating in the Earth’s core. All three modeling approaches are using recent observatory and near-Earth orbiting survey satellite data. In each case...

  20. Assessing modelled spatial distributions of ice water path using satellite data

    Science.gov (United States)

    Eliasson, S.; Buehler, S. A.; Milz, M.; Eriksson, P.; John, V. O.

    2010-05-01

    The climate models used in the IPCC AR4 show large differences in monthly mean cloud ice. The most valuable source of information that can be used to potentially constrain the models is global satellite data. For this, the data sets must be long enough to capture the inter-annual variability of Ice Water Path (IWP). PATMOS-x was used together with ISCCP for the annual cycle evaluation in Fig. 7 while ECHAM-5 was used for the correlation with other models in Table 3. A clear distinction between ice categories in satellite retrievals, as desired from a model point of view, is currently impossible. However, long-term satellite data sets may still be used to indicate the climatology of IWP spatial distribution. We evaluated satellite data sets from CloudSat, PATMOS-x, ISCCP, MODIS and MSPPS in terms of monthly mean IWP, to determine which data sets can be used to evaluate the climate models. IWP data from CloudSat cloud profiling radar provides the most advanced data set on clouds. As CloudSat data are too short to evaluate the model data directly, it was mainly used here to evaluate IWP from the other satellite data sets. ISCCP and MSPPS were shown to have comparatively low IWP values. ISCCP shows particularly low values in the tropics, while MSPPS has particularly low values outside the tropics. MODIS and PATMOS-x were in closest agreement with CloudSat in terms of magnitude and spatial distribution, with MODIS being the best of the two. As PATMOS-x extends over more than 25 years and is in fairly close agreement with CloudSat, it was chosen as the reference data set for the model evaluation. In general there are large discrepancies between the individual climate models, and all of the models show problems in reproducing the observed spatial distribution of cloud-ice. Comparisons consistently showed that ECHAM-5 is the GCM from IPCC AR4 closest to satellite observations.

  1. Using Deep Learning for Targeted Data Selection, Improving Satellite Observation Utilization for Model Initialization

    Science.gov (United States)

    Lee, Y. J.; Bonfanti, C. E.; Trailovic, L.; Etherton, B.; Govett, M.; Stewart, J.

    2017-12-01

    At present, a fraction of all satellite observations are ultimately used for model assimilation. The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast. This problem is only exacerbated by the recent launch of Geostationary Operational Environmental Satellite (GOES)-16 satellite and future satellites providing several order of magnitude increase in data volume. At the NOAA Earth System Research Laboratory (ESRL) we are researching the use of machine learning the improve the initial selection of satellite data to be used in the model assimilation process. In particular, we are investigating the use of deep learning. Deep learning is being applied to many image processing and computer vision problems with great success. Through our research, we are using convolutional neural network to find and mark regions of interest (ROI) to lead to intelligent extraction of observations from satellite observation systems. These targeted observations will be used to improve the quality of data selected for model assimilation and ultimately improve the impact of satellite data on weather forecasts. Our preliminary efforts to identify the ROI's are focused in two areas: applying and comparing state-of-art convolutional neural network models using the analysis data from the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) weather model, and using these results as a starting point to optimize convolution neural network model for pattern recognition on the higher resolution water vapor data from GOES-WEST and other satellite. This presentation will provide an introduction to our convolutional neural network model to identify and process these ROI's, along with the challenges of data preparation, training the model, and parameter optimization.

  2. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  3. Geometric model of pseudo-distance measurement in satellite location systems

    Science.gov (United States)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  4. Modeling and control of a gravity gradient stabilised satellite

    Directory of Open Access Journals (Sweden)

    Aage Skullestad

    1999-01-01

    Full Text Available This paper describes attitude control, i.e., 3-axes stabilisation and pointing, of a proposed Norwegian small gravity gradient stabilized satellite to be launched into low earth orbit. Generally, a gravity gradient stabilised system has limited stability and pointing capabilities, and wheels and/or magnetic coils are added in order to improve the attitude control. The best attitude accuracy is achieved using wheels, which can give accuracies down to less than one degree, but wheels increase the complexity and cost of the satellite. Magnetic coils allow cheaper satellites, and are an attractive solution to small, inexpensive satellites in low earth orbits and may provide an attitude control accuracy of a few degrees. Scientific measurements often require accurate attitude control in one or two axes only. Combining wheel and coil control may, in these cases, provide the best solutions. The simulation results are based on a linearised mathematical model of the satellite.

  5. A standard library for modeling satellite orbits on a microcomputer

    Science.gov (United States)

    Beutel, Kenneth L.

    1988-03-01

    Introductory students of astrodynamics and the space environment are required to have a fundamental understanding of the kinematic behavior of satellite orbits. This thesis develops a standard library that contains the basic formulas for modeling earth orbiting satellites. This library is used as a basis for implementing a satellite motion simulator that can be used to demonstrate orbital phenomena in the classroom. Surveyed are the equations of orbital elements, coordinate systems and analytic formulas, which are made into a standard method for modeling earth orbiting satellites. The standard library is written in the C programming language and is designed to be highly portable between a variety of computer environments. The simulation draws heavily on the standards established by the library to produce a graphics-based orbit simulation program written for the Apple Macintosh computer. The simulation demonstrates the utility of the standard library functions but, because of its extensive use of the Macintosh user interface, is not portable to other operating systems.

  6. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    . These extend several tens of kilometres downwind e.g. 70 km. Other SAR wind maps show near-field fine scale details of wake behind rows of turbines. The satellite SAR wind farm wake cases are modelled by different wind farm wake models including the PARK microscale model, the Weather Research and Forecasting...... (WRF) model in high resolution and WRF with coupled microscale parametrization....

  7. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  8. A systematic review of the literature exploring illness perceptions in mental health utilising the self-regulation model.

    Science.gov (United States)

    Baines, Tineke; Wittkowski, Anja

    2013-09-01

    Psychologists have utilised a range of social cognition models to understand variation in physical health and illness-related behaviours. The most widely studied model of illness perceptions has been the Self-Regulation Model (SRM, Leventhal, Nerenz, & Steele, 1984). The illness perceptions questionnaire (IPQ) and its revised version (IPQ-R) have been utilised to explore illness beliefs in physical health. This review examined 13 quantitative studies, which used the IPQ and IPQ-R in mental health in their exploration of illness perceptions in psychosis, bipolar disorder, eating disorders, depression and adolescents experiencing mood disorders. Across these studies the SRM illness dimensions were largely supported. Mental illnesses were commonly viewed as cyclical and chronic, with serious negative consequences. Perceptions regarding chronicity, controllability and negative consequences were associated with coping and help seeking, while engagement with services and help seeking were also related to illness coherence beliefs. Treatment adherence was linked to beliefs that treatment could control one's illness. Whilst a major limitation of the reviewed studies was the use of cross-sectional designs, overall the applicability of the SRM to mental health was supported. The IPQ and IPQ-R were shown to be valuable measures of illness perceptions in mental health, offering implications for clinical practice.

  9. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  10. Optimal Filtering in Mass Transport Modeling From Satellite Gravimetry Data

    Science.gov (United States)

    Ditmar, P.; Hashemi Farahani, H.; Klees, R.

    2011-12-01

    Monitoring natural mass transport in the Earth's system, which has marked a new era in Earth observation, is largely based on the data collected by the GRACE satellite mission. Unfortunately, this mission is not free from certain limitations, two of which are especially critical. Firstly, its sensitivity is strongly anisotropic: it senses the north-south component of the mass re-distribution gradient much better than the east-west component. Secondly, it suffers from a trade-off between temporal and spatial resolution: a high (e.g., daily) temporal resolution is only possible if the spatial resolution is sacrificed. To make things even worse, the GRACE satellites enter occasionally a phase when their orbit is characterized by a short repeat period, which makes it impossible to reach a high spatial resolution at all. A way to mitigate limitations of GRACE measurements is to design optimal data processing procedures, so that all available information is fully exploited when modeling mass transport. This implies, in particular, that an unconstrained model directly derived from satellite gravimetry data needs to be optimally filtered. In principle, this can be realized with a Wiener filter, which is built on the basis of covariance matrices of noise and signal. In practice, however, a compilation of both matrices (and, therefore, of the filter itself) is not a trivial task. To build the covariance matrix of noise in a mass transport model, it is necessary to start from a realistic model of noise in the level-1B data. Furthermore, a routine satellite gravimetry data processing includes, in particular, the subtraction of nuisance signals (for instance, associated with atmosphere and ocean), for which appropriate background models are used. Such models are not error-free, which has to be taken into account when the noise covariance matrix is constructed. In addition, both signal and noise covariance matrices depend on the type of mass transport processes under

  11. An Evaluation of Recent Gravity Models wrt. Altimeter Satellite Missions

    Science.gov (United States)

    Lemoine, Frank G.; Zelensky, N. P.; Luthcke, S. B.; Beckley, B. D.; Chinn, D. S.; Rowlands, D. D.

    2003-01-01

    With the launch of CHAMP and GRACE, we have entered a new phase in the history of satellite geodesy. For the first time, geopotential models are now available based almost exclusively on satellite-satellite tracking either with GPS in the case of the CHAMP-based geopotential models, or co-orbital intersatellite ultra-precise ranging in the case of GRACE. Different groups have analyzed these data, and produced a series of geopotential models (e.g., EIGENlS, EIGEN2, GGM0lS, GGMOlC) that incorporate the new data. We will compare the performance of these "newer" geopotential models with the standard models now used for computations, (e.g., JGM-3, BGM-96, PGS7727, and GRIMS-C1) for TOPEX, JASON, Geosat-Follow-On (GFO), and Envisat using standard metrics such as SLR RMS of fit, altimeter crossovers, and orbit overlaps. Where covariances are available we can evaluate the predicted geographically correlated orbit error. These predicted results can be compared with the Earth-fixed differences between dynamic and reduced-dynamic orbits to test the predictive accuracy of the covariances, as well as to calibrate the error of the solutions.

  12. Comparing soil moisture memory in satellite observations and models

    Science.gov (United States)

    Stacke, Tobias; Hagemann, Stefan; Loew, Alexander

    2013-04-01

    A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the

  13. Formation of Ice Giant Satellites During Thommes Model Mirgration

    Science.gov (United States)

    Fuse, Christopher; Spiegelberg, Josephine

    2018-01-01

    Inconsistencies between ice giant planet characteristics and classic planet formation theories have led to a re-evaluation of the formation of the outer Solar system. Thommes model migration delivers proto-Uranus and Neptune from orbits interior to Saturn to their current locations. The Thommes model has also been able to reproduce the large Galilean and Saturnian moons via interactions between the proto-ice giants and the gas giant moon disks.As part of a series of investigations examining the effects of Thommes model migration on the formation of moons, N-body simulations of the formation of the Uranian and Neptunian satellite systems were performed. Previous research has yielded conflicting results as to whether satellite systems are stable during planetary migration. Some studies, such as Beaugé (2002) concluded that the system was not stable over the proposed duration of migration. Conversely, Fuse and Neville (2011) and Yokoyama et al. (2011) found that moons were retained, though the nature of the resulting system was heavily influenced by interactions with planetesimals and other large objects. The results of the current study indicate that in situ simulations of the Uranus and Neptune systems can produce stable moons. Whether with current orbital parameters or located at pre-migration, inner Solar system semi-major axes, the simulations end with 5.8 ± 0.15 or 5.9 ± 0.7 regular satellites around Uranus and Neptune, respectively. Preliminary simulations of a proto-moon disk around a single planet migrating via the Thommes model have failed to retain moons. Furthermore, simulations of ejection of the current Uranian satellite system retained at most one moon. Thus, for the Thommes model to be valid, it is likely that moon formation did not begin until after migration ended. Future work will examine the formation of gas and ice giant moons through other migration theories, such as the Nice model (Tsiganis et al. 2006).

  14. Millimeter wave propagation modeling of inhomogeneous rain media for satellite communications systems

    Science.gov (United States)

    Persinger, R. R.; Stutzman, W. L.

    1978-01-01

    A theoretical propagation model that represents the scattering properties of an inhomogeneous rain often found on a satellite communications link is presented. The model includes the scattering effects of an arbitrary distribution of particle type (rain or ice), particle shape, particle size, and particle orientation within a given rain cell. An associated rain propagation prediction program predicts attenuation, isolation and phase shift as a function of ground rain rate. A frequency independent synthetic storm algorithm is presented that models nonuniform rain rates present on a satellite link. Antenna effects are included along with a discussion of rain reciprocity. The model is verified using the latest available multiple frequency data from the CTS and COMSTAR satellites. The data covers a wide range of frequencies, elevation angles, and ground site locations.

  15. Glucose utilisation in the lungs of septic rats

    International Nuclear Information System (INIS)

    Hansson, L.; Jeppsson, B.; Ohlsson, T.; Sandell, A.; Valind, S.; Luts, A.; Wollmer, P.

    1999-01-01

    Sequestration and degranulation of leucocytes in the pulmonary microcirculation is considered to be a key event in the development of acute respiratory distress syndrome in patients with sepsis. Glucose serves as the main source of energy in activated leucocytes. The aim of this study was to assess whether glucose utilisation in the lungs can be used as an indicator of pulmonary leucocyte accumulation in an experimental model of sepsis of intra-abdominal origin. Sepsis was induced in rats by abdominal implantation of a gelatine capsule containing bacteria and rat colonic contents. Empty gelatine capsules were implanted in control animals. Animals were studied 6 and 12 h after sepsis induction. Glucose utilisation was measured as the tissue uptake of fluorine-18-fluorodeoxyglucose ( 18 FDG) 1 h after intravenous injection of the tracer. Micro-autoradiography was also performed after injection of tritiated deoxyglucose. We found increased uptake of 18 FDG in the lungs of septic animals. The uptake also increased with time after sepsis induction. 18 FDG uptake in circulating leucocytes was increased in septic animals compared with controls, and micro-autoradiography showed intense accumulation of deoxyglucose in leucocytes in the lungs of septic animals. We conclude that glucose utilisation is increased in the lungs of septic rats. Measurements of pulmonary glucose utilisation as an index of leucocyte metabolic activity may open new possibilities for studies of the pathophysiology of sepsis and for evaluation of therapeutic interventions. (orig.)

  16. Pattern of Smartphones Utilisation among Engineering Undergraduates

    Directory of Open Access Journals (Sweden)

    Muliati Sedek

    2014-04-01

    Full Text Available The smartphones ownership among the undergraduates in Malaysia was recorded as high. However, little was known about its utilization patterns, thus, the focus of this research was to determine the utilisation patterns of smartphones based on the National Education Technology Standard for Students (NETS.S among engineering undergraduates in Malaysia. This study was based on a quantitative research and the population comprised undergraduates from four Malaysian Technical Universities. A total of 400 questionnaires were analyzed. Based on the results, the undergraduates’ utilisation level of smartphones for communication and collaboration tool was at a high level. Meanwhile, utilisation for operations and concepts tool and research and information fluency tool were at moderate level. Finally, smartphones utilisation as digital citizenship tool and critical thinking, problem solving and creativity tool were both at a low level. Hence, more training and workshops should be given to the students in order to encourage them to fully utilise smartphones in enhancing the higher order thinking skills.

  17. MODELING AND SIMULATION OF HIGH RESOLUTION OPTICAL REMOTE SENSING SATELLITE GEOMETRIC CHAIN

    Directory of Open Access Journals (Sweden)

    Z. Xia

    2018-04-01

    Full Text Available The high resolution satellite with the longer focal length and the larger aperture has been widely used in georeferencing of the observed scene in recent years. The consistent end to end model of high resolution remote sensing satellite geometric chain is presented, which consists of the scene, the three line array camera, the platform including attitude and position information, the time system and the processing algorithm. The integrated design of the camera and the star tracker is considered and the simulation method of the geolocation accuracy is put forward by introduce the new index of the angle between the camera and the star tracker. The model is validated by the geolocation accuracy simulation according to the test method of the ZY-3 satellite imagery rigorously. The simulation results show that the geolocation accuracy is within 25m, which is highly consistent with the test results. The geolocation accuracy can be improved about 7 m by the integrated design. The model combined with the simulation method is applicable to the geolocation accuracy estimate before the satellite launching.

  18. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  19. a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images

    Science.gov (United States)

    Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei

    2018-04-01

    Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.

  20. FCJ-201 Visual Evidence from Above: Assessing the Value of Earth Observation Satellites for Supporting Human Rights

    Directory of Open Access Journals (Sweden)

    Tanya Notley

    2016-03-01

    Full Text Available Public access to data collected by remote sensing Earth Observation Satellites has, until recently, been very limited. Now, citizens and rights advocacy groups are increasingly utilising satellite-collected images to interrogate justice issues; to document, prevent and verify rights abuses; and to imagine and propose social change. Yet while other communication technologies have received substantial critical analysis regarding their value as tools of social justice, activism and resistance, satellites have received comparatively scant attention. This article examines the uses of satellite-collected images in human rights contexts including the opportunities, challenges and risks they pose. We conclude this examination by arguing that if satellites are to be used effectively to collect evidence from above by rights advocates, greater attention to and capacity for ensuring accountability from below is required.

  1. An adaptive spatial model for precipitation data from multiple satellites over large regions

    KAUST Repository

    Chakraborty, Avishek; De, Swarup; Bowman, Kenneth P.; Sang, Huiyan; Genton, Marc G.; Mallick, Bani K.

    2015-01-01

    South America that has information from two satellites. We develop a flexible hierarchical model to combine instantaneous rainrate measurements from those satellites while accounting for their potential heterogeneity. Conceptually, we envision

  2. Le recours aux modeles dans l'enseignement de la biologie au secondaire : Conceptions d'enseignantes et d'enseignants et modes d'utilisation

    Science.gov (United States)

    Varlet, Madeleine

    Le recours aux modeles et a la modelisation est mentionne dans la documentation scientifique comme un moyen de favoriser la mise en oeuvre de pratiques d'enseignement-apprentissage constructivistes pour pallier les difficultes d'apprentissage en sciences. L'etude prealable du rapport des enseignantes et des enseignants aux modeles et a la modelisation est alors pertinente pour comprendre leurs pratiques d'enseignement et identifier des elements dont la prise en compte dans les formations initiale et disciplinaire peut contribuer au developpement d'un enseignement constructiviste des sciences. Plusieurs recherches ont porte sur ces conceptions sans faire de distinction selon les matieres enseignees, telles la physique, la chimie ou la biologie, alors que les modeles ne sont pas forcement utilises ou compris de la meme maniere dans ces differentes disciplines. Notre recherche s'est interessee aux conceptions d'enseignantes et d'enseignants de biologie au secondaire au sujet des modeles scientifiques, de quelques formes de representations de ces modeles ainsi que de leurs modes d'utilisation en classe. Les resultats, que nous avons obtenus au moyen d'une serie d'entrevues semi-dirigees, indiquent que globalement leurs conceptions au sujet des modeles sont compatibles avec celle scientifiquement admise, mais varient quant aux formes de representations des modeles. L'examen de ces conceptions temoigne d'une connaissance limitee des modeles et variable selon la matiere enseignee. Le niveau d'etudes, la formation prealable, l'experience en enseignement et un possible cloisonnement des matieres pourraient expliquer les differentes conceptions identifiees. En outre, des difficultes temporelles, conceptuelles et techniques peuvent freiner leurs tentatives de modelisation avec les eleves. Toutefois, nos resultats accreditent l'hypothese que les conceptions des enseignantes et des enseignants eux-memes au sujet des modeles, de leurs formes de representation et de leur approche

  3. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is

  4. Comparing Satellite Rainfall Estimates with Rain-Gauge Data: Optimal Strategies Suggested by a Spectral Model

    Science.gov (United States)

    Bell, Thomas L.; Kundu, Prasun K.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Validation of satellite remote-sensing methods for estimating rainfall against rain-gauge data is attractive because of the direct nature of the rain-gauge measurements. Comparisons of satellite estimates to rain-gauge data are difficult, however, because of the extreme variability of rain and the fact that satellites view large areas over a short time while rain gauges monitor small areas continuously. In this paper, a statistical model of rainfall variability developed for studies of sampling error in averages of satellite data is used to examine the impact of spatial and temporal averaging of satellite and gauge data on intercomparison results. The model parameters were derived from radar observations of rain, but the model appears to capture many of the characteristics of rain-gauge data as well. The model predicts that many months of data from areas containing a few gauges are required to validate satellite estimates over the areas, and that the areas should be of the order of several hundred km in diameter. Over gauge arrays of sufficiently high density, the optimal areas and averaging times are reduced. The possibility of using time-weighted averages of gauge data is explored.

  5. Modelling the Factors that Affect Individuals' Utilisation of Online Learning Systems: An Empirical Study Combining the Task Technology Fit Model with the Theory of Planned Behaviour

    Science.gov (United States)

    Yu, Tai-Kuei; Yu, Tai-Yi

    2010-01-01

    Understanding learners' behaviour, perceptions and influence in terms of learner performance is crucial to predict the use of electronic learning systems. By integrating the task-technology fit (TTF) model and the theory of planned behaviour (TPB), this paper investigates the online learning utilisation of Taiwanese students. This paper provides a…

  6. A satellite-based global landslide model

    Directory of Open Access Journals (Sweden)

    A. Farahmand

    2013-05-01

    Full Text Available Landslides are devastating phenomena that cause huge damage around the world. This paper presents a quasi-global landslide model derived using satellite precipitation data, land-use land cover maps, and 250 m topography information. This suggested landslide model is based on the Support Vector Machines (SVM, a machine learning algorithm. The National Aeronautics and Space Administration (NASA Goddard Space Flight Center (GSFC landslide inventory data is used as observations and reference data. In all, 70% of the data are used for model development and training, whereas 30% are used for validation and verification. The results of 100 random subsamples of available landslide observations revealed that the suggested landslide model can predict historical landslides reliably. The average error of 100 iterations of landslide prediction is estimated to be approximately 7%, while approximately 2% false landslide events are observed.

  7. Association between subjective memory complaints and health care utilisation: a three-year follow up

    DEFF Research Database (Denmark)

    Waldorff, Frans Boch; Siersma, Volkert; Waldemar, Gunhild

    2009-01-01

    their general practitioner and reporting subjective memory complaints (SMC). METHODS: This study was conducted as a prospective cohort survey in general practice with three-year follow-up. Selected health care utilisation or costs relative to SMC adjusted for potential confounders were analyzed in a two......BACKGROUND: Subjective memory complaints (SMC) are common among elderly patients and little is know about the association between SMC and health care utilisation. Thus, the aim of this study was to investigate health care utilisation during a three-year follow-up among elderly patients consulting......-part model where the incidence of use of a selected health care service were analyzed separately from the quantity of use for those that use the service. The former analyzed in a Poisson regression approach, the latter in a generalized linear regression model. RESULTS: A total 758 non-nursing home residents...

  8. An alternative ionospheric correction model for global navigation satellite systems

    Science.gov (United States)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  9. A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models

    Directory of Open Access Journals (Sweden)

    Xinyu Xu

    2017-07-01

    Full Text Available We compile the GOCE-only satellite model GOSG01S complete to spherical harmonic degree of 220 using Satellite Gravity Gradiometry (SGG data and the Satellite-to-Satellite Tracking (SST observations along the GOCE orbit based on applying a least-squares analysis. The diagonal components (Vxx, Vyy, Vzz of the gravitational gradient tensor are used to form the system of observation equations with the band-pass ARMA filter. The point-wise acceleration observations (ax, ay, az along the orbit are used to form the system of observation equations up to the maximum spherical harmonic degree/order 130. The analysis of spectral accuracy characteristics of the newly derived gravitational model GOSG01S and the existing models GOTIM04S, GODIR04S, GOSPW04S and JYY_GOCE02S based on their comparison with the ultra-high degree model EIGEN-6C2 reveals a significant consistency at the spectral window approximately between 80 and 190 due to the same period SGG data used to compile these models. The GOCE related satellite gravity models GOSG01S, GOTIM05S, GODIR05S, GOTIM04S, GODIR04S, GOSPW04S, JYY_GOCE02S, EIGEN-6C2 and EGM2008 are also validated by using GPS-leveling data in China and USA. According to the truncation at degree 200, the statistic results show that all GGMs have very similar differences at GPS-leveling points in USA, and all GOCE related gravity models have better performance than EGM2008 in China. This suggests that all these models provide much more information on the gravity field than EGM2008 in areas with low terrestrial gravity coverage. And STDs of height anomaly differences in China for the selected truncation degrees show that GOCE has improved the accuracy of the global models beyond degree 90 and the accuracies of the models improve from 24 cm to 16 cm. STDs of geoid height differences in USA show that GOSG01S model has best consistency comparing with GPS-leveling data for the frequency band of the degree between 20 and 160.

  10. Customised search and comparison of in situ, satellite and model data for ocean modellers

    Science.gov (United States)

    Hamre, Torill; Vines, Aleksander; Lygre, Kjetil

    2014-05-01

    For the ocean modelling community, the amount of available data from historical and upcoming in situ sensor networks and satellite missions, provides an rich opportunity to validate and improve their simulation models. However, the problem of making the different data interoperable and intercomparable remains, due to, among others, differences in terminology and format used by different data providers and the different granularity provided by e.g. in situ data and ocean models. The GreenSeas project (Development of global plankton data base and model system for eco-climate early warning) aims to advance the knowledge and predictive capacities of how marine ecosystems will respond to global change. In the project, one specific objective has been to improve the technology for accessing historical plankton and associated environmental data sets, along with earth observation data and simulation outputs. To this end, we have developed a web portal enabling ocean modellers to easily search for in situ or satellite data overlapping in space and time, and compare the retrieved data with their model results. The in situ data are retrieved from a geo-spatial repository containing both historical and new physical, biological and chemical parameters for the Southern Ocean, Atlantic, Nordic Seas and the Arctic. The satellite-derived quantities of similar parameters from the same areas are retrieved from another geo-spatial repository established in the project. Both repositories are accessed through standard interfaces, using the Open Geospatial Consortium (OGC) Web Map Service (WMS) and Web Feature Service (WFS), and OPeNDAP protocols, respectively. While the developed data repositories use standard terminology to describe the parameters, especially the measured in situ biological parameters are too fine grained to be immediately useful for modelling purposes. Therefore, the plankton parameters were grouped according to category, size and if available by element. This grouping

  11. Estimation of an optimal chemotherapy utilisation rate for cancer: setting an evidence-based benchmark for quality cancer care.

    Science.gov (United States)

    Jacob, S A; Ng, W L; Do, V

    2015-02-01

    There is wide variation in the proportion of newly diagnosed cancer patients who receive chemotherapy, indicating the need for a benchmark rate of chemotherapy utilisation. This study describes an evidence-based model that estimates the proportion of new cancer patients in whom chemotherapy is indicated at least once (defined as the optimal chemotherapy utilisation rate). The optimal chemotherapy utilisation rate can act as a benchmark for measuring and improving the quality of care. Models of optimal chemotherapy utilisation were constructed for each cancer site based on indications for chemotherapy identified from evidence-based treatment guidelines. Data on the proportion of patient- and tumour-related attributes for which chemotherapy was indicated were obtained, using population-based data where possible. Treatment indications and epidemiological data were merged to calculate the optimal chemotherapy utilisation rate. Monte Carlo simulations and sensitivity analyses were used to assess the effect of controversial chemotherapy indications and variations in epidemiological data on our model. Chemotherapy is indicated at least once in 49.1% (95% confidence interval 48.8-49.6%) of all new cancer patients in Australia. The optimal chemotherapy utilisation rates for individual tumour sites ranged from a low of 13% in thyroid cancers to a high of 94% in myeloma. The optimal chemotherapy utilisation rate can serve as a benchmark for planning chemotherapy services on a population basis. The model can be used to evaluate service delivery by comparing the benchmark rate with patterns of care data. The overall estimate for other countries can be obtained by substituting the relevant distribution of cancer types. It can also be used to predict future chemotherapy workload and can be easily modified to take into account future changes in cancer incidence, presentation stage or chemotherapy indications. Copyright © 2014 The Royal College of Radiologists. Published by

  12. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  13. Contextual and individual factors associated with dental services utilisation by Brazilian adults: A multilevel analysis.

    Science.gov (United States)

    Herkrath, Fernando José; Vettore, Mario Vianna; Werneck, Guilherme Loureiro

    2018-01-01

    Inequalities in the utilisation of dental services in Brazil are remarkable. The aim of this study was to evaluate the association of contextual and individual factors with the utilisation of dental services by Brazilian adults using the Andersen's behavioural model. Individual-level data from 27,017 adults residents in the State capitals who were interviewed in the 2013 Brazilian National Health Survey were pooled with contextual city-level data. The outcomes were non-utilisation of dental services and last dental visit over 12 months ago. Individual predisposing variables were age, sex, race/skin colour, schooling and social network. Individual enabling variables included income, health insurance and registration in primary health care. Individual need variables were self-perceived dental health and self-reported missing teeth. Multilevel logistic regression models were performed to estimate odds ratio (OR) and 95% confidence intervals (95% CIs) of the association of contextual and individual predisposing, enabling and need-related variables with dental services outcomes. Predisposing (OR = 0.89; 95% CI 0.81-0.97) and enabling (OR = 0.90; 95% CI 0.85-0.96) contextual factors were associated with non-utilisation of dental services. Individual predisposing (sex, race/skin colour, schooling), enabling (income, health insurance) and need (self-perceived oral health, missing teeth) were associated with non-utilisation of dental services and last dental visit over 12 months ago. The latter was also associated with other individual predisposing (age, social network) and need (eating difficulties due to oral problems) characteristics. Individual and contextual determinants influenced dental services utilisation in Brazilian adults. These factors should be on the policy agenda and considered in the organisation of health services aiming to reduce oral health inequalities related to access and utilisation of dental services.

  14. Equality in Maternal and Newborn Health: Modelling Geographic Disparities in Utilisation of Care in Five East African Countries.

    Science.gov (United States)

    Ruktanonchai, Corrine W; Ruktanonchai, Nick W; Nove, Andrea; Lopes, Sofia; Pezzulo, Carla; Bosco, Claudio; Alegana, Victor A; Burgert, Clara R; Ayiko, Rogers; Charles, Andrew Sek; Lambert, Nkurunziza; Msechu, Esther; Kathini, Esther; Matthews, Zoë; Tatem, Andrew J

    2016-01-01

    Geographic accessibility to health facilities represents a fundamental barrier to utilisation of maternal and newborn health (MNH) services, driving historically hidden spatial pockets of localized inequalities. Here, we examine utilisation of MNH care as an emergent property of accessibility, highlighting high-resolution spatial heterogeneity and sub-national inequalities in receiving care before, during, and after delivery throughout five East African countries. We calculated a geographic inaccessibility score to the nearest health facility at 300 x 300 m using a dataset of 9,314 facilities throughout Burundi, Kenya, Rwanda, Tanzania and Uganda. Using Demographic and Health Surveys data, we utilised hierarchical mixed effects logistic regression to examine the odds of: 1) skilled birth attendance, 2) receiving 4+ antenatal care visits at time of delivery, and 3) receiving a postnatal health check-up within 48 hours of delivery. We applied model results onto the accessibility surface to visualise the probabilities of obtaining MNH care at both high-resolution and sub-national levels after adjusting for live births in 2015. Across all outcomes, decreasing wealth and education levels were associated with lower odds of obtaining MNH care. Increasing geographic inaccessibility scores were associated with the strongest effect in lowering odds of obtaining care observed across outcomes, with the widest disparities observed among skilled birth attendance. Specifically, for each increase in the inaccessibility score to the nearest health facility, the odds of having skilled birth attendance at delivery was reduced by over 75% (0.24; CI: 0.19-0.3), while the odds of receiving antenatal care decreased by nearly 25% (0.74; CI: 0.61-0.89) and 40% for obtaining postnatal care (0.58; CI: 0.45-0.75). Overall, these results suggest decreasing accessibility to the nearest health facility significantly deterred utilisation of all maternal health care services. These results

  15. VERTICAL ACCURACY COMPARISON OF DIGITAL ELEVATION MODEL FROM LIDAR AND MULTITEMPORAL SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    J. Octariady

    2017-05-01

    Full Text Available Digital elevation model serves to illustrate the appearance of the earth's surface. DEM can be produced from a wide variety of data sources including from radar data, LiDAR data, and stereo satellite imagery. Making the LiDAR DEM conducted using point cloud data from LiDAR sensor. Making a DEM from stereo satellite imagery can be done using same temporal or multitemporal stereo satellite imagery. How much the accuracy of DEM generated from multitemporal stereo stellite imagery and LiDAR data is not known with certainty. The study was conducted using LiDAR DEM data and multitemporal stereo satellite imagery DEM. Multitemporal stereo satellite imagery generated semi-automatically by using 3 scene stereo satellite imagery with acquisition 2013–2014. The high value given each of DEM serve as the basis for calculating high accuracy DEM respectively. The results showed the high value differences in the fraction of the meter between LiDAR DEM and multitemporal stereo satellite imagery DEM.

  16. Gravity model development for precise orbit computations for satellite altimetry

    Science.gov (United States)

    Marsh, James G.; Lerch, Francis, J.; Smith, David E.; Klosko, Steven M.; Pavlis, Erricos

    1986-01-01

    Two preliminary gravity models developed as a first step in reaching the TOPEX/Poseidon modeling goals are discussed. They were obtained by NASA-Goddard from an analysis of exclusively satellite tracking observations. With the new Preliminary Gravity Solution-T2 model, an improved global estimate of the field is achieved with an improved description of the geoid.

  17. Using Deep Learning Model for Meteorological Satellite Cloud Image Prediction

    Science.gov (United States)

    Su, X.

    2017-12-01

    A satellite cloud image contains much weather information such as precipitation information. Short-time cloud movement forecast is important for precipitation forecast and is the primary means for typhoon monitoring. The traditional methods are mostly using the cloud feature matching and linear extrapolation to predict the cloud movement, which makes that the nonstationary process such as inversion and deformation during the movement of the cloud is basically not considered. It is still a hard task to predict cloud movement timely and correctly. As deep learning model could perform well in learning spatiotemporal features, to meet this challenge, we could regard cloud image prediction as a spatiotemporal sequence forecasting problem and introduce deep learning model to solve this problem. In this research, we use a variant of Gated-Recurrent-Unit(GRU) that has convolutional structures to deal with spatiotemporal features and build an end-to-end model to solve this forecast problem. In this model, both the input and output are spatiotemporal sequences. Compared to Convolutional LSTM(ConvLSTM) model, this model has lower amount of parameters. We imply this model on GOES satellite data and the model perform well.

  18. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios

    Science.gov (United States)

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-01-01

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN. PMID:26593919

  19. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios.

    Science.gov (United States)

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-11-17

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.

  20. Gravity model improvement using the DORIS tracking system on the SPOT 2 satellite

    Science.gov (United States)

    Nerem, R. S.; Lerch, F. J.; Williamson, R. G.; Klosko, S. M.; Robbins, J. W.; Patel, G. B.

    1994-01-01

    A high-precision radiometric satellite tracking system, Doppler Orbitography and Radio-positioning Integrated by Satellite system (DORIS), has recently been developed by the French space agency, Centre National d'Etudes Spatiales (CNES). DORIS was designed to provide tracking support for missions such as the joint United States/French TOPEX/Poseidon. As part of the flight testing process, a DORIS package was flown on the French SPOT 2 satellite. A substantial quantity of geodetic quality tracking data was obtained on SPOT 2 from an extensive international DORIS tracking network. These data were analyzed to assess their accuracy and to evaluate the gravitational modeling enhancements provided by these data in combination with the Goddard Earth Model-T3 (GEM-T3) gravitational model. These observations have noise levels of 0.4 to 0.5 mm/s, with few residual systematic effects. Although the SPOT 2 satellite experiences high atmospheric drag forces, the precision and global coverage of the DORIS tracking data have enabled more extensive orbit parameterization to mitigate these effects. As a result, the SPOT 2 orbital errors have been reduced to an estimated radial accuracy in the 10-20 cm RMS range. The addition of these data, which encompass many regions heretofore lacking in precision satellite tracking, has significantly improved GEM-T3 and allowed greatly improved orbit accuracies for Sun-synchronous satellites like SPOT 2 (such as ERS 1 and EOS). Comparison of the ensuing gravity model with other contemporary fields (GRIM-4C2, TEG2B, and OSU91A) provides a means to assess the current state of knowledge of the Earth's gravity field. Thus, the DORIS experiment on SPOT 2 has provided a strong basis for evaluating this new orbit tracking technology and has demonstrated the important contribution of the DORIS network to the success of the TOPEX/Poseidon mission.

  1. Assimilating satellite soil moisture into rainfall-runoff modelling: towards a systematic study

    Science.gov (United States)

    Massari, Christian; Tarpanelli, Angelica; Brocca, Luca; Moramarco, Tommaso

    2015-04-01

    Soil moisture is the main factor for the repartition of the mass and energy fluxes between the land surface and the atmosphere thus playing a fundamental role in the hydrological cycle. Indeed, soil moisture represents the initial condition of rainfall-runoff modelling that determines the flood response of a catchment. Different initial soil moisture conditions can discriminate between catastrophic and minor effects of a given rainfall event. Therefore, improving the estimation of initial soil moisture conditions will reduce uncertainties in early warning flood forecasting models addressing the mitigation of flood hazard. In recent years, satellite soil moisture products have become available with fine spatial-temporal resolution and a good accuracy. Therefore, a number of studies have been published in which the impact of the assimilation of satellite soil moisture data into rainfall-runoff modelling is investigated. Unfortunately, data assimilation involves a series of assumptions and choices that significantly affect the final result. Given a satellite soil moisture observation, a rainfall-runoff model and a data assimilation technique, an improvement or a deterioration of discharge predictions can be obtained depending on the choices made in the data assimilation procedure. Consequently, large discrepancies have been obtained in the studies published so far likely due to the differences in the implementation of the data assimilation technique. On this basis, a comprehensive and robust procedure for the assimilation of satellite soil moisture data into rainfall-runoff modelling is developed here and applied to six subcatchment of the Upper Tiber River Basin for which high-quality hydrometeorological hourly observations are available in the period 1989-2013. The satellite soil moisture product used in this study is obtained from the Advanced SCATterometer (ASCAT) onboard Metop-A satellite and it is available since 2007. The MISDc ("Modello Idrologico Semi

  2. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna

    2008-01-01

     In Sweden, utilisation of incinerator residues outside disposal areas is restricted by environmental concerns, as such residues commonly contain greater amounts of potentially toxic trace elements than the natural materials they replace. On the other hand, utilisation can also provide environmental benefits by decreasing the need for landfill and reducing raw material extraction. This thesis provides increased knowledge and proposes better approaches for environmental assessment of incinerat...

  3. Determinants of Antenatal Healthcare Utilisation by Pregnant Women in Third Trimester in Peri-Urban Ghana

    Directory of Open Access Journals (Sweden)

    Jones Asafo Akowuah

    2018-01-01

    Full Text Available Access to quality healthcare still remains a major challenge in the efforts at reversing maternal morbidity and mortality. Despite the availability of established maternal health interventions, the health of the expectant mother and the unborn child remains poor due to low utilisation of interventions. The study examined the socioeconomic determinants of antenatal care utilisation in peri-urban Ghana using pregnant women who are in their third trimester. Two-stage sampling technique was used to sample 200 pregnant women who were in their third trimester from the District Health Information Management System software. Well-structured questionnaire was the instrument used to collect data from respondents. Descriptive statistics and inferential statistics including binary logit regression model were used to analyse the data with the help of SPSS and STATA software. The results showed varying utilisation levels of ANC. From the regression result, age, household size, and occupational status were identified as the important socioeconomic determinants of antenatal care utilisation among the respondents. The important system factors which influence antenatal care utilisation by the respondents are distance to ANC, quality of service, and service satisfaction. The study concludes that socioeconomic and health system factors are important determinants of antenatal care utilisation. Stepping up of interventions aimed at improving the socioeconomic status and addressing health system and proximity challenges could be helpful in improving antenatal care utilisation by pregnant women in Ghana.

  4. An analysis of partial efficiencies of energy utilisation of different macronutrients by barramundi (Lates calcarifer) shows that starch restricts protein utilisation in carnivorous fish.

    Science.gov (United States)

    Glencross, Brett D; Blyth, David; Bourne, Nicholas; Cheers, Susan; Irvin, Simon; Wade, Nicholas M

    2017-02-01

    This study examined the effect of including different dietary proportions of starch, protein and lipid, in diets balanced for digestible energy, on the utilisation efficiencies of dietary energy by barramundi (Lates calcarifer). Each diet was fed at one of three ration levels (satiety, 80 % of initial satiety and 60 % of initial satiety) for a 42-d period. Fish performance measures (weight gain, feed intake and feed conversion ratio) were all affected by dietary energy source. The efficiency of energy utilisation was significantly reduced in fish fed the starch diet relative to the other diets, but there were no significant effects between the other macronutrients. This reduction in efficiency of utilisation was derived from a multifactorial change in both protein and lipid utilisation. The rate of protein utilisation deteriorated as the amount of starch included in the diet increased. Lipid utilisation was most dramatically affected by inclusion levels of lipid in the diet, with diets low in lipid producing component lipid utilisation rates well above 1·3, which indicates substantial lipid synthesis from other energy sources. However, the energetic cost of lipid gain was as low as 0·65 kJ per kJ of lipid deposited, indicating that barramundi very efficiently store energy in the form of lipid, particularly from dietary starch energy. This study defines how the utilisation efficiency of dietary digestible energy by barramundi is influenced by the macronutrient source providing that energy, and that the inclusion of starch causes problems with protein utilisation in this species.

  5. Sediment plume model-a comparison between use of measured turbidity data and satellite images for model calibration.

    Science.gov (United States)

    Sadeghian, Amir; Hudson, Jeff; Wheater, Howard; Lindenschmidt, Karl-Erich

    2017-08-01

    In this study, we built a two-dimensional sediment transport model of Lake Diefenbaker, Saskatchewan, Canada. It was calibrated by using measured turbidity data from stations along the reservoir and satellite images based on a flood event in 2013. In June 2013, there was heavy rainfall for two consecutive days on the frozen and snow-covered ground in the higher elevations of western Alberta, Canada. The runoff from the rainfall and the melted snow caused one of the largest recorded inflows to the headwaters of the South Saskatchewan River and Lake Diefenbaker downstream. An estimated discharge peak of over 5200 m 3 /s arrived at the reservoir inlet with a thick sediment front within a few days. The sediment plume moved quickly through the entire reservoir and remained visible from satellite images for over 2 weeks along most of the reservoir, leading to concerns regarding water quality. The aims of this study are to compare, quantitatively and qualitatively, the efficacy of using turbidity data and satellite images for sediment transport model calibration and to determine how accurately a sediment transport model can simulate sediment transport based on each of them. Both turbidity data and satellite images were very useful for calibrating the sediment transport model quantitatively and qualitatively. Model predictions and turbidity measurements show that the flood water and suspended sediments entered upstream fairly well mixed and moved downstream as overflow with a sharp gradient at the plume front. The model results suggest that the settling and resuspension rates of sediment are directly proportional to flow characteristics and that the use of constant coefficients leads to model underestimation or overestimation unless more data on sediment formation become available. Hence, this study reiterates the significance of the availability of data on sediment distribution and characteristics for building a robust and reliable sediment transport model.

  6. Model-based satellite image fusion

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Sveinsson, J. R.; Nielsen, Allan Aasbjerg

    2008-01-01

    A method is proposed for pixel-level satellite image fusion derived directly from a model of the imaging sensor. By design, the proposed method is spectrally consistent. It is argued that the proposed method needs regularization, as is the case for any method for this problem. A framework for pixel...... neighborhood regularization is presented. This framework enables the formulation of the regularization in a way that corresponds well with our prior assumptions of the image data. The proposed method is validated and compared with other approaches on several data sets. Lastly, the intensity......-hue-saturation method is revisited in order to gain additional insight of what implications the spectral consistency has for an image fusion method....

  7. Trends, determinants and inequities of 4+ ANC utilisation in Bangladesh.

    Science.gov (United States)

    Rahman, Aminur; Nisha, Monjura Khatun; Begum, Tahmina; Ahmed, Sayem; Alam, Nurul; Anwar, Iqbal

    2017-01-13

    The objectives of this study are to document the trend on utilisation of four or more (4 + ) antenatal care (ANC) over the last 22 years period and to explore the determinants and inequity of 4 + ANC utilisation as reported by the last two Bangladesh Demographic and Health surveys (BDHS) (2011 and 2014). The data related to ANC have been extracted from the BDHS data set which is available online as an open source. STATA 13 software was used for organising and analysing the data. The outcome variable considered for this study was utilisation of 4 + ANC. Trends of 4 + ANC were measured in percentage and predictors for 4 + ANC were measured through bivariate and multivariable analysis. The concentration index was estimated for assessing inequity in 4 + ANC utilisation. Utilisation of 4 + ANC has increased by about 26% between the year 1994 and 2014. Higher level of education, residing in urban region and richest wealth quintile were found to be significant predictors. The utilisation of 4 + ANC has decreased with increasing parity and maternal age. The inequity indices showed consistent inequities in 4 + ANC utilisation, and such inequities were increased between 2011 and 2014. In Bangladesh, the utilisation of any ANC rose steadily between 1994 and 2014, but progress in terms of 4 + ANC utilisation was much slower as the expectation was to achieve the national set target (50%: 4 + ANC utilisation) by 2016. Socio-economic inequities were observed in groups that failed to attend a 4 + ANC visit. Policymakers should pay special attention to increase the 4 + ANC coverage where this study can facilitate to identify the target groups whom need to be intervened on priority basis.

  8. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images

    International Nuclear Information System (INIS)

    Linares-Rodriguez, Alvaro; Ruiz-Arias, José Antonio; Pozo-Vazquez, David; Tovar-Pescador, Joaquin

    2013-01-01

    An optimized artificial neural network ensemble model is built to estimate daily global solar radiation over large areas. The model uses clear-sky estimates and satellite images as input variables. Unlike most studies using satellite imagery based on visible channels, our model also exploits all information within infrared channels of the Meteosat 9 satellite. A genetic algorithm is used to optimize selection of model inputs, for which twelve are selected – eleven 3-km Meteosat 9 channels and one clear-sky term. The model is validated in Andalusia (Spain) from January 2008 through December 2008. Measured data from 83 stations across the region are used, 65 for training and 18 independent ones for testing the model. At the latter stations, the ensemble model yields an overall root mean square error of 6.74% and correlation coefficient of 99%; the generated estimates are relatively accurate and errors spatially uniform. The model yields reliable results even on cloudy days, improving on current models based on satellite imagery. - Highlights: • Daily solar radiation data are generated using an artificial neural network ensemble. • Eleven Meteosat channels observations and a clear sky term are used as model inputs. • Model exploits all information within infrared Meteosat channels. • Measured data for a year from 83 ground stations are used. • The proposed approach has better performance than existing models on daily basis

  9. Analytic Models for Sunlight Charging of a Rapidly Spinning Satellite

    National Research Council Canada - National Science Library

    Tautz, Maurice

    2003-01-01

    ... photoelectrons can be blocked by local potential barriers. In this report, we discuss two analytic models for sunlight charging of a rapidly spinning spherical satellite, both of which are based on blocked photoelectron currents...

  10. Ensemble Assimilation Using Three First-Principles Thermospheric Models as a Tool for 72-hour Density and Satellite Drag Forecasts

    Science.gov (United States)

    Hunton, D.; Pilinski, M.; Crowley, G.; Azeem, I.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.; Codrescu, M.

    2014-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by variability in the density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. As the population of satellites in Earth orbit grows, higher space-weather prediction accuracy is required for critical missions, such as accurate catalog maintenance, collision avoidance for manned and unmanned space flight, reentry prediction, satellite lifetime prediction, defining on-board fuel requirements, and satellite attitude dynamics. We describe ongoing work to build a comprehensive nowcast and forecast system for neutral density, winds, temperature, composition, and satellite drag. This modeling tool will be called the Atmospheric Density Assimilation Model (ADAM). It will be based on three state-of-the-art coupled models of the thermosphere-ionosphere running in real-time, using assimilative techniques to produce a thermospheric nowcast. It will also produce, in realtime, 72-hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition. We will review the requirements for the ADAM system, the underlying full-physics models, the plethora of input options available to drive the models, a feasibility study showing the performance of first-principles models as it pertains to satellite-drag operational needs, and review challenges in designing an assimilative space-weather prediction model. The performance of the ensemble assimilative model is expected to exceed the performance of current empirical and assimilative density models.

  11. Utilisation of factorial experiments for the UV/H O process in a batch ...

    African Journals Online (AJOL)

    drinie

    2001-10-04

    Oct 4, 2001 ... The predictions given by the factorial experiments model were confirmed by the ... studies have given the effect of initial H2O2 concentration, initial concentration of the ... This mathematical model may be utilised to explain.

  12. Climate Model Diagnostic and Evaluation: With a Focus on Satellite Observations

    Science.gov (United States)

    Waliser, Duane

    2011-01-01

    Each year, we host a summer school that brings together the next generation of climate scientists - about 30 graduate students and postdocs from around the world - to engage with premier climate scientists from the Jet Propulsion Laboratory and elsewhere. Our yearly summer school focuses on topics on the leading edge of climate science research. Our inaugural summer school, held in 2011, was on the topic of "Using Satellite Observations to Advance Climate Models," and enabled students to explore how satellite observations can be used to evaluate and improve climate models. Speakers included climate experts from both NASA and the National Oceanic and Atmospheric Administration (NOAA), who provided updates on climate model diagnostics and evaluation and remote sensing of the planet. Details of the next summer school will be posted here in due course.

  13. Price and utilisation differences for statins between four countries.

    Science.gov (United States)

    Thai, Loc Phuoc; Vitry, Agnes Isabelle; Moss, John Robert

    2018-02-01

    Australia, England, France and New Zealand use different policies to regulate their medicines market, which can impact on utilisation and price. To compare the prices and utilisation of statins in Australia, England, France and New Zealand from 2011 to 2013. Utilisation of statins in the four countries was compared using Defined Daily Doses (DDD) per 1000 inhabitants per year. Pairwise Laspeyres and Paasche index comparisons were conducted comparing the price and utilisation of statins. The results showed that the price of statins in New Zealand was the cheapest. The price of statins in Australia was most expensive in 2011 and 2012 but France was more expensive in 2013. There were large differences between the Laspeyres index and Paasche index when comparing the price and utilisation of England with Australia and France. The policies that regulate the New Zealand and England medicines markets were more effective in reducing the price of expensive statins. The relative utilisation of cheaper statins was greatest in England and had a large effect on the differences between the two index results. The pricing policies in Australia have been only partly effective in reducing the price of statins compared to other countries.

  14. Mass and power modeling of communication satellites

    Science.gov (United States)

    Price, Kent M.; Pidgeon, David; Tsao, Alex

    1991-01-01

    Analytic estimating relationships for the mass and power requirements for major satellite subsystems are described. The model for each subsystem is keyed to the performance drivers and system requirements that influence their selection and use. Guidelines are also given for choosing among alternative technologies which accounts for other significant variables such as cost, risk, schedule, operations, heritage, and life requirements. These models are intended for application to first order systems analyses, where resources do not warrant detailed development of a communications system scenario. Given this ground rule, the models are simplified to 'smoothed' representation of reality. Therefore, the user is cautioned that cost, schedule, and risk may be significantly impacted where interpolations are sufficiently different from existing hardware as to warrant development of new devices.

  15. Patients' subjective concepts about primary healthcare utilisation: the study protocol of a quality comparative study between Norway and Germany

    OpenAIRE

    Herrmann, Wolfram; Haarmann, Alexander; Flick, Uwe; Bærheim, Anders; Lichte, Thomas; Herrmann, Markus

    2013-01-01

    Background In Germany, utilisation of ambulatory healthcare services is high compared with other countries: While a study based on the process data of German statutory health insurances showed an average of 17.1 physician-patient-contacts per year, the comparable figure for Norway is about five. The usual models of healthcare utilisation, such as Rosenstock's Health Belief Model and Andersen's Behavioural Model, cannot explain these differences adequately. Organisational factors of th...

  16. Using satellite observations in performance evaluation for regulatory air quality modeling: Comparison with ground-level measurements

    Science.gov (United States)

    Odman, M. T.; Hu, Y.; Russell, A.; Chai, T.; Lee, P.; Shankar, U.; Boylan, J.

    2012-12-01

    Regulatory air quality modeling, such as State Implementation Plan (SIP) modeling, requires that model performance meets recommended criteria in the base-year simulations using period-specific, estimated emissions. The goal of the performance evaluation is to assure that the base-year modeling accurately captures the observed chemical reality of the lower troposphere. Any significant deficiencies found in the performance evaluation must be corrected before any base-case (with typical emissions) and future-year modeling is conducted. Corrections are usually made to model inputs such as emission-rate estimates or meteorology and/or to the air quality model itself, in modules that describe specific processes. Use of ground-level measurements that follow approved protocols is recommended for evaluating model performance. However, ground-level monitoring networks are spatially sparse, especially for particulate matter. Satellite retrievals of atmospheric chemical properties such as aerosol optical depth (AOD) provide spatial coverage that can compensate for the sparseness of ground-level measurements. Satellite retrievals can also help diagnose potential model or data problems in the upper troposphere. It is possible to achieve good model performance near the ground, but have, for example, erroneous sources or sinks in the upper troposphere that may result in misleading and unrealistic responses to emission reductions. Despite these advantages, satellite retrievals are rarely used in model performance evaluation, especially for regulatory modeling purposes, due to the high uncertainty in retrievals associated with various contaminations, for example by clouds. In this study, 2007 was selected as the base year for SIP modeling in the southeastern U.S. Performance of the Community Multiscale Air Quality (CMAQ) model, at a 12-km horizontal resolution, for this annual simulation is evaluated using both recommended ground-level measurements and non-traditional satellite

  17. How to model different socio-economic and environmental aspects of biomass utilisation: Case study in selected regions in Slovenia and Croatia

    International Nuclear Information System (INIS)

    Krajnc, N.; Domac, J.

    2007-01-01

    Wood biomass is an important renewable source of energy, especially in countries with traditional dependency on forestry resources. In these countries, wood biomass can have numerous positive socio-economical and environmental effects. This paper presents a new model (SCORE model) for estimation of 15 socio-economic and environmental aspects of increased use of biomass from the forests. The presented model enables selected estimation of different aspects in the whole chain of biomass production, preparation and use. Namely, the model enables the estimation of net labour income, net profit, regional public finance income, net direct jobs, net indirect jobs, net induced jobs, total net jobs, contribution to forest management, impact on wood waste utilisation, impact on other woody biomass utilisation, avoided costs of landfill, saving CO 2 emissions, possible impact on regional unemployment, avoided costs of unemployment, additional jobs for farmers, additional activities on farms (from indirect and induced jobs) and self-sufficiency in electricity production. The SCORE model was tested in selected regions in Slovenia and Croatia and apart from a good understanding of the socio-economic and environmental aspects, it also enables an overview of the economy of wood biomass production, given that it includes the economic analysis of wood biomass production and use. The model is not intended for a detailed economic analysis of separate phases of wood biomass production, processing and use, but particularly to show advantages or disadvantages that can result from planned and existing biomass systems. (author)

  18. Rapid core field variations during the satellite era: Investigations using stochastic process based field models

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Gillet, Nicolas

    We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to tradition...... physical hypotheses can be tested by asking questions of the entire ensemble of core field models, rather than by interpreting any single model.......We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to traditional...... regularization methods based on minimizing the square of second or third time derivative. We invert satellite and observatory data directly by adopting the external field and crustal field modelling framework of the CHAOS model, but apply the stochastic process method of Gillet et al. (2013) to the core field...

  19. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model

    Science.gov (United States)

    Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng

    2017-10-01

    Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.

  20. Equality in Maternal and Newborn Health: Modelling Geographic Disparities in Utilisation of Care in Five East African Countries.

    Directory of Open Access Journals (Sweden)

    Corrine W Ruktanonchai

    Full Text Available Geographic accessibility to health facilities represents a fundamental barrier to utilisation of maternal and newborn health (MNH services, driving historically hidden spatial pockets of localized inequalities. Here, we examine utilisation of MNH care as an emergent property of accessibility, highlighting high-resolution spatial heterogeneity and sub-national inequalities in receiving care before, during, and after delivery throughout five East African countries.We calculated a geographic inaccessibility score to the nearest health facility at 300 x 300 m using a dataset of 9,314 facilities throughout Burundi, Kenya, Rwanda, Tanzania and Uganda. Using Demographic and Health Surveys data, we utilised hierarchical mixed effects logistic regression to examine the odds of: 1 skilled birth attendance, 2 receiving 4+ antenatal care visits at time of delivery, and 3 receiving a postnatal health check-up within 48 hours of delivery. We applied model results onto the accessibility surface to visualise the probabilities of obtaining MNH care at both high-resolution and sub-national levels after adjusting for live births in 2015.Across all outcomes, decreasing wealth and education levels were associated with lower odds of obtaining MNH care. Increasing geographic inaccessibility scores were associated with the strongest effect in lowering odds of obtaining care observed across outcomes, with the widest disparities observed among skilled birth attendance. Specifically, for each increase in the inaccessibility score to the nearest health facility, the odds of having skilled birth attendance at delivery was reduced by over 75% (0.24; CI: 0.19-0.3, while the odds of receiving antenatal care decreased by nearly 25% (0.74; CI: 0.61-0.89 and 40% for obtaining postnatal care (0.58; CI: 0.45-0.75.Overall, these results suggest decreasing accessibility to the nearest health facility significantly deterred utilisation of all maternal health care services. These

  1. Investment utilisation, adjustment costs, and technical efficiency in Danish pig farms

    DEFF Research Database (Denmark)

    Olsen, Jakob Vesterlund; Henningsen, Arne

    In this paper, we present a theoretical model for adjustment costs and investment utilisation that illustrates their causes and types and shows in which phases of an investment they occur. Furthermore, we develop an empirical framework for analysing the size and the timing of adjustment costs...... that investments have a negative effect on farm efficiency in the year of the investment and the year after accruing from adjustment costs. There is a large positive effect on efficiency two and three years after the investment. The farmer’s age and the farm size significantly influence technical efficiency......, as well as the effect of investments on adjustment costs and investment utilisation. These results are robust to different ways of measuring capital....

  2. A model for calculating hourly global solar radiation from satellite data in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J.

    2009-01-01

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country.

  3. A model for calculating hourly global solar radiation from satellite data in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-09-15

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country. (author)

  4. Integrating satellite imagery with simulation modeling to improve burn severity mapping

    Science.gov (United States)

    Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon

    2014-01-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...

  5. Chemical Utilisation of CO

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Chemical Utilisation of CO2: A Challenge for the Sustainable World. Dinesh Jagadeesan Bhaskar Joshi Prashant Parameswaran. General Article Volume 20 Issue 2 February 2015 pp 165-176 ...

  6. Thermal imbalance force modelling for a GPS satellite using the finite element method

    Science.gov (United States)

    Vigue, Yvonne; Schutz, Bob E.

    1991-01-01

    Methods of analyzing the perturbation due to thermal radiation and determining its effects on the orbits of GPS satellites are presented, with emphasis on the FEM technique to calculate satellite solar panel temperatures which are used to determine the magnitude and direction of the thermal imbalance force. Although this force may not be responsible for all of the force mismodeling, conditions may work in combination with the thermal imbalance force to produce such accelerations on the order of 1.e-9 m/sq s. If submeter accurate orbits and centimeter-level accuracy for geophysical applications are desired, a time-dependent model of the thermal imbalance force should be used, especially when satellites are eclipsing, where the observed errors are larger than for satellites in noneclipsing orbits.

  7. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  8. A new stochastic model considering satellite clock interpolation errors in precise point positioning

    Science.gov (United States)

    Wang, Shengli; Yang, Fanlin; Gao, Wang; Yan, Lizi; Ge, Yulong

    2018-03-01

    Precise clock products are typically interpolated based on the sampling interval of the observational data when they are used for in precise point positioning. However, due to the occurrence of white noise in atomic clocks, a residual component of such noise will inevitable reside within the observations when clock errors are interpolated, and such noise will affect the resolution of the positioning results. In this paper, which is based on a twenty-one-week analysis of the atomic clock noise characteristics of numerous satellites, a new stochastic observation model that considers satellite clock interpolation errors is proposed. First, the systematic error of each satellite in the IGR clock product was extracted using a wavelet de-noising method to obtain the empirical characteristics of atomic clock noise within each clock product. Then, based on those empirical characteristics, a stochastic observation model was structured that considered the satellite clock interpolation errors. Subsequently, the IGR and IGS clock products at different time intervals were used for experimental validation. A verification using 179 stations worldwide from the IGS showed that, compared with the conventional model, the convergence times using the stochastic model proposed in this study were respectively shortened by 4.8% and 4.0% when the IGR and IGS 300-s-interval clock products were used and by 19.1% and 19.4% when the 900-s-interval clock products were used. Furthermore, the disturbances during the initial phase of the calculation were also effectively improved.

  9. Satellite switched FDMA advanced communication technology satellite program

    Science.gov (United States)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  10. German mires - Utilisation and protection

    International Nuclear Information System (INIS)

    Roderfeld, H.

    1996-01-01

    Mires in Germany are mainly used for agriculture. Peat mining is important regionally, but forest utilisation less so. Twenty years ago in the former West Germany, the first steps from peatland utilisation to peatland protection were taken. Bog protection programmes were developed first. Nowadays research directed to fen protection has begun, prompted by the decreasing importance of agriculture in Central Europe and an increasing environmental awareness. The situation regarding mire protection in Germany is presented for each Federal State individually. A rough estimate suggests 45 000 ha of protected bogs and 25 000 ha of protected fens. These areas include natural and semi-natural mires as well as rewetted mires. (30 refs.)

  11. Regional model simulation of the North Atlantic cyclone "Caroline" and comparisons with satellite data

    Directory of Open Access Journals (Sweden)

    E. Keup-Thiel

    2003-03-01

    Full Text Available An individual regional model simulation of cyclone "Caroline" has been carried out to study water cycle components over the North Atlantic Ocean. The uncertainties associated with quantitative estimates of the water cycle components are highlighted by a comparison of the model results with SSM/I (Special Sensor Microwave Imager satellite data. The vertically integrated water vapor of the REgional MOdel REMO is in good agreement with the SSM/I satellite data. The simulation results for other water budget components like the vertically integrated liquid water content and precipitation compare also reasonably well within the frontal system. However, the high precipitation rate in the cold air outbreak on the backside of the cold front derived from SSM/I satellite data is generally underestimated by REMO. This results in a considerable deficit of the total precipitation amount accumulated for the cyclone "Caroline". While REMO simulates 24.3 108 m3 h-1 for 09:00 UTC, the total areal precipitation from SSM/I satellite data amounts to 54.7 08 m3 h-1.Key words. Meteorology and atmospheric dynamics (precipitation; mesoscale meteorology – Radio science (remote sensing

  12. The Stackelberg Model for a Leader of Production and Many Satellites

    Directory of Open Access Journals (Sweden)

    Catalin Angelo Ioan

    2015-05-01

    Full Text Available Oligopoly is a market situation where there are a small number of bidders (at least two of a good non-substituent and a sufficient number of consumers. The paper analyses the Stackelberg model for a leader of production and many satellites. There are obtained the equilibrium productions, maximum profits and sales price where one of the company is the leader of quantity, and other satellites. There are also survey the situations where the firm based on its marginal cost of production can effectively take the lead of production.

  13. Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Directory of Open Access Journals (Sweden)

    M. Z. H. Bhuiyan J. Zhang

    2012-12-01

    Full Text Available Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this

  14. A satellite simulator for TRMM PR applied to climate model simulations

    Science.gov (United States)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  15. PROBLEMS AND LIMITATIONS OF SATELLITE IMAGE ORIENTATION FOR DETERMINATION OF HEIGHT MODELS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2017-05-01

    Full Text Available The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC. The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3, WorldView-2 (WV2, Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs. The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the

  16. Problems and Limitations of Satellite Image Orientation for Determination of Height Models

    Science.gov (United States)

    Jacobsen, K.

    2017-05-01

    The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC). The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py) for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3), WorldView-2 (WV2), Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs). The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the object height

  17. SpaceWire model development technology for satellite architecture.

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  18. Burn severity mapping using simulation modeling and satellite imagery

    Science.gov (United States)

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  19. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  20. Comparisons of aerosol optical depth provided by seviri satellite observations and CAMx air quality modelling

    Science.gov (United States)

    Fernandes, A.; Riffler, M.; Ferreira, J.; Wunderle, S.; Borrego, C.; Tchepel, O.

    2015-04-01

    Satellite data provide high spatial coverage and characterization of atmospheric components for vertical column. Additionally, the use of air pollution modelling in combination with satellite data opens the challenging perspective to analyse the contribution of different pollution sources and transport processes. The main objective of this work is to study the AOD over Portugal using satellite observations in combination with air pollution modelling. For this purpose, satellite data provided by Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on-board the geostationary Meteosat-9 satellite on AOD at 550 nm and modelling results from the Chemical Transport Model (CAMx - Comprehensive Air quality Model) were analysed. The study period was May 2011 and the aim was to analyse the spatial variations of AOD over Portugal. In this study, a multi-temporal technique to retrieve AOD over land from SEVIRI was used. The proposed method takes advantage of SEVIRI's high temporal resolution of 15 minutes and high spatial resolution. CAMx provides the size distribution of each aerosol constituent among a number of fixed size sections. For post processing, CAMx output species per size bin have been grouped into total particulate sulphate (PSO4), total primary and secondary organic aerosols (POA + SOA), total primary elemental carbon (PEC) and primary inert material per size bin (CRST1 to CRST_4) to be used in AOD quantification. The AOD was calculated by integration of aerosol extinction coefficient (Qext) on the vertical column. The results were analysed in terms of temporal and spatial variations. The analysis points out that the implemented methodology provides a good spatial agreement between modelling results and satellite observation for dust outbreak studied (10th -17th of May 2011). A correlation coefficient of r=0.79 was found between the two datasets. This work provides relevant background to start the integration of these two different types of the data in order

  1. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    Science.gov (United States)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  2. Assimilation of Real-Time Satellite And Human Sensor Networks for Modeling Natural Disasters

    Science.gov (United States)

    Aulov, O.; Halem, M.; Lary, D. J.

    2011-12-01

    We describe the development of underlying technologies needed to address the merging of a web of real time satellite sensor Web (SSW) and Human Sensor Web (HSW) needed to augment the US response to extreme events. As an initial prototyping step and use case scenario, we consider the development of two major system tools that can be transitioned from research to the responding operational agency for mitigating coastal oil spills. These tools consist of the capture of Situation Aware (SA) Social Media (SM) Data, and assimilation of the processed information into forecasting models to provide incident decision managers with interactive virtual spatial temporal animations superimposed with probabilistic data estimates. The system methodologies are equally applicable to the wider class of extreme events such as plume dispersions from volcanoes or massive fires, major floods, hurricane impacts, radioactive isotope dispersions from nuclear accidents, etc. A successful feasibility demonstration of this technology has been shown in the case of the Deepwater Horizon Oil Spill where Human Sensor Networks have been combined with a geophysical model to perform parameter assessments. Flickr images of beached oil were mined from the spill area, geolocated and timestamped and converted into geophysical data. This data was incorporated into General NOAA Operational Modeling Environment (GNOME), a Lagrangian forecast model that uses near real-time surface winds, ocean currents, and satellite shape profiles of oil to generate a forecast of plume movement. As a result, improved estimates of diffusive coefficients and rates of oil spill were determined. Current approaches for providing satellite derived oil distributions are collected from a satellite sensor web of operational and research sensors from many countries, and a manual analysis is performed by NESDIS. A real time SA HSW processing system based on geolocated SM data from sources such as Twitter, Flickr, YouTube etc., greatly

  3. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Science.gov (United States)

    Tang, W.; Cohan, D. S.; Pour-Biazar, A.; Lamsal, L. N.; White, A. T.; Xiao, X.; Zhou, W.; Henderson, B. H.; Lash, B. F.

    2015-02-01

    Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 state implementation plan (SIP) modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB) and normalized mean error (NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-decoupled direct method (DDM) model to adjust Texas NOx emissions using a high-resolution Ozone Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCDs) is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The region-based DKF inversion suggests increasing NOx emissions by 10-50% in most regions, deteriorating the model performance in predicting ground NO2 and O3, while the sector-based DKF inversion tends to scale down area and nonroad NOx emissions by 50%, leading to a 2-5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using sector-based inversion-constrained NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05, increases the model

  4. Incorporation of Satellite Data and Uncertainty in a Nationwide Groundwater Recharge Model in New Zealand

    Directory of Open Access Journals (Sweden)

    Rogier Westerhoff

    2018-01-01

    Full Text Available A nationwide model of groundwater recharge for New Zealand (NGRM, as described in this paper, demonstrated the benefits of satellite data and global models to improve the spatial definition of recharge and the estimation of recharge uncertainty. NGRM was inspired by the global-scale WaterGAP model but with the key development of rainfall recharge calculation on scales relevant to national- and catchment-scale studies (i.e., a 1 km × 1 km cell size and a monthly timestep in the period 2000–2014 provided by satellite data (i.e., MODIS-derived evapotranspiration, AET and vegetation in combination with national datasets of rainfall, elevation, soil and geology. The resulting nationwide model calculates groundwater recharge estimates, including their uncertainty, consistent across the country, which makes the model unique compared to all other New Zealand estimates targeted towards groundwater recharge. At the national scale, NGRM estimated an average recharge of 2500 m 3 /s, or 298 mm/year, with a model uncertainty of 17%. Those results were similar to the WaterGAP model, but the improved input data resulted in better spatial characteristics of recharge estimates. Multiple uncertainty analyses led to these main conclusions: the NGRM model could give valuable initial estimates in data-sparse areas, since it compared well to most ground-observed lysimeter data and local recharge models; and the nationwide input data of rainfall and geology caused the largest uncertainty in the model equation, which revealed that the satellite data could improve spatial characteristics without significantly increasing the uncertainty. Clearly the increasing volume and availability of large-scale satellite data is creating more opportunities for the application of national-scale models at the catchment, and smaller, scales. This should result in improved utility of these models including provision of initial estimates in data-sparse areas. Topics for future

  5. The local ionospheric modeling by integration ground GPS observations and satellite altimetry data

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sharifi

    2017-01-01

    Full Text Available The free electrons in the ionosphere have a strong impact on the propagation of radio waves. When the signals pass through the ionosphere, both their group and phase velocity are disturbed. Several space geodetic techniques such as satellite altimetry, low Earth orbit (LEO satellite and very long baseline interferometry (VLBI can be used to model the total electron content. At present, the classical input data for development of ionospheric models are based on dual-frequency GPS observations, However, a major problem with this observation type is the nonuniform distribution of the terrestrial GPS reference stations with large gaps notably over the sea surface and ocean where only some single stations are located on islands, leading to lower the precision of the model over these areas. In these regions the dual-frequency satellite altimeters provide precise information about the parameters of the ionosphere. Combination of GPS and satellite altimetry observations allows making best use of the advantages of their different spatial and temporal distributions. In this study, the local ionosphere modeling was done by the combination of space geodetic observations using spherical Slepian function. The combination of the data from ground GPS observations over the western part of the USA and the altimetry mission Jason-2 was performed on the normal equation level in the least-square procedure and a least-square variance component estimation (LS-VCE was applied to take into account the different accuracy levels of the observations. The integrated ionosphere model is more accurate and more reliable than the results derived from the ground GPS observations over the oceans.

  6. Improved Assimilation of Streamflow and Satellite Soil Moisture with the Evolutionary Particle Filter and Geostatistical Modeling

    Science.gov (United States)

    Yan, Hongxiang; Moradkhani, Hamid; Abbaszadeh, Peyman

    2017-04-01

    Assimilation of satellite soil moisture and streamflow data into hydrologic models using has received increasing attention over the past few years. Currently, these observations are increasingly used to improve the model streamflow and soil moisture predictions. However, the performance of this land data assimilation (DA) system still suffers from two limitations: 1) satellite data scarcity and quality; and 2) particle weight degeneration. In order to overcome these two limitations, we propose two possible solutions in this study. First, the general Gaussian geostatistical approach is proposed to overcome the limitation in the space/time resolution of satellite soil moisture products thus improving their accuracy at uncovered/biased grid cells. Secondly, an evolutionary PF approach based on Genetic Algorithm (GA) and Markov Chain Monte Carlo (MCMC), the so-called EPF-MCMC, is developed to further reduce weight degeneration and improve the robustness of the land DA system. This study provides a detailed analysis of the joint and separate assimilation of streamflow and satellite soil moisture into a distributed Sacramento Soil Moisture Accounting (SAC-SMA) model, with the use of recently developed EPF-MCMC and the general Gaussian geostatistical approach. Performance is assessed over several basins in the USA selected from Model Parameter Estimation Experiment (MOPEX) and located in different climate regions. The results indicate that: 1) the general Gaussian approach can predict the soil moisture at uncovered grid cells within the expected satellite data quality threshold; 2) assimilation of satellite soil moisture inferred from the general Gaussian model can significantly improve the soil moisture predictions; and 3) in terms of both deterministic and probabilistic measures, the EPF-MCMC can achieve better streamflow predictions. These results recommend that the geostatistical model is a helpful tool to aid the remote sensing technique and the EPF-MCMC is a

  7. Enhancing Cloud Resource Utilisation using Statistical Analysis

    OpenAIRE

    Sijin He; Li Guo; Yike Guo

    2014-01-01

    Resource provisioning based on virtual machine (VM) has been widely accepted and adopted in cloud computing environments. A key problem resulting from using static scheduling approaches for allocating VMs on different physical machines (PMs) is that resources tend to be not fully utilised. Although some existing cloud reconfiguration algorithms have been developed to address the problem, they normally result in high migration costs and low resource utilisation due to ignoring the multi-dimens...

  8. An Object Model for Integrating Diverse Remote Sensing Satellite Sensors: A Case Study of Union Operation

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-01-01

    Full Text Available In the Earth Observation sensor web environment, the rapid, accurate, and unified discovery of diverse remote sensing satellite sensors, and their association to yield an integrated solution for a comprehensive response to specific emergency tasks pose considerable challenges. In this study, we propose a remote sensing satellite sensor object model, based on the object-oriented paradigm and the Open Geospatial Consortium Sensor Model Language. The proposed model comprises a set of sensor resource objects. Each object consists of identification, state of resource attribute, and resource method. We implement the proposed attribute state description by applying it to different remote sensors. A real application, involving the observation of floods at the Yangtze River in China, is undertaken. Results indicate that the sensor inquirer can accurately discover qualified satellite sensors in an accurate and unified manner. By implementing the proposed union operation among the retrieved sensors, the inquirer can further determine how the selected sensors can collaboratively complete a specific observation requirement. Therefore, the proposed model provides a reliable foundation for sharing and integrating multiple remote sensing satellite sensors and their observations.

  9. The Social Acceptance of Carbon Dioxide Utilisation: A Review and Research Agenda

    International Nuclear Information System (INIS)

    Jones, Christopher R.; Olfe-Kräutlein, Barbara; Naims, Henriette; Armstrong, Katy

    2017-01-01

    CO 2 utilisation technologies—also called carbon dioxide utilisation (CDU) and carbon capture and utilisation (CCU)—convert CO 2 via physical, chemical, or biological processes into carbon-based products. CO 2 utilisation technologies are viewed as a means of helping to address climate change and broadening the raw material base for commodities that can be sold to generate economic revenue. However, while technical research and development into the feasibility of CO 2 utilisation options are accelerating rapidly; at present, there has been limited research into the social acceptance of the technology and CO 2 -derived products. This review article outlines and explores three key dimensions of social acceptance (i.e., socio-political, market, and community acceptance) pertaining to innovation within CO 2 utilisation. The article highlights the importance of considering issues of social acceptance as an aspect of the research, development, demonstration, and deployment process for CO 2 utilisation and explores how key stakeholders operating on each dimension might affect the innovation pathways, investment, and siting decisions relating to CO 2 utilisation facilities and CO 2 -derived products. Beyond providing a state-of-the-art review of current research into the social acceptance of CO 2 utilisation, this article also outlines an agenda for future research in the field.

  10. MODELING OF ADS-B MESSAGES TRANSMISSION THROUGH SATELLITE TELECOMMUNICATION CHANNEL IRIDIUM USING NETCRACKER PROFESSIONAL 4.1

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2012-04-01

    Full Text Available The model for the traffic analysis in a communication channel "aircraft - satellite - ground station" wasbuilt and used for modeling of transfer ADS-B messages with the help low-orbit satellite complex Іrіdіum.Dependences of factor BER on channel average working load and average utilization time were obtained.Dependences of package failure probabilities on average working load, average utilization time and signaltraveling time were analyzed. The developed model was applied for determination of traffic characteristics ina communication channel "aircraft - satellite - ground station": the dependence of average working load,average channel utilization time and message traveling time on the size of transaction, the dependence oftravelling time on channel delay time were built.

  11. Utilisation des "algues-fourrage" en aquaculture

    OpenAIRE

    Chretiennot-dinet, Marie-josèphe; Robert, Rene; His, Edouard

    1986-01-01

    Les travaux concernant l'utilisation d'algues unicellulaires pour la nutrtion de larves et de juvéniles de bivalves d'intérêt commercial sont analysés. Sur une cinquantaine d'espèces d'algues testées, un dizaine seulement sont produites en grande quantité dans des écloseries commerciales sous le non "d'algues fourrage". Les principales espèces employées sont décrites et leurs caractéristiques majeures illustrées. Les critères permettant de retenir une espèce pour son utilisation en aquacultur...

  12. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  13. Results of the first tests of the SIDRA satellite-borne instrument breadboard model

    International Nuclear Information System (INIS)

    Dudnik, O.V.; Kurbatov, E.V.; Avilov, A.M.; Titov, K.G.; Prieto, M; Sanchez, S.; Spassky, A.V.; Sylwester, J.; Gburek, S.; Podgorski, P.

    2013-01-01

    In this work, the results of the calibration of the solid-state detectors and electronic channels of the SIDRA satellite borne energetic charged particle spectrometer-telescope breadboard model are presented. The block schemes and experimental equipment used to conduct the thermal vacuum and electromagnetic compatibility tests of the assemblies and modules of the compact satellite equipment are described. The results of the measured thermal conditions of operation of the signal analog and digital processing critical modules of the SIDRA instrument prototype are discussed. Finally, the levels of conducted interference generated by the instrument model in the primary vehicle-borne power circuits are presented.

  14. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  15. Regional model simulation of the North Atlantic cyclone "Caroline" and comparisons with satellite data

    Directory of Open Access Journals (Sweden)

    E. Keup-Thiel

    Full Text Available An individual regional model simulation of cyclone "Caroline" has been carried out to study water cycle components over the North Atlantic Ocean. The uncertainties associated with quantitative estimates of the water cycle components are highlighted by a comparison of the model results with SSM/I (Special Sensor Microwave Imager satellite data.

    The vertically integrated water vapor of the REgional MOdel REMO is in good agreement with the SSM/I satellite data. The simulation results for other water budget components like the vertically integrated liquid water content and precipitation compare also reasonably well within the frontal system. However, the high precipitation rate in the cold air outbreak on the backside of the cold front derived from SSM/I satellite data is generally underestimated by REMO. This results in a considerable deficit of the total precipitation amount accumulated for the cyclone "Caroline". While REMO simulates 24.3 108 m3 h-1 for 09:00 UTC, the total areal precipitation from SSM/I satellite data amounts to 54.7 08 m3 h-1.

    Key words. Meteorology and atmospheric dynamics (precipitation; mesoscale meteorology – Radio science (remote sensing

  16. The Social Acceptance of Carbon Dioxide Utilisation: A Review and Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher R., E-mail: c.r.jones@sheffield.ac.uk [UK Centre for Carbon Dioxide Utilisation (CDUUK), University of Sheffield, Sheffield (United Kingdom); Environment and Behaviour Research Group (EBRG), Department of Psychology, University of Sheffield, Sheffield (United Kingdom); Olfe-Kräutlein, Barbara; Naims, Henriette [Institute for Advanced Sustainability Studies (IASS), Potsdam (Germany); Armstrong, Katy [UK Centre for Carbon Dioxide Utilisation (CDUUK), University of Sheffield, Sheffield (United Kingdom)

    2017-06-09

    CO{sub 2} utilisation technologies—also called carbon dioxide utilisation (CDU) and carbon capture and utilisation (CCU)—convert CO{sub 2}via physical, chemical, or biological processes into carbon-based products. CO{sub 2} utilisation technologies are viewed as a means of helping to address climate change and broadening the raw material base for commodities that can be sold to generate economic revenue. However, while technical research and development into the feasibility of CO{sub 2} utilisation options are accelerating rapidly; at present, there has been limited research into the social acceptance of the technology and CO{sub 2}-derived products. This review article outlines and explores three key dimensions of social acceptance (i.e., socio-political, market, and community acceptance) pertaining to innovation within CO{sub 2} utilisation. The article highlights the importance of considering issues of social acceptance as an aspect of the research, development, demonstration, and deployment process for CO{sub 2} utilisation and explores how key stakeholders operating on each dimension might affect the innovation pathways, investment, and siting decisions relating to CO{sub 2} utilisation facilities and CO{sub 2}-derived products. Beyond providing a state-of-the-art review of current research into the social acceptance of CO{sub 2} utilisation, this article also outlines an agenda for future research in the field.

  17. Autoregressive spatially varying coefficients model for predicting daily PM2.5 using VIIRS satellite AOT

    Science.gov (United States)

    Schliep, E. M.; Gelfand, A. E.; Holland, D. M.

    2015-12-01

    There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the United States motivates the need for advanced statistical models to predict air quality metrics, such as PM2.5, at unobserved sites. Remote sensing technologies have the potential to expand our knowledge of PM2.5 spatial patterns beyond what we can predict from current PM2.5 monitoring networks. Data from satellites have an additional advantage in not requiring extensive emission inventories necessary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predicting PM2.5. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the challenges involved with using it in fusion models are (1) the correlation between the two data sources varies both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model fit and out of sample prediction of PM2.5. The models are applied to daily observations of PM2.5 and AOT in the summer months of 2013 across the conterminous United States. Most notably, during this time period, we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample predictive improvement.

  18. On land-use modeling: A treatise of satellite imagery data and misclassification error

    Science.gov (United States)

    Sandler, Austin M.

    Recent availability of satellite-based land-use data sets, including data sets with contiguous spatial coverage over large areas, relatively long temporal coverage, and fine-scale land cover classifications, is providing new opportunities for land-use research. However, care must be used when working with these datasets due to misclassification error, which causes inconsistent parameter estimates in the discrete choice models typically used to model land-use. I therefore adapt the empirical correction methods developed for other contexts (e.g., epidemiology) so that they can be applied to land-use modeling. I then use a Monte Carlo simulation, and an empirical application using actual satellite imagery data from the Northern Great Plains, to compare the results of a traditional model ignoring misclassification to those from models accounting for misclassification. Results from both the simulation and application indicate that ignoring misclassification will lead to biased results. Even seemingly insignificant levels of misclassification error (e.g., 1%) result in biased parameter estimates, which alter marginal effects enough to affect policy inference. At the levels of misclassification typical in current satellite imagery datasets (e.g., as high as 35%), ignoring misclassification can lead to systematically erroneous land-use probabilities and substantially biased marginal effects. The correction methods I propose, however, generate consistent parameter estimates and therefore consistent estimates of marginal effects and predicted land-use probabilities.

  19. Utilisation of Antenatal Services at the Provincial Hospital, Mongomo ...

    African Journals Online (AJOL)

    Utilisation of Antenatal Services at the Provincial Hospital, Mongomo, Guinea Equatoria. AAG Jimoh. Abstract. This prospective study was carried out to evaluate the utilisation of antenatal care at the Provincial Specialist Hospital, Mongomo, Guinea Equatoria, paying close attention to the confounding factors affecting ...

  20. On the performance of satellite precipitation products in riverine flood modeling: A review

    Science.gov (United States)

    Maggioni, Viviana; Massari, Christian

    2018-03-01

    This work is meant to summarize lessons learned on using satellite precipitation products for riverine flood modeling and to propose future directions in this field of research. Firstly, the most common satellite precipitation products (SPPs) during the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM) eras are reviewed. Secondly, we discuss the main errors and uncertainty sources in these datasets that have the potential to affect streamflow and runoff model simulations. Thirdly, past studies that focused on using SPPs for predicting streamflow and runoff are analyzed. As the impact of floods depends not only on the characteristics of the flood itself, but also on the characteristics of the region (population density, land use, geophysical and climatic factors), a regional analysis is required to assess the performance of hydrologic models in monitoring and predicting floods. The performance of SPP-forced hydrological models was shown to largely depend on several factors, including precipitation type, seasonality, hydrological model formulation, topography. Across several basins around the world, the bias in SPPs was recognized as a major issue and bias correction methods of different complexity were shown to significantly reduce streamflow errors. Model re-calibration was also raised as a viable option to improve SPP-forced streamflow simulations, but caution is necessary when recalibrating models with SPP, which may result in unrealistic parameter values. From a general standpoint, there is significant potential for using satellite observations in flood forecasting, but the performance of SPP in hydrological modeling is still inadequate for operational purposes.

  1. The Precipitation Products Generation Chain for the EUMETSAT Hydrological Satellite Application Facility at C.N.M.C.A.

    Science.gov (United States)

    Zauli, Francesco; Biron, Daniele; Melfi, Davide

    2009-11-01

    The EUMETSA T Satellite Application Facility in support to Hydrology (H-SAF) focuses on the development of new geophysical products on precipitation, soil moisture and snow parameters and the utilisation of these parameters in hydrological models, NWP models and water management. The development phase of the H-SAF started in September 2005 under the leadership of Italian Meteorological Service.The Centro Nazionale di Meteorologia e Climatologia Aeronautica (C.N.M.C.A.), the Italian National Weather Centre, that physically hosts the generation chain of precipitation products, developed activities to reach the final target: development of algorithms, validation of results, implementation of operative procedure to supply the service and to monitor the service performances.The paper shows the recent architectural review of H- SAF precipitation group, stressing components of operation for high sustainability, full redundancy, absolute continuity of service.

  2. Parental decision-making on utilisation of out-of-home respite in children's palliative care: findings of qualitative case study research - a proposed new model.

    Science.gov (United States)

    Ling, J; Payne, S; Connaire, K; McCarron, M

    2016-01-01

    Respite in children's palliative care aims to provide a break for family's from the routine of caring. Parental decision-making regarding the utilisation of out-of-home respite is dependent on many interlinking factors including the child's age, diagnosis, geographical location and the family's capacity to meet their child's care needs. A proposed model for out-of-home respite has been developed based on the findings of qualitative case study research. Utilising multiple, longitudinal, qualitative case study design, the respite needs and experiences of parents caring for a child with a life-limiting condition were explored. Multiple, in-depth interviews were undertaken with the parents identified by a hospital-based children's palliative care team. Data were analysed using thematic analysis. Each individual case consists of a whole study. Cross-case comparison was also conducted. Nine families were recruited and followed for two years. A total of 19 in-depth interviews were conducted with mothers and fathers (one or both) caring for a child with a life-limiting condition in Ireland. Each family reported vastly different needs and experiences of respite from their own unique perspective. Cross-case comparison showed that for all parents utilising respite care, regardless of their child's age and condition, home was the location of choice. Many interlinking factors influencing these decisions included: past experience of in-patient care, and trust and confidence in care providers. Issues were raised regarding the impact of care provision in the home on family life, siblings and the concept of home. Respite is an essential element of children's palliative care. Utilisation of out-of-home respite is heavily dependent on a number of interlinked and intertwined factors. The proposed model of care offers an opportunity to identify how these decisions are made and may ultimately assist in identifying the elements of responsive and family-focused respite that are important

  3. Spatial Dynamic Wideband Modeling of the MIMO Satellite-to-Earth Channel

    OpenAIRE

    Lehner, Andreas; Steingass, Alexander

    2014-01-01

    A novel MIMO (multiple input multiple output) satellite channel model that allows the generation of associated channel impulse response (CIR) time series depending on the movement profile of a land mobile terminal is presented in this paper. Based on high precise wideband measurements in L-band the model reproduces the correlated shadowing and multipath conditions in rich detail. The model includes time and space variant echo signals appearing and disappearing in dependence on the receive ...

  4. End-to-end network models encompassing terrestrial, wireless, and satellite components

    Science.gov (United States)

    Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.

    2004-08-01

    Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.

  5. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    Science.gov (United States)

    Bay Hasager, Charlotte

    2014-05-01

    are modeled by various types of wake models. In the EERA DTOC project the model suite consists of engineering models (Ainslie, DWM, GLC, PARK, WASP/NOJ), simplified CFD models (FUGA, FarmFlow), full CFD models (CRES-flowNS, RANS), mesoscale model (SKIRON, WRF) and coupled meso-scale and microscale models. The comparison analysis between the satellite wind wake and model results will be presented and discussed. It is first time a comprehensive analysis is performed on this subject. The topic gains increasing importance because there is a growing need to precisely model also mid- and far-field wind farms wakes for development and planning of offshore wind farm clusters.

  6. Advances in snow cover distributed modelling via ensemble simulations and assimilation of satellite data

    Science.gov (United States)

    Revuelto, J.; Dumont, M.; Tuzet, F.; Vionnet, V.; Lafaysse, M.; Lecourt, G.; Vernay, M.; Morin, S.; Cosme, E.; Six, D.; Rabatel, A.

    2017-12-01

    Nowadays snowpack models show a good capability in simulating the evolution of snow in mountain areas. However singular deviations of meteorological forcing and shortcomings in the modelling of snow physical processes, when accumulated on time along a snow season, could produce large deviations from real snowpack state. The evaluation of these deviations is usually assessed with on-site observations from automatic weather stations. Nevertheless the location of these stations could strongly influence the results of these evaluations since local topography may have a marked influence on snowpack evolution. Despite the evaluation of snowpack models with automatic weather stations usually reveal good results, there exist a lack of large scale evaluations of simulations results on heterogeneous alpine terrain subjected to local topographic effects.This work firstly presents a complete evaluation of the detailed snowpack model Crocus over an extended mountain area, the Arve upper catchment (western European Alps). This catchment has a wide elevation range with a large area above 2000m a.s.l. and/or glaciated. The evaluation compares results obtained with distributed and semi-distributed simulations (the latter nowadays used on the operational forecasting). Daily observations of the snow covered area from MODIS satellite sensor, seasonal glacier surface mass balance evolution measured in more than 65 locations and the galciers annual equilibrium line altitude from Landsat/Spot/Aster satellites, have been used for model evaluation. Additionally the latest advances in producing ensemble snowpack simulations for assimilating satellite reflectance data over extended areas will be presented. These advances comprises the generation of an ensemble of downscaled high-resolution meteorological forcing from meso-scale meteorological models and the application of a particle filter scheme for assimilating satellite observations. Despite the results are prefatory, they show a good

  7. Assimilation of satellite altimeter data into an open ocean model

    Science.gov (United States)

    Vogeler, Armin; SchröTer, Jens

    1995-08-01

    Geosat sea surface height data are assimilated into an eddy-resolving quasi-geostrophic open ocean model using the adjoint technique. The method adjusts the initial conditions for all layers and is successful on the timescale of a few weeks. Time-varying values for the open boundaries are prescribed by a much larger quasi-geostrophic model of the Antarctic Circumpolar Current (ACC). Both models have the same resolution of approximately 20×20 km (1/3°×1/6°), have three layers, and include realistic bottom topography and coastlines. The open model box is embedded in the African sector of the ACC. For continuous assimilation of satellite data into the larger model the nudging technique is applied. These results are used for the adjoint optimization procedure as boundary conditions and as a first guess for the initial condition. For the open model box the difference between model and satellite sea surface height that remains after the nudging experiment amounts to a 19-cm root-mean-square error (rmse). By assimilation into the regional model this value can be reduced to a 6-cm rmse for an assimilation period of 20 days. Several experiments which attempt to improve the convergence of the iterative optimization method are reported. Scaling and regularization by smoothing have to be applied carefully. Especially during the first 10 iterations, the convergence can be improved considerably by low-pass filtering of the cost function gradient. The result of a perturbation experiment shows that for longer assimilation periods the influence of the boundary values becomes dominant and they should be determined inversely by data assimilation into the open ocean model.

  8. Refined Use of Satellite Aerosol Optical Depth Snapshots to Constrain Biomass Burning Emissions in the GOCART Model

    Science.gov (United States)

    Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Limbacher, James

    2017-10-01

    Simulations of biomass burning (BB) emissions in global chemistry and aerosol transport models depend on external inventories, which provide location and strength for BB aerosol sources. Our previous work shows that to first order, satellite snapshots of aerosol optical depth (AOD) near the emitted smoke plume can be used to constrain model-simulated AOD, and effectively, the smoke source strength. We now refine the satellite-snapshot method and investigate where applying simple multiplicative emission adjustment factors alone to the widely used Global Fire Emission Database version 3 emission inventory can achieve regional-scale consistency between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD snapshots and the Goddard Chemistry Aerosol Radiation and Transport model. The model and satellite AOD are compared globally, over a set of BB cases observed by the MODIS instrument during the 2004, and 2006-2008 biomass burning seasons. Regional discrepancies between the model and satellite are diverse around the globe yet quite consistent within most ecosystems. We refine our approach to address physically based limitations of our earlier work (1) by expanding the number of fire cases from 124 to almost 900, (2) by using scaled reanalysis-model simulations to fill missing AOD retrievals in the MODIS observations, (3) by distinguishing the BB components of the total aerosol load from background aerosol in the near-source regions, and (4) by including emissions from fires too small to be identified explicitly in the satellite observations. The small-fire emission adjustment shows the complimentary nature of correcting for source strength and adding geographically distinct missing sources. Our analysis indicates that the method works best for fire cases where the BB fraction of total AOD is high, primarily evergreen or deciduous forests. In heavily polluted or agricultural burning regions, where smoke and background AOD values tend to be comparable, this approach

  9. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    Science.gov (United States)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to

  10. Tracking- and Scintillation-Aware Channel Model for GEO Satellite to Land Mobile Terminals at Ku-Band

    Directory of Open Access Journals (Sweden)

    Ali M. Al-Saegh

    2015-01-01

    Full Text Available Recent advances in satellite to land mobile terminal services and technologies, which utilize high frequencies with directional antennas, have made the design of an appropriate model for land mobile satellite (LMS channels a necessity. This paper presents LMS channel model at Ku-band with features that enhance accuracy, comprehensiveness, and reliability. The effect of satellite tracking loss at different mobile terminal speeds is considered for directional mobile antenna systems, a reliable tropospheric scintillation model for an LMS scenario at tropical and temperate regions is presented, and finally a new quality indicator module for different modulation and coding schemes is included. The proposed extended LMS channel (ELMSC model is designed based on actual experimental measurements and can be applied to narrow- and wide-band signals at different regions and at different speeds and multichannel states. The proposed model exhibits lower root mean square error (RMSE and significant performance observation compared with the conventional model in terms of the signal fluctuations, fade depth, signal-to-noise ratio (SNR, and quality indicators accompanied for several transmission schemes.

  11. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    Science.gov (United States)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  12. An advanced OBP-based payload operating in an asynchronous network for future data relay satellites utilising CCSDS-standard data structures

    Science.gov (United States)

    Grant, M.; Vernucci, A.

    1991-01-01

    A possible Data Relay Satellite System (DRSS) topology and network architecture is introduced. An asynchronous network concept, whereby each link (Inter-orbit, Inter-satellite, Feeder) is allowed to operate on its own clock, without causing loss of information, in conjunction with packet data structures, such as those specified by the CCSDS for advanced orbiting systems is discussed. A matching OBP payload architecture is described, highlighting the advantages provided by the OBP-based concept and then giving some indications on the OBP mass/power requirements.

  13. Integrating satellite retrieved leaf chlorophyll into land surface models for constraining simulations of water and carbon fluxes

    KAUST Repository

    Houborg, Rasmus; Cescatti, Alessandro; Gitelson, Anatoly A.

    2013-01-01

    variability exists. Satellite remote sensing can support modeling efforts by offering distributed information on important land surface characteristics, which would be very difficult to obtain otherwise. This study investigates the utility of satellite based

  14. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling

    Directory of Open Access Journals (Sweden)

    Mauro Rossi

    2017-12-01

    Full Text Available Landslides can be triggered by intense or prolonged rainfall. Rain gauge measurements are commonly used to predict landslides even if satellite rainfall estimates are available. Recent research focuses on the comparison of satellite estimates and gauge measurements. The rain gauge data from the Italian network (collected in the system database “Verifica Rischio Frana”, VRF are compared with the National Aeronautics and Space Administration (NASA Tropical Rainfall Measuring Mission (TRMM products. For the purpose, we couple point gauge and satellite rainfall estimates at individual grid cells, evaluating the correlation between gauge and satellite data in different morpho-climatological conditions. We then analyze the statistical distributions of both rainfall data types and the rainfall events derived from them. Results show that satellite data underestimates ground data, with the largest differences in mountainous areas. Power-law models, are more appropriate to correlate gauge and satellite data. The gauge and satellite-based products exhibit different statistical distributions and the rainfall events derived from them differ. In conclusion, satellite rainfall cannot be directly compared with ground data, requiring local investigation to account for specific morpho-climatological settings. Results suggest that satellite data can be used for forecasting landslides, only performing a local scaling between satellite and ground data.

  15. Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics

    International Nuclear Information System (INIS)

    Dong, Zibo; Yang, Dazhi; Reindl, Thomas; Walsh, Wilfred M.

    2014-01-01

    Highlights: • Satellite image analysis is performed and cloud cover index is classified using self-organizing maps (SOM). • The ESSS model is used to forecast cloud cover index. • Solar irradiance is estimated using multi-layer perceptron (MLP). • The proposed model shows better accuracy than other investigated models. - Abstract: We forecast hourly solar irradiance time series using satellite image analysis and a hybrid exponential smoothing state space (ESSS) model together with artificial neural networks (ANN). Since cloud cover is the major factor affecting solar irradiance, cloud detection and classification are crucial to forecast solar irradiance. Geostationary satellite images provide cloud information, allowing a cloud cover index to be derived and analysed using self-organizing maps (SOM). Owing to the stochastic nature of cloud generation in tropical regions, the ESSS model is used to forecast cloud cover index. Among different models applied in ANN, we favour the multi-layer perceptron (MLP) to derive solar irradiance based on the cloud cover index. This hybrid model has been used to forecast hourly solar irradiance in Singapore and the technique is found to outperform traditional forecasting models

  16. Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals

    Science.gov (United States)

    Chai, Tianfeng; Crawford, Alice; Stunder, Barbara; Pavolonis, Michael J.; Draxler, Roland; Stein, Ariel

    2017-02-01

    Currently, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) runs the HYSPLIT dispersion model with a unit mass release rate to predict the transport and dispersion of volcanic ash. The model predictions provide information for the Volcanic Ash Advisory Centers (VAAC) to issue advisories to meteorological watch offices, area control centers, flight information centers, and others. This research aims to provide quantitative forecasts of ash distributions generated by objectively and optimally estimating the volcanic ash source strengths, vertical distribution, and temporal variations using an observation-modeling inversion technique. In this top-down approach, a cost functional is defined to quantify the differences between the model predictions and the satellite measurements of column-integrated ash concentrations weighted by the model and observation uncertainties. Minimizing this cost functional by adjusting the sources provides the volcanic ash emission estimates. As an example, MODIS (Moderate Resolution Imaging Spectroradiometer) satellite retrievals of the 2008 Kasatochi volcanic ash clouds are used to test the HYSPLIT volcanic ash inverse system. Because the satellite retrievals include the ash cloud top height but not the bottom height, there are different model diagnostic choices for comparing the model results with the observed mass loadings. Three options are presented and tested. Although the emission estimates vary significantly with different options, the subsequent model predictions with the different release estimates all show decent skill when evaluated against the unassimilated satellite observations at later times. Among the three options, integrating over three model layers yields slightly better results than integrating from the surface up to the observed volcanic ash cloud top or using a single model layer. Inverse tests also show that including the ash-free region to constrain the model is not

  17. Satellite combined heat and power plants and their legal autonomy

    International Nuclear Information System (INIS)

    Loibl, Helmut

    2014-01-01

    Since the landmark decision by the German Court of Justice concerning the term ''plant'' in the context of biogas plants it should be clear beyond doubt that satellite combined heat and power plants (CHPs) are legally autonomous plants pursuant to Para. 3 No. 1 of the Renewable Energy Law (EEG). What has yet to be finally resolved are the conditions under which satellite CHPs are to be regarded as autonomous. This will be a question of distance on the one hand and of operation autonomy on the other. In the individual case both these factors will have to be assessed from the perspective of an average objective, informed citizen. To the extent that its heat and electricity are being utilised in a meaningful manner, the plant's autonomy will be beyond doubt, at least in operational terms. Regarding the remuneration to be paid for satellite CHPs the only case requiring special consideration is when a CHP falls under the EEG of 2012. In this case Para. 1 Section 1 Sentence 2 EEG provides that the remuneration for the CHP in question is to be calculated as if there was a single overall plant. To the extent that none of the CHPs fall under the EEG of 2012, the ruling remains that there is a separate entitlement to remuneration for each satellite CHP. This also holds in cases where satellite CHPs that were commissioned after 1 January 2012 are relocated. When a satellite CHP is replaced by a new one, the rate and duration of remuneration remain unchanged. However, when a new satellite CHP is added to an existing satellite CHP via a gas collector line it is to be treated according to the decisions of the Federal Court of Justice concerning biogas plant extensions: It falls under the law that applies to the existing CHP and has an entitlement to a new minimum remuneration period, albeit subject to the degression rate provided by the EEG version in question.

  18. Assessing the Regional/Diurnal Bias between Satellite Retrievals and GEOS-5/MERRA Model Estimates of Land Surface Temperature

    Science.gov (United States)

    Scarino, B. R.; Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.

    2017-12-01

    Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Continuous remote sensing of the Earth's energy budget, as conducted by the Clouds and Earth's Radiant Energy System (CERES) project, allows for near-realtime evaluation of cloud and surface radiation properties. It is unfortunately common for there to be bias between atmospheric/surface radiation models and Earth-observations. For example, satellite-observed surface skin temperature (Ts), an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface, can be biased due to atmospheric adjustment assumptions and anisotropy effects. Similarly, models are potentially biased by errors in initial conditions and regional forcing assumptions, which can be mitigated through assimilation with true measurements. As such, when frequent, broad-coverage, and accurate retrievals of satellite Ts are available, important insights into model estimates of Ts can be gained. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared method to produce anisotropy-corrected Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) satellite imagers. Regional and diurnal changes in model land surface temperature (LST) performance can be assessed owing to the somewhat continuous measurements of the LST offered by GEO satellites - measurements which are accurate to within 0.2 K. A seasonal, hourly comparison of satellite-observed LST with the NASA Goddard Earth Observing System Version 5 (GEOS-5) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA) LST estimates is conducted to reveal regional and diurnal biases. This assessment is an important first step for evaluating the effectiveness of Ts assimilation, as well for determining the

  19. Globalisation and Labour Utilisation in Nigeria: Evidence from the ...

    African Journals Online (AJOL)

    This study examines the influence of globalisation on labour utilisation in Nigeria using the construction industry as a case study. It reveals that the era of globalisation has given rise to profound changes in the way labour is utilised, specifically in terms of employment patterns as well as the related issues of earnings, job ...

  20. Factors that influence utilisation of HIV/AIDS prevention methods among university students residing at a selected university campus.

    Science.gov (United States)

    Ndabarora, Eléazar; Mchunu, Gugu

    2014-01-01

    Various studies have reported that university students, who are mostly young people, rarely use existing HIV/AIDS preventive methods. Although studies have shown that young university students have a high degree of knowledge about HIV/AIDS and HIV modes of transmission, they are still not utilising the existing HIV prevention methods and still engage in risky sexual practices favourable to HIV. Some variables, such as awareness of existing HIV/AIDS prevention methods, have been associated with utilisation of such methods. The study aimed to explore factors that influence use of existing HIV/AIDS prevention methods among university students residing in a selected campus, using the Health Belief Model (HBM) as a theoretical framework. A quantitative research approach and an exploratory-descriptive design were used to describe perceived factors that influence utilisation by university students of HIV/AIDS prevention methods. A total of 335 students completed online and manual questionnaires. Study findings showed that the factors which influenced utilisation of HIV/AIDS prevention methods were mainly determined by awareness of the existing university-based HIV/AIDS prevention strategies. Most utilised prevention methods were voluntary counselling and testing services and free condoms. Perceived susceptibility and perceived threat of HIV/AIDS score was also found to correlate with HIV risk index score. Perceived susceptibility and perceived threat of HIV/AIDS showed correlation with self-efficacy on condoms and their utilisation. Most HBM variables were not predictors of utilisation of HIV/AIDS prevention methods among students. Intervention aiming to improve the utilisation of HIV/AIDS prevention methods among students at the selected university should focus on removing identified barriers, promoting HIV/AIDS prevention services and providing appropriate resources to implement such programmes.

  1. GPS Modeling and Analysis. Summary of Research: GPS Satellite Axial Ratio Predictions

    Science.gov (United States)

    Axelrad, Penina; Reeh, Lisa

    2002-01-01

    This report outlines the algorithms developed at the Colorado Center for Astrodynamics Research to model yaw and predict the axial ratio as measured from a ground station. The algorithms are implemented in a collection of Matlab functions and scripts that read certain user input, such as ground station coordinates, the UTC time, and the desired GPS (Global Positioning System) satellites, and compute the above-mentioned parameters. The position information for the GPS satellites is obtained from Yuma almanac files corresponding to the prescribed date. The results are displayed graphically through time histories and azimuth-elevation plots.

  2. A Comparative Study on Satellite- and Model-Based Crop Phenology in West Africa

    Directory of Open Access Journals (Sweden)

    Elodie Vintrou

    2014-02-01

    Full Text Available Crop phenology is essential for evaluating crop production in the food insecure regions of West Africa. The aim of the paper is to study whether satellite observation of plant phenology are consistent with ground knowledge of crop cycles as expressed in agro-simulations. We used phenological variables from a MODIS Land Cover Dynamics (MCD12Q2 product and examined whether they reproduced the spatio-temporal variability of crop phenological stages in Southern Mali. Furthermore, a validated cereal crop growth model for this region, SARRA-H (System for Regional Analysis of Agro-Climatic Risks, provided precise agronomic information. Remotely-sensed green-up, maturity, senescence and dormancy MODIS dates were extracted for areas previously identified as crops and were compared with simulated leaf area indices (LAI temporal profiles generated using the SARRA-H crop model, which considered the main cropping practices. We studied both spatial (eight sites throughout South Mali during 2007 and temporal (two sites from 2002 to 2008 differences between simulated crop cycles and determined how the differences were indicated in satellite-derived phenometrics. The spatial comparison of the phenological indicator observations and simulations showed mainly that (i the satellite-derived start-of-season (SOS was detected approximately 30 days before the model-derived SOS; and (ii the satellite-derived end-of-season (EOS was typically detected 40 days after the model-derived EOS. Studying the inter-annual difference, we verified that the mean bias was globally consistent for different climatic conditions. Therefore, the land cover dynamics derived from the MODIS time series can reproduce the spatial and temporal variability of different start-of-season and end-of-season crop species. In particular, we recommend simultaneously using start-of-season phenometrics with crop models for yield forecasting to complement commonly used climate data and provide a better

  3. Assessment of satellite and model derived long term solar radiation for spatial crop models: A case study using DSSAT in Andhra Pradesh

    Directory of Open Access Journals (Sweden)

    Anima Biswal

    2014-09-01

    Full Text Available Crop Simulation models are mathematical representations of the soil plant-atmosphere system that calculate crop growth and yield, as well as the soil and plant water and nutrient balances, as a function of environmental conditions and crop management practices on daily time scale. Crop simulation models require meteorological data as inputs, but data availability and quality are often problematic particularly in spatialising the model for a regional studies. Among these weather variables, daily total solar radiation and air temperature (Tmax and Tmin have the greatest influence on crop phenology and yield potential. The scarcity of good quality solar radiation data can be a major limitation to the use of crop models. Satellite-sensed weather data have been proposed as an alternative when weather station data are not available. These satellite and modeled based products are global and, in general, contiguous in time and also been shown to be accurate enough to provide reliable solar and meteorological resource data over large regions where surface measurements are sparse or nonexistent. In the present study, an attempt was made to evaluate the satellite and model derived daily solar radiation for simulating groundnut crop growth in the rainfed distrcits of Andhra Pradesh. From our preliminary investigation, we propose that satellite derived daily solar radiation data could be used along with ground observed temperature and rainfall data for regional crop simulation studies where the information on ground observed solar radiation is missing or not available.

  4. Outpatient echocardiography in the evaluation of innocent murmurs in children: utilisation benchmarking.

    Science.gov (United States)

    Frias, Patricio A; Oster, Matthew; Daley, Patricia A; Boris, Jeffrey R

    2016-03-01

    We sought to benchmark the utilisation of echocardiography in the outpatient evaluation of heart murmurs by evaluating two large paediatric cardiology centres. Although criteria exist for appropriate use of echocardiography, there are no benchmarking data demonstrating its utilisation. We performed a retrospective cohort study of outpatients aged between 0 and 18 years at the Sibley Heart Center Cardiology and the Children's Hospital of Philadelphia Division of Cardiology, given a sole diagnosis of "innocent murmur" from 1 July, 2007 to 31 October, 2010. Using internal claims data, we compared the utilisation of echocardiography according to centre, patient age, and physician years of service. Of 23,114 eligible patients (Sibley Heart Center Cardiology: 12,815, Children's Hospital of Philadelphia Division of Cardiology: 10,299), 43.1% (Sibley Heart Center Cardiology: 45.2%, Children's Hospital of Philadelphia Division of Cardiology: 40.4%; p1-5 years had the lowest utilisation (32.7%). In two large paediatric cardiology practices, the overall utilisation of echocardiography by physicians with a sole diagnosis of innocent murmur was similar. There was significant and similar variability in utilisation by provider at both centres. Although these data serve as initial benchmarking, the variability in utilisation highlights the importance of appropriate use criteria.

  5. Erosion, Transportation, and Deposition on Outer Solar System Satellites: Landform Evolution Modeling Studies

    Science.gov (United States)

    Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface

  6. Solar resources estimation combining digital terrain models and satellite images techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, J.L.; Batlles, F.J. [Universidad de Almeria, Departamento de Fisica Aplicada, Ctra. Sacramento s/n, 04120-Almeria (Spain); Zarzalejo, L.F. [CIEMAT, Departamento de Energia, Madrid (Spain); Lopez, G. [EPS-Universidad de Huelva, Departamento de Ingenieria Electrica y Termica, Huelva (Spain)

    2010-12-15

    One of the most important steps to make use of any renewable energy is to perform an accurate estimation of the resource that has to be exploited. In the designing process of both active and passive solar energy systems, radiation data is required for the site, with proper spatial resolution. Generally, a radiometric stations network is used in this evaluation, but when they are too dispersed or not available for the study area, satellite images can be utilized as indirect solar radiation measurements. Although satellite images cover wide areas with a good acquisition frequency they usually have a poor spatial resolution limited by the size of the image pixel, and irradiation must be interpolated to evaluate solar irradiation at a sub-pixel scale. When pixels are located in flat and homogeneous areas, correlation of solar irradiation is relatively high, and classic interpolation can provide a good estimation. However, in complex topography zones, data interpolation is not adequate and the use of Digital Terrain Model (DTM) information can be helpful. In this work, daily solar irradiation is estimated for a wide mountainous area using a combination of Meteosat satellite images and a DTM, with the advantage of avoiding the necessity of ground measurements. This methodology utilizes a modified Heliosat-2 model, and applies for all sky conditions; it also introduces a horizon calculation of the DTM points and accounts for the effect of snow covers. Model performance has been evaluated against data measured in 12 radiometric stations, with results in terms of the Root Mean Square Error (RMSE) of 10%, and a Mean Bias Error (MBE) of +2%, both expressed as a percentage of the mean value measured. (author)

  7. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.

    2010-01-01

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  8. Floodwater utilisation values of wetland services - a case study in Northeastern China

    Science.gov (United States)

    Lü, S. B.; Xu, S. G.; Feng, F.

    2012-02-01

    Water plays a significant role in wetlands. Floodwater utilisation in wetlands brings a wide range of wetland services, from goods production and water regulation to animal protection and aesthetics related to water supply in wetlands. In this study, the floodwater utilisation values of wetland services were estimated within the Momoge wetland and Xianghai wetland in western Jilin province of northeastern China. From 2003 to 2008, the floodwater diverted from the Nenjiang and Tao'er River is 381 million m3, which translates into a monetary value of approximately 1.35 billion RMB in 2008 (RMB: Chinese Currency, RMB 6.80 = US 1), and the ratio of economic value, eco-environmental value, and social value is 1:12:2. Besides the monetary value of the water itself, excessive floodwater utilisation may bring losses to wetlands; the threshold floodwater utilisation volumes in wetlands are discussed. Floodwater utilisation can alleviate water shortages in wetlands, and the evaluation of floodwater utilisation in wetland services in monetary terms is a guide for the effective use of the floodwater resources and for the conservation of wetlands.

  9. The impact of frailty on healthcare utilisation in Ireland: evidence from the Irish longitudinal study on ageing.

    Science.gov (United States)

    Roe, Lorna; Normand, Charles; Wren, Maev-Ann; Browne, John; O'Halloran, Aisling M

    2017-09-05

    To examine the impact of frailty on medical and social care utilisation among the Irish community-dwelling older population to inform strategies of integrated care for older people with complex needs. Participants aged ≥65 years from the Irish Longitudinal Study on Ageing (TILDA) representative of the Irish community-dwelling older population were analysed (n = 3507). The frailty index was used to examine patterns of utilisation across medical and social care services. Multivariate logistic and negative binomial regression models were employed to examine the impact of frailty on service utilisation outcomes after controlling for other factors. The prevalence of frailty and pre-frailty was 24% (95% CI: 23, 26%) and 45% (95% CI: 43, 47%) respectively. Frailty was a significant predictor of utilisation of most social care and medical care services after controlling for the main correlates of frailty and observed individual effects. Frailty predicts utilisation of many different types of healthcare services rendering it a useful risk stratification tool for targeting strategies of integrated care. The pattern of care is predominantly medical as few of the frail older population use social care prompting questions about sub-groups of the frail older population with unmet care needs.

  10. Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.

  11. Utilisation of phosphate by jute from jute growing soils

    International Nuclear Information System (INIS)

    Ray, P.K.; Suiha, A.K.

    1974-01-01

    The uptake and utilisation of phosphate from different jute growing soils of West Bengal viz., Humaipur (24-Parganas), Haripal (Hooghly), Panagarh (Burdwan) and the Jute Agricultural Research Institute, Barrackpore (24-Parganas) were studied in pot under fertilizer combination of NP, PK and NPK. The soils from 24-Parganas district behaved in a similar manner with respect to dry matter yield, fertilizer P uptake and per cent utilisation of added P. The P deficient between the two, Humaipur soil, showed comparatively higher P utilisation. Other two soils, Haripal and Panagarh, though of different origin behaved similarly, highest soil P has been contributed by the P rich soil (J.A.R.I.) to the crop, though it showed minimum P fixation. (author)

  12. Satellite-based empirical models linking river plume dynamics with hypoxic area andvolume

    Science.gov (United States)

    Satellite-based empirical models explaining hypoxic area and volume variation were developed for the seasonally hypoxic (O2 < 2 mg L−1) northern Gulf of Mexico adjacent to the Mississippi River. Annual variations in midsummer hypoxic area and ...

  13. A satellite and model based flood inundation climatology of Australia

    Science.gov (United States)

    Schumann, G.; Andreadis, K.; Castillo, C. J.

    2013-12-01

    To date there is no coherent and consistent database on observed or simulated flood event inundation and magnitude at large scales (continental to global). The only compiled data set showing a consistent history of flood inundation area and extent at a near global scale is provided by the MODIS-based Dartmouth Flood Observatory. However, MODIS satellite imagery is only available from 2000 and is hampered by a number of issues associated with flood mapping using optical images (e.g. classification algorithms, cloud cover, vegetation). Here, we present for the first time a proof-of-concept study in which we employ a computationally efficient 2-D hydrodynamic model (LISFLOOD-FP) complemented with a sub-grid channel formulation to generate a complete flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent. The model was built completely from freely available SRTM-derived data, including channel widths, bank heights and floodplain topography, which was corrected for vegetation canopy height using a global ICESat canopy dataset. Channel hydraulics were resolved using actual channel data and bathymetry was estimated within the model using hydraulic geometry. On the floodplain, the model simulated the flow paths and inundation variables at a 1 km resolution. The developed model was run over a period of 40 years and a floodplain inundation climatology was generated and compared to satellite flood event observations. Our proof-of-concept study demonstrates that this type of model can reliably simulate past flood events with reasonable accuracies both in time and space. The Australian model was forced with both observed flow climatology and VIC-simulated flows in order to assess the feasibility of a model-based flood inundation climatology at the global scale.

  14. Using satellites and global models to investigate aerosol-cloud interactions

    Science.gov (United States)

    Gryspeerdt, E.; Quaas, J.; Goren, T.; Sourdeval, O.; Mülmenstädt, J.

    2017-12-01

    Aerosols are known to impact liquid cloud properties, through both microphysical and radiative processes. Increasing the number concentration of aerosol particles can increase the cloud droplet number concentration (CDNC). Through impacts on precipitation processes, this increase in CDNC may also be able to impact the cloud fraction (CF) and the cloud liquid water path (LWP). Several studies have looked into the effect of aerosols on the CDNC, but as the albedo of a cloudy scene depends much more strongly on LWP and CF, an aerosol influence on these properties could generate a significant radiative forcing. While the impact of aerosols on cloud properties can be seen in case studies involving shiptracks and volcanoes, producing a global estimate of these effects remains challenging due to the confounding effect of local meteorology. For example, relative humidity significantly impacts the aerosol optical depth (AOD), a common satellite proxy for CCN, as well as being a strong control on cloud properties. This can generate relationships between AOD and cloud properties, even when there is no impact of aerosol-cloud interactions. In this work, we look at how aerosol-cloud interactions can be distinguished from the effect of local meteorology in satellite studies. With a combination global climate models and multiple sources of satellite data, we show that the choice of appropriate mediating variables and case studies can be used to develop constraints on the aerosol impact on CF and LWP. This will lead to improved representations of clouds in global climate models and help to reduce the uncertainty in the global impact of anthropogenic aerosols on cloud properties.

  15. Digital elevation model generation from satellite interferometric synthetic aperture radar: Chapter 5

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Lei; Lee, Wonjin; Lee, Chang-Wook

    2012-01-01

    An accurate digital elevation model (DEM) is a critical data set for characterizing the natural landscape, monitoring natural hazards, and georeferencing satellite imagery. The ideal interferometric synthetic aperture radar (InSAR) configuration for DEM production is a single-pass two-antenna system. Repeat-pass single-antenna satellite InSAR imagery, however, also can be used to produce useful DEMs. DEM generation from InSAR is advantageous in remote areas where the photogrammetric approach to DEM generation is hindered by inclement weather conditions. There are many sources of errors in DEM generation from repeat-pass InSAR imagery, for example, inaccurate determination of the InSAR baseline, atmospheric delay anomalies, and possible surface deformation because of tectonic, volcanic, or other sources during the time interval spanned by the images. This chapter presents practical solutions to identify and remove various artifacts in repeat-pass satellite InSAR images to generate a high-quality DEM.

  16. Combining Satellite Measurements and Numerical Flood Prediction Models to Save Lives and Property from Flooding

    Science.gov (United States)

    Saleh, F.; Garambois, P. A.; Biancamaria, S.

    2017-12-01

    Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.

  17. Influence of C-Peptide on Glucose Utilisation

    Directory of Open Access Journals (Sweden)

    B. Wilhelm

    2008-01-01

    Full Text Available During the recent years, multiple studies demonstrated that C-peptide is not an inert peptide, but exerts important physiological effects. C-peptide binds to cell membranes, stimulates the Na,K-ATPase and the endothelial nitric oxide (NO synthase. Moreover, there is evidence that C-peptide decreases glomerular hyperfiltration and increases glucose utilisation. Nevertheless, there is still limited knowledge concerning mechanisms leading to an increased glucose utilisation either in rats or in humans. The aim of this paper is to give an overview over the published studies regarding C-peptide and glucose metabolism from in vitro studies to longer lasting studies in humans.

  18. The energy balance of utilising meadow grass in Danish biogas production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup; Raju, Chitra Sangaraju; Kucheryavskiy, Sergey V.

    2015-01-01

    of meadow areas, different relevant geo-datasets, spatial analyses, and various statistical analyses. The results show that values for the energy return on energy invested (EROEI) ranging from 1.7 to 3.3 can be obtained when utilising meadow grasses in local biogas production. The total national net energy......This paper presents a study of the energy balance of utilising nature conservation biomass from meadow habitats in Danish biogas production. Utilisation of nature conservation grass in biogas production in Denmark represents an interesting perspective for enhancing nature conservation of the open...... grassland habitats, while introducing an alternative to the use of intensively cultivated energy crops as co-substrates in manure based biogas plants. The energy balance of utilising nature conservation grass was investigated by using: data collected from previous investigations on the productivity...

  19. The GEOS Chemistry Climate Model: Comparisons to Satellite Data

    Science.gov (United States)

    Stolarski, R. S.; Douglass, A. R.

    2008-05-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. We will compare model simulations of ozone, and the minor constituents that affect ozone, for the period around 1980 with newly released revised data from the Limb Infrared Monitor of the Stratosphere (LIMS) instrument on Nimbus 4. We will also compare model simulations for the period of the early 2000s with the data from the Microwave Limb Sounder (MLS) and the High Resolution Dynamic Limb Sounder (HRDLS) on the Aura satellite. We will use these comparisons to examine the performance of the model for the present atmosphere and for the change that has occurred during the last 2 decades of ozone loss due to chlorine and bromine compounds released from chlorofluorocarbons and halons.

  20. Comparison of Satellite Surveying to Traditional Surveying Methods for the Resources Industry

    Science.gov (United States)

    Osborne, B. P.; Osborne, V. J.; Kruger, M. L.

    Modern ground-based survey methods involve detailed survey, which provides three-space co-ordinates for surveyed points, to a high level of accuracy. The instruments are operated by surveyors, who process the raw results to create survey location maps for the subject of the survey. Such surveys are conducted for a location or region and referenced to the earth global co- ordinate system with global positioning system (GPS) positioning. Due to this referencing the survey is only as accurate as the GPS reference system. Satellite survey remote sensing utilise satellite imagery which have been processed using commercial geographic information system software. Three-space co-ordinate maps are generated, with an accuracy determined by the datum position accuracy and optical resolution of the satellite platform.This paper presents a case study, which compares topographic surveying undertaken by traditional survey methods with satellite surveying, for the same location. The purpose of this study is to assess the viability of satellite remote sensing for surveying in the resources industry. The case study involves a topographic survey of a dune field for a prospective mining project area in Pakistan. This site has been surveyed using modern surveying techniques and the results are compared to a satellite survey performed on the same area.Analysis of the results from traditional survey and from the satellite survey involved a comparison of the derived spatial co- ordinates from each method. In addition, comparisons have been made of costs and turnaround time for both methods.The results of this application of remote sensing is of particular interest for survey in areas with remote and extreme environments, weather extremes, political unrest, poor travel links, which are commonly associated with mining projects. Such areas frequently suffer language barriers, poor onsite technical support and resources.

  1. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    Science.gov (United States)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  2. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling

    Science.gov (United States)

    Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.

    2015-01-01

    Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless

  3. Analyzing surface features on icy satellites using a new two-layer analogue model

    Science.gov (United States)

    Morales, K. M.; Leonard, E. J.; Pappalardo, R. T.; Yin, A.

    2017-12-01

    The appearance of similar surface morphologies across many icy satellites suggests potentially unified formation mechanisms. Constraining the processes that shape the surfaces of these icy worlds is fundamental to understanding their rheology and thermal evolution—factors that have implications for potential habitability. Analogue models have proven useful for investigating and quantifying surface structure formation on Earth, but have only been sparsely applied to icy bodies. In this study, we employ an innovative two-layer analogue model that simulates a warm, ductile ice layer overlain by brittle surface ice on satellites such as Europa and Enceladus. The top, brittle layer is composed of fine-grained sand while the ductile, lower viscosity layer is made of putty. These materials were chosen because they scale up reasonably to the conditions on Europa and Enceladus. Using this analogue model, we investigate the role of the ductile layer in forming contractional structures (e.g. folds) that would compensate for the over-abundance of extensional features observed on icy satellites. We do this by simulating different compressional scenarios in the analogue model and analyzing whether the resulting features resemble those on icy bodies. If the resulting structures are similar, then the model can be used to quantify the deformation by calculating strain. These values can then be scaled up to Europa or Enceladus and used to quantity the observed surface morphologies and the amount of extensional strain accommodated by certain features. This presentation will focus on the resulting surface morphologies and the calculated strain values from several analogue experiments. The methods and findings from this work can then be expanded and used to study other icy bodies, such as Triton, Miranda, Ariel, and Pluto.

  4. System factors influencing utilisation of Research4Life databases by ...

    African Journals Online (AJOL)

    This is a comprehensive investigation of the influence of system factors on utilisation of Research4Life databases. It is part of a doctoral dissertation. Research4Life databases are new innovative technologies being investigated in a new context – utilisation by NARIs scientists for research. The study adopted the descriptive ...

  5. Integrating satellite retrieved leaf chlorophyll into land surface models for constraining simulations of water and carbon fluxes

    KAUST Repository

    Houborg, Rasmus

    2013-07-01

    In terrestrial biosphere models, key biochemical controls on carbon uptake by vegetation canopies are typically assigned fixed literature-based values for broad categories of vegetation types although in reality significant spatial and temporal variability exists. Satellite remote sensing can support modeling efforts by offering distributed information on important land surface characteristics, which would be very difficult to obtain otherwise. This study investigates the utility of satellite based retrievals of leaf chlorophyll for estimating leaf photosynthetic capacity and for constraining model simulations of water and carbon fluxes. © 2013 IEEE.

  6. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    Science.gov (United States)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  7. Hydroclimatology of Lake Victoria region using hydrologic model and satellite remote sensing data

    Directory of Open Access Journals (Sweden)

    S. I. Khan

    2011-01-01

    Full Text Available Study of hydro-climatology at a range of temporal scales is important in understanding and ultimately mitigating the potential severe impacts of hydrological extreme events such as floods and droughts. Using daily in-situ data over the last two decades combined with the recently available multiple-years satellite remote sensing data, we analyzed and simulated, with a distributed hydrologic model, the hydro-climatology in Nzoia, one of the major contributing sub-basins of Lake Victoria in the East African highlands. The basin, with a semi arid climate, has no sustained base flow contribution to Lake Victoria. The short spell of high discharge showed that rain is the prime cause of floods in the basin. There is only a marginal increase in annual mean discharge over the last 21 years. The 2-, 5- and 10- year peak discharges, for the entire study period showed that more years since the mid 1990's have had high peak discharges despite having relatively less annual rain. The study also presents the hydrologic model calibration and validation results over the Nzoia basin. The spatiotemporal variability of the water cycle components were quantified using a hydrologic model, with in-situ and multi-satellite remote sensing datasets. The model is calibrated using daily observed discharge data for the period between 1985 and 1999, for which model performance is estimated with a Nash Sutcliffe Efficiency (NSCE of 0.87 and 0.23% bias. The model validation showed an error metrics with NSCE of 0.65 and 1.04% bias. Moreover, the hydrologic capability of satellite precipitation (TRMM-3B42 V6 is evaluated. In terms of reconstruction of the water cycle components the spatial distribution and time series of modeling results for precipitation and runoff showed considerable agreement with the monthly model runoff estimates and gauge observations. Runoff values responded to precipitation events that occurred across the catchment during the wet season from March to

  8. Patients' subjective concepts about primary healthcare utilisation: the study protocol of a qualitative comparative study between Norway and Germany.

    Science.gov (United States)

    Herrmann, Wolfram J; Haarmann, Alexander; Flick, Uwe; Bærheim, Anders; Lichte, Thomas; Herrmann, Markus

    2013-06-20

    In Germany, utilisation of ambulatory healthcare services is high compared with other countries: While a study based on the process data of German statutory health insurances showed an average of 17.1 physician-patient-contacts per year, the comparable figure for Norway is about five. The usual models of healthcare utilisation, such as Rosenstock's Health Belief Model and Andersen's Behavioural Model, cannot explain these differences adequately. Organisational factors of the healthcare system, such as gatekeeping, do not explain the magnitude of the differences. Our hypothesis is that patients' subjective concepts about primary healthcare utilisation play a major role in explaining different healthcare utilisation behaviour in different countries. Hence, the aim of this study is to explore these subjective concepts comparatively, between Germany and Norway. With that aim in mind, we chose a comparative qualitative study design. In Norway and Germany, we are going to interview 20 patients each with qualitative episodic interviews. In addition, we are going to conduct participant observation in four German and four Norwegian primary care practices. The data will be analysed by thematic coding. Using selected categories, we are going to conduct comparative case and group analyses. The study adheres to the Declaration of Helsinki. All interviewees will sign informed consent forms and all patients will be observed during consultation. Strict rules for data security will apply. Developed theory and policy implications are going to be disseminated by a workshop, presentations for experts and laypersons and publications.

  9. Radial diffusion in the Uranian radiatian belts - Inferences from satellite absorption loss models

    Science.gov (United States)

    Hood, L. L.

    1989-01-01

    Low-energy charged particle (LECP) phase space density profiles available from the Voyager/1986 Uranus encounter are analyzed, using solutions of the time-averaged radial diffusion equation for charged particle transport in a dipolar planetary magnetic field. Profiles for lower-energy protons and electrons are first analyzed to infer radial diffusion rate as a function of L, assuming that satellite absorption is the dominant loss process and local sources for these particles are negligible. Satellite macrosignatures present in the experimentally derived profiles are approximately reproduced in several cases, lending credence to the loss model and indicating that magnetospheric distributed losses are not as rapid as satellite absorption near the minimum satellite L shells for the particles. Diffusion rates and L dependences are found to be similar to those previously inferred in the inner Jovian magnetosphere (Thomsen et al., 1977) and for the inner Saturnian magnetosphere (Hood, 1985). Profiles for higher energy electrons and protons are also analyzed using solutions that allow for the existence of significant particle sources as well as sinks. Possible implications for radial diffusion mechanisms in the Uranian radiation belts are discussed.

  10. Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models

    Science.gov (United States)

    Spennemann, P. C.; Salvia, M.; Ruscica, R. C.; Sörensson, A. A.; Grings, F.; Karszenbaum, H.

    2018-02-01

    In regions of strong Land-Atmosphere (L-A) interaction, soil moisture (SM) conditions can impact the atmosphere through modulating the land surface fluxes. The importance of the identification of L-A interaction regions lies in the potential improvement of the weather/seasonal forecast and the better understanding of the physical mechanisms involved. This study aims to compare the terrestrial segment of the L-A interaction from satellite products and climate models, motivated by previous modeling studies pointing out southeastern South America (SESA) as a L-A hotspot during austral summer. In addition, the L-A interaction under dry or wet anomalous conditions over SESA is analyzed. To identify L-A hotspots the AMSRE-LPRM SM and MODIS land surface temperature products; coupled climate models and uncoupled land surface models were used. SESA highlights as a strong L-A interaction hotspot when employing different metrics, temporal scales and independent datasets, showing consistency between models and satellite estimations. Both AMSRE-LPRM bands (X and C) are consistent showing a strong L-A interaction hotspot over the Pampas ecoregion. Intensification and a larger spatial extent of the L-A interaction for dry summers was observed in both satellite products and models compared to wet summers. These results, which were derived from measured physical variables, are encouraging and promising for future studies analyzing L-A interactions. L-A interaction analysis is proposed here as a meeting point between remote sensing and climate modelling communities of Argentina, within a region with the highest agricultural and livestock production of the continent, but with an important lack of in-situ SM observations.

  11. Using Satellite and Airborne LiDAR to Model Woodpecker Habitat Occupancy at the Landscape Scale

    Science.gov (United States)

    Vierling, Lee A.; Vierling, Kerri T.; Adam, Patrick; Hudak, Andrew T.

    2013-01-01

    Incorporating vertical vegetation structure into models of animal distributions can improve understanding of the patterns and processes governing habitat selection. LiDAR can provide such structural information, but these data are typically collected via aircraft and thus are limited in spatial extent. Our objective was to explore the utility of satellite-based LiDAR data from the Geoscience Laser Altimeter System (GLAS) relative to airborne-based LiDAR to model the north Idaho breeding distribution of a forest-dependent ecosystem engineer, the Red-naped sapsucker (Sphyrapicus nuchalis). GLAS data occurred within ca. 64 m diameter ellipses spaced a minimum of 172 m apart, and all occupancy analyses were confined to this grain scale. Using a hierarchical approach, we modeled Red-naped sapsucker occupancy as a function of LiDAR metrics derived from both platforms. Occupancy models based on satellite data were weak, possibly because the data within the GLAS ellipse did not fully represent habitat characteristics important for this species. The most important structural variables influencing Red-naped Sapsucker breeding site selection based on airborne LiDAR data included foliage height diversity, the distance between major strata in the canopy vertical profile, and the vegetation density near the ground. These characteristics are consistent with the diversity of foraging activities exhibited by this species. To our knowledge, this study represents the first to examine the utility of satellite-based LiDAR to model animal distributions. The large area of each GLAS ellipse and the non-contiguous nature of GLAS data may pose significant challenges for wildlife distribution modeling; nevertheless these data can provide useful information on ecosystem vertical structure, particularly in areas of gentle terrain. Additional work is thus warranted to utilize LiDAR datasets collected from both airborne and past and future satellite platforms (e.g. GLAS, and the planned IceSAT2

  12. A simple orbit-attitude coupled modelling method for large solar power satellites

    Science.gov (United States)

    Li, Qingjun; Wang, Bo; Deng, Zichen; Ouyang, Huajiang; Wei, Yi

    2018-04-01

    A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power satellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian coordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to approximate the gravitational potential energy. The equations of motion are constructed through constrained Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This method is also applicable to dynamic modelling of other rigid multibody aerospace systems.

  13. Alaska Steller Sea Lion Habitat Model Satellite Telemetry and Environmental Data, 2000-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The at-sea habitat use of Steller sea lions was modeled from location and dive behavior data obtained from the deployment of satellite-linked telemetry tags on sea...

  14. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2015-01-01

    Full Text Available Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS. The wind roses from the Navy Operational Global Atmospheric Prediction System (NOGAPS and ASCAT agree well with these observations from the corresponding in situ measurements. The statistical results comparing in situ wind speed and SAR-based (ASCAT-based wind speed for the whole co-located samples show a standard deviation (SD of 2.09 m/s (1.83 m/s and correlation coefficient of R 0.75 (0.80. When the offshore winds (i.e., winds directed from land to sea are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean. Meanwhile, the validation of satellite winds against the same co-located mast observations shows a satisfactory level of accuracy which was similar for SAR and ASCAT winds. These satellite winds are then assimilated into the Weather Research and Forecasting (WRF Model by WRF Data Assimilation (WRFDA system. Finally, the wind resource statistics at 100 m height based on the reconstructed winds have been achieved over the study area, which fully combines the offshore wind information from multiple satellite data and numerical model. The findings presented here may be useful in future wind resource assessment based on satellite data.

  15. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  16. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-05-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  17. Core-level satellites and outer core-level multiplet splitting in Mn model compounds

    International Nuclear Information System (INIS)

    Nelson, A. J.; Reynolds, John G.; Roos, Joseph W.

    2000-01-01

    We report a systematic study of the Mn 2p, 3s, and 3p core-level photoemission and satellite structures for Mn model compounds. Charge transfer from the ligand state to the 3d metal state is observed and is distinguished by prominent shake-up satellites. We also observe that the Mn 3s multiplet splitting becomes smaller as the Mn oxidation state increases, and that 3s-3d electron correlation reduces the branching ratio of the 7 S: 5 S states in the Mn 3s spectra. In addition, as the ligand electronegativity decreases, the spin-state purity is lost in the 3s spectra, as evidenced by peak broadening. Our results are best understood in terms of the configuration-interaction model including intrashell electron correlation, charge transfer, and final-state screening. (c) 2000 American Vacuum Society

  18. Gas data transmission system by satellite telephone; Systeme de transmission de donnees sur le gaz utilisant le telephone par satellite

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, S.; Tanji, A. [Dengineer Co., Ltd (Japan); Akiyama, S. [Buyo Gas Company (Japan)

    2000-07-01

    Dengineer Co., Ltd. and Buyo Gas Co., Ltd. had been developing and using the data and alarm transmission system by public telephone since 1984, that was first practical use in Japan. It is very important for business management that adjusts the production value of gas by measuring gas pressures in each governor. Also, it is indispensable to know the accident of gas leakage or abnormal gas pressure quickly. But this convenient system is not spread yet in Japanese market cause of the following reasons. - Take time and cost for installation of terminal station. - Terminal station is apt to damage by thunder. - Big disaster must stop working this system. In order to solve those problems, we have developed and tested the system organized of the satellite telephone system and solar cells for power. This system will be very useful for wide place, not only Japanese market but also the area, which has no electricity and phone. Also, it will be convenient for international rescue as is able to access it from the foreign countries. (authors)

  19. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    International Nuclear Information System (INIS)

    Springer, H.K.; Miller, W.O.; Levatin, J.L.; Pertica, A.J.; Olivier, S.S.

    2010-01-01

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their

  20. Regional water resources management in the Andean region with numerical models and satellite remote sensing

    NARCIS (Netherlands)

    Menenti, M.; Mulders, C.W.B.

    1999-01-01

    This report describes the development and adaptation of distributed numerical simulation models of hydrological processes in complex watersheds typical of the Andean region. These distributed models take advantage of the synoptic capabilities of sensors on-board satellites and GIS procedures have

  1. Latitudinal extent of the January 2005 solar proton event in the Northern Hemisphere from satellite observations of hydroxyl

    Directory of Open Access Journals (Sweden)

    P. T. Verronen

    2007-11-01

    Full Text Available We utilise hydroxyl observations from the MLS/Aura satellite instrument to study the latitudinal extent of particle forcing in the northern polar region during the January 2005 solar proton event. MLS is the first satellite instrument to observe HOx changes during such an event. We also predict the hydroxyl changes with respect to the magnetic latitude by the Sodankylä Ion and Neutral Chemistry model, estimating the variable magnetic cutoff energies for protons using a parameterisation based on magnetosphere modelling and the planetary magnetic index Kp. In the middle and lower mesosphere, HOx species are good indicators of the changes in the atmosphere during solar proton events, because they respond rapidly to both increases and decreases in proton forcing. Also, atmospheric transport has a negligible effect on HOx because of its short chemical lifetime. The observations indicate the boundary of the proton forcing and a transition region, from none to the "full" effect, which ranges from about 57 to 64 degrees of magnetic latitude. When saturating the rigidity cutoff Kp at 6 in the model, as suggested by earlier studies using observations of cosmic radio noise absorption, the equatorward boundary of the transition region is offset by ≈2 degrees polewards compared with the data, thus the latitudinal extent of the proton forcing in the atmosphere is underestimated. However, the model predictions are in reasonable agreement with the MLS measurements when the Kp index is allowed to vary within its nominal range, i.e., from 1 to 9 in the cutoff calculation.

  2. Beacon satellite studies and modelling of total electron contents of the ionosphere

    International Nuclear Information System (INIS)

    Tyagi, T.R.

    1990-01-01

    An attempt is made to highlight some of the beacon satellite studies, particularly those relating to total electron content (TEC) and scintillations, with special attention to Indian subcontinent observations. The modelling of TEC is described. The scope of new experiments for specific problem is indicated. (author). 78 refs., 12 figs

  3. Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.

  4. Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite

    Science.gov (United States)

    Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi

    The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.

  5. Missed Opportunities: Emergency Contraception Utilisation by ...

    African Journals Online (AJOL)

    Although contraceptives, including emergency contraceptives, are widely available free at public health facilities in South Africa, rates of teenage and unintended pregnancy are high. This paper analyses awareness and utilisation of emergency contraception amongst 193 young women (aged 15-24 years) attending public ...

  6. Satellite cells in human skeletal muscle plasticity

    Directory of Open Access Journals (Sweden)

    Tim eSnijders

    2015-10-01

    Full Text Available Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodelling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodelling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodelling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  7. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  8. Optimal environmental benefits of utilising alternative energy technologies in Jordan

    International Nuclear Information System (INIS)

    Mrayyan, B.

    2004-01-01

    With rapid population growth and increase in industrial activities, more energy is consumed, resulting in environmental pollution and economic difficulties. Therefore, the need for utilising renewable energy resources has emerged. Although Jordan does not have adequate fuel supplies (90% of its crude oil is imported), it is gifted with alternative resources. Because of the political and economical constraints that hinder the import of crude oil from neighbouring countries and of the fact that Jordan has limited fossil fuel resources, strategies to meet energy demand are being addressed and examined together with their consequences and the ways in which they could be utilised. This paper assesses for the first time, the potential of using alternative energy technologies in Jordan, including the utilisation of solar energy for water heating, for wind towers in rural areas and also for biogas production from waste. Approximately 2% of unconventional renewable energy resources are being utilised. The data and scenarios of this study were presented in a manner that would assist decision makers, funding agencies, researchers and other related parties to establish programmes that will be helpful in meeting the energy demand, while preserving the environment and maintaining sustainability. (author)

  9. The Phenomenon of Youtubers and their Utilisation in Marketing

    OpenAIRE

    Tauchenová, Kateřina

    2014-01-01

    This master´s thesis is called The Phenomenon of Youtubers and their Utilisation in Marketing. It presents Youtubers as idols of today´s young people and introduces options of utilization of their power for marketing purposes. The first chapter introduces the reader to the general matters of online marketing and offers basic knowledge about this area. The second chapter is dedicated to social networks and their utilisation in marketing field. The third chapter introduces the topic YouTube. It...

  10. Estimating Rain Attenuation In Satellite Communication Links

    Science.gov (United States)

    Manning, R. M.

    1991-01-01

    Attenuation computed with help of statistical model and meteorological data. NASA Lewis Research Center Satellite Link Attenuation Model (SLAM) program QuickBASIC computer program evaluating static and dynamic statistical assessment of impact of rain attenuation on communication link established between Earth terminal and geosynchronous satellite. Application in specification, design, and assessment of satellite communication links for any terminal location in continental United States. Written in Microsoft QuickBASIC.

  11. Predicting Vascular Plant Diversity in Anthropogenic Peatlands: Comparison of Modeling Methods with Free Satellite Data

    Directory of Open Access Journals (Sweden)

    Ivan Castillo-Riffart

    2017-07-01

    Full Text Available Peatlands are ecosystems of great relevance, because they have an important number of ecological functions that provide many services to mankind. However, studies focusing on plant diversity, addressed from the remote sensing perspective, are still scarce in these environments. In the present study, predictions of vascular plant richness and diversity were performed in three anthropogenic peatlands on Chiloé Island, Chile, using free satellite data from the sensors OLI, ASTER, and MSI. Also, we compared the suitability of these sensors using two modeling methods: random forest (RF and the generalized linear model (GLM. As predictors for the empirical models, we used the spectral bands, vegetation indices and textural metrics. Variable importance was estimated using recursive feature elimination (RFE. Fourteen out of the 17 predictors chosen by RFE were textural metrics, demonstrating the importance of the spatial context to predict species richness and diversity. Non-significant differences were found between the algorithms; however, the GLM models often showed slightly better results than the RF. Predictions obtained by the different satellite sensors did not show significant differences; nevertheless, the best models were obtained with ASTER (richness: R2 = 0.62 and %RMSE = 17.2, diversity: R2 = 0.71 and %RMSE = 20.2, obtained with RF and GLM respectively, followed by OLI and MSI. Diversity obtained higher accuracies than richness; nonetheless, accurate predictions were achieved for both, demonstrating the potential of free satellite data for the prediction of relevant community characteristics in anthropogenic peatland ecosystems.

  12. Orbital evolution and origin of the Martian satellites

    International Nuclear Information System (INIS)

    Szeto, A.M.K.

    1983-01-01

    The orbital evolution of the Martian satellites is considered from a dynamical point of view. Celestial mechanics relevant to the calculation of satellite orbital evolution is introduced and the physical parameters to be incorporated in the modeling of tidal dissipation are discussed. Results of extrapolating the satellite orbits backward and forward in time are presented and compared with those of other published work. Collision probability calculations and results for the Martian satellite system are presented and discussed. The implications of these calculations for the origin scenarios of the satellites are assessed. It is concluded that Deimos in its present form could not have been captured, for if it had been, it would have collided with Phobos at some point. An accretion model is therefore preferred over capture, although such a model consistent with the likely carbonaceous chondritic composition of the satellites has yet to be established. 91 references

  13. Effective utilisation of generation Y Quantity Surveyors

    African Journals Online (AJOL)

    together and tested by means of open interview discussions with senior QS professionals. ... employers could better utilise generation Y employees. 2. Literature review .... Literature was reviewed by using search engines (Emerald, Business.

  14. Global assessment of ocean carbon export by combining satellite observations and food-web models

    Science.gov (United States)

    Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.

    2014-03-01

    The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of 6 Pg C yr-1. Global export estimates show small variation (typically model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.

  15. Improving ROLO lunar albedo model using PLEIADES-HR satellites extra-terrestrial observations

    Science.gov (United States)

    Meygret, Aimé; Blanchet, Gwendoline; Colzy, Stéphane; Gross-Colzy, Lydwine

    2017-09-01

    The accurate on orbit radiometric calibration of optical sensors has become a challenge for space agencies which have developed different technics involving on-board calibration systems, ground targets or extra-terrestrial targets. The combination of different approaches and targets is recommended whenever possible and necessary to reach or demonstrate a high accuracy. Among these calibration targets, the moon is widely used through the well-known ROLO (RObotic Lunar Observatory) model developed by USGS. A great and worldwide recognized work was done to characterize the moon albedo which is very stable. However the more and more demanding needs for calibration accuracy have reached the limitations of the model. This paper deals with two mains limitations: the residual error when modelling the phase angle dependency and the absolute accuracy of the model which is no more acceptable for the on orbit calibration of radiometers. Thanks to PLEIADES high resolution satellites agility, a significant data base of moon and stars images was acquired, allowing to show the limitations of ROLO model and to characterize the errors. The phase angle residual dependency is modelled using PLEIADES 1B images acquired for different quasi-complete moon cycles with a phase angle varying by less than 1°. The absolute albedo residual error is modelled using PLEIADES 1A images taken over stars and the moon. The accurate knowledge of the stars spectral irradiance is transferred to the moon spectral albedo using the satellite as a transfer radiometer. This paper describes the data set used, the ROLO model residual errors and their modelling, the quality of the proposed correction and show some calibration results using this improved model.

  16. Life cycle assessment of peat utilisation in Finland

    International Nuclear Information System (INIS)

    Maelkki, H.

    1997-01-01

    Environmental issues related to the production of peat and its use in energy generation have been the subject of public debate and research over the past few years in Finland. Peat is both an indigenous and a locally utilised fuel. Finland has no fossil fuel resources, and the transportation distances of imported fuels into Finland are normally long. In Finland the large peat resources can be utilised locally and peat-burning power plants are situated near the peatlands. Peat production and energy conversion methods are being continuously developed to make use of the environmentally and technically best available technology. In Finland peat formation exceeds peat utilisation and an increase in peat utilisation is therefore sustainable. The life cycle assessment concept gives an opportunity to evaluate and improve the environmental quality of peat utilisation options. The study focuses on an inventory analysis, but some of the most common methods of impact assessment with valuation are also included. The study also includes a comparison of fossil fuels and a discussion part. All the calculated results are based on net emissions. The background emissions of natural peatland are subtracted from the emissions of the utilisation phases. Milled peat and sod peat are reported in this study. Horticultural peat is studied simultaneously, but it will be reported later. The Sod Wave, Haku and Tehoturve methods are studied for the production of peat. The power plants of the study are Kempele heating plant and Rauhalahti cogeneration plant. The functional unit is 1 MWh produced total energy. The temporal boundaries vary from 112 to 128 years, depending on the peat production methods used. The restoration time is 100 years in all options. The emissions of greenhouse gases are based on the reports of The Finnish Research Programme on Climate Change. The water emissions are based on control monitoring reports from 1994 and 1995. The water emissions of the restoration phase are

  17. University Satellite Campus Management Models

    Science.gov (United States)

    Fraser, Doug; Stott, Ken

    2015-01-01

    Among the 60 or so university satellite campuses in Australia are many that are probably failing to meet the high expectations of their universities and the communities they were designed to serve. While in some cases this may be due to the demand driven system, it may also be attributable in part to the ways in which they are managed. The…

  18. Stratospheric dryness: model simulations and satellite observations

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-01-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.

  19. Utilisation of heat and pressure through the whole fuel cycle

    International Nuclear Information System (INIS)

    Eddowes, T.; Moricca, S.; Webb, N.

    2003-01-01

    Full text: The existence of the earth around us is a result of heat and pressure combined to form the very crust we stand on. With such a good model, scientists working throughout the nuclear fuel cycle have used these principles to optimise each particular step. From the fabrication of fuel rods and running of reactors to the final storage of the waste generated; heat and pressure have proved to be vital resources. At ANSTO the concepts of using heat and pressure to consolidate the waste produced for the nuclear fuel cycle have been extensively investigated. Working with collaborators, it has been demonstrated that the intermediate to high level waste can be incorporated into a ceramic or glass-ceramic matrix and immobilised therein, using heat and pressure via the means of a Hot Isostatic Press. This paper touches on how following the simple principles of heat and pressure utilised in the operation of this planet every day, the nuclear fuel cycle can be most efficient. The main focus has been the utilisation of Hot Isostatic Pressing for the production of various durable wasteforms at ANSTO for both Australian and international wastes

  20. Satellite remote sensing in epidemiological studies.

    Science.gov (United States)

    Sorek-Hamer, Meytar; Just, Allan C; Kloog, Itai

    2016-04-01

    Particulate matter air pollution is a ubiquitous exposure linked with multiple adverse health outcomes for children and across the life course. The recent development of satellite-based remote-sensing models for air pollution enables the quantification of these risks and addresses many limitations of previous air pollution research strategies. We review the recent literature on the applications of satellite remote sensing in air quality research, with a focus on their use in epidemiological studies. Aerosol optical depth (AOD) is a focus of this review and a significant number of studies show that ground-level particulate matter can be estimated from columnar AOD. Satellite measurements have been found to be an important source of data for particulate matter model-based exposure estimates, and recently have been used in health studies to increase the spatial breadth and temporal resolution of these estimates. It is suggested that satellite-based models improve our understanding of the spatial characteristics of air quality. Although the adoption of satellite-based measures of air quality in health studies is in its infancy, it is rapidly growing. Nevertheless, further investigation is still needed in order to have a better understanding of the AOD contribution to these prediction models in order to use them with higher accuracy in epidemiological studies.

  1. Relationship between the utilisation profile of individual joints and their susceptibility to primary osteoarthritis

    International Nuclear Information System (INIS)

    Alexander, C.J.

    1989-01-01

    Two subjects were studied for 1 to 3 weeks during the course of their normal domestic activities. Utilisation profiles were derived for ten joints, using a systematic time-series sampling technique adapted from behavioural biology. At each joint the proportion of the available range utilised was noted. The results were compared with the known regional prevalence of primary osteoarthritis. There was a correlation between the degree to which a joint was incompletely utilised, and its susceptibility to osteoarthritis. The hypothesis is advanced that primary osteoarthritis may be due to incomplete joint utilisation. (orig.)

  2. Simulation of seagrass bed mapping by satellite images based on the radiative transfer model

    Science.gov (United States)

    Sagawa, Tatsuyuki; Komatsu, Teruhisa

    2015-06-01

    Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.

  3. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  4. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    International Nuclear Information System (INIS)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A S

    2013-01-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately

  5. Recent progress in biomass burning research: a perspective from analyses of satellite data and model studies. (Invited)

    Science.gov (United States)

    Logan, J. A.

    2010-12-01

    Significant progress has been made in using satellite data to provide bottom-up constraints on biomass burning (BB) emissions. However, inverse studies with CO satellite data imply that tropical emissions are underestimated by current inventories, while model simulations of the ARCTAS period imply that the FLAMBE estimates of extratropical emissions are significantly overestimated. Injection heights of emissions from BB have been quantified recently using MISR data, and these data provide some constraints on 1-d plume models. I will discuss recent results in these areas, highlighting future research needs.

  6. Development of a funding, cost, and spending model for satellite projects

    Science.gov (United States)

    Johnson, Jesse P.

    1989-01-01

    The need for a predictive budget/funging model is obvious. The current models used by the Resource Analysis Office (RAO) are used to predict the total costs of satellite projects. An effort to extend the modeling capabilities from total budget analysis to total budget and budget outlays over time analysis was conducted. A statistical based and data driven methodology was used to derive and develop the model. Th budget data for the last 18 GSFC-sponsored satellite projects were analyzed and used to build a funding model which would describe the historical spending patterns. This raw data consisted of dollars spent in that specific year and their 1989 dollar equivalent. This data was converted to the standard format used by the RAO group and placed in a database. A simple statistical analysis was performed to calculate the gross statistics associated with project length and project cost ant the conditional statistics on project length and project cost. The modeling approach used is derived form the theory of embedded statistics which states that properly analyzed data will produce the underlying generating function. The process of funding large scale projects over extended periods of time is described by Life Cycle Cost Models (LCCM). The data was analyzed to find a model in the generic form of a LCCM. The model developed is based on a Weibull function whose parameters are found by both nonlinear optimization and nonlinear regression. In order to use this model it is necessary to transform the problem from a dollar/time space to a percentage of total budget/time space. This transformation is equivalent to moving to a probability space. By using the basic rules of probability, the validity of both the optimization and the regression steps are insured. This statistically significant model is then integrated and inverted. The resulting output represents a project schedule which relates the amount of money spent to the percentage of project completion.

  7. Using Satellite Remote Sensing and Modelling for Insights into N02 Air Pollution and NO2 Emissions

    Science.gov (United States)

    Lamsal, L. N.; Martin, R. V.; Krotkov, N. A.; Bucsela, E. J.; Celarier, E. A.; vanDonkelaar, A.; Parrish, D.

    2012-01-01

    Nitrogen oxides (NO(x)) are key actors in air quality and climate change. Satellite remote sensing of tropospheric NO2 has developed rapidly with enhanced spatial and temporal resolution since initial observations in 1995. We have developed an improved algorithm and retrieved tropospheric NO2 columns from Ozone Monitoring Instrument. Column observations of tropospheric NO2 from the nadir-viewing satellite sensors contain large contributions from the boundary layer due to strong enhancement of NO2 in the boundary layer. We infer ground-level NO2 concentrations from the OMI satellite instrument which demonstrate significant agreement with in-situ surface measurements. We examine how NO2 columns measured by satellite, ground-level NO2 derived from satellite, and NO(x) emissions obtained from bottom-up inventories relate to world's urban population. We perform inverse modeling analysis of NO2 measurements from OMI to estimate "top-down" surface NO(x) emissions, which are used to evaluate and improve "bottom-up" emission inventories. We use NO2 column observations from OMI and the relationship between NO2 columns and NO(x) emissions from a GEOS-Chem model simulation to estimate the annual change in bottom-up NO(x) emissions. The emission updates offer an improved estimate of NO(x) that are critical to our understanding of air quality, acid deposition, and climate change.

  8. Policy framework for utilisation. A pillar of better accessibility

    International Nuclear Information System (INIS)

    2008-01-01

    The goals and frameworks for traffic and transport policy for the Netherlands to 2020 are described in the Mobility Document. Whereas government policy previously viewed mobility as a problem or as something permissible, the assumption is now that mobility is a must. Mobility, for people as well as goods, is a prerequisite for society and the economy to function well. The Mobility Document contains ambitious goals to deal with current and anticipated traffic and transport problems: door to door, faster, cleaner and safer. Three interrelated pillars are to help achieve these goals: Building, Pricing and Utilisation. Work is being done on the Building and Pricing pillars; Utilisation is elaborated further in this policy framework. The Policy Framework for Utilisation is an elaboration of the Mobility Document for the 2008-2020 period and aims for faster, cleaner, safer travel from door to door. The purpose of this policy framework is to describe the direction of development of utilisation, in terms of content as well as process, to indicate actions that are required and to provide perspective on the expected effects. The policy framework is in line with current developments or plans, caters to new opportunities (technological and otherwise), encourages the innovative potential of the market and provides room for joint ventures between the government and the market. It will result in actions for the short term and provide direction for activities and developments for the longer term

  9. The Eccentric Satellites Problem: Comparing Milky Way Satellite Orbital Properties to Simulation Results

    Science.gov (United States)

    Haji, Umran; Pryor, Carlton; Applebaum, Elaad; Brooks, Alyson

    2018-01-01

    We compare the orbital properties of the satellite galaxies of the Milky Way to those of satellites found in simulated Milky Way-like systems as a means of testing cosmological simulations of galaxy formation. The particular problem that we are investigating is a discrepancy in the distribution of orbital eccentricities. Previous studies of Milky Way-mass systems analyzed in a semi-analytic ΛCDM cosmological model have found that the satellites tend to have significantly larger fractions of their kinetic energy invested in radial motion with respect to their central galaxy than do the real-world Milky Way satellites. We analyze several high-resolution ("zoom-in") hydrodynamical simulations of Milky Way-mass galaxies and their associated satellite systems to investigate why previous works found Milky Way-like systems to be rare. We find a possible relationship between a quiescent galactic assembly history and a distribution of satellite kinematics resembling that of the Milky Way. This project has been supported by funding from National Science Foundation grant PHY-1560077.

  10. A model of Earth’s magnetic field derived from 2 years of Swarm satellite constellation data

    DEFF Research Database (Denmark)

    Olsen, Nils; Finlay, Chris; Kotsiaros, Stavros

    2016-01-01

    More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth’s magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites...... the North–South gradient. The SIFMplus model provides a description of the static lithospheric field that is very similar to models determined from CHAMP data, up to at least spherical harmonic degree n=75. Also the core field part of SIFMplus, with a quadratic time dependence for n≤6 and a linear time...... with the model of the core, lithospheric and large-scale magnetospheric fields, a magnetic potential that depends on quasi-dipole latitude and magnetic local time....

  11. Mathematical modeling of a new satellite thermal architecture system connecting the east and west radiator panels and flight performance prediction

    International Nuclear Information System (INIS)

    Torres, Alejandro; Mishkinis, Donatas; Kaya, Tarik

    2014-01-01

    An entirely novel satellite thermal architecture, connecting the east and west radiators of a geostationary telecommunications satellite via loop heat pipes (LHPs), is proposed. The LHP operating temperature is regulated by using pressure regulating valves (PRVs). A transient numerical model is developed to simulate the thermal dynamic behavior of the proposed system. The details of the proposed architecture and mathematical model are presented. The model is used to analyze a set of critical design cases to identify potential failure modes prior to the qualification and in-orbit tests. The mathematical model results for critical cases are presented and discussed. The model results demonstrated the robustness and versatility of the proposed architecture under the predicted worst-case conditions. - Highlights: •We developed a mathematical model of a novel satellite thermal architecture. •We provided the dimensioning cases to design the thermal architecture. •We provided the failure mode cases to verify the thermal architecture. •We provided the results of the corresponding dimensioning and failure cases

  12. Several thoughts for using new satellite remote sensing and global modeling for aerosol and cloud climate studies

    Science.gov (United States)

    Nakajima, Teruyuki; Hashimoto, Makiko; Takenaka, Hideaki; Goto, Daisuke; Oikawa, Eiji; Suzuki, Kentaroh; Uchida, Junya; Dai, Tie; Shi, Chong

    2017-04-01

    The rapid growth of satellite remote sensing technologies in the last two decades widened the utility of satellite data for understanding climate impacts of aerosols and clouds. The climate modeling community also has received the benefit of the earth observation and nowadays closed-collaboration of the two communities make us possible to challenge various applications for societal problems, such as for global warming and global-scale air pollution and others. I like to give several thoughts of new algorithm developments, model use of satellite data for climate impact studies and societal applications related with aerosols and clouds. Important issues are 1) Better aerosol detection and solar energy application using expanded observation ability of the third generation geostationary satellites, i.e. Himawari-8, GOES-R and future MTG, 2) Various observation functions by directional, polarimetric, and high resolution near-UV band by MISR, POLDER&PARASOL, GOSAT/CAI and future GOSAT2/CAI2, 3) Various applications of general purpose-imagers, MODIS, VIIRS and future GCOM-C/SGLI, and 4) Climate studies of aerosol and cloud stratification and convection with active and passive sensors, especially climate impact of BC aerosols using CLOUDSAT&CALIPSO and future Earth Explorer/EarthCARE.

  13. Determinants analysis of outpatient service utilisation in Georgia: can the approach help inform benefit package design?

    Science.gov (United States)

    Gotsadze, George; Tang, Wenze; Shengelia, Natia; Zoidze, Akaki

    2017-05-02

    The healthcare financing reforms initiated by the Government of Georgia in 2007 have positively affected inpatient service utilisation and enhanced financial protection, especially for the poor, but they have failed to facilitate outpatient service use among chronic patients. Non-communicable diseases significantly affect Georgia's ageing population. Consequently, in this paper, we look at the evidence emerging from determinants analysis of outpatient service utilisation and if the finding can help identify possible policy choices in Georgia, especially regarding benefit package design for individuals with chronic conditions. We used Andersen's behavioural model of health service utilisation to identify the critical determinants that affect outpatient service use. A multinomial logistic regression was carried out with complex survey design using the data from two nationally representative cross-sectional population-based health utilisation and expenditure surveys conducted in Georgia in 2007 and 2010, which allowed us to assess the relationship between the determinants and outpatient service use. The study revealed the determinants that significantly impede outpatient service use. Low income, 45- to 64-year-old Georgian males with low educational attainment and suffering from a chronic health problem have the lowest odds for service use compared to the rest of the population. Using Andersen's behavioural model and assessing the determinants of outpatient service use has the potential to inform possible policy responses, especially those driving services use among chronic patients. The possible policy responses include reducing financial access barriers with the help of public subsidies for sub-groups of the population with the lowest access to care; focusing/expanding state-funded benefits for the most prevalent chronic conditions, which are responsible for the greatest disease burden; or supporting chronic disease management programs for the most prevalent chronic

  14. Case study of atmospheric correction on CCD data of HJ-1 satellite based on 6S model

    International Nuclear Information System (INIS)

    Xue, Xiaoiuan; Meng, Oingyan; Xie, Yong; Sun, Zhangli; Wang, Chang; Zhao, Hang

    2014-01-01

    In this study, atmospheric radiative transfer model 6S was used to simulate the radioactive transfer process in the surface-atmosphere-sensor. An algorithm based on the look-up table (LUT) founded by 6S model was used to correct (HJ-1) CCD image pixel by pixel. Then, the effect of atmospheric correction on CCD data of HJ-1 satellite was analyzed in terms of the spectral curves and evaluated against the measured reflectance acquired during HJ-1B satellite overpass, finally, the normalized difference vegetation index (NDVI) before and after atmospheric correction were compared. The results showed: (1) Atmospheric correction on CCD data of HJ-1 satellite can reduce the ''increase'' effect of the atmosphere. (2) Apparent reflectance are higher than those of surface reflectance corrected by 6S model in band1∼band3, but they are lower in the near-infrared band; the surface reflectance values corrected agree with the measured reflectance values well. (3)The NDVI increases significantly after atmospheric correction, which indicates the atmospheric correction can highlight the vegetation information

  15. Evaluation of Land Surface Models in Reproducing Satellite-Derived LAI over the High-Latitude Northern Hemisphere. Part I: Uncoupled DGVMs

    Directory of Open Access Journals (Sweden)

    Ning Zeng

    2013-10-01

    Full Text Available Leaf Area Index (LAI represents the total surface area of leaves above a unit area of ground and is a key variable in any vegetation model, as well as in climate models. New high resolution LAI satellite data is now available covering a period of several decades. This provides a unique opportunity to validate LAI estimates from multiple vegetation models. The objective of this paper is to compare new, satellite-derived LAI measurements with modeled output for the Northern Hemisphere. We compare monthly LAI output from eight land surface models from the TRENDY compendium with satellite data from an Artificial Neural Network (ANN from the latest version (third generation of GIMMS AVHRR NDVI data over the period 1986–2005. Our results show that all the models overestimate the mean LAI, particularly over the boreal forest. We also find that seven out of the eight models overestimate the length of the active vegetation-growing season, mostly due to a late dormancy as a result of a late summer phenology. Finally, we find that the models report a much larger positive trend in LAI over this period than the satellite observations suggest, which translates into a higher trend in the growing season length. These results highlight the need to incorporate a larger number of more accurate plant functional types in all models and, in particular, to improve the phenology of deciduous trees.

  16. Multiply disadvantaged: Health and service utilisation factors faced by homeless injecting drug consumers in Australia.

    Science.gov (United States)

    Whittaker, Elizabeth; Swift, Wendy; Roxburgh, Amanda; Dietze, Paul; Cogger, Shelley; Bruno, Raimondo; Sindicich, Natasha; Burns, Lucy

    2015-07-01

    Homelessness status is strongly correlated with higher rates of substance use. Few studies, however, examine the complex relationship between housing status and substance use in people who inject drugs (PWID). This study extends previous research by comparing the physical and mental health status and service utilisation rates between stably housed and homeless PWID. A cross-sectional sample of 923 PWID were recruited for the 2012 Illicit Drug Reporting System. Multivariate models were generated addressing associations between homelessness and the domains of demographics; substance use; and health status, service utilisation and criminal justice system contact, with significant correlates entered into a final multivariate model. Two-thirds of the PWID sample were male. The median age was 39 years and 16% identified as Indigenous. Almost one-quarter (23%) reported that they were homeless. Homeless PWID were significantly more likely to be unemployed [adjusted odds ratio (AOR) 2.83, 95% confidence interval (CI) 1.26, 6.34], inject in public (AOR 2.01, 95% CI 1.38, 3.18), have poorer mental health (AOR 0.98, 95% CI 0.97, 1.00), report schizophrenia (AOR 2.31, 95% CI 1.16, 4.60) and have a prison history (AOR 1.53, 95% CI 1.05, 2.21) than stably housed PWID. Findings highlight the challenge of mental health problems for homeless PWID. Our results demonstrate that further research that evaluates outcomes of housing programs accommodating PWID, particularly those with comorbid mental health disorders, is warranted. Results also emphasise the need to better utilise integrated models of outreach care that co-manage housing and mental health needs. © 2015 Australasian Professional Society on Alcohol and other Drugs.

  17. An adaptive spatial model for precipitation data from multiple satellites over large regions

    KAUST Repository

    Chakraborty, Avishek

    2015-03-01

    Satellite measurements have of late become an important source of information for climate features such as precipitation due to their near-global coverage. In this article, we look at a precipitation dataset during a 3-hour window over tropical South America that has information from two satellites. We develop a flexible hierarchical model to combine instantaneous rainrate measurements from those satellites while accounting for their potential heterogeneity. Conceptually, we envision an underlying precipitation surface that influences the observed rain as well as absence of it. The surface is specified using a mean function centered at a set of knot locations, to capture the local patterns in the rainrate, combined with a residual Gaussian process to account for global correlation across sites. To improve over the commonly used pre-fixed knot choices, an efficient reversible jump scheme is used to allow the number of such knots as well as the order and support of associated polynomial terms to be chosen adaptively. To facilitate computation over a large region, a reduced rank approximation for the parent Gaussian process is employed.

  18. DS-CDMA satellite diversity reception for personal satellite communication: Downlink performance analysis

    Science.gov (United States)

    DeGaudenzi, Riccardo; Giannetti, Filippo

    1995-01-01

    The downlink of a satellite-mobile personal communication system employing power-controlled Direct Sequence Code Division Multiple Access (DS-CDMA) and exploiting satellite-diversity is analyzed and its performance compared with a more traditional communication system utilizing single satellite reception. The analytical model developed has been thoroughly validated by means of extensive Monte Carlo computer simulations. It is shown how the capacity gain provided by diversity reception shrinks considerably in the presence of increasing traffic or in the case of light shadowing conditions. Moreover, the quantitative results tend to indicate that to combat system capacity reduction due to intra-system interference, no more than two satellites shall be active over the same region. To achieve higher system capacity, differently from terrestrial cellular systems, Multi-User Detection (MUD) techniques are likely to be required in the mobile user terminal, thus considerably increasing its complexity.

  19. Satellite constellation design and radio resource management using genetic algorithm.

    OpenAIRE

    Asvial, Muhamad.

    2003-01-01

    A novel strategy for automatic satellite constellation design with satellite diversity is proposed. The automatic satellite constellation design means some parameters of satellite constellation design can be determined simultaneously. The total number of satellites, the altitude of satellite, the angle between planes, the angle shift between satellites and the inclination angle are considered for automatic satellite constellation design. Satellite constellation design is modelled using a mult...

  20. The 3D Radiation Dose Analysis For Satellite

    Science.gov (United States)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and

  1. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    Science.gov (United States)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  2. Impact of Satellite Remote Sensing Data on Simulations of ...

    Science.gov (United States)

    We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the annual hypoxic zone. Rainfall data from the Tropical Rainfall Measurement Mission (TRMM) were used for the salinity flux, and the diffuse attenuation coefficient (Kd) from Moderate Resolution Imaging Spectroradiometer (MODIS) were used for solar penetration. Improvements in the model results in comparison with in situ observations occurred when the two types of satellite data were included. Without inclusion of the satellite-derived surface salinity flux, realistic monthly variability in the model salinity fields was observed, but important inter-annual variability wasmissed. Without inclusion of the satellite-derived light attenuation, model bottom water temperatures were too high nearshore due to excessive penetration of solar irradiance. In general, these salinity and temperature errors led to model stratification that was too weak, and the model failed to capture observed spatial and temporal variability in water-column vertical stratification. Inclusion of the satellite data improved temperature and salinity predictions and the vertical stratification was strengthened, which improved prediction of bottom-water dissolved oxygen. The model-predicted area of bottom-water hypoxia on the

  3. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  4. Target Detection Based on EBPSK Satellite Passive Radar

    Directory of Open Access Journals (Sweden)

    Lu Zeyuan

    2015-05-01

    Full Text Available Passive radar is a topic anti stealth technology with simple structure, and low cost. Radiation source model, signal transmission model, and target detection are the key points of passive radar technology research. The paper analyzes the characteristics of EBPSK signal modulation and target detection method aspect of spaceborne radiant source. By comparison with other satellite navigation and positioning system, the characteristics of EBPSK satellite passive radar system are analyzed. It is proved that the maximum detection range of EBPSK satellite signal can satisfy the needs of the proposed model. In the passive radar model, sparse representation is used to achieve high resolution DOA detection. The comparison with the real target track by simulation demonstrates that effective detection of airborne target using EBPSK satellite passive radar system based on sparse representation is efficient.

  5. Scientific analysis of satellite ranging data

    Science.gov (United States)

    Smith, David E.

    1994-01-01

    A network of satellite laser ranging (SLR) tracking systems with continuously improving accuracies is challenging the modelling capabilities of analysts worldwide. Various data analysis techniques have yielded many advances in the development of orbit, instrument and Earth models. The direct measurement of the distance to the satellite provided by the laser ranges has given us a simple metric which links the results obtained by diverse approaches. Different groups have used SLR data, often in combination with observations from other space geodetic techniques, to improve models of the static geopotential, the solid Earth, ocean tides, and atmospheric drag models for low Earth satellites. Radiation pressure models and other non-conservative forces for satellite orbits above the atmosphere have been developed to exploit the full accuracy of the latest SLR instruments. SLR is the baseline tracking system for the altimeter missions TOPEX/Poseidon, and ERS-1 and will play an important role in providing the reference frame for locating the geocentric position of the ocean surface, in providing an unchanging range standard for altimeter calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. However, even with the many improvements in the models used to support the orbital analysis of laser observations, there remain systematic effects which limit the full exploitation of SLR accuracy today.

  6. A Gas-Poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Consequences for the Atmosphere of Titan

    Science.gov (United States)

    Estrada, P. R.; Mosqueira, I.

    2005-01-01

    Given our presently inadequate understanding of the turbulent state of the solar and planetary nebulae, we believe the way to make progress in satellite formation is to consider two end member models that avoid over-reliance on specific choices of the turbulence (alpha), which is essentially a free parameter. The first end member model postulates turbulence decay once giant planet accretion ends. If so, Keplerian disks must eventually pass through the quiescent phases, so that the survival of satellites (and planets) ultimately hinges on gap-opening. In this scenario, the criterion for gap-opening itself sets the value for the gas surface density of the satellite disk.

  7. Substrate utilisation by plant-cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M W

    1982-01-01

    Plant cell cultures have been grown on a wide range of carbon sources in addition to the traditional ones of sucrose and glucose. Biomass yields and growth rates vary greatly between the different carbon sources and there is a variation in response between different cell cultures to individual carbon sources. Some attempts have been made to grow cell cultures on 'waste' and related carbon sources, such as lactose, maltose, starch, molasses and milk whey. Only maltose was found to support growth to anything near the levels observed with glucose and sucrose. In the case of molasses carbon source cell growth was either non-existent or only just measurable. All the data point to glucose as being the most suitable carbon source, principally on the grounds of biomass yield and growth rate. It should be noted, however, that other carbon sources do appear to have a major (positive) influence on natural product synthesis. Uptake into the cell is an important aspect of carbohydrate utilisation. There is strong evidence that from disaccharides upwards, major degradation to smaller units occurs before uptake. In some cases the necessary enzymes appear to be excreted into the culture broth, in others they may be located within the cell wall; invertase that hydrolyses sucrose is a good example. Once the products of carbohydrate degradation and mobilisation enter the cell they may suffer one of two fates, oxidation or utilisation for biosynthesis. The precise split between these two varies depending on such factors as cell growth rate, cell size, nutrient broth composition and carbohydrate status of the cells. In general rapidly growing cells have a high rate of oxidation, whereas cells growing more slowly tend to be more directed towards biosynthesis. Carbohydrate utilisation is a key area of study, underpinning as it does both biomass yield and natural product synthesis. (Refs. 13).

  8. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  9. Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data

    NARCIS (Netherlands)

    de Hoogh, Kees; Gulliver, John; Donkelaar, Aaron van; Martin, Randall V; Marshall, Julian D; Bechle, Matthew J; Cesaroni, Giulia; Pradas, Marta Cirach; Dedele, Audrius; Eeftens, Marloes|info:eu-repo/dai/nl/315028300; Forsberg, Bertil; Galassi, Claudia; Heinrich, Joachim; Hoffmann, Barbara; Jacquemin, Bénédicte; Katsouyanni, Klea; Korek, Michal; Künzli, Nino; Lindley, Sarah J; Lepeule, Johanna; Meleux, Frederik; de Nazelle, Audrey; Nieuwenhuijsen, Mark; Nystad, Wenche; Raaschou-Nielsen, Ole; Peters, Annette; Peuch, Vincent-Henri; Rouil, Laurence; Udvardy, Orsolya; Slama, Rémy; Stempfelet, Morgane; Stephanou, Euripides G; Tsai, Ming Y; Yli-Tuomi, Tarja; Weinmayr, Gudrun; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Vienneau, Danielle; Hoek, Gerard|info:eu-repo/dai/nl/069553475

    2016-01-01

    Satellite-derived (SAT) and chemical transport model (CTM) estimates of PM2.5 and NO2 are increasingly used in combination with Land Use Regression (LUR) models. We aimed to compare the contribution of SAT and CTM data to the performance of LUR PM2.5 and NO2 models for Europe. Four sets of models,

  10. Climate model biases in seasonality of continental water storage revealed by satellite gravimetry

    Science.gov (United States)

    Swenson, Sean; Milly, P.C.D.

    2006-01-01

    Satellite gravimetric observations of monthly changes in continental water storage are compared with outputs from five climate models. All models qualitatively reproduce the global pattern of annual storage amplitude, and the seasonal cycle of global average storage is reproduced well, consistent with earlier studies. However, global average agreements mask systematic model biases in low latitudes. Seasonal extrema of low‐latitude, hemispheric storage generally occur too early in the models, and model‐specific errors in amplitude of the low‐latitude annual variations are substantial. These errors are potentially explicable in terms of neglected or suboptimally parameterized water stores in the land models and precipitation biases in the climate models.

  11. Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin

    Science.gov (United States)

    Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.

    2008-01-01

    In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.

  12. Combining Satellite and in Situ Data with Models to Support Climate Data Records in Ocean Biology

    Science.gov (United States)

    Gregg, Watson

    2011-01-01

    The satellite ocean color data record spans multiple decades and, like most long-term satellite observations of the Earth, comes from many sensors. Unfortunately, global and regional chlorophyll estimates from the overlapping missions show substantial biases, limiting their use in combination to construct consistent data records. SeaWiFS and MODIS-Aqua differed by 13% globally in overlapping time segments, 2003-2007. For perspective, the maximum change in annual means over the entire Sea WiFS mission era was about 3%, and this included an El NinoLa Nina transition. These discrepancies lead to different estimates of trends depending upon whether one uses SeaWiFS alone for the 1998-2007 (no significant change), or whether MODIS is substituted for the 2003-2007 period (18% decline, P less than 0.05). Understanding the effects of climate change on the global oceans is difficult if different satellite data sets cannot be brought into conformity. The differences arise from two causes: 1) different sensors see chlorophyll differently, and 2) different sensors see different chlorophyll. In the first case, differences in sensor band locations, bandwidths, sensitivity, and time of observation lead to different estimates of chlorophyll even from the same location and day. In the second, differences in orbit and sensitivities to aerosols lead to sampling differences. A new approach to ocean color using in situ data from the public archives forces different satellite data to agree to within interannual variability. The global difference between Sea WiFS and MODIS is 0.6% for 2003-2007 using this approach. It also produces a trend using the combination of SeaWiFS and MODIS that agrees with SeaWiFS alone for 1998-2007. This is a major step to reducing errors produced by the first cause, sensor-related discrepancies. For differences that arise from sampling, data assimilation is applied. The underlying geographically complete fields derived from a free-running model is unaffected

  13. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (MACINTOSH VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  14. Dynamic Universe Model Predicts the Trajectory of New Horizons Satellite Going to Pluto.......

    Science.gov (United States)

    Naga Parameswara Gupta, Satyavarapu

    2012-07-01

    New Horizons is NASA's artificial satellite now going towards to the dwarf planet Pluto. It has crossed Jupiter. It is expected to be the rst spacecraft to go near and study Pluto and its moons, Charon, Nix, and Hydra. These are the predictions for New Horizons (NH) space craft as on A.D. 2009-Aug-09 00:00:00.0000 hrs. The behavior of NH is similar to Pioneer Space craft as NH traveling is alike to Pioneer. NH is supposed to reach Pluto in 2015 AD. There was a gravity assist taken at Jupiter about a year back. As Dynamic universe model explains Pioneer anomaly and the higher gravitational attraction forces experienced towards SUN, It can explain NH also in a similar fashion. I am giving the predictions for NH by Dynamic Universe Model in the following Table 4. Here first two rows give Dynamic Universe Model predictions based on 02-01-2009 00:00 hrs data with Daily time step and hourly time step. Third row gives Ephemeris from Jet propulsion lab.Dynamic Universe Model can predict further to 9-Aug-2009. These Ephemeris data is from their web as on 28th June 2009 Any new data can be calculated..... For finding trajectories of Pioneer satellite (Anomaly), New Horizons satellite going to Pluto, the Calculations of Dynamic Universe model can be successfully applied. No dark matter is assumed within solar system radius. The effect on the masses around SUN shows as though there is extra gravitation pull toward SUN. It solves the Dynamics of Extra-solar planets like Planet X, satellite like Pioneer and NH for 3-Position, 3-velocity 3-acceleration for their masses,considering the complex situation of Multiple planets, Stars, Galaxy parts and Galaxy center and other Galaxies Using simple Newtonian Physics. It already solved problems Missing mass in Galaxies observed by galaxy circular velocity curves successfully. `SITA Simulations' software was developed about 18 years back for Dynamic Universe Model of Cosmology. It is based on Newtonian physics. It is Classical singularity

  15. Inequalities in utilisation of general practitioner and specialist services in 9 European countries

    Directory of Open Access Journals (Sweden)

    Mielck Andreas

    2011-10-01

    Full Text Available Abstract Background The aim of this study is to describe the magnitude of educational inequalities in utilisation of general practitioner (GP and specialist services in 9 European countries. In addition to West European countries, we have included 3 Eastern European countries: Hungary, Estonia and Latvia. To cover the gap in knowledge we pay a special attention to the magnitude of inequalities among patients with chronic conditions. Methods Data on the use of GP and specialist services were derived from national health surveys of Belgium, Estonia, France, Germany, Hungary, Ireland, Latvia, the Netherlands and Norway. For each country and education level we calculated the absolute prevalence and relative inequalities in utilisation of GP and specialist services. In order to account for the need for care, the results were adjusted by the measure of self-assessed health. Results People with lower education used GP services equally often in most countries (except Belgium and Germany compared with those with a higher level of education. At the same time people with a higher education used specialist care services significantly more often in all countries, except in the Netherlands. The general pattern of educational inequalities in utilisation of specialist care was similar for both men and women. Inequalities in utilisation of specialist care were equally large in Eastern European and in Western European countries, except for Latvia where the inequalities were somewhat larger. Similarly, large inequalities were found in the utilisation of specialist care among patients with chronic diseases, diabetes, and hypertension. Conclusions We found large inequalities in the utilisation of specialist care. These inequalities were not compensated by utilisation of GP services. Of particular concern is the presence of inequalities among patients with a high need for specialist care, such as those with chronic diseases.

  16. Inequalities in utilisation of general practitioner and specialist services in 9 European countries.

    Science.gov (United States)

    Stirbu, Irina; Kunst, Anton E; Mielck, Andreas; Mackenbach, Johan P

    2011-10-31

    The aim of this study is to describe the magnitude of educational inequalities in utilisation of general practitioner (GP) and specialist services in 9 European countries. In addition to West European countries, we have included 3 Eastern European countries: Hungary, Estonia and Latvia. To cover the gap in knowledge we pay a special attention to the magnitude of inequalities among patients with chronic conditions. Data on the use of GP and specialist services were derived from national health surveys of Belgium, Estonia, France, Germany, Hungary, Ireland, Latvia, the Netherlands and Norway. For each country and education level we calculated the absolute prevalence and relative inequalities in utilisation of GP and specialist services. In order to account for the need for care, the results were adjusted by the measure of self-assessed health. People with lower education used GP services equally often in most countries (except Belgium and Germany) compared with those with a higher level of education. At the same time people with a higher education used specialist care services significantly more often in all countries, except in the Netherlands. The general pattern of educational inequalities in utilisation of specialist care was similar for both men and women. Inequalities in utilisation of specialist care were equally large in Eastern European and in Western European countries, except for Latvia where the inequalities were somewhat larger. Similarly, large inequalities were found in the utilisation of specialist care among patients with chronic diseases, diabetes, and hypertension. We found large inequalities in the utilisation of specialist care. These inequalities were not compensated by utilisation of GP services. Of particular concern is the presence of inequalities among patients with a high need for specialist care, such as those with chronic diseases. © 2011 Stirbu et al; licensee BioMed Central Ltd.

  17. Region-Specific Indicators for Assessing the Sustainability of Biomass Utilisation in East Asia

    Directory of Open Access Journals (Sweden)

    Yuki Kudoh

    2015-12-01

    Full Text Available This paper presents the findings of an expert working group of researchers from East Asian countries. The group was tasked with developing a theoretically sound and practically implementable methodology for assessing the sustainability of biomass utilisation in East Asian countries based on the needs and potential of biomass resources in this region. Building on six years of research conducted between 2007 and 2013, the working group formulated a set of main and secondary indicators for biomass utilisation under three pillars of sustainability. For the environmental pillar, the main indicator was life cycle greenhouse gas emissions and secondary indicators were water consumption and soil quality. For the economic pillar, the main indicator was total value added and secondary indicators were net profit, productivity, and net energy balance. For the social pillar, the main indicators were employment generation and access to modern energy, and the secondary indicator was the human development index. The application of the working group methodology and indicators in sustainability assessments of biomass utilisation will enable decision makers in East Asian countries to compare the sustainability of biomass utilisation options and to make decisions on whether or not to launch or sustain biomass utilisation initiatives.

  18. Using Satellite Data and Land Surface Models to Monitor and Forecast Drought Conditions in Africa and Middle East

    Science.gov (United States)

    Arsenault, K. R.; Shukla, S.; Getirana, A.; Peters-Lidard, C. D.; Kumar, S.; McNally, A.; Zaitchik, B. F.; Badr, H. S.; Funk, C. C.; Koster, R. D.; Narapusetty, B.; Jung, H. C.; Roningen, J. M.

    2017-12-01

    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. In addition, these regions typically have sparse ground-based data networks, where sometimes remotely sensed observations may be the only data available. Long-term satellite records can help with determining historic and current drought conditions. In recent years, several new satellites have come on-line that monitor different hydrological variables, including soil moisture and terrestrial water storage. Though these recent data records may be considered too short for the use in identifying major droughts, they do provide additional information that can better characterize where water deficits may occur. We utilize recent satellite data records of Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage (TWS) and the European Space Agency's Advanced Scatterometer (ASCAT) soil moisture retrievals. Combining these records with land surface models (LSMs), NASA's Catchment and the Noah Multi-Physics (MP), is aimed at improving the land model states and initialization for seasonal drought forecasts. The LSMs' total runoff is routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics, which can provide an additional means of validation against in situ streamflow data. The NASA Land Information System (LIS) software framework drives the LSMs and HyMAP and also supports the capability to assimilate these satellite retrievals, such as soil moisture and TWS. The LSMs are driven for 30+ years with NASA's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS/UCSB Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) rainfall dataset. The seasonal water deficit forecasts are generated using downscaled and bias-corrected versions of NASA's Goddard Earth Observing System Model (GEOS-5), and NOAA's Climate Forecast System (CFSv2) forecasts

  19. Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

    Science.gov (United States)

    Shahrooei, Abolfazl; Kazemi, Mohammad Hosein

    2018-04-01

    In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

  20. Flood modelling with global precipitation measurement (GPM) satellite rainfall data: a case study of Dehradun, Uttarakhand, India

    Science.gov (United States)

    Sai Krishna, V. V.; Dikshit, Anil Kumar; Pandey, Kamal

    2016-05-01

    Urban expansion, water bodies and climate change are inextricably linked with each other. The macro and micro level climate changes are leading to extreme precipitation events which have severe consequences on flooding in urban areas. Flood simulations shall be helpful in demarcation of flooded areas and effective flood planning and preparedness. The temporal availability of satellite rainfall data at varying spatial scale of 0.10 to 0.50 is helpful in near real time flood simulations. The present research aims at analysing stream flow and runoff to monitor flood condition using satellite rainfall data in a hydrologic model. The satellite rainfall data used in the research was NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), which is available at 30 minutes temporal resolution. Landsat data was used for mapping the water bodies in the study area. Land use land cover (LULC) data was prepared using Landsat 8 data with maximum likelihood technique that was provided as an input to the HEC-HMS hydrological model. The research was applied to one of the urbanized cities of India, viz. Dehradun, which is the capital of Uttarakhand State. The research helped in identifying the flood vulnerability at the basin level on the basis of the runoff and various socio economic parameters using multi criteria analysis.

  1. Regulation of satellite cell function in sarcopenia

    Directory of Open Access Journals (Sweden)

    Stephen E Alway

    2014-09-01

    Full Text Available The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell function that is impacted by the environment (niche of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia, and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration. While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function.

  2. Regulation of Satellite Cell Function in Sarcopenia

    Science.gov (United States)

    Alway, Stephen E.; Myers, Matthew J.; Mohamed, Junaith S.

    2014-01-01

    The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function. PMID:25295003

  3. A Method for Estimating BeiDou Inter-frequency Satellite Clock Bias

    Directory of Open Access Journals (Sweden)

    LI Haojun

    2016-02-01

    Full Text Available A new method for estimating the BeiDou inter-frequency satellite clock bias is proposed, considering the shortage of the current methods. The constant and variable parts of the inter-frequency satellite clock bias are considered in the new method. The data from 10 observation stations are processed to validate the new method. The characterizations of the BeiDou inter-frequency satellite clock bias are also analyzed using the computed results. The results of the BeiDou inter-frequency satellite clock bias indicate that it is stable in the short term. The estimated BeiDou inter-frequency satellite clock bias results are molded. The model results show that the 10 parameters of model for each satellite can express the BeiDou inter-frequency satellite clock bias well and the accuracy reaches cm level. When the model parameters of the first day are used to compute the BeiDou inter-frequency satellite clock bias of the second day, the accuracy also reaches cm level. Based on the stability and modeling, a strategy for the BeiDou satellite clock service is presented to provide the reference of our BeiDou.

  4. Global Drought Monitoring and Forecasting based on Satellite Data and Land Surface Modeling

    Science.gov (United States)

    Sheffield, J.; Lobell, D. B.; Wood, E. F.

    2010-12-01

    Monitoring drought globally is challenging because of the lack of dense in-situ hydrologic data in many regions. In particular, soil moisture measurements are absent in many regions and in real time. This is especially problematic for developing regions such as Africa where water information is arguably most needed, but virtually non-existent on the ground. With the emergence of remote sensing estimates of all components of the water cycle there is now the potential to monitor the full terrestrial water cycle from space to give global coverage and provide the basis for drought monitoring. These estimates include microwave-infrared merged precipitation retrievals, evapotranspiration based on satellite radiation, temperature and vegetation data, gravity recovery measurements of changes in water storage, microwave based retrievals of soil moisture and altimetry based estimates of lake levels and river flows. However, many challenges remain in using these data, especially due to biases in individual satellite retrieved components, their incomplete sampling in time and space, and their failure to provide budget closure in concert. A potential way forward is to use modeling to provide a framework to merge these disparate sources of information to give physically consistent and spatially and temporally continuous estimates of the water cycle and drought. Here we present results from our experimental global water cycle monitor and its African drought monitor counterpart (http://hydrology.princeton.edu/monitor). The system relies heavily on satellite data to drive the Variable Infiltration Capacity (VIC) land surface model to provide near real-time estimates of precipitation, evapotranspiraiton, soil moisture, snow pack and streamflow. Drought is defined in terms of anomalies of soil moisture and other hydrologic variables relative to a long-term (1950-2000) climatology. We present some examples of recent droughts and how they are identified by the system, including

  5. Determination of Pole and Rotation Period of not Stabilized Artificial Satellite by Use of Model "diffuse Cylinder"

    Science.gov (United States)

    Kolesnik, S. Ya.; Dobrovolsky, A. V.; Paltsev, N. G.

    The algorithm of determination of orientation of rotation axis (pole) and rotation period of satellite, simulated by a cylinder, which is precessing around of vector of angular moment of pulse with constant nutation angle is offered. The Lambert's law of light reflection is accepted. Simultaneously, dependence of light reflection coefficient versus phase angle is determined. The model's simulation confirm applicability of this method. Results of the calculations for artificial satellite No 28506 are carried out.

  6. Satellite-Derived Bathymetry: Accuracy Assessment on Depths Derivation Algorithm for Shallow Water Area

    Science.gov (United States)

    Said, N. M.; Mahmud, M. R.; Hasan, R. C.

    2017-10-01

    Over the years, the acquisition technique of bathymetric data has evolved from a shipborne platform to airborne and presently, utilising space-borne acquisition. The extensive development of remote sensing technology has brought in the new revolution to the hydrographic surveying. Satellite-Derived Bathymetry (SDB), a space-borne acquisition technique which derives bathymetric data from high-resolution multispectral satellite imagery for various purposes recently considered as a new promising technology in the hydrographic surveying industry. Inspiring by this latest developments, a comprehensive study was initiated by National Hydrographic Centre (NHC) and Universiti Teknologi Malaysia (UTM) to analyse SDB as a means for shallow water area acquisition. By adopting additional adjustment in calibration stage, a marginal improvement discovered on the outcomes from both Stumpf and Lyzenga algorithms where the RMSE values for the derived (predicted) depths were 1.432 meters and 1.728 meters respectively. This paper would deliberate in detail the findings from the study especially on the accuracy level and practicality of SDB over the tropical environmental setting in Malaysia.

  7. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...... to wind speed at the height 10 m only. The extrapolation of satellite wind fields to higher heights, which are more relevant for wind energy, remains a challenge which cannot be addressed by means of satellite data alone. As part of the EU-NORSEWInD project (2008-12), a hybrid method has been developed...

  8. Barriers to research utilisation among forensic mental health nurses.

    Science.gov (United States)

    Carrion, Maria; Woods, Phil; Norman, Ian

    2004-08-01

    This study used a cross-sectional, descriptive design to identify barriers to research utilisation among forensic mental health nurses. A postal questionnaire was sent to the total population of 88 registered nurses working in a forensic mental health hospital in the UK. Forty-seven responded representing a response rate of 53%. Results showed that the greatest barriers to research utilisation were those related to the characteristics of the setting in which nurses work or the personal characteristics of nurses themselves, which seems to be consistent with previous studies undertaken in the area. However, the nurses reported it especially difficult to trust what research shows because they feel that it is not always possible to apply those findings to their particular work environment. The main implications for policy are a need for an increase in support from management, programmes of advanced education to provide nurses with research skills, an improvement in accessibility and availability of research reports and an increase in time available to read and implement research. The main suggestions for future research are that qualitative studies should be carried out to attain a better understanding of mental health nurses' attitudes towards research utilisation. Copyright 2004 Elsevier Ltd.

  9. Community Radiative Transfer Model for Inter-Satellites Calibration and Verification

    Science.gov (United States)

    Liu, Q.; Nalli, N. R.; Ignatov, A.; Garrett, K.; Chen, Y.; Weng, F.; Boukabara, S. A.; van Delst, P. F.; Groff, D. N.; Collard, A.; Joseph, E.; Morris, V. R.; Minnett, P. J.

    2014-12-01

    Developed at the Joint Center for Satellite Data Assimilation, the Community Radiative Transfer Model (CRTM) [1], operationally supports satellite radiance assimilation for weather forecasting. The CRTM also supports JPSS/NPP and GOES-R missions [2] for instrument calibration, validation, monitoring long-term trending, and satellite retrieved products [3]. The CRTM is used daily at the NOAA NCEP to quantify the biases and standard deviations between radiance simulations and satellite radiance measurements in a time series and angular dependency. The purposes of monitoring the data assimilation system are to ensure the proper performance of the assimilation system and to diagnose problems with the system for future improvements. The CRTM is a very useful tool for cross-sensor verifications. Using the double difference method, it can remove the biases caused by slight differences in spectral response and geometric angles between measurements of the two instruments. The CRTM is particularly useful to reduce the difference between instruments for climate studies [4]. In this study, we will carry out the assessment of the Suomi National Polar-orbiting Partnership (SNPP) [5] Cross-track Infrared Sounder (CrIS) data [6], Advanced Technology Microwave Sounder (ATMS) data, and data for Visible Infrared Imaging Radiometer Suite (VIIRS) [7][8] thermal emissive bands. We use dedicated radiosondes and surface data acquired from NOAA Aerosols and Ocean Science Expeditions (AEROSE) [9]. The high quality radiosondes were launched when Suomi NPP flew over NOAA Ship Ronald H. Brown situated in the tropical Atlantic Ocean. The atmospheric data include profiles of temperature, water vapor, and ozone, as well as total aerosol optical depths. The surface data includes air temperature and humidity at 2 meters, skin temperature (Marine Atmospheric Emitted Radiance Interferometer, M-AERI [10]), surface temperature, and surface wind vector. [1] Liu, Q., and F. Weng, 2006: JAS [2] Liu, Q

  10. Waste drilling-fluid-utilising microorganisms in a tropical mangrove swamp oilfield location

    Energy Technology Data Exchange (ETDEWEB)

    Benka-Coker, M.O.; Olumagin, A. [Benin Univ. (Nigeria). Dept. of Microbiology

    1995-12-31

    Waste drilling-fluid-utilising microorganisms were isolated from drilling-mud cuttings, soil and creek water from a mangrove swamp oilfield location in the Delta area of Nigeria using waste drilling-fluid as the substrate. Eighteen bacterial isolates obtained were identified as species of Staphylococcus, Acinetobacter, Alcaligenes, Serratia, Clostridium, Enterobacter, Klebsiella, Nocardia, Bacillus, Actinomyces, Micrococcus and Pseudomonas, while the genera of fungi isolated were Penicillium, Cladosporium and Fusarium. Even though drilling-fluid-utilising genera were in higher numbers in the soil than in the two other sources examined, the percentages of the total heterotrophic bacteria that utilised waste drilling-fluid were 6.02 in the drilling-mud cuttings, 0.83 in creek water and 0.42 in soil. The screen tests for biodegradation potential of the bacterial isolates showed that, even though all the isolates were able to degrade and utilise the waste fluid for growth, species of Alcaligenes and Micrococcus were more active degraders of the waste. The significance of the results in environmental management in oil-producing areas of Nigeria is discussed. (Author)

  11. Waste drilling-fluid-utilising microorganisms in a tropical mangrove swamp oilfield location

    International Nuclear Information System (INIS)

    Benka-Coker, M.O.; Olumagin, A.

    1995-01-01

    Waste drilling-fluid-utilising microorganisms were isolated from drilling-mud cuttings, soil and creek water from a mangrove swamp oilfield location in the Delta area of Nigeria using waste drilling-fluid as the substrate. Eighteen bacterial isolates obtained were identified as species of Staphylococcus, Acinetobacter, Alcaligenes, Serratia, Clostridium, Enterobacter, Klebsiella, Nocardia, Bacillus, Actinomyces, Micrococcus and Pseudomonas, while the genera of fungi isolated were Penicillium, Cladosporium and Fusarium. Even though drilling-fluid-utilising genera were in higher numbers in the soil than in the two other sources examined, the percentages of the total heterotrophic bacteria that utilised waste drilling-fluid were 6.02 in the drilling-mud cuttings, 0.83 in creek water and 0.42 in soil. The screen tests for biodegradation potential of the bacterial isolates showed that, even though all the isolates were able to degrade and utilise the waste fluid for growth, species of Alcaligenes and Micrococcus were more active degraders of the waste. The significance of the results in environmental management in oil-producing areas of Nigeria is discussed. (Author)

  12. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    Directory of Open Access Journals (Sweden)

    Takuto Sakamoto

    Full Text Available Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  13. Energetic utilisation of biomass in Hungary

    International Nuclear Information System (INIS)

    Barotfi, I.

    1994-01-01

    Energetic utilisation of biomass has been known since prehistoric times and was only pushed into the background by the technological developments of the last century. The energy crisis and, more recently, environmental problems have now brought it back to the fore, and efforts are being made worldwide to find modern technical applications for biomass and contribute to its advance. (orig.) [de

  14. Linear mixing model applied to coarse resolution satellite data

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1992-01-01

    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

  15. Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies

    Directory of Open Access Journals (Sweden)

    A. Loew

    2013-09-01

    Full Text Available Soil moisture is an essential climate variable (ECV of major importance for land–atmosphere interactions and global hydrology. An appropriate representation of soil moisture dynamics in global climate models is therefore important. Recently, a first multidecadal, observation-based soil moisture dataset has become available that provides information on soil moisture dynamics from satellite observations (ECVSM, essential climate variable soil moisture. The present study investigates the potential and limitations of this new dataset for several applications in climate model evaluation. We compare soil moisture data from satellite observations, reanalysis and simulations from a state-of-the-art land surface model and analyze relationships between soil moisture and precipitation anomalies in the different dataset. Other potential applications like model parameter optimization or model initialization are not investigated in the present study. In a detailed regional study, we show that ECVSM is capable to capture well the interannual and intraannual soil moisture and precipitation dynamics in the Sahelian region. Current deficits of the new dataset are critically discussed and summarized at the end of the paper to provide guidance for an appropriate usage of the ECVSM dataset for climate studies.

  16. Corrigendum to "Dynamics of a flexible tethered satellite system utilising various materials for coplanar and non-coplanar models" [Adv. Space Res. 56 (2015) 648-663

    Science.gov (United States)

    Hong, Aaron Aw Teik; Varatharajoo, Renuganth

    2015-12-01

    The authors would like to thank Dr. N.A. Ismail for some of the discussions found in her thesis as these discussions have facilitated to achieve some of the results published in this article. Therefore, Ismail, N.A., "The Dynamics of a Flexible Motorised Momentum Exchange Tether (MMET)", PhD. thesis, University of Glasgow, UK, pp. 26-41, 2012 is cited accordingly herein. The thesis was missed out from the reference list in the original version of this article due to an oversight with no other intention. Similarly the thesis by Stevens, R.E., "Optimal Control of Electrodynamic Tether Satellites", PhD. thesis, Air Force Institute of Technology, USA, pp. 87-96, 2008 is referred for a further readership completeness.

  17. Utilisation of Used Palm Oil as an Alternative Fuel in Thailand

    Science.gov (United States)

    Permchart, W.; Tanatvanit, S.

    2007-10-01

    This paper summarises the overview of the current situation of alternative energies in Thailand. The utilisation of bio-diesel as an alternative energy in two economic sectors (i.e. transport and industrial sectors), which have the largest energy consumption in the country, is mainly presented because it has seemed to be the most promising project among various energy conservation projects of the Thai government. Actually, there is another bio-fuel project, namely, the ethanol project for blending with gasoline to produce gasohol (E10) used in gasoline engines, which has been developed and already become to an important policy for energy conservation of the country. Due to much more large number of diesel has been utilised, the bio-diesel project has been the first priority one to solve the petroleum crisis problems. However, it is remarked that the utilisation of bio-diesel as an alternative fuel seems to be unsatisfactory because of various reasons. Some issues in terms of both government policies and technical problems have not been clearly addressed. Therefore, this paper not only presents the utilisation of bio-diesel in these two sectors but also discusses the production processes, characterisations and some experimental testing results of bio-diesel.

  18. Utilising UDT to push the bandwidth envelope

    Science.gov (United States)

    Garrett, B.; Davies, B.

    eScience applications, in particular High Energy Physics, often involve large amounts of data and/or computing and often require secure resource sharing across organizational boundaries, and are thus not easily handled by today's networking infrastructures. By utilising the switched lightpath connections provided by the UKLight network it has been possible to research the use of alternate protocols for data transport. While the HEP projects make use of a number of middleware solutions for data storage and transport, they all rely on GridFTP for WAN transport. The GridFTP protocol runs over TCP as the layer 3 protocol by default, however with the latest released of the Globus toolkit it is possible to utilise alternate protocols at the layer 3 level. One of the alternatives is a reliable version of UDP called UDT. This report presents the results of the tests measuring the performance of single-threaded file transfers using GridFTP running over both TCP and the UDT protocol.

  19. CHAOS-2-a geomagnetic field model derived from one decade of continuous satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils; Mandea, M.; Sabaka, T.J.

    2009-01-01

    We have derived a model of the near-Earth's magnetic field using more than 10 yr of high-precision geomagnetic measurements from the three satellites Orsted, CHAMP and SAC-C. This model is an update of the two previous models, CHAOS (Olsen et al. 2006) and xCHAOS (Olsen & Mandea 2008). Data...... by minimizing the second time derivative of the squared magnetic field intensity at the core-mantle boundary. The CHAOS-2 model describes rapid time changes, as monitored by the ground magnetic observatories, much better than its predecessors....

  20. Modelling patterns of pollinator species richness and diversity using satellite image texture.

    Directory of Open Access Journals (Sweden)

    Sylvia Hofmann

    Full Text Available Assessing species richness and diversity on the basis of standardised field sampling effort represents a cost- and time-consuming method. Satellite remote sensing (RS can help overcome these limitations because it facilitates the collection of larger amounts of spatial data using cost-effective techniques. RS information is hence increasingly analysed to model biodiversity across space and time. Here, we focus on image texture measures as a proxy for spatial habitat heterogeneity, which has been recognized as an important determinant of species distributions and diversity. Using bee monitoring data of four years (2010-2013 from six 4 × 4 km field sites across Central Germany and a multimodel inference approach we test the ability of texture features derived from Landsat-TM imagery to model local pollinator biodiversity. Textures were shown to reflect patterns of bee diversity and species richness to some extent, with the first-order entropy texture and terrain roughness being the most relevant indicators. However, the texture measurements accounted for only 3-5% of up to 60% of the variability that was explained by our final models, although the results are largely consistent across different species groups (bumble bees, solitary bees. While our findings provide indications in support of the applicability of satellite imagery textures for modeling patterns of bee biodiversity, they are inconsistent with the high predictive power of texture metrics reported in previous studies for avian biodiversity. We assume that our texture data captured mainly heterogeneity resulting from landscape configuration, which might be functionally less important for wild bees than compositional diversity of plant communities. Our study also highlights the substantial variability among taxa in the applicability of texture metrics for modelling biodiversity.

  1. Modelling patterns of pollinator species richness and diversity using satellite image texture.

    Science.gov (United States)

    Hofmann, Sylvia; Everaars, Jeroen; Schweiger, Oliver; Frenzel, Mark; Bannehr, Lutz; Cord, Anna F

    2017-01-01

    Assessing species richness and diversity on the basis of standardised field sampling effort represents a cost- and time-consuming method. Satellite remote sensing (RS) can help overcome these limitations because it facilitates the collection of larger amounts of spatial data using cost-effective techniques. RS information is hence increasingly analysed to model biodiversity across space and time. Here, we focus on image texture measures as a proxy for spatial habitat heterogeneity, which has been recognized as an important determinant of species distributions and diversity. Using bee monitoring data of four years (2010-2013) from six 4 × 4 km field sites across Central Germany and a multimodel inference approach we test the ability of texture features derived from Landsat-TM imagery to model local pollinator biodiversity. Textures were shown to reflect patterns of bee diversity and species richness to some extent, with the first-order entropy texture and terrain roughness being the most relevant indicators. However, the texture measurements accounted for only 3-5% of up to 60% of the variability that was explained by our final models, although the results are largely consistent across different species groups (bumble bees, solitary bees). While our findings provide indications in support of the applicability of satellite imagery textures for modeling patterns of bee biodiversity, they are inconsistent with the high predictive power of texture metrics reported in previous studies for avian biodiversity. We assume that our texture data captured mainly heterogeneity resulting from landscape configuration, which might be functionally less important for wild bees than compositional diversity of plant communities. Our study also highlights the substantial variability among taxa in the applicability of texture metrics for modelling biodiversity.

  2. Donor Satellite Cell Engraftment is Significantly Augmented When the Host Niche is Preserved and Endogenous Satellite Cells are Incapacitated

    Science.gov (United States)

    Boldrin, Luisa; Neal, Alice; Zammit, Peter S; Muntoni, Francesco; Morgan, Jennifer E

    2012-01-01

    Stem cell transplantation is already in clinical practice for certain genetic diseases and is a promising therapy for dystrophic muscle. We used the mdx mouse model of Duchenne muscular dystrophy to investigate the effect of the host satellite cell niche on the contribution of donor muscle stem cells (satellite cells) to muscle regeneration. We found that incapacitation of the host satellite cells and preservation of the muscle niche promote donor satellite cell contribution to muscle regeneration and functional reconstitution of the satellite cell compartment. But, if the host niche is not promptly refilled, or is filled by competent host satellite cells, it becomes nonfunctional and donor engraftment is negligible. Application of this regimen to aged host muscles also promotes efficient regeneration from aged donor satellite cells. In contrast, if the niche is destroyed, yet host satellite cells remain proliferation-competent, donor-derived engraftment is trivial. Thus preservation of the satellite cell niche, concomitant with functional impairment of the majority of satellite cells within dystrophic human muscles, may improve the efficiency of stem cell therapy. Stem Cells2012;30:1971–1984 PMID:22730231

  3. Analysis of 3-dimensional Hydro-dynamical Model Simulation in the Gulf of Kutch, India and Its Comparison with Satellite Data

    Digital Repository Service at National Institute of Oceanography (India)

    Osawa, T.; Zhao, C.; Kunte, P.D.; Ae, L.S.; Hara, M.; Moriyama, T.

    temperature, relative humidity and cloud fraction are obtained from Da Silva et al. (1994) climatic data sets from 1984-1991. Figure 2b shows the air temperature and the relative humidity above sea surface, and we can see that the temperature changes from 22... to monitor the variation of environment in the enclosed Gulf. Satellite data could provide cloud fraction from NOAA/AVHRR or other meteorological satellites. Making full use of satellite observations and combining with numerical model simulation will give...

  4. ERROR-CONTROL CODING OF ADS-B MESSAGES FOR IRIDIUM SATELLITES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2013-12-01

    Full Text Available For modelling of ADS-B messages transmitting on the base of low-orbit satellite constellation Іrіdіum the model of a communication channel “Aircraft - Satellite - Ground Station” was built using MATLAB Sіmulіnk. This model allowed to investigate dependences of the Bit Error Rate on a type of  signal coding/decoding, ratio Eb/N0 and satellite repeater gain

  5. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.

    Science.gov (United States)

    Garijo, N; Manzano, R; Osta, R; Perez, M A

    2012-12-07

    Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Comparisons of Satellite Soil Moisture, an Energy Balance Model Driven by LST Data and Point Measurements

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Rudari, Roberto; Boni, Giorgio; Puca, Silvia

    2013-04-01

    Soil moisture plays a fundamental role in the partitioning of mass and energy fluxes between land surface and atmosphere, thereby influencing climate and weather, and it is important in determining the rainfall-runoff response of catchments; moreover, in hydrological modelling and flood forecasting, a correct definition of moisture conditions is a key factor for accurate predictions. Different sources of information for the estimation of the soil moisture state are currently available: satellite data, point measurements and model predictions. All are affected by intrinsic uncertainty. Among different satellite sensors that can be used for soil moisture estimation three major groups can be distinguished: passive microwave sensors (e.g., SSMI), active sensors (e.g. SAR, Scatterometers), and optical sensors (e.g. Spectroradiometers). The last two families, mainly because of their temporal and spatial resolution seem the most suitable for hydrological applications In this work soil moisture point measurements from 10 sensors in the Italian territory are compared of with the satellite products both from the HSAF project SM-OBS-2, derived from the ASCAT scatterometer, and from ACHAB, an operative energy balance model that assimilate LST data derived from MSG and furnishes daily an evaporative fraction index related to soil moisture content for all the Italian region. Distributed comparison of the ACHAB and SM-OBS-2 on the whole Italian territory are performed too.

  7. Evaluating a slope-stability model for shallow rain-induced landslides using gage and satellite data

    Science.gov (United States)

    Yatheendradas, S.; Kirschbaum, D.; Baum, Rex L.; Godt, Jonathan W.

    2014-01-01

    Improving prediction of landslide early warning systems requires accurate estimation of the conditions that trigger slope failures. This study tested a slope-stability model for shallow rainfall-induced landslides by utilizing rainfall information from gauge and satellite records. We used the TRIGRS model (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis) for simulating the evolution of the factor of safety due to rainfall infiltration. Using a spatial subset of a well-characterized digital landscape from an earlier study, we considered shallow failure on a slope adjoining an urban transportation roadway near the Seattle area in Washington, USA.We ran the TRIGRS model using high-quality rain gage and satellite-based rainfall data from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results with parameterized soil depth values suggest that the steeper slope values in this spatial domain have factor of safety values that are extremely close to the failure limit within an extremely narrow range of values, providing multiple false alarms. When the soil depths were constrained using a back analysis procedure to ensure that slopes were stable under initial condtions, the model accurately predicted the timing and location of the landslide observation without false alarms over time for gage rain data. The TRMM satellite rainfall data did not show adequately retreived rainfall peak magnitudes and accumulation over the study period, and as a result failed to predict the landslide event. These preliminary results indicate that more accurate and higher-resolution rain data (e.g., the upcoming Global Precipitation Measurement (GPM) mission) are required to provide accurate and reliable landslide predictions in ungaged basins.

  8. Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Stones, Clare; Joseph, Wayne R; Leung, Euphemia; Finlay, Graeme J; Shelling, Andrew N; Phillips, Wayne A; Shepherd, Peter R; Baguley, Bruce C

    2012-01-01

    The phosphatidylinositol-3-kinase (PI3K-PKB), mitogen activated protein kinase (MEK-ERK) and the mammalian target of rapamycin (mTOR- p70S6K), are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status. Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation. Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways. Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation

  9. Modeling and Assessment of Precise Time Transfer by Using BeiDou Navigation Satellite System Triple-Frequency Signals

    Science.gov (United States)

    Zhang, Pengfei; Zhang, Rui; Liu, Jinhai; Lu, Xiaochun

    2018-01-01

    This study proposes two models for precise time transfer using the BeiDou Navigation Satellite System triple-frequency signals: ionosphere-free (IF) combined precise point positioning (PPP) model with two dual-frequency combinations (IF-PPP1) and ionosphere-free combined PPP model with a single triple-frequency combination (IF-PPP2). A dataset with a short baseline (with a common external time frequency) and a long baseline are used for performance assessments. The results show that IF-PPP1 and IF-PPP2 models can both be used for precise time transfer using BeiDou Navigation Satellite System (BDS) triple-frequency signals, and the accuracy and stability of time transfer is the same in both cases, except for a constant system bias caused by the hardware delay of different frequencies, which can be removed by the parameter estimation and prediction with long time datasets or by a priori calibration. PMID:29596330

  10. Satellite image simulations for model-supervised, dynamic retrieval of crop type and land use intensity

    Science.gov (United States)

    Bach, H.; Klug, P.; Ruf, T.; Migdall, S.; Schlenz, F.; Hank, T.; Mauser, W.

    2015-04-01

    To support food security, information products about the actual cropping area per crop type, the current status of agricultural production and estimated yields, as well as the sustainability of the agricultural management are necessary. Based on this information, well-targeted land management decisions can be made. Remote sensing is in a unique position to contribute to this task as it is globally available and provides a plethora of information about current crop status. M4Land is a comprehensive system in which a crop growth model (PROMET) and a reflectance model (SLC) are coupled in order to provide these information products by analyzing multi-temporal satellite images. SLC uses modelled surface state parameters from PROMET, such as leaf area index or phenology of different crops to simulate spatially distributed surface reflectance spectra. This is the basis for generating artificial satellite images considering sensor specific configurations (spectral bands, solar and observation geometries). Ensembles of model runs are used to represent different crop types, fertilization status, soil colour and soil moisture. By multi-temporal comparisons of simulated and real satellite images, the land cover/crop type can be classified in a dynamically, model-supervised way and without in-situ training data. The method is demonstrated in an agricultural test-site in Bavaria. Its transferability is studied by analysing PROMET model results for the rest of Germany. Especially the simulated phenological development can be verified on this scale in order to understand whether PROMET is able to adequately simulate spatial, as well as temporal (intra- and inter-season) crop growth conditions, a prerequisite for the model-supervised approach. This sophisticated new technology allows monitoring of management decisions on the field-level using high resolution optical data (presently RapidEye and Landsat). The M4Land analysis system is designed to integrate multi-mission data and is

  11. Withstanding austerity: Equity in health services utilisation in the first stage of the economic recession in Southern Spain.

    Science.gov (United States)

    Córdoba-Doña, Juan Antonio; Escolar-Pujolar, Antonio; San Sebastián, Miguel; Gustafsson, Per E

    2018-01-01

    Scant research is available on the impact of the current economic crisis and austerity policies on inequality in health services utilisation in Europe. This study aimed to describe the trends in horizontal inequity in the use of health services in Andalusia, Spain, during the early years of the Great Recession, and the contribution of demographic, economic and social factors. Consultation with a general practitioner (GP) and specialist, hospitalisation and emergency care were studied through the Andalusian Health Survey 2007 (pre-crisis) and 2011-2012 (crisis), using a composite income index as socioeconomic status (SES) indicator. Horizontal inequity indices (HII) were calculated to take differential healthcare needs into account, and a decomposition analysis of change in inequality between periods was performed. Results showed that before the crisis, the HII was positive (greater access for people with higher SES) for specialist visits but negative (greater access for people with lower SES) in the other three utilisation models. During the crisis no change was observed in inequalities in GP visits, but a pro-poor development was seen for the other types of utilisation, with hospital and emergency care showing significant inequality in favour of low income groups. Overall, the main contributors to pro-poor changes in utilisation were socio-economic variables and poor mental health, due to changes in their elasticities. Our findings show that inequalities in healthcare utilisation largely remained in favour of the less well-off, despite the cuts in welfare benefits and health services provision during the early years of the recession in Andalusia. Further research is needed to monitor the potential impact of such measures in subsequent years.

  12. The effect of non-response on estimates of health care utilisation

    DEFF Research Database (Denmark)

    Gundgaard, Jens; Ekholm, Orla; Hansen, Ebba Holme

    2008-01-01

    BACKGROUND: Non-response in health surveys may lead to bias in estimates of health care utilisation. The magnitude, direction and composition of the bias are usually not well known. When data from health surveys are merged with data from registers at the individual level, analyses can reveal non......-response bias. Our aim was to estimate the composition, direction and magnitude of non-response bias in the estimation of health care costs in two types of health interview surveys. METHODS: The surveys were (1) a national personal interview survey of 22 484 Danes (2) a telephone interview survey of 5000 Danes...... living in Funen County. Data were linked with register information on health care utilisation in hospitals and primary care. Health care utilisation was estimated for respondents and non-respondents, and the difference was explained by a decomposition method of bias components. RESULTS: The surveys...

  13. Assessment of aerosol models to AOD retrieval from HJ1 Satellites

    International Nuclear Information System (INIS)

    Yuhuan, Zhang; Zhengqiang, Li; Weizhen, Hou; Ying, Zhang; Yan, Ma; Li Donghui

    2014-01-01

    The Chinese environmental satellites HJ1 A and B can play a significant role in the aerosol retrieval due to their high spatial and temporal resolution. The current Aerosol Optical Depth (AOD) retrieval methods from HJ1-CCD are almost based on the LUT (Look-Up Table), by selecting the best fitting result to determine the AOD. However, aerosol model selection has an important impact on the retrieval results when creating the lookup table; inappropriate choice of aerosol model will significantly affect the accuracy and applicability of the method. This paper determined the local aerosol physical properties (such as complex refractive index, and size distribution) based on the observational data, thus we defined the aerosol type and retrieved the AOD of the local aerosol. Furthermore we compared the results retrieved from the measurement aerosol model with those retrieved from the inherent aerosol model in the radiative transfer model and then evaluate its effect on the aerosol type

  14. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    Directory of Open Access Journals (Sweden)

    Wei Yan

    Full Text Available Estimate of net ecosystem carbon exchange (NEE between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP and ecosystem respiration (Reco has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.

  15. Comparison of a new global empirical ion composition model with available satellite data

    Czech Academy of Sciences Publication Activity Database

    Truhlík, Vladimír; Třísková, Ludmila; Šmilauer, Jan; Iwamoto, I.

    2003-01-01

    Roč. 31, č. 3 (2003), s. 665-675 ISSN 0273-1177 R&D Projects: GA ČR GP205/02/P037; GA AV ČR IAA3042201; GA AV ČR IAB3042104 Institutional research plan: CEZ:AV0Z3042911 Keywords : satellite data * ion composition model * outer ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.483, year: 2003

  16. Dynamic Modeling and Simulation of Marine Satellite Tracking Antenna Using Lagrange Method

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased controll......Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased...

  17. Error estimates for near-Real-Time Satellite Soil Moisture as Derived from the Land Parameter Retrieval Model

    NARCIS (Netherlands)

    Parinussa, R.M.; Meesters, A.G.C.A.; Liu, Y.Y.; Dorigo, W.; Wagner, W.; de Jeu, R.A.M.

    2011-01-01

    A time-efficient solution to estimate the error of satellite surface soil moisture from the land parameter retrieval model is presented. The errors are estimated using an analytical solution for soil moisture retrievals from this radiative-transfer-based model that derives soil moisture from

  18. A Simple Semi-Empirical Model for the Estimation of Photosynthetically Active Radiation from Satellite Data in the Tropics

    Directory of Open Access Journals (Sweden)

    S. Janjai

    2013-01-01

    Full Text Available This paper presents a simple semi-empirical model for estimating global photosynthetically active radiation (PAR under all sky conditions. The model expresses PAR as a function of cloud index, aerosol optical depth, total ozone column, solar zenith angle, and air mass. The formulation of the model was based on a four-year period (2008–2011 of PAR data obtained from the measurements at four solar monitoring stations in a tropical environment of Thailand. These are Chiang Mai (18.78°N, 98.98°E, Ubon Ratchathani (15.25°N, 104.87°E, Nakhon Pathom (13.82°N, 100.04°E, and Songkhla (7.20°N, 100.60°E. The cloud index was derived from MTSAT-1R satellite, whereas the aerosol optical depth was obtained from MODIS/Terra satellite. For the total ozone column, it was retrieved from OMI/Aura satellite. The model was validated against independent data set from the four stations. It was found that hourly PAR estimated from the proposed model and that obtained from the measurements were in reasonable agreement, with the root mean square difference (RMSD and mean bias difference (MBD of 14.3% and −5.8%, respectively. In addition, for the case of monthly average hourly PAR, RMSD and MBD were reduced to 11.1% and −5.1%, respectively.

  19. Environmental aspects of the geothermal energy utilisation in Poland

    Science.gov (United States)

    Sowiżdżał, Anna; Tomaszewska, Barbara; Drabik, Anna

    2017-11-01

    Geothermal energy is considered as a strategic and sustainable source of renewable energy that can be effectively managed in several economic sectors. In Poland, despite the abundant potential of such resources, its share in the energy mix of renewable energy sources remains insubstantial. The utilisation of geothermal resources in Poland is related to the hydrogeothermal resources, however, numerous researches related to petrogeothermal energy resources are being performed. The utilisation of each type of energy, including geothermal, has an impact on the natural environment. In case of the effective development of geothermal energy resources, many environmental benefits are pointed out. The primary one is the extraction of clean, green energy that is characterised by the zero-emission rate of pollutants into the atmosphere, what considering the current environmental pollution in many Polish cities remains the extremely important issue. On the other hand, the utilisation of geothermal energy might influence the natural environment negatively. Beginning from the phase of drilling, which strongly interferes with the local landscape or acoustic climate, to the stage of energy exploitation. It should be noted that the efficient and sustainable use of geothermal energy resources is closely linked with the current law regulations at national and European level.

  20. Conversion and utilisation of biomass from Swedish agriculture; Foeraedling och avsaettning av jordbruksbaserade biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    2007-05-15

    Biomass feedstock from agriculture can be refined and converted into several different energy carriers and utilised for different energy services, such as production of heat, electricity or transportation fuel. The feedstock may be residues and by-products, such as straw and manure, or energy crops cultivated under different conditions depending on variations in regional and local conditions. Similar variations exist in the regional and local conditions for the refining and utilisation of the bioenergy and its by-products. The overall aim of this report is to analyse and describe the technical and physical conditions of different agriculture-based bioenergy systems using the existing infrastructure and potential new systems expected to be developed in the future. To which extent this technical/physical potential will be utilised in the future depends mainly on economic conditions and financial considerations. These aspects are not included in this study. Furthermore, potential possibilities to utilise existing infrastructure within the forest industry are not included. The report starts with an analysis and description of the energy efficiency of different bioenergy systems, from the production of the biomass to the final use of the refined energy carrier, expressed as the amount of heat, electricity or transportation fuel produced per hectare and year. The possibilities to co-produce different energy carries in bio-refineries are also analysed. The next part of the report includes an analysis of the variation in the regional conditions for the conversion and utilisation of the different energy carriers, based on existing infrastructure, for instance, district heating systems, individual heating systems, combined heat and power production, utilisation of by-products as feed in animal production, utilisation of digestion residues as fertilisers, the supply of forest fuels, etc. The report also includes a discussion of the environmental impact of an increased

  1. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  2. Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics

    Science.gov (United States)

    Gutnik, Sergey A.; Sarychev, Vasily A.

    2018-02-01

    The dynamics of a satellite on a circular orbit under the influence of gravitational and active damping torques, which are proportional to the projections of the angular velocity of the satellite, is investigated. Computer algebra Gröbner basis methods for the determination of all equilibrium orientations of the satellite in the orbital coordinate system with given damping torque and given principal central moments of inertia were used. The conditions of the equilibria existence depending on three damping parameters were obtained from the analysis of the real roots of the algebraic equations spanned by the constructed Gröbner basis. Conditions of asymptotic stability of the satellite equilibria and the transition decay processes of the spatial oscillations of the satellite at different damping parameters have also been obtained.

  3. RPAS ADS-B AND TRAJECTORY CONTROL DATA TRANSMISSION VIA SATELLITE

    Directory of Open Access Journals (Sweden)

    Andrii Grekhov

    2017-11-01

    Full Text Available Purpose: to develop a model of the satellite communication channel for an remotely piloted air system with adaptive modulation and orthogonal frequency division of channels; 2 to calculate the channel parameters with Rayleigh fading and various types of satellite transponder nonlinearity; 3 analyze the effect of fading and the type of nonlinearity on the parameters of the satellite communication channel. Method: MATLAB Simulink software was used to simulate the channel operation. Results: For the first time, based on the IEEE 802.16d standard, a realistic model of the satellite communication channel of an unmanned aerial vehicle was developed, which is used to estimate the channel parameters. The created model takes into account the Rayleigh fading in the downlink and the nonlinearity of the satellite transponder amplifier. Dependences of the signal-to-noise ratio in the terrestrial receiver on the signal-to-noise ratio in the downlink for various types of modulation (BPSK, QPSK, 16QAM, 64QAM and data transmission rates are obtained. The nonlinearity of satellite amplifiers was analyzed on the basis of a linear model, a cubic polynomial model, a hyperbolic tangential model, the Gorbani model, and the Rapp model. The results for the cubic polynomial model and the hyperbolic tangential model are similar to the linear model, but differ significantly from the Gorbani model and the Rapp model. For the Gorbani and Rapp models, very low values of the signal-to-noise ratio in the receiver are observed. Conclusion: The proposed approach can be considered as a method of estimating the parameters of the satellite communication channel of an unmanned aerial vehicle with fading. It is shown how the type of modulation varies depending on the level of the signal-to-noise ratio and the type of fading. The developed model allows to predict the operation of the channel with Rayleigh fading and can be useful for the design of communication systems.

  4. Origin of the Local Group satellite planes

    Science.gov (United States)

    Banik, Indranil; O'Ryan, David; Zhao, Hongsheng

    2018-04-01

    We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics (MOND), which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle disks, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disk is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disk. Thus, the MW thick disk may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.

  5. The Effects of Climate Variability on Phytoplankton Composition in the Equatorial Pacific Ocean using a Model and a Satellite-Derived Approach

    Science.gov (United States)

    Rousseaux, C. S.; Gregg, W. W.

    2012-01-01

    Compared the interannual variation in diatoms, cyanobacteria, coccolithophores and chlorophytes from the NASA Ocean Biogeochemical Model with those derived from satellite data (Hirata et al. 2011) between 1998 and 2006 in the Equatorial Pacific. Using NOBM, La Ni a events were characterized by an increase in diatoms (correlation with MEI, r=-0.81, Pphytoplankton community in response to climate variability. However, satellite-derived phytoplankton groups were all negatively correlated with climate variability (r ranged from -0.39 for diatoms to -0.64 for coccolithophores, Pphytoplankton groups except diatoms than NOBM. However, the different responses of phytoplankton to intense interannual events in the Equatorial Pacific raises questions about the representation of phytoplankton dynamics in models and algorithms: is a phytoplankton community shift as in the model or an across-the-board change in abundances of all phytoplankton as in the satellite-derived approach.

  6. Satellite-aided survey sampling and implementation in low- and middle-income contexts: a low-cost/low-tech alternative.

    Science.gov (United States)

    Haenssgen, Marco J

    2015-01-01

    The increasing availability of online maps, satellite imagery, and digital technology can ease common constraints of survey sampling in low- and middle-income countries. However, existing approaches require specialised software and user skills, professional GPS equipment, and/or commercial data sources; they tend to neglect spatial sampling considerations when using satellite maps; and they continue to face implementation challenges analogous to conventional survey implementation methods. This paper presents an alternative way of utilising satellite maps and digital aides that aims to address these challenges. The case studies of two rural household surveys in Rajasthan (India) and Gansu (China) compare conventional survey sampling and implementation techniques with the use of online map services such as Google, Bing, and HERE maps. Modern yet basic digital technology can be integrated into the processes of preparing, implementing, and monitoring a rural household survey. Satellite-aided systematic random sampling enhanced the spatial representativeness of the village samples and entailed savings of approximately £4000 compared to conventional household listing, while reducing the duration of the main survey by at least 25 %. This low-cost/low-tech satellite-aided survey sampling approach can be useful for student researchers and resource-constrained research projects operating in low- and middle-income contexts with high survey implementation costs. While achieving transparent and efficient survey implementation at low costs, researchers aiming to adopt a similar process should be aware of the locational, technical, and logistical requirements as well as the methodological challenges of this strategy.

  7. Shadow imaging of geosynchronous satellites

    Science.gov (United States)

    Douglas, Dennis Michael

    Geosynchronous (GEO) satellites are essential for modern communication networks. If communication to a GEO satellite is lost and a malfunction occurs upon orbit insertion such as a solar panel not deploying there is no direct way to observe it from Earth. Due to the GEO orbit distance of ~36,000 km from Earth's surface, the Rayleigh criteria dictates that a 14 m telescope is required to conventionally image a satellite with spatial resolution down to 1 m using visible light. Furthermore, a telescope larger than 30 m is required under ideal conditions to obtain spatial resolution down to 0.4 m. This dissertation evaluates a method for obtaining high spatial resolution images of GEO satellites from an Earth based system by measuring the irradiance distribution on the ground resulting from the occultation of the satellite passing in front of a star. The representative size of a GEO satellite combined with the orbital distance results in the ground shadow being consistent with a Fresnel diffraction pattern when observed at visible wavelengths. A measurement of the ground shadow irradiance is used as an amplitude constraint in a Gerchberg-Saxton phase retrieval algorithm that produces a reconstruction of the satellite's 2D transmission function which is analogous to a reverse contrast image of the satellite. The advantage of shadow imaging is that a terrestrial based redundant set of linearly distributed inexpensive small telescopes, each coupled to high speed detectors, is a more effective resolved imaging system for GEO satellites than a very large telescope under ideal conditions. Modeling and simulation efforts indicate sub-meter spatial resolution can be readily achieved using collection apertures of less than 1 meter in diameter. A mathematical basis is established for the treatment of the physical phenomena involved in the shadow imaging process. This includes the source star brightness and angular extent, and the diffraction of starlight from the satellite

  8. Assessing performance of Bayesian state-space models fit to Argos satellite telemetry locations processed with Kalman filtering.

    Directory of Open Access Journals (Sweden)

    Mónica A Silva

    Full Text Available Argos recently implemented a new algorithm to calculate locations of satellite-tracked animals that uses a Kalman filter (KF. The KF algorithm is reported to increase the number and accuracy of estimated positions over the traditional Least Squares (LS algorithm, with potential advantages to the application of state-space methods to model animal movement data. We tested the performance of two Bayesian state-space models (SSMs fitted to satellite tracking data processed with KF algorithm. Tracks from 7 harbour seals (Phoca vitulina tagged with ARGOS satellite transmitters equipped with Fastloc GPS loggers were used to calculate the error of locations estimated from SSMs fitted to KF and LS data, by comparing those to "true" GPS locations. Data on 6 fin whales (Balaenoptera physalus were used to investigate consistency in movement parameters, location and behavioural states estimated by switching state-space models (SSSM fitted to data derived from KF and LS methods. The model fit to KF locations improved the accuracy of seal trips by 27% over the LS model. 82% of locations predicted from the KF model and 73% of locations from the LS model were <5 km from the corresponding interpolated GPS position. Uncertainty in KF model estimates (5.6 ± 5.6 km was nearly half that of LS estimates (11.6 ± 8.4 km. Accuracy of KF and LS modelled locations was sensitive to precision but not to observation frequency or temporal resolution of raw Argos data. On average, 88% of whale locations estimated by KF models fell within the 95% probability ellipse of paired locations from LS models. Precision of KF locations for whales was generally higher. Whales' behavioural mode inferred by KF models matched the classification from LS models in 94% of the cases. State-space models fit to KF data can improve spatial accuracy of location estimates over LS models and produce equally reliable behavioural estimates.

  9. Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude

    Science.gov (United States)

    Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.

    2018-05-01

    One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.

  10. Hepatic toxicology following single and multiple exposure of engineered nanomaterials utilising a novel primary human 3D liver microtissue model

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Løhr, Mille; Roursgaard, Martin

    2014-01-01

    BackgroundThe liver has a crucial role in metabolic homeostasis as well as being the principal detoxification centre of the body, removing xenobiotics and waste products which could potentially include some nanomaterials (NM). With the ever increasing public and occupational exposure associated...... with accumulative production of nanomaterials, there is an urgent need to consider the possibility of detrimental health consequences of engineered NM exposure. It has been shown that exposure via inhalation, intratracheal instillation or ingestion can result in NM translocation to the liver. Traditional in vitro...... or ex vivo hepatic nanotoxicology models are often limiting and/or troublesome (i.e. reduced metabolism enzymes, lacking important cell populations, unstable with very high variability, etc.).MethodsIn order to rectify these issues and for the very first time we have utilised a 3D human liver...

  11. Modeling and Assessment of Precise Time Transfer by Using BeiDou Navigation Satellite System Triple-Frequency Signals

    Directory of Open Access Journals (Sweden)

    Rui Tu

    2018-03-01

    Full Text Available This study proposes two models for precise time transfer using the BeiDou Navigation Satellite System triple-frequency signals: ionosphere-free (IF combined precise point positioning (PPP model with two dual-frequency combinations (IF-PPP1 and ionosphere-free combined PPP model with a single triple-frequency combination (IF-PPP2. A dataset with a short baseline (with a common external time frequency and a long baseline are used for performance assessments. The results show that IF-PPP1 and IF-PPP2 models can both be used for precise time transfer using BeiDou Navigation Satellite System (BDS triple-frequency signals, and the accuracy and stability of time transfer is the same in both cases, except for a constant system bias caused by the hardware delay of different frequencies, which can be removed by the parameter estimation and prediction with long time datasets or by a priori calibration.

  12. System capacity and economic modeling computer tool for satellite mobile communications systems

    Science.gov (United States)

    Wiedeman, Robert A.; Wen, Doong; Mccracken, Albert G.

    1988-01-01

    A unique computer modeling tool that combines an engineering tool with a financial analysis program is described. The resulting combination yields a flexible economic model that can predict the cost effectiveness of various mobile systems. Cost modeling is necessary in order to ascertain if a given system with a finite satellite resource is capable of supporting itself financially and to determine what services can be supported. Personal computer techniques using Lotus 123 are used for the model in order to provide as universal an application as possible such that the model can be used and modified to fit many situations and conditions. The output of the engineering portion of the model consists of a channel capacity analysis and link calculations for several qualities of service using up to 16 types of earth terminal configurations. The outputs of the financial model are a revenue analysis, an income statement, and a cost model validation section.

  13. An Observation Task Chain Representation Model for Disaster Process-Oriented Remote Sensing Satellite Sensor Planning: A Flood Water Monitoring Application

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2018-03-01

    Full Text Available An accurate and comprehensive representation of an observation task is a prerequisite in disaster monitoring to achieve reliable sensor observation planning. However, the extant disaster event or task information models do not fully satisfy the observation requirements for the accurate and efficient planning of remote-sensing satellite sensors. By considering the modeling requirements for a disaster observation task, we propose an observation task chain (OTChain representation model that includes four basic OTChain segments and eight-tuple observation task metadata description structures. A prototype system, namely OTChainManager, is implemented to provide functions for modeling, managing, querying, and visualizing observation tasks. In the case of flood water monitoring, we use a flood remote-sensing satellite sensor observation task for the experiment. The results show that the proposed OTChain representation model can be used in modeling process-owned flood disaster observation tasks. By querying and visualizing the flood observation task instances in the Jinsha River Basin, the proposed model can effectively express observation task processes, represent personalized observation constraints, and plan global remote-sensing satellite sensor observations. Compared with typical observation task information models or engines, the proposed OTChain representation model satisfies the information demands of the OTChain and its processes as well as impels the development of a long time-series sensor observation scheme.

  14. Satellite combined heat and power plants and their legal autonomy; Satelliten-BHKW und deren rechtliche Eigenstaendigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Loibl, Helmut [Kanzlei Paluka Sobola Loibl und Partner, Regensburg (Germany). Abt. Erneuerbare Energien

    2014-04-15

    Since the landmark decision by the German Court of Justice concerning the term ''plant'' in the context of biogas plants it should be clear beyond doubt that satellite combined heat and power plants (CHPs) are legally autonomous plants pursuant to Para. 3 No. 1 of the Renewable Energy Law (EEG). What has yet to be finally resolved are the conditions under which satellite CHPs are to be regarded as autonomous. This will be a question of distance on the one hand and of operation autonomy on the other. In the individual case both these factors will have to be assessed from the perspective of an average objective, informed citizen. To the extent that its heat and electricity are being utilised in a meaningful manner, the plant's autonomy will be beyond doubt, at least in operational terms. Regarding the remuneration to be paid for satellite CHPs the only case requiring special consideration is when a CHP falls under the EEG of 2012. In this case Para. 1 Section 1 Sentence 2 EEG provides that the remuneration for the CHP in question is to be calculated as if there was a single overall plant. To the extent that none of the CHPs fall under the EEG of 2012, the ruling remains that there is a separate entitlement to remuneration for each satellite CHP. This also holds in cases where satellite CHPs that were commissioned after 1 January 2012 are relocated. When a satellite CHP is replaced by a new one, the rate and duration of remuneration remain unchanged. However, when a new satellite CHP is added to an existing satellite CHP via a gas collector line it is to be treated according to the decisions of the Federal Court of Justice concerning biogas plant extensions: It falls under the law that applies to the existing CHP and has an entitlement to a new minimum remuneration period, albeit subject to the degression rate provided by the EEG version in question.

  15. Evaluation of NWP-based Satellite Precipitation Error Correction with Near-Real-Time Model Products and Flood-inducing Storms

    Science.gov (United States)

    Zhang, X.; Anagnostou, E. N.; Schwartz, C. S.

    2017-12-01

    Satellite precipitation products tend to have significant biases over complex terrain. Our research investigates a statistical approach for satellite precipitation adjustment based solely on numerical weather simulations. This approach has been evaluated in two mid-latitude (Zhang et al. 2013*1, Zhang et al. 2016*2) and three topical mountainous regions by using the WRF model to adjust two high-resolution satellite products i) National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center morphing technique (CMORPH) and ii) Global Satellite Mapping of Precipitation (GSMaP). Results show the adjustment effectively reduces the satellite underestimation of high rain rates, which provides a solid proof-of-concept for continuing research of NWP-based satellite correction. In this study we investigate the feasibility of using NCAR Real-time Ensemble Forecasts*3 for adjusting near-real-time satellite precipitation datasets over complex terrain areas in the Continental United States (CONUS) such as Olympic Peninsula, California coastal mountain ranges, Rocky Mountains and South Appalachians. The research will focus on flood-inducing storms occurred from May 2015 to December 2016 and four satellite precipitation products (CMORPH, GSMaP, PERSIANN-CCS and IMERG). The error correction performance evaluation will be based on comparisons against the gauge-adjusted Stage IV precipitation data. *1 Zhang, Xinxuan, et al. "Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas." Journal of Hydrometeorology 14.6 (2013): 1844-1858. *2 Zhang, Xinxuan, et al. "Hydrologic Evaluation of NWP-Adjusted CMORPH Estimates of Hurricane-Induced Precipitation in the Southern Appalachians." Journal of Hydrometeorology 17.4 (2016): 1087-1099. *3 Schwartz, Craig S., et al. "NCAR's experimental real-time convection-allowing ensemble prediction system." Weather and Forecasting 30.6 (2015): 1645-1654.

  16. The climate impact of energy peat utilisation - comparison and sensitivity analysis of Finnish and Swedish results

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina; Kirkinen, Johanna; Savolainen, Ilkka

    2006-06-15

    The climate impact of energy peat utilisation have been studied both in Finland by VTT Technical Research Centre and in Sweden by IVL Swedish Environmental Research Institute Ltd. The main objective of this study is to compare the results of earlier studies by VTT and IVL and to perform a sensitivity analysis of previous and new results. The scientific approach of the two studies is very similar. The climate impact of peat utilisation is considered from a life-cycle point of view by taking into account all phases of the peat utilisation chain. Peat reserves can be both sinks and sources of greenhouse gas emissions as well as there are both uptake and emissions of greenhouse gases during the utilisation chain. The net impact of the utilisation chain is assessed as the climate impact due to the utilisation chain minus the climate impact of non-utilisation chain. The instantaneous radiative forcing and accumulated radiative forcing are used in both studies as the indicator of the climate impact. Radiative forcing is calculated on the basis of the concentration changes due to emissions and uptake of greenhouse gases. The differences in the models for calculating concentrations and radiative forcing are minor. There are some differences in the definitions and boundaries of the considered peat utilisation chains, although the differences in the results due to differences in the chain definitions are small. The main reason for the differences in results between the two studies is differences in emission (and uptake) estimates for the after-treatment phase and the non-utilisation chain. Both Swedish and Finnish studies show that the use of cultivated peatland for energy peat utilisation results in lower climate impact than using coal (within 100 years). Both studies show that the use of pristine mires for peat production will result in larger climate impact than the use of already drained peatlands. The climate impact of peat utilisation chains where fens and forestry

  17. The climate impact of energy peat utilisation - comparison and sensitivity analysis of Finnish and Swedish results

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Kirkinen, Johanna; Savolainen, Ilkka

    2006-06-01

    The climate impact of energy peat utilisation have been studied both in Finland by VTT Technical Research Centre and in Sweden by IVL Swedish Environmental Research Institute Ltd. The main objective of this study is to compare the results of earlier studies by VTT and IVL and to perform a sensitivity analysis of previous and new results. The scientific approach of the two studies is very similar. The climate impact of peat utilisation is considered from a life-cycle point of view by taking into account all phases of the peat utilisation chain. Peat reserves can be both sinks and sources of greenhouse gas emissions as well as there are both uptake and emissions of greenhouse gases during the utilisation chain. The net impact of the utilisation chain is assessed as the climate impact due to the utilisation chain minus the climate impact of non-utilisation chain. The instantaneous radiative forcing and accumulated radiative forcing are used in both studies as the indicator of the climate impact. Radiative forcing is calculated on the basis of the concentration changes due to emissions and uptake of greenhouse gases. The differences in the models for calculating concentrations and radiative forcing are minor. There are some differences in the definitions and boundaries of the considered peat utilisation chains, although the differences in the results due to differences in the chain definitions are small. The main reason for the differences in results between the two studies is differences in emission (and uptake) estimates for the after-treatment phase and the non-utilisation chain. Both Swedish and Finnish studies show that the use of cultivated peatland for energy peat utilisation results in lower climate impact than using coal (within 100 years). Both studies show that the use of pristine mires for peat production will result in larger climate impact than the use of already drained peatlands. The climate impact of peat utilisation chains where fens and forestry

  18. Adolescents' utilisation of psychiatric care, neighbourhoods and neighbourhood socioeconomic deprivation: a multilevel analysis.

    Directory of Open Access Journals (Sweden)

    Anna-Karin Ivert

    Full Text Available Mental health problems among adolescents have become a major public health issue, and it is therefore important to increase knowledge on the contextual determinants of adolescent mental health. One such determinant is the socioeconomic structure of the neighbourhood. The present study has two central objectives, (i to examine if neighbourhood socioeconomic deprivation is associated to individual variations in utilisation of psychiatric care in a Swedish context, and (ii to investigate if neighbourhood boundaries are a valid construct for identifying contexts that influence individual variations in psychiatric care utilization. Data were obtained from the Longitudinal Multilevel Analysis in Scania (LOMAS database. The study population consists of all boys and girls aged 13-18 years (N=18,417, who were living in the city of Malmö, Sweden, in 2005. Multilevel logistic regression analysis was applied to estimate the probability of psychiatric care utilisation. The results from the study indicate that the neighbourhood of residence had little influence on psychiatric care utilisation. Although we initially found a variation between neighbourhoods, this general contextual effect was very small (i.e. 1.6%. The initial conclusive association between the neighbourhood level of disadvantage and psychiatric care utilisation (specific contextual effect disappeared following adjustment for individual and family level variables. Our results suggest the neighbourhoods in Malmö (at least measured in terms of SAMS-areas, do not provide accurate information for discriminating adolescents utilisation of psychiatric care. The SAMS-areas appears to be an inappropriate construct of the social environment that influences adolescent utilisation of psychiatric care. Therefore, public health interventions should be directed to the whole city rather than to specific neighbourhoods. However, since geographical, social or cultural contexts may be important for our

  19. Primary care utilisation patterns among an urban immigrant population in the Spanish National Health System

    Directory of Open Access Journals (Sweden)

    Bordonaba-Bosque Daniel

    2011-06-01

    Full Text Available Abstract Background There is evidence suggesting that the use of health services is lower among immigrants after adjusting for age and sex. This study takes a step forward to compare primary care (PC utilisation patterns between immigrants and the native population with regard to their morbidity burden. Methods This retrospective, observational study looked at 69,067 individuals representing the entire population assigned to three urban PC centres in the city of Zaragoza (Aragon, Spain. Poisson models were applied to determine the number of annual PC consultations per individual based on immigration status. All models were first adjusted for age and sex and then for age, sex and case mix (ACG System®. Results The age and sex adjusted mean number of total annual consultations was lower among the immigrant population (children: IRR = 0.79, p Conclusions Although immigrants make lower use of PC services than the native population after adjusting the consultation rate for age and sex, these differences decrease significantly when considering their morbidity burden. These results reinforce the 'healthy migration effect' and discount the existence of differences in PC utilisation patterns between the immigrant and native populations in Spain.

  20. The reionization of galactic satellite populations

    Energy Technology Data Exchange (ETDEWEB)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Knebe, A.; Yepes, G. [Grupo de Astrofísica, Departamento de Fisica Teorica, Modulo C-8, Universidad Autónoma de Madrid, Cantoblanco E-280049 (Spain); Libeskind, N.; Gottlöber, S. [Leibniz-Institute für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Hoffman, Y. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-10-10

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z {sub r}) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  1. The reionization of galactic satellite populations

    International Nuclear Information System (INIS)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J.; Knebe, A.; Yepes, G.; Libeskind, N.; Gottlöber, S.; Hoffman, Y.

    2014-01-01

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z r ) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  2. The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models

    Science.gov (United States)

    Godah, Walyeldeen; Krynski, Jan; Szelachowska, Malgorzata

    2018-05-01

    The objective of this paper is to demonstrate the usefulness of absolute gravity data for the validation of Global Geopotential Models (GGMs). It is also aimed at improving quasigeoid heights determined from satellite-only GGMs using absolute gravity data. The area of Poland, as a unique one, covered with a homogeneously distributed set of absolute gravity data, has been selected as a study area. The gravity anomalies obtained from GGMs were validated using the corresponding ones determined from absolute gravity data. The spectral enhancement method was implemented to overcome the spectral inconsistency in data being validated. The quasigeoid heights obtained from the satellite-only GGM as well as from the satellite-only GGM in combination with absolute gravity data were evaluated with high accuracy GNSS/levelling data. Estimated accuracy of gravity anomalies obtained from GGMs investigated is of 1.7 mGal. Considering omitted gravity signal, e.g. from degree and order 101 to 2190, satellite-only GGMs can be validated at the accuracy level of 1 mGal using absolute gravity data. An improvement up to 59% in the accuracy of quasigeoid heights obtained from the satellite-only GGM can be observed when combining the satellite-only GGM with absolute gravity data.

  3. Automated tracking for advanced satellite laser ranging systems

    Science.gov (United States)

    McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.

    1996-06-01

    NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.

  4. Sludge utilisation in agriculture: possibilities and prospects in Greece.

    Science.gov (United States)

    Andreadakis, A D; Mamals, D; Gavalaki, E; Kampylafka, S

    2002-01-01

    The paper presents the prospects for agricultural utilisation of the sludge produced from wastewater treatment plants in Greece and more specifically focuses on a critical review of the legislatory framework, determination of the quantitative and qualitative characteristics of the produced sludges, examination of possible sludge treatment methods and evaluation of the possibilities and prospects of sludge utilisation on the basis of the above considerations. Landfilling is practically the only route to sludge disposal in Greece. However, in view of the anticipated future restrictions for landfilling within the European Union, this method is clearly a short-term solution and alternative options, including agricultural reuse, must be implemented. The results of a recent survey are presented and discussed in relation to this need.

  5. Cosmological-model-parameter determination from satellite-acquired type Ia and IIP Supernova Data

    International Nuclear Information System (INIS)

    Podariu, Silviu; Nugent, Peter; Ratra, Bharat

    2000-01-01

    We examine the constraints that satellite-acquired Type Ia and IIP supernova apparent magnitude versus redshift data will place on cosmological model parameters in models with and without a constant or time-variable cosmological constant lambda. High-quality data which could be acquired in the near future will result in tight constraints on these parameters. For example, if all other parameters of a spatially-flat model with a constant lambda are known, the supernova data should constrain the non-relativistic matter density parameter omega to better than 1 (2, 0.5) at 1 sigma with neutral (worst case, best case) assumptions about data quality

  6. Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP

    KAUST Repository

    Houborg, Rasmus; Cescatti, Alessandro; Migliavacca, Mirco; Kustas, W.P.

    2013-01-01

    This study investigates the utility of in situ and satellite-based leaf chlorophyll (Chl) estimates for quantifying leaf photosynthetic capacity and for constraining model simulations of Gross Primary Productivity (GPP) over a corn field in Maryland, U.S.A. The maximum rate of carboxylation (V-max) represents a key control on leaf photosynthesis within the widely employed C-3 and C-4 photosynthesis models proposed by Farquhar et al. (1980) and Collatz et al. (1992), respectively. A semi-mechanistic relationship between V-max(5) (V-max normalized to 25 degrees C) and Chl is derived based on interlinkages between V-max(25), Rubisco enzyme kinetics, leaf nitrogen, and Chl reported in the experimental literature. The resulting linear V-max(25) - Chl relationship is embedded within the photosynthesis scheme of the Community Land Model (CLM), thereby bypassing the use of fixed plant functional type (PFT) specific V-max(25) values. The effect of the updated parameterization on simulated carbon fluxes is tested over a corn field growing season using: (1) a detailed Chl time-series established on the basis of intensive field measurements and (2) Chl estimates derived from Landsat imagery using the REGularized canopy reFLECtance (REGFLEC) tool. Validations against flux tower observations demonstrate benefit of using Chl to parameterize V-max(25) to account for variations in nitrogen availability imposed by severe environmental conditions. The use of V-max(25) that varied seasonally as a function of satellite-based Chl, rather than a fixed PFT-specific value, significantly improved the agreement with observed tower fluxes with Pearson's correlation coefficient (r) increasing from 0.88 to 0.93 and the root-mean-square-deviation decreasing from 4.77 to 3.48 mu mol m(-2) s(-1). The results support the use of Chl as a proxy for photosynthetic capacity using generalized relationships between V-max(25) and Chl, and advocate the potential of satellite retrieved Chl for constraining

  7. Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP

    KAUST Repository

    Houborg, Rasmus

    2013-08-01

    This study investigates the utility of in situ and satellite-based leaf chlorophyll (Chl) estimates for quantifying leaf photosynthetic capacity and for constraining model simulations of Gross Primary Productivity (GPP) over a corn field in Maryland, U.S.A. The maximum rate of carboxylation (V-max) represents a key control on leaf photosynthesis within the widely employed C-3 and C-4 photosynthesis models proposed by Farquhar et al. (1980) and Collatz et al. (1992), respectively. A semi-mechanistic relationship between V-max(5) (V-max normalized to 25 degrees C) and Chl is derived based on interlinkages between V-max(25), Rubisco enzyme kinetics, leaf nitrogen, and Chl reported in the experimental literature. The resulting linear V-max(25) - Chl relationship is embedded within the photosynthesis scheme of the Community Land Model (CLM), thereby bypassing the use of fixed plant functional type (PFT) specific V-max(25) values. The effect of the updated parameterization on simulated carbon fluxes is tested over a corn field growing season using: (1) a detailed Chl time-series established on the basis of intensive field measurements and (2) Chl estimates derived from Landsat imagery using the REGularized canopy reFLECtance (REGFLEC) tool. Validations against flux tower observations demonstrate benefit of using Chl to parameterize V-max(25) to account for variations in nitrogen availability imposed by severe environmental conditions. The use of V-max(25) that varied seasonally as a function of satellite-based Chl, rather than a fixed PFT-specific value, significantly improved the agreement with observed tower fluxes with Pearson\\'s correlation coefficient (r) increasing from 0.88 to 0.93 and the root-mean-square-deviation decreasing from 4.77 to 3.48 mu mol m(-2) s(-1). The results support the use of Chl as a proxy for photosynthetic capacity using generalized relationships between V-max(25) and Chl, and advocate the potential of satellite retrieved Chl for

  8. INVESTIGATION OF ADS-B MESSAGES TRAFFIC VIA SATELLITE COMMUNICATION CHANNEL

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2014-12-01

    Full Text Available For modelling of ADS-B messages transmition with the help of low-orbit satellite complex Іrіdіumdifferent models of communication channel "Aircraft-to-Satellites-to-Ground Stations" were built using NetCrackerProfessіonal 4.1 software. Influence of aircraft and satellites amount on average link utilization and message travellingtime was studied for telecommunication channels with intersatellite link and bent-pipe architecture. The effect ofcommunication channel "saturation" during simultaneous data transmission through a satellite communicationchannel from many planes was investigated.

  9. The YORP effect on the GOES 8 and GOES 10 satellites: A case study

    Science.gov (United States)

    Albuja, Antonella A.; Scheeres, Daniel J.; Cognion, Rita L.; Ryan, William; Ryan, Eileen V.

    2018-01-01

    The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a proposed explanation for the observed rotation behavior of inactive satellites in Earth orbit. This paper further explores the YORP effect for highly asymmetric inactive satellites. Satellite models are developed to represent the GOES 8 and GOES 10 satellites, both of which are currently inactive in geosynchronous Earth orbit (GEO). A simple satellite model for the GOES 8 satellite is used to analyze the short period variations of the angular velocity and obliquity as a result of the YORP effect. A more complex model for the rotational dynamics of the GOES 8 and GOES 10 satellites are developed to probe their sensitivity and to match observed spin periods and states of these satellites. The simulated rotation periods are compared to observations for both satellites. The comparison between YORP theory and observed rotation rates for both satellites show that the YORP effect could be the cause for the observed rotational behavior. The YORP model also predicts a novel state for the GOES 8 satellite, namely that it could periodically fall into a tumbling rotation state. Recent observations of this satellite are consistent with this prediction.

  10. Satellite recovery - Attitude dynamics of the targets

    Science.gov (United States)

    Cochran, J. E., Jr.; Lahr, B. S.

    1986-01-01

    The problems of categorizing and modeling the attitude dynamics of uncontrolled artificial earth satellites which may be targets in recovery attempts are addressed. Methods of classification presented are based on satellite rotational kinetic energy, rotational angular momentum and orbit and on the type of control present prior to the benign failure of the control system. The use of approximate analytical solutions and 'exact' numerical solutions to the equations governing satellite attitude motions to predict uncontrolled attitude motion is considered. Analytical and numerical results are presented for the evolution of satellite attitude motions after active control termination.

  11. Functional capabilities of the breadboard model of SIDRA satellite-borne instrument

    International Nuclear Information System (INIS)

    Dudnik, O.V.; Kurbatov, E.V.; Titov, K.G.; Prieto, M.; Sanchez, S.; Sylwester, J.; Gburek, S.; Podgorski, P.

    2013-01-01

    This paper presents the structure, principles of operation and functional capabilities of the breadboard model of SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles under outer-space conditions. We present the reasons to develop a particle spectrometer and we list the main objectives to be achieved with the help of this instrument. The paper describes the major specifications of the analog and digital signal processing units of the breadboard model. A specially designed and developed data processing module based on the Actel ProAsic3E A3PE3000 FPGA is presented and compared with the all-in one digital processing signal board based on the Xilinx Spartan 3 XC3S1500 FPGA.

  12. Using Spatial Reinforcement Learning to Build Forest Wildfire Dynamics Models From Satellite Images

    Directory of Open Access Journals (Sweden)

    Sriram Ganapathi Subramanian

    2018-04-01

    Full Text Available Machine learning algorithms have increased tremendously in power in recent years but have yet to be fully utilized in many ecology and sustainable resource management domains such as wildlife reserve design, forest fire management, and invasive species spread. One thing these domains have in common is that they contain dynamics that can be characterized as a spatially spreading process (SSP, which requires many parameters to be set precisely to model the dynamics, spread rates, and directional biases of the elements which are spreading. We present related work in artificial intelligence and machine learning for SSP sustainability domains including forest wildfire prediction. We then introduce a novel approach for learning in SSP domains using reinforcement learning (RL where fire is the agent at any cell in the landscape and the set of actions the fire can take from a location at any point in time includes spreading north, south, east, or west or not spreading. This approach inverts the usual RL setup since the dynamics of the corresponding Markov Decision Process (MDP is a known function for immediate wildfire spread. Meanwhile, we learn an agent policy for a predictive model of the dynamics of a complex spatial process. Rewards are provided for correctly classifying which cells are on fire or not compared with satellite and other related data. We examine the behavior of five RL algorithms on this problem: value iteration, policy iteration, Q-learning, Monte Carlo Tree Search, and Asynchronous Advantage Actor-Critic (A3C. We compare to a Gaussian process-based supervised learning approach and also discuss the relation of our approach to manually constructed, state-of-the-art methods from forest wildfire modeling. We validate our approach with satellite image data of two massive wildfire events in Northern Alberta, Canada; the Fort McMurray fire of 2016 and the Richardson fire of 2011. The results show that we can learn predictive, agent

  13. Antarctic 1 km Digital Elevation Model (DEM) from Combined ERS-1 Radar and ICESat Laser Satellite Altimetry

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a 1 km resolution Digital Elevation Model (DEM) of Antarctica. The DEM combines measurements from the European Remote Sensing Satellite-1...

  14. Using Satellite Remote Sensing Data in a Spatially Explicit Price Model

    Science.gov (United States)

    Brown, Molly E.; Pinzon, Jorge E.; Prince, Stephen D.

    2007-01-01

    Famine early warning organizations use data from multiple disciplines to assess food insecurity of communities and regions in less-developed parts of the World. In this paper we integrate several indicators that are available to enhance the information for preparation for and responses to food security emergencies. The assessment uses a price model based on the relationship between the suitability of the growing season and market prices for coarse grain. The model is then used to create spatially continuous maps of millet prices. The model is applied to the dry central and northern areas of West Africa, using satellite-derived vegetation indices for the entire region. By coupling the model with vegetation data estimated for one to four months into the future, maps are created of a leading indicator of potential price movements. It is anticipated that these maps can be used to enable early warning of famine and for planning appropriate responses.

  15. SALIENCY BASED SEGMENTATION OF SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    A. Sharma

    2015-03-01

    Full Text Available Saliency gives the way as humans see any image and saliency based segmentation can be eventually helpful in Psychovisual image interpretation. Keeping this in view few saliency models are used along with segmentation algorithm and only the salient segments from image have been extracted. The work is carried out for terrestrial images as well as for satellite images. The methodology used in this work extracts those segments from segmented image which are having higher or equal saliency value than a threshold value. Salient and non salient regions of image become foreground and background respectively and thus image gets separated. For carrying out this work a dataset of terrestrial images and Worldview 2 satellite images (sample data are used. Results show that those saliency models which works better for terrestrial images are not good enough for satellite image in terms of foreground and background separation. Foreground and background separation in terrestrial images is based on salient objects visible on the images whereas in satellite images this separation is based on salient area rather than salient objects.

  16. An investigation on e-resource utilisation among university students in a developing country: A case of Great Zimbabwe University

    Directory of Open Access Journals (Sweden)

    Talent Mawere

    2018-06-01

    Full Text Available Background: Electronic libraries are the recent development in the ever-changing technological world today. Students nowadays have the ability to carry the library wherever they are, their Internet-enabled devices being the only requirement. Most universities worldwide have subscribed to various online databases and other e-resources as a way of availing resources to their students. To their credit, most institutions of higher learning in developing countries have not been left out in this stampede.   Objectives: The study aimed at investigating the adoption and utilisation of e-resources by students at a university in a developing country.   Method: The Technology Acceptance Model (TAM model was used to conceptualise the study. A survey questionnaire was designed and distributed through social media platforms such as Facebook and WhatsApp. Quantitative data were analysed using the Statistical Package for the Social Sciences (SPSS. The Chi-squared test was used to test for casual relationships within the developed model. A thematic approach was used to analyse qualitative data. Results: Despite the fact that many Zimbabwean academic institutions have made the facility of e-libraries top agenda in their strategic plans, the adoption rate among students is still very limited. This can be attributed to a myriad of facts, inter alia, poor marketing strategies, lack of resources among the students and exorbitant data charges by Internet Service Providers (ISPs.   Conclusion: This study has provided some basic insights in utilisation of e-resources in universities of developing countries. Despite the younger generation being described as digital natives, it is, quite evident that their uptake of technological innovations especially in education is quite poor. This research will assist both researchers and management of institutions of higher learning to provide and design amicable solutions to the problem of poor utilisation of e-resources as

  17. Modeling UV-B Effects on Primary Production Throughout the Southern Ocean Using Multi-Sensor Satellite Data

    Science.gov (United States)

    Lubin, Dan

    2001-01-01

    This study has used a combination of ocean color, backscattered ultraviolet, and passive microwave satellite data to investigate the impact of the springtime Antarctic ozone depletion on the base of the Antarctic marine food web - primary production by phytoplankton. Spectral ultraviolet (UV) radiation fields derived from the satellite data are propagated into the water column where they force physiologically-based numerical models of phytoplankton growth. This large-scale study has been divided into two components: (1) the use of Total Ozone Mapping Spectrometer (TOMS) and Special Sensor Microwave Imager (SSM/I) data in conjunction with radiative transfer theory to derive the surface spectral UV irradiance throughout the Southern Ocean; and (2) the merging of these UV irradiances with the climatology of chlorophyll derived from SeaWiFS data to specify the input data for the physiological models.

  18. A scalable satellite-based crop yield mapper: Integrating satellites and crop models for field-scale estimation in India

    Science.gov (United States)

    Jain, M.; Singh, B.; Srivastava, A.; Lobell, D. B.

    2015-12-01

    Food security will be challenged over the upcoming decades due to increased food demand, natural resource degradation, and climate change. In order to identify potential solutions to increase food security in the face of these changes, tools that can rapidly and accurately assess farm productivity are needed. With this aim, we have developed generalizable methods to map crop yields at the field scale using a combination of satellite imagery and crop models, and implement this approach within Google Earth Engine. We use these methods to examine wheat yield trends in Northern India, which provides over 15% of the global wheat supply and where over 80% of farmers rely on wheat as a staple food source. In addition, we identify the extent to which farmers are shifting sow date in response to heat stress, and how well shifting sow date reduces the negative impacts of heat stress on yield. To identify local-level decision-making, we map wheat sow date and yield at a high spatial resolution (30 m) using Landsat satellite imagery from 1980 to the present. This unique dataset allows us to examine sow date decisions at the field scale over 30 years, and by relating these decisions to weather experienced over the same time period, we can identify how farmers learn and adapt cropping decisions based on weather through time.

  19. Migrant female head porters' enrolment in and utilisation and renewal of the National Health Insurance Scheme in Kumasi, Ghana.

    Science.gov (United States)

    Boateng, Simon; Amoako, Prince; Poku, Adjoa Afriyie; Baabereyir, Anthony; Gyasi, Razak Mohammed

    2017-01-01

    As a social protection policy, Ghana's National Health Insurance Scheme (NHIS) aims to improve access to healthcare, especially for the vulnerable. Migrant female head porters ( kayayoo ), who are part of the informal economic workforce, are underscored as an ethnic minority and vulnerable group in Ghana. This study aimed to analyse the factors associated with enrolment in and renewal and utilisation of the NHIS among migrant female head porters in the Kumasi Metropolis. We purposively sampled 392 migrant female head porters in the Kejetia, Asafo and Bantama markets. We used a binary logit regression model to estimate associations among baseline characteristics, convenience and benefit factors and enrolment in and renewal and utilisation of the NHIS. Age and income significantly increased the probability of NHIS enrolment, renewal and utilisation. Long waiting times at NHIS offices significantly reduced the likelihood of renewal, while provision of drugs highly significantly increased the tendency for migrant female head porters to enrol in, renew and use the NHIS. Consulting and surgery also significantly increased renewal and utilisation of the NHIS. Political commitment is imperative for effective implementation of the decentralisation policy of the NHIS through the National Health Insurance Authority in Kumasi. We argue that retail offices should be well equipped with logistic facilities to ensure convenience in NHIS initial enrolment and renewal processes by citizenry, and by vulnerable groups in particular.

  20. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  1. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  2. Hydrocarbon-utilising micro-organisms from Dona Paula Bay, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Mavinkurve, S.

    Twenty-three hydrocarbon-utilising bacteria and one yeast were isolated, using enrichment techniques, from water and sediment samples. Vibrio and Pseudomonas were the predominant genera. Of the different organisms screened, Bacillus, Candida...

  3. Utilisation of geothermal energy by the municipal works in Neubrandenburg

    International Nuclear Information System (INIS)

    Jahnke, H.

    1994-01-01

    A long distance energy supply plant has been operated on the basis of geothermal energy in Neubrandenburg since September 1988. At present it is still the largest heat generation plant for the utilisation of low thermal pore storage in Germany. The setup and the function of the plant are explained. After the municipal works of Neubrandenburg took over the plant, it was redesigned in order to give a better guarantee for the supply, to improve the economic efficiency and to minimise the environmental impact. At present long distance energy can be provided at a price of 99,00 DM/Mwh for 2000 utilisation hours per year. (BWI) [de

  4. An estimation model of population in China using time series DMSP night-time satellite imagery from 2002-2010

    Science.gov (United States)

    Zhang, Xiaoyong; Zhang, Zhijie; Chang, Yuguang; Chen, Zhengchao

    2015-12-01

    Accurate data on the spatial distribution and potential growth estimation of human population are playing pivotal role in addressing and mitigating heavy lose caused by earthquake. Traditional demographic data is limited in its spatial resolution and is extremely hard to update. With the accessibility of massive DMSP/OLS night time imagery, it is possible to model population distribution at the county level across China. In order to compare and improve the continuity and consistency of time-series DMSP night-time satellite imagery obtained by different satellites in same year or different years by the same satellite from 2002-2010, normalized method was deployed for the inter-correction among imageries. And we referred to the reference F162007 Jixi city, whose social-economic has been relatively stable. Through binomial model, with average R2 0.90, then derived the correction factor of each year. The normalization obviously improved consistency comparing to previous data, which enhanced the correspondent accuracy of model. Then conducted the model of population density between average night-time light intensity in eight-economic districts. According to the two parameters variation law of consecutive years, established the prediction model of next following years with R2of slope and constant typically 0.85 to 0.95 in different regions. To validate the model, taking the year of 2005 as example, retrieved quantitatively population distribution in per square kilometer based on the model, then compared the results to the statistical data based on census, the difference of the result is acceptable. In summary, the estimation model facilitates the quick estimation and prediction in relieving the damage to people, which is significant in decision-making.

  5. High-performance hybrid-fibre concrete : Development and utilisation

    NARCIS (Netherlands)

    Markovic, I.

    2006-01-01

    Although concrete is the most utilised building material nowdays, this material has a large shortcoming: it has a good resistance against compressive stresses, but a very low resistance against tensile stresses. Usual way to solve this problem is the application of steel reinforcement in concrete

  6. Multi-Satellite Observation Scheduling for Large Area Disaster Emergency Response

    Science.gov (United States)

    Niu, X. N.; Tang, H.; Wu, L. X.

    2018-04-01

    an optimal imaging plan, plays a key role in coordinating multiple satellites to monitor the disaster area. In the paper, to generate imaging plan dynamically according to the disaster relief, we propose a dynamic satellite task scheduling method for large area disaster response. First, an initial robust scheduling scheme is generated by a robust satellite scheduling model in which both the profit and the robustness of the schedule are simultaneously maximized. Then, we use a multi-objective optimization model to obtain a series of decomposing schemes. Based on the initial imaging plan, we propose a mixed optimizing algorithm named HA_NSGA-II to allocate the decomposing results thus to obtain an adjusted imaging schedule. A real disaster scenario, i.e., 2008 Wenchuan earthquake, is revisited in terms of rapid response using satellite resources and used to evaluate the performance of the proposed method with state-of-the-art approaches. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.

  7. Monte Carlo calculations of the neutron coincidence gate utilisation factor for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Bourva, L.C.A.; Croft, S.

    1999-01-01

    The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP TM , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents a new evaluation technique for the estimation of gate utilisation factors. It uses the die-away profile of a neutron coincidence chamber generated either by MCNP TM , or by other means, to simulate the neutron detection arrival time pattern originating from independent spontaneous fission events. A shift register simulation algorithm, embedded in the MCF code, then calculates the coincidence counts scored within the electronics gate. The gate utilisation factor is then deduced by dividing the coincidence counts obtained with that obtained in the same Monte Carlo run, but for an ideal detection system with a coincidence gate utilisation factor equal to unity. The MCF code has been benchmarked against analytical results calculated for both single and double exponential die-away profiles. These results are presented along with the development of the closed form algebraic expressions for the two cases. Results of this validity check showed very good agreement. On this

  8. Satellite rainfall retrieval by logistic regression

    Science.gov (United States)

    Chiu, Long S.

    1986-01-01

    The potential use of logistic regression in rainfall estimation from satellite measurements is investigated. Satellite measurements provide covariate information in terms of radiances from different remote sensors.The logistic regression technique can effectively accommodate many covariates and test their significance in the estimation. The outcome from the logistical model is the probability that the rainrate of a satellite pixel is above a certain threshold. By varying the thresholds, a rainrate histogram can be obtained, from which the mean and the variant can be estimated. A logistical model is developed and applied to rainfall data collected during GATE, using as covariates the fractional rain area and a radiance measurement which is deduced from a microwave temperature-rainrate relation. It is demonstrated that the fractional rain area is an important covariate in the model, consistent with the use of the so-called Area Time Integral in estimating total rain volume in other studies. To calibrate the logistical model, simulated rain fields generated by rainfield models with prescribed parameters are needed. A stringent test of the logistical model is its ability to recover the prescribed parameters of simulated rain fields. A rain field simulation model which preserves the fractional rain area and lognormality of rainrates as found in GATE is developed. A stochastic regression model of branching and immigration whose solutions are lognormally distributed in some asymptotic limits has also been developed.

  9. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE)

    International Nuclear Information System (INIS)

    Lucchesi, D M; Peron, R; Visco, M; Anselmo, L; Pardini, C; Bassan, M; Pucacco, G

    2015-01-01

    In this work, the Laser Ranged Satellites Experiment (LARASE) is presented. This is a research program that aims to perform new refined tests and measurements of gravitation in the field of the Earth in the weak field and slow motion (WFSM) limit of general relativity (GR). For this objective we use the free available data relative to geodetic passive satellite lasers tracked from a network of ground stations by means of the satellite laser ranging (SLR) technique. After a brief introduction to GR and its WFSM limit, which aims to contextualize the physical background of the tests and measurements that LARASE will carry out, we focus on the current limits of validation of GR and on current constraints on the alternative theories of gravity that have been obtained with the precise SLR measurements of the two LAGEOS satellites performed so far. Afterward, we present the scientific goals of LARASE in terms of upcoming measurements and tests of relativistic physics. Finally, we introduce our activities and we give a number of new results regarding the improvements to the modelling of both gravitational and non-gravitational perturbations to the orbit of the satellites. These activities are a needed prerequisite to improve the forthcoming new measurements of gravitation. An innovation with respect to the past is the specialization of the models to the LARES satellite, especially for what concerns the modelling of its spin evolution, the neutral drag perturbation and the impact of Earth's solid tides on the satellite orbit. (paper)

  10. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a 'Model Protocol Additional to Safeguards Agreements'. The Protocol provides the legal basis necessary to enhance the Agency's ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following 'Implementation Blueprint' study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small 'imagery unit' within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild's long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small 'imagery unit' using high-resolution data will be a sound and

  11. Joint Center for Satellite Data Assimilation Overview and Research Activities

    Science.gov (United States)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  12. Applying Satellite Data Sources in the Documentation and Landscape Modelling for Graeco-Roman Fortified Sites in the TŪR Abdin Area, Eastern Turkey

    Science.gov (United States)

    Silver, K.; Silver, M.; Törmä, M.; Okkonen, J.; Okkonen, T.

    2017-08-01

    In 2015-2016 the Finnish-Swedish Archaeological Project in Mesopotamia (FSAPM) initiated a pilot study of an unexplored area in the Tūr Abdin region in Northern Mesopotamia (present-day Mardin Province in southeastern Turkey). FSAPM is reliant on satellite image data sources for prospecting, identifying, recording, and mapping largely unknown archaeological sites as well as studying their landscapes in the region. The purpose is to record and document sites in this endangered area for saving its cultural heritage. The sites in question consist of fortified architectural remains in an ancient border zone between the Graeco-Roman/Byzantine world and Parthia/Persia. The location of the archaeological sites in the terrain and the visible archaeological remains, as well as their dimensions and sizes were determined from the ortorectified satellite images, which also provided coordinates. In addition, field documentation was carried out in situ with photographs and notes. The applicability of various satellite data sources for the archaeological documentation of the project was evaluated. Satellite photographs from three 1968 CORONA missions, i.e. the declassified US government satellite photograph archives were acquired. Furthermore, satellite images included a recent GeoEye-1 Satellite Sensor Image from 2010 with a resolution of 0.5 m. Its applicability for prospecting archaeological sites, studying the terrain and producing landscape models in 3D was confirmed. The GeoEye-1 revealed the ruins of a fortified town and a fortress for their documentation and study. Landscape models for the area of these sites were constructed fusing GeoEye-1 with EU-DEM (European Digital Elevation Model data using SRTM and ASTER GDEM data) in order to understand their locations in the terrain.

  13. Hydrologically induced orientation variations of a tri-axial Earth's principal axes based on satellite-gravimetric and hydrological models

    Directory of Open Access Journals (Sweden)

    Shen Wenbin

    2013-05-01

    Full Text Available The Earth is a tri-axial body, with unequal principal inertia moments, A, B and C. The corresponding principal axes a, b and c are determined by the mass distribution of the Earth, and their orientations vary with the mass redistribution. In this study, the hydrologically induced variations are estimated on the basis of satellite gravimetric data, including those from satellite laser ranging (SLR and gravity recovery and climate experiment (GRACE, and hydrological models from global land data assimilation system (GLDAS. The longitude variations of a and b are mainly related to the variations of the spherical harmonic coefficients C¯22 and S¯22, which have been estimated to be consisting annual variations of about 1. 6 arc seconds and 1. 8 arc seconds, respectively, from gravity data. This result is confirmed by land surface water storage provided by the GLDAS model. If the atmospheric and oceanic signals are removed from the spherical harmonic coefficients C¯21 and S¯21, the agreement of the orientation series for c becomes poor, possibly due to the inaccurate background models used in pre-processing of the satellite gravimetric data. Determination of the orientation variations may provide a better understanding of various phenomena in the study of the rotation of a tri-axial Earth.

  14. Utilisation of family planning techniques among women: an ...

    African Journals Online (AJOL)

    Utilisation of family planning by women will promote sustainable development and general wellbeing of women at the rural community. The study assessed utilization of family planning techniques among women in the rural area of Lagos state. Sixty respondents were randomly selected for the study. Structured interview ...

  15. Species distribution models for a migratory bird based on citizen science and satellite tracking data

    Directory of Open Access Journals (Sweden)

    Christopher L. Coxen

    2017-07-01

    Full Text Available Species distribution models can provide critical baseline distribution information for the conservation of poorly understood species. Here, we compared the performance of band-tailed pigeon (Patagioenas fasciata species distribution models created using Maxent and derived from two separate presence-only occurrence data sources in New Mexico: 1 satellite tracked birds and 2 observations reported in eBird basic data set. Both models had good accuracy (test AUC > 0.8 and True Skill Statistic > 0.4, and high overlap between suitability scores (I statistic 0.786 and suitable habitat patches (relative rank 0.639. Our results suggest that, at the state-wide level, eBird occurrence data can effectively model similar species distributions as satellite tracking data. Climate change models for the band-tailed pigeon predict a 35% loss in area of suitable climate by 2070 if CO2 emissions drop to 1990 levels by 2100, and a 45% loss by 2070 if we continue current CO2 emission levels through the end of the century. These numbers may be conservative given the predicted increase in drought, wildfire, and forest pest impacts to the coniferous forests the species inhabits in New Mexico. The northern portion of the species’ range in New Mexico is predicted to be the most viable through time.

  16. Species distribution models for a migratory bird based on citizen science and satellite tracking data

    Science.gov (United States)

    Coxen, Christopher L.; Frey, Jennifer K.; Carleton, Scott A.; Collins, Daniel P.

    2017-01-01

    Species distribution models can provide critical baseline distribution information for the conservation of poorly understood species. Here, we compared the performance of band-tailed pigeon (Patagioenas fasciata) species distribution models created using Maxent and derived from two separate presence-only occurrence data sources in New Mexico: 1) satellite tracked birds and 2) observations reported in eBird basic data set. Both models had good accuracy (test AUC > 0.8 and True Skill Statistic > 0.4), and high overlap between suitability scores (I statistic 0.786) and suitable habitat patches (relative rank 0.639). Our results suggest that, at the state-wide level, eBird occurrence data can effectively model similar species distributions as satellite tracking data. Climate change models for the band-tailed pigeon predict a 35% loss in area of suitable climate by 2070 if CO2 emissions drop to 1990 levels by 2100, and a 45% loss by 2070 if we continue current CO2 emission levels through the end of the century. These numbers may be conservative given the predicted increase in drought, wildfire, and forest pest impacts to the coniferous forests the species inhabits in New Mexico. The northern portion of the species’ range in New Mexico is predicted to be the most viable through time.

  17. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  18. Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization

    International Nuclear Information System (INIS)

    Anh, N.D.; Hieu, N.N.; Chung, P.N.; Anh, N.T.

    2016-01-01

    Highlights: • Linearization criteria are presented for a single-node model of satellite thermal. • A nonlinear algebraic system for linearization coefficients is obtained. • The temperature evolutions obtained from different methods are explored. • The temperature mean and amplitudes versus the heat capacity are discussed. • The dual criterion approach yields smaller errors than other approximate methods. - Abstract: In this paper, the method of equivalent linearization is extended to the thermal analysis of satellite using both conventional and dual criteria of linearization. These criteria are applied to a differential nonlinear equation of single-node model of the heat transfer of a small satellite in the Low Earth Orbit. A system of nonlinear algebraic equations for linearization coefficients is obtained in the closed form and then solved by the iteration method. The temperature evolution, average values and amplitudes versus the heat capacity obtained by various approaches including Runge–Kutta algorithm, conventional and dual criteria of equivalent linearization, and Grande's approach are compared together. Numerical results reveal that temperature responses obtained from the method of linearization and Grande's approach are quite close to those obtained from the Runge–Kutta method. The dual criterion yields smaller errors than those of the remaining methods when the nonlinearity of the system increases, namely, when the heat capacity varies in the range [1.0, 3.0] × 10 4  J K −1 .

  19. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization

    Science.gov (United States)

    Smith, W. Kolby; Reed, Sasha C.; Cleveland, Cory C.; Ballantyne, Ashley P; Anderegg, William R. L.; Wieder, William R.; Liu, Yi Y; Running, Steven W.

    2015-01-01

    Atmospheric mass balance analyses suggest that terrestrial carbon (C) storage is increasing, partially abating the atmospheric [CO2] growth rate, although the continued strength of this important ecosystem service remains uncertain. Some evidence suggests that these increases will persist owing to positive responses of vegetation growth (net primary productivity; NPP) to rising atmospheric [CO2] (that is, ‘CO2 fertilization’). Here, we present a new satellite-derived global terrestrial NPP data set, which shows a significant increase in NPP from 1982 to 2011. However, comparison against Earth system model (ESM) NPP estimates reveals a significant divergence, with satellite-derived increases (2.8 ± 1.50%) less than half of ESM-derived increases (7.6  ±  1.67%) over the 30-year period. By isolating the CO2 fertilization effect in each NPP time series and comparing it against a synthesis of available free-air CO2 enrichment data, we provide evidence that much of the discrepancy may be due to an over-sensitivity of ESMs to atmospheric [CO2], potentially reflecting an under-representation of climatic feedbacks and/or a lack of representation of nutrient constraints. Our understanding of CO2 fertilization effects on NPP needs rapid improvement to enable more accurate projections of future C cycle–climate feedbacks; we contend that better integration of modelling, satellite and experimental approaches offers a promising way forward.

  20. INVESTIGATION OF ADS-B MESSAGES TRAFFIC VIA SATELLITE COMMUNICATION CHANNEL

    OpenAIRE

    Volodymyr Kharchenko; Wang Bo; Andrii Grekhov; Marina Kovalenko

    2014-01-01

    For modelling of ADS-B messages transmition with the help of low-orbit satellite complex Іrіdіumdifferent models of communication channel "Aircraft-to-Satellites-to-Ground Stations" were built using NetCrackerProfessіonal 4.1 software. Influence of aircraft and satellites amount on average link utilization and message travellingtime was studied for telecommunication channels with intersatellite link and bent-pipe architecture. The effect ofcommunication channel "saturation" during simultaneou...

  1. Resonantly produced 7 keV sterile neutrino dark matter models and the properties of Milky Way satellites.

    Science.gov (United States)

    Abazajian, Kevork N

    2014-04-25

    Sterile neutrinos produced through a resonant Shi-Fuller mechanism are arguably the simplest model for a dark matter interpretation of the origin of the recent unidentified x-ray line seen toward a number of objects harboring dark matter. Here, I calculate the exact parameters required in this mechanism to produce the signal. The suppression of small-scale structure predicted by these models is consistent with Local Group and high-z galaxy count constraints. Very significantly, the parameters necessary in these models to produce the full dark matter density fulfill previously determined requirements to successfully match the Milky Way Galaxy's total satellite abundance, the satellites' radial distribution, and their mass density profile, or the "too-big-to-fail problem." I also discuss how further precision determinations of the detailed properties of the candidate sterile neutrino dark matter can probe the nature of the quark-hadron transition, which takes place during the dark matter production.

  2. Applications of Satellite Remote Sensing Products to Enhance and Evaluate the AIRPACT Regional Air Quality Modeling System

    Science.gov (United States)

    Herron-Thorpe, F. L.; Mount, G. H.; Emmons, L. K.; Lamb, B. K.; Jaffe, D. A.; Wigder, N. L.; Chung, S. H.; Zhang, R.; Woelfle, M.; Vaughan, J. K.; Leung, F. T.

    2013-12-01

    The WSU AIRPACT air quality modeling system for the Pacific Northwest forecasts hourly levels of aerosols and atmospheric trace gases for use in determining potential health and ecosystem impacts by air quality managers. AIRPACT uses the WRF/SMOKE/CMAQ modeling framework, derives dynamic boundary conditions from MOZART-4 forecast simulations with assimilated MOPITT CO, and uses the BlueSky framework to derive fire emissions. A suite of surface measurements and satellite-based remote sensing data products across the AIRPACT domain are used to evaluate and improve model performance. Specific investigations include anthropogenic emissions, wildfire simulations, and the effects of long-range transport on surface ozone. In this work we synthesize results for multiple comparisons of AIRPACT with satellite products such as IASI ammonia, AIRS carbon monoxide, MODIS AOD, OMI tropospheric ozone and nitrogen dioxide, and MISR plume height. Features and benefits of the newest version of AIRPACT's web-interface are also presented.

  3. Modelling of charged satellite motion in Earth's gravitational and magnetic fields

    Science.gov (United States)

    Abd El-Bar, S. E.; Abd El-Salam, F. A.

    2018-05-01

    In this work Lagrange's planetary equations for a charged satellite subjected to the Earth's gravitational and magnetic force fields are solved. The Earth's gravity, and magnetic and electric force components are obtained and expressed in terms of orbital elements. The variational equations of orbit with the considered model in Keplerian elements are derived. The solution of the problem in a fully analytical way is obtained. The temporal rate of changes of the orbital elements of the spacecraft are integrated via Lagrange's planetary equations and integrals of the normalized Keplerian motion obtained by Ahmed (Astron. J. 107(5):1900, 1994).

  4. Jovian magnetosphere-satellite interactions: aspects of energetic charged particle loss

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1979-01-01

    Observations of energetic charged particles obtained by Pioneers 10 and 11 near the orbits of the inner Jovian satellites are reviewed with particular emphasis on the implications of these observations with regard to possible models of the access of charged particles to the satellite surfaces. The observed effects on particle pitch angle distributions and the observed energy dependence of the intensity depletions seen at the satellite orbits are compared with predictions of satellite sweepup based on several different access models. The two major uncertainties which hamper the comparisons are those associated with the satellite conductivities and the ionospheric dynamo electric field power spectrum. The satellite conductivity is important because it governs the access of the particles to the satellite surface and therefore the lifetime tau: the dynamo power spectrum is important because it controls the magnitude and energy dependence of the radial diffusion coefficient. In spite of these uncertainties we can nevertheless make the following conclusions. The electron pitch angle distributions at Io's orbit are compatible with expectations based on sweeping. The energy dependences of the observed electron depletions at all three inner satellites (Amalthea, Io, and Europa) are incompatible with expectations based on a perfect conductor model of a satellite and its flux tube but are compatible with the energy dependence expected for perfectly insulating or partially conducting satellites However, the proton losses at Io are observed to be much stronger than the electron losses, in contradiction to expectations based on sweeping. The most attractive explanation for the proton-electron discrepancy at Io is that the large proton losses at Io's orbit are principally due to enhanced pitch angle scattering in the region of higher plasma density

  5. Determinants of prenatal health care utilisation by low-risk women: a prospective cohort study.

    Science.gov (United States)

    Feijen-de Jong, Esther I; Jansen, Danielle E M C; Baarveld, Frank; Boerleider, Agatha W; Spelten, Evelien; Schellevis, François; Reijneveld, Sijmen A

    2015-06-01

    Prenatal health care is pivotal in providing adequate prevention and care to pregnant women. We examined the determinants of inadequate prenatal health care utilisation by low-risk women in primary midwifery-led care in the Netherlands. We used longitudinal data from the population-based DELIVER study with 20 midwifery practices across the Netherlands in 2009 and 2010 as the experimental setting. The participants were 3070 pregnant women starting pregnancy care in primary midwifery care. We collected patient-reported data on potential determinants of prenatal care utilisation derived from the Andersen model. Prenatal health care utilisation was measured by a revised version of the Kotelchuck Index, which measures a combination of care entry and number of visits. Low-risk pregnant women (not referred during pregnancy) were more likely to use prenatal care inadequately if they intended to deliver at a hospital, if they did not use folic acid adequately periconceptionally, or if they were exposed to cigarette smoke during pregnancy. Among those who were referred to secondary care, women reporting a chronic illnesses or disabilities, and women who did not use folic acid periconceptionally were more likely to make inadequate use of prenatal care. Inadequate prenatal health care use in primary midwifery care is more likely in specific groups, and the risk groups differ when women are referred to secondary care. The findings suggest routes that can target interventions to women who are at risk of not adequately using prenatal prevention and care services. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  6. Estimating daily surface NO2 concentrations from satellite data - a case study over Hong Kong using land use regression models

    Science.gov (United States)

    Anand, Jasdeep S.; Monks, Paul S.

    2017-07-01

    Land use regression (LUR) models have been used in epidemiology to determine the fine-scale spatial variation in air pollutants such as nitrogen dioxide (NO2) in cities and larger regions. However, they are often limited in their temporal resolution, which may potentially be rectified by employing the synoptic coverage provided by satellite measurements. In this work a mixed-effects LUR model is developed to model daily surface NO2 concentrations over the Hong Kong SAR during the period 2005-2015. In situ measurements from the Hong Kong Air Quality Monitoring Network, along with tropospheric vertical column density (VCD) data from the OMI, GOME-2A, and SCIAMACHY satellite instruments were combined with fine-scale land use parameters to provide the spatiotemporal information necessary to predict daily surface concentrations. Cross-validation with the in situ data shows that the mixed-effects LUR model using OMI data has a high predictive power (adj. R2 = 0. 84), especially when compared with surface concentrations derived using the MACC-II reanalysis model dataset (adj. R2 = 0. 11). Time series analysis shows no statistically significant trend in NO2 concentrations during 2005-2015, despite a reported decline in NOx emissions. This study demonstrates the utility in combining satellite data with LUR models to derive daily maps of ambient surface NO2 for use in exposure studies.

  7. Energy analysis of various grassland utilisation systems

    Directory of Open Access Journals (Sweden)

    Jozef Ržonca

    2005-01-01

    Full Text Available In 2003 and 2004 was carried out the energy analysis of the different types of permanent grassland utilization on the Hrubý Jeseník locality. There were estimated values of the particular entrances of additional energy. Energy entrances moved according to the pratotechnologies from 2.17 GJ. ha–1 to 22.70 GJ.ha–1. The biggest share on energy entrances had fertilizers. It was 84.93% by the nitrogen fertilisation. The most energy benefit of brutto and nettoenergy was marked by the low intensive utilisation (33.40 GJ.ha–1 NEL and 32.40 GJ.ha–1 NEV on average. The highest value of energy efficiency (13.23% was marked by the low intensive utilization of permanent grassland. By using of higher doses of industrial fertilizers has energy efficiency decreased. From view of energy benefit and intensiveness on energy entrances it appears the most available utilisation of permanent grassland with three cuts per year (first cut on May 31st at the latest, every next after 60 days or two cuts per year (first cut on July 15th, next cuts after 90 days.

  8. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    Science.gov (United States)

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  9. Facilitating nurses' knowledge of the utilisation of reflexology in ...

    African Journals Online (AJOL)

    2012-05-18

    May 18, 2012 ... scientific evidence on the utilisation of reflexology as CAM modality to promote .... reflexology therapy, zone therapy and foot massage and ...... perceived quality of care and cultural beliefs', Family Pracfice 21(6), 654−660.

  10. Validation of satellite SAR offshore wind speed maps to in-situ data, microscala and mesoscale model results

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Barthelmie, R; Dellwik, E; Hoffmann Joergensen, B; Gylling Mortensen, N; Nielsen, M; Pryor, S; Rathmann, O

    2002-05-01

    A validation study has been performed in order to investigate the precision and accuracy of the satellite-derived ERS-2 SAR wind products in offshore regions. The overall project goal is to develop a method for utilizing the satellite wind speed maps for offshore wind resources, e.g. in future planning of offshore wind farms. The report describes the validation analysis in detail for three sites in Denmark, Italy and Egypt. The site in Norway is analyzed by the Nansen Environmental and Remote Sensing Centre (NERSC). Wind speed maps and wind direction maps from Earth Observation data recorded by the ERS-2 SAR satellite have been obtained from the NERSC. For the Danish site the wind speed and wind direction maps have been compared to in-situ observations from a met-mast at Horns Rev in the North Sea located 14 km offshore. The SAR wind speeds have been area-averaged by simple and advanced footprint modelling, ie. the upwind conditions to the meteorological mast are explicitly averaged in the SAR wind speed maps before comparison. The comparison results are very promising with a standard error of {+-} 0.61 m s{sup -1}, a bias {approx}2 m s{sup -1} and R{sup 2} {approx}0.88 between in-situ wind speed observations and SAR footprint averaged values at 10 m level. Wind speeds predicted by the local scale model LINCOM and the mesoscale model KAMM2 have been compared to the spatial variations in the SAR wind speed maps. The finding is a good correspondence between SAR observations and model results. Near the coast is an 800 m wide band in which the SAR wind speed observations have a strong negative bias. The bathymetry of Horns Rev combined with tidal currents give rise to bias in the SAR wind speed maps near areas of shallow, complex bottom topography in some cases. A total of 16 cases were analyzed for Horns Rev. For Maddalena in Italy five cases were analyzed. At the Italian site the SAR wind speed maps were compared to WAsP and KAMM2 model results. The WAsP model

  11. Developing status of satellite remote sensing and its application

    International Nuclear Information System (INIS)

    Zhang Wanliang; Liu Dechang

    2005-01-01

    This paper has discussed the latest development of satellite remote sensing in sensor resolutions, satellite motion models, load forms, data processing and its application. The authors consider that sensor resolutions of satellite remote sensing have increased largely. Valid integration of multisensors is a new idea and technology of satellite remote sensing in the 21st century, and post-remote sensing application technology is the important part of deeply applying remote sensing information and has great practical significance. (authors)

  12. SAT-MAP-CLIMATE project results[SATellite base bio-geophysical parameter MAPping and aggregation modelling for CLIMATE models

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.; Woetmann Nielsen, N.; Soegaard, H.; Boegh, E.; Hesselbjerg Christensen, J.; Jensen, N.O.; Schultz Rasmussen, M.; Astrup, P.; Dellwik, E.

    2002-08-01

    Earth Observation (EO) data from imaging satellites are analysed with respect to albedo, land and sea surface temperatures, land cover types and vegetation parameters such as the Normalized Difference Vegetation Index (NDVI) and the leaf area index (LAI). The observed parameters are used in the DMI-HIRLAM-D05 weather prediction model in order to improve the forecasting. The effect of introducing actual sea surface temperatures from NOAA AVHHR compared to climatological mean values, shows a more pronounced land-sea breeze effect which is also observable in field observations. The albedo maps from NOAA AVHRR are rather similar to the climatological mean values so for the HIRLAM model this is insignicant, yet most likely of some importance in the HIRHAM regional climate model. Land cover type maps are assigned local roughness values determined from meteorological field observations. Only maps with a spatial resolution around 25 m can adequately map the roughness variations of the typical patch size distribution in Denmark. A roughness map covering Denmark is aggregated (ie area-average non-linearly) by a microscale aggregation model that takes the non-linear turbulent responses of each roughness step change between patches in an arbitrary pattern into account. The effective roughnesses are calculated into a 15 km by 15 km grid for the HIRLAM model. The effect of hedgerows is included as an added roughness effect as a function of hedge density mapped from a digital vector map. Introducing the new effective roughness maps into the HIRLAM model appears to remedy on the seasonal wind speed bias over land and sea in spring. A new parameterisation on the effective roughness for scalar surface fluxes is developed and tested on synthetic data. Further is a method for the estimation the evapotranspiration from albedo, surface temperatures and NDVI succesfully compared to field observations. The HIRLAM predictions of water vapour at 12 GMT are used for atmospheric correction of

  13. Advances In Global Aerosol Modeling Applications Through Assimilation of Satellite-Based Lidar Measurements

    Science.gov (United States)

    Campbell, James; Hyer, Edward; Zhang, Jianglong; Reid, Jeffrey; Westphal, Douglas; Xian, Peng; Vaughan, Mark

    2010-05-01

    Modeling the instantaneous three-dimensional aerosol field and its downwind transport represents an endeavor with many practical benefits foreseeable to air quality, aviation, military and science agencies. The recent proliferation of multi-spectral active and passive satellite-based instruments measuring aerosol physical properties has served as an opportunity to develop and refine the techniques necessary to make such numerical modeling applications possible. Spurred by high-resolution global mapping of aerosol source regions, and combined with novel multivariate data assimilation techniques designed to consider these new data streams, operational forecasts of visibility and aerosol optical depths are now available in near real-time1. Active satellite-based aerosol profiling, accomplished using lidar instruments, represents a critical element for accurate analysis and transport modeling. Aerosol source functions, alone, can be limited in representing the macrophysical structure of injection scenarios within a model. Two-dimensional variational (2D-VAR; x, y) assimilation of aerosol optical depth from passive satellite observations significantly improves the analysis of the initial state. However, this procedure can not fully compensate for any potential vertical redistribution of mass required at the innovation step. The expense of an inaccurate vertical analysis of aerosol structure is corresponding errors downwind, since trajectory paths within successive forecast runs will likely diverge with height. In this paper, the application of a newly-designed system for 3D-VAR (x,y,z) assimilation of vertical aerosol extinction profiles derived from elastic-scattering lidar measurements is described [Campbell et al., 2009]. Performance is evaluated for use with the U. S. Navy Aerosol Analysis and Prediction System (NAAPS) by assimilating NASA/CNES satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 0.532 μm measurements [Winker et al., 2009

  14. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna; Kärrman, Erik; Gustafsson, Jon Petter; Magnusson, Y.

    2009-01-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suit able for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study. A life cycle assessment (LCA) based approach Was Outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as wel...

  15. Research on orbit prediction for solar-based calibration proper satellite

    Science.gov (United States)

    Chen, Xuan; Qi, Wenwen; Xu, Peng

    2018-03-01

    Utilizing the mathematical model of the orbit mechanics, the orbit prediction is to forecast the space target's orbit information of a certain time based on the orbit of the initial moment. The proper satellite radiometric calibration and calibration orbit prediction process are introduced briefly. On the basis of the research of the calibration space position design method and the radiative transfer model, an orbit prediction method for proper satellite radiometric calibration is proposed to select the appropriate calibration arc for the remote sensor and to predict the orbit information of the proper satellite and the remote sensor. By analyzing the orbit constraint of the proper satellite calibration, the GF-1solar synchronous orbit is chose as the proper satellite orbit in order to simulate the calibration visible durance for different satellites to be calibrated. The results of simulation and analysis provide the basis for the improvement of the radiometric calibration accuracy of the satellite remote sensor, which lays the foundation for the high precision and high frequency radiometric calibration.

  16. Acquisition And Utilisation Of Human Resources In Public ...

    African Journals Online (AJOL)

    The study examined the acquisition and utilisation of human resources in public secondary schools for students with special needs in Oyo State. The study employed a descriptive research design. The entire 196 teachers and 16 supportive staff formed the sample. The research instrument for the study was a questionnaire ...

  17. Health services utilisation disparities between English speaking and non-English speaking background Australian infants

    Directory of Open Access Journals (Sweden)

    Chen Jack

    2010-04-01

    Full Text Available Abstract Background To examine the differences in health services utilisation and the associated risk factors between infants from non-English speaking background (NESB and English speaking background (ESB within Australia. Methods We analysed data from a national representative longitudinal study, the Longitudinal Study of Australian Children (LSAC which started in 2004. We used survey logistic regression coupled with survey multiple linear regression to examine the factors associated with health services utilisation. Results Similar health status was observed between the two groups. In comparison to ESB infants, NESB infants were significantly less likely to use the following health services: maternal and child health centres or help lines (odds ratio [OR] 0.56; 95% confidence intervals [CI], 0.40-0.79; maternal and child health nurse visits (OR 0.68; 95% CI, 0.49-0.95; general practitioners (GPs (OR 0.58; 95% CI, 0.40-0.83; and hospital outpatient clinics (OR 0.54; 95% CI, 0.31-0.93. Multivariate analysis results showed that the disparities could not be fully explained by the socioeconomic status and language barriers. The association between English proficiency and the service utilised was absent once the NESB was taken into account. Maternal characteristics, family size and income, private health insurance and region of residence were the key factors associated with health services utilisation. Conclusions NESB infants accessed significantly less of the four most frequently used health services compared with ESB infants. Maternal characteristics and family socioeconomic status were linked to health services utilisation. The gaps in health services utilisation between NESB and ESB infants with regard to the use of maternal and child health centres or phone help, maternal and child health nurse visits, GPs and paediatricians require appropriate policy attentions and interventions.

  18. Capture of irregular satellites at Jupiter

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10 –8 . This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  19. Integration of Ground, Buoys, Satellite and Model data to map the Changes in Meteorological Parameters Associated with Harvey Hurricane

    Science.gov (United States)

    Chauhan, A.; Sarkar, S.; Singh, R. P.

    2017-12-01

    The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.

  20. Utilisation of hepatocellular carcinoma screening in Australians at risk of hepatitis B virus-related carcinoma and prescribed anti-viral therapy.

    Science.gov (United States)

    Sheppard-Law, Suzanne; Zablotska-Manos, Iryna; Kermeen, Melissa; Holdaway, Susan; Lee, Alice; George, Jacob; Zekry, Amany; Maher, Lisa

    2018-07-01

    To investigate hepatocellular carcinoma screening utilisation and factors associated with utilisation among patients prescribed hepatitis B virus anti-viral therapy and at risk of hepatocellular carcinoma. The incidence of hepatocellular carcinoma has increased in Australia over the past three decades with chronic hepatitis B virus infection a major contributor. hepatocellular carcinoma surveillance programs aim to detect cancers early enabling curative treatment options, longer survival and longer times to recurrence. Multi-site cross-sectional survey. An online study questionnaire was administered to eligible participants attending three Sydney tertiary hospitals. Data were grouped into six mutually exclusive hepatocellular carcinoma risk factor categories as per American Association for the Study of Liver Diseases guidelines. All analyses were undertaken in STATA. Logistic regression was used to assess the associations between covariates and screening utilisation. Multivariate models described were assessed using the Hosmer-Lemeshow goodness of fit. Of the 177 participants, 137 (77.4%) self-reported that US had been performed in the last six months. Awareness that screening should be performed and knowing the correct frequency of US screening were independently associated with screening utilisation. Participants who knew that screening should be undertaken were three times more likely to have had pretreatment education or were prescribed hepatitis B virus anti-viral treatment for >4 years. Participants reporting a family history of hepatocellular carcinoma were less likely to know that screening should be undertaken every 6 months. While utilisation of hepatocellular carcinoma surveillance programs was higher in this study than in previous reports, strategies to further improve surveillance remain necessary. Findings from this research form the basis for proposing strategies to improve utilisation of hepatocellular carcinoma screening, inform hepatitis B virus

  1. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  2. Relativistic Time Transfer for Inter-satellite Links

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yi, E-mail: yixie@nju.edu.cn [Department of Astronomy, School of Astronomy and Space Sciences, Nanjing University, Nanjing (China); Shanghai Key Laboratory of Space Navigation and Position Techniques, Shanghai (China); Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing (China)

    2016-04-26

    Inter-Satellite links (ISLs) will be an important technique for a global navigation satellite system (GNSS) in the future. Based on the principles of general relativity, the time transfer in an ISL is modeled and the algorithm for onboard computation is described. It is found, in general, satellites with circular orbits and identical semi-major axes can benefit inter-satellite time transfer by canceling out terms associated with the transformations between the proper times and the Geocentric Coordinate Time. For a GPS-like GNSS, the Shapiro delay is as large as 0.1 ns when the ISL passes at the limb of the Earth. However, in more realistic cases, this value will decrease to about 50 ps.

  3. Ocean EcoSystem Modelling Based on Observations from Satellite and In-Situ Data: First Results from the OSMOSIS Project

    Science.gov (United States)

    Rio, M.-H.; Buongiorno-Nardelli, B.; Calmettes, B.; Conchon, A.; Droghei, R.; Guinehut, S.; Larnicol, G.; Lehodey, P.; Matthieu, P. P.; Mulet, S.; Santoleri, R.; Senina, I.; Stum, J.; Verbrugge, N.

    2015-12-01

    Micronekton organisms are both the prey of large ocean predators, and themselves also the predators of eggs and larvae of many species from which most fishes. The micronekton biomass concentration is therefore a key explanatory variable that is usually missing in fish population and ecosystem models to understand individual behaviour and population dynamics of large oceanic predators. In that context, the OSMOSIS (Ocean ecoSystem Modelling based on Observations from Satellite and In-Situ data) ESA project aims at demonstrating the feasibility and prototyping an integrated system going from the synergetic use of many different variables measured from space to the modelling of the distribution of micronektonic organisms. In this paper, we present how data from CRYOSAT, GOCE, SMOS, ENVISAT, together with other non-ESA satellites and in-situ data, can be merged to provide the required key variables needed as input of the micronekton model. Also, first results from the optimization of the micronekton model are presented and discussed.

  4. Using satellite and airborne LiDAR to model woodpecker habitat occupancy at the landscape scale

    Science.gov (United States)

    Lee A. Vierling; Kerri T. Vierling; Patrick Adam; Andrew T. Hudak

    2013-01-01

    Incorporating vertical vegetation structure into models of animal distributions can improve understanding of the patterns and processes governing habitat selection. LiDAR can provide such structural information, but these data are typically collected via aircraft and thus are limited in spatial extent. Our objective was to explore the utility of satellite-based LiDAR...

  5. A drug utilisation study investigating prescribed daily doses of ...

    African Journals Online (AJOL)

    and drug groups. Design. Retrospective drug utilisation study using data .... drugs that were prescribed 20 or fewer times during the period under ... occurs in women and men at different ages and with different severity. group. On average, men ...

  6. Utilisation of a community-based health facility in a low-income urban community in Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Ayodeji M. Adebayo

    2015-05-01

    Full Text Available Background: Primary healthcare is established to ensure that people have access to health services through facilities located in their community. However, utilisation of health facilities in Nigeria remains low in many communities. Aim: To assess the utilisation of community-based health facility (CBHF amongst adults in Ibadan, Nigeria. Settings: A low-income community in Ibadan North West Local Government Area of Oyo State.Methods:A cross-sectional survey was conducted using a simple random sampling technique to select one adult per household in all 586 houses in the community. A semi-structured interviewer-administered questionnaire was used to collect information on respondents’ sociodemographic characteristics, knowledge and utilisation of the CBHF. Data analysis included descriptive statistics and association testing using the Chi-square test at p = 0.05. Results: The mean age of the respondents was 46.5 ± 16.0 years; 46.0% were men and 81.0% married; 26% had no formal education and 38.0% had secondary-level education and above; traders constituted 52.0% of the sample; and 85.2% were of low socioeconomic standing; 90%had patronised the CBHF. The main reasons for non-utilisation were preference for general hospitals (13.8% and self-medication (12.1%. Respondents who had secondary education and above, were in a higher socioeconomic class, who had good knowledge of the facility and were satisfied with care, utilised the CBHF three months significantly more than their counterparts prior to the study (p < 0.05. However, only satisfaction with care was found to be a significant predictor of utilisation of the CBHF. Conclusion: The utilisation of the CBHF amongst adults in the study setting is high, driven mostly by satisfaction with the care received previously. Self-medication, promoted by uncontrolled access to drugs through pharmacies and patent medicine stores, threatens this high utilisation.

  7. Electron-beam-welded segmental heat pipes of AlMgSi 1 for the thermal model of the satellite Aeros-A

    Energy Technology Data Exchange (ETDEWEB)

    Hoell, H.; Lasar, H.

    1974-07-01

    For the purposes of tests with the thermal model of the German aeronomy satellite Aeros-A, a heat pipe system of optimized weight was developed in order to transport thermal energy from the solar cells of the cylindrical satellite to the conical bottom. Because of stringent requirements on the fabrication process, electron beam welding is used for bonding. The welding process is described and preliminary test results are given. (LEW)

  8. Description and principles of use of an automatic control device usable, in particular, in analytical chemistry; Description et principes d'utilisation d'un dispositif de commande automatique utilisable, en particulier, en chimie analytique

    Energy Technology Data Exchange (ETDEWEB)

    Rigaudiere, Roger; Jeanmaire, Lucien [Commissariat a l' Energie Atomique - CEA, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, Direction de la Protection et de la Surete Radiologiques, Departement de la Protection Sanitaire, Section de Controle Sanitaire (France)

    1969-07-01

    This note describes an automatic control device for the programming of about 20 different functions, chronologically and during a given time. Any voltage can be chosen at the output to perform the different functions. Three examples of utilisation taken in analytical chemistry are given to illustrate the possibilities offered by this device, but its domain of use is much more universal and independent of the type of functions [French] Description d'un dispositif de commande automatique destine a programmer une vingtaine de fonctions differentes dans l'ordre et pendant le temps desire. Aux bornes d'utilisation de ce dispositif, on peut choisir a volonte du 24 V continu, du 220 V alternatif ou un contact de court-circuit pour realiser les fonctions elles-memes. Afin d'illustrer concretement les possibilites de cet appareil, il est donne trois exemples d'utilisation empruntes a la chimie analytique pour laquelle il a ete prevu initialement. En realite, son domaine d'utilisation est beaucoup plus universel, car il est relativement independant de la nature des fonctions. (auteurs)

  9. APPLYING SATELLITE DATA SOURCES IN THE DOCUMENTATION AND LANDSCAPE MODELLING FOR GRAECO-ROMAN/BYZANTINE FORTIFIED SITES IN THE TŪR ABDIN AREA, EASTERN TURKEY

    Directory of Open Access Journals (Sweden)

    K. Silver

    2017-08-01

    Full Text Available In 2015-2016 the Finnish-Swedish Archaeological Project in Mesopotamia (FSAPM initiated a pilot study of an unexplored area in the Tūr Abdin region in Northern Mesopotamia (present-day Mardin Province in southeastern Turkey. FSAPM is reliant on satellite image data sources for prospecting, identifying, recording, and mapping largely unknown archaeological sites as well as studying their landscapes in the region. The purpose is to record and document sites in this endangered area for saving its cultural heritage. The sites in question consist of fortified architectural remains in an ancient border zone between the Graeco-Roman/Byzantine world and Parthia/Persia. The location of the archaeological sites in the terrain and the visible archaeological remains, as well as their dimensions and sizes were determined from the ortorectified satellite images, which also provided coordinates. In addition, field documentation was carried out in situ with photographs and notes. The applicability of various satellite data sources for the archaeological documentation of the project was evaluated. Satellite photographs from three 1968 CORONA missions, i.e. the declassified US government satellite photograph archives were acquired. Furthermore, satellite images included a recent GeoEye-1 Satellite Sensor Image from 2010 with a resolution of 0.5 m. Its applicability for prospecting archaeological sites, studying the terrain and producing landscape models in 3D was confirmed. The GeoEye-1 revealed the ruins of a fortified town and a fortress for their documentation and study. Landscape models for the area of these sites were constructed fusing GeoEye-1 with EU-DEM (European Digital Elevation Model data using SRTM and ASTER GDEM data in order to understand their locations in the terrain.

  10. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  11. Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country

    NARCIS (Netherlands)

    Hoek, G.; Eeftens, M.; Beelen, R.; Fischer, P.; Brunekreef, B.; Boersma, K.F.; Veefkind, P.

    2015-01-01

    Land use regression (LUR) modelling has increasingly been applied to model fine scale spatial variation of outdoor air pollutants including nitrogen dioxide (NO2). Satellite observations of tropospheric NO2 improved LUR model in very large study areas, including Canada, United States and Australia.

  12. Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country

    NARCIS (Netherlands)

    Hoek, Gerard; Eeftens, Marloes; Beelen, Rob; Fischer, Paul; Brunekreef, Bert; Boersma, K. Folkert; Veefkind, Pepijn

    Land use regression (LUR) modelling has increasingly been applied to model fine scale spatial variation of outdoor air pollutants including nitrogen dioxide (NO2). Satellite observations of tropospheric NO2 improved LUR model in very large study areas, including Canada, United States and Australia.

  13. Smoke Dispersion Modeling Over Complex Terrain Using High-Resolution Meteorological Data and Satellite Observations: The FireHub Platform

    Science.gov (United States)

    Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.

    2015-01-01

    A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.

  14. Rigorous Line-Based Transformation Model Using the Generalized Point Strategy for the Rectification of High Resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Kun Hu

    2016-09-01

    Full Text Available High precision geometric rectification of High Resolution Satellite Imagery (HRSI is the basis of digital mapping and Three-Dimensional (3D modeling. Taking advantage of line features as basic geometric control conditions instead of control points, the Line-Based Transformation Model (LBTM provides a practical and efficient way of image rectification. It is competent to build the mathematical relationship between image space and the corresponding object space accurately, while it reduces the workloads of ground control and feature recognition dramatically. Based on generalization and the analysis of existing LBTMs, a novel rigorous LBTM is proposed in this paper, which can further eliminate the geometric deformation caused by sensor inclination and terrain variation. This improved nonlinear LBTM is constructed based on a generalized point strategy and resolved by least squares overall adjustment. Geo-positioning accuracy experiments with IKONOS, GeoEye-1 and ZiYuan-3 satellite imagery are performed to compare rigorous LBTM with other relevant line-based and point-based transformation models. Both theoretic analysis and experimental results demonstrate that the rigorous LBTM is more accurate and reliable without adding extra ground control. The geo-positioning accuracy of satellite imagery rectified by rigorous LBTM can reach about one pixel with eight control lines and can be further improved by optimizing the horizontal and vertical distribution of control lines.

  15. Experiences in the Dissemination and Utilisation of Information and Communication Technology (ICT) Research Findings from Three Southern African Universities

    Science.gov (United States)

    Kaino, Luckson M.; Mtetwa, David; Kasanda, Choshi

    2014-01-01

    The dissemination and utilisation of research knowledge produced at universities has been debated in recent times. Recent changes and developments at universities suggest an entrepreneurial model of academic research production in which universities have the responsibility not only to carry out research and teaching but also to disseminate…

  16. Mathematical pointing model establishment of the visual tracking theodolite for satellites in two kinds of observation methods.

    Science.gov (United States)

    Zhang, Yuncheng

    The mathematical pointing model is establishment of the visual tracking theodolite for satellites in two kinds of observation methods at Yunnan Observatory, which is related to the digitalisation reform and the optical-electronic technique reform, is introduced respectively in this paper.

  17. Review On Feasibility of Using Satellite Imaging for Risk Management of Derailment Related Turnout Component Failures

    Science.gov (United States)

    Dindar, Serdar; Kaewunruen, Sakdirat; Osman, Mohd H.

    2017-10-01

    One of the emerging significant advances in engineering, satellite imaging (SI) is becoming very common in any kind of civil engineering projects e.g., bridge, canal, dam, earthworks, power plant, water works etc., to provide an accurate, economical and expeditious means of acquiring a rapid assessment. Satellite imaging services in general utilise combinations of high quality satellite imagery, image processing and interpretation to obtain specific required information, e.g. surface movement analysis. To extract, manipulate and provide such a precise knowledge, several systems, including geographic information systems (GIS) and global positioning system (GPS), are generally used for orthorectification. Although such systems are useful for mitigating risk from projects, their productiveness is arguable and operational risk after application is open to discussion. As the applicability of any novel application to the railway industry is often measured in terms of whether or not it has gained in-depth knowledge and to what degree, as a result of errors during its operation, this novel application generates risk in ongoing projects. This study reviews what can be achievable for risk management of railway turnouts thorough satellite imaging. The methodology is established on the basis of other published articles in this area and the results of applications to understand how applicable such imagining process is on railway turnouts, and how sub-systems in turnouts can be effectively traced/operated with less risk than at present. As a result of this review study, it is aimed that the railway sector better understands risk mitigation in particular applications.

  18. Exobiology of icy satellites

    Science.gov (United States)

    Simakov, M. B.

    At the beginning of 2004 the total number of discovered planets near other stars was 119 All of them are massive giants and met practically in all orbits In a habitable zone from 0 8 up to 1 1 AU at less 11 planets has been found starting with HD 134987 and up to HD 4203 It would be naive to suppose existence of life in unique known to us amino-nucleic acid form on the gas-liquid giant planets Nevertheless conditions for onset and evolutions of life can be realized on hypothetical satellites extrasolar planets All giant planets of the Solar system have a big number of satellites 61 of Jupiter 52 of Saturn known in 2003 A small part of them consist very large bodies quite comparable to planets of terrestrial type but including very significant share of water ice Some from them have an atmosphere E g the mass of a column of the Titan s atmosphere exceeds 15 times the mass of the Earth atmosphere column Formation or capture of satellites is a natural phenomenon and satellite systems definitely should exist at extrasolar planets A hypothetical satellite of the planet HD 28185 with a dense enough atmosphere and hydrosphere could have biosphere of terrestrial type within the limits of our notion about an origin of terrestrial biosphere As an example we can see on Titan the largest satellite of Saturn which has a dense nitrogen atmosphere and a large quantity of liquid water under ice cover and so has a great exobiological significance The most recent models of the Titan s interior lead to the conclusion that a substantial liquid layer

  19. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    Science.gov (United States)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  20. Pattern of Smartphones Utilisation among Engineering Undergraduates

    OpenAIRE

    Muliati Sedek

    2014-01-01

    The smartphones ownership among the undergraduates in Malaysia was recorded as high. However, little was known about its utilization patterns, thus, the focus of this research was to determine the utilisation patterns of smartphones based on the National Education Technology Standard for Students (NETS.S) among engineering undergraduates in Malaysia. This study was based on a quantitative research and the population comprised undergraduates from four Malaysian Technical Universities. A total ...

  1. Utilisation and Management Changes in South Kyrgyzstan's Mountain Forests

    Institute of Scientific and Technical Information of China (English)

    Matthias Schmidt

    2005-01-01

    Using political ecology as its conceptual framework, this paper focuses on the changes in forest utilisation and management of South Kyrgyzstan's walnut-fruit forests over the last century. The aim of this study on human-environment interactions is to investigate the relationship between actors on the one side, their interests and demands, and the forests and forested lands on the other. Forest resource utilisation and management - and even the recognition of different forest products as resources - are connected with political and socio-economic conditions that change with time. The walnut-fruit forests of South Kyrgyzstan are unique, characterised by high biodiversity and a multiplicity of usable products; and they have been utilised for a long time. Centralised and formal management of the forests started with the Russian occupation and was strengthened under Soviet rule, when the region became a part of the USSR. During this era, a state forest administration that was structured from Moscow all the way down to the local level drew up detailed plans and developed procedures for utilising the different forest products. Since the collapse of the Soviet Union, the socio-political and economic frame conditions have changed significantly, which has brought not only the sweeping changes in the managing institutions, but also the access rights and interests in the forest resources. At present, the region is suffering from a high unemployment rate, which has resulted in the forests' gaining considerable importance in the livelihood strategies of the local population. Political and economic liberalization, increased communication and trans-regional exchange relations have opened the door for international companies and agents interested in the valuable forest products. Today, walnut wood and burls, walnuts, wild apples and mushrooms are all exported to various countries in the world. Scientists and members of various international organisations stress the ecological

  2. Generation of Digital Surface Models from satellite photogrammetry: the DSM-OPT service of the ESA Geohazards Exploitation Platform (GEP)

    Science.gov (United States)

    Stumpf, André; Michéa, David; Malet, Jean-Philippe

    2017-04-01

    The continuously increasing fleet of agile stereo-capable very-high resolution (VHR) optical satellites has facilitated the acquisition of multi-view images of the earth surface. Theoretical revisit times have been reduced to less than one day and the highest spatial resolution which is commercially available amounts now to 30 cm/pixel. Digital Surface Models (DSM) and point clouds computed from such satellite stereo-acquisitions can provide valuable input for studies in geomorphology, tectonics, glaciology, hydrology and urban remote sensing The photogrammetric processing, however, still requires significant expertise, computational resources and costly commercial software. To enable a large Earth Science community (researcher and end-users) to process easily and rapidly VHR multi-view images, the work targets the implementation of a fully automatic satellite-photogrammetry pipeline (i.e DSM-OPT) on the ESA Geohazards Exploitation Platform (GEP). The implemented pipeline is based on the open-source photogrammetry library MicMac [1] and is designed for distributed processing on a cloud-based infrastructure. The service can be employed in pre-defined processing modes (i.e. urban, plain, hilly, and mountainous environments) or in an advanced processing mode (i.e. in which expert-users have the possibility to adapt the processing parameters to their specific applications). Four representative use cases are presented to illustrate the accuracy of the resulting surface models and ortho-images as well as the overall processing time. These use cases consisted of the construction of surface models from series of Pléiades images for four applications: urban analysis (Strasbourg, France), landslide detection in mountainous environments (South French Alps), co-seismic deformation in mountain environments (Central Italy earthquake sequence of 2016) and fault recognition for paleo-tectonic analysis (North-East India). Comparisons of the satellite-derived topography to airborne

  3. CERN un physicien dénonce des utilisations militaires

    CERN Multimedia

    2001-01-01

    André Gsponer, ancien chercheur au CERN, a écrit un rapport qui dénone les utilisations militaires développées par certains Etat, dont l'Irak, sur la base des technologies mises au point au CERN (1 page).

  4. Landscape Utilisation, Animal Behaviour and Hendra Virus Risk.

    Science.gov (United States)

    Field, H E; Smith, C S; de Jong, C E; Melville, D; Broos, A; Kung, N; Thompson, J; Dechmann, D K N

    2016-03-01

    Hendra virus causes sporadic fatal disease in horses and humans in eastern Australia. Pteropid bats (flying-foxes) are the natural host of the virus. The mode of flying-fox to horse transmission remains unclear, but oro-nasal contact with flying-fox urine, faeces or saliva is the most plausible. We used GPS data logger technology to explore the landscape utilisation of black flying-foxes and horses to gain new insight into equine exposure risk. Flying-fox foraging was repetitious, with individuals returning night after night to the same location. There was a preference for fragmented arboreal landscape and non-native plant species, resulting in increased flying-fox activity around rural infrastructure. Our preliminary equine data logger study identified significant variation between diurnal and nocturnal grazing behaviour that, combined with the observed flying-fox foraging behaviour, could contribute to Hendra virus exposure risk. While we found no significant risk-exposing difference in individual horse movement behaviour in this study, the prospect warrants further investigation, as does the broader role of animal behaviour and landscape utilisation on the transmission dynamics of Hendra virus.

  5. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    Science.gov (United States)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients

  6. Detecting robust signals of interannual variability of gross primary productivity in Asia from multiple terrestrial carbon cycle models and long-term satellite-based vegetation data

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ueyama, M.; Kato, T.; Ito, A.; Sasai, T.; Sato, H.; Kobayashi, H.; Saigusa, N.

    2014-12-01

    Long term record of satellite-based terrestrial vegetation are important to evaluate terrestrial carbon cycle models. In this study, we demonstrate how multiple satellite observation can be used for evaluating past changes in gross primary productivity (GPP) and detecting robust anomalies in terrestrial carbon cycle in Asia through our model-data synthesis analysis, Asia-MIP. We focused on the two different temporal coverages: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2011; data intensive period) scales. We used a NOAA/AVHRR NDVI record for long-term analysis and multiple satellite data and products (e.g. Terra-MODIS, SPOT-VEGETATION) as historical satellite data, and multiple terrestrial carbon cycle models (e.g. BEAMS, Biome-BGC, ORCHIDEE, SEIB-DGVM, and VISIT). As a results of long-term (30 years) trend analysis, satellite-based time-series data showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI were dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation, CO2fertilization and land cover changes are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models. Year-to-year variations of terrestrial GPP were overall consistently captured by the satellite data and terrestrial carbon cycle models if the anomalies are large (e.g. 2003 summer GPP anomalies in East Asia and 2002 spring GPP anomalies in mid to high latitudes). The behind mechanisms can be consistently

  7. Structural assurance testing for post-shipping satellite inspection

    Science.gov (United States)

    Reynolds, Whitney D.; Doyle, Derek; Arritt, Brandon

    2012-04-01

    Current satellite transportation sensors can provide a binary indication of the acceleration or shock that a satellite has experienced during the shipping process but do little to identify if significant structural change has occurred in the satellite and where it may be located. When a sensor indicates that the satellite has experienced shock during transit, an extensive testing process begins to evaluate the satellite functionality. If errors occur during the functional checkout, extensive physical inspection of the structure follows. In this work an alternate method for inspecting satellites for structural defects after shipping is presented. Electro- Mechanical Impedance measurements are used as an indication of the structural state. In partnership with the Air Force Research Laboratory University Nanosatellite Program, Cornell's CUSat mass model was instrumented with piezoelectric transducers and tested under several structural damage scenarios. A method for detecting and locating changes in the structure using EMI data is presented.

  8. Dark Satellites and the Morphology of Dwarf Galaxies

    NARCIS (Netherlands)

    Helmi, Amina; Sales, L. V.; Starkenburg, E.; Starkenburg, T. K.; Vera Ciro, C.; De Lucia, G.; Li, Y. -S.

    2012-01-01

    One of the strongest predictions of the Delta CDM cosmological model is the presence of dark satellites orbiting all types of galaxies. We focus here on the dynamical effects of such satellites on disky dwarf galaxies, and demonstrate that these encounters can be dramatic. Although mergers with

  9. Computer-Aided Communication Satellite System Analysis and Optimization.

    Science.gov (United States)

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  10. Satellite remote sensing for modeling and monitoring of water quality in the Great Lakes

    Science.gov (United States)

    Coffield, S. R.; Crosson, W. L.; Al-Hamdan, M. Z.; Barik, M. G.

    2017-12-01

    Consistent and accurate monitoring of the Great Lakes is critical for protecting the freshwater ecosystems, quantifying the impacts of climate change, understanding harmful algal blooms, and safeguarding public health for the millions who rely on the Lakes for drinking water. While ground-based monitoring is often hampered by limited sampling resolution, satellite data provide surface reflectance measurements at much more complete spatial and temporal scales. In this study, we implemented NASA data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to build robust water quality models. We developed and validated models for chlorophyll-a, nitrogen, phosphorus, and turbidity based on combinations of the six MODIS Ocean Color bands (412, 443, 488, 531, 547, and 667nm) for 2003-2016. Second, we applied these models to quantify trends in water quality through time and in relation to changing land cover, runoff, and climate for six selected coastal areas in Lakes Michigan and Erie. We found strongest models for chlorophyll-a in Lake Huron (R2 = 0.75), nitrogen in Lake Ontario (R2=0.66), phosphorus in Lake Erie (R2=0.60), and turbidity in Lake Erie (R2=0.86). These offer improvements over previous efforts to model chlorophyll-a while adding nitrogen, phosphorus, and turbidity. Mapped water quality parameters showed high spatial variability, with nitrogen concentrated largely in Superior and coastal Michigan and high turbidity, phosphorus, and chlorophyll near urban and agricultural areas of Erie. Temporal analysis also showed concurrence of high runoff or precipitation and nitrogen in Lake Michigan offshore of wetlands, suggesting that water quality in these areas is sensitive to changes in climate.

  11. L'utilisation avisée de l'eau au service des villes en pleine croissance

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... durables axées sur l'utilisation des eaux pluviales et le recyclage des eaux usées urbaines. ... L'utilisation avisée de l'eau au service des villes en pleine croissance ... Traitement des eaux usées à Mexico – équilibre entre les bienfaits et les ...

  12. Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H

    Science.gov (United States)

    Kudryashova, Elena; Kramerova, Irina; Spencer, Melissa J.

    2012-01-01

    Mutations in the E3 ubiquitin ligase tripartite motif-containing 32 (TRIM32) are responsible for the disease limb-girdle muscular dystrophy 2H (LGMD2H). Previously, we generated Trim32 knockout mice (Trim32–/– mice) and showed that they display a myopathic phenotype accompanied by neurogenic features. Here, we used these mice to investigate the muscle-specific defects arising from the absence of TRIM32, which underlie the myopathic phenotype. Using 2 models of induced atrophy, we showed that TRIM32 is dispensable for muscle atrophy. Conversely, TRIM32 was necessary for muscle regrowth after atrophy. Furthermore, TRIM32-deficient primary myoblasts underwent premature senescence and impaired myogenesis due to accumulation of PIAS4, an E3 SUMO ligase and TRIM32 substrate that was previously shown to be associated with senescence. Premature senescence of myoblasts was also observed in vivo in an atrophy/regrowth model. Trim32–/– muscles had substantially fewer activated satellite cells, increased PIAS4 levels, and growth failure compared with wild-type muscles. Moreover, Trim32–/– muscles exhibited features of premature sarcopenia, such as selective type II fast fiber atrophy. These results imply that premature senescence of muscle satellite cells is an underlying pathogenic feature of LGMD2H and reveal what we believe to be a new mechanism of muscular dystrophy associated with reductions in available satellite cells and premature sarcopenia. PMID:22505452

  13. Designing Experiences to Increase Stadium Capacity Utilisation in Football

    DEFF Research Database (Denmark)

    Junghagen, Sven; Besjakov, Simon D; Lund, Anders Alrø

    2016-01-01

    The aim of this paper is to show in what way football clubs in smaller leagues with limited capacity utilisation can increase their per-game revenue by increasing the attendance frequency. A sequential mixed method research design was employed, involving both qualitative and quantitative methods...

  14. Impacts of high utilisation pressure on biodiversity components in ...

    African Journals Online (AJOL)

    This study aimed to quantify and evaluate the effects of heavy land utilisation, mainly grazing, on plant species richness and diversity, species abundance, vegetation structure and soil characteristics in a communal area in Colophospermum mopane dominated savanna in southern Africa. The treatment was benchmarked ...

  15. Establishing an operational waterhole monitoring system using satellite data and hydrologic modelling: Application in the pastoral regions of East Africa

    Science.gov (United States)

    Senay, Gabriel B.; Velpuri, Naga Manohar; Alemu, Henok; Pervez, Shahriar Md; Asante, Kwabena O; Karuki, Gatarwa; Taa, Asefa; Angerer, Jay

    2013-01-01

    Timely information on the availability of water and forage is important for the sustainable development of pastoral regions. The lack of such information increases the dependence of pastoral communities on perennial sources, which often leads to competition and conflicts. The provision of timely information is a challenging task, especially due to the scarcity or non-existence of conventional station-based hydrometeorological networks in the remote pastoral regions. A multi-source water balance modelling approach driven by satellite data was used to operationally monitor daily water level fluctuations across the pastoral regions of northern Kenya and southern Ethiopia. Advanced Spaceborne Thermal Emission and Reflection Radiometer data were used for mapping and estimating the surface area of the waterholes. Satellite-based rainfall, modelled run-off and evapotranspiration data were used to model daily water level fluctuations. Mapping of waterholes was achieved with 97% accuracy. Validation of modelled water levels with field-installed gauge data demonstrated the ability of the model to capture the seasonal patterns and variations. Validation results indicate that the model explained 60% of the observed variability in water levels, with an average root-mean-squared error of 22%. Up-to-date information on rainfall, evaporation, scaled water depth and condition of the waterholes is made available daily in near-real time via the Internet (http://watermon.tamu.edu). Such information can be used by non-governmental organizations, governmental organizations and other stakeholders for early warning and decision making. This study demonstrated an integrated approach for establishing an operational waterhole monitoring system using multi-source satellite data and hydrologic modelling.

  16. Women's autonomy and reproductive health care utilisation: empirical evidence from Tajikistan.

    Science.gov (United States)

    Kamiya, Yusuke

    2011-10-01

    Women's autonomy is widely considered to be a key to improving maternal health in developing countries, whereas there is no consistent empirical evidence to support this claim. This paper examines whether or not and how women's autonomy within the household affects the use of reproductive health care, using a household survey data from Tajikistan. Estimation is performed by the bivariate probit model whereby woman's use of health services and the level of women's autonomy are recursively and simultaneously determined. The data is from a sample of women aged 15-49 from the Tajikistan Living Standard Measurement Survey 2007. Women's autonomy as measured by women's decision-making on household financial matters increase the likelihood that a woman receives antenatal and delivery care, whilst it has a negative effect on the probability of attending to four or more antenatal consultations. The hypothesis that women's autonomy and reproductive health care utilisation are independently determined is rejected for most of the estimation specifications, indicating the importance of taking into account the endogenous nature of women's autonomy when assessing its effect on health care use. The empirical results reconfirm the assertion that women's status within the household is closely linked to reproductive health care utilisation in developing countries. Policymakers therefore need not only to implement not only direct health interventions but also to focus on broader social policies which address women's empowerment. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Improving Satellite Observation Utilization for Model Initialization with Machine Learning: An Introduction and Tackling the "Labeled Dataset" Challenge for Cyclones Around the World

    Science.gov (United States)

    Bonfanti, C. E.; Stewart, J.; Lee, Y. J.; Govett, M.; Trailovic, L.; Etherton, B.

    2017-12-01

    One of the National Oceanic and Atmospheric Administration (NOAA) goals is to provide timely and reliable weather forecasts to support important decisions when and where people need it for safety, emergencies, planning for day-to-day activities. Satellite data is essential for areas lacking in-situ observations for use as initial conditions in Numerical Weather Prediction (NWP) Models, such as spans of the ocean or remote areas of land. Currently only about 7% of total received satellite data is selected for use and from that, an even smaller percentage ever are assimilated into NWP models. With machine learning, the computational and time costs needed for satellite data selection can be greatly reduced. We study various machine learning approaches to process orders of magnitude more satellite data in significantly less time allowing for a greater quantity and more intelligent selection of data to be used for assimilation purposes. Given the future launches of satellites in the upcoming years, machine learning is capable of being applied for better selection of Regions of Interest (ROI) in the magnitudes more of satellite data that will be received. This paper discusses the background of machine learning methods as applied to weather forecasting and the challenges of creating a "labeled dataset" for training and testing purposes. In the training stage of supervised machine learning, labeled data are important to identify a ROI as either true or false so that the model knows what signatures in satellite data to identify. Authors have selected cyclones, including tropical cyclones and mid-latitude lows, as ROI for their machine learning purposes and created a labeled dataset of true or false for ROI from Global Forecast System (GFS) reanalysis data. A dataset like this does not yet exist and given the need for a high quantity of samples, is was decided this was best done with automation. This process was done by developing a program similar to the National Center for

  18. The role of satellite cells in muscle hypertrophy.

    Science.gov (United States)

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  19. SOFT project: a new forecasting system based on satellite data

    Science.gov (United States)

    Pascual, Ananda; Orfila, A.; Alvarez, Alberto; Hernandez, E.; Gomis, D.; Barth, Alexander; Tintore, Joaquim

    2002-01-01

    The aim of the SOFT project is to develop a new ocean forecasting system by using a combination of satellite dat, evolutionary programming and numerical ocean models. To achieve this objective two steps are proved: (1) to obtain an accurate ocean forecasting system using genetic algorithms based on satellite data; and (2) to integrate the above new system into existing deterministic numerical models. Evolutionary programming will be employed to build 'intelligent' systems that, learning form the past ocean variability and considering the present ocean state, will be able to infer near future ocean conditions. Validation of the forecast skill will be carried out by comparing the forecasts fields with satellite and in situ observations. Validation with satellite observations will provide the expected errors in the forecasting system. Validation with in situ data will indicate the capabilities of the satellite based forecast information to improve the performance of the numerical ocean models. This later validation will be accomplished considering in situ measurements in a specific oceanographic area at two different periods of time. The first set of observations will be employed to feed the hybrid systems while the second set will be used to validate the hybrid and traditional numerical model results.

  20. Improving Satellite-Driven PM2.5 Models with VIIRS Nighttime Light Data in the Beijing–Tianjin–Hebei Region, China

    Directory of Open Access Journals (Sweden)

    Xiya Zhang

    2017-08-01

    Full Text Available Previous studies have estimated ground-level concentrations of particulate matter 2.5 (PM2.5 using satellite-derived aerosol optical depth (AOD in conjunction with meteorological and land use variables. However, the impacts of urbanization on air pollution for predicting PM2.5 are seldom considered. Nighttime light (NTL data, acquired with the Visible Infrared Imaging Radiometer Suite (VIIRS aboard the Suomi National Polar-orbiting Partnership (S-NPP satellite, could be useful for predictions because they have been shown to be good indicators of the urbanization and human activity that can affect PM2.5 concentrations. This study investigated the potential of incorporating VIIRS NTL data in statistical models for PM2.5 concentration predictions. We developed a mixed-effects model to derive daily estimations of surface PM2.5 levels in the Beijing–Tianjin–Hebei region using 3 km resolution satellite AOD and VIIRS NTL data. The results showed the addition of NTL information could improve the performance of the PM2.5 prediction model. The NTL data revealed additional details for predication results in areas with low PM2.5 concentrations and greater apparent seasonal variation due to the seasonal variability of human activity. Comparison showed prediction accuracy was improved more substantially for the model using NTL directly than for the model using the vegetation-adjusted NTL urban index that included NTL. Our findings indicate that VIIRS NTL data have potential for predicting PM2.5 and that they could constitute a useful supplemental data source for estimating ground-level PM2.5 distributions.

  1. Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset

    Science.gov (United States)

    Czernecki, Bartosz; Nowosad, Jakub; Jabłońska, Katarzyna

    2018-04-01

    Changes in the timing of plant phenological phases are important proxies in contemporary climate research. However, most of the commonly used traditional phenological observations do not give any coherent spatial information. While consistent spatial data can be obtained from airborne sensors and preprocessed gridded meteorological data, not many studies robustly benefit from these data sources. Therefore, the main aim of this study is to create and evaluate different statistical models for reconstructing, predicting, and improving quality of phenological phases monitoring with the use of satellite and meteorological products. A quality-controlled dataset of the 13 BBCH plant phenophases in Poland was collected for the period 2007-2014. For each phenophase, statistical models were built using the most commonly applied regression-based machine learning techniques, such as multiple linear regression, lasso, principal component regression, generalized boosted models, and random forest. The quality of the models was estimated using a k-fold cross-validation. The obtained results showed varying potential for coupling meteorological derived indices with remote sensing products in terms of phenological modeling; however, application of both data sources improves models' accuracy from 0.6 to 4.6 day in terms of obtained RMSE. It is shown that a robust prediction of early phenological phases is mostly related to meteorological indices, whereas for autumn phenophases, there is a stronger information signal provided by satellite-derived vegetation metrics. Choosing a specific set of predictors and applying a robust preprocessing procedures is more important for final results than the selection of a particular statistical model. The average RMSE for the best models of all phenophases is 6.3, while the individual RMSE vary seasonally from 3.5 to 10 days. Models give reliable proxy for ground observations with RMSE below 5 days for early spring and late spring phenophases. For

  2. The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning

    Directory of Open Access Journals (Sweden)

    Xinyun Cao

    2018-01-01

    Full Text Available When satellites enter into the noon maneuver or the shadow crossing regimes, the actual attitudes will depart from their nominal values. If improper attitude models are used, the induced-errors due to the wind-up effect and satellite antenna PCO (Phase Center Offset will deteriorate the positioning accuracy. Because different generations of satellites adopt different attitude control models, the influences on the positioning performances deserve further study. Consequently, the impact of three eclipsing strategies on the single-system and multi-GNSS (Global Navigation Satellite System Precise Point Positioning (PPP are analyzed. According to the results of the eclipsing monitor, 65 globally distributed MGEX (Multi-GNSS EXperiment stations for 31-day period in July 2017 are selected to perform G/R/E/C/GR/GREC PPP in both static and kinematic modes. The results show that the influences of non-nominal attitudes are related to the magnitude of the PCO values, maximum yaw angle differences, the duration of maneuver, the value of the sun angle and the satellite geometric strength. For single-system, using modeled attitudes rather than the nominal ones will greatly improve the positioning accuracy of GLONASS-only and BDS-only PPP while slightly contributions to the GPS-only and GALILEO-only PPP. Deleting the eclipsing satellites may sometimes induce a longer convergence time and a worse solution due to the poor satellite geometry, especially for GLONASS kinematic PPP when stations are located in the low latitude and BDS kinematic PPP. When multi-GNSS data are available, especially four navigation systems, the accuracy improvements of using the modeled attitudes or deleting eclipsing satellites are non-significant.

  3. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Kiruna (Sweden)

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a `Model Protocol Additional to Safeguards Agreements`. The Protocol provides the legal basis necessary to enhance the Agency`s ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following `Implementation Blueprint` study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small `imagery unit` within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild`s long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small `imagery unit` using high-resolution data will be a sound and

  4. Caregiver experiences of racism and child healthcare utilisation: cross-sectional analysis from New Zealand.

    Science.gov (United States)

    Paine, Sarah-Jane; Harris, Ricci; Stanley, James; Cormack, Donna

    2018-03-23

    Children's exposure to racism via caregiver experience (vicarious racism) is associated with poorer health and development. However, the relationship with child healthcare utilisation is unknown. We aimed to investigate (1) the prevalence of vicarious racism by child ethnicity; (2) the association between caregiver experiences of racism and child healthcare utilisation; and (3) the contribution of caregiver socioeconomic position and psychological distress to this association. Cross-sectional analysis of two instances of the New Zealand Health Survey (2006/2007: n=4535 child-primary caregiver dyads; 2011/2012: n=4420 dyads). Children's unmet need for healthcare, reporting no usual medical centre and caregiver-reported dissatisfaction with their child's medical centre. The prevalence of reporting 'any' experience of racism was higher among caregivers of indigenous Māori and Asian children (30.0% for both groups in 2006/2007) compared with European/Other children (14.4% in 2006/2007). Vicarious racism was independently associated with unmet need for child's healthcare (OR=2.30, 95% CI 1.65 to 3.20) and dissatisfaction with their child's medical centre (OR=2.00, 95% CI 1.26 to 3.16). Importantly, there was a dose-response relationship between the number of reported experiences of racism and child healthcare utilisation (eg, unmet need: 1 report of racism, OR=1.89, 95% CI 1.34 to 2.67; 2+ reports of racism, OR=3.06, 95% CI 1.27 to 7.37). Adjustment for caregiver psychological distress attenuated the association between caregiver experiences of racism and child healthcare utilisation. Vicarious racism is a serious health problem in New Zealand disproportionately affecting Māori and Asian children and significantly impacting children's healthcare utilisation. Tackling racism may be an important means of improving inequities in child healthcare utilisation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All

  5. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  6. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    Science.gov (United States)

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  7. Machine utilisation and operation experience with Jet from 1983

    International Nuclear Information System (INIS)

    Green, B.J.; Chuilon, P.; Noble, B.; Saunders, R.; Webberley, D.

    1989-01-01

    The operation of JET commenced in June 1983 and is scheduled until the end of 1992. This seemingly long period is actually quite limited when compared with the time needed to implement and commission the planned machine enhancements, and pursue research and developments which result from the experiments. There is an ever-present urgency to make the best use of the machine. 1983-84 was a learning period and only in 1985 was it felt worthwhile to adopt double-shift day working. Data has been compiled and analysed for utilisation of the machine, delays in terms of time lost and systems involved, and number and frequency of machine pulses. This paper presents an overall picture of machine availability and utilisation. It describes the JET operational arrangements and the experience of system faults. Finally, it draws conclusions and identifies lessons learned which may be relevant to the next stage of fusion power development

  8. Machine utilisation and operation experience with JET from 1983

    International Nuclear Information System (INIS)

    Green, B.J.; Chuilon, P.; Noble, B.; Saunders, R.; Webberley, D.

    1989-01-01

    The operation of JET commenced in June 1983 and is scheduled until the end of 1992. This seemingly long period is actually quite limited when compared with the time needed to implement and commission the planned machine enhancements, and pursue research and developments which result from the experiments. There is an ever-present urgency to make the use of the machine. 1983-84 was a learning period and only in 1985 was it felt worthwhile to adopt double-shift day working. Data has been compiled and analysed for utilisation of the machine, delays in terms of time lost and system involved, and number and frequency of machine pulses. This paper presents an overall picture of machine availability and utilisation. It describes the JET operational arrangements and the experience of system faults. Finally, it draws conclusions and identifies lessons learned which may be relevant to the next stage of fusion power development. (author). 9 figs

  9. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  10. Satellite data driven modeling system for predicting air quality and visibility during wildfire and prescribed burn events

    Science.gov (United States)

    Nair, U. S.; Keiser, K.; Wu, Y.; Maskey, M.; Berendes, D.; Glass, P.; Dhakal, A.; Christopher, S. A.

    2012-12-01

    The Alabama Forestry Commission (AFC) is responsible for wildfire control and also prescribed burn management in the state of Alabama. Visibility and air quality degradation resulting from smoke are two pieces of information that are crucial for this activity. Currently the tools available to AFC are the dispersion index available from the National Weather Service and also surface smoke concentrations. The former provides broad guidance for prescribed burning activities but does not provide specific information regarding smoke transport, areas affected and quantification of air quality and visibility degradation. While the NOAA operational air quality guidance includes surface smoke concentrations from existing fire events, it does not account for contributions from background aerosols, which are important for the southeastern region including Alabama. Also lacking is the quantification of visibility. The University of Alabama in Huntsville has developed a state-of-the-art integrated modeling system to address these concerns. This system based on the Community Air Quality Modeling System (CMAQ) that ingests satellite derived smoke emissions and also assimilates NASA MODIS derived aerosol optical thickness. In addition, this operational modeling system also simulates the impact of potential prescribed burn events based on location information derived from the AFC prescribed burn permit database. A lagrangian model is used to simulate smoke plumes for the prescribed burns requests. The combined air quality and visibility degradation resulting from these smoke plumes and background aerosols is computed and the information is made available through a web based decision support system utilizing open source GIS components. This system provides information regarding intersections between highways and other critical facilities such as old age homes, hospitals and schools. The system also includes satellite detected fire locations and other satellite derived datasets

  11. Are satellite products good proxies for gauge precipitation over Singapore?

    Science.gov (United States)

    Hur, Jina; Raghavan, Srivatsan V.; Nguyen, Ngoc Son; Liong, Shie-Yui

    2018-05-01

    The uncertainties in two high-resolution satellite precipitation products (TRMM 3B42 v7.0 and GSMaP v5.222) were investigated by comparing them against rain gauge observations over Singapore on sub-daily scales. The satellite-borne precipitation products are assessed in terms of seasonal, monthly and daily variations, the diurnal cycle, and extreme precipitation over a 10-year period (2000-2010). Results indicate that the uncertainties in extreme precipitation is higher in GSMaP than in TRMM, possibly due to the issues such as satellite merging algorithm, the finer spatio-temporal scale of high intensity precipitation, and the swath time of satellite. Such discrepancies between satellite-borne and gauge-based precipitations at sub-daily scale can possibly lead to distorting analysis of precipitation characteristics and/or application model results. Overall, both satellite products are unable to capture the observed extremes and provide a good agreement with observations only at coarse time scales. Also, the satellite products agree well on the late afternoon maximum and heavier rainfall of gauge-based data in winter season when the Intertropical Convergence Zone (ITCZ) is located over Singapore. However, they do not reproduce the gauge-observed diurnal cycle in summer. The disagreement in summer could be attributed to the dominant satellite overpass time (about 14:00 SGT) later than the diurnal peak time (about 09:00 SGT) of gauge precipitation. From the analyses of extreme precipitation indices, it is inferred that both satellite datasets tend to overestimate the light rain and frequency but underestimate high intensity precipitation and the length of dry spells. This study on quantification of their uncertainty is useful in many aspects especially that these satellite products stand scrutiny over places where there are no good ground data to be compared against. This has serious implications on climate studies as in model evaluations and in particular, climate

  12. Evaluating Cloud and Precipitation Processes in Numerical Models using Current and Potential Future Satellite Missions

    Science.gov (United States)

    van den Heever, S. C.; Tao, W. K.; Skofronick Jackson, G.; Tanelli, S.; L'Ecuyer, T. S.; Petersen, W. A.; Kummerow, C. D.

    2015-12-01

    Cloud, aerosol and precipitation processes play a fundamental role in the water and energy cycle. It is critical to accurately represent these microphysical processes in numerical models if we are to better predict cloud and precipitation properties on weather through climate timescales. Much has been learned about cloud properties and precipitation characteristics from NASA satellite missions such as TRMM, CloudSat, and more recently GPM. Furthermore, data from these missions have been successfully utilized in evaluating the microphysical schemes in cloud-resolving models (CRMs) and global models. However, there are still many uncertainties associated with these microphysics schemes. These uncertainties can be attributed, at least in part, to the fact that microphysical processes cannot be directly observed or measured, but instead have to be inferred from those cloud properties that can be measured. Evaluation of microphysical parameterizations are becoming increasingly important as enhanced computational capabilities are facilitating the use of more sophisticated schemes in CRMs, and as future global models are being run on what has traditionally been regarded as cloud-resolving scales using CRM microphysical schemes. In this talk we will demonstrate how TRMM, CloudSat and GPM data have been used to evaluate different aspects of current CRM microphysical schemes, providing examples of where these approaches have been successful. We will also highlight CRM microphysical processes that have not been well evaluated and suggest approaches for addressing such issues. Finally, we will introduce a potential NASA satellite mission, the Cloud and Precipitation Processes Mission (CAPPM), which would facilitate the development and evaluation of different microphysical-dynamical feedbacks in numerical models.

  13. Retrieval of spatially distributed hydrological properties from satellite observations for spatial evaluation of a national water resources model.

    Science.gov (United States)

    Mendiguren González, G.; Stisen, S.; Koch, J.

    2016-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  14. Statistical modeling of phenological phases in Poland based on coupling satellite derived products and gridded meteorological data

    Science.gov (United States)

    Czernecki, Bartosz; Jabłońska, Katarzyna; Nowosad, Jakub

    2016-04-01

    The aim of the study was to create and evaluate different statistical models for reconstructing and predicting selected phenological phases. This issue is of particular importance in Poland where national-wide phenological monitoring was abandoned in the middle of 1990s and the reactivated network was established in 2006. Authors decided to evaluate possibilities of using a wide-range of statistical modeling techniques to create synthetic archive dataset. Additionally, a robust tool for predicting the most distinguishable phenophases using only free of charge data as predictors was created. Study period covers the years 2007-2014 and contains only quality-controlled dataset of 10 species and 14 phenophases. Phenological data used in this study originates from the manual observations network run by the Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB). Three kind of data sources were used as predictors: (i) satellite derived products, (ii) preprocessed gridded meteorological data, and (iii) spatial properties (longitude, latitude, altitude) of the monitoring site. Moderate-Resolution Imaging Spectroradiometer (MODIS) level-3 vegetation products were used for detecting onset dates of particular phenophases. Following indices were used: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), and Fraction of Photosynthetically Active Radiation (fPAR). Additionally, Interactive Multisensor Snow and Ice Mapping System (IMS) products were chosen to detect occurrence of snow cover. Due to highly noisy data, authors decided to take into account pixel reliability information. Besides satellite derived products (NDVI, EVI, FPAR, LAI, Snow cover), a wide group of observational data and agrometeorological indices derived from the European Climate Assessment & Dataset (ECA&D) were used as a potential predictors: cumulative growing degree days (GDD), cumulative growing precipitation days (GPD

  15. ORIGIN OF THE DIFFERENT ARCHITECTURES OF THE JOVIAN AND SATURNIAN SATELLITE SYSTEMS

    International Nuclear Information System (INIS)

    Sasaki, T.; Ida, S.; Stewart, G. R.

    2010-01-01

    The Jovian regular satellite system mainly consists of four Galilean satellites that have similar masses and are trapped in mutual mean-motion resonances except for the outer satellite, Callisto. On the other hand, the Saturnian regular satellite system has only one big icy body, Titan, and a population of much smaller icy moons. We have investigated the origin of these major differences between the Jovian and Saturnian satellite systems by semi-analytically simulating the growth and orbital migration of proto-satellites in an accreting proto-satellite disk. We set up two different disk evolution/structure models that correspond to Jovian and Saturnian systems, by building upon previously developed models of an actively supplied proto-satellite disk, the formation of gas giants, and observations of young stars. Our simulations extend previous models by including the (1) different termination timescales of gas infall onto the proto-satellite disk and (2) different evolution of a cavity in the disk, between the Jovian and Saturnian systems. We have performed Monte Carlo simulations and have shown that in the case of the Jovian systems, four to five similar-mass satellites are likely to remain trapped in mean-motion resonances. This orbital configuration is formed by type I migration, temporal stopping of the migration near the disk inner edge, and quick truncation of gas infall caused by Jupiter opening a gap in the solar nebula. The Saturnian systems tend to end up with one dominant body in the outer regions caused by the slower decay of gas infall associated with global depletion of the solar nebula. The total mass and compositional zoning of the predicted Jovian and Saturnian satellite systems are consistent with the observed satellite systems.

  16. Leucocytes, cytokines and satellite cells

    DEFF Research Database (Denmark)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls

    2012-01-01

    uncertain. The COX enzymes regulate satellite cell activity, as demonstrated in animal models; however the roles of the COX enzymes in human skeletal muscle need further investigation. We suggest using the term 'muscle damage' with care. Comparisons between studies and individuals must consider changes......-damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role...... variation in individual responses to a given exercise should, however be expected. The link between cytokine and satellite cell responses and exercise-induced muscle damage is not so clear The systemic cytokine response may be linked more closely to the metabolic demands of exercise rather than muscle...

  17. Attitude Model of a Reaction Wheel/Fixed Thruster Based Satellite Using Telemetry Data

    National Research Council Canada - National Science Library

    Smith, Jason E

    2005-01-01

    .... While there are a multitude of ways to determine a satellite's orientation, very little research has been done on determining if the attitude of a satellite can be determined directly from telemetry...

  18. Analysis on BDS Satellite Internal Multipath and Its Impact on Wide-lane FCB Estimation

    Directory of Open Access Journals (Sweden)

    RUAN Rengui

    2017-08-01

    Full Text Available To the issue of the satellite internal multipath (SIMP of BeiDou satellites, it proposed and emphasized that the SIMP model should be established as a function of the nadir angle with respect to the observed satellite rather than the elevation of the measurement, so that it can be used for receivers at various altitude. BDS data from global distributed stations operated by the International Monitoring and Assessment System (iGMAS and the Multi-GNSS Experiment (MGEX of the International GNSS Service (IGS are collected and a new SIMP model as a piece-wise linear function of the nadir angle is released for the IGSO-and MEO-satellite groups and for B1, B2 and B3 frequency band individually. The SIMP of GEO,IGSO and MEO satellites is further analyzed with B1/B2 dual-frequency data onboard the FengYun-3 C(FY3C satellite at an altitude of~830 km, and it showed that, for nadir angles smaller than 7°, the SIMP values for GEO is quite close to the IGSO's, especially for B2, which may suggest that the SIMP model for IGSO satellites possibly also works for GEO satellites. It also demonstrated that, when the nadir angle is smaller than 12°for the MEO and 7°for the IGSO, the estimated SIMP model with data from FY3C is considerable consistent with that estimated with data collected at ground stations. Experiments are carried out to investigate the impacts of the SIMP on wide-lane fractional cycle bias (FCB estimation for BDS satellites. The result indicates that, with the correction of the estimated SIMP, the repeatability of the FCB series is significantly improved by more than 60% for all satellites. Specifically, for the MEO and IGSO satellites, the repeatability is smaller than 0.05 cycle; the repeatability of 0.023 and 0.068 cycles achieved for GEO satellites C01 and C02 respectively with the estimated SIMP model for IGSO satellites.

  19. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    Science.gov (United States)

    2017-09-01

    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  20. Modeling of tethered satellite formations using graph theory

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Smith, Roy S; Blanke, Mogens

    2011-01-01

    satellite formation and proposes a method to deduce the equations of motion for the attitude dynamics of the formation in a compact form. The use of graph theory and Lagrange mechanics together allows a broad class of formations to be described using the same framework. A method is stated for finding...

  1. Utilisation of outpatient services at Red Cross War Memorial ...

    African Journals Online (AJOL)

    The demand for outpatient services continues to grow at Red Cross War Memorial Children's Hospital (RCCH). To determine current utilisation patterns, we conducted a 2-week survey in the outpatient department (OPD). In addition, we reviewed the RCCH Annual Reports for the period 1961 - 1988. Annual outpatient ...

  2. The utilisation of a career conversation framework based on Schein’s career anchors model

    Directory of Open Access Journals (Sweden)

    Magda Bezuidenhout

    2013-07-01

    Full Text Available Orientation: This  study  constituted  and  reported  on  the  outcomes  of  a  structured  career conversation  framework  based  on  Schein’s  eight  career  anchors  in  an  open  distance  and e-learning (ODeL university in South Africa. Research purpose: The purpose of the research was to report on the utilisation of a structured career conversation framework based on Schein’s career anchors model. Motivation for the study: The rationale for the study was the paucity of studies investigating career anchors in South Africa’s multicultural organisational context. Research design, approach and method: A quantitative approach was adopted in the study. The population consisted of 4200 employees at a university in South Africa. Statistical analysis was performed using one-way analysis of variance (ANOVA as well as a Scheffe post hoc test. Main  findings: The  findings  of  this  study  suggest  that  career  conversation  has  a  dynamic nature (i.e. it changes over a period of time. Consequently, career development interventions in the workplace need to approach the workforce holistically. Practical/managerial implications: The findings and results will assist managers, practitioners and  career  development  specialists  in  the  practical  implementation  of  the  career  anchor concept. Contribution/value-add: The career conversation framework based on Schein’s career anchors has expanded the existing theory to find the right balance between career conversations and career anchors to keep people motivated to perform optimally in an organisation.

  3. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model

    Science.gov (United States)

    Laiolo, P.; Gabellani, S.; Campo, L.; Silvestro, F.; Delogu, F.; Rudari, R.; Pulvirenti, L.; Boni, G.; Fascetti, F.; Pierdicca, N.; Crapolicchio, R.; Hasenauer, S.; Puca, S.

    2016-06-01

    The reliable estimation of hydrological variables in space and time is of fundamental importance in operational hydrology to improve the flood predictions and hydrological cycle description. Nowadays remotely sensed data can offer a chance to improve hydrological models especially in environments with scarce ground based data. The aim of this work is to update the state variables of a physically based, distributed and continuous hydrological model using four different satellite-derived data (three soil moisture products and a land surface temperature measurement) and one soil moisture analysis to evaluate, even with a non optimal technique, the impact on the hydrological cycle. The experiments were carried out for a small catchment, in the northern part of Italy, for the period July 2012-June 2013. The products were pre-processed according to their own characteristics and then they were assimilated into the model using a simple nudging technique. The benefits on the model predictions of discharge were tested against observations. The analysis showed a general improvement of the model discharge predictions, even with a simple assimilation technique, for all the assimilation experiments; the Nash-Sutcliffe model efficiency coefficient was increased from 0.6 (relative to the model without assimilation) to 0.7, moreover, errors on discharge were reduced up to the 10%. An added value to the model was found in the rainfall season (autumn): all the assimilation experiments reduced the errors up to the 20%. This demonstrated that discharge prediction of a distributed hydrological model, which works at fine scale resolution in a small basin, can be improved with the assimilation of coarse-scale satellite-derived data.

  4. Satellite Technologies and Services: Implications for International Distance Education.

    Science.gov (United States)

    Stahmer, Anna

    1987-01-01

    This examination of international distance education and open university applications of communication satellites at the postsecondary level notes activities in less developed countries (LDCs); presents potential models for cooperation; and describes technical systems for distance education, emphasizing satellite technology and possible problems…

  5. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  6. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas...... of the Horns Rev wind farm is quantified from satellite SAR images and compared with state-of-the-art wake model results with good agreement. It is a unique method using satellite observations to quantify the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, Ltd....... analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect...

  7. Testing Lorentz invariance of dark matter with satellite galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Bettoni, Dario [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Nusser, Adi [Physics Department and the Asher Space Science Institute—Technion, Haifa 32000 (Israel); Blas, Diego; Sibiryakov, Sergey, E-mail: d.bettoni@thphys.uni-heidelberg.de, E-mail: adi@physics.technion.ac.il, E-mail: diego.blas@cern.ch, E-mail: sergey.sibiryakov@cern.ch [Theoretical Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)

    2017-05-01

    We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introduce a numerical model for the dynamics of satellites in a galactic halo and for a galaxy in a rich cluster to explore observational consequences of such an LV field. The orbital motion of a satellite excites a time dependent LV force which greatly affects its internal dynamics. Our analysis points out key observational signatures which serve as probes of LV forces. These include modifications to the line of sight velocity dispersion, mass profiles and shapes of satellites. With future data and a more detailed modeling these signatures can be exploited to constrain a new region of the parameter space describing the LV in the dark matter sector.

  8. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  9. A New Model of the Mean Albedo of the Earth: Estimation and Validation from the GRACE Mission and SLR Satellites.

    Science.gov (United States)

    Deleflie, F.; Sammuneh, M. A.; Coulot, D.; Pollet, A.; Biancale, R.; Marty, J. C.

    2017-12-01

    This talk provides new results of a study that we began last year, and that was the subject of a poster by the same authors presented during AGU FM 2016, entitled « Mean Effect of the Albedo of the Earth on Artificial Satellite Trajectories: an Update Over 2000-2015. »The emissivity of the Earth, split into a part in the visible domain (albedo) and the infrared domain (thermic emissivity), is at the origin of non gravitational perturbations on artificial satellite trajectories. The amplitudes and periods of these perturbations can be investigated if precise orbits can be carried out, and reveal some characteristics of the space environment where the satellite is orbiting. Analyzing the perturbations is, hence, a way to characterize how the energy from the Sun is re-emitted by the Earth. When led over a long period of time, such an approach enables to quantify the variations of the global radiation budget of the Earth.Additionally to the preliminary results presented last year, we draw an assessment of the validity of the mean model based on the orbits of the GRACE missions, and, to a certain extent, of some of the SLR satellite orbits. The accelerometric data of the GRACE satellites are used to evaluate the accuracy of the models accounting for non gravitational forces, and the ones induced by the albedo and the thermic emissivity in particular. Three data sets are used to investigate the mean effects on the orbit perturbations: Stephens tables (Stephens, 1980), ECMWF (European Centre for Medium-Range Weather Forecasts) data sets and CERES (Clouds and the Earth's Radiant Energy System) data sets (publickly available). From the trajectography point of view, based on post-fit residual analysis, we analyze what is the data set leading to the lowest residual level, to define which data set appears to be the most suitable one to derive a new « mean albedo model » from accelerometric data sets of the GRACE mission. The period of investigation covers the full GRACE

  10. Exploring the extent to which ELT students utilise smartphones for ...

    African Journals Online (AJOL)

    Zehra

    2015-11-09

    Nov 9, 2015 ... aimed to explore the extent to which English Language Teaching (ELT) students utilise ... Given the fact that almost all students have a personal smartphone, and use it ..... ears as a disadvantage for smartphones (Kétyi,.

  11. Enhanced processing of SPOT multispectral satellite imagery for environmental monitoring and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.

    2010-07-01

    The Taita Hills in southeastern Kenya form the northernmost part of Africa's Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor (rho{sub s}). Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable (rho{sub s}) throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular (rho{sub s}) field measurements were taken and where horizontal visibility meteorological data concurrent with image

  12. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  13. Towards Improving Satellite Tropospheric NO2 Retrieval Products: Impacts of the spatial resolution and lighting NOx production from the a priori chemical transport model

    Science.gov (United States)

    Smeltzer, C. D.; Wang, Y.; Zhao, C.; Boersma, F.

    2009-12-01

    Polar orbiting satellite retrievals of tropospheric nitrogen dioxide (NO2) columns are important to a variety of scientific applications. These NO2 retrievals rely on a priori profiles from chemical transport models and radiative transfer models to derive the vertical columns (VCs) from slant columns measurements. In this work, we compare the retrieval results using a priori profiles from a global model (TM4) and a higher resolution regional model (REAM) at the OMI overpass hour of 1330 local time, implementing the Dutch OMI NO2 (DOMINO) retrieval. We also compare the retrieval results using a priori profiles from REAM model simulations with and without lightning NOx (NO + NO2) production. A priori model resolution and lightning NOx production are both found to have large impact on satellite retrievals by altering the satellite sensitivity to a particular observation by shifting the NO2 vertical distribution interpreted by the radiation model. The retrieved tropospheric NO2 VCs may increase by 25-100% in urban regions and be reduced by 50% in rural regions if the a priori profiles from REAM simulations are used during the retrievals instead of the profiles from TM4 simulations. The a priori profiles with lightning NOx may result in a 25-50% reduction of the retrieved tropospheric NO2 VCs compared to the a priori profiles without lightning. As first priority, a priori vertical NO2 profiles from a chemical transport model with a high resolution, which can better simulate urban-rural NO2 gradients in the boundary layer and make use of observation-based parameterizations of lightning NOx production, should be first implemented to obtain more accurate NO2 retrievals over the United States, where NOx source regions are spatially separated and lightning NOx production is significant. Then as consequence of a priori NO2 profile variabilities resulting from lightning and model resolution dynamics, geostationary satellite, daylight observations would further promote the next

  14. Measurements of ionospheric TEC in the direction of GPS satellites and comparison with three ionospheric models

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    1997-06-01

    Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.

  15. Nudging Satellite Altimeter Data Into Quasi-Geostrophic Ocean Models

    Science.gov (United States)

    Verron, Jacques

    1992-05-01

    This paper discusses the efficiency of several variants of the nudging technique (derived from the technique of the same name developed by meteorologists) for assimilating altimeter data into numerical ocean models based on quasi-geostrophic formulation. Assimilation experiments are performed with data simulated in the nominal sampling conditions of the Topex-Poseidon satellite mission. Under experimental conditions it is found that nudging on the altimetric sea level is as efficient as nudging on the vorticity (second derivative in space of the dynamic topography), the technique used thus far in studies of this type. The use of altimetric residuals only, instead of the total altimetric sea level signal, is also explored. The critical importance of having an adequate reference mean sea level is largely confirmed. Finally, the possibility of nudging only the signal of sea level tendency (i.e., the successive time differences of the sea level height) is examined. Apart from the barotropic mode, results are not very successful compared with those obtained by assimilating the residuals.

  16. Examen de l'utilisation et de la qualité du système de production de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Toshiba

    de RFPd sur les plans du processus, de la production des rapports et de leur utilisation. ...... difficulté à utiliser l'outil servant à la préparation du RFPd. .... De plus, c'est l'un des rares instruments utilisés dans le secteur de la philanthropie dont.

  17. SUPPLY AND UTILISATION OF FOOD CROPS IN GHANA, 1960 ...

    African Journals Online (AJOL)

    ROP4

    Due to that much attention has been placed on sustainable management of agricultural ... Supply (import and export) and utilisation (for food, feed, seed, farm manure, waste and other uses) of food crops have ..... Cassava is mainly used in non-poultry livestock production, i.e., for goats, sheep, pigs and some ruminants.

  18. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  19. Modelling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget model with satellite-derived environmental data

    Science.gov (United States)

    Thomas, Yoann; Mazurié, Joseph; Alunno-Bruscia, Marianne; Bacher, Cédric; Bouget, Jean-François; Gohin, Francis; Pouvreau, Stéphane; Struski, Caroline

    2011-11-01

    In order to assess the potential of various marine ecosystems for shellfish aquaculture and to evaluate their carrying capacities, there is a need to clarify the response of exploited species to environmental variations using robust ecophysiological models and available environmental data. For a large range of applications and comparison purposes, a non-specific approach based on 'generic' individual growth models offers many advantages. In this context, we simulated the response of blue mussel ( Mytilus edulis L.) to the spatio-temporal fluctuations of the environment in Mont Saint-Michel Bay (North Brittany) by forcing a generic growth model based on Dynamic Energy Budgets with satellite-derived environmental data (i.e. temperature and food). After a calibration step based on data from mussel growth surveys, the model was applied over nine years on a large area covering the entire bay. These simulations provide an evaluation of the spatio-temporal variability in mussel growth and also show the ability of the DEB model to integrate satellite-derived data and to predict spatial and temporal growth variability of mussels. Observed seasonal, inter-annual and spatial growth variations are well simulated. The large-scale application highlights the strong link between food and mussel growth. The methodology described in this study may be considered as a suitable approach to account for environmental effects (food and temperature variations) on physiological responses (growth and reproduction) of filter feeders in varying environments. Such physiological responses may then be useful for evaluating the suitability of coastal ecosystems for shellfish aquaculture.

  20. The mass dependence of dwarf satellite galaxy quenching

    International Nuclear Information System (INIS)

    Slater, Colin T.; Bell, Eric F.

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M * ≲ 10 7 M ☉ ) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  1. Dark influences: imprints of dark satellites on dwarf galaxies

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.

    Context. In the context of the current Λ cold dark matter cosmological model small dark matter halos are abundant and satellites of dwarf galaxies are expected to be predominantly dark. Since low mass galaxies have smaller baryon fractions, interactions with these satellites may leave particularly

  2. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    Science.gov (United States)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  3. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model to Evaluate Juniperus spp. Pollen Phenology and Transport

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; Van de Water, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et al., 2003 reported Juniperus spp. pollen, a significant aeroallergen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. Direct detection of pollen via satellite is not practical. A practical alternative combines modeling and phenological observations using ground based sampling and satellite data. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust (Nickovic et al. 2001). The use of satellite data products for studying phenology is well documented (White and Nemani 2006). In the current project MODIS data will provide critical input to the PREAM model providing pollen source location, timing of pollen release, and vegetation type. We are modifying the DREAM model (PREAM - Pollen REgional Atmospheric Model) to incorporate pollen transport. The linkages already exist with DREAM through PHAiRS (Public Health Applications in Remote Sensing) to the public health community. This linkage has the potential to fill this data gap so that the potential association of health effects of pollen can better be tracked for possible linkage with health outcome data which may be associated with asthma, respiratory effects, myocardial infarction, and lost workdays. Juniperus spp. pollen phenology may respond to a wide range of environmental factors such as day length, growing degree-days, precipitation patterns and soil moisture. Species differences are also important. These environmental factors vary over both time and spatial scales. Ground based networks such as the USA National Phenology Network have been established to provide national wide observations of vegetation phenology. However, the density of observers is not adequate to sufficiently document the phenology variability

  4. Function of Junk: Pericentromeric Satellite DNA in Chromosome Maintenance.

    Science.gov (United States)

    Jagannathan, Madhav; Yamashita, Yukiko M

    2018-04-02

    Satellite DNAs are simple tandem repeats that exist at centromeric and pericentromeric regions on eukaryotic chromosomes. Unlike the centromeric satellite DNA that comprises the vast majority of natural centromeres, function(s) for the much more abundant pericentromeric satellite repeats are poorly understood. In fact, the lack of coding potential allied with rapid divergence of repeat sequences across eukaryotes has led to their dismissal as "junk DNA" or "selfish parasites." Although implicated in various biological processes, a conserved function for pericentromeric satellite DNA remains unidentified. We have addressed the role of satellite DNA through studying chromocenters, a cytological aggregation of pericentromeric satellite DNA from multiple chromosomes into DNA-dense nuclear foci. We have shown that multivalent satellite DNA-binding proteins cross-link pericentromeric satellite DNA on chromosomes into chromocenters. Disruption of chromocenters results in the formation of micronuclei, which arise by budding off the nucleus during interphase. We propose a model that satellite DNAs are critical chromosome elements that are recognized by satellite DNA-binding proteins and incorporated into chromocenters. We suggest that chromocenters function to preserve the entire chromosomal complement in a single nucleus, a fundamental and unquestioned feature of eukaryotic genomes. We speculate that the rapid divergence of satellite DNA sequences between closely related species results in discordant chromocenter function and may underlie speciation and hybrid incompatibility. © 2017 Jagannathan and Yamashita; Published by Cold Spring Harbor Laboratory Press.

  5. Integrating Global Satellite-Derived Data Products as a Pre-Analysis for Hydrological Modelling Studies: A Case Study for the Red River Basin

    Directory of Open Access Journals (Sweden)

    Gijs Simons

    2016-03-01

    Full Text Available With changes in weather patterns and intensifying anthropogenic water use, there is an increasing need for spatio-temporal information on water fluxes and stocks in river basins. The assortment of satellite-derived open-access information sources on rainfall (P and land use/land cover (LULC is currently being expanded with the application of actual evapotranspiration (ETact algorithms on the global scale. We demonstrate how global remotely sensed P and ETact datasets can be merged to examine hydrological processes such as storage changes and streamflow prior to applying a numerical simulation model. The study area is the Red River Basin in China in Vietnam, a generally challenging basin for remotely sensed information due to frequent cloud cover. Over this region, several satellite-based P and ETact products are compared, and performance is evaluated using rain gauge records and longer-term averaged streamflow. A method is presented for fusing multiple satellite-derived ETact estimates to generate an ensemble product that may be less susceptible, on a global basis, to errors in individual modeling approaches. Subsequently, monthly satellite-derived rainfall and ETact are combined to assess the water balance for individual subcatchments and types of land use, defined using a global land use classification improved based on auxiliary satellite data. It was found that a combination of TRMM rainfall and the ensemble ETact product is consistent with streamflow records in both space and time. It is concluded that monthly storage changes, multi-annual streamflow and water yield per LULC type in the Red River Basin can be successfully assessed based on currently available global satellite-derived products.

  6. Glass melting and its innovation potentials: The combination of transversal and longitudinal circulations and its influence on space utilisation

    Czech Academy of Sciences Publication Activity Database

    Polák, M.; Němec, Lubomír

    2011-01-01

    Roč. 357, 16-17 (2011), s. 3108-3116 ISSN 0022-3093 R&D Projects: GA MPO 2A-1TP1/063 Institutional research plan: CEZ:AV0Z40320502 Keywords : space utilisation * sand dissolution * bubble removal * flow patterns * model furnace Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.537, year: 2011

  7. Current state of art of satellite altimetry

    Science.gov (United States)

    Łyszkowicz, Adam Bolesław; Bernatowicz, Anna

    2017-12-01

    One of the fundamental problems of modern geodesy is precise defi nition of the gravitational fi eld and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth's environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System) and institutions of IAS (International Altimetry Service). This paper presents the achievements in satellite altimetry in all the above disciplines obtained in the last years. First very shorly basic concept of satellite altimetry is given. In order to obtain the highest accuracy on range measurements over the ocean improved of altimetry waveforms performed on the ground is described. Next, signifi cant improvements of sea and ocean gravity anomalies models developed presently is shown. Study of sea level and its extremes examined, around European and Australian coasts using tide gauges data and satellite altimetry measurements were described. Then investigations of the phenomenon of the ocean tides, calibration of altimeters, studies of rivers and ice-sheets in the last years are given.

  8. Current state of art of satellite altimetry

    Directory of Open Access Journals (Sweden)

    Łyszkowicz Adam Bolesław

    2017-12-01

    Full Text Available One of the fundamental problems of modern geodesy is precise defi nition of the gravitational fi eld and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth’s environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System and institutions of IAS (International Altimetry Service. This paper presents the achievements in satellite altimetry in all the above disciplines obtained in the last years. First very shorly basic concept of satellite altimetry is given. In order to obtain the highest accuracy on range measurements over the ocean improved of altimetry waveforms performed on the ground is described. Next, signifi cant improvements of sea and ocean gravity anomalies models developed presently is shown. Study of sea level and its extremes examined, around European and Australian coasts using tide gauges data and satellite altimetry measurements were described. Then investigations of the phenomenon of the ocean tides, calibration of altimeters, studies of rivers and ice-sheets in the last years are given.

  9. Tropical convection regimes in climate models: evaluation with satellite observations

    Directory of Open Access Journals (Sweden)

    A. K. Steiner

    2018-04-01

    Full Text Available High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS radio occultation (RO, which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  10. Tropical convection regimes in climate models: evaluation with satellite observations

    Science.gov (United States)

    Steiner, Andrea K.; Lackner, Bettina C.; Ringer, Mark A.

    2018-04-01

    High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS) radio occultation (RO), which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  11. Measurement of the thermal utilisation factor of the reactor G1; Mesure du facteur d'utilisation thermique du reacteur G1

    Energy Technology Data Exchange (ETDEWEB)

    Roullier, F; Schmitt, A P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The thermal utilisation factor of the lattice of the reactor G1 has been measured by applying the autoradiographic technique to thin detectors irradiated in the cell. The experimental apparatus is described, and the results compared with those obtained by calculation based on various formulae. The results of the study of the thermal flux distribution in a cell containing a thorium rod of the same diameter as the uranium rods in the lattice are also given. The precision of the measurements is discussed. Value found: f diameter 26 = 0.8949 {+-} 0,005. (author) [French] Le facteur d'utilisation thermique du reseau du reacteur G1 a ete mesure en appliquant la technique de l'autoradiographie a des detecteurs minces irradies dans la cellule. Les dispositifs experimentaux sont decrits et les resultats sont compares a ceux obtenus par le calcul a partir de diverses formules. Les resultats de l'etude de la distribution du flux thermique dans une cellule contenant une barre de thorium de meme diametre que les barres d'uranium du reseau sont egalement indiques. La precision des mesures est discutee. Valeur trouvee: f diametre 26 = 0,8949 {+-} 0,005. (author)

  12. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  13. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  14. Utilisation of enzyme supplemented groundnut cake based diets by ...

    African Journals Online (AJOL)

    A total of 300, twenty weeks old laying hens were used in a feeding trial to evaluate the utilisation of Peanut meal popularly called groundnut cake (GNC) based diets supplemented with enzymes by laying hens. Five dietary treatments were formulated to meet standard nutrient requirements of layers viz: 1. maize- soya ...

  15. The determination of the orbit of the Japanese satellite Ajisai and the GEM-T1 and GEM-T2 gravity field models

    Science.gov (United States)

    Sanchez, Braulio V.

    1990-01-01

    The Japanese Experimental Geodetic Satellite Ajisai was launched on August 12, 1986. In response to the TOPEX-POSEIDON mission requirements, the GSFC Space Geodesy Branch and its associates are producing improved models of the Earth's gravitational field. With the launch of Ajisai, precise laser data is now available which can be used to test many current gravity models. The testing of the various gravity field models show improvements of more than 70 percent in the orbital fits when using GEM-T1 and GEM-T2 relative to results obtained with the earlier GEM-10B model. The GEM-T2 orbital fits are at the 13-cm level (RMS). The results of the tests with the various versions of the GEM-T1 model indicate that the addition of satellite altimetry and surface gravity anomalies as additional data types should improve future gravity field models.

  16. A Mathematical Model for the Height of a Satellite.

    Science.gov (United States)

    Thoemke, Sharon S.; And Others

    1993-01-01

    Emphasizes a real-world-problem situation using sine law and cosine law. Angles of elevation from two tracking stations located in the plane of the equator determine height of a satellite. Calculators or computers can be used. (LDR)

  17. Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery

    Science.gov (United States)

    García, Mariano; Saatchi, Sassan; Ustin, Susan; Balzter, Heiko

    2018-04-01

    Spatially-explicit information on forest structure is paramount to estimating aboveground carbon stocks for designing sustainable forest management strategies and mitigating greenhouse gas emissions from deforestation and forest degradation. LiDAR measurements provide samples of forest structure that must be integrated with satellite imagery to predict and to map landscape scale variations of forest structure. Here we evaluate the capability of existing satellite synthetic aperture radar (SAR) with multispectral data to estimate forest canopy height over five study sites across two biomes in North America, namely temperate broadleaf and mixed forests and temperate coniferous forests. Pixel size affected the modelling results, with an improvement in model performance as pixel resolution coarsened from 25 m to 100 m. Likewise, the sample size was an important factor in the uncertainty of height prediction using the Support Vector Machine modelling approach. Larger sample size yielded better results but the improvement stabilised when the sample size reached approximately 10% of the study area. We also evaluated the impact of surface moisture (soil and vegetation moisture) on the modelling approach. Whereas the impact of surface moisture had a moderate effect on the proportion of the variance explained by the model (up to 14%), its impact was more evident in the bias of the models with bias reaching values up to 4 m. Averaging the incidence angle corrected radar backscatter coefficient (γ°) reduced the impact of surface moisture on the models and improved their performance at all study sites, with R2 ranging between 0.61 and 0.82, RMSE between 2.02 and 5.64 and bias between 0.02 and -0.06, respectively, at 100 m spatial resolution. An evaluation of the relative importance of the variables in the model performance showed that for the study sites located within the temperate broadleaf and mixed forests biome ALOS-PALSAR HV polarised backscatter was the most important

  18. Zinc uptake and utilisation in wetland rice as influenced by zinc sources

    International Nuclear Information System (INIS)

    Raja Rajan, A.

    1994-01-01

    Soil application of Zn is by far the most common and generally successful method of application to rice. Comparison of the effectiveness of soil applications of Zn necessarily involves simultaneous comparison of different sources. Applying Zn in combination with macronutrient fertilizers is convenient and allows more uniform distribution. Studies have indicated marked differences in Zn availability, uptake and utilisation resulting from the macronutrient fertilizer with which it is applied. This study was undertaken to evaluate the effect of a few sources of Zn on the yield, Zn uptake and utilisation in rice in two major rice grown soil series of Tamil Nadu. (author). 7 refs., 3 tabs

  19. Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin

    OpenAIRE

    Paris, Adrien; Dias de Paiva, Rodrigo; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stephane; Garambois, Pierre-André; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frederique

    2016-01-01

    In this study, rating curves (RCs) were determined by applying satellite altimetry to a poorly gauged basin. This study demonstrates the synergistic application of remote sensing and watershed modeling to capture the dynamics and quantity of flow in the Amazon River Basin, respectively. Three major advancements for estimating basin-scale patterns in river discharge are described. The first advancement is the preservation of the hydrological meanings of the parameters expressed by ...

  20. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    Science.gov (United States)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  1. Peculiarities of the ionosphere monitoring from low-flying satellites

    International Nuclear Information System (INIS)

    Danilkin, N.P.; Denisenko, P.F.; Mal'tseva, O.A.

    1998-01-01

    Peculiarities of the HF-radiowave propagation between ground stations and low-flying satellites near and below the maximum of the F area are studied through the method of mathematical modeling. It is established that the signal may propagate by three trajectories. The first one is below the satellite orbit. The turn altitudes of the second and the third beams are above the satellite orbit. Availability of three trajectories leads to the three-digit dependence of the group ways on the working frequency F. The P(f) curves for different satellite distances from a reception point and its orbit altitudes for the isotropic and magnetoactive ionosphere are presented

  2. Processing Satellite Imagery To Detect Waste Tire Piles

    Science.gov (United States)

    Skiles, Joseph; Schmidt, Cynthia; Wuinlan, Becky; Huybrechts, Catherine

    2007-01-01

    A methodology for processing commercially available satellite spectral imagery has been developed to enable identification and mapping of waste tire piles in California. The California Integrated Waste Management Board initiated the project and provided funding for the method s development. The methodology includes the use of a combination of previously commercially available image-processing and georeferencing software used to develop a model that specifically distinguishes between tire piles and other objects. The methodology reduces the time that must be spent to initially survey a region for tire sites, thereby increasing inspectors and managers time available for remediation of the sites. Remediation is needed because millions of used tires are discarded every year, waste tire piles pose fire hazards, and mosquitoes often breed in water trapped in tires. It should be possible to adapt the methodology to regions outside California by modifying some of the algorithms implemented in the software to account for geographic differences in spectral characteristics associated with terrain and climate. The task of identifying tire piles in satellite imagery is uniquely challenging because of their low reflectance levels: Tires tend to be spectrally confused with shadows and deep water, both of which reflect little light to satellite-borne imaging systems. In this methodology, the challenge is met, in part, by use of software that implements the Tire Identification from Reflectance (TIRe) model. The development of the TIRe model included incorporation of lessons learned in previous research on the detection and mapping of tire piles by use of manual/ visual and/or computational analysis of aerial and satellite imagery. The TIRe model is a computational model for identifying tire piles and discriminating between tire piles and other objects. The input to the TIRe model is the georeferenced but otherwise raw satellite spectral images of a geographic region to be surveyed

  3. Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data

    Science.gov (United States)

    Hedin, A. E.; Spencer, N. W.; Killeen, T. L.

    1988-01-01

    Thermospheric wind data obtained from the Atmosphere Explorer E and Dynamics Explorer 2 satellites have been used to generate an empirical wind model for the upper thermosphere, analogous to the MSIS model for temperature and density, using a limited set of vector spherical harmonics. The model is limited to above approximately 220 km where the data coverage is best and wind variations with height are reduced by viscosity. The data base is not adequate to detect solar cycle (F10.7) effects at this time but does include magnetic activity effects. Mid- and low-latitude data are reproduced quite well by the model and compare favorably with published ground-based results. The polar vortices are present, but not to full detail.

  4. Improving the utilisation of management information systems in secondary schools

    NARCIS (Netherlands)

    Bosker, R. J.; Branderhorst, E. M.; Visscher, A. J.

    2007-01-01

    Although most secondary schools do use management information systems (MISs), these systems tend not to be used to support higher order managerial activities but are currently primarily used for clerical purposes. This situation is unsatisfactory as MISs fully utilised could offer invaluable support

  5. Ocean tides for satellite geodesy

    Science.gov (United States)

    Dickman, S. R.

    1990-01-01

    Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.

  6. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  7. Fish utilisation of wetland nurseries with complex hydrological connectivity.

    Directory of Open Access Journals (Sweden)

    Ben Davis

    Full Text Available The physical and faunal characteristics of coastal wetlands are driven by dynamics of hydrological connectivity to adjacent habitats. Wetlands on estuary floodplains are particularly dynamic, driven by a complex interplay of tidal marine connections and seasonal freshwater flooding, often with unknown consequences for fish using these habitats. To understand the patterns and subsequent processes driving fish assemblage structure in such wetlands, we examined the nature and diversity of temporal utilisation patterns at a species or genus level over three annual cycles in a tropical Australian estuarine wetland system. Four general patterns of utilisation were apparent based on CPUE and size-structure dynamics: (i classic nursery utlisation (use by recently settled recruits for their first year (ii interrupted peristence (iii delayed recruitment (iv facultative wetland residence. Despite the small self-recruiting 'facultative wetland resident' group, wetland occupancy seems largely driven by connectivity to the subtidal estuary channel. Variable connection regimes (i.e. frequency and timing of connections within and between different wetland units (e.g. individual pools, lagoons, swamps will therefore interact with the diversity of species recruitment schedules to generate variable wetland assemblages in time and space. In addition, the assemblage structure is heavily modified by freshwater flow, through simultaneously curtailing persistence of the 'interrupted persistence' group, establishing connectivity for freshwater spawned members of both the 'facultative wetland resident' and 'delayed recruitment group', and apparently mediating use of intermediate nursery habitats for marine-spawned members of the 'delayed recruitment' group. The diversity of utilisation pattern and the complexity of associated drivers means assemblage compositions, and therefore ecosystem functioning, is likely to vary among years depending on variations in hydrological

  8. Globalisation and Labour Utilisation in Nigeria: Evidence from the ...

    African Journals Online (AJOL)

    sulaiman.adebowale

    2007-12-05

    Dec 5, 2007 ... the firms in the industry is determined solely by the dictates of ... L'étude examine l'impact de la mondialisation sur l'utilisation de la .... globalisation has been the most influential in government policy .... social, and has economic implications for both the individual worker ..... with the payment of low wages.

  9. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    DEFF Research Database (Denmark)

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...... information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an operational nowcasting product called 'Precipitating Clouds' based on Meteosat-8 input is used. A scale...

  10. Factors associated with postnatal care utilisation in Rwanda: A secondary analysis of 2010 Demographic and Health Survey data.

    Science.gov (United States)

    Rwabufigiri, Bernard N; Mukamurigo, Judith; Thomson, Dana R; Hedt-Gautier, Bethany L; Semasaka, Jean Paul S

    2016-05-31

    Postnatal care (PNC) in the first seven days is important for preventing morbidity and mortality in mothers and new-borns. Sub-Saharan African countries, which account for 62 % of maternal deaths globally, have made major efforts to increase PNC utilisation, but utilisation rates remains low even in countries like Rwanda where PNC services are universally available for free. This study identifies key socio-economic and demographic factors associated with PNC utilisation in Rwanda to inform improved PNC policies and programs. This is a secondary analysis of the 2010 Demographic and Health Survey, a national multi-stage, cross-sectional survey. In bivariate analysis, we used chi-square tests to identify demographic and socio-economic factors associated with PNC utilisation at α = 0.1. Pearson's R statistic (r > 0.5) was used to identify collinear covariates, and to choose which covariate was more strongly associated with PNC utilisation. Manual backward stepwise logistic regression was performed on the remaining covariates to identify key factors associated with PNC utilisation at α = 0.05. All analyses were performed in Stata 13 adjusting for sampling weights, clustering, and stratification. Of the 2,748 women with a live birth in the last two years who answered question about PNC utilisation, 353 (12.8 %) returned for PNC services within seven days after birth. Three factors were positively associated with PNC use: delivering at a health facility (OR: 2.97; 95 % CI: 2.28-3.87), being married but not involved with one's own health care decision-making (OR: 1.69; 95 % CI: 1.17, 2.44) compared to being married and involved; and being in the second (OR: 1.46; 95 % CI: 1.01-2.09) or richest wealth quintile (OR: 2.04; 95 % CI: 1.27-3.29) compared to the poorest. Mother's older age at delivery was negatively associated with PNC use (20-29 - OR: 0.51, 95 % CI: 0.29-0.87; 30-39 - OR: 0.47, 95 % CI: 0.27-0.83; 40-49 - OR: 0.32, 95 % CI: 0.16-0.64). Low PNC

  11. An international review of the patterns and determinants of health service utilisation by adult cancer survivors

    Directory of Open Access Journals (Sweden)

    Treanor Charlene

    2012-09-01

    Full Text Available Abstract Background There is a need to review factors related to health service utilisation by the increasing number of cancer survivors in order to inform care planning and the organisation and delivery of services. Methods Studies were identified via systematic searches of Medline, PsycINFO, CINAHL, Social Science Citation Index and the SEER-MEDICARE library. Methodological quality was assessed using STROBE; and the Andersen Behavioural Model was used as a framework to structure, organise and analyse the results of the review. Results Younger, white cancer survivors were most likely to receive follow-up screening, preventive care, visit their physician, utilise professional mental health services and least likely to be hospitalised. Utilisation rates of other health professionals such as physiotherapists were low. Only studies of health service use conducted in the USA investigated the role of type of health insurance and ethnicity. There appeared to be disparate service use among US samples in terms of ethnicity and socio-demographic status, regardless of type of health insurance provision s- this may be explained by underlying differences in health-seeking behaviours. Overall, use of follow-up care appeared to be lower than expected and barriers existed for particular groups of cancer survivors. Conclusions Studies focussed on the use of a specific type of service rather than adopting a whole-system approach and future health services research should address this shortcoming. Overall, there is a need to improve access to care for all cancer survivors. Studies were predominantly US-based focussing mainly on breast or colorectal cancer. Thus, the generalisability of findings to other health-care systems and cancer sites is unclear. The Andersen Behavioural Model provided an appropriate framework for studying and understanding health service use among cancer survivors. The active involvement of physicians and use of personalised care plans are

  12. The rotational elements of Mars and its satellites

    Science.gov (United States)

    Jacobson, R. A.; Konopliv, A. S.; Park, R. S.; Folkner, W. M.

    2018-03-01

    The International Astronomical Union (IAU) defines planet and satellite coordinate systems relative to their axis of rotation and the angle about that axis. The rotational elements of the bodies are the right ascension and declination of the rotation axis in the International Celestial Reference Frame and the rotation angle, W, measured easterly along the body's equator. The IAU specifies the location of the body's prime meridian by providing a value for W at epoch J2000. We provide new trigonometric series representations of the rotational elements of Mars and its satellites, Phobos and Deimos. The series for Mars are from a least squares fit to the rotation model used to orient the Martian gravity field. The series for the satellites are from a least squares fit to rotation models developed in accordance with IAU conventions from recent ephemerides.

  13. Research on Modeling of the Agile Satellite Using a Single Gimbal Magnetically Suspended CMG and the Disturbance Feedforward Compensation for Rotors

    Science.gov (United States)

    Cui, Peiling; Yan, Ning

    2012-01-01

    The magnetically suspended Control Moment Gyroscope (CMG) has the advantages of long-life, micro-vibration and being non-lubricating, and is the ideal actuator for agile maneuver satellite attitude control. However, the stability of the rotor in magnetic bearing and the precision of the output torque of a magnetically suspended CMG are affected by the rapid maneuvers of satellites. In this paper, a dynamic model of the agile satellite including a magnetically suspended single gimbal control moment gyroscope is built and the equivalent disturbance torque effected on the rotor is obtained. The feedforward compensation control method is used to depress the disturbance on the rotor. Simulation results are given to show that the rotor displacement is obviously reduced. PMID:23235442

  14. Research on Modeling of the Agile Satellite Using a Single Gimbal Magnetically Suspended CMG and the Disturbance Feedforward Compensation for Rotors

    Directory of Open Access Journals (Sweden)

    Ning Yan

    2012-12-01

    Full Text Available The magnetically suspended Control Moment Gyroscope (CMG has the advantages of long-life, micro-vibration and being non-lubricating, and is the ideal actuator for agile maneuver satellite attitude control. However, the stability of the rotor in magnetic bearing and the precision of the output torque of a magnetically suspended CMG are affected by the rapid maneuvers of satellites. In this paper, a dynamic model of the agile satellite including a magnetically suspended single gimbal control moment gyroscope is built and the equivalent disturbance torque effected on the rotor is obtained. The feedforward compensation control method is used to depress the disturbance on the rotor. Simulation results are given to show that the rotor displacement is obviously reduced.

  15. Predictors of mental health-related acute service utilisation and treatment costs in the 12 months following an acute psychiatric admission.

    Science.gov (United States)

    Siskind, Dan; Harris, Meredith; Diminic, Sandra; Carstensen, Georgia; Robinson, Gail; Whiteford, Harvey

    2014-11-01

    A key step in informing mental health resource allocation is to identify the predictors of service utilisation and costs. This project aims to identify the predictors of mental health-related acute service utilisation and treatment costs in the year following an acute public psychiatric hospital admission. A dataset containing administrative and routinely measured outcome data for 1 year before and after an acute psychiatric admission for 1757 public mental health patients was analysed. Multivariate regression models were developed to identify patient- and treatment-related predictors of four measures of service utilisation or cost: (a) duration of index admission; and, in the year after discharge from the index admission (b) acute psychiatric inpatient bed-days; (c) emergency department (ED) presentations; and (d) total acute mental health service costs. Split-sample cross-validation was used. A diagnosis of psychosis, problems with living conditions and prior acute psychiatric inpatient bed-days predicted a longer duration of index admission, while prior ED presentations and self-harm predicted a shorter duration. A greater number of acute psychiatric inpatient bed-days in the year post-discharge were predicted by psychosis diagnosis, problems with living conditions and prior acute psychiatric inpatient admissions. The number of future ED presentations was predicted by past ED presentations. For total acute care costs, diagnosis of psychosis was the strongest predictor. Illness acuity and prior acute psychiatric inpatient admission also predicted higher costs, while self-harm predicted lower costs. The development of effective models for predicting acute mental health treatment costs using existing administrative data is an essential step towards a workable activity-based funding model for mental health. Future studies would benefit from the inclusion of a wider range of variables, including ethnicity, clinical complexity, cognition, mental health legal status

  16. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterizations

    Science.gov (United States)

    Liou, Jer-Chyi; Clark, S.; Fitz-Coy, N.; Huynh, T.; Opiela, J.; Polk, M.; Roebuck, B.; Rushing, R.; Sorge, M.; Werremeyer, M.

    2013-01-01

    The goal of the DebriSat project is to characterize fragments generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 s US Navy Transit satellite. There are three phases to this project: the design and fabrication of DebriSat - an engineering model representing a modern, 60-cm/50-kg class LEO satellite; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area-to-mass ratio, density, shape, material composition, optical properties, and radar cross-section distributions, will be used to supplement the DoD s and NASA s satellite breakup models to better describe the breakup outcome of a modern satellite.

  17. Utilisation des methodes modernes et reversibles de contraception ...

    African Journals Online (AJOL)

    Cette étude descriptive et transversale de 6 ans, allant du 1er Janvier 1999 au 10 Mai 2005 à la clinique de gynécologie obstétrique de l\\'hôpital Donka du CHU de Conakry, a fait ressortir le niveau d\\'utilisation des méthodes modernes de contraception et a permis d\\'élaboré des recommandations pour l\\'amélioration de la ...

  18. The Utilisation of Music by Casino Managers: An Interview Study.

    Science.gov (United States)

    Bramley, Stephanie; Dibben, Nicola; Rowe, Richard

    2016-12-01

    Music is ubiquitous in retail and commercial environments, with some managers believing that music can enhance the customer experience, increase footfall and sales and improve consumer satisfaction. Casino gambling is popular in the United Kingdom and anecdotal evidence suggests that music is often present. However, little is known about the rationale for music use from the perspective of casino managers. In this study semi-structured interviews were conducted with five casino managers to establish their motivations for utilising music, the factors informing their choice of music and the extent to which music is used with the intention of influencing gambling behaviour. Results showed that casino managers utilised two types of music-recorded background music, often sourced via external music supply companies and live music. Live music was often situated away from the gaming floor and used primarily to accompany participation in non-gambling activities. Recorded background music was not used with the direct aim of influencing customers' gambling behaviour, but to create the right atmosphere for gambling and to promote certain moods within the casinos. To achieve these aims casino managers manipulated the tempo, volume and genre of the recorded background music. Casino managers also reported that some gamblers listen to music via portable music players, possibly with the intention of customising their gambling experience. This study is unique as it has provided a first-hand account of casino managers' implicit theories with regards to why they utilise music and the roles which music is considered to fulfil in casinos.

  19. Radioisotope Power Sources; Sources d'energie utilisant les radiobotopes; Radioizotopnye istochniki ehnergii; Fuentes radio isotopicas de energia

    Energy Technology Data Exchange (ETDEWEB)

    Culwell, J. P. [USAEC, Washington, D.C (United States)

    1963-11-15

    hazards. (author) [French] Le programme de production d'energie au moyen des radioisotopes, execute par la Commission de l'energie atomique des Etats-Unis, a donne naissance a toute une technologie nouvelle de l'emploi des radioisotopes comme source d'energie dans des generateurs. Les sources d'energie utilisant des radioisotopes conviennent particulierement pour les applications a distance, qui exigent des alimentations de longue duree, de faibles dimensions et de fonctionnement sur. Ces ''batteries nucleaires'', qui peuvent fonctionner de maniere satisfaisante dans des conditions extremes de temperature et d'exposition aux rayons solaires et aux rayonnements electromagnetiques, constituent des sources d'energie interessantes pour differents types d'engins telecommandes tels que ceux qui sont destines a recueillir des renseignements ou a assurer une surveillance ainsi que les satellites et autres vehicules spatiaux. Les radioisotopes utilises comme sources d'energie sont generalement des emetteuis alpha ou beta. Les emetteurs alpha sont preferables, mais ils sont plus couteux et plus rares et on les reserve generalement pour les applications spatiales. A l'heure actuelle les emetteurs beta, obtenus par separation des dechets de la fission nucleaire, sont utilises exclusivement dans les engins terrestres et marins. On peut neanmoins prevoir que des emetteurs beta, comme le strontium-90, seront eventuellement utilises dans l'espace. On fait actuellement des recherches sur des generateurs qui utiliseront comme sources des melanges de produits de fission. Ces sources seront d'un prix de revient moins eleve qile les radioisotopes purs car les couts de la separation et de la purification seront supprimes. Des prototypes de generateurs thermoelectriques, utilisant le strontium-90 et le cesium-137 comme sources, fonctionnent actuellement ou sont mis au point dans des stations meteorologiques, des engins de balisage et des appareils pour la survellance des profondeurs marines. Le

  20. Environmental assessment of incinerator residue utilisation.

    Science.gov (United States)

    Toller, S; Kärrman, E; Gustafsson, J P; Magnusson, Y

    2009-07-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.