WorldWideScience

Sample records for model urethane foams

  1. Characterization of low density rigid urethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, F.N.

    1978-10-01

    The chemical and mechanical properties of a low density, rigid polyurethane foam material taken from a Joint Test Assembly (JTA) after 13 years of storage were measured. Chemical analyses confirmed the composition to be Bendix Rigifoam 6003-1.5, a pentaerythritol/epsilon-caprolactone/tolyene diisocyanate polyurethane foam. Comparison of data from testing thermal and mechanical characteristics with data from a currently manufactured foam of identical composition indicates no degradation of properties had occurred. This information gives added confidence to the stockpile lifetime integrity of the Rigifoam 6003-2 foam system designated for use in other programs.

  2. Urethane foam void filling. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    compares the cost and performance of the baseline segmentation technology and the innovative void filling technology using expanded polyurethane foam.

  3. Foam process models.

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A. (Procter & Gamble Co., West Chester, OH); Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  4. Operator Spin Foam Models

    CERN Document Server

    Bahr, Benjamin; Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2010-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes...

  5. Thermal degradation of new and aged urethane foam and epon 826 epoxy.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Mills, Bernice E.

    2013-08-01

    Thermal desorption spectroscopy was used to monitor the decomposition as a function of temperature for the foam and epoxy as a function of temperature in the range of 60C to 170C. Samples were studied with one day holds at each of the studied temperatures. Both new (FoamN and EpoxyN) and aged (FoamP and EpoxyP) samples were studied. During these ~10 day experiments, the foam samples lost 11 to 13% of their weight and the EpoxyN lost 10% of its weight. The amount of weight lost was difficult to quantify for EpoxyP because of its inert filler. The onset of the appearance of organic degradation products from FoamP began at 110C. Similar products did not appear until 120C for FoamN, suggesting some effect of the previous decades of storage for FoamP. In the case of the epoxies, the corresponding temperatures were 120C for EpoxyP and 110C for EpoxyN. Suggestions for why the aged epoxy seems more stable than newer sample include the possibility of incomplete curing or differences in composition. Recommendation to limit use temperature to 90-100C for both epoxy and foam.

  6. Thermal Decomposition and Kinetics of Rigid Poly-urethane Foams Derived from Sugarcane Bagasse

    Institute of Scientific and Technical Information of China (English)

    YAN Yongbin; XU Jingwei; PANG Hao; ZHANG Rongli; LIAO Bing

    2009-01-01

    Rigid polyurethane foams were fabricated with five kinds of liquefied sugarcane bagasse polyols(LBP).The foams derived from sugarcane bagasse were investigated by thermogra-vimetric analysis(TGA),and the thermal degradation data were analyzed using the Coast-Redfern method and Ozawa method to obtain the reaction order and activation energy.The results indicate that the sugarcane bagasse-foams exhibit an excellent heat-resistant property,whereas their pyrolysis procedures are quite complicated.The reaction as first order only takes place from 250 to 400℃,and the pyrolysis activation energies vary from 20 to 140 kJ/mol during the whole pyrolysis process.

  7. Foam Assisted WAG, Snorre Revisit with New Foam Screening Model

    DEFF Research Database (Denmark)

    Spirov, Pavel; Rudyk, Svetlana Nikolayevna; Khan, Arif

    2012-01-01

    on a complex geological model for quick feasibility studies, either for onward practical pilot or as justification for more detailed technical study. The simulation showed that Foam model is applicable. The mismatch between history and actual GOR in some periods of injection is due to the complexity...... as quick reference for future general foam pilot simulations at field scale....

  8. QUANTITATIVE ULTRAVIOLET SPECTROSCOPY IN WEATHERING OF A MODEL POLYESTER-URETHANE COATING. (R828081E01)

    Science.gov (United States)

    Spectroscopy was used to quantify the effects of ultraviolet light on a model polyester–urethane coating as it degraded in an accelerated exposure chamber. An explorative calculation of the effective dosage absorbed by the coatings was made and, depending on the quantum...

  9. CPUF - a chemical-structure-based polyurethane foam decomposition and foam response model.

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Thomas H. (Brigham Young University, Provo, UT); Thompson, Kyle Richard; Erickson, Kenneth L.; Dowding, Kevin J.; Clayton, Daniel (Brigham Young University, Provo, UT); Chu, Tze Yao; Hobbs, Michael L.; Borek, Theodore Thaddeus III

    2003-07-01

    A Chemical-structure-based PolyUrethane Foam (CPUF) decomposition model has been developed to predict the fire-induced response of rigid, closed-cell polyurethane foam-filled systems. The model, developed for the B-61 and W-80 fireset foam, is based on a cascade of bondbreaking reactions that produce CO2. Percolation theory is used to dynamically quantify polymer fragment populations of the thermally degrading foam. The partition between condensed-phase polymer fragments and gas-phase polymer fragments (i.e. vapor-liquid split) was determined using a vapor-liquid equilibrium model. The CPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE and CALORE, which support chemical kinetics and enclosure radiation. Elements were removed from the computational domain when the calculated solid mass fractions within the individual finite element decrease below a set criterion. Element removal, referred to as ?element death,? creates a radiation enclosure (assumed to be non-participating) as well as a decomposition front, which separates the condensed-phase encapsulant from the gas-filled enclosure. All of the chemistry parameters as well as thermophysical properties for the CPUF model were obtained from small-scale laboratory experiments. The CPUF model was evaluated by comparing predictions to measurements. The validation experiments included several thermogravimetric experiments at pressures ranging from ambient pressure to 30 bars. Larger, component-scale experiments were also used to validate the foam response model. The effects of heat flux, bulk density, orientation, embedded components, confinement and pressure were measured and compared to model predictions. Uncertainties in the model results were evaluated using a mean value approach. The measured mass loss in the TGA experiments and the measured location of the decomposition front were within the 95% prediction limit determined using the CPUF model for all of the

  10. Multiscale modelling of evolving foams

    Science.gov (United States)

    Saye, R. I.; Sethian, J. A.

    2016-06-01

    We present a set of multi-scale interlinked algorithms to model the dynamics of evolving foams. These algorithms couple the key effects of macroscopic bubble rearrangement, thin film drainage, and membrane rupture. For each of the mechanisms, we construct consistent and accurate algorithms, and couple them together to work across the wide range of space and time scales that occur in foam dynamics. These algorithms include second order finite difference projection methods for computing incompressible fluid flow on the macroscale, second order finite element methods to solve thin film drainage equations in the lamellae and Plateau borders, multiphase Voronoi Implicit Interface Methods to track interconnected membrane boundaries and capture topological changes, and Lagrangian particle methods for conservative liquid redistribution during rearrangement and rupture. We derive a full set of numerical approximations that are coupled via interface jump conditions and flux boundary conditions, and show convergence for the individual mechanisms. We demonstrate our approach by computing a variety of foam dynamics, including coupled evolution of three-dimensional bubble clusters attached to an anchored membrane and collapse of a foam cluster.

  11. Models for metallic foam lamellae

    Science.gov (United States)

    Gratton, Michael B.; Davis, Stephen H.

    2010-11-01

    We consider a pure liquid film with two liquid-gas interfaces --- a free film --- in two dimensions. Assuming that the aspect ratio of the film thickness to the arc length of the center-line is small, we develop a set of models using lubrication theory for the evolution of the film including the effects of different gas pressures above and below the liquid as well as strong surface tension. These models show a separation of timescales between center-line relaxation, thickness averaging, and drainage due to an applied pressure gradient along the film. Interpreted in the case of surfactant-free foams, these results show that the lamella separating two bubbles in an unstable foam will quickly assume a center-line that is an arc of a circle. Thereafter, the film will become uniform in thickness and drain due to capillary suction from adjoining Plateau borders.

  12. Foam Assisted WAG, Snorre Revisit with New Foam Screening Model

    DEFF Research Database (Denmark)

    Spirov, Pavel; Rudyk, Svetlana Nikolayevna; Khan, Arif

    2012-01-01

    This study deals with simulation model of Foam Assisted Water Alternating Gas (FAWAG) method that had been implemented to two Norwegian Reservoirs. Being studied on number of pilot projects, the method proved successful, but Field Scale simulation was never understood properly. New phenomenologic...

  13. SPUF - a simple polyurethane foam mass loss and response model.

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L.; Lemmon, Gordon H.

    2003-07-01

    A Simple PolyUrethane Foam (SPUF) mass loss and response model has been developed to predict the behavior of unconfined, rigid, closed-cell, polyurethane foam-filled systems exposed to fire-like heat fluxes. The model, developed for the B61 and W80-0/1 fireset foam, is based on a simple two-step mass loss mechanism using distributed reaction rates. The initial reaction step assumes that the foam degrades into a primary gas and a reactive solid. The reactive solid subsequently degrades into a secondary gas. The SPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE [1] and CALORE [2], which support chemical kinetics and dynamic enclosure radiation using 'element death.' A discretization bias correction model was parameterized using elements with characteristic lengths ranging from 1-mm to 1-cm. Bias corrected solutions using the SPUF response model with large elements gave essentially the same results as grid independent solutions using 100-{micro}m elements. The SPUF discretization bias correction model can be used with 2D regular quadrilateral elements, 2D paved quadrilateral elements, 2D triangular elements, 3D regular hexahedral elements, 3D paved hexahedral elements, and 3D tetrahedron elements. Various effects to efficiently recalculate view factors were studied -- the element aspect ratio, the element death criterion, and a 'zombie' criterion. Most of the solutions using irregular, large elements were in agreement with the 100-{micro}m grid-independent solutions. The discretization bias correction model did not perform as well when the element aspect ratio exceeded 5:1 and the heated surface was on the shorter side of the element. For validation, SPUF predictions using various sizes and types of elements were compared to component-scale experiments of foam cylinders that were heated with lamps. The SPUF predictions of the decomposition front locations were compared to the front locations

  14. Foam-on-Tile Damage Model

    Science.gov (United States)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  15. Modeling Decomposition of Unconfined Rigid Polyurethane Foam

    Energy Technology Data Exchange (ETDEWEB)

    HOBBS,MICHAEL L.; ERICKSON,KENNETH L.; CHU,TZE YAO

    1999-11-08

    The decomposition of unconfined rigid polyurethane foam has been modeled by a kinetic bond-breaking scheme describing degradation of a primary polymer and formation of a thermally stable secondary polymer. The bond-breaking scheme is resolved using percolation theory to describe evolving polymer fragments. The polymer fragments vaporize according to individual vapor pressures. Kinetic parameters for the model were obtained from Thermal Gravimetric Analysis (TGA). The chemical structure of the foam was determined from the preparation techniques and ingredients used to synthesize the foam. Scale-up effects were investigated by simulating the response of an incident heat flux of 25 W/cm{sup 2} on a partially confined 8.8-cm diameter by 15-cm long right circular cylinder of foam that contained an encapsulated component. Predictions of center, midradial, and component temperatures, as well as regression of the foam surface, were in agreement with measurements using thermocouples and X-ray imaging.

  16. Modeling Decomposition of Unconfined Rigid Polyurethane Foam

    Energy Technology Data Exchange (ETDEWEB)

    CHU,TZE YAO; ERICKSON,KENNETH L.; HOBBS,MICHAEL L.

    1999-11-01

    The decomposition of unconfined rigid polyurethane foam has been modeled by a kinetic bond-breaking scheme describing degradation of a primary polymer and formation of a thermally stable secondary polymer. The bond-breaking scheme is resolved using percolation theory to describe evolving polymer fragments. The polymer fragments vaporize according to individual vapor pressures. Kinetic parameters for the model were obtained from Thermal Gravimetric Analysis (TGA). The chemical structure of the foam was determined from the preparation techniques and ingredients used to synthesize the foam. Scale-up effects were investigated by simulating the response of an incident heat flux of 25 W/cm{sup 2} on a partially confined 8.8-cm diameter by 15-cm long right circular cylinder of foam which contained an encapsulated component. Predictions of center, midradial, and component temperatures, as well as regression of the foam surface, were in agreement with measurements using thermocouples and X-ray imaging.

  17. Spin foam models as energetic causal sets

    CERN Document Server

    Cortês, Marina

    2014-01-01

    Energetic causal sets are causal sets endowed by a flow of energy-momentum between causally related events. These incorporate a novel mechanism for the emergence of space-time from causal relations. Here we construct a spin foam model which is also an energetic causal set model. This model is closely related to the model introduced by Wieland, and this construction makes use of results used there. What makes a spin foam model also an energetic causal set is Wieland's identification of new momenta, conserved at events (or four-simplices), whose norms are not mass, but the volume of tetrahedra. This realizes the torsion constraints, which are missing in previous spin foam models, and are needed to relate the connection dynamics to those of the metric, as in general relativity. This identification makes it possible to apply the new mechanism for the emergence of space-time to a spin foam model.

  18. Modeling decomposition of rigid polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L.

    1998-01-01

    Rigid polyurethane foams are used as encapsulants to isolate and support thermally sensitive components within weapon systems. When exposed to abnormal thermal environments, such as fire, the polyurethane foam decomposes to form products having a wide distribution of molecular weights and can dominate the overall thermal response of the system. Decomposing foams have either been ignored by assuming the foam is not present, or have been empirically modeled by changing physical properties, such as thermal conductivity or emissivity, based on a prescribed decomposition temperature. The hypothesis addressed in the current work is that improved predictions of polyurethane foam degradation can be realized by using a more fundamental decomposition model based on chemical structure and vapor-liquid equilibrium, rather than merely fitting the data by changing physical properties at a prescribed decomposition temperature. The polyurethane decomposition model is founded on bond breaking of the primary polymer and formation of a secondary polymer which subsequently decomposes at high temperature. The bond breaking scheme is resolved using percolation theory to describe evolving polymer fragments. The polymer fragments vaporize according to individual vapor pressures. Kinetic parameters for the model were obtained from Thermal Gravimetric Analysis (TGA) from a single nonisothermal experiment with a heating rate of 20 C/min. Model predictions compare reasonably well with a separate nonisothermal TGA weight loss experiment with a heating rate of 200 C/min.

  19. Spin Foam Models with Finite Groups

    Directory of Open Access Journals (Sweden)

    Benjamin Bahr

    2013-01-01

    Full Text Available Spin foam models, loop quantum gravity, and group field theory are discussed as quantum gravity candidate theories and usually involve a continuous Lie group. We advocate here to consider quantum gravity-inspired models with finite groups, firstly as a test bed for the full theory and secondly as a class of new lattice theories possibly featuring an analogue diffeomorphism symmetry. To make these notes accessible to readers outside the quantum gravity community, we provide an introduction to some essential concepts in the loop quantum gravity, spin foam, and group field theory approach and point out the many connections to the lattice field theory and the condensed-matter systems.

  20. Spin foam models with finite groups

    CERN Document Server

    Bahr, Benjamin; Ryan, James P

    2011-01-01

    Spin foam models, loop quantum gravity and group field theory are discussed as quantum gravity candidate theories and usually involve a continuous Lie group. We advocate here to consider quantum gravity inspired models with finite groups, firstly as a test bed for the full theory and secondly as a class of new lattice theories possibly featuring an analogue diffeomorphism symmetry. To make these notes accessible to readers outside the quantum gravity community we provide an introduction to some essential concepts in the loop quantum gravity, spin foam and group field theory approach and point out the many connections to lattice field theory and condensed matter systems.

  1. Experiments for foam model development and validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, Christopher Jay; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Mahoney, James F. (Honeywell Federal Manufacturing and Technologies, Kansas City Plant, Kansas City, MO); Russick, Edward Mark; Adolf, Douglas Brian; Rao, Rekha Ranjana; Thompson, Kyle Richard; Kraynik, Andrew Michael; Castaneda, Jaime N.; Brotherton, Christopher M.; Mondy, Lisa Ann; Gorby, Allen D.

    2008-09-01

    A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.

  2. Measurements and Information in Spin Foam Models

    CERN Document Server

    Garcia-Islas, J Manuel

    2012-01-01

    We present a problem relating measurements and information theory in spin foam models. In the three dimensional case of quantum gravity we can compute probabilities of spin network graphs and study the behaviour of the Shannon entropy associated to the corresponding information. We present a general definition, compute the Shannon entropy of some examples, and find some interesting inequalities.

  3. Short Term Evaluation of an Anatomically Shaped Polycarbonate Urethane Total Meniscus Replacement in a Goat Model.

    Directory of Open Access Journals (Sweden)

    A C T Vrancken

    Full Text Available Since the treatment options for symptomatic total meniscectomy patients are still limited, an anatomically shaped, polycarbonate urethane (PCU, total meniscus replacement was developed. This study evaluates the in vivo performance of the implant in a goat model, with a specific focus on the implant location in the joint, geometrical integrity of the implant and the effect of the implant on synovial membrane and articular cartilage histopathological condition.The right medial meniscus of seven Saanen goats was replaced by the implant. Sham surgery (transection of the MCL, arthrotomy and MCL suturing was performed in six animals. The contralateral knee joints of both groups served as control groups. After three months follow-up the following aspects of implant performance were evaluated: implant position, implant deformation and the histopathological condition of the synovium and cartilage.Implant geometry was well maintained during the three month implantation period. No signs of PCU wear were found and the implant did not induce an inflammatory response in the knee joint. In all animals, implant fixation was compromised due to suture breakage, wear or elongation, likely causing the increase in extrusion observed in the implant group. Both the femoral cartilage and tibial cartilage in direct contact with the implant showed increased damage compared to the sham and sham-control groups.This study demonstrates that the novel, anatomically shaped PCU total meniscal replacement is biocompatible and resistant to three months of physiological loading. Failure of the fixation sutures may have increased implant mobility, which probably induced implant extrusion and potentially stimulated cartilage degeneration. Evidently, redesigning the fixation method is necessary. Future animal studies should evaluate the improved fixation method and compare implant performance to current treatment standards, such as allografts.

  4. Foam for Enhanced Oil Recovery: Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our mo

  5. Foam for Enhanced Oil Recovery: Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our mo

  6. Plate-Impact Measurements of a Select Model Poly(urethane urea) Elastomer

    Science.gov (United States)

    2013-06-01

    that are of interest to DOD are typically a two-component system, yet the majority of research and development on polyurethane , poly(urethane urea), and...there was a coexistence of lamellar hard segment domains dispersed in a matrix consisting of a fibrillar-like microstructure (23–25), whereas an almost...other potential mechanisms such as shock impedance mismatch, shock-wave dispersion , and strain delocalization. Under high-rate loading conditions, the

  7. FOAM: Expanding the horizons of climate modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tobis, M.; Foster, I.T.; Schafer, C.M. [and others

    1997-10-01

    We report here on a project that expands the applicability of dynamic climate modeling to very long time scales. The Fast Ocean Atmosphere Model (FOAM) is a coupled ocean atmosphere model that incorporates physics of interest in understanding decade to century time scale variability. It addresses the high computational cost of this endeavor with a combination of improved ocean model formulation, low atmosphere resolution, and efficient coupling. It also uses message passing parallel processing techniques, allowing for the use of cost effective distributed memory platforms. The resulting model runs over 6000 times faster than real time with good fidelity, and has yielded significant results.

  8. Modelling of gas flow through metallic foams

    Energy Technology Data Exchange (ETDEWEB)

    Crosnier, S. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, 38 (France); Riva, R. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Bador, B.; Blet, V.

    2003-09-01

    The transport and distribution of gases (hydrogen at the anode and air at the cathode) and water over the front surfaces of the electrodes in contact with electrolyte membrane are of great importance for the enhancement of efficiency of the Proton Exchange Membrane Fuel Cells (PEMFC). The use of metallic foam as a flow distributor in comparison with grooved plate (formed by parallel channels) commonly used in commercial fuel cells may be advantageous since this porous material has a porosity close to unity and then high specific surface area. In fact, the potentially active surface area is generally considered to be almost equal to the front surface area of the electrodes. In order to ensure a homogeneous flow distribution all over the active surface of such devices, a good understanding of gas flow through these particular porous media is necessary. For that purpose, studying of two-phase flow (oxygen, hydrogen and water) through metallic foams must be undertaken. This is carried out in the present work but, in a first step, only for single-phase flow, since the behaviour of two-phase flow derives from the first one. Novels hydraulic models have then been developed in the literature these last years. However, these models do not take into account the viscous dissipation of the flow along the walls bordering the porous media. Unfortunately, metallic foam used as distributors in fuel cell have thigh thickness (of the order of the millimeter), that shedding a doubt on the validity of the latter assumption. In this paper, we review the different hydraulic models in order to discuss the relevance and the limits of each to describe single-phase flow through foams which could be used as distributor in a fuel cell. For that purpose, numerical solutions obtained using modified MC3D-REPO package originally developed for the modelling of multicomponent two-phase flows in granular porous media have been compared to experimental data measured on a dedicated hydraulic device

  9. Modeling of aqueous foam blast wave attenuation

    Directory of Open Access Journals (Sweden)

    Domergue L.

    2011-01-01

    Full Text Available The use of aqueous foams enables the mitigation of blast waves induced by the explosion of energetic materials. The two-phase confinement gives rise to interphase interactions between the gaseous and liquid phases, which role have been emphasized in shock-tube studies with solid foams [1, 2]. Multifluid formalism enables the thermo-mechanical disequilibria between phases to be taken into account. The flow model ensures the correct estimation of the acoustic impedance of the two-phase media. As for the numerical scheme, Riemann solvers are used to describe the microscopic fluid interactions, the summation of which provides the multiphase flux. The role of the different transfer mechanisms is evaluated in the case where the liquid ligaments of the foam matrix have been shattered into droplets by the shock impingement. Characteristics of blast waves in heterogeneous media leads to a decrease of overpressure. The numerical results have been compared favorably to experimental data [3, 4].

  10. Experiments to Populate and Validate a Processing Model for Polyurethane Foam: Additional Data for Structural Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Giron, Nicholas Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Russick, Edward M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150°C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.

  11. Experiments to Populate and Validate a Processing Model for Polyurethane Foam: Additional Data for Structural Foams.

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R.; Celina, Mathias C.; Giron, Nicholas Henry; Long, Kevin Nicholas; Russick, Edward M.

    2015-01-01

    We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150 o C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.

  12. Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.

    Science.gov (United States)

    Angeloni, Valentina; Contessi, Nicola; De Marco, Cinzia; Bertoldi, Serena; Tanzi, Maria Cristina; Daidone, Maria Grazia; Farè, Silvia

    2017-09-18

    Breast cancer (BC) represents the most incident cancer case in women (29%), with high mortality rate. Bone metastasis occurs in 20-50% cases and, despite advances in BC research, the interactions between tumor cells and the metastatic microenvironment are still poorly understood. In vitro 3D models gained great interest in cancer research, thanks to the reproducibility, the 3D spatial cues and associated low costs, compared to in vivo and 2D in vitro models. In this study, we investigated the suitability of a poly-ether-urethane (PU) foam as 3D in vitro model to study the interactions between BC tumor-initiating cells and the bone microenvironment. PU foam open porosity (>70%) appeared suitable to mimic trabecular bone structure. The PU foam showed good mechanical properties under cyclic compression (E=69-109kPa), even if lower than human trabecular bone. The scaffold supported osteoblast SAOS-2 cell line proliferation, with no cytotoxic effects. Human adipose derived stem cells (ADSC) were cultured and differentiated into osteoblast lineage on the PU foam, as shown by alizarin red staining and RT-PCR, thus offering a bone biomimetic microenvironment to the further co-culture with BC derived tumor-initiating cells (MCFS). Tumor aggregates were observed after three weeks of co-culture by e-cadherin staining and SEM; modification in CaP distribution was identified by SEM-EDX and associated to the presence of tumor cells. In conclusion, we demonstrated the suitability of the PU foam to reproduce a bone biomimetic microenvironment, useful for the co-culture of human osteoblasts/BC tumor-initiating cells and to investigate their interaction. 3D in vitro models represent an outstanding alternative in the study of tumor metastases development, compared to traditional 2D in vitro cultures, which oversimplify the 3D tissue microenvironment, and in vivo studies, affected by low reproducibility and ethical issues. Several scaffold-based 3D in vitro models have been proposed

  13. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinnerichs, Terry D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lo, Chi S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  14. Modeling of metal foaming with lattice Boltzmann automata

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, C.; Thies, M.; Singer, R.F. [WTM Institute, Department of Materials Science, University of Erlangen, Martensstrasse 5, D-91058 Erlangen (Germany)

    2002-10-01

    The formation and decay of foams produced by gas bubble expansion in a molten metal is numerically simulated with the Lattice Boltzmann Method (LBM) which belongs to the cellular automaton techniques. The present state of the two dimensional model allows the investigation of the foam evolution process comprising bubble expansion, bubble coalescence, drainage, and eventually foam collapse. Examples demonstrate the influence of the surface tension, viscosity and gravity on the foaming process and the resulting cell structure. In addition, the potential of the LBM to solve problems with complex boundary conditions is illustrated by means of a foam developing within the constraints of a mould as well as a foaming droplet exposed to gravity. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  15. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    Science.gov (United States)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  16. Toward a spin foam model description of black hole entropy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Islas, J Manuel [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, UNAM, A Postal 20-726, 01000, Mexico DF (Mexico)], E-mail: jmgislas@leibniz.iimas.unam.mx

    2008-12-07

    We propose a way to describe the origin of black hole entropy in the spin foam models of quantum gravity. This stimulates a new way to study the relation of spin foam models and loop quantum gravity. (comments, replies and notes)

  17. Finiteness of the EPRL/FK spin foam model

    CERN Document Server

    Mikovic, Aleksandar

    2011-01-01

    We show that the EPRL/FK spin foam model of quantum gravity can be made finite by dividing the vertex amplitude with an appropriate power $p$ of the product of dimensions of the vertex spins and intertwiners. This power is independent of the spin foam and we find a lower bound for $p$ which makes the state sum absolutely convergent.

  18. Structure-property relationships of an electron beam cured model urethane prepolymer

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, E. (Virginia Polytechnic Inst. and State Univ., Blacksburg); Wilkes, G.; Park, K.

    1981-10-01

    A semicrystalline urethane prepolymer derived from polycaprolactone was crosslinked below and above the melt to different levels using electron beam radiation. Studies at room temperature on the systems crosslinked under ambient conditions, which is below the melting temperature, show that changes in mechanical properties which occur as the electron beam dose is increased are due principally to the increase in crosslink density and to the changes in the crosslinking mechanism. Specifically, crosslinking takes place mainly at the acrylate double bonds or may also occur along the polymer backbone. All systems, however, are semicrystalline and possess a spherulitic texture. Mechanical and rheo-optical testing above the melt on these same systems indicate that at extensions up to 125% classical rubber elasticity theory and photoelasticity theory is obeyed. Isothermal crystallization kinetics measurements show that the rate of crystallization decreases as the electron beam dose is raised. When the systems are crosslinked above the melt again a spherulitic texture results. Mechanical testing above the melting temperature on the prepolymer crosslinked up to 4 Mrad shows that at elongations up to 125% classical rubber elasticity theory is obeyed. At room temperature these latter crosslinked systems exhibited a lower modulus compared to the materials crosslinked below the melt. Polarizing optical microscopy carried out above the melting temperature strongly suggested that no order was present in these systems during crosslinking in contrast to those crosslinked below the melting temperature.

  19. Mathematical models for foam-diverted acidizing and their applications

    Institute of Scientific and Technical Information of China (English)

    Li Songyan; Li Zhaomin; Lin Riyi

    2008-01-01

    Foam diversion can effectively solve the problem of uneven distribution of acid in layers of different permeabilities during matrix acidizing.Based on gas trapping theory and the mass conservation equation,mathematical models were developed for foam-diverted acidizing,which can be achieved by a foam slug followed by acid injection or by continuous injection of foamed acid.The design method for foam-diverted acidizing was also given.The mathematical models were solved by a computer program.Computed results show that the total formation skin factor,wellhead pressure and bottomhole pressure increase with foam injection,but decrease with acid injection.Volume flow rate in a highpermeability layer decreases,while that in a low-permeability layer increases,thus diverting acid to the low-permeability layer from the high-permeability layer.Under the same formation conditions,for foamed acid treatment the operation was longer,and wellhead and bottomhole pressures are higher.Field application shows that foam slug can effectively block high permeability layers,and improve intake profile noticeably.

  20. Modeling for Ultrasonic Health Monitoring of Foams with Embedded Sensors

    Science.gov (United States)

    Wang, L.; Rokhlin, S. I.; Rokhlin, Stanislav, I.

    2005-01-01

    In this report analytical and numerical methods are proposed to estimate the effective elastic properties of regular and random open-cell foams. The methods are based on the principle of minimum energy and on structural beam models. The analytical solutions are obtained using symbolic processing software. The microstructure of the random foam is simulated using Voronoi tessellation together with a rate-dependent random close-packing algorithm. The statistics of the geometrical properties of random foams corresponding to different packing fractions have been studied. The effects of the packing fraction on elastic properties of the foams have been investigated by decomposing the compliance into bending and axial compliance components. It is shown that the bending compliance increases and the axial compliance decreases when the packing fraction increases. Keywords: Foam; Elastic properties; Finite element; Randomness

  1. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Linda Domeier; Marion Hunter

    1999-01-01

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  2. The new spin foam models and quantum gravity

    CERN Document Server

    Perez, Alejandro

    2012-01-01

    In this article we give a systematic definition of the recently introduced spin foam models for four dimensional quantum gravity reviewing the main results on their semiclassical limit on fixed discretizations.

  3. Foam rheology: A model of viscous effects in shear flow

    Science.gov (United States)

    Kraynik, Andrew M.; Reinelt, Douglas A.

    Foams consisting of gas bubbles dispersed in a continuous network of thin liquid films display a remarkable range of rheological characteristics that include a finite shear modulus, yield stress, non-Newtonian viscosity, and slip at the wall. Progress in developing micromechanical theories to describe foam rheology has depended upon two-dimensional models, which in most cases are assumed to have perfectly ordered structure. Princen accounted for surface tension and geometrical effects, and analyzed the nonlinear elastic response of a spatially periodic foam in simple shear. His analysis has been extended to account for more general deformations. Khan and Armstrong and Kraynik and Hansen have proposed ad hoc models for viscous effects in foam rheology. Their models capture numerous qualitative phenomena but incorporate relaxation mechanisms based upon overly simplified assumptions of liquid flow in the thin films. Mysels, Shinoda, and Frankel considered soap films with interfaces that are inextensible due to the presence of surfactants. They analyzed the primary flow that occurs when such films are slowly withdrawn from or recede into essentially static junction regions such as the Plateau borders in a foam. Adopting this mechanism, Schwartz and Princen considered small periodic deformations of a foam and calculated the energy dissipation due to viscous flow in the thin films. In the following, we also adopt the basic interfacial and viscous mechanisms introduced by Mysels et al. and analyze simple shearing deformations of finite amplitude. The configuration and effective stress of the foam are determined. Under these deformation conditions, the foam is a nonlinear viscoelastic material. Results for the uniform expansion of a foam are also presented.

  4. Use and application of MADYMO 5.3 foam material model for expanded polypropylene foam

    NARCIS (Netherlands)

    Kant, A.R.; Suffis, B.; Lüsebrink, H.

    1998-01-01

    The dynamic material characteristics of expanded polypropylene are discussed. The in-depth studies, carried out by JSP International, in cooperation with TNO, are used to validate the MADYMO foam material model. The dynamic compression of expanded polypropylene follows a highly non-linear stress-str

  5. Holonomy Spin Foam Models: Definition and Coarse Graining

    CERN Document Server

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech

    2012-01-01

    We propose a new holonomy formulation for spin foams, which naturally extends the theory space of lattice gauge theories. This allows current spin foam models to be defined on arbitrary two-complexes as well as to generalize current spin foam models to arbitrary, in particular finite groups. The similarity with standard lattice gauge theories allows to apply standard coarse graining methods, which for finite groups can now be easily considered numerically. We will summarize other holonomy and spin network formulations of spin foams and group field theories and explain how the different representations arise through variable transformations in the partition function. A companion paper will provide a description of boundary Hilbert spaces as well as a canonical dynamic encoded in transfer operators.

  6. Design, characterization and modeling of biobased acoustic foams

    Science.gov (United States)

    Ghaffari Mosanenzadeh, Shahrzad

    measurements using an inverse technique. As the next step towards in depth understanding of the relation between cell morphology and sound absorption of open cell foams, a semi-analytical model was developed to account for the effect of micro cellular properties such as cell wall thickness and reticulation rate on overall macroscopic and structural properties. Developed model provides the tools to optimize the porous structure and enhance sound absorption capability.

  7. BTZ black hole entropy: a spin foam model description

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Islas, J Manuel [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, UNAM, A Postal 20-726, 01000, Mexico DF (Mexico)], E-mail: jmgislas@leibniz.iimas.unam.mx

    2008-12-21

    We present a microscopical explanation of the entropy of the BTZ black hole using discrete spin foam models of quantum gravity. The entropy of a black hole is given in geometrical terms which led us to think that its statistical description must be given in terms of a quantum geometry. In this paper we present it in terms of spin foam geometrical observables at the horizon of the black hole.

  8. DISCRETE MODELLING OF TWO-DIMENSIONAL LIQUID FOAMS

    Institute of Scientific and Technical Information of China (English)

    Qicheng Sun

    2003-01-01

    Liquid foam is a dense random packing of gas or liquid bubbles in a small amount of immiscible liquid containing surfactants. The liquid within the Plateau borders, although small in volume, causes considerable difficulties to the investigation of the spatial structure and physical properties of foams, and the situation becomes even more complicated as the fluid flows. To solve these problems, a discrete model of two-dimensional liquid foams on the bubble scale is proposed in this work. The bubble surface is represented with finite number of nodes, and the liquid within Plateau borders is discretized into lattice particles. The gas in bubbles is treated as ideal gas at constant temperatures. This model is tested by choosing an arbitrary shape bubble as the initial condition. This then automatically evolves into a circular shape, which indicates that the surface energy minimum routine is obeyed without calling external controlling conditions. Without inserting liquid particle among the bubble channels, periodic ordered and disordered dry foams are both simulated, and the fine foam structures are developed. Wet foams are also simulated by inserting fluid among bubble channels. The calculated coordination number, as a function of liquid fractions, agrees well with the standard values.

  9. MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB

    Directory of Open Access Journals (Sweden)

    MD AZREE OTHUMAN MYDIN

    2013-06-01

    Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.

  10. Coarse graining methods for spin net and spin foam models

    CERN Document Server

    Dittrich, Bianca; Martin-Benito, Mercedes

    2011-01-01

    We undertake first steps in making a class of discrete models of quantum gravity, spin foams, accessible to a large scale analysis by numerical and computational methods. In particular, we apply Migdal-Kadanoff and Tensor Network Renormalization schemes to spin net and spin foam models based on finite Abelian groups and introduce `cutoff models' to probe the fate of gauge symmetries under various such approximated renormalization group flows. For the Tensor Network Renormalization analysis, a new Gauss constraint preserving algorithm is introduced to improve numerical stability and aid physical interpretation. We also describe the fixed point structure and establish an equivalence of certain models.

  11. Effective action and semiclassical limit of spin foam models

    CERN Document Server

    Mikovic, A

    2011-01-01

    We define an effective action for spin foam models of quantum gravity by adapting the background field method from quantum field theory. We show that the Regge action is the leading term in the semi-classical expansion of the spin foam effective action if the vertex amplitude has the large-spin asymptotics which is proportional to an exponential function of the vertex Regge action. In the case of the known three-dimensional and four-dimensional spin foam models this amounts to modifying the vertex amplitude such that the exponential asymptotics is obtained. In particular, we show that the ELPR/FK model vertex amplitude can be modified such that the new model is finite and has the Einstein-Hilbert action as its classical limit. We also calculate the first-order and some of the second-order quantum corrections in the semi-classical expansion of the effective action.

  12. A kinetic approach to modeling the manufacture of high density strucutral foam: Foaming and polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Mondy, Lisa Ann [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Noble, David R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Brunini, Victor [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Roberts, Christine Cardinal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Long, Kevin Nicholas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Soehnel, Melissa Marie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Celina, Mathias C. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Wyatt, Nicholas B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Thompson, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Tinsley, James

    2015-09-01

    We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. The isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to

  13. A Model of Foam Density Prediction for Expanded Perlite Composites

    Directory of Open Access Journals (Sweden)

    Arifuzzaman Md

    2015-01-01

    Full Text Available Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15 – 0.5 g/cm3 produced with a range of compaction ratios (1.5 – 3.5, a range of sodium silicate contents (0.05 – 0.35 g/ml in dilution, a range of expanded perlite particle sizes (1 – 4 mm, and various perlite densities (such as skeletal, material, bulk, and envelope densities. A close agreement between predictions and experimental results was found.

  14. EXPERIMENTAL STUDY AND MODELING OF PRESSURE LOSS FOR FOAM-CUTTINGS MIXTURE FLOW IN HORIZONTAL PIPE

    Institute of Scientific and Technical Information of China (English)

    AMNA Gumati; HIROSHI Takahshi

    2011-01-01

    In this study,we first sought to elucidate foam rheology to describe foam flow behavior,and then to experimentally investigate the pressure losses for both foam and foam-cuttings flow in a horizontal pipe by considering both varied foam qualities of 80%,85% and 90% and foam velocities.Also,a two-layer numerical model to predict pressure loss was developed based on experimental observations of cuttings behavior.Results show that the foam behaves like a power-law fluid.Furthermore,and the pressure loss significantly increases as foam velocity increases,while the delivered cuttings concentration dramatically decreases.Moreover,results indicate that both the pressure loss and the delivered cuttings concentration increase with foam quality.Comparisons between the experimental results and numerical model predictions show satisfactory agreement.

  15. Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mondy, Lisa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lorenzo, Henry T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-25

    Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.

  16. Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R.; Roberts, Christine Cardinal; Mondy, Lisa Ann; Soehnel, Melissa Marie; Johnson, Kyle; Lorenzo, Henry T.

    2016-10-01

    Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.

  17. Modeling of Mold Filling and Solidification in Lost Foam Casting

    Institute of Scientific and Technical Information of China (English)

    Fengjun LI; Houfa SHEN; Baicheng LIU

    2003-01-01

    Based on the characteristics of the lost foam casting (LFC) and the artificial neural network technique, a mathematicalmodel for the simulation of the melt-pattern interface movement during the mold filling of LFC has been proposed andexperimentally verified. The simulation results are consistent with the experiments in both the shapes of melt frontand filling sequences. According to the calculated interface locations, the fluid flow and the temperature distributionsduring the mold filling and solidification processes were calculated, and the shrinkage defect of a lost foam ductileiron casting was predicted by considering the mold wall movement in LFC. The simulation method was applied tooptimize the casting design of lost foam ductile iron castings. It is shown that the model can be used for the defectsprediction and for casting design optimization in the practical LFC production.

  18. Effective action for EPRL/FK spin foam models

    CERN Document Server

    Mikovic, Aleksandar

    2011-01-01

    We show that a natural modification of the EPRL/FK vertex amplitude gives a finite spin foam model whose effective action gives the Einstein-Hilbert action in the limit of large spins and arbitrarily fine spacetime triangulations. The first-order quantum corrections can be easily computed and we show how to calculate the higher-order corrections.

  19. Novel wound models for characterizing ibuprofen release from foam dressings

    DEFF Research Database (Denmark)

    Steffansen, Bente; Herping, Sofie P K

    2008-01-01

    The purpose of the present study was to design and characterize low exudate level wound (LEW) and high exudate level wound (HEW) in vitro models by means of investigating therapeutic substance release from exudate-absorbing formulations. Biatain Ibu foam dressing was used to characterize in vitro...

  20. Calibrating the Abaqus Crushable Foam Material Model using UNM Data

    Energy Technology Data Exchange (ETDEWEB)

    Schembri, Philip E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Matthew W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-27

    Triaxial test data from the University of New Mexico and uniaxial test data from W-14 is used to calibrate the Abaqus crushable foam material model to represent the syntactic foam comprised of APO-BMI matrix and carbon microballoons used in the W76. The material model is an elasto-plasticity model in which the yield strength depends on pressure. Both the elastic properties and the yield stress are estimated by fitting a line to the elastic region of each test response. The model parameters are fit to the data (in a non-rigorous way) to provide both a conservative and not-conservative material model. The model is verified to perform as intended by comparing the values of pressure and shear stress at yield, as well as the shear and volumetric stress-strain response, to the test data.

  1. Effect of absorbed dose on radiation crosslinking polyhedral oligomeric silsesquioxane/poly (urethane-imide) nano-composite foam%吸收剂量对多面体低聚倍半硅氧烷/聚(氨酯-酰亚胺)辐射共交联纳米复合泡沫材料的影响

    Institute of Scientific and Technical Information of China (English)

    周成飞; 曹巍; 翟彤; 曾心苗; 郭建梅

    2013-01-01

    以甲基丙烯酸β-羟乙酯和乙烯基多面体低聚倍半硅氧烷(POSS)为原料,采用一步法制得POSS/聚(氨酯-酰亚胺)纳米复合泡沫材料,研究了γ射线吸收剂量对纳米复合泡沫材料性能的影响.结果表明,在吸收剂量为50 kGy的条件下辐照,材料表现出最好的热稳定性;纳米复合泡沫材料玻璃态区的储能模量最高,损耗模量也遵循同样规律,但在75 kGy条件下损耗峰值最高.另外,吸声性能、阻燃性能和压缩强度都随着吸收剂量的增大而提高.%The polyhedral oligomeric silsesquioxane ( POSS)/poly( urethane-imide) ( PUI) was prepared by one-step method with 2-hydrooxyethyl methacrylate and vinyl-POSS as materials. The effect of absorbed dose of γ-ray on the properties of the nano-composite foam was investigated. The results showed that the thermal stability of radiation crosslinking POSS/PUI nano-composite foam was the best when absorbed dose was 50 kGy. The storage modulus in glassy zone of nano-composite foam was the hightest when absorbed dose was 50 kGy, while the loss modulus in glassy zone followed the same rule, but the loss peak value reached the maximun when absorbed dose was 75 kGy. Besides, the acoustic properties, flame retardance and compressive strength of nano-composite foam increased with the increase of absorbed dose.

  2. Response of removable epoxy foam exposed to fire using an element death model.

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L.

    2004-09-01

    Response of removable epoxy foam (REF) to high heat fluxes is described using a decomposition chemistry model [1] in conjunction with a finite element heat conduction code [2] that supports chemical kinetics and dynamic radiation enclosures. The chemistry model [1] describes the temporal transformation of virgin foam into carbonaceous residue by considering breakdown of the foam polymer structure, desorption of gases not associated with the foam polymer, mass transport of decomposition products from the reaction site to the bulk gas, and phase equilibrium. The finite element foam response model considers the spatial behavior of the foam by using measured and predicted thermophysical properties in combination with the decomposition chemistry model. Foam elements are removed from the computational domain when the condensed mass fractions of the foam elements are close to zero. Element removal, referred to as element death, creates a space within the metal confinement causing radiation to be the dominant mode of heat transfer between the surface of the remaining foam elements and the interior walls of the confining metal skin. Predictions were compared to front locations extrapolated from radiographs of foam cylinders enclosed in metal containers that were heated with quartz lamps [3,4]. The effects of the maximum temperature of the metal container, density of the foam, the foam orientation, venting of the decomposition products, pressurization of the metal container, and the presence or absence of embedded components are discussed.

  3. Development, testing, and numerical modeling of a foam sandwich biocomposite

    Science.gov (United States)

    Chachra, Ricky

    This study develops a novel sandwich composite material using plant based materials for potential use in nonstructural building applications. The face sheets comprise woven hemp fabric and a sap based epoxy, while the core comprises castor oil based foam with waste rice hulls as reinforcement. Mechanical properties of the individual materials are tested in uniaxial compression and tension for the foam and hemp, respectively. The sandwich composite is tested in 3 point bending. Flexural results are compared to a finite element model developed in the commercial software Abaqus, and the validated model is then used to investigate alternate sandwich geometries. Sandwich model responses are compared to existing standards for nonstructural building panels, showing that the novel material is roughly half the strength of equally thick drywall. When space limitations are not an issue, a double thickness sandwich biocomposite is found to be a structurally acceptable replacement for standard gypsum drywall.

  4. Invited review: The new spin foam models and quantum gravity

    Directory of Open Access Journals (Sweden)

    Alejandro Perez

    2012-01-01

    Full Text Available In this article, we give a systematic definition of the recently introduced spin foam models for four-dimensional quantum gravity, reviewing the main results on their semiclassical limit on fixed discretizations.Received: 17 October 2011, Accepted: 18 March 2012; Edited by: J. Pullin; Reviewed by: L. Freidel, Perimeter Institute for Theoretical Physics, Waterloo, Canada; DOI: http://dx.doi.org/10.4279/PIP.040004Cite as: A. Perez, Papers in Physics 4, 040004 (2012

  5. Modeling of NIF Wetted-Foam Capsule Experiments

    Science.gov (United States)

    Peterson, Robert; Olson, Richard; Kline, John

    2015-11-01

    Wetting of a foam with liquid DT or DD in an ICF capsule provides a mechanism of directly controlling the convergence ratio of the implosion. The density of the DD or DT vapor in the central void in the CH foam is set by the temperature of the liquid fuel, so the convergence ratio is easily adjustable. The capsule is driven by a two step laser pulse on NIF. The ablator is made of high density carbon in these experiments, but it could be beryllium. The experiments will test how well the modeling computer codes agree with experiment as the convergence ratio increases. It is possible that has the convergence ratio increases, a point will be reached were the modeling no longer agree with experiment. We wish to find this limit. In the presentation we will present computer model simulations in 1-D of the performance of NIF wetted-foam capsules, where the vapor density, the ablator type, and the choice of fuel (DD or DT) are varied.

  6. SREF - a Simple Removable Epoxy Foam decomposition chemistry model.

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L.

    2003-12-01

    A Simple Removable Epoxy Foam (SREF) decomposition chemistry model has been developed to predict the decomposition behavior of an epoxy foam encapsulant exposed to high temperatures. The foam is composed of an epoxy polymer, blowing agent, and surfactant. The model is based on a simple four-step mass loss model using distributed Arrhenius reaction rates. A single reaction was used to describe desorption of the blowing agent and surfactant (BAS). Three of the reactions were used to describe degradation of the polymer. The coordination number of the polymeric lattice was determined from the chemical structure of the polymer; and a lattice statistics model was used to describe the evolution of polymer fragments. The model lattice was composed of sites connected by octamethylcylotetrasiloxane (OS) bridges, mixed product (MP) bridges, and bisphenol-A (BPA) bridges. The mixed products were treated as a single species, but are likely composed of phenols, cresols, and furan-type products. Eleven species are considered in the SREF model - (1) BAS, (2) OS, (3) MP, (4) BPA, (5) 2-mers, (6) 3-mers, (7) 4-mers, (8) nonvolatile carbon residue, (9) nonvolatile OS residue, (10) L-mers, and (11) XL-mers. The first seven of these species (VLE species) can either be in the condensed-phase or gas-phase as determined by a vapor-liquid equilibrium model based on the Rachford-Rice equation. The last four species always remain in the condensed-phase. The 2-mers, 3-mers, and 4-mers are polymer fragments that contain two, three, or four sites, respectively. The residue can contain C, H, N, O, and/or Si. The L-mer fraction consists of polymer fragments that contain at least five sites (5-mer) up to a user defined maximum mer size. The XL-mer fraction consists of polymer fragments greater than the user specified maximum mer size and can contain the infinite lattice if the bridge population is less than the critical bridge population. Model predictions are compared to 133-thermogravimetric

  7. Influence of Microstructure on Micro-/Nano-Mechanical Measurements of Select Model Transparent Poly(urethane urea) Elastomers

    Science.gov (United States)

    2012-12-17

    industrial, medical, and military applications, particularly in the areas of coating , adhesives, foams, and composite structures [1]. More specifically, high...HMX probes were calibrated prior to each scan using a stan- dard sample composed of a copolymer of polystyrene and low- density polyethylene (PSeLDPE...scattering ( WAXS ) (not shown), where results from the latter indicated only a broad halo with a Bragg spacing of w4.4 A, confirming the amorphous

  8. On background-independent renormalization of spin foam models

    CERN Document Server

    Bahr, Benjamin

    2014-01-01

    In this article we discuss an implementation of renormalization group ideas to spin foam models, where there is no a priori length scale with which to define the flow. In the context of the continuum limit of these models, we show how the notion of cylindrical consistency of path integral measures gives a natural analogue of Wilson's RG flow equations for background-independent systems. We discuss the conditions for the continuum measures to be diffeomorphism-invariant, and consider both exact and approximate examples.

  9. Intranasal Administration of Type V Collagen Reduces Lung Carcinogenesis through Increasing Endothelial and Epithelial Apoptosis in a Urethane-Induced Lung Tumor Model.

    Science.gov (United States)

    Parra, Edwin Roger; Alveno, Renata Antunes; Faustino, Carolina Brito; Corrêa, Paula Yume Sato Serzedello; Vargas, Camilla Mutai; de Morais, Jymenez; Rangel, Maristela Peres; Velosa, Ana Paula Pereira; Fabro, Alexandre Todorovic; Teodoro, Walcy Rosolia; Capelozzi, Vera Luiza

    2016-08-01

    Type V collagen (Col V) is a "minor" component of normal lung extracellular matrix, which is subjected to decreased and abnormal synthesis in human lung infiltrating adenocarcinoma. We previously reported that a direct link between low amounts of Col V and decreased cell apoptosis may favor cancer cell growth in the mouse lung after chemical carcinogenesis. Moreover, this collagen species was able to trigger DNA fragmentation and impair survival of neoplastic cells. In this study, we have extended our investigation with the aim to obtain further evidence that the death induced by Col V-treatment is of the caspase-9 apoptotic type. We used (1) optical and electron microscopy, (2) quantitation of TUNEL-labeled cells and (3) analysis of the expression levels of Col V and selected genes coding for apoptosis-linked factors, by conventional RT-PCR. BALB/c mice were injected intraperitoneally with 1.5 g/kg body weight of urethane. After urethane injection, the animals received intranasal administration of 20 µg/20 µl of Col V every day during 2 months. We report here that Col V treatment was able to determine significant increase in Col V protein and gene expression and in the percentage of TUNEL-positive cells, to up-regulate caspase-9, resulting in low growth of tumor cells. Our data validate chemical carcinogenesis as a suitable "in vivo" model for further and more detailed studies on the molecular mechanisms of the death response induced by Col V in lung infiltrating adenocarcinoma opening new strategies for treatment.

  10. Spin foam models for quantum gravity

    Science.gov (United States)

    Perez, Alejandro

    The definition of a quantum theory of gravity is explored following Feynman's path-integral approach. The aim is to construct a well defined version of the Wheeler-Misner- Hawking ``sum over four geometries'' formulation of quantum general relativity (GR). This is done by means of exploiting the similarities between the formulation of GR in terms of tetrad-connection variables (Palatini formulation) and a simpler theory called BF theory. One can go from BF theory to GR by imposing certain constraints on the BF-theory configurations. BF theory contains only global degrees of freedom (topological theory) and it can be exactly quantized á la Feynman introducing a discretization of the manifold. Using the path integral for BF theory we define a path integration for GR imposing the BF-to-GR constraints on the BF measure. The infinite degrees of freedom of gravity are restored in the process, and the restriction to a single discretization introduces a cut- off in the summed-over configurations. In order to capture all the degrees of freedom a sum over discretization is implemented. Both the implementation of the BF-to-GR constraints and the sum over discretizations are obtained by means of the introduction of an auxiliary field theory (AFT). 4-geometries in the path integral for GR are given by the Feynman diagrams of the AFT which is in this sense dual to GR. Feynman diagrams correspond to 2-complexes labeled by unitary irreducible representations of the internal gauge group (corresponding to tetrad rotation in the connection to GR). A model for 4-dimensional Euclidean quantum gravity (QG) is defined which corresponds to a different normalization of the Barrett-Crane model. The model is perturbatively finite; divergences appearing in the Barrett-Crane model are cured by the new normalization. We extend our techniques to the Lorentzian sector, where we define two models for four-dimensional QG. The first one contains only time-like representations and is shown to be

  11. Styrene-based shape memory foam: fabrication and mathematical modeling

    Science.gov (United States)

    Yao, Yongtao; Zhou, Tianyang; Qin, Chao; Liu, Yanju; Leng, Jinsong

    2016-10-01

    Shape memory polymer foam is a promising kind of structure in the biomedical and aerospace field. Shape memory styrene foam with uniform and controlled open-cell structure was successfully fabricated using a salt particulate leaching method. Shape recovery capability exists for foam programming in both high-temperature compression and low-temperature compression (Ashby as well as differential micromechanics theory were applied to predict Young’s modulus and the mechanical behavior of SMP styrene foams during the compression process.

  12. Shape memory polyurethane foams

    Directory of Open Access Journals (Sweden)

    B. K. Kim

    2012-01-01

    Full Text Available Molded flexible polyurethane (PU foams have been synthesized from polypropylene glycol (PPG with different molecular weights (Mw and functionalities (f, and 2,4/2,6-toluene diisocyanate (TDI-80 with water as blowing agent. It was found that the glassy state properties of the foam mainly depended on the urethane group content while the rubbery state properties on the crosslink density. That is, PPG of low MW and low f (more urethane groups provided superior glass state modulus, strength, density, shape fixity and glass transition temperature (Tg, while that of high Mw and high f (higher crosslink density showed high rubbery modulus and shape recovery. Consequently shape fixity of low Mw PPG decreased from 85 to 72% while shape recovery increased from 52 to 63% as the content of high Mw PPG increased from 0 to 40%.

  13. Multiaxial behavior of foams - Experiments and modeling

    Science.gov (United States)

    Maheo, Laurent; Guérard, Sandra; Rio, Gérard; Donnard, Adrien; Viot, Philippe

    2015-09-01

    Cellular materials are strongly related to pressure level inside the material. It is therefore important to use experiments which can highlight (i) the pressure-volume behavior, (ii) the shear-shape behavior for different pressure level. Authors propose to use hydrostatic compressive, shear and combined pressure-shear tests to determine cellular materials behavior. Finite Element Modeling must take into account these behavior specificities. Authors chose to use a behavior law with a Hyperelastic, a Viscous and a Hysteretic contributions. Specific developments has been performed on the Hyperelastic one by separating the spherical and the deviatoric part to take into account volume change and shape change characteristics of cellular materials.

  14. A finite deformation coupled plastic-damage model for simulating fracture of metal foams

    OpenAIRE

    Pan, Hao; Abu Al-Rub, Rashid

    2014-01-01

    Metal foams are a novel class of lightweight materials with unique mechanical, thermal, and acoustical properties. The low ductility of metal foams hinders the possibilities of applying secondary forming techniques to shape metal foam sandwich panels into desired industrial components. An important factor is the limited studies on their macroscopic damage and fracture behavior under complex loading conditions. There exist numerous mechanistic micromechanics models describing the fracture beha...

  15. Impact of Interfacial Characteristics on Foam Structure: Study on Model Fluids and at Pilot Scale

    Directory of Open Access Journals (Sweden)

    Mezdour Samir

    2017-03-01

    Full Text Available Foams represent an important area of research because of their relevance to many industrial processes. In continuous foaming operations, foaming ability depends on the process parameters and the characteristics of the raw materials used for foamed products. The effects of fluid viscosity and equilibrium surface tension on foam structure have been studied extensively. Furthermore, as surface active agents diffuse to the interface, they can modify other interface properties through their adsorption, such as interfacial rheology and surface tension kinetics. In order to better understand how these two interfacial properties influence foam structuring, we formulated model foaming solutions with different interface viscoelasticity levels and adsorption rates, but all with the same equilibrium surface tension and viscosity. The solutions were made up of a surface active agent and glucose syrup, so as to maintain a Newtonian behaviour. Five surface active agents were used: Whey Protein Isolate (WPI, sodium caseinate, saponin, cetyl phosphate and Sodium Dodecyl Sulphate (SDS, at concentrations ranging from 0.1% to 1%. Their molecular characteristics, and their interaction with the glucose syrup, made it possible to obtain a range of interface viscoelasticities and surface tension kinetics for these model solutions. The solutions were whipped in a continuously-operating industrial foaming device in order to control process parameters such as shearing and overrun, and to ensure that the experiment was representative of industrial production. The structure of the foams thus obtained foams was then determined by characterising bubble size using image analysis. For all the model solutions, both the viscoelastic moduli and apparent diffusion coefficient were linked to foam structure. The results showed that both high interface viscoelasticity and rapid diffusion kinetics induced a foam structure containing small bubbles. Both effects, as well as the impact of

  16. A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro

    OpenAIRE

    Zhang, Jian Ying; Beckman, Eric J.; Piesco, Nicholas P.; Agarwal, Sudha

    2000-01-01

    A novel non-toxic biodegradable lysine-di-isocyanate (LDI)-based urethane polymer was developed for use in tissue engineering applications. This matrix was synthesized with highly purified LDI made from the lysine diethylester. The ethyl ester of LDI was polymerized with glycerol to form a prepolymer. LDI–glycerol prepolymer when reacted with water foamed with the liberation of CO2 to provide a pliable spongy urethane polymer. The LDI–glycerol matrix degraded in aqueous solutions at 100, 37, ...

  17. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    Science.gov (United States)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  18. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model.

    Science.gov (United States)

    Zhang, Liying; Gurao, Manish; Yang, King H; King, Albert I

    2011-05-15

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou's impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou's impact device, has not been fully characterized. The foam used in Marmarou's device was tested at seven strain rates ranging from quasi-static to dynamic (0.014-42.86 s⁻¹) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam.

  19. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone

    Directory of Open Access Journals (Sweden)

    Shepherd Duncan ET

    2008-10-01

    Full Text Available Abstract Background Polyurethane (PU foam is widely used as a model for cancellous bone. The higher density foams are used as standard biomechanical test materials, but none of the low density PU foams are universally accepted as models for osteoporotic (OP bone. The aim of this study was to determine whether low density PU foam might be suitable for mimicking human OP cancellous bone. Methods Quasi-static compression tests were performed on PU foam cylinders of different lengths (3.9 and 7.7 mm and of different densities (0.09, 0.16 and 0.32 g.cm-3, to determine the Young's modulus, yield strength and energy absorbed to yield. Results Young's modulus values were 0.08–0.93 MPa for the 0.09 g.cm-3 foam and from 15.1–151.4 MPa for the 0.16 and 0.32 g.cm-3 foam. Yield strength values were 0.01–0.07 MPa for the 0.09 g.cm-3 foam and from 0.9–4.5 MPa for the 0.16 and 0.32 g.cm-3 foam. The energy absorbed to yield was found to be negligible for all foam cylinders. Conclusion Based on these results, it is concluded that 0.16 g.cm-3 PU foam may prove to be suitable as an OP cancellous bone model when fracture stress, but not energy dissipation, is of concern.

  20. Application of a continuum constitutive model to metallic foam DEN-specimens in compression

    NARCIS (Netherlands)

    Onck, P.R.

    2001-01-01

    The behavior of double-edge notched specimens of metallic foams in compression is studied numerically. To model the constitutive behavior of the metallic foam, a recently developed phenomenological, pressure-sensitive yield surface is used. Compressive yielding in response to hydrostatic stress is i

  1. A model for foam formation, stability, and breakdown in glass-melting furnaces

    NARCIS (Netherlands)

    Schaaf, J. van der; Beerkens, R.G.C.

    2006-01-01

    A dynamic model for describing the build-up and breakdown of a glass-melt foam is presented. The foam height is determined by the gas flux to the glass-melt surface and the drainage rate of the liquid lamellae between the gas bubbles. The drainage rate is determined by the average gas bubble radius

  2. A taste of Hamiltonian constraint in spin foam models

    CERN Document Server

    Bonzom, Valentin

    2011-01-01

    The asymptotics of some spin foam amplitudes for a quantum 4-simplex is known to display rapid oscillations whose frequency is the Regge action. In this note, we reformulate this result through a difference equation, asymptotically satisfied by these models, and whose semi-classical solutions are precisely the sine and the cosine of the Regge action. This equation is then interpreted as coming from the canonical quantization of a simple constraint in Regge calculus. This suggests to lift and generalize this constraint to the phase space of loop quantum gravity parametrized by twisted geometries. The result is a reformulation of the flat model for topological BF theory from the Hamiltonian perspective. The Wheeler-de-Witt equation in the spin network basis gives difference equations which are exactly recursion relations on the 15j-symbol. Moreover, the semi-classical limit is investigated using coherent states, and produces the expected results. It mimics the classical constraint with quantized areas, and for ...

  3. Conductive polymer foams with carbon nanofillers – Modeling percolation behavior

    Directory of Open Access Journals (Sweden)

    O. Maxian

    2017-05-01

    Full Text Available A new numerical model considering nanofiller random distribution in a porous polymeric matrix was developed to predict electrical percolation behavior in systems incorporating 1D-carbon nanotubes (CNTs and/or 2D-graphene nanoplatelets (GNPs. The numerical model applies to porous systems with closed-cell morphology. The percolation threshold was found to decrease with increasing porosity due to filler repositioning as a result of foaming. CNTs were more efficient in forming a percolative network than GNPs. High-aspect ratio (AR and randomly oriented fillers were more prone to form a network. Reduced percolation values were determined for misaligned fillers as they connect better in a network compared to aligned ones. Hybrid CNT-GNP fillers show synergistic effects in forming electrically conductive networks by comparison with single fillers.

  4. Numerical Modeling of the Compression Process of Elastic Open-cell Foams

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The random models of open-cell foams that can reflect the actual cell geometrical properties are constructed with the Voronoi technique. The compression process of elastic open-cell foams is simulated with the nonlinear calculation module of finite element analysis program. In order to get the general results applicable to this kind of materials, the dimensionless compressive stress is used and the stress-strain curves of foam models with different geometrical properties are obtained. Then, the influences of open-cell geometrical properties, including the shape of strut cross section, relative density and cell shape irregularity, on the compressive nonlinear mechanical performance are analyzed. In addition, the numerical results are compared with the predicted results of cubic staggering model. Numerical results indicate that the simulated results reflect the compressive process of foams quite well and the geometrical properties of cell have significant influences on the nonlinear mechanical behavior of foams.

  5. Alkane-Based Urethane Potting Compounds

    Science.gov (United States)

    Morris, D. E.

    1986-01-01

    New low viscosity urethanes easily mixed, molded, and outgassed. Alkane-based urethanes resist hydrolysis and oxidation and have excellent dielectric properties. Low-viscosity alkane-based urethane prepolymer prepared by one-step reaction of either isophorone diisocyanate or methyl-bis (4-cyclohexyl isocyanate) with hydrogenated, hydroxy-terminated polybutadiene (HTPBD).

  6. Characterization and three-dimensional reconstruction of synthetic bone model foams

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, S. [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain); Vlad, M.D. [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain); Faculty of Medical Bioengineering, “Gr. T. Popa” University of Medicine and Pharmacy, Str. Kogalniceanu 9-13, 700454 Iasi (Romania); López, J. [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain); Navarro, M. [Centre de Biotecnologia Animal i de Teràpia Gènica (CBATEG), Departament de Sanitat i d' Anatomia Animals, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Cerdanyola del Vallès (Spain); Fernández, E., E-mail: enrique.fernandez@upc.edu [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain)

    2013-08-01

    Sawbones© open-cell foams with different porosity grades are being used as synthetic bone-like models for in vitro mechanical and infiltration experiments. However, a comprehensive characterization of these foams is not available and there is a lack of reliable information about them. For this reason two of these foams (Refs. 1522-505 and -507) have been characterized at the micro architectural level by scanning electron microscopy, computed tomography and image data analysis. BoneJ open software and ImageJ open software were used to obtain the characteristic histomorphometric parameters and the three dimensional virtual models of the foams. The results showed that both foams, while having different macro porosities, appeared undistinguishable at the micro scale. Moreover, the micro structural features resembled those of osteoporotic rather than healthy trabecular bone. It is concluded that Sawbones© foams behave reasonably as synthetic bone-like models. Consequently, their use is recommended for in vitro comparison purposes of both mechanical and infiltration testing performed in real vertebra. Finally, the virtual models obtained, which are available under request, can favour comparisons between future self-similar in vitro experiments and computer simulations. - Highlights: • Sawbones© model foams have been scanned by μ-CT. • Histomorphometric indices and 3D virtual models have been obtained. • The results will be of use to understand biocement vertebra infiltration studies.

  7. Experiments, modeling and simulation of the magnetic behavior of inhomogeneously coated nickel/aluminum hybrid foams

    Energy Technology Data Exchange (ETDEWEB)

    Jung, A., E-mail: anne.jung@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany); Klis, D., E-mail: d.klis@lte.uni-saarland.de [Universität des Saarlandes, Laboratory for Electromagnetic Theory, Campus C6 3, 66123 Saarbrücken (Germany); Goldschmidt, F., E-mail: f.goldschmidt@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany)

    2015-03-15

    Open-cell metal foams are used as lightweight construction elements, energy absorbers or as support for catalytic coatings. Coating of open-cell metal foams is not only used for catalytic applications, but it leads also to tremendous increase in stiffness and energy absorption capacity. A non-line of sight coating technique for complex 3D structures is electrodeposition. Unfortunately, due to the 3D porosity and the related problems in mass transport limitation during the deposition, it is not possible to produce homogeneously coated foams. In the present contribution, we present a semi-non-destructive technique applicable to determine the coating thickness distribution of magnetic coatings by measuring the remanent magnetic field of coated foams. In order to have a closer look at the mass transport mechanism, a numerical model was developed to predict the field scans for different coating thickness distributions in the foams. For long deposition times the deposition reaches a steady state whereas a Helmholtz equation is sufficient to predict the coating thickness distribution. The applied current density could be identified as the main influencing parameter. Based on the developed model, it is possible to improve the electrodeposition process and hence the homogeneity in the coating thickness of coated metal foams. This leads to enhanced mechanical properties of the hybrid foams and contributes to better and resource-efficient energy absorbers and lightweight materials. - Highlights: • Production of hybrid foams by electrodeposition of nickel on open-cell metal foams. • Magnetic field scans for visualization of spatial coating thickness distribution. • Modeling of magnetic fields of inhomogeneously coated hybrid foams. • Investigation of mass transport limitation during coating by a Helmholtz equation. • Increasing coating homogeneity by use of low current densities and deposition rates.

  8. Influence of high power ultrasound on rheological and foaming properties of model ice-cream mixtures

    Directory of Open Access Journals (Sweden)

    Verica Batur

    2010-03-01

    Full Text Available This paper presents research of the high power ultrasound effect on rheological and foaming properties of ice cream model mixtures. Ice cream model mixtures are prepared according to specific recipes, and afterward undergone through different homogenization techniques: mechanical mixing, ultrasound treatment and combination of mechanical and ultrasound treatment. Specific diameter (12.7 mm of ultrasound probe tip has been used for ultrasound treatment that lasted 5 minutes at 100 percent amplitude. Rheological parameters have been determined using rotational rheometer and expressed as flow index, consistency coefficient and apparent viscosity. From the results it can be concluded that all model mixtures have non-newtonian, dilatant type behavior. The highest viscosities have been observed for model mixtures that were homogenizes with mechanical mixing, and significantly lower values of viscosity have been observed for ultrasound treated ones. Foaming properties are expressed as percentage of increase in foam volume, foam stability index and minimal viscosity. It has been determined that ice cream model mixtures treated only with ultrasound had minimal increase in foam volume, while the highest increase in foam volume has been observed for ice cream mixture that has been treated in combination with mechanical and ultrasound treatment. Also, ice cream mixtures having higher amount of proteins in composition had shown higher foam stability. It has been determined that optimal treatment time is 10 minutes.

  9. A PVC-foam material model based on a thermodynamically elasto-plastic-damage framework exhibiting failure and crushing

    NARCIS (Netherlands)

    Gielen, A.W.J.

    2008-01-01

    A well known foam for naval sandwiches is PVC (polyvinyl chloride) foam. This foam exhibits elasto-damage behavior under tension and elasto-plastic behavior under compression. A proper material model is required for the prediction of the failure and post-failure behavior of these sandwiches during (

  10. a Vibrational Model of Open Celled Polyurethane Foam Automotive Seat Cushions

    Science.gov (United States)

    Patten, W. N.; Sha, S.; Mo, C.

    1998-10-01

    A mechanistic model of a seat cushion is developed. The work relates the kinematic motion of the seat to the geometric and constitutive properties of the cellular foam used in the seat. The model includes the influence of pneumatic damping caused by friction between the gas within the open-celled foam and matrix polymer. A continuous shape function is introduced to characterize the piecewise continuous stress-strain characteristic of flexible open-celled foam. After some simplification, a non-linear dynamic automotive seat cushion model is derived, which relies explicitly on the constitutive properties of polyurethane foams and on the geometry of the seat cushion. Experimental and analytical models of the two automotive seats are compared to verify the model. The comparisons indicate that the new model is able to predict the dynamic performance of an automotive seat cushion with fidelity.

  11. A numerical model to simulate foams during devolatilization of polymers

    Science.gov (United States)

    Khan, Irfan; Dixit, Ravindra

    2014-11-01

    Customers often demand that the polymers sold in the market have low levels of volatile organic compounds (VOC). Some of the processes for making polymers involve the removal of volatiles to the levels of parts per million (devolatilization). During this step the volatiles are phase separated out of the polymer through a combination of heating and applying lower pressure, creating foam with the pure polymer in liquid phase and the volatiles in the gas phase. The efficiency of the devolatilization process depends on predicting the onset of solvent phase change in the polymer and volatiles mixture accurately based on the processing conditions. However due to the complex relationship between the polymer properties and the processing conditions this is not trivial. In this work, a bubble scale model is coupled with a bulk scale transport model to simulate the processing conditions of polymer devolatilization. The bubble scale model simulates the nucleation and bubble growth based on the classical nucleation theory and the popular ``influence volume approach.'' As such it provides the information of bubble size distribution and number density inside the polymer at any given time and position. This information is used to predict the bulk properties of the polymer and its behavior under the applied processing conditions. Initial results of this modeling approach will be presented.

  12. Coupled Macro and Micro-Scale Modeling of Polyurethane Foaming Processes

    Directory of Open Access Journals (Sweden)

    Stephanie Geier

    2014-09-01

    Full Text Available Polyurethane foam is used for manufacturing different kinds of products, such as refrigerators, car dashboards or steering wheels. First, we developed a macro-scale simulation tool that is able to predict foam flow in such complex molds. Depending on the location within a product, final properties of polyurethane foams may vary significantly. These properties (e.g. thermal conductivity or impact strength are strongly dependent on local foam structure. Modeling complex geometries like refrigerators completely on bubble scale is neither possible nor would it be efficient. The computational effort would be enormous. Therefore, we developed a micro-scale model describing bubble growth and the evolution of the foam microstructure in polyurethane foams considering a limited number of bubbles in a representative volume. Finally, we coupled our macro and micro-scale simulation approaches. For that purpose, we introduced tracer particles into our mold filling simulations. We are able to record information about density and temperature changes or varying flow conditions along particle trajectories. This information is then used to set up corresponding simulations on bubble scale. Through this coupling, a basis for studying the evolution of the local foam microstructure in complex geometries is provided.

  13. Coupled Macro and Micro-Scale Modeling of Polyurethane Foaming Processes

    Directory of Open Access Journals (Sweden)

    Stephanie Geier

    2014-12-01

    Full Text Available Polyurethane foam is used for manufacturing different kinds of products, such as refrigerators, car dashboards or steering wheels. First, we developed a macro-scale simulation tool that is able to predict foam flow in such complex molds. Depending on the location within a product, final properties of polyurethane foams may vary significantly. These properties (e.g. thermal conductivity or impact strength are strongly dependent on local foam structure. Modeling complex geometries like refrigerators completely on bubble scale is neither possible nor would it be efficient. The computational effort would be enormous. Therefore, we developed a micro-scale model describing bubble growth and the evolution of the foam microstructure in polyurethane foams considering a limited number of bubbles in a representative volume. Finally, we coupled our macro and micro-scale simulation approaches. For that purpose, we introduced tracer particles into our mold filling simulations. We are able to record information about density and temperature changes or varying flow conditions along particle trajectories. This information is then used to set up corresponding simulations on bubble scale. Through this coupling, a basis for studying the evolution of the local foam microstructure in complex geometries is provided.

  14. Validation of a Polyimide Foam Model for Use in Transmission Loss Applications

    Science.gov (United States)

    Hong, Kwanwoo; Bolton, J. Stuart; Cano, Roberto J.; Weiser, Erik S.; Jensen, Brian J.; Silcox, Rich; Howerton, Brian M.; Maxon, John; Wang, Tongan; Lorenzi, Tyler

    2010-01-01

    The work described in this paper was focused on the use of a new polyimide foam in a double wall sound transmission loss application. Recall that polyimide foams are functionally attractive, compared to polyurethane foams, for example, owing to their fire resistance. The foam considered here was found to have a flow resistivity that was too high for conventional acoustical applications, and as a result, it was processed by partial crushing to lower the flow resistivity into an acceptable range. Procedures for measuring the flow resistivity and Young s modulus of the material have been described, as was an inverse characterization procedure for estimating the remaining Biot parameters based on standing wave tube measurements of transmission loss and absorption coefficient. The inverse characterization was performed using a finite element model implementation of the Biot poro-elastic material theory. Those parameters were then used to predict the sound transmission loss of a double panel system lined with polyimide foam, and the predictions were compared with full-scale transmission loss measurements. The agreement between the two was reasonable, especially in the high and low frequency limits; however, it was found that the SEA model resulted in an under-prediction of the transmission loss in the mid-frequency range. Nonetheless, it was concluded that the performance of polyimide foam could be predicted using conventional poro-elastic material models and that polyimide foam may offer an attractive alternative to other double wall linings in certain situations: e.g., when fire resistance is a key issue. Future work will concentrate on reducing the density of the foam to values similar to those used in current aircraft sidewall treatments, and developing procedures to improve the performance of the foam in transmission loss applications.

  15. A nonlinear vertex-based model for animation of two-dimensional dry foam

    DEFF Research Database (Denmark)

    Kelager, Micky; Erleben, Kenny

    2010-01-01

    Foam is the natural phenomenon of bubbles that arise due to nucleation of gas in liquids. The current state of art in Computer Graphics rarely includes foam effects on large scales. In this paper we introduce a vertexbased, quasi-static equilibrium model from the field of Computational Physics as...... simulations with free dynamic boundary conditions. The presented model is interesting and well suited for 2D graphics applications like video games and procedural or animated textures....

  16. Segmentation, statistical analysis, and modelling of the wall system in ceramic foams

    Energy Technology Data Exchange (ETDEWEB)

    Kampf, Jürgen, E-mail: juergen.kampf@uni-ulm.de [University of Ulm, Mathematics Department, 89069 Ulm (Germany); Schlachter, Anna-Lena [University of Kaiserslautern, Mathematics Department, 67653 Kaiserslautern (Germany); Redenbach, Claudia, E-mail: redenbach@mathematik.uni-kl.de [University of Kaiserslautern, Mathematics Department, 67653 Kaiserslautern (Germany); Liebscher, André, E-mail: liebscher@mathematik.uni-kl.de [University of Kaiserslautern, Mathematics Department, 67653 Kaiserslautern (Germany)

    2015-01-15

    Closed walls in otherwise open foam structures may have a great impact on macroscopic properties of the materials. In this paper, we present two algorithms for the segmentation of such closed walls from micro-computed tomography images of the foam structure. The techniques are compared on simulated data and applied to tomographic images of ceramic filters. This allows for a detailed statistical analysis of the normal directions and sizes of the walls. Finally, we explain how the information derived from the segmented wall system can be included in a stochastic microstructure model for the foam.

  17. Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams.

    Science.gov (United States)

    Saye, Robert I; Sethian, James A

    2013-05-10

    Modeling the physics of foams and foamlike materials, such as soapy froths, fire retardants, and lightweight crash-absorbent structures, presents challenges, because of the vastly different time and space scales involved. By separating and coupling these disparate scales, we have designed a multiscale framework to model dry foam dynamics. This leads to a predictive and flexible computational methodology linking, with a few simplifying assumptions, foam drainage, rupture, and topological rearrangement, to coupled interface-fluid motion under surface tension, gravity, and incompressible fluid dynamics. Our computed results match theoretical analyses and experimentally observed physical effects, including thin-film drainage and interference, and are used to study bubble rupture cascades and macroscopic rearrangement. The developed multiscale model allows quantitative computation of complex foam evolution phenomena.

  18. Holonomy spin foam models: Asymptotic geometry of the partition function

    CERN Document Server

    Hellmann, Frank

    2013-01-01

    We study the asymptotic geometry of the spin foam partition function for a large class of models, including the models of Barrett and Crane, Engle, Pereira, Rovelli and Livine, and, Freidel and Krasnov. The asymptotics is taken with respect to the boundary spins only, no assumption of large spins is made in the interior. We give a sufficient criterion for the existence of the partition function. We find that geometric boundary data is suppressed unless its interior continuation satisfies certain accidental curvature constraints. This means in particular that most Regge manifolds are suppressed in the asymptotic regime. We discuss this explicitly for the case of the configurations arising in the 3-3 Pachner move. We identify the origin of these accidental curvature constraints as an incorrect twisting of the face amplitude upon introduction of the Immirzi parameter and propose a way to resolve this problem, albeit at the price of losing the connection to the SU(2) boundary Hilbert space. The key methodological...

  19. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Gaiser, Peter W.; Anguelova, Magdalena D.

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  20. Graviton propagator asymptotics and the classical limit of ELPR/FK spin foam models

    CERN Document Server

    Mikovic, Aleksandar

    2011-01-01

    We study the classical limit of ELPR/FK spin foam models by computing the large-distance asymptotics of the spin foam graviton propagator. This is done by analyzing the large-spin asymptotics of the boundary spin-network wavefunction which corresponds to a flat space. By using the stationary phase method we determine the wavefunction asymptotics, which then determines the large-distance asymptotics of the corresponding graviton propagator. We show that the graviton propagator behaves for large distances as the inverse distance to the fourth power, which implies that general relativity is not the classical limit of the ELPR/FK spin foam models. Our result is a direct consequence of the large-spin asymptotics of the ELPR/FK spin-foam vertex amplitude and we show that the vertex amplitude can be modified such that the new amplitude has the desired asymptotics.

  1. Towards Modeling Local Foam Drainage Using the Arbitrary Lagrangian Eulerian Method

    Science.gov (United States)

    Brandon, Andrew; Ananth, Ramagopal

    2014-11-01

    Liquid drainage in foams is a multi-scale, multi-dimensional phenomena that is tied directly to how well a foam performs. For example, the amount of metal within a metal foam after it solidifies affects the strength of the foam and the amount of liquid within an aqueous fire fighting foam determines how effective it is at extinguishing a fire. Liquid drainage is driven by gravity and is governed by the liquid's density and viscosity as well as the surface tension at the liquid gas interface. There are numerous one dimensional, single phase models that approximate liquid drainage by employing a global description but there are no multidimensional models that use a local description. In this presentation, I will describe an ongoing effort to develop a two dimensional, multiphase, Arbitrary Lagrangian Eulerian model for the study of local liquid drainage in foams. I will present an improved algorithm for the solution of the incompressible fluid equations in the Arbitrary Lagrangian Eulerian method, the novel method used for moving the domain in time, and results from this model development effort.

  2. Multiaxial yield surface of transversely isotropic foams: Part I-Modeling

    Science.gov (United States)

    Ayyagari, Ravi Sastri; Vural, Murat

    2015-01-01

    A new yield criterion is proposed for transversely isotropic solid foams. Its derivation is based on the hypothesis that the yielding in foams is driven by the total strain energy density, rather than a completely phenomenological approach. This allows defining the yield surface with minimal number of parameters and does not require complex experiments. The general framework used leads to the introduction of new scalar measures of stress and strain (characteristic stress and strain) for transversely isotropic foams. Furthermore, the central hypothesis that the total strain energy density drives yielding in foams ascribes to the characteristic stress an analogous role of von Mises stress in metal plasticity. Unlike the overwhelming majority of yield models in literature the proposed model recognizes the tension-compression difference in yield behavior of foams through a linear mean stress term. Predictions of the proposed yield model are in excellent agreement with the results of uniaxial, biaxial and triaxial FE analyses implemented on both isotropic and transversely isotropic Kelvin foam models.

  3. Progresses in computer modelling, characterization and foaming of comfort car seats; Fortschritte in der Computermodellierung, Charakterisierung und Schaumentwicklung fuer Komfort-Autositze

    Energy Technology Data Exchange (ETDEWEB)

    Leenslag, J.W.; Tan, A. [Huntsman Polyurethanes, Everberg (Belgium); Jostmeyer, H. [Huntsman Polyurethanes, Deggendorf (Germany)

    2000-07-01

    Manufacture of comfort car seats is concerned: The seats are cushioned with PUR soft foams based on MDI, which exhibit high seat-comfort and resilience. Several aspects are discussed: the comfort model; polyurethane chemistry and foam morphology; 3D computer simulation; mechanical properties of the foam; non-linear compression behavior; dynamic creeping; vibrational behavior; FEA; validation of the comfort model; OEM foam specification; thinner foam layers.

  4. Experiments to populate and validate a processing model for polyurethane foam. BKC 44306 PMDI-10

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, Lisa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rao, Rekha Ranjana [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shelden, Bion [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Hern, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wyatt, Nicholas B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Russick, Edward Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hileman, Michael Bryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urquhart, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thompson, Kyle Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, David Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.

  5. Experiments to populate and validate a processing model for polyurethane foam :

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, Lisa Ann; Rao, Rekha Ranjana; Shelden, Bion; Soehnel, Melissa Marie; O' Hern, Timothy J.; Grillet, Anne; Celina, Mathias Christopher; Wyatt, Nicholas B.; Russick, Edward Mark; Bauer, Stephen J.; Hileman, Michael Bryan; Urquhart, Alexander; Thompson, Kyle Richard; Smith, David Michael

    2014-03-01

    We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.

  6. Thermally-responsive poly(ester urethane)s

    Science.gov (United States)

    Pierce, Benjamin Franklin

    Thermally-responsive materials are quite useful in the biomedical field, but their full potential has yet to be realized. For example, polyurethanes are capable of exhibiting shape-memory properties, or the ability to change shape upon the application of a stimulus, but only a few practical thermally responsive polyurethanes have been reported due to the lack of novel starting materials and optimized systems. This work describes the synthesis of several degradable polymers and the characterization of their thermally responsive behavior. First, several amorphous polyester prepolymers are synthesized and incorporated in thermoplastic poly(ester urethane)s, which are highly elastic but display impractical thermal properties. Their potential as degradable implants is investigated, as well as their bulk and surface properties. These systems are then optimized and tailored for more practical purposes, resulting in the synthesis of thermoset elastomers based on poly(1,4-cyclohexanedimethanol 1,4-cyclohexanedicarboxylate) (PCCD) prepolymers that display a broad range of useful mechanical properties, thermal properties, and shape-memory properties. A novel method for controlling a microscopic and nanoscopic topographical shape-memory phenomenon is presented. Finally, the synthesis of amine-functionalized polyesters is presented. All materials are characterized by 1H and 13C NMR, GPC, DSC, TGA, and Instron.

  7. Hyperbranched urethane-acrylates

    Directory of Open Access Journals (Sweden)

    Tasić Srba

    2004-01-01

    Full Text Available The synthesis, characterization and UV-curing of hyperbranched urethaneacrylates (HB-UA were investigated in this study. They were evaluated as oli-gomers in model UV curable coatings. HB-UAs were synthesized by reaction of an aliphatic hyperbranched polyester of the second generation (HBRG2 and an isocyanate adduct, obtained by the reaction of isophoronediisocyana-te and different hydroxy alkyl acrylates. Their thermal properties and viscosities depend on the degree of modification of HBRG2 and the type of hydroxy alkyl acrylate used. The introduction of a flexible alkoxylated spacer between the HBP core and acrylate end groups reduces steric hindrance by moving the cross linkable acrylate groups away from the HBP core and increase its reactivity. Due to the presence of abstractable H-atoms in the α-position to the ether links, HB-UAs based on poly(ethylene oxide monoacrylate are very reactive and do not show oxygen inhibition. The obtained coatings combine a high cross linking density with flexible segments between the cross links, which results in a good compromise between hardness and flexibility and have the potential to be used in different UV-curing applications.

  8. A heat transfer model for incorporating carbon foam fabrics in firefighter's garment

    Science.gov (United States)

    Elgafy, Ahmed; Mishra, Sarthak

    2014-04-01

    In the present work, a numerical study was performed to predict and investigate the performance of a thermal protection system for firefighter's garment consisting of carbon foam fabric in both the outer shell and the thermal liner elements. Several types of carbon foam with different thermal conductivity, porosity, and density were introduced to conduct a parametric study. Additionally, the thickness of the introduced carbon foam fabrics was varied to acquire optimum design. Simulation was conducted for a square planar 2D geometry of the clothing comprising of different fabric layers and a double precision pressure-based implicit solver, under transient state condition was used. The new anticipated thermal protection system was tested under harsh thermal environmental conditions that firefighters are exposed to. The parametric study showed that employing carbon foam fabric with one set of designed parameters, weight reduction of 33 % in the outer shell, 56 % in the thermal liner and a temperature reduction of 2 % at the inner edge of the garment was achieved when compared to the traditional firefighter garment model used by Song et al. (Int J Occup Saf Ergon 14:89-106, 2008). Also, carbon foam fabric with another set of designed parameters resulted in a weight reduction of 25 % in the outer shell, 28 % in the thermal liner and a temperature reduction of 6 % at the inner edge of the garment. As a result, carbon foam fabrics make the firefighter's garment more protective, durable, and lighter in weight.

  9. Coupled intertwiner dynamics - a toy model for coupling matter to spin foam models

    CERN Document Server

    Steinhaus, Sebastian

    2015-01-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretisation. However extracting this mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple 2D toy model for Yang--Mills coupled to spin foams, namely an Ising model coupled to so--called intertwiner models defined for $\\text{SU}(2)_k$. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretisation. We coarse grain this toy model via tensor network renor...

  10. Different arrangements of simplified models to predict effective thermal conductivity of open-cell foams

    Science.gov (United States)

    Kumar, Prashant; Topin, Frédéric

    2017-08-01

    It is often desirable to predict the effective thermal conductivity (ETC) of a homogenous material like open-cell foams based on its composition, particularly when variations in composition are expected. A combination of five fundamental simplified thermal conductivity bounds and models (series, parallel, Hashin-Shtrikman, effective medium theory, and reciprocity models) is proposed to predict ETC of open-cell foams. Usually, these models use a parameter as the weighted mean to account the proportion of each bound arranged in arithmetic and geometric schemes. Based on ETC data obtained on numerous virtual Kelvin-like foam samples, the dependence of this parameter has been deduced as a function of morphology and phase thermal conductivity ratio. Various effective thermal conductivity correlations are derived based on material properties and foam structure. This is valid for open-cell foams filled with any arbitrary working fluid over a solid conductivity of materials range (λs /λf = 10-30,000) and over a wide range of porosity (0.60 < ɛo < 0.95). Arrangement of series and parallel models together using the simplest models for both, arithmetic and geometric schemes, is found to predict excellent results among all the generic combinations.

  11. Different arrangements of simplified models to predict effective thermal conductivity of open-cell foams

    Science.gov (United States)

    Kumar, Prashant; Topin, Frédéric

    2017-02-01

    It is often desirable to predict the effective thermal conductivity (ETC) of a homogenous material like open-cell foams based on its composition, particularly when variations in composition are expected. A combination of five fundamental simplified thermal conductivity bounds and models (series, parallel, Hashin-Shtrikman, effective medium theory, and reciprocity models) is proposed to predict ETC of open-cell foams. Usually, these models use a parameter as the weighted mean to account the proportion of each bound arranged in arithmetic and geometric schemes. Based on ETC data obtained on numerous virtual Kelvin-like foam samples, the dependence of this parameter has been deduced as a function of morphology and phase thermal conductivity ratio. Various effective thermal conductivity correlations are derived based on material properties and foam structure. This is valid for open-cell foams filled with any arbitrary working fluid over a solid conductivity of materials range (λs /λf = 10-30,000) and over a wide range of porosity (0.60 < &epsilono < 0.95). Arrangement of series and parallel models together using the simplest models for both, arithmetic and geometric schemes, is found to predict excellent results among all the generic combinations.

  12. Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2017-06-01

    Full Text Available Foam has emerged as an efficient drilling fluid for the drilling of low pressure, fractured and matured reservoirs because of its the ability to reduce formation damage, fluid loss, differential sticking etc. However the compressible nature along with its complicated rheology has made its implementation a multifaceted task. Knowledge of the hydrodynamic behavior of drilling fluid within the borehole is the key behind successful implementation of drilling job. However, little effort has been made to develop the hydrodynamic models for the foam flowing with cuttings through pipes of variable diameter. In the present study, hydrodynamics of the foam fluid was investigated through the vertical smooth pipes of different pipe diameters, with variable foam properties in a flow loop system. Effect of cutting loading on pressure drop was also studied. Thus, the present investigation estimates the differential pressure loss across the pipe. The flow loop permits foam flow through 25.4 mm, 38.1 mm and 50.8 mm diameter pipes. The smaller diameter pipes are used to replicate the annular spaces between the drill string and wellbore. The developed model determines the pressure loss along the pipe and the results are compared with a number of existing models. The developed model is able to predict the experimental results more accurately.

  13. Quasi-steady model for predicting temperature of aqueous foams circulating in geothermal wellbores

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, B.F.; Ortega, A.

    1983-01-01

    A quasi-steady model has been developed for predicting the temperature profiles of aqueous foams circulating in geothermal wellbores. The model assumes steady one-dimensional incompressible flow in the wellbore; heat transfer by conduction from the geologic formation to the foam is one-dimensional radially and time-dependent. The vertical temperature distribution in the undisturbed geologic formation is assumed to be composed of two linear segments. For constant values of the convective heat-transfer coefficient, a closed-form analytical solution is obtained. It is demonstrated that the Prandtl number of aqueous foams is large (1000 to 5000); hence, a fully developed temperature profile may not exist for representative drilling applications. Existing convective heat-transfer-coefficient solutions are adapted to aqueous foams. The simplified quasi-steady model is successfully compared with a more-sophisticated finite-difference computer code. Sample temperature-profile calculations are presented for representative values of the primary parameters. For a 5000-ft wellbore with a bottom hole temperature of 375{sup 0}F, the maximum foam temperature can be as high as 300{sup 0}F.

  14. Statistical mechanics of two-dimensional foams: Physical foundations of the model.

    Science.gov (United States)

    Durand, Marc

    2015-12-01

    In a recent series of papers, a statistical model that accounts for correlations between topological and geometrical properties of a two-dimensional shuffled foam has been proposed and compared with experimental and numerical data. Here, the various assumptions on which the model is based are exposed and justified: the equiprobability hypothesis of the foam configurations is argued. The range of correlations between bubbles is discussed, and the mean-field approximation that is used in the model is detailed. The two self-consistency equations associated with this mean-field description can be interpreted as the conservation laws of number of sides and bubble curvature, respectively. Finally, the use of a "Grand-Canonical" description, in which the foam constitutes a reservoir of sides and curvature, is justified.

  15. Low-density, polymer foams as structural models for phase-separation in polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, G. [Univ. of Cincinnati, OH (United States); Lagasse, R.R.; Aubert, J.H. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1995-12-31

    Low density polymer foams are produced through nano-scale phase separation of 5 to 15% solutions yielding gels. The gels are solvent exchanged and dried by supercritical extraction. We have found that the morphology of the phase separated gel, the intermediate solvent exchanged gels and the final foams are essentially identical over a wide range of size. Through the combination of several scattering techniques covering many decades of size we can distinguish structural levels in these low-density foams. The combined scattering data spans sizes ranging from 10{mu}m to 1{Angstrom}. A recently developed global fitting approach can describe the multiple levels of structure observed in these complex materials. Several morphological classes of foams are observed. A perplexing feature in the scattering patterns from all of the foams is a 3-dimensional structure with a radius of gyration from 40 to 100{Angstrom}. By variation of the polymer molecular-weight, scattering data supports a model describing this nano-scale structure as partially isolated, collapsed polymer coils. This model indicates that collapsed base structural unit in these morphologies.

  16. Microstructure and Properties of Poly(amide urethane)s : Comparison of the Reactivity of α-Hydroxy-ω-O-phenyl Urethanes and α-Hydroxy-ω-O-hydroxyethyl Urethanes

    NARCIS (Netherlands)

    Sharma, Bhaskar; Ubaghs, Luc; Keul, Helmut; Höcker, Hartwig; Loontjens, Ton; Benthem, Rolf van

    2004-01-01

    Poly(amide urethane)s were prepared from ε-caprolactam, amino alcohols, and diphenyl carbonate or ethylene carbonate in three steps. Polycondensation was performed either with α-hydroxy-ω-O-phenyl urethanes or with α-hydroxy-ω-O-hydroxyethyl urethanes; it was found that the reactivity at 90 °C of th

  17. Short-term in vitro and in vivo biocompatibility of a biodegradable polyurethane foam based on 1,4-butanediisocyanate

    NARCIS (Netherlands)

    Van Minnen, B; Van Leeuwen, MBM; Stegenga, B; Zuidema, J; Hissink, CE; Van Kooten, TG; Bos, RRM

    2005-01-01

    In this study short-term in vitro and in vivo biocompatibility apects of a biodegradable polyurethane (PU) foam were evaluated. The PU consists of hard urethane segments and amorphous soft segments based on a copolyester of dl-lactide and epsilon-caprolactone. The urethane segments are of uniform le

  18. Emergent of non-gravitational fields in dimensional reduction of 4d spin foam models

    CERN Document Server

    Fani, Somayeh

    2011-01-01

    We consider a Kaluza-Klein like approach for a 4d spin foam model. We apply this approach to a 4d TOCY model based on group field theory; and using the Peter-Weyl expansion of the gravitational field we will find a mechanism for gen- eration of matter and new dimensions from pure gravity.

  19. An approach to model validation and model-based prediction -- polyurethane foam case study.

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Kevin J.; Rutherford, Brian Milne

    2003-07-01

    Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical

  20. Synthesis and characterization of alternating poly(amide urethane)s from ε-caprolactone, diamines and diphenyl carbonate

    NARCIS (Netherlands)

    Sharma, Bhaskar; Keul, Helmut; Höcker, Hartwig; Loontjens, Ton; Benthem, Rolf van

    2005-01-01

    The synthesis of alternating poly(amide urethane)s 5a–d was performed in three steps using ε-caprolactone, diamines, and diphenyl carbonate as starting materials. The microstructure and nature of the end groups of the poly(amide urethane)s were determined by means of 1H NMR spectroscopy, which revea

  1. Entropy in spin foam models: the statistical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Islas, J Manuel, E-mail: jmgislas@leibniz.iimas.unam.m [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, UNAM, A. Postal 20-726, 01000, Mexico DF (Mexico)

    2010-07-21

    Recently an idea for computing the entropy of black holes in the spin foam formalism has been introduced. Particularly complete calculations for the three-dimensional Euclidean BTZ black hole were performed. The whole calculation is based on observables living at the horizon of the black hole universe. Departing from this idea of observables living at the horizon, we now go further and compute the entropy of the BTZ black hole in the spirit of statistical mechanics. We compare both calculations and show that they are very interrelated and equally valid. This latter behaviour is certainly due to the importance of the observables.

  2. Three dimensional loop quantum gravity: physical scalar product and spin foam models

    CERN Document Server

    Noui, K; Noui, Karim; Perez, Alejandro

    2004-01-01

    In this paper, we address the problem of the dynamics in three dimensional loop quantum gravity with zero cosmological constant. We construct a rigorous definition of Rovelli's generalized projection operator from the kinematical Hilbert space--corresponding to the quantization of the infinite dimensional kinematical configuration space of the theory--to the physical Hilbert space. In particular, we provide the definition of the physical scalar product which can be represented in terms of a sum over (finite) spin-foam amplitudes. Therefore, we establish a clear-cut connection between the canonical quantization of three dimensional gravity and spin-foam models. We emphasize two main properties of the result: first that no cut-off in the kinematical degrees of freedom of the theory is introduced (in contrast to standard `lattice' methods), and second that no ill-defined sum over spins (`bubble' divergences) are present in the spin foam representation.

  3. Three-dimensional loop quantum gravity: physical scalar product and spin-foam models

    Science.gov (United States)

    Noui, Karim; Perez, Alejandro

    2005-05-01

    In this paper, we address the problem of the dynamics in three-dimensional loop quantum gravity with zero cosmological constant. We construct a rigorous definition of Rovelli's generalized projection operator from the kinematical Hilbert space—corresponding to the quantization of the infinite-dimensional kinematical configuration space of the theory—to the physical Hilbert space. In particular, we provide the definition of the physical scalar product which can be represented in terms of a sum over (finite) spin-foam amplitudes. Therefore, we establish a clear-cut connection between the canonical quantization of three-dimensional gravity and spin-foam models. We emphasize two main properties of the result: first that no cut-off in the kinematical degrees of freedom of the theory is introduced (in contrast to standard 'lattice' methods), and second that no ill-defined sum over spins ('bubble' divergences) are present in the spin-foam representation.

  4. In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model.

    Science.gov (United States)

    Rodriguez, Jennifer N; Clubb, Fred J; Wilson, Thomas S; Miller, Matthew W; Fossum, Theresa W; Hartman, Jonathan; Tuzun, Egemen; Singhal, Pooja; Maitland, Duncan J

    2014-05-01

    Cerebral aneurysms treated by traditional endovascular methods using platinum coils have a tendency to be unstable, either due to chronic inflammation, compaction of coils, or growth of the aneurysm. We propose to use alternate filling methods for the treatment of intracranial aneurysms using polyurethane-based shape memory polymer (SMP) foams. SMP polyurethane foams were surgically implanted in a porcine aneurysm model to determine biocompatibility, localized thrombogenicity, and their ability to serve as a stable filler material within an aneurysm. The degree of healing was evaluated via gross observation, histopathology, and low vacuum scanning electron microscopy imaging after 0, 30, and 90 days. Clotting was initiated within the SMP foam at time 0 (<1 h exposure to blood before euthanization), partial healing was observed at 30 days, and almost complete healing had occurred at 90 days in vivo, with minimal inflammatory response.

  5. Z-cone model for the energy of an ordered foam.

    Science.gov (United States)

    Hutzler, Stefan; Murtagh, Robert P; Whyte, David; Tobin, Steven T; Weaire, Denis

    2014-09-28

    We develop the Z-Cone Model, in terms of which the energy of a foam may be estimated. It is directly applicable to an ordered structure in which every bubble has Z identical neighbours. The energy (i.e. surface area) may be analytically related to liquid fraction. It has the correct asymptotic form in the limits of dry and wet foam, with prefactors dependent on Z. In particular, the variation of energy with deformation in the wet limit is consistent with the anomalous behaviour found by Morse and Witten [Europhysics Letters, 1993, 22, 549] and Lacasse et al. [Physical Review E, 54, 5436], with a prefactor Z/2.

  6. Disordered locality and Lorentz dispersion relations: an explicit model of quantum foam

    CERN Document Server

    Caravelli, F

    2012-01-01

    Using the framework of Quantum Graphity, we construct an explicit model of a quantum foam, a quantum spacetime with spatial wormholes. The states depend on two parameters: the minimal size of the wormholes and their density with respect to this length. Macroscopic Lorentz invariance requires that the quantum superposition of spacetimes is suppressed by the length of these wormholes. We parametrize this suppression by the distribution of wormhole lengths in the quantum foam. We discuss the general case and then analyze two specific natural wormhole distributions. Corrections to the Lorentz dispersion relations are calculated using techniques developed in previous work.

  7. A multiple degree of freedom modeling approach of piezoelectret foam in a multilayer stack configuration

    Science.gov (United States)

    Tefft, Edward C.; Anton, Steven R.

    2016-04-01

    As electronic devices become both ubiquitous and more energy efficient, powering them with energy harvested from, for example, piezoelectric materials has become a subject of much interest. The field does indeed show promise, as harvesting energy from smart materials has the potential to replace batteries completely in some low-power applications. This paper presents modeling of piezo-electret foam assembled in a multilayer stack configuration, with the required adhesives and conductors, as a multiple degree of freedom (MDOF) system. The benefits of using the foam over some piezo-ceramics include its high flexibility, its light weight, and its lead-free composition. This model predicts the mechanical and electromechanical response to base excitation for any number of layers of piezo-electret foam. Building upon previous work which modeled the piezo-electret stack as a single degree of freedom (SDOF) system, the MDOF model provides information concerning the response of internal stack layers. The MDOF model is validated against the experimentally determined mechanical and electrical responses of a 20-layer piezo-electret foam stack. Also, the internal stack dynamics at higher order vibration modes suggest that charge cancellation is a serious outcome of vibration at these modes that designers need to consider.

  8. Modeling of low-capillary number segmented flows in microchannels using OpenFOAM

    NARCIS (Netherlands)

    Hoang, D.A.; Van Steijn V.; Portela, L.M.; Kreutzer, M.T.; Kleijn, C.R.

    2012-01-01

    Modeling of low-Capillary number segmented flows in microchannels is important for the design of microfluidic devices. We present numerical validations of microfluidic flow simulations using the volume-of-fluid (VOF) method as implemented in OpenFOAM. Two benchmark cases were investigated to ensure

  9. Fracture of metal foams : In-situ testing and numerical modeling

    NARCIS (Netherlands)

    Onck, PR; van Merkerk, R.; De Hosson, JTM; Schmidt, I.

    2004-01-01

    This paper is on a combined experimental/modeling study on the tensile fracture of open-cell foams. In-situ tensile tests show that individual struts can fail in a brittle or ductile mode, presumably depending on the presence of casting defects. In-situ single strut tests were performed, enabling ob

  10. Modeling of the role of defects in sintered FeCrAIY foams

    Institute of Scientific and Technical Information of China (English)

    M. Kepets; T. J. Lu; A. P. Dowling

    2007-01-01

    The metal sintering approach offers a cost-effective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys, which offer novel mechanical and acoustic properties.In a separate experimental study, the mechanical properties of open-celled steel alloy (FeCrAlY) foams have been characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throughout the microstructure that result from the unique fabrication process. In the present paper, the microstructure of sintered FeCrAlY foams was modeled by using a finite element (FE)model. In particular, microstructural variations were introduced to a base lattice, and the effects on the strength and stiffness calculated. A range of defects identified under scanning electronic microscope (SEM) imaging were considered including broken ligaments, thickness variations, and pore blockages, which are the three primary imperfections observed in sintered foams. The corresponding levels of defect present in the material were subsequently input into the FE model, with the resulting predictions correlating well withexperimental data.

  11. Shooting in a foam.

    Science.gov (United States)

    Le Goff, Anne; Quéré, David; Clanet, Christophe

    2014-09-21

    We study the motion of a solid sphere after its fast impact on a bath of liquid foam. We identify two regimes of deceleration. At short times, the velocity is still large and the foam behaves similar to a Newtonian fluid of constant viscosity. Then we measure a velocity threshold below which the sphere starts experiencing the foam's elasticity. We interpret this behavior using a visco-elasto-plastic model for foam rheology. Finally we discuss the possibility of stopping a projectile in the foam, and evaluate the capture efficiency.

  12. Foam consolidation and drainage.

    Science.gov (United States)

    Jun, S; Pelot, D D; Yarin, A L

    2012-03-27

    A theoretical model of foam as a consolidating continuum is proposed. The general model is applied to foam in a gravity settler. It is predicted that liquid drainage from foam in a gravity settler begins with a slow drainage stage. Next, a stage with faster drainage occurs where the drainage rate doubles compared to the initial stage. The experiments conducted within the framework of this work confirmed the theoretical predictions and allowed measurements of foam characteristics. Foams of three different concentrations of Pantene Pro-V Classic Care Solutions shampoo were studied, as well as the addition of polyethylene oxide (PEO) in one case. The shampoo's main foaming components are sodium lauryl sulfate and sodium laureth sulfate. It is shown to what extent foam drainage is slowed down by using higher shampoo concentrations and how it is further decreased by adding polymer (PEO).

  13. Numerical model for the shear rheology of two-dimensional wet foams with deformable bubbles.

    Science.gov (United States)

    Kähärä, T; Tallinen, T; Timonen, J

    2014-09-01

    Shearing of two-dimensional wet foam is simulated using an introduced numerical model, and results are compared to those of experiments. This model features realistically deformable bubbles, which distinguishes it from previously used models for wet foam. The internal bubble dynamics and their contact interactions are also separated in the model, making it possible to investigate the effects of the related microscale properties of the model on the macroscale phenomena. Validity of model assumptions was proved here by agreement between the simulated and measured Herschel-Bulkley rheology, and shear-induced relaxation times. This model also suggests a relationship between the shear stress and normal stress as well as between the average degree of bubble deformation and applied shear stress. It can also be used to analyze suspensions of bubbles and solid particles, an extension not considered in this work.

  14. Vertex stability and topological transitions in vertex models of foams and epithelia

    CERN Document Server

    Spencer, Meryl A; Lubensky, David K

    2016-01-01

    In computer simulations of dry foams and of epithelial tissues, vertex models are often used to describe the shape and motion of individual cells. Although these models have been widely adopted, relatively little is known about their basic theoretical properties. For example, while fourfold vertices in real foams are always unstable, it remains unclear whether a simplified vertex model description has the same behavior. Here, we study vertex stability and the dynamics of T1 topological transitions in vertex models. We show that, when all edges have the same tension, stationary fourfold vertices in these models do indeed always break up. In contrast, when tensions are allowed to depend on edge orientation, fourfold vertices can become stable, as is observed in some biological systems. More generally, our formulation of vertex stability leads to an improved treatment of T1 transitions in simulations and paves the way for studies of more biologically realistic models that couple topological transitions to the dy...

  15. Poly(hydroxy urethane)s based on renewable diglycerol dicarbonate

    NARCIS (Netherlands)

    Velthoven, van Juliën L.J.; Gootjes, Linda; Es, van Daan S.; Noordover, Bart A.J.; Meuldijk, Jan

    2015-01-01

    Abstract In this paper, we present a series of amorphous non-isocyanate poly(hydroxy urethane)s (PHU) synthesized from diglycerol dicarbonate in bulk conditions at mild temperatures, without using a catalyst. Diglycerol dicarbonate has been synthesized from diglycerol and dimethyl carbonate and w

  16. Chemical stability of polyether urethanes versus polycarbonate urethanes.

    Science.gov (United States)

    Tanzi, M C; Mantovani, D; Petrini, P; Guidoin, R; Laroche, G

    1997-09-15

    The relative chemical stability of two commercially available polyurethanes-Pellethane, currently used in biomedical devices, and Corethane, considered as a potential biomaterial-was investigated following aging protocols in hydrolytic and oxidative conditions (HOC, water, hydrogen peroxide, and nitric acid) and in physiological media (PHM, phosphate buffer, lipid dispersion, and bile from human donors). The chemical modifications induced on these polymers were characterized using differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and Fourier transform infrared spectroscopy (FTIR). With the exception of nitric acid, all of the aging media promoted a mild hydrolytic reaction leading to a slight molecular weight loss in both polymers. When aged in water and hydrogen peroxide, Pellethane experienced structural modifications through microdomain phase separation along with an increase of the order within the soft-hard segment domains. The incubation of Pellethane in nitric acid also resulted in an important decrease of the melting temperature of its hard segments with chain scission mechanisms. Moreover, incubation in PHM led to an increase of the order within shorter hard-segment domains. FTIR data revealed the presence of aliphatic amide molecules used as additives on the Pellethane's surface. The incubation of Corethane under the same conditions promoted an almost uniform molecular reorganization through a phase separation between the hard and soft segments as well as an increase of the short-range order within the hard-segment domains. Incubation of this polymer in nitric acid also resulted in a chain scission process that was less pronounced than that measured for the Pellethane samples. Finally, lipid adsorption occurred on the Corethane sample incubated in bile for 120 days. Overall data indicate that polycarbonate urethane presents a greater chemical stability than does polyetherurethane.

  17. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Small, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duoss, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, T. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maxwell, R. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component in our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.

  18. FoamVis, A Visualization System for Foam Research: Design and Implementation

    OpenAIRE

    Dan R. Lipsa; Roberts, Richard C; Laramee, Robert S

    2015-01-01

    Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design ...

  19. Experimental polyurethane foam roof systems, part 2

    Science.gov (United States)

    Alumbaugh, R. L.; Keeton, J. R.; Humm, E. F.

    1983-01-01

    An experimental roofing installation is described in which polyurethane foam (PUF) was spray-applied directly to metal Butlerib-type metal decks, the roof divided into five approximately equal areas, and the PUF protected with five different elastomeric coating systems. Three of the coating systems were damaged by hailstones about a year after installation; these systems were recoated within 3 years of the initial installation. The current coatings include two of the original coating systems - a plural component silicone and a single component silicone - and those applied over the three systems damaged by hail - a single component silicone, an aluminum filled, hydrocarbon-extended catalyzed urethane, and a catalyzed urethane. The performance of these five PUF systems over a 7-year period is reported. The temperature distributions throughout the roof systems are described. The decay in the thermal conductivity of the PUF roof over a 5-year period is presented, and the energy savings realized by foaming the roof are presented.

  20. An approach to model validation and model-based prediction -- polyurethane foam case study.

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Kevin J.; Rutherford, Brian Milne

    2003-07-01

    Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical

  1. Finite Element Modeling of Deployment, and Foam Rigidization of Struts and Quarter Scale Shooting Star Experiment

    Science.gov (United States)

    Leigh, Larry, Jr.

    2002-01-01

    Inflated cylindrical struts constructed of kapton polyimide film and rigidized with foam have considerable practical application and potential for use as components of inflatable concentrator assemblies, antenna structures and space power systems, Because of their importance, it is of great interest to characterize the dynamic behavior of these components and structures both experimentally and analytically. It is very helpful to take a building-block approach to modeling and understanding inflatable assemblies by first investigating in detail the behavior of the components such as the struts. The foam material used for rigidization of such cylinders has varying modulus, which is a function of different factors, such as density of the foam. Thus, the primary motivation of the tests and analytical modeling efforts was to determine and understand the response of foam-rigidized cylinders for different densities, sizes, and construction methods, In recent years, inflatable structures have been the subject of renewed interest for space applications such as communications antennae, solar thermal propulsion, and space solar power. A major advantage of using inflatable structures in space is that they are extremely lightweight. This makes inflatables a perfect match for solar thermal propulsion because of the low thrust levels available. An obvious second advantage is on-orbit deployability and subsequent space savings in launch configuration. It can be seen that inflatable cylindrical struts and torus are critical components of structural assemblies. In view of this importance, structural dynamic and static behaviors of typical rigidized polyimide struts are investigated in this paper. The paper will focus on the finite element models that were used to model the behavior of the complete solar collector structure, and the results that they provided, as compared to test data.

  2. Case study for model validation : assessing a model for thermal decomposition of polyurethane foam.

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Kevin J.; Leslie, Ian H. (New Mexico State University, Las Cruces, NM); Hobbs, Michael L.; Rutherford, Brian Milne; Hills, Richard Guy (New Mexico State University, Las Cruces, NM); Pilch, Martin M.

    2004-10-01

    A case study is reported to document the details of a validation process to assess the accuracy of a mathematical model to represent experiments involving thermal decomposition of polyurethane foam. The focus of the report is to work through a validation process. The process addresses the following activities. The intended application of mathematical model is discussed to better understand the pertinent parameter space. The parameter space of the validation experiments is mapped to the application parameter space. The mathematical models, computer code to solve the models and its (code) verification are presented. Experimental data from two activities are used to validate mathematical models. The first experiment assesses the chemistry model alone and the second experiment assesses the model of coupled chemistry, conduction, and enclosure radiation. The model results of both experimental activities are summarized and uncertainty of the model to represent each experimental activity is estimated. The comparison between the experiment data and model results is quantified with various metrics. After addressing these activities, an assessment of the process for the case study is given. Weaknesses in the process are discussed and lessons learned are summarized.

  3. A 2d model for the effect of gas diffusion on mobility of foam for EOR

    NARCIS (Netherlands)

    Nonnekes, L.E.; Cox, S.J.; Rossen, W.R.

    2012-01-01

    Transport of gas across liquid films between bubbles is cited as one reason why CO2 foams for enhanced oil recovery (EOR) are usually weaker than N2 foams and why steam foams are weaker than foams of steam mixed with N2. We examine here the effect of inter-bubble gas diffusion on flowing bubbles in

  4. MyrrhaFoam: A CFD model for the study of the thermal hydraulic behavior of MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Koloszar, Lilla; Buckingham, Sophia; Planquart, Philippe [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Keijers, Steven [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2017-02-15

    Highlights: • Development of a modeling approach for simulating the thermal hydraulics of heavy liquid metal nuclear reactors. • Detailed description of the modeling of each component through the MYRRHA reactor. • Detailed analysis of the flow field of the MYRRHA reactor under operating condition. • Assessment of the thermal load on the structures as well as the thermal stratification in the upper and the lower plenum. - Abstract: Numerical analysis of the thermohydraulic behavior of the innovative flexible fast spectrum research reactor, MYRRHA, under design by the Belgian Nuclear Research Center (SCK• CEN) is a very challenging task. The primary coolant of the reactor is Lead Bismuth Eutectic, LBE, which is an opaque heavy liquid metal with low Prandtl number. The simulation tool needs to involve many complex physical phenomena to be able to predict accurately the flow and thermal field in the pool type reactor. In the past few years, within the frame of a collaboration between SCK• CEN and the von Karman Institute, a new platform, MyrrhaFoam, was developed based on the open source simulation environment, OpenFOAM. The current tool can deal with incompressible buoyancy corrected steady/unsteady single phase flows. It takes into account conjugate heat transfer in the solid parts which is mandatory due to the expected high temperature gradients between the different parts of the reactor. The temperature dependent properties of LBE are also considered. MyrrhaFoam is supplemented with the most relevant thermal turbulence models for low Prandtl number liquids up to date.

  5. Modeling Large Deformation and Failure of Expanded Polystyrene Crushable Foam Using LS-DYNA

    Directory of Open Access Journals (Sweden)

    Qasim H. Shah

    2014-01-01

    Full Text Available In the initial phase of the research work, quasistatic compression tests were conducted on the expanded polystyrene (EPS crushable foam for material characterisation at low strain rates (8.3×10-3~8.3×10-2 s−1 to obtain the stress strain curves. The resulting stress strain curves are compared well with the ones found in the literature. Numerical analysis of compression tests was carried out to validate them against experimental results. Additionally gravity-driven drop tests were carried out using a long rod projectile with semispherical end that penetrated into the EPS foam block. Long rod projectile drop tests were simulated in LS-DYNA by using suggested parameter enhancements that were able to compute the material damage and failure response precisely. The material parameters adjustment for successful modelling has been reported.

  6. Self-Energy in the Lorentzian ERPL-FK Spin Foam Model of Quantum Gravity

    CERN Document Server

    Riello, Aldo

    2013-01-01

    We calculate the most divergent contribution to the self-energy (or "melonic") graph in the context of the Lorentzian EPRL-FK Spin Foam model of Quantum Gravity. We find that such a contribution is logarithmically divergent in the cut-off over the SU(2)-representation spins when one chooses the face amplitude guaranteeing the face-splitting invariance of the foam.We also find that the dependence on the boundary data is different from that of the bare propagator. This fact has its origin in the non-commutativity of the EPRL-FK Y-map with the projector onto SL(2,C)-invariant states. In the course of the paper, we discuss in detail the approximations used during the calculations, its geometrical interpretation as well as the physical consequences of our result.

  7. Parametric model of ventilators simulated in OpenFOAM and Elmer

    Science.gov (United States)

    Čibera, Václav; Matas, Richard; Sedláček, Jan

    2016-03-01

    The main goal of presented work was to develop parametric model of a ventilator for CFD and structural analysis. The whole model was designed and scripted in freely available open source programmes in particular in OpenFOAM and Elmer. The main script, which runs or generates other scripts and further control the course of simulation, was written in bash scripting language in Linux environment. Further, the scripts needed for a mesh generation and running of a simulation were prepared using m4 word pre-processor. The use of m4 allowed comfortable set up of the higher amount of scripts. Consequently, the mesh was generated for fluid and solid part of the ventilator within OpenFOAM. Although OpenFOAM offers also a few tools for structural analysis, the mesh of solid parts was transferred into Elmer mesh format with the aim to perform structural analysis in this software. This submitted paper deals namely with part concerning fluid flow through parametrized geometry with different initial conditions. As an example, two simulations were conducted for the same geometric parameters and mesh but for different angular velocity of ventilator rotation.

  8. Parametric model of ventilators simulated in OpenFOAM and Elmer

    Directory of Open Access Journals (Sweden)

    Čibera Václav

    2016-01-01

    Full Text Available The main goal of presented work was to develop parametric model of a ventilator for CFD and structural analysis. The whole model was designed and scripted in freely available open source programmes in particular in OpenFOAM and Elmer. The main script, which runs or generates other scripts and further control the course of simulation, was written in bash scripting language in Linux environment. Further, the scripts needed for a mesh generation and running of a simulation were prepared using m4 word pre-processor. The use of m4 allowed comfortable set up of the higher amount of scripts. Consequently, the mesh was generated for fluid and solid part of the ventilator within OpenFOAM. Although OpenFOAM offers also a few tools for structural analysis, the mesh of solid parts was transferred into Elmer mesh format with the aim to perform structural analysis in this software. This submitted paper deals namely with part concerning fluid flow through parametrized geometry with different initial conditions. As an example, two simulations were conducted for the same geometric parameters and mesh but for different angular velocity of ventilator rotation.

  9. Path integral representation of spin foam models of 4d gravity

    CERN Document Server

    Conrady, Florian

    2008-01-01

    We give a unified description of all recent spin foam models introduced by Engle, Livine, Pereira and Rovelli (ELPR) and by Freidel and Krasnov (FK). We show that the FK models are, for all values of the Immirzi parameter, equivalent to path integrals of a discrete theory and we provide an explicit formula for the associated actions. We discuss the relation between the FK and ELPR models and also study the corresponding boundary states. For general Immirzi parameter, these are given by Alexandrov's and Livine's SO(4) projected states. For 0 <= gamma < 1, the states can be restricted to SU(2) spin networks.

  10. Fractional derivative and hereditary combined model for memory effects on flexible polyurethane foam

    Science.gov (United States)

    Elfarhani, Makram; Jarraya, Abdessalem; Abid, Said; Haddar, Mohamed

    2016-06-01

    In a quasi-static regime with cyclic loading, the force-displacement curve of flexible polyurethane exhibits complicated behavior: nonlinearity, visco-elasticity, hysteresis, residual force, etc. Beside nonlinearity and visco-elasticity, this material displays high dependence on the displacement rate and past loading history. Its dependence on compression rate helps to appropriately identify the force-displacement curve. Based on the new curve identification, the overall foam response is assumed to be a composite of a nonlinear elastic component and a visco-elastic component. The elastic component is expressed as a polynomial function in displacement, while the visco-elastic one is formulated according to the hereditary approach to represent the foam visco-elastic damping force during the loading phase and according to the fractional derivative approach during unloading to represent the visco-elastic residual force in the material. The focus of this study was to develop mathematical formulations and identification parameters to faithfully characterize the visco-elastic behavior of flexible polyurethane foam under multi-cycle compressive tests. A parameter calibration methodology based on the separation of the measurement data of each component force was established. This optimization process helps to avoid the parameter values admixture problem during the phase of numeric calculations of the same component force. The validity of the model results is checked according to the simulation accuracy, the physical significance of results and their agreement with the obtained force-displacement curve identification.

  11. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    Directory of Open Access Journals (Sweden)

    Peter W. Gaiser

    2012-04-01

    Full Text Available Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam impedance; wavelength variations in foam thickness, roughness of foam layer interfaces with air and seawater; and foam scattering parameters such as size parameter, and refraction index. Using these, we analyze the scattering, absorption, reflection and transmission in foam and gain insights into why volume scattering in foam is weak; why the main absorption losses are confined to the wet portion of the foam; how the foam impedance matching provides the transmission of electromagnetic radiation in foam and maximizes the absorption; and what is the potential for surface scattering at the foam layers boundaries. We put all these elements together and offer a conceptual understanding for the high, black-body-like emissivity of foam floating on the sea surface. We also consider possible scattering regimes in foam.

  12. Chemoenzymatic Synthesis and Chemical Recycling of Poly(ester-urethanes

    Directory of Open Access Journals (Sweden)

    Hiroto Hayashi

    2011-08-01

    Full Text Available Novel poly(ester-urethanes were prepared by a synthetic route using a lipase that avoids the use of hazardous diisocyanate. The urethane linkage was formed by the reaction of phenyl carbonate with amino acids and amino alcohols that produced urethane-containing diacids and hydroxy acids, respectively. The urethane diacid underwent polymerization with polyethylene glycol and a,w-alkanediols and also the urethane-containing hydroxy acid monomer was polymerized by the lipase to produce high-molecular-weight poly(ester-urethanes. The periodic introduction of ester linkages into the polyurethane chain by the lipase-catalyzed polymerization afforded chemically recyclable points. They were readily depolymerized in the presence of lipase into cyclic oligomers, which were readily repolymerized in the presence of the same enzyme. Due to the symmetrical structure of the polymers, poly(ester-urethanes synthesized in this study showed higher Tm, Young’s modulus and tensile strength values.

  13. q-Deformation of Lorentzian spin foam models

    CERN Document Server

    Fairbairn, Winston J

    2011-01-01

    We construct and analyse a quantum deformation of the Lorentzian EPRL model. The model is based on the representation theory of the quantum Lorentz group with real deformation parameter. We give a definition of the quantum EPRL intertwiner, study its convergence and braiding properties and construct an amplitude for the four-simplexes. We find that the resulting model is finite.

  14. Modeling and Validation of the Thermal Response of TDI Encapsulating Foam as a function of Initial Density

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, Amanda B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Larsen, Marvin E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    TDI foams of nominal density from 10 to 45 pound per cubic foot were decomposed within a heated stainless steel container. The pressure in the container and temperatures measured by thermocouples were recorded with each test proceeding to an allowed maximum pressure before venting. Two replicate tests for each of four densities and two orientations in gravity produced very consistent pressure histories. Some thermal responses demonstrate random sudden temperature increases due to decomposition product movement. The pressurization of the container due to the generation of gaseous products is more rapid for denser foams. When heating in the inverted orientation, where gravity is in the opposite direction of the applied heat flux, the liquefied decomposition products move towards the heated plate and the pressure rises more rapidly than in the upright configuration. This effect is present at all the densities tested but becomes more pronounced as density of the foam is decreased. A thermochemical material model implemented in a transient conduction model solved with the finite element method was compared to the test data. The expected uncertainty of the model was estimated using the mean value method and importance factors for the uncertain parameters were estimated. The model that was assessed does not consider the effect of liquefaction or movement of gases. The result of the comparison is that the model uncertainty estimates do not account for the variation in orientation (no gravitational affects are in the model) and therefore the pressure predictions are not distinguishable due to orientation. Temperature predictions were generally in good agreement with the experimental data. Predictions for response locations on the outside of the can benefit from reliable estimates associated with conduction in the metal. For the lighter foams, temperatures measured on the embedded component fall well with the estimated uncertainty intervals indicating the energy transport

  15. Nano-Aramid Fiber Reinforced Polyurethane Foam

    Science.gov (United States)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  16. Study of the Polycarbonate-Urethane/Metal Contact in Different Positions during Gait Cycle

    Directory of Open Access Journals (Sweden)

    Sergio Gabarre

    2014-01-01

    Full Text Available Nowadays, a growing number of young and more active patients receive hip replacement. More strenuous activities in such patients involve higher friction and wear rates, with friction on the bearing surface being crucial to ensure arthroplasty survival in the long term. Over the last years, the polycarbonate-urethane has offered a feasible alternative to conventional bearings. A finite element model of a healthy hip joint was developed and adjusted to three gait phases (heel strike, mid-stance, and toe-off, serving as a benchmark for the assessment of the results of joint replacement model. Three equivalent models were made with the polycarbonate-urethane Tribofit system implanted, one for each of the three gait phases, after reproducing a virtual surgery over the respective healthy models. Standard body-weight loads were considered: 230% body-weight toe-off, 275% body-weight mid-stance, and 350% body-weight heel strike. Contact pressures were obtained for the different models. When comparing the results corresponding to the healthy model to polycarbonate-urethane joint, contact areas are similar and so contact pressures are within a narrower value range. In conclusion, polycarbonate-urethane characteristics are similar to those of the joint cartilage. So, it is a favorable alternative to traditional bearing surfaces in total hip arthroplasty, especially in young patients.

  17. On the accuracy of simulations of a 2D boundary layer with RANS models implemented in OpenFoam

    Science.gov (United States)

    Graves, Benjamin J.; Gomez, Sebastian; Poroseva, Svetlana V.

    2013-11-01

    The OpenFoam software is an attractive Computational Fluid Dynamics solver for evaluating new turbulence models due to the open-source nature, and the suite of existing standard model implementations. Before interpreting results obtained with a new model, a baseline for performance of the OpenFoam solver and existing models is required. In the current study we analyze the RANS models in the OpenFoam incompressible solver for two planar (two-dimensional mean flow) benchmark cases generated by the AIAA Turbulence Model Benchmarking Working Group (TMBWG): a zero-pressure-gradient flat plate and a bump-in-channel. The OpenFoam results are compared against both experimental data and simulation results obtained with the NASA CFD codes CFL3D and FUN3D. Sensitivity of simulation results to the grid resolution and model implementation are analyzed. Testing is conducted using the Spalart-Allmaras one-equation model, Wilcox's two-equation k-omega model, and the Launder-Reece-Rodi Reynolds-stress model. Simulations using both wall functions and wall-resolved (low Reynolds number) formulations are considered. The material is based upon work supported by NASA under award NNX12AJ61A.

  18. Synthesis and Characterization of a Novel Aqueous Dispersion Poly[urethane-(disperse blue 14)-urethane] Dye

    Institute of Scientific and Technical Information of China (English)

    Xian Hai HU; Xing Yuan ZHANG; Jia Bing DAI; Ge Wen XU

    2004-01-01

    A novel polymeric dye of aqueous dispersion poly[urethane-(disperse blue 14)-urethane] was synthesized based on poly(propylene glycol) (PPG), 2, 4-tolylene diisocyanate (TDI), dimethylol propionic acid (DMPA), disperse blue 14 and triethylamine (TEA) depending on a modified acetone process. Fourier transform infrared spectroscopy (FTIR) was used to identify the structure of the polymeric dye, indicating an obvious carbonyl stretching absorption in disperse blue 14. The polymer was also characterized by the analysis of DSC, TGA, WAXD and UV-Vis spectroscopy.

  19. Numerical simulation of flow around a simplified high-speed train model using OpenFOAM

    Science.gov (United States)

    Ishak, I. A.; Ali, M. S. M.; Shaikh Salim, S. A. Z.

    2016-10-01

    Detailed understanding of flow physics on the flow over a high-speed train (HST) can be accomplished using the vast information obtained from numerical simulation. Accuracy of any simulation in solving and analyzing problems related to fluid flow is important since it measures the reliability of the results. This paper describes a numerical simulation setup for the flow around a simplified model of HST that utilized open source software, OpenFOAM. The simulation results including pressure coefficient, drag coefficient and flow visualization are presented and they agreed well with previously published data. This shows that OpenFOAM software is capable of simulating fluid flows around a simplified HST model. Additionally, the wall functions are implemented in order to minimize the overall number of grid especially near the wall region. This resulted in considerably smaller numbers of mesh resolution used in the current study compared to previous work, which leads to achievement of much reasonable time simulation and consequently reduces the total computational effort without affecting the final outcome.

  20. A foam model highlights the differences of the macro- and microrheology of respiratory horse mucus.

    Science.gov (United States)

    Gross, Andreas; Torge, Afra; Schaefer, Ulrich F; Schneider, Marc; Lehr, Claus-Michael; Wagner, Christian

    2017-07-01

    Native horse mucus is characterized with micro- and macrorheology and compared to hydroxyethylcellulose (HEC) gel as a model. Both systems show comparable viscoelastic properties on the microscale and for the HEC the macrorheology is in good agreement with the microrheology. For the mucus, the viscoelastic moduli on the macroscale are several orders of magnitude larger than on the microscale. Large amplitude oscillatory shear experiments show that the mucus responds nonlinearly at much smaller deformations than HEC. This behavior fosters the assumption that the mucus has a foam like structure on the microscale compared to the typical mesh like structure of the HEC, a model that is supported by cryogenic-scanning-electron-microscopy (CSEM) images. These images allow also to determine the relative amount of volume that is occupied by the pores and the scaffold. Consequently, we can estimate the elastic modulus of the scaffold. We conclude that this particular foam like microstructure should be considered as a key factor for the transport of particulate matter which plays a central role in mucus function with respect to particle penetration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modeling of low convergence liquid layer wetted foam implosions at the National Ignition Facility

    Science.gov (United States)

    Yi, S. A.; Olson, R. E.; Yin, L.; Wilson, D. C.; Herrmann, H. W.; Zylstra, A. B.; Haines, B. M.; Peterson, R. R.; Bradley, P. A.; Shah, R. C.; Kline, J. L.; Leeper, R. J.; Batha, S. H.; Milovich, J. L.; Berzak Hopkins, L. F.; Ho, D. D.; Meezan, N. B.

    2016-10-01

    A new platform has been developed that allows for lower convergence ratio implosions (CR 15) than is possible with traditional DT ice layered capsules (CR 30). We present HYDRA simulation models of the first low convergence DT implosions on NIF utilizing the wetted foam platform. When tuned to match the observed bangtime and hotspot symmetry, our rad-hydro models agree well with many experimental observables. In particular, the inferred hotspot density and pressure are consistent with simulations, and our modeled burn widths are in better relative agreement with the data than in high convergence implosions. The observed neutron yields are approximately 60-70% of postshot calculations. These results indicate that at a reduced convergence ratio CR 15 the hotspot formation process is well modeled by our simulations. This work was performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  2. Mechanical Characterization of Rigid Polyurethane Foams.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  3. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  4. Foaming volume and foam stability

    Science.gov (United States)

    Ross, Sydney

    1947-01-01

    A method of measuring foaming volume is described and investigated to establish the critical factors in its operation. Data on foaming volumes and foam stabilities are given for a series of hydrocarbons and for a range of concentrations of aqueous ethylene-glycol solutions. It is shown that the amount of foam formed depends on the machinery of its production as well as on properties of the liquid, whereas the stability of the foam produced, within specified mechanical limitations, is primarily a function of the liquid.

  5. Fabrication of a three-dimensional tissue model microarray using laser foaming of a gas-impregnated biodegradable polymer.

    Science.gov (United States)

    Ock, JinGyu; Li, Wei

    2014-06-01

    A microarray containing three-dimensional (3D) tissue models is a promising substitute for the two-dimensional (2D) cell-based microarrays currently available for high throughput, tissue-based biomedical assays. A cell culture microenvironment similar to in vivo conditions could be achieved with biodegradable porous scaffolds. In this study, a laser foaming technique is developed to create an array of micro-scale 3D porous scaffolds. The effects of major process parameters and the morphology of the resulting porous structure were investigated. For comparison, cell culture studies were conducted with both foamed and unfoamed samples using T98G cells. The results show that by laser foaming gas-impregnated polylactic acid it is possible to generate an array of inverse cone shaped wells with porous walls. The size of the foamed region can be controlled with laser power and exposure time, while the pore size of the scaffold can be manipulated with the saturation pressure. T98G cells grow well in the foamed scaffolds, forming clusters that have not been observed in 2D cell cultures. Cells are more viable in the 3D scaffolds than in the 2D cell culture cases. The 3D porous microarray could be used for parallel studies of drug toxicity, guided stem cell differentiation, and DNA binding profiles.

  6. Parameters affect foaming and foam stability during foam drilling

    Institute of Scientific and Technical Information of China (English)

    Hazaea Mohammed; Youhong SUN; Ould El Houssein Yarbana

    2007-01-01

    The authors presented indoor practice experiments of parameters affect on foaming and foam stability. Experiments were carried out and special equipments were used to determine foaming and foam stability; tests were tabulated and charted. The effects of chemical and physical parameters on foaming and foam stability have been conducted.

  7. A plastic indentation model for sandwich beams with metallic foam cores

    Institute of Scientific and Technical Information of China (English)

    Zhong-You Xie; Ji-Lin Yu; Zhi-Jun Zheng

    2011-01-01

    Light weight high performance sandwich composite structures have been used extensively in various load bearing applications.Experiments have shown that the indentation significantly reduces the load bearing capacity of sandwiched beams.In this paper,the indentation behavior of foam core sandwich beams without considering the globally axial and flexural deformation was analyzed using the principle of virtual velocities.A concisely theoretical solution of loading capacity and denting profile was presented.The denting load was found to be proportional to the square root of the denting depth.A finite element model was established to verify the prediction of the model.The load-indentation curves and the profiles of the dented zone predicted by theoretical model and numerical simulation are in good agreement.

  8. Pachner moves in a 4d Riemannian holomorphic Spin Foam model

    CERN Document Server

    Banburski, Andrzej; Freidel, Laurent; Hnybida, Jeff

    2014-01-01

    In this work we study a Spin Foam model for 4d Riemannian gravity, and propose a new way of imposing the simplicity constraints that uses the recently developed holomorphic representation. Using the power of the holomorphic integration techniques, and with the introduction of two new tools: the homogeneity map and the loop identity, for the first time we give the analytic expressions for the behaviour of the Spin Foam amplitudes under 4-dimensional Pachner moves. It turns out that this behaviour is controlled by an insertion of nonlocal mixing operators. In the case of the 5-1 move, the expression governing the change of the amplitude can be interpreted as a vertex renormalisation equation. We find a natural truncation scheme that allows us to get an invariance up to an overall factor for the 4-2 and 5-1 moves, but not for the 3-3 move. The study of the divergences shows that there is a range of parameter space for which the 4-2 move is finite while the 5-1 move diverges. This opens up the possibility to reco...

  9. Toughening of phenolic foam

    Science.gov (United States)

    Shen, Hongbin

    2003-06-01

    Phenolic foam has excellent FST performance with relatively low cost, and thus is an attractive material for many applications. However, it is extremely brittle and fragile, precluding it from load-bearing applications. In order to make it tougher and more viable for structural purposes, an effective approach has been proposed and investigated in this study. Composite phenolic foam with short fiber reinforcements resulted in significant improvement in mechanical performance while retaining FST properties comparable to conventional phenolic foam. For example, composite phenolic foam with aramid fibers exhibited a seven-fold increase in peel resistance together with a five-fold reduction in friability. In shear tests, aramid composite foam endured prolonged loading to high levels of strain, indicating the potential for use in structural applications. On the other hand, glass fiber-reinforced phenolic foam produced substantial improvement in the stiffness and strength relative to the unreinforced counterpart. In particular, the Young's modulus of the glass fiber composite foam was increased by as much as 100% relative to the plain phenolic foam in the foam rise direction. In addition, different mechanical behavior was observed for aramid and glass fiber-reinforced foams. In an attempt to understand the mechanical behavior of composite foam, a novel NDT technique, micro-CT, was used to acquire information on fiber length distribution (FLD) and fiber orientation distribution (FOD). Results from micro-CT measurements were compared with theoretical distribution models, achieving various degrees of agreement. Despite some limitations of current micro-CT technology, the realistic observation and measurement of cellular morphology and fiber distribution within composite foams portend future advances in modeling of reinforced polymer foam. To explain the discrepancy observed in shear stiffness between traditional shear test results and those by the short sandwich beam test, a

  10. Modeling of mould cavity filling process with cast iron in Lost Foam method Part 1. Mathematical model – rate of pattern gasification

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2008-08-01

    Full Text Available In this work a mathematical model of mould cavity filling process with cast iron for lost foam method was shown, enclosing phenomena connected with gasification of foamed polystyrene pattern. For its description the thermal balance equation was used, which together with pouring rate equations (part 2 and pressure change equations (part 3 enabled determination of permeability, refractory coating thickness and foam pattern density influence on pouring rate, gas pressure in gas gap and its size. In this work authors showed results of numerical simulation concerning rate of pattern gasification and gas gap size, based on developed mathematical model. Presented studies indicated, that with decrease in coating permeability and increase in its thickness the gas gap size increased causing the decrease of foamed polystyrene pattern gasification rate.

  11. Stratification of a Foam Film Formed from a Nonionic Micellar Solution: Experiments and Modeling.

    Science.gov (United States)

    Lee, Jongju; Nikolov, Alex; Wasan, Darsh

    2016-05-17

    Thin liquid films containing surfactant micelles or other nanocolloidal particles are considered to be the key structural elements of foams containing gas and liquid. We report here the experimental results and theoretical modeling for the phenomenon of the stratification (stepwise thinning) of a foam film formed from a nonionic micellar solution. The film stratification phenomenon was experimentally observed by reflected light microinterferometry. We observed that the stepwise layer-by-layer decrease of the film thickness is due to the appearance and growth of a dark spot of one layer less than the film thickness in the film. The dark spot expansion is driven by the diffusion of the dislocation (or vacancy) in the micellar lattice. The vacancies from the meniscus diffuse and condense into the dark spot, leading to its expansion inside the film. We experimentally observed the expansion of the dark spot at various film thicknesses (i.e., the number of micellar layers) and at different film sizes. We also measured the contact angle between the film and the meniscus; we used the data to estimate the structural film interaction energy barrier and the apparent diffusion coefficient. We used the two-dimensional diffusion model to model the dynamics of the dark spot expansion with consideration to the apparent diffusion coefficient and the film size. The model predictions are in good agreement with the experimental observations. On the basis of this model, we carried out a parametric study depicting the effects of the film thickness (or the number of micellar layers) and film area on the rate of the dark spot expansion. We also generalized the model previously proposed by Kralchevsky et al. [ Langmuir 1990 , 6 , 1180 - 1189 ], incorporating the effects of the film size, film thickness, and apparent diffusion coefficient to predict the dark spot expansion rate.

  12. Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams

    Directory of Open Access Journals (Sweden)

    Ćwieka K.

    2017-03-01

    Full Text Available In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM. In the design stage, Laguerre-Voronoi tessellations (LVT were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V, from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation.

  13. Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM

    Science.gov (United States)

    2013-12-01

    13, most OpenFOAM data files are themselves dictionaries containing a set of keyword entries. Dictionaries provide the means for organising entries...14. RELEASE AUTHORITY Chief, Aerospace Division 15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT Approved for Public release OVERSEAS

  14. Modelling of the hydrodynamic behaviour of a decontamination foam; Modelisation du comportement hydrodynamique d'une mousse de decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Faury, M.; Fournel, B. [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets, 13 - Saint-Paul-lez-Durance (France)

    2001-07-01

    Decontamination of large components of nuclear power plants (refrigerants, vapor generators, effluents storage tanks...) produces an important volume of secondary effluents. The use of decontamination foams is an alternative allowing a significant diminution of this volume (about of a factor ten). The aim of this work is to propose models which could be applied by an industrialist in order to anticipate the behaviour of a foam flowing out in a component of any geometry and simplifying then the pre-study steps. (O.M.)

  15. Modeling of mould cavity filling process with cast iron in Lost Foam method Part 3. Mathematical model – pressure inside the gas gap

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2008-08-01

    Full Text Available In this work mathematical model describing changes of pressure inside the gas gap was shown during manufacturing gray cast iron castings with use of lost foam process. Authors analyzed the results of numerical simulation enclosing influence of foamed polystyrene pattern density, permeability and thickness of refractory coating on pressure changes in the gap. Studies have shown, that all these parameters have significant influence on pressure inside the gas gap.

  16. Micro flows in foams

    Science.gov (United States)

    Koehler, Stephan; Hilgenfeldt, Sascha; Stone, Howard; Weeks, Eric

    2002-11-01

    Foam drainage, the flow of liquid through foams, has been extensively studied macroscopically, on the scale of many bubbles. We use a confocal microscope to determine the flow-field in a single channel, and find good agreement with a model based upon surface rheology (R. A. Leonard and R. Lemlich, AIChE J. 11, p. 25-29 (1965)). The microscopic measurements show different types of flows depending on the type of surfactant used to stabilize the foam, which has also been observed on the macroscopic level. Surprisingly we find very little mixing in the nodes, the regions where four different channels intersect.

  17. Modeling Phase Change Material in Micro-Foam Under Constant Temperature Condition (Postprint)

    Science.gov (United States)

    2014-01-01

    capture the phase change process in PCM /micro-foam systems, with the effective thermal conductivity derived from direct simulations and expressed as a...in PCM /micro-foam systems, with the effective thermal conductivity derived from direct simulations and expressed as a power law of porosity. Published...by Elsevier Ltd.1. Introduction Metal or graphite foams [1] filled with phase change materials ( PCM ) are attractive for thermal energy storage (TES

  18. Modeling of Diesel Fuel Spray Formation and Combustion in OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Koesters, Anne

    2012-07-01

    The formation, ignition, and combustion of fuel sprays are highly complex processes and the available models have various shortcomings. The development and application of multidimensional CFD models, that describe the different phenomena have rapidly increased through the use of commercial and public software (e.g. Star-CD, KIVA, FIRE and OpenFOAM). The general approach to spray modeling is given by the Eulerian-Lagrangian method, where the gas phase is modeled as a continuum and the droplets are tracked in a Lagrangian way. The accuracy and robustness of today's spray models vary substantially and spray penetration simulations and the levels of spray-generated turbulence are dependent on the discretization. The work presented here deals with the prediction of spray formation and combustion with improved models implemented in the free, open source software package OpenFOAM. The VSB2 spray model was implemented and tested under varying ambient conditions. The design criteria of the model were to be unconditionally robust, have a minimal number of tuning parameters, and be implementable in any CFD software package supporting particle tracking. The main difference between the VSB2 spray model and standard spray models is how the interaction between the liquid fuel and hot gas phase is modeled. In the VSB2 spray model, a 'blob' is defined, containing differently sized droplets; instead of a parcel containing equally sized droplets. Another feature is the definition of a bubble surrounding the blob. The blob just interacts with the gas phase in the bubble instead of with the gas phase in the whole grid cell. The idea is to reduce grid dependency. Furthermore, equilibrium between the blob and the bubble is ensured, which makes the model very robust. Results of spray penetration simulations are compared with data obtained from experiments done at Chalmers Univ. of Technology and with experimental data published by Siebers and Naber from Sandia National

  19. Holonomy Spin Foam Models: Boundary Hilbert spaces and Time Evolution Operators

    CERN Document Server

    Dittrich, Bianca; Kaminski, Wojciech

    2012-01-01

    In this and the companion paper a novel holonomy formulation of so called Spin Foam models of lattice gauge gravity are explored. After giving a natural basis for the space of simplicity constraints we define a universal boundary Hilbert space, on which the imposition of different forms of the simplicity constraints can be studied. We detail under which conditions this Hilbert space can be mapped to a Hilbert space of projected spin networks or an ordinary spin network space. These considerations allow to derive the general form of the transfer operators which generates discrete time evolution. We will describe the transfer operators for some current models on the different boundary Hilbert spaces and highlight the role of the simplicity constraints determining the concrete form of the time evolution operators.

  20. Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments

    Science.gov (United States)

    Johns, H. M.; Lanier, N. E.; Kline, J. L.; Fontes, C. J.; Perry, T. S.; Fryer, C. L.; Brown, C. R. D.; Morton, J. W.; Hager, J. D.; Sherrill, M. E.

    2016-11-01

    We present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi6O12 at 75 mg/cm3 density). We have determined that in the 50-200 eV Te range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for Te = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power reveals spectral sensitivity to Te changes of ˜3 eV.

  1. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    Science.gov (United States)

    Sun, Yongle; Li, Q. M.; Withers, P. J.

    2015-09-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to

  2. Numerical modelling of closed-cell aluminium foams under shock loading

    Science.gov (United States)

    Kader, M. A.; Islam, M. A.; Hazell, P. J.; Escobedo, J. P.; Saadatfar, M.; Brown, A. D.

    2017-01-01

    The present research numerically investigates shock propagation through closed-cell aluminium foam via flyer-plate impact. The mechanics of foam deformation was elucidated using the finite element (FE) software ABAQUS/explicit. X-ray computed micro-tomography was performed to render a full 3D foam geometry mesh for understanding detailed macrostructural response due to shock propagation. Elastic wave propagation and pore collapse mechanism with time were studied. The free surface velocity of the foam was measured at two different flyer-plate impact velocities to observe the profile of the shock wave with time. Good correlations were observed between experimental data and FE predictions for both test conditions.

  3. Foaming properties of guar foaming albumin

    OpenAIRE

    細見, 典子; Hosomi, Noriko; 原田, 麻子; Harada, Asako; 下山, 亜美; Shimoyama, Ami; 土居, 幸雄; Doi, Yukio

    2009-01-01

    From guar meal we recently isolated an albumin fraction with a high foaming ability, named guar foaming albumin (GFA) . Here, we further characterized the foaming activity, foam stability and surface tension of GFA solutions. Foaming activity and foam stability were estimated by measuring the conductivity of foam using a glass column with a conductivity cell. Surface tension was measured by the drop weight method using a stalagmometer. GFA showed higher foaming activity than casein at any pro...

  4. Characterization of Poly(ether)urethanes - High Resolution Thermogravimetric Analysis

    Science.gov (United States)

    2004-02-01

    ether)urethanes.11 Table 5. Percent weight loss for steps in stepwise isothermal TGA analysis .......................... 14 viii DRDC Atlantic...Stepwise isothermal plots for the six poly(ether)urethanes. Table 5. Percent weight loss for steps in stepwise isothermal TGA analysis . SAMPLE/ % WT LOSS

  5. The Effects of Urethane on Rat Outer Hair Cells

    Science.gov (United States)

    Fu, Mingyu; Chen, Mengzi; Yang, Xueying

    2016-01-01

    The cochlea converts sound vibration into electrical impulses and amplifies the low-level sound signal. Urethane, a widely used anesthetic in animal research, has been shown to reduce the neural responses to auditory stimuli. However, the effects of urethane on cochlea, especially on the function of outer hair cells, remain largely unknown. In the present study, we compared the cochlear microphonic responses between awake and urethane-anesthetized rats. The results revealed that the amplitude of the cochlear microphonic was decreased by urethane, resulting in an increase in the threshold at all of the sound frequencies examined. To deduce the possible mechanism underlying the urethane-induced decrease in cochlear sensitivity, we examined the electrical response properties of isolated outer hair cells using whole-cell patch-clamp recording. We found that urethane hyperpolarizes the outer hair cell membrane potential in a dose-dependent manner and elicits larger outward current. This urethane-induced outward current was blocked by strychnine, an antagonist of the α9 subunit of the nicotinic acetylcholine receptor. Meanwhile, the function of the outer hair cell motor protein, prestin, was not affected. These results suggest that urethane anesthesia is expected to decrease the responses of outer hair cells, whereas the frequency selectivity of cochlea remains unchanged. PMID:28050287

  6. The Effects of Urethane on Rat Outer Hair Cells

    Directory of Open Access Journals (Sweden)

    Mingyu Fu

    2016-01-01

    Full Text Available The cochlea converts sound vibration into electrical impulses and amplifies the low-level sound signal. Urethane, a widely used anesthetic in animal research, has been shown to reduce the neural responses to auditory stimuli. However, the effects of urethane on cochlea, especially on the function of outer hair cells, remain largely unknown. In the present study, we compared the cochlear microphonic responses between awake and urethane-anesthetized rats. The results revealed that the amplitude of the cochlear microphonic was decreased by urethane, resulting in an increase in the threshold at all of the sound frequencies examined. To deduce the possible mechanism underlying the urethane-induced decrease in cochlear sensitivity, we examined the electrical response properties of isolated outer hair cells using whole-cell patch-clamp recording. We found that urethane hyperpolarizes the outer hair cell membrane potential in a dose-dependent manner and elicits larger outward current. This urethane-induced outward current was blocked by strychnine, an antagonist of the α9 subunit of the nicotinic acetylcholine receptor. Meanwhile, the function of the outer hair cell motor protein, prestin, was not affected. These results suggest that urethane anesthesia is expected to decrease the responses of outer hair cells, whereas the frequency selectivity of cochlea remains unchanged.

  7. Spontaneous sleep-like brain state alternations and breathing characteristics in urethane anesthetized mice.

    Directory of Open Access Journals (Sweden)

    Silvia Pagliardini

    Full Text Available Brain state alternations resembling those of sleep spontaneously occur in rats under urethane anesthesia and they are closely linked with sleep-like respiratory changes. Although rats are a common model for both sleep and respiratory physiology, we sought to determine if similar brain state and respiratory changes occur in mice under urethane. We made local field potential recordings from the hippocampus and measured respiratory activity by means of EMG recordings in intercostal, genioglossus, and abdominal muscles. Similar to results in adult rats, urethane anesthetized mice displayed quasi-periodic spontaneous forebrain state alternations between deactivated patterns resembling slow wave sleep (SWS and activated patterns resembling rapid eye movement (REM sleep. These alternations were associated with an increase in breathing rate, respiratory variability, a depression of inspiratory related activity in genioglossus muscle and an increase in expiratory-related abdominal muscle activity when comparing deactivated (SWS-like to activated (REM-like states. These results demonstrate that urethane anesthesia consistently induces sleep-like brain state alternations and correlated changes in respiratory activity across different rodent species. They open up the powerful possibility of utilizing transgenic mouse technology for the advancement and translation of knowledge regarding sleep cycle alternations and their impact on respiration.

  8. Carcinogenicity of sublimed urethane in mice through the respiratory tract.

    Science.gov (United States)

    Nomura, T; Hayashi, T; Masuyama, T; Tanaka, S; Nakajima, H; Kurokawa, N; Isa, Y

    1990-08-01

    The carcinogenicity of sublimed urethane (ethyl carbamate) in air was examined with mice. JCL:ICR mice were nursed in a plastic cage inside a vinyl chamber which was ventilated 4 times per hour. The mice were exposed to urethane gas for various periods by passing air which contained a high concentration of sublimed urethane (1.29 micrograms/ml) into the vinyl chamber, or by placing a vessel containing crystalline urethane inside the vinyl chamber so that it was filled with spontaneously-sublimed urethane gas at a low concentration (0.25 microgram/ml). When female mice were killed 5 months after exposure, lung tumor frequency increased almost linearly with the number of days of exposure in the low concentration experiment, but increased in a non-linear manner in the high concentration experiment. In terms of nearly the same total dose, i.e., (concentration of urethane gas in air) X (days of inhalation), one day of exposure to urethane gas at the low concentration induced lung tumors at a significantly higher frequency than 1/4 day of exposure to urethane gas at the high concentration. When male mice were killed at 12 months after exposure to examine the progressive change of induced tumors, malignant, invasive and metastatic tumors were found to have been induced more frequently in the lung after exposure to urethane gas at the low concentration (0.25 microgram/ml for 10 days) than at the high concentration (1.29 microgram/ml for 4 days), although the total dose in the former group was about half of that in the latter. Continuous exposure to urethane gas for a longer period at the low concentration seems to be more efficient for the induction, promotion and/or progression of lung tumors than the exposure for a shorter period at the high concentration.

  9. Spin foams

    CERN Document Server

    Engle, Jonathan

    2013-01-01

    The spin foam framework provides a way to define the dynamics of canonical loop quantum gravity in a spacetime covariant way, by using a path integral over histories of quantum states which can be interpreted as `quantum space-times'. This chapter provides a basic introduction to spin foams aimed principally at beginning graduate students and, where possible, at broader audiences.

  10. Castable thermoplastic urethane elastomers. II. Structure property correlations

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, R.R.; Wischmann, K.B.

    1977-01-01

    A liquid casting approach has been used to encapsulate electronic assemblies with specially-developed, soluble urethane elastomers. As a continuation of this work, the present paper correlates macromolecular morphology with both high strain ultimate and low strain dynamic mechanical properties of these thermoplastic elastomers. Although the morphology-property correlations are shown to fit within the general framework of a domain model, the possibility is raised that the liquid casting procedure might give rise to slightly different structural features than the more conventional fabrication methods (e.g., melt processing). It is anticipated that the results of this investigation will help to increase our fundamental understanding of liquid castable elastomers, which have been heretofore neglected to a significant extent.

  11. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers

    Science.gov (United States)

    Denissen, Wim; Droesbeke, Martijn; Nicolaÿ, Renaud; Leibler, Ludwik; Winne, Johan M.; Du Prez, Filip E.

    2017-03-01

    Vinylogous urethane based vitrimers are polymer networks that have the intrinsic property to undergo network rearrangements, stress relaxation and viscoelastic flow, mediated by rapid addition/elimination reactions of free chain end amines. Here we show that the covalent exchange kinetics significantly can be influenced by combination with various simple additives. As anticipated, the exchange reactions on network level can be further accelerated using either Brønsted or Lewis acid additives. Remarkably, however, a strong inhibitory effect is observed when a base is added to the polymer matrix. These effects have been mechanistically rationalized, guided by low-molecular weight kinetic model experiments. Thus, vitrimer elastomer materials can be rationally designed to display a wide range of viscoelastic properties.

  12. FoamVis, A Visualization System for Foam Research: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Dan R. Lipsa

    2015-03-01

    Full Text Available Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design of FoamVis, the only existing visualization, exploration and analysis application created to address them. We describe FoamVis’ main features, together with relevant design and implementation notes. Our goal is to provide a global overview and individual feature implementation details that would allow a visualization scientist to extend the FoamVis system with new algorithms and adapt it to new requirements. The result is a detailed presentation of the software that is not provided in previous visualization research papers.

  13. Ultrahigh-energy photons as probes of Lorentz symmetry violations in stringy space-time foam models.

    Science.gov (United States)

    Maccione, Luca; Liberati, Stefano; Sigl, Günter

    2010-07-09

    The time delays between γ rays of different energies from extragalactic sources have often been used to probe quantum gravity models in which Lorentz symmetry is violated. It has been claimed that these time delays can be explained by or at least put the strongest available constraints on quantum gravity scenarios that cannot be cast within an effective field theory framework, such as the space-time foam, D-brane model. Here we show that this model would predict too many photons in the ultrahigh energy cosmic ray flux to be consistent with observations. The resulting constraints on the space-time foam model are much stronger than limits from time delays and allow for Lorentz violation effects way too small for explaining the observed time delays.

  14. Ultra high energy photons as probes of Lorentz symmetry violations in stringy space-time foam models

    Energy Technology Data Exchange (ETDEWEB)

    Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Liberati, Stefano [SISSA, Trieste (Italy); INFN, Trieste (Italy); Sigl, Guenter [Hamburg Univ. (Germany). Inst. fuer Theoretische Physik

    2010-03-15

    The time delays between gamma-rays of different energies from extragalactic sources have often been used to probe quantum gravity models in which Lorentz symmetry is violated. It has been claimed that these time delays can be explained by or at least put the strongest available constraints on quantum gravity scenarios that cannot be cast within an effective field theory framework, such as the space-time foam, D-brane model. Here we show that this model would predict too many photons in the ultra-high energy cosmic ray flux to be consistent with observations. The resulting constraints on the space-time foam model are much stronger than limits from time delays and allow for Lorentz violations effects way too small for explaining the observed time delays. (orig.)

  15. Experimental investigation on the rheology of foams

    Energy Technology Data Exchange (ETDEWEB)

    Bonilla, L. F. [Univ. Surcolombiana, Neiva, Huila (Colombia); Shah, S. N. [Oklahoma Univ., Norman, OK (United States)

    2000-07-01

    The rheology of foams was investigated using aqueous and gelled foams and employing a pipe-type viscometer. Surfactant at 0.5 per cent concentration was used as the foaming agent. Results indicated that foam fluid rheology can be adequately characterized by the Herschel-Bulkley model. The experimental data served as the starting point for the development of new empirical correlations to predict foam fluid apparent viscosity. The use of these new correlations is expected to provide more accurate estimates of foam fluid rheological properties. 14 refs., 5 tabs., 14 figs.

  16. NOVEL SULPHONATED POLYSILOXANE POLYUREA-URETHANE IONOMERS

    Institute of Scientific and Technical Information of China (English)

    CHEN Lei; YU Xuehai; YANG Changzheng

    1996-01-01

    A series of novel polysiloxane polyurea-urethane blockcopolymers based on methylene bis(p-phenylisocyanate (MDI), sodium-s-1,2-dihydroxy propyl sulphonate (SDPS) and aminopropyl-terminated polydimethylsiloxane (ATPS) was synthesized with varying length of soft segments and neutralizing cation. The effect of the chemical composition and the cation on the morphology and mechanical properties of the samples were studied.It was found that the SDPS chain extender based samples have definite chemical structure (-MDI-SDPS-MDI-ATPS-). As the length of the soft segment increases, an improvement of phase separation was observed. In addition, when SO3Na was translated into SO3H or the sulphonic acid groups were neutralized with different charge cations (Na+, Zn2+ and Al3+), the morphology and mechanical properties changed greatly.

  17. Impact of the irregular microgeometry of polyurethane foam on the macroscopic acoustic behavior predicted by a unit-cell model.

    Science.gov (United States)

    Doutres, O; Ouisse, M; Atalla, N; Ichchou, M

    2014-10-01

    This paper deals with the prediction of the macroscopic sound absorption behavior of highly porous polyurethane foams using two unit-cell microstructure-based models recently developed by Doutres, Atalla, and Dong [J. Appl. Phys. 110, 064901 (2011); J. Appl. Phys. 113, 054901 (2013)]. In these models, the porous material is idealized as a packing of a tetrakaidecahedra unit-cell representative of the disordered network that constitutes the porous frame. The non-acoustic parameters involved in the classical Johnson-Champoux-Allard model (i.e., porosity, airflow resistivity, tortuosity, etc.) are derived from characteristic properties of the unit-cell and semi-empirical relationships. A global sensitivity analysis is performed on these two models in order to investigate how the variability associated with the measured unit-cell characteristics affects the models outputs. This allows identification of the possible limitations of a unit-cell micro-macro approach due to microstructure irregularity. The sensitivity analysis mainly shows that for moderately and highly reticulated polyurethane foams, the strut length parameter is the key parameter since it greatly impacts three important non-acoustic parameters and causes large uncertainty on the sound absorption coefficient even if its measurement variability is moderate. For foams with a slight inhomogeneity and anisotropy, a micro-macro model associated to cell size measurements should be preferred.

  18. New constraints on quantum foam models from X-ray and gamma-ray observations of distant quasars

    CERN Document Server

    Perlman, Eric S; Ng, Y Jack; Christiansen, Wayne A; DeVore, John; Pooley, David

    2016-01-01

    Astronomical observations of distant quasars may be important to test models for quantum gravity, which posit Planck-scale spatial uncertainties ('spacetime foam') that would produce phase fluctuations in the wavefront of radiation emitted by a source, which may accumulate over large path lengths. We show explicitly how wavefront distortions cause the image intensity to decay to the point where distant objects become undetectable if the accumulated path-length fluctuations become comparable to the wavelength of the radiation. We also reassess previous efforts in this area. We use X-ray and gamma-ray observations to rule out several models of spacetime foam, including the interesting random-walk and holographic models.

  19. Comparative stability of sodium tetradecyl sulphate (STD) and polidocanol foam: impact on vein damage in an in-vitro model.

    Science.gov (United States)

    McAree, B; Ikponmwosa, A; Brockbank, K; Abbott, C; Homer-Vanniasinkam, S; Gough, M J

    2012-06-01

    To compare the half-life of STD and polidocanol air-based foams and the damage they inflict upon human great saphenous vein in an in-vitro model. The time for the volume of 3% STD and polidocanol foams to reduce by 10% (T(90)) and 50% (T(50)) was recorded in an incubator at 37 °C. Segments of proximal GSV harvested during varicose vein surgery were filled with foam for 5 or 15 min. Histological analysis determined percentage endothelial cell loss and depth of media injury. Median (±IQR) T(90) and T(50) for polidocanol were 123.3 s (111.7-165.6) and 266.3 s (245.6-383.1) versus 102.03 s (91.1-112) and 213.13 s (201-231.6) for STD (T(90)p = 0.008, T(50)p = 0.004). Median endothelial loss with polidocanol was; 63.5% (62.2-82.8) and 85.9% (83.8-92.5) versus 86.3% (84.8-93.7) and 97.64% (97.3-97.8) for STD after 5 and 15 min (p = 0.076 and p = 0.009). The median depth and % media thickness injured were 0 μm (0-0 μm) and 0% for both assessments with polidocanol versus 37.4 μm (35.3-45.8 and 43.4 μm (42.1-46.7) and 3.5% (3.1-3.6) and 5.3% (3.7-6.0) after 5 and 15 min for STD (p < 0.01 for all comparisons). Although polidocanol foam shows greater stability than STD foam perhaps remaining in the vein for longer, endothelial cell loss and damage to the media were significantly greater with STD. Copyright © 2012. Published by Elsevier Ltd.

  20. Blast wave mitigation by dry aqueous foam: numerical modelling and experimental investigation

    Science.gov (United States)

    Counilh, Denis; Ballanger, Felix; Rambert, Nicolas; Haas, Jean-Francois; Chinnayya, Aschwin; Lefrancois, Alexandre

    2016-11-01

    Dry aqueous foams (two-phase media with water liquid fraction lower than 5%) are known to mitigate blast wave effects induced by an explosion. The CEA has calibrated his numerical multiphase code MOUSSACA from shock tube and high-explosive experiments. The shock tube experiments have highlighted the foam fragmentation into droplets and the momentum transfer between the liquid and gas phases of the foam. More recently, experiments with hemispheric explosive charges from 3 g to 120 g have provided more findings about the pressure and impulse mitigation properties of foams. We have also taken into account the heat and mass transfer, as well as the droplets secondary breakup, characterized by the Weber number, ratio of inertia over surface tension. Good agreement is found between the calculation and the experiments. co-supervisor of the Felix Ballanger 's doctoral thesis.

  1. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  2. Foam patterns

    Science.gov (United States)

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  3. Comparative Study on Foam Assessment Methods with Different Models of Dynamic Foam-collapsing Law%基于不同消泡模型的泡沫评价方法的对比

    Institute of Scientific and Technical Information of China (English)

    张丽达; 赵谋明; 赵海锋

    2012-01-01

    Sigma法与Constant法是国际上常用的两种啤酒泡沫评价方法,其特点是通过建立消泡模型,以模型的特征参数表征泡沫质量.不同的是,两种方法倚赖的消泡模型不同.通过考察21种啤酒的泡沫稳定性发现,Sigma法与Constant法倚赖的两种消泡模型在测量区间(1~5 min)内都高度显著,但其预测能力存在较大差别,且泡沫稳定性的评价结果也不一致,Sigma法对整体消泡时间的预测较准确.相关性分析结果表明,三种啤酒泡沫稳定性评价方法中,Sigma法与国标秒表法线性显著相关.理化指标分析进一步揭示了高分子蛋白含量对啤酒的泡沫稳定性的决定性作用.%Sigma method and Constant method are two common methods for measuring foam stability. Foam stability was estimated by characteristic parameters of foam-collapsing models established for both methods. Results showed that two foam collapse models proposed by Sigma and Constant methods were both significant during measuring period (l-5min) in this study, while there were significant differences in prediction accuracy and evaluation results for foam stability. Foam collapse model proposed by Sigma method exhibited better prediction accuracy for the whole collapsing process. Pearson correlation analysis indicated that Sigma method correlated well with Chinese standard method. Moreover, results from relationships between composition and foam stability of beer samples further confirmed that proteins (MW>5,000) are decisive foam promoters in beer.

  4. Some aspects of image processing using foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br; Freire, M.V.; Tufaile, A.P.B.

    2014-08-28

    We have explored some concepts of chaotic dynamics and wave light transport in foams. Using some experiments, we have obtained the main features of light intensity distribution through foams. We are proposing a model for this phenomenon, based on the combination of two processes: a diffusive process and another one derived from chaotic dynamics. We have presented a short outline of the chaotic dynamics involving light scattering in foams. We also have studied the existence of caustics from scattering of light from foams, with typical patterns observed in the light diffraction in transparent films. The nonlinear geometry of the foam structure was explored in order to create optical elements, such as hyperbolic prisms and filters. - Highlights: • We have obtained the light scattering in foams using experiments. • We model the light transport in foams using a chaotic dynamics and a diffusive process. • An optical filter based on foam is proposed.

  5. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    Science.gov (United States)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  6. Foam Microrheology

    Energy Technology Data Exchange (ETDEWEB)

    KRAYNIK,ANDREW M.; LOEWENBERG,MICHAEL; REINELT,DOUGLAS A.

    1999-09-01

    The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams.

  7. CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM

    Science.gov (United States)

    2015-09-01

    functions have such a small effect on the simulated value for the drag coefficient as the switch to the laminar behaviour at y+ ~ 11 would be...to explain the source of these differences. The modification to the wall functions in OpenFOAM described in Section 6 partially explains the...model currently implemented in Fluent incorporates modifications for low Reynolds number effects, compressibility and shear flow spreading [11]. The

  8. Synthesis and characterization of gelatin based polyester urethane scaffold

    Indian Academy of Sciences (India)

    S Sarkar; A Chourasia; S Maji; S Sadhukhan; S Kumar; B Adhikari

    2006-10-01

    For tissue engineering purpose two gelatin based polyester urethane scaffolds of different compositions were prepared from lactic acid, polyethylene glycol 400 (PEG 400) and characterized by FTIR, XRD for their mechanical and morphological properties using SEM and optical microscopic analyses. Degradation and swelling studies of gelatin based polyester urethane scaffolds in phosphate buffer saline (PBS) were performed. Human keratinocyte cells were cultured within these scaffolds, which showed good cell adherence and proliferation.

  9. Electrical Conductivity of Aluminium Alloy Foams

    Institute of Scientific and Technical Information of China (English)

    凤仪; 郑海务; 朱震刚; 祖方遒

    2002-01-01

    Closed-cell aluminium alloy foams were produced using the powder metallurgical technique. The effect of porosityand cell diameter on the electrical conductivity of foams was investigated and the results were compared with anumber of models. It was found that the percolation theory can be successfully applied to describe the dependenceof the electrical conductivity of aluminium alloy foams on the relative density. The cell diameter has a negligibleeffect on the electrical conductivity of foams.

  10. Discrete Particle Model for Porous Media Flow using OpenFOAM at Intel Xeon Phi Coprocessors

    Science.gov (United States)

    Shang, Zhi; Nandakumar, Krishnaswamy; Liu, Honggao; Tyagi, Mayank; Lupo, James A.; Thompson, Karten

    2015-11-01

    The discrete particle model (DPM) in OpenFOAM was used to study the turbulent solid particle suspension flows through the porous media of a natural dual-permeability rock. The 2D and 3D pore geometries of the porous media were generated by sphere packing with the radius ratio of 3. The porosity is about 38% same as the natural dual-permeability rock. In the 2D case, the mesh cells reach 5 million with 1 million solid particles and in the 3D case, the mesh cells are above 10 million with 5 million solid particles. The solid particles are distributed by Gaussian distribution from 20 μm to 180 μm with expectation as 100 μm. Through the numerical simulations, not only was the HPC studied using Intel Xeon Phi Coprocessors but also the flow behaviors of large scale solid suspension flows in porous media were studied. The authors would like to thank the support by IPCC@LSU-Intel Parallel Computing Center (LSU # Y1SY1-1) and the HPC resources at Louisiana State University (http://www.hpc.lsu.edu).

  11. Evaluation of the polyurethane foam (PUF) disk passive air sampler: Computational modeling and experimental measurements

    Science.gov (United States)

    May, Andrew A.; Ashman, Paul; Huang, Jiaoyan; Dhaniyala, Suresh; Holsen, Thomas M.

    2011-08-01

    Computational fluid dynamics (CFD) simulations coupled with wind tunnel-experiments were used to determine the sampling rate (SR) of the widely used polyurethane foam (PUF) disk passive sampler. In the wind-tunnel experiments, water evaporation rates from a water saturated PUF disk installed in the sampler housing were determined by measuring weight loss over time. In addition, a modified passive sampler designed to collect elemental mercury (Hg 0) with gold-coated filters was used. Experiments were carried out at different wind speeds and various sampler angles. The SRs obtained from wind-tunnel experiments were compared to those obtained from the field by scaling the values by the ratios of air diffusivities. Three-dimensional (3D) CFD simulations were also used to generate SRs for both polychlorinated biphenyls (PCBs) and Hg 0. Overall, the modeled and measured SRs agree well and are consistent with the values obtained from field studies. As previously observed, the SRs increased linearly with increasing wind speed. In addition, it was determined that the SR was strongly dependent on the angle of the ambient wind. The SRs increased when the base was tilted up pointing into the wind and when the base was tilted down (i.e., such that the top of the sampler was facing the wind) the SR decreased initially and then increased. The results suggest that there may be significant uncertainty in concentrations obtained from passive sampler measurements without knowledge of wind speed and wind angle relative to the sampler.

  12. Thermal characterization and model free kinetics of aged epoxies and foams using TGA and DSC methods.

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph Gabriel; Kruizenga, Alan Michael; Nissen, April

    2013-10-01

    Two classes of materials, poly(methylene diphenyl diisocyanate) or PMDI foam, and cross-linked epoxy resins, were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), to help understand the effects of aging and %E2%80%9Cbake-out%E2%80%9D. The materials were evaluated for mass loss and the onset of decomposition. In some experiments, volatile materials released during heating were analyzed via mass spectroscopy. In all, over twenty materials were evaluated to compare the mass loss and onset temperature for decomposition. Model free kinetic (MFK) measurements, acquired using variable heating rate TGA experiments, were used to calculate the apparent activation energy of thermal decomposition. From these compiled data the effects of aging, bake-out, and sample history on the thermal stability of materials were compared. No significant differences between aged and unaged materials were detected. Bake-out did slightly affect the onset temperature of decomposition but only at the highest bake-out temperatures. Finally, some recommendations for future handling are made.

  13. Foam Micromechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kraynik, A.M.; Neilsen, M.K.; Reinelt, D.A.; Warren, W.E.

    1998-11-03

    Foam evokes many different images: waves breaking at the seashore, the head on a pint of Guinness, an elegant dessert, shaving, the comfortable cushion on which you may be seated... From the mundane to the high tech, foams, emulsions, and cellular solids encompass a broad range of materials and applications. Soap suds, mayonnaise, and foamed polymers provide practical motivation and only hint at the variety of materials at issue. Typical of mukiphase materiaIs, the rheoIogy or mechanical behavior of foams is more complicated than that of the constituent phases alone, which may be gas, liquid, or solid. For example, a soap froth exhibits a static shear modulus-a hallmark of an elastic solid-even though it is composed primarily of two Newtonian fluids (water and air), which have no shear modulus. This apparent paradox is easily resolved. Soap froth contains a small amount of surfactant that stabilizes the delicate network of thin liq- uid films against rupture. The soap-film network deforms in response to a macroscopic strain; this increases interracial area and the corresponding sur- face energy, and provides the strain energy of classical elasticity theory [1]. This physical mechanism is easily imagined but very challenging to quantify for a realistic three-dimensional soap froth in view of its complex geome- try. Foam micromechanics addresses the connection between constituent properties, cell-level structure, and macroscopic mechanical behavior. This article is a survey of micromechanics applied to gas-liquid foams, liquid-liquid emulsions, and cellular solids. We will focus on static response where the foam deformation is very slow and rate-dependent phenomena such as viscous flow can be neglected. This includes nonlinear elasticity when deformations are large but reversible. We will also discuss elastic- plastic behavior, which involves yield phenomena. Foam structures based on polyhedra packed to fill space provide a unify- ing geometrical theme. Because a two

  14. Dynamic Property of Aluminum Foam

    Directory of Open Access Journals (Sweden)

    S Irie

    2016-09-01

    Full Text Available Aluminum in the foam of metallic foam is in the early stage of industrialization. It has various beneficial characteristics such as being lightweight, heat resistance, and an electromagnetic radiation shield. Therefore, the use of aluminum foam is expected to reduce the weight of equipment for transportation such as the car, trains, and aircraft. The use as energy absorption material is examined. Moreover aluminum foam can absorb the shock wave, and decrease the shock of the blast. Many researchers have reported about aluminum foam, but only a little information is available for high strain rates (103 s-1 or more. Therefore, the aluminum foam at high strain rates hasn't been not characterized yet. The purpose in this research is to evaluate the behavior of the aluminum form in the high-strain rate. In this paper, the collision test on high strain rate of the aluminum foam is investigated. After experiment, the numerical analysis model will be made. In this experiment, a powder gun was used to generate the high strain rate in aluminum foam. In-situ PVDF gauges were used for measuring pressure and the length of effectiveness that acts on the aluminum foam. The aluminum foam was accelerated to about 400 m/s from deflagration of single component powder and the foam were made to collide with the PVDF gauge. The high strain rate deformation of the aluminum form was measured at two collision speeds. As for the result, pressure was observed to go up rapidly when about 70% was compressed. From this result, it is understood that complete crush of the cell is caused when the relative volume is about 70%. In the next stage, this data will be compared with the numerical analysis.

  15. Analytic Model for Predicting the Permeability of Foam-type Wick

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Ich-Long; Byon, Chan [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2016-06-15

    Wicks play an important role in determining the thermal performance of heat pipes. Foam-type wicks are known to have good potential for enhancing the capillary performance of conventional types of wicks, and this is because of their high porosity and permeability. In this study, we develop an analytic expression for predicting the permeability of a foam-type wick based on extensive numerical work. The proposed correlation is based on the modified Kozeny-Carman’s equation, where the Kozeny-Carman coefficient is given as an exponential function of porosity. The proposed correlations are shown to predict the previous experimental results well for an extensive parametric range. The permeability of the foam-type wick is shown to be significantly higher than that of conventional wicks because of their high porosity.

  16. Modeling of mould cavity filling process with cast iron in Lost Foam method Part 2. Mathematical model – Pouring rate

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2008-08-01

    Full Text Available In this work pouring rate equation for cast iron in lost foam process was shown. For description of this phenomenon the motion dynamic equation was used. Pressure affecting the liquid cast iron surface was described using Bernoulli formulae. Numerical simulation results were analyzed with respect to permeability, refractory coating thickness and foamed polystyrene pattern density influence on pouring rate.

  17. SYMPTEK homemade foam models for client education and emergency obstetric care skills training in low-resource settings.

    Science.gov (United States)

    Deganus, Sylvia A

    2009-10-01

    Clinical training for health care workers using anatomical models and simulation has become an established norm. A major requirement for this approach is the availability of lifelike training models or simulators for skills practice. Manufactured sophisticated human models such as the resuscitation neonatal dolls, the Zoë gynaecologic simulator, and other pelvic models are very expensive, and are beyond the budgets of many training programs or activities in low-resource countries. Clinical training programs in many low-resource countries suffer greatly because of this cost limitation. Yet it is also in these same poor countries that the need for skilled human resources in reproductive health is greatest. The SYMPTEK homemade models were developed in response to the need for cheaper, more readily available humanistic models for training in emergency obstetric skills and also for client education. With minimal training, a variety of cheap SYMPTEK models can easily be made, by both trainees and facilitators, from high-density latex foam material commonly used for furnishings. The models are reusable, durable, portable, and easily maintained. The uses, advantages, disadvantages, and development of the SYMPTEK foam models are described in this article.

  18. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    Science.gov (United States)

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Foaming in stout beers

    CERN Document Server

    Lee, W T

    2011-01-01

    We review the differences between bubble formation in champagne and other carbonated drinks, and stout beers which contain a mixture of dissolved nitrogen and carbon dioxide. The presence of dissolved nitrogen in stout beers gives them a number of properties of interest to connoisseurs and physicists. These remarkable properties come at a price: stout beers do not foam spontaneously and special technology, such as the widgets used in cans, is needed to promote foaming. Nevertheless the same mechanism, nucleation by gas pockets trapped in cellulose fibres, responsible for foaming in carbonated drinks is active in stout beers, but at an impractically slow rate. This gentle rate of bubble nucleation makes stout beers an excellent model system for the scientific investigation of the nucleation of gas bubbles. The equipment needed is very modest, putting such experiments within reach of undergraduate laboratories. Finally we consider the suggestion that a widget could be constructed by coating the inside of a beer...

  20. Multi-scale Modelling of Fracture in Open-Cell Metal Foams

    NARCIS (Netherlands)

    Mangipudi, K. R.; Onck, P. R.; Ganghoffer, JF; Pastrone, F

    2010-01-01

    Metal foams possess attractive mechanical properties like high stiffness to weight ratio.When used to build light-weight structures they require a good combination of strength and ductility. They are ductile under compression but rather brittle in tension with a few percent of overall strain to

  1. Computational modelling of the complex dynamics of chemically blown polyurethane foam

    Science.gov (United States)

    Ireka, I. E.; Niedziela, D.; Schäfer, K.; Tröltzsch, J.; Steiner, K.; Helbig, F.; Chinyoka, T.; Kroll, L.

    2015-11-01

    This study presents computational analysis of the complex dynamics observed in chemically blown polyurethane foams during reaction injection molding process. The mathematical formulation introduces an experimentally motivated non-divergence free setup for the continuity equations which reflects the self expanding behaviour observed in the physical system. The foam growth phenomena which is normally initiated by adequate pre-mixing of necessary reactant polymers, leading to an exothermic polymerization reaction, bubble nucleation, and gas formation, is captured numerically. We assume the dependence of material viscosity on the degree of cure/polymerization, gas volume fraction, and temperature as well as non-dependence of mixture density on pressure. The set of unsteady nonlinear coupled partial differential equations describing the dynamics of the system are solved numerically for state variables using finite volume techniques such that the front of the flow is tracked with high resolution interface capturing schemes. Graphical representation of the foam volume fraction, evolution of foam heights, and temperature distributions is presented. Results from our simulations are validated with experimental data. These results show good quantitative agreement with observations from experiments.

  2. An in vitro coculture model of transmigrant monocytes and foam cell formation.

    Science.gov (United States)

    Takaku, M; Wada, Y; Jinnouchi, K; Takeya, M; Takahashi, K; Usuda, H; Naito, M; Kurihara, H; Yazaki, Y; Kumazawa, Y; Okimoto, Y; Umetani, M; Noguchi, N; Niki, E; Hamakubo, T; Kodama, T

    1999-10-01

    To analyze in vitro the migration of monocytes to the subendothelial space, their differentiation into macrophages, and the subsequent formation of foam cells in vitro, we have developed a 2-coculture system with rabbit aortic endothelial cells (AECs), aortic smooth muscle cells (SMCs), and a mixture of matrix proteins on polyethylene filters in chemotaxis chambers. AECs were seeded on a mixture of type I and IV collagen with or without various types of serum lipoproteins (method 1) or on matrix proteins secreted by SMCs (method 2). In these coculture systems, rabbit AECs can maintain a well-preserved monolayer for up to 2 weeks. When human CD14-positive monocytes were added to the upper medium of the system, with monocyte chemotactic protein-1 treatment approximately 60% of the monocytes transmigrated within 24 hours and were retained for up to 7 days, whereas without MCP-1 treatment, monocytes transmigrated. On day 1, transmigrant monocytes were negative for immunostaining of type I and II macrophage scavenger receptors but by day 3, became positive for scavenger receptors as well as other macrophage markers. When oxidized low density lipoprotein was added to the matrix layer of the method I coculture, on day 4 transmigrant cells exhibited lipid deposit droplets, and by day 7, they had the appearance of typical foam cells. Some of the transmigrant cells recovered in the lower medium on day 7 also appeared to be foam cells, indicating foam cell motility and escape from the coculture layer through the filter. In summary, this coculture system is a useful in vitro tool to dissect the cellular and molecular events that make up the process of foam cell formation.

  3. Foam Transport in Porous Media - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The

  4. Phase Separation in Poly(urethane urea) Multiblock Copolymers

    Science.gov (United States)

    Garrett, J. T.; Xu, R.; Cho, J.; Runt, J.

    2002-03-01

    The current paper is a continuation of our research on microdomain morphology and phase separation of model poly(urethane urea) copolymers, complimenting our previous AFM and small-angle x-ray scattering studies. Phase transitions were monitored using both dynamic mechanical analysis and DSC, taking care to keep the temperature below where chemical degradation becomes significant. Surprisingly, soft phase Tgs were found to consistently decrease in temperature with increasing hard segment content in the copolymers. This is seemingly in contrast with an increase in unlike segment mixing in the domains with increasing hard segment content, as determined from SAXS. Several possible explanations for this behavior are proposed. The nature of the hard domains was also characterized using wide-angle x-ray diffraction experiments. Evidence of very weak crystalline diffraction peak(s) where found, superimposed on the amorphous halo. Finally, we also evaluated the sensitivity of Fourier transform infrared spectroscopy to hard/soft segment phase separation in these systems.

  5. Spin Foams and Canonical Quantization

    CERN Document Server

    Alexandrov, Sergei; Noui, Karim

    2011-01-01

    This review is devoted to the analysis of the mutual consistency of the spin foam and canonical loop quantizations in three and four spacetime dimensions. In the three-dimensional context, where the two approaches are in good agreement, we show how the canonical quantization \\`a la Witten of Riemannian gravity with a positive cosmological constant is related to the Turaev-Viro spin foam model, and how the Ponzano-Regge amplitudes are related to the physical scalar product of Riemannian loop quantum gravity without cosmological constant. In the four-dimensional case, we recall a Lorentz-covariant formulation of loop quantum gravity using projected spin networks, compare it with the new spin foam models, and identify interesting relations and their pitfalls. Finally, we discuss the properties which a spin foam model is expected to possess in order to be consistent with the canonical quantization, and suggest a new model illustrating these results.

  6. Photocatalytic degradation and reactor modeling of 17α-ethynylestradiol employing titanium dioxide-incorporated foam concrete.

    Science.gov (United States)

    Wang, Yuming; Li, Yi; Zhang, Wenlong; Wang, Qing; Wang, Dawei

    2015-03-01

    Photocatalytic degradation of 17α-ethynylestradiol (EE2) using TiO2 photocatalysts incorporated with foam concrete (TiO2/FC) was investigated for the first time. Scanning electron microscopy (SEM) study of the samples revealed a narrow air void size distribution on the surface of FC cubes on with 5 wt% addition of P25 TiO2, and TiO2 particles were distributed heterogeneously on the surface of TiO2/FC samples. The sorption and photocatalytic degradation of EE2 with UV-light irradiation by TiO2/FC cubes were investigated. Adsorption capacity of EE2 by the TiO2/FC and blank foam concrete (FC) samples were similar, while the degradation rates showed a great difference. More than 50 % of EE2 was removed by TiO2/FC within 3.5 h, compared with 5 % by blank FC. The EE2 removal process was then studied in a photoreactor modified from ultraviolet disinfection pool and constructed with TiO2/FC materials. An integrated model including a plate adsorption-scattering model and a modified flow diffusion model was established to simulate the photocatalytic degradation process with different radiation fields, contaminant load, and flow velocity. A satisfactory agreement was observed between the model simulations and experimental results, showing a potential for the design and scale-up of the modified photocatalytic reactor.

  7. Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core

    Science.gov (United States)

    Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.

    2012-01-01

    The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.

  8. Modeling and Simulation of the Hydrogenation of α-Methylstyrene on Catalytically Active Metal Foams as Tubular Reactor Packing

    Directory of Open Access Journals (Sweden)

    Farzad Lali

    2016-01-01

    Full Text Available This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction of α-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.

  9. Foam Cushioning

    Science.gov (United States)

    1988-01-01

    One innovation developed by a contractor at Ames Research Center was an open cell polymeric foam material with unusual properties. Intended as padding for aircraft seats the material offered better impact protection against accidents, and also enhanced passenger comfort because it distributed body weight evenly over the entire contact area. Called a slow springback foam, it flows to match the contour of the body pressing against it, and returns to its original shape once the pressure is removed. It has many applications including aircraft cushions and padding, dental stools, and athletic equipment. Now it's used by Dynamic Systems, Inc. for medical applications such as wheel chairs for severely disabled people which allow them to sit for 3-8 hours where they used to be uncomfortable in 15-30 minutes.

  10. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  11. A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro.

    Science.gov (United States)

    Zhang, J Y; Beckman, E J; Piesco, N P; Agarwal, S

    2000-06-01

    A novel non-toxic biodegradable lysine-di-isocyanate (LDI)-based urethane polymer was developed for use in tissue engineering applications. This matrix was synthesized with highly purified LDI made from the lysine diethylester. The ethyl ester of LDI was polymerized with glycerol to form a prepolymer. LDI-glycerol prepolymer when reacted with water foamed with the liberation of CO2 to provide a pliable spongy urethane polymer. The LDI-glycerol matrix degraded in aqueous solutions at 100, 37, 22, and 4 degrees C at a rate of 27.7, 1.8, 0.8, and 0.1 mM per 10 days, respectively. Its thermal stability in water allowed its sterilization by autoclaving. The degradation of the LDI-glycerol polymer yielded lysine, ethanol, and glycerol as breakdown products. The degradation products of LDI-glycerol polymer did not significantly affect the pH of the solution. The glass transition temperature (Tg) of this polymer was found to be 103.4 degrees C. The physical properties of the polymer network were found to be adequate to support the cell growth in vitro, as evidenced by the fact that rabbit bone marrow stromal cells (BMSC) attached to the polymer matrix and remained viable on its surface. Culture of BMSC on LDI-glycerol matrix for long durations resulted in the formation of multilayered confluent cultures, a characteristic typical of bone cells. Furthermore, cells grown on LDI-glycerol matrix did not differ phenotypically from the cells grown on the tissue culture polystyrene plates as assessed by the cell growth, and expression of mRNA for collagen type I, and transforming growth factor-beta1 (TGF-beta1). The observations suggest that biodegradable peptide-based urethane polymers can be synthesized which may pave their way for possible use in tissue engineering applications.

  12. Lung Tumors in Mice Receiving Different Schedules of Urethane

    Science.gov (United States)

    1967-01-01

    tumors, but this phenotypic expression did become markedly segregated. Thus, there are strains such as A, in which almost all animals develop pulmonary...urethane," Khanolkar Felicitation Volume, Bombay , Indian Cancer Research Center, 1963, pp. 158-181. [11] P. S. HENSHAW and H. L. MEYER, "Further

  13. Protic Cationic Oligomeric Ionic Liquids of the Urethane Type

    DEFF Research Database (Denmark)

    Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.

    2014-01-01

    Protic oligomeric cationic ionic liquids of the oligo(ether urethane) type are synthesized via the reaction of an isocyanate prepolymer based on oligo(oxy ethylene)glycol with M = 1000 with hexamethylene-diisocyanate followed by blocking of the terminal isocyanate groups with the use of amine...

  14. Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT

    Directory of Open Access Journals (Sweden)

    Franziska Greifzu

    2016-01-01

    Full Text Available In the present study two benchmark problems for turbulent dispersed particle-laden flow are investigated with computational fluid dynamics (CFD. How the CFD programs OpenFOAM and ANSYS FLUENT model these flows is tested and compared. The numerical results obtained with Lagrangian–Eulerian (LE point-particle (PP models for Reynolds-averaged Navier–Stokes (RANS simulations of the fluid flow in steady state and transient modes are compared with the experimental data available in the literature. The effect of the dispersion model on the particle motion is investigated in particular, as well as the order of coupling between the continuous carrier phase and the dispersed phase. First, a backward-facing step (BFS case is validated. As a second case, the confined bluff body (CBB is used. The simulated fluid flows correspond well with the experimental data for both test cases. The results for the dispersed solid phase reveal a good accordance between the simulation results and the experiments. It seems that particle dispersion is slightly under-predicted when ANSYS FLUENT is used, whereas the applied solver in OpenFOAM overestimates the dispersion somewhat. Only minor differences between the coupling schemes are detected due to the low volume fractions and mass loadings that are investigated. In the BFS test case the importance of the spatial dimension of the numerical model is demonstrated. Even if it is reasonable to assume a two-dimensional fluid flow structure, it is crucial to simulate the turbulent particle-laden flow with a three-dimensional model since the turbulent dispersion of the particles is three-dimensional.

  15. Analysis of Effective Interconnectivity of DegraPol-foams Designed for Negative Pressure Wound Therapy

    Directory of Open Access Journals (Sweden)

    Heike Hall

    2009-03-01

    Full Text Available Many wounds heal slowly and are difficult to manage. Therefore Negative Pressure Wound Therapy (NPWT was developed where polymer foams are applied and a defined negative pressure removes wound fluid, reduces bacterial burden and increases the formation of granulation tissue. Although NPWT is used successfully, its mechanisms are not well understood. In particular, different NPWT dressings were never compared. Here a poly-ester urethane Degrapol® (DP-foam was produced and compared with commercially available dressings (polyurethane-based and polyvinyl-alcohol-based in terms of apparent pore sizes, swelling and effective interconnectivity of foam pores. DP-foams contain relatively small interconnected pores; PU-foams showed large pore size and interconnectivity; whereas PVA-foams displayed heterogeneous and poorly interconnected pores. PVA-foams swelled by 40 %, whereas DP- and PU-foams remained almost without swelling. Effective interconnectivity was investigated by submitting fluorescent beads of 3, 20 and 45 mm diameter through the foams. DP- and PU-foams removed 70-90 % of all beads within 4 h, independent of the bead diameter or bead pre-adsorption with serum albumin. For PVA-foams albumin pre-adsorbed beads circulated longer, where 20 % of 3 mm and 10 % of 20 mm diameter beads circulated after 96 h. The studies indicate that efficient bead perfusion does not only depend on pore size and swelling capacity, but effective interconnectivity might also depend on chemical composition of the foam itself. In addition due to the efficient sieve-effect of the foams uptake of wound components in vivo might occur only for short time suggesting other mechanisms being decisive for success of NPWT.

  16. Causal spin foams

    CERN Document Server

    Immirzi, Giorgio

    2016-01-01

    I discuss how to impose causality on spin-foam models, separating forward and backward propagation, turning a given triangulation to a 'causal set', and giving asymptotically the exponential of the Regge action, not a cosine. I show the equivalence of the prescriptions which have been proposed to achieve this. Essential to the argument is the closure condition for the 4-simplices, all made of space-like tetrahedra.

  17. A three-dimensional laboratory steam injection model allowing in situ saturation measurements. [Comparing steam injection and steam foam injection with nitrogen and without nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

    1992-08-01

    The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

  18. Indirect decompression and vertebral body endplate strength after lateral interbody spacer impaction: cadaveric and foam-block models.

    Science.gov (United States)

    Kwon, Anthony J; Hunter, William D; Moldavsky, Mark; Salloum, Kanaan; Bucklen, Brandon

    2016-05-01

    OBJECTIVE The lateral transpsoas approach to the lumbar spine is a well-defined procedure for the management of discogenic spinal pathology necessitating surgical intervention. Intervertebral device subsidence is a postoperative clinical risk that can lead to recurrence of symptomatic pathology and the need for surgical reintervention. The current study was designed to investigate static versus expandable lateral intervertebral spacers in indirect decompression for preserving vertebral body endplate strength. METHODS Using a cadaveric biomechanical study and a foam-block vertebral body model, researchers compared vertebral body endplate strength and distraction potential. Fourteen lumbar motion segments (7 L2-3 and 7 L4-5 specimens) were distributed evenly between static and expandable spacer groups. In each specimen discectomy was followed by trialing and spacer impaction. Motion segments were axially sectioned through the disc, and a metal stamp was used to apply a compressive load to superior and inferior vertebral bodies to quantify endplate strength. A paired, 2-sample for means t-test was performed to determine statistically significant differences between groups (p ≤ 0.05). A foam-block endplate model was used to control simulated disc tension when a spacer with 2- and 3-mm desired distraction was inserted. One-way ANOVA and a post hoc Student Newman-Keuls test were performed (p ≤ 0.05) to determine differences in distraction. RESULTS Both static and expandable spacers restored intact neural foramen and disc heights after device implantation (p > 0.05). Maximum peak loads at endplate failure for static and expandable spacers were 1764 N (± 966 N) and 2284 N (± 949 N), respectively (p ≤ 0.05). The expandable spacer consistently produced greater desired distraction than was created by the static spacer in the foam-block model (p ≤ 0.05). Distraction created by fully expanding the spacer was significantly greater than the predetermined goals of 2 mm

  19. Nanostructured metal foams: synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  20. Adjoint-based optimization of a foam EOR process

    NARCIS (Netherlands)

    Namdar Zanganeh, M.; Kraaijevanger, J.F.B.M.; Buurman, H.W.; Jansen, J.D.; Rossen, W.R.

    2012-01-01

    We apply adjoint-based optimization to a Surfactant-Alternating-Gas foam process using a linear foam model introducing gradual changes in gas mobility and a nonlinear foam model giving abrupt changes in gas mobility as function of oil and water saturations and surfactant concentration. For the

  1. Infra-slow oscillation (ISO of the pupil size of urethane-anaesthetised rats.

    Directory of Open Access Journals (Sweden)

    Tomasz Blasiak

    Full Text Available Multiplicity of oscillatory phenomena in a range of infra-slow frequencies (<0.01 Hz has been described in mammalian brains at different levels of organisation. The significance and manifestation in physiology and/or behaviour of many brain infra-slow oscillations (ISO remain unknown. Examples of this phenomenon are two types of ISO observed in the brains of urethane-anaesthetised rats: infra-slow, rhythmic changes in the rate of action potential firing in a few nuclei of the subcortical visual system and a sleep-like cycle of activation/deactivation visible in the EEG signal. Because both of these rhythmic phenomena involve brain networks that can influence autonomic nervous system activity, we hypothesised that these two brain ISOs can be reflected by rhythmic changes of pupil size. Thus, in the present study, we used simultaneous pupillography and ECoG recording to verify the hypothesised existence of infra-slow oscillations in the pupil size of urethane-anaesthetised rats. The obtained results showed rhythmic changes in the size of the pupils and rhythmic eyeball movements in urethane-anaesthetised rats. The observed rhythms were characterised by two different dominant components in a range of infra-slow frequencies. First, the long component had a period of ≈ 29 minutes and was present in both the irises and the eyeball movements. Second, the short component had a period of ≈ 2 minutes and was observed only in the rhythmic constrictions and dilations of the pupils. Both ISOs were simultaneously present in both eyes, and they were synchronised between the left and right eye. The long ISO component was synchronised with the cyclic alternations of the brain state, as revealed by rhythmic changes in the pattern of the ECoG signal. Based on the obtained results, we propose a model of interference of ISO present in different brain systems involved in the control of pupil size.

  2. Finite element modeling for predicting the contact pressure between a foam mattress and the human body in a supine position.

    Science.gov (United States)

    Lee, Wookjin; Won, Byeong Hee; Cho, Seong Wook

    2017-01-01

    In this paper, we generated finite element (FE) models to predict the contact pressure between a foam mattress and the human body in a supine position. Twenty-year-old males were used for three-dimensional scanning to produce the FE human models, which was composed of skin and muscle tissue. A linear elastic isotropic material model was used for the skin, and the Mooney-Rivlin model was used for the muscle tissue because it can effectively represent the nonlinear behavior of muscle. The contact pressure between the human model and the mattress was predicted by numerical simulation. The human models were validated by comparing the body pressure distribution obtained from the same human subject when he was lying on two different mattress types. The experimental results showed that the slope of the lower part of the mattress caused a decrease in the contact pressure at the heels, and the effect of bone structure was most pronounced in the scapula. After inserting a simple structure to function as the scapula, the contact pressure predicted by the FE human models was consistent with the experimental body pressure distribution for all body parts. These results suggest that the models proposed in this paper will be useful to researchers and designers of products related to the prevention of pressure ulcers.

  3. Solvent for urethane adhesives and coatings and method of use

    Science.gov (United States)

    Simandl, Ronald F.; Brown, John D.; Holt, Jerrid S.

    2010-08-03

    A solvent for urethane adhesives and coatings, the solvent having a carbaldehyde and a cyclic amide as constituents. In some embodiments the solvent consists only of miscible constituents. In some embodiments the carbaldehyde is benzaldehyde and in some embodiments the cyclic amide is N-methylpyrrolidone (M-pyrole). An extender may be added to the solvent. In some embodiments the extender is miscible with the other ingredients, and in some embodiments the extender is non-aqueous. For example, the extender may include isopropanol, ethanol, tetrahydro furfuryl alcohol, benzyl alcohol, Gamma-butyrolactone or a caprolactone. In some embodiments a carbaldehyde and a cyclic amide are heated and used to separate a urethane bonded to a component.

  4. LATEX HYBRIDES URETHANE/ACRYLIQUE POUR APPLICATIONS ADHESIVES

    OpenAIRE

    Degrandi, Elise

    2009-01-01

    This work focuses on adhesive films obtained upon film formation of urethane/acrylic hybrid latex particles. These latexes were prepared by a miniemulsion polymerization to ensure a homogeneous incorporation of the PU inside the particles. Studying the morphology of particles and films showed that the grafting of polyurethane is essential to avoid phase separation at the film scale which is harmful for the macroscopic properties. Two parameters affect the mechanical properties of the films: t...

  5. Preparation of Novel Hydrolyzing Urethane Modified Thiol-Ene Networks

    Directory of Open Access Journals (Sweden)

    Bridget S. Confait

    2011-10-01

    Full Text Available Novel tetra-functional hydrolyzing monomers were prepared from the reaction of TEOS and select alkene-containing alcohols, ethylene glycol vinyl ether or 2-allyloxy ethanol, and combined with trimethylolpropane tris(3-mercaptopropionate (tri-thiol in a thiol-ene “click” polymerization reaction to produce clear, colorless thiol-ene networks using both radiation and thermal-cure techniques. These networks were characterized for various mechanical characteristics, and found to posses Tg’s (DSC, hardness, tack, and thermal stability (TGA consistent with their molecular structures. A new ene-modified urethane oligomer was prepared based on the aliphatic polyisocyanate Desmodur® N 3600 and added to the thiol-ene hydrolyzable network series in increasing amounts, creating a phase-segregated material having two Tg’s. An increase in water absorption in the ene-modified urethane formulations leading to a simultaneous increase in the rate of hydrolysis was supported by TGA data, film hardness measurements, and an NMR study of closely related networks. This phenomenon was attributed to the additional hydrogen bonding elements and polar functionality brought to the film with the addition of the urethane segment. SEM was utilized for visual analysis of topographical changes in the film’s surface upon hydrolysis and provides support for surface-driven erosion. Coatings prepared in this study are intended for use as hydrolyzing networks for marine coatings to protect against ship fouling.

  6. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  7. Drag Coefficient and Foam in Hurricane Conditions.

    Science.gov (United States)

    Golbraikh, E.; Shtemler, Y.

    2016-12-01

    he present study is motivated by recent findings of saturation and even decrease in the drag coefficient (capping) in hurricane conditions, which is accompanied by the production of a foam layer on the ocean surface. As it is difficult to expect at present a comprehensive numerical modeling of the drag coefficient saturation that is followed by wave breaking and foam production, there is no complete confidence and understanding of the saturation phenomenon. Our semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd , with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the available optical and radiometric measurements of the fractional foam coverage,αf, combined with direct wind speed measurements in hurricane conditions, which provide the minimum of the effective drag coefficient, Cd for the sea covered with foam. The present model yields Cd10 versus U10 in fair agreement with that evaluated from both open-ocean and laboratory measurements of the vertical variation of mean wind speed in the range of U10 from low to hurricane speeds. The present approach opens opportunities for drag coefficient modeling in hurricane conditions and hurricane intensity estimation by the foam-coverage value using optical and radiometric measurements.

  8. Foams theory, measurements, and applications

    CERN Document Server

    Khan, Saad A

    1996-01-01

    This volume discusses the physics and physical processes of foam and foaming. It delineates various measurement techniques for characterizing foams and foam properties as well as the chemistry and application of foams. The use of foams in the textile industry, personal care products, enhanced oil recovery, firefighting and mineral floatation are highlighted, and the connection between the microstructure and physical properties of foam are detailed. Coverage includes nonaqueous foams and silicone antifoams, and more.

  9. Predicting model on ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter based on BP neural network

    Directory of Open Access Journals (Sweden)

    Yu Jingyuan

    2011-08-01

    Full Text Available In present study, BP neural network model was proposed for the prediction of ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The inputs of the BP neural network model were the applied load on the epispastic polystyrene template (F, centrifugal acceleration (v and sintering temperature (T, while the only output was the ultimate compressive strength (σ. According to the registered BP model, the effects of F, v, T on σ were analyzed. The predicted results agree with the actual data within reasonable experimental error, indicating that the BP model is practically a very useful tool in property prediction and process parameter design of the Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting.

  10. Global Functional Connectivity Differences between Sleep-Like States in Urethane Anesthetized Rats Measured by fMRI.

    Directory of Open Access Journals (Sweden)

    Ekaterina Zhurakovskaya

    Full Text Available Sleep is essential for nervous system functioning and sleep disorders are associated with several neurodegenerative diseases. However, the macroscale connectivity changes in brain networking during different sleep states are poorly understood. One of the hindering factors is the difficulty to combine functional connectivity investigation methods with spontaneously sleeping animals, which prevents the use of numerous preclinical animal models. Recent studies, however, have implicated that urethane anesthesia can uniquely induce different sleep-like brain states, resembling rapid eye movement (REM and non-REM (NREM sleep, in rodents. Therefore, the aim of this study was to assess changes in global connectivity and topology between sleep-like states in urethane anesthetized rats, using blood oxygenation level dependent (BOLD functional magnetic resonance imaging. We detected significant changes in corticocortical (increased in NREM-like state and corticothalamic connectivity (increased in REM-like state. Additionally, in graph analysis the modularity, the measure of functional integration in the brain, was higher in NREM-like state than in REM-like state, indicating a decrease in arousal level, as in normal sleep. The fMRI findings were supported by the supplementary electrophysiological measurements. Taken together, our results show that macroscale functional connectivity changes between sleep states can be detected robustly with resting-state fMRI in urethane anesthetized rats. Our findings pave the way for studies in animal models of neurodegenerative diseases where sleep abnormalities are often one of the first markers for the disorder development.

  11. Rigid polyurethane/oil palm fibre biocomposite foam

    Science.gov (United States)

    Alis, Adilah; Majid, Rohah A.; Nasir, Izzah Athirah Ahmad; Mustaffa, Nor Syatika; Hassan, Wan Hasamuddin Wan

    2017-07-01

    Rigid polyurethane (PU) biocomposite foam had been successfully prepared by reacting palm oil-derived polyol (PO-p) with polymeric 4, 4-diphenylmethane diisocynate (p-MDI). Two types of alkali-treated oil palm fibres namely, empty fruit bunch (EFB) and palm pressed fibre (PPF) were used as fillers to be incorporated into PU foam at 2.5 wt%, 5 wt% and 7.5 wt% fibre loadings. The effects of these fibres on surface morphology, compressive strength and thermal transition behaviours of biocomposite foams were investigated. Fourier transform infra-red (FTIR) analysis confirmed the formation of urethane linkages (-NHCOO) in all samples at 1530-1540 cm-1. Differential scanning calorimetry (DSC) analysis showed the average melting peak temperature (Tm) of biocomposite foams (132°C) were lower Tm than that of pure PU foam (161.67°C) and the increase amount of fibres did not give significant effect on the Tm of both biocomposite systems. Meanwhile, the microscopic images of PU-PPF foams exhibited smaller and uniform cell size morphologies compared with the PU-EFB foams that had coarse and irregular cell sizes, especially at 7.5wt% EFB. These findings were manifested with the gradually increase of compressive strength of PU-PPF at all PPF ratios while for PU-EFB system, the compressive strength increased up to 5 wt% before reduced at 7.5 wt% loading. It was thought due to the residual oil in PPF fibre had plasticized the PU matrix to a little extent, thus helping the dispersion of PPF fibre across the matrix.

  12. Simultaneous drug release at different rates from biodegradable polyurethane foams.

    Science.gov (United States)

    Sivak, Wesley N; Zhang, Jianying; Petoud, Stephané; Beckman, Eric J

    2009-09-01

    In this study, we present an approach for the simultaneous release of multiple drug compounds at different rates from single-phase polyurethane foams constructed from lysine diisocyanate (LDI) and glycerol. The anti-cancer compounds DB-67 and doxorubicin were covalently incorporated into polyurethane foams, whereby drug release can then occur in concert with material degradation. To begin, the reactions of DB-67 and doxorubicin with LDI in the presence of a tertiary amine catalyst were monitored with infrared spectroscopy; each compound formed urethane linkages with LDI. Fluorescent spectra of DB-67 and doxorubicin were then recorded in phosphate-buffered saline, pH 7.4 (PBS), to ensure that each anti-cancer compound could be quantitatively detected alone and in combination. Doxorubicin and DB-67 were then incorporated into a series of degradable LDI-glycerol polyurethane foams alone and in combination with one another. The sol content, average porosity and drug distribution throughout each foam sample was measured and found to be similar amongst all foam samples. The stability of DB-67 and doxorubicin's fluorescent signal was then assessed over a 2-week period at 70 degrees C. Release rates of the compounds from the foams were assessed over a 10-week period at 4, 22, 37 and 70 degrees C by way of fluorescence spectroscopy. Release was found to be temperature-dependent, with rates related to the chemical structure of the incorporated drug. This study demonstrates that differential release of covalently bound drugs is possible from simple single-phase, degradable polyurethane foams.

  13. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    William R. Rossen

    2003-03-31

    . We find that such behavior is consistent with earlier models of foam viscosity in tubes, and a modified model for the low-quality regime can account for this behavior. It is not yet clear why this new regime appears in some cases and not in others. Simple modeling suggests that the answer may have to do with the sensitivity of gas trapping to pressure gradient. Research on Task 3 continued to focus on foam generation at limited pressure gradient in sandpacks. We investigated the effects of permeability, surfactant concentration and liquid injection rates on foam generation. In addition, a careful review of published studies showed that repeated snap-off is not a plausible mechanism of foam generation in homogeneous porous media beyond the stage of initial drainage from a fully liquid-saturated state. Snap-off has been the focus of much research on foam generation and is incorporated into most mechanistic foam simulators. This finding should force a reconsideration of its role in foam generation and properties in porous media.

  14. Controlled release of protein from biodegradable multi-sensitive injectable poly(ether-urethane) hydrogel.

    Science.gov (United States)

    Li, Xiaomeng; Wang, Yangyun; Chen, Jiaming; Wang, Yinong; Ma, Jianbiao; Wu, Guolin

    2014-03-12

    The synthesis and characterization of multi-sensitive polymers for use as injectable hydrogels for controlled protein/drug delivery is reported. A series of biodegradable multi-sensitive poly(ether-urethane)s were prepared through a simple one-pot condensation of poly(ethylene glycol), 2,2'-dithiodiethanol, N-methyldiethanolamine, and hexamethylene diisocyanate. The sol-gel phase transition behaviors of the obtained copolymers were investigated. Experimental results showed that the aqueous medium comprising the multi-segment copolymers underwent a sol-to-gel phase transition with increasing temperature and pH. At a certain concentration, the copolymer solution could immediately change to a gel under physiological conditions (37 °C and pH 7.4), indicating their suitability as in situ injectable hydrogels in vivo. Insulin was used as a model protein drug for evaluation of the injectable hydrogels as a site-specific drug delivery system. The controlled release of insulin from the hydrogel devices was demonstrated by degradation of the copolymer, which is modulated via the 2,2'-dithiodiethanol content in the poly(ether-urethane)s. These hydrogels having multi-responsive properties may prove to be promising candidates for injectable and controllable protein drug delivery devices.

  15. MALDI-TOF and 13C NMR Analysis of Tannin–Furanic–Polyurethane Foams Adapted for Industrial Continuous Lines Application

    Directory of Open Access Journals (Sweden)

    Maria Cecilia Basso

    2014-12-01

    Full Text Available Mixed phenolic-polyurethane-type rigid foams were developed using tannin-furfuryl alcohol natural materials co-reacted with polymeric isocyanate in the proportions imposed by the limitations inherent to continuous industrial plants for polyurethane foams. A variety of different copolymerization oligomers formed. Urethanes appeared to have been formed with two flavonoid tannin sites, mainly at the flavonoid hydroxyl group at C3, but also, although less, on the phenolic hydroxyl groups of the flavonoid oligomers. Urethanes are also formed with (i glyoxal in the formulation, be it pre-reacted or not with the tannin; (ii with phenolsulfonic acid and (iii with furfural. This latter one, however, greatly favors reaction with the A-ring of the flavonoids through a methylene bridge rather than reaction with the isocyanate groups to form urethanes. All of the materials appeared to have co-reacted in a manner to form urethane and methylene bridges between all of the main components used. Thus, the tannin, the furfuryl alcohol, the isocyanate, the glyoxal and even the phenol sulfonic acid hardener formed a number of mixed species linked by the two bridge types. Several mixed species comprised of 2, 3 and even 4 co-reacted different components have been observed.

  16. Vacuum forming of thermoplastic foam

    NARCIS (Netherlands)

    Akkerman, Remko; Pronk, Ruud

    1999-01-01

    The process of thermoforming of foam sheet is analyzed using both finite element modeling and experiments. A simple constitutive model for finite tensile deformations of closed cellular material around its glass transition temperature is proposed, starting from well-known results from Gibson and Ash

  17. Polyurethane-Foam Maskant

    Science.gov (United States)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  18. Catalyst-dependent drug loading of LDI-glycerol polyurethane foams leads to differing controlled release profiles.

    Science.gov (United States)

    Sivak, Wesley N; Pollack, Ian F; Petoud, Stéphane; Zamboni, William C; Zhang, Jianying; Beckman, Eric J

    2008-09-01

    The purpose of the present study was to develop biodegradable and biocompatible polyurethane foams based on lysine diisocyanate (LDI) and glycerol to be used as drug-delivery systems for the controlled release of 7-tert-butyldimethylsilyl-10-hydroxy-camptothecin (DB-67). The impact of urethane catalysts on cellular proliferation was assessed in an attempt to enhance the biocompatibility of our polyurethane materials. DB-67, a potent camptothecin analog, was then incorporated into LDI-glycerol polyurethane foams with two different amine urethane catalysts: 1,4-diazobicyclo[2.2.2]-octane (DABCO) and 4,4'-(oxydi-2,1-ethane-diyl)bismorpholine (DMDEE). The material morphologies of the polyurethane foams were analyzed via scanning electron microscopy, and DB-67 distribution was assessed by way of fluorescence microscopy. Both foam morphology and drug distribution were found to correlate to the amine catalyst used. Hydrolytic release rates of DB-67 from the polyurethane foams were catalyst dependent and also demonstrated greater drug loads being released at higher temperatures. The foams were capable of delivering therapeutic concentrations of DB-67 in vitro over an 11week test period. Cellular proliferation assays demonstrate that empty LDI-glycerol foams did not significantly alter the growth of malignant human glioma cell lines (Ppolyurethane foams were found to inhibit cellular proliferation by at least 75% in all the malignant glioma cell lines tested (Pcatalyst-dependent release of DB-67 from LDI-glycerol polyurethane foams, indicating their potential for use in implantable drug-delivery devices.

  19. Thermal Expansion of Polyurethane Foam

    Science.gov (United States)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  20. Effect of Foamed Pattern Density on the Lost Foam Process

    OpenAIRE

    T. Pacyniak

    2007-01-01

    The study examines the effect of the foamed polystyrene pattern density on the process of making castings by the lost foam technique with emphasis put on the analysis of simulation tests. The simulation regarded the effect that pattern density is said to have on the mould cavity filling rate, pressure in the gas gap, and size of this gap. For simulation tests of the full mould process, a mathematical model presented in this study was used. For calculations, the author's own algorithm was appl...

  1. Thermoforming of foam sheet

    NARCIS (Netherlands)

    Akkerman, Remko; Pronk, Ruud M.

    1997-01-01

    Thermoforming is a widely used process for the manufacture of foam sheet products. Polystyrene foam food trays for instance can be produced by first heating the thermoplastic foam sheet, causing the gas contained to build up pressure and expand, after which a vacuum pressure can be applied to draw t

  2. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  3. Engineered carbon foam for temperature control applications

    Science.gov (United States)

    Almajali, Mohammad Rajab

    The need for advanced thermal management materials is well recognized in the electronics and communication industries. An overall reduction in size of electronic components has lead to higher power dissipation and increased the necessity for innovative cooling designs. In response, material suppliers have developed and are continuing to develop, an increasing number of light weight thermal management materials. The new carbon foam is a low density and high thermal conductivity material which has the potential to radically improve heat transfer, thereby reducing size and weight of equipment while simultaneously increasing its efficiency and capabilities. However, carbon foam exhibits low strength and low heat capacity. The present work is intended to overcome these two main drawbacks using a combinatorial approach: (i) initially, copper coating was carried out to improve the thermo-mechanical properties of carbon foam. The thermal and mechanical properties of coated foam were measured using laser flash technique and compression test, respectively. An analytical model was developed to calculate the effective thermal conductivity. It was observed that the copper-coated carbon foam with 50% porosity can attain a thermal conductivity of 180 W/mK. The results from the analytical model were in a very good agreement with experimental results. The modulus increased from 4.5 MPa to 8.6 MPa and the plateau stress increased from 54 kPa to 171 kPa. The relationships between the measured properties and the copper weight ratio were determined. The above analyses demonstrated the significance of copper coating in tailoring carbon foam properties. (ii) Numerical and experimental studies were performed to analyze the phase change behavior of wax/foam composite encapsulated in metal casing. A two-energy equation model was solved using computational fluid dynamics software (CFD). Interfacial effects at the casing-composite junction and between the wax-foam surfaces and the capillary

  4. Modeling, kinetic, and equilibrium characterization of paraquat adsorption onto polyurethane foam using the ion-pairing technique.

    Science.gov (United States)

    Vinhal, Jonas O; Lage, Mateus R; Carneiro, José Walkimar M; Lima, Claudio F; Cassella, Ricardo J

    2015-06-01

    We studied the adsorption of paraquat onto polyurethane foam (PUF) when it was in a medium containing sodium dodecylsulfate (SDS). The adsorption efficiency was dependent on the concentration of SDS in solution, because the formation of an ion-associate between the cationic paraquat and the dodecylsulfate anion was found to be a fundamental step in the process. A computational study was carried out to identify the possible structure of the ion-associate in aqueous medium. The obtained data demonstrated that the structure is probably formed from four units of dodecylsulfate bonded to one paraquat moiety. The results showed that 94% of the paraquat present in 45 mL of a solution containing 3.90 × 10(-5) mol L(-1) could be retained by 300 mg of PUF, resulting in the removal of 2.20 mg of paraquat. The experimental data were reasonably adjusted to the Freundlich isotherm and to the pseudo-second-order kinetic model. Also, the application of Morris-Weber and Reichenberg models indicated that both film-diffusion and intraparticle-diffusion processes were active during the control of the adsorption kinetics.

  5. Is Quantum Spacetime Foam Unstable?

    CERN Document Server

    Redmount, I H; Redmount, Ian H.; Suen, Wai-Mo

    1993-01-01

    A very simple wormhole geometry is considered as a model of a mode of topological fluctutation in Planck-scale spacetime foam. Quantum dynamics of the hole reduces to quantum mechanics of one variable, throat radius, and admits a WKB analysis. The hole is quantum-mechanically unstable: It has no bound states. Wormhole wave functions must eventually leak to large radii. This suggests that stability considerations along these lines may place strong constraints on the nature and even the existence of spacetime foam.

  6. Development of Castor Oil Resistant Urethane Sonar Encapsulants.

    Science.gov (United States)

    1983-03-01

    handling and appearance of castable urethanes. Organo tin compounds such as dibutyl tin dilaurate or the diacetate derivative afforded optically clear...34 - I * I M C4 SOZA ’a- C~ C.4..4Q m f -c I O-4 (n4 L LnO~C. I sues~ s + 1~ r-. + C%j + or mn c.co ’ Q) (n -e𔃻 clo 50 -4 O4C\\ US A oin d~ ~ ONU 5C C C\\jI

  7. Experimental study and modeling of the rheology and hydraulics in the foam drilling; Estudos experimentais e modelagem da reologia e da hidraulica na perfuracao com espuma

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Andre L.; Sa, Carlos H.M. de; Lourenco, Affonso M.F.; S. Junior, Valter [PETROBRAS, S.A, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: aleibsohn@cenpes.petrobras.com.br; chsa@cenpes.petrobras.com.br; affonso-lourenco@utulsa.edu; vsj@cenpes.petrobras.com.br

    2000-07-01

    This article describes the extense experimental effort for analyzing the foam stability and rheological properties for application as light drilling fluid. The study considered the influence of the foaming and concentration on the foam rheology and the gas volumetric fraction on the foam rheological properties. Simple correlations were proposed for quantification of the experimental behaviour. Field tests were performed to evaluate one of the foaming agents analyzed in laboratory by using 16 combinations of the gas-fluid flow.

  8. In vitro and in vivo evaluation of a shape memory polymer foam-over-wire embolization device delivered in saccular aneurysm models.

    Science.gov (United States)

    Boyle, Anthony J; Landsman, Todd L; Wierzbicki, Mark A; Nash, Landon D; Hwang, Wonjun; Miller, Matthew W; Tuzun, Egemen; Hasan, Sayyeda M; Maitland, Duncan J

    2016-10-01

    Current endovascular therapies for intracranial saccular aneurysms result in high recurrence rates due to poor tissue healing, coil compaction, and aneurysm growth. We propose treatment of saccular aneurysms using shape memory polymer (SMP) foam to improve clinical outcomes. SMP foam-over-wire (FOW) embolization devices were delivered to in vitro and in vivo porcine saccular aneurysm models to evaluate device efficacy, aneurysm occlusion, and acute clotting. FOW devices demonstrated effective delivery and stable implantation in vitro. In vivo porcine aneurysms were successfully occluded using FOW devices with theoretical volume occlusion values greater than 72% and rapid, stable thrombus formation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1407-1415, 2016.

  9. Multiscale Analysis of Open-Cell Aluminum Foam for Impact Energy Absorption

    Science.gov (United States)

    Kim, Ji Hoon; Kim, Daeyong; Lee, Myoung-Gyu; Lee, Jong Kook

    2016-09-01

    The energy-absorbing characteristics of crash members in automotive collision play an important role in controlling the amount of damage to the passenger compartment. Aluminum foams have high strength-to-weight ratio and high deformability, thus good crashworthiness is expected while maintaining or even saving weights when foams are implemented in crash members. In order to investigate the effect of the open-cell aluminum foam fillers on impact performance and weight saving, a multiscale framework for evaluating the crashworthiness of aluminum foam-filled members is used. To circumvent the difficulties of mechanical tests on foams, a micromechanical model of the aluminum foam is constructed using the x-ray micro tomography and virtual tests are conducted for the micromechanical model to characterize the behavior of the foam. In the macroscale, the aluminum foam is represented by the crushable foam constitutive model, which is then incorporated into the impact test simulation of the foam-filled crash member. The multiscale foam-filled crash member model was validated for the high-speed impact test, which confirms that the material model characterized by the micromechanical approach represents the behavior of the open-cell foam under impact loading well. Finally, the crash member design for maximizing the energy absorption is discussed by investigating various designs from the foam-only structure to the hollow tube structure. It was found that the foam structure absorbs more energy than the hollow tube or foam-filled structure with the same weight.

  10. Synthesis and translocation of gangliosides and glycoproteins during urethane anesthesia

    Energy Technology Data Exchange (ETDEWEB)

    Domowicz, M.S.; Kivatinitz, S.C.; Caputto, B.L.; Caputto, R.

    1988-05-01

    In this work, we have studied (a) the contents of gangliosides, glycoproteins, and phospholipids of the vesicle and plasma membrane fractions from brains of anesthetized and control rats and chickens and (b) the labeling of gangliosides and glycoproteins in the retina ganglion cell layer and optic tectum of urethane-anesthetized and control chickens after intraocular injection of a labeled N-acetylneuraminic acid precursor and the distribution of the label after subcellular fractionation. We found an increase in the content of gangliosides relative to protein in the vesicle fraction of both anesthetized rats and chickens relative to their controls. Other values were not affected by anesthesia. These results do not reflect a faster synthesis of gangliosides stimulated by urethane, because their rate of labeling was diminished in anesthetized animals. During the 4-h period after the animals were injected intraocularly with the radioactive precursor, the highest values of ganglioside-specific radioactivity were found in the vesicle fraction of control and anesthetized animals; at longer intervals, the specific radioactivity of the vesicle and plasma membrane fractions became rather similar. These data are in accordance with previous studies from this laboratory suggesting that the synthesis of the carbohydrate chain of gangliosides is regulated by the physiological demands made by the neurotransmitting system.

  11. Nanoscale Structure of Urethane/Urea Elastomeric Films

    Science.gov (United States)

    Reis, Dennys; Trindade, Ana C.; Godinho, Maria Helena; Silva, Laura C.; do Carmo Gonçalves, Maria; Neto, Antônio M. Figueiredo

    2017-02-01

    The nanostructure of urethane/urea elastomeric membranes was investigated by small-angle X-ray scattering (SAXS) in order to establish relationships between their structure and mechanical properties. The networks were made up of polypropylene oxide (PPO) and polybutadiene (PB) segments. The structural differences were investigated in two types of membranes with the same composition but with different thermal treatment after casting. Type I was cured at 70-80 °C and type II at 20 °C. Both membranes showed similar phase separation by TEM, with nanodomains rich in PB or PPO and 25 nm dimensions. The main difference between type I and type II membranes was found by SAXS. The type I membrane spectra showed, besides a broad band at a 27-nm q value (modulus of the scattering vector), an extra band at 6 nm, which was not observed in the type II membrane. The SAXS spectra were interpreted in terms of PPO, PB soft segments, and urethane/urea links, as well as hard moiety segregation in the reaction medium. This additional segregation ( q = 7 nm), although subtle, results in diverse mechanical behavior of in both membranes.

  12. Thermal, chemical, and mechanical response of rigid polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L.

    1997-12-01

    Rigid polyurethane foams are frequently used as encapsulants to isolate and support thermally sensitive components within weapon systems. When exposed to abnormal thermal environments, such as fire, the polyurethane foam decomposes to form products having a wide distribution of molecular weights and can dominate the overall thermal response of the system. Mechanical response of the decomposing foam, such as thermal expansion under various loading conditions created by gas generation, remains a major unsolved problem. A constitutive model of the reactive foam is needed to describe the coupling between mechanical response and chemical decomposition of foam exposed to environments such as fire. Towards this end, a reactive elastic-plastic constitutive model based on bubble mechanics describing nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of rigid polyurethane foam has been developed. A local force balance, with mass continuity constraints, forms the basis of the constitutive model requiring input of temperature and the fraction of the material converted to gas. This constitutive model provides a stress-strain relationship which is applicable for a broad class of reacting materials such as explosives, propellants, pyrotechnics, and decomposing foams. The model is applied to a block of foam exposed to various thermal fluxes. The model is also applied to a sphere of foam confined in brass. The predicted mechanical deformation of the foam block and sphere are shown to qualitatively agree with experimental observations.

  13. Mechanical behaviour of nickel foams: three-dimensional morphology, non-linear models and fracture; Caracterisation et simulation numerique du comportement mecanique des mousses de nickel: morphologie tridimensionnelle, reponse elastoplastique et rupture

    Energy Technology Data Exchange (ETDEWEB)

    Dillard, Th.

    2004-03-15

    The deformation behaviour and failure of nickel foams were studied during loading by using X-ray microtomography. Strut alignment and stretching are observed in tension whereas strut bending followed by strut buckling are observed in compression. Strain localisation, that occurs during compression tests, depends on nickel weight distribution in the foam. Fracture in tension first takes place at cell nodes and the crack propagates cell by cell. The damaged area in front of a crack is about five cells wide. A detailed description of the three-dimensional morphology is also presented. One third of the cells are dodecahedral and 57 % of the faces are pentagonal. The most frequent cell is composed of two quadrilaterals, two hexagons and eight pentagons. The dimensions of the equivalent ellipsoid of each cell are identified and cell orientation are determined. The geometrical aspect ratio is linked to the mechanical anisotropy of the foam. In tension, a uniaxial analytical model, based on elastoplastic strut bending, is developed. The whole stress-strain curve of the foam is predicted according to its specific weight and its anisotropy. It is found that the non-linear regime of the macroscopic curve of the foam is not only due to the elastoplastic bending of the struts. The model is also extended to two-phase foams and the influence of the hollow struts is analysed. The two-phase foams model is finally applied to oxidized nickel foams and compared with experimental data. The strong increase in the rigidity of nickel foams with an increasing rate of oxidation, is well described by the model. However, a fracture criterion must also be introduced to take into account the oxide layer cracking. A phenomenological compressible continuum plasticity model is also proposed and identified in tension. The identification of the model is carried out using experimental strain maps obtained by a photo-mechanical technique. A validation of the model is provided by investigating the

  14. Feynman propagator for spin foam quantum gravity.

    Science.gov (United States)

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  15. Open Cell Metal Foams for Beam Liners?

    CERN Document Server

    Croce, R P; Stabile, A

    2013-01-01

    The possible use of open-cell metal foams for particle accelerator beam liners is considered. Available materials and modeling tools are reviewed, potential pros and cons are pointed out, and a study program is outlined.

  16. Biodecolorization and Bioremediation of Denim Industrial Wastewater by Adapted Bacterial Consortium Immobilized on Inert Polyurethane Foam (PUF) Matrix: A First Approach with Biobarrier Model.

    Science.gov (United States)

    Rajendran, R; Prabhavathi, P; Karthiksundaram, S; Pattab, S; Kumar, S Dinesh; Santhanam, P

    2015-01-01

    The present experiments were studied on bioremediation of denim industry wastewater by using polyurethane foam (PU foam) immobilized bacterial cells. About 30 indigenous adapted bacterial strains were isolated from denim textile effluent out of which only four isolates were found to be efficient against crude indigo carmine degradation using broth decolorization method. The selected bacterial strains were identified as Actinomyces sp., (PK07), Pseudomonas sp., (PK18), Stenotrophomonas sp., (PK23) and Staphylococcus sp., (PK28) based on microscopic and biochemical characteristics. The bacterial immobilized cells have the highest number of viable cells (PK07, PK18, PK23 and PK28 appeared to be 1 x 10(8), 1 x 10(9), 1 x 10(6) and 1 x 10(7) CFU/ml respectively) and maximum attachment efficiency of 92% on PU foam. The complete degradation using a consortium of PU foam immobilized cells was achieved at pH 6, 27 degrees C, 100% of substrate concentration and allowed to develop biofilm for one day (1.5% W/V). In SEM analysis, it was found that immobilization of bacterial cells using PUF stably maintained the production of various extracellular enzymes at levels higher than achieved with suspended forms. Finally, isatin and anthranilic acid were found to be degradation products by NMR and TLC. The decolorized dye was not toxic to monkey kidney cell (HBL 100) at a concentration of 50 μl and 95% of cell viability was retained. A mathematical model that describes bacterial transport with biodegradation involves a set of coupled reaction equations with non-standard numerical approach based on the time step scheme.

  17. Photochemical activation of extremely weak nucleophiles: highly fluorinated urethanes and polyurethanes from polyfluoro alcohols.

    Science.gov (United States)

    Soto, Marc; Sebastián, Rosa María; Marquet, Jordi

    2014-06-06

    An efficient and environmentally friendly photoreaction between phenyl isocyanate or pentafluorophenyl isocyanate and polyfluorinated alcohols and diols is described for the first time. New highly fluorinated urethanes and diurethanes, derived from aromatic isocyanates, are produced in good yields in a photoreaction that is apparently governed by the acidic properties of the polyfluoro alcohols and diols. The wettability properties of the new polyfluorinated diurethanes have been tested, some of them showing significantly high values of hydrophobicity and oleophobicity. This new photoreaction has also been tested in the production of a model polyfluorinated polyurethane, establishing the influence of the irradiation power in the outcome of the process, and directly achieving a molecular weight distribution corresponding to a number-average DP(n) = 12 and a highest DP(n) = 20 after 4 h of irradiation (DP(n): "number-average degree of polymerization").

  18. A field-theoretic approach to Spin Foam models in Quantum Gravity

    CERN Document Server

    Vitale, Patrizia

    2011-01-01

    We present an introduction to Group Field Theory models, motivating them on the basis of their relationship with discretized BF models of gravity. We derive the Feynmann rules and compute quantum corrections in the coherent states basis.

  19. Foaming Scum Index (FSI)--a new tool for the assessment and characterisation of biological mediated activated sludge foams.

    Science.gov (United States)

    Fryer, Martin; Gray, N F

    2012-11-15

    The formation of thick stable brown foams within the activated sludge process has become a familiar operational problem. Despite much research having already been carried out into establishing the causes of activated sludge foaming there is still no general consensus on the mechanisms involved. Historically investigation into activated sludge foaming has involved either measuring, under aeration conditions, the propensity of mixed liquor samples to foam, or evaluating different physico-chemical properties of the sludge which have previously been linked to activated sludge foaming. Both approaches do not present a means to quantify the risk posed to the treatment plants once foams have started to develop on the surface of aeration basins and final clarifiers. The Foaming Scum Index (FSI) is designed to offer a means to quantify risk on the basis of different foam characteristics which can easily be measured. For example, foam stability, foam coverage, foam suspended solids content and biological composition. The FSI was developed by measuring foam samples taken from several different domestic and municipal wastewater treatment sites located in Greater Dublin area (South-East Ireland). Path analysis was used to predict co-dependencies among the different sets of variables following a number of separate hypotheses. The standardized beta coefficients (β) produced from the multivariate correlation analysis (providing a measure of the contribution of each variable in the structural equation model) was used to finalise the weighting of each parameter in the index accordingly. According to this principal, foam coverage exerted the greatest influence on the overall FSI (β = 0.33), whilst the filamentous bacterial composition in terms of the filament index of foam, provided the least (β = 0.03). From this work it is proposed that the index can be readily applied as a standard tool in the coordination of research into the phenomenon of activated sludge foaming.

  20. A water blown urethane insulation for use in cryogenic environments

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  1. Marangoni effects in aqueous polypropylene glycol foams.

    Science.gov (United States)

    Tan, Su Nee; Fornasiero, Daniel; Sedev, Rossen; Ralston, John

    2005-06-15

    The foam behavior of three polypropylene glycols covering the molecular weight range between 192 and 725 g/mol has been examined. Static and dynamic surface tension data, as well as bubble size distribution and retention time in the foam, were incorporated into a simple model of foam stability. The latter clearly indicates that surface tension differences between the plateau border and lamellar region adjacent to the bubble surface are the dominant factor in controlling foamability, causing liquid flow in the direction opposite to liquid drainage, a process termed the Marangoni effect.

  2. Transient foam flow in porous media with CAT Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dianbin; Brigham, W.E.

    1992-03-01

    Transient behavior is likely to dominate over most of the duration of a foam injection field project. Due to the lack of date, little is presently known about transient foam flow behavior. Foam flow does not follow established models such as the Buckley-Leverett theory, and no general predictive model has been derived. Therefore, both experimental data and a foam flow theory are needed. In this work, foam was injected at a constant mass rate into one-dimensional sandpacks of 1-in diameter and 24-in or 48-in length that had initially been saturate with distilled water. The system was placed in a cat Scanner. Data, obtained at room temperature and low pressure at various times, include both the pressure and saturation distributions. Pressure profiles showed that the pressure gradient is much greater behind the foam front than ahead of it. Moreover, the pressure gradients keep changing as the foam advances in the sandpack. This behavior differs from Buckley-Leverett theory. The CT scan results demonstrated gas channeling near the front, but eventually the foam block all these channels and sweeps the entire cross section after many pore volumes of injection. Three series of experiments were run: (1) surfactant adsorption measurements; (2) gas displacements of surfactant-laden solutions and (3) foam displacements. The first two series of experiments were made to provide the necessary parameters required to match the foam displacements. To this end, it was necessary to smooth the saturation history data, using a Langmuir-type formula. A theory was proposed based on the principles of the fractional flow curve construction method. This foam theory treats the foam as composed of infinitesimal slugs of gas of varying viscosities. The foam front has the lowest viscosity and foam at the injection end has the highest.

  3. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  4. The science of foaming.

    Science.gov (United States)

    Drenckhan, Wiebke; Saint-Jalmes, Arnaud

    2015-08-01

    The generation of liquid foams is at the heart of numerous natural, technical or scientific processes. Even though the subject of foam generation has a long-standing history, many recent progresses have been made in an attempt to elucidate the fundamental processes at play. We review the subject by providing an overview of the relevant key mechanisms of bubble generation within a coherent hydrodynamic context; and we discuss different foaming techniques which exploit these mechanisms.

  5. Fire-retardant foams

    Science.gov (United States)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  6. Sensing strain and damage in polyurethane/MWCNT nano-composite foams using electrical measurements

    Directory of Open Access Journals (Sweden)

    A. Baltopoulos

    2013-01-01

    Full Text Available This work deals with the damage identification in polymeric foams through the monitoring of the electrical resistance of the system. To assess this idea electrically conductive rigid Poly-Urethane (PUR foams at various densities were prepared. Multi-Wall Carbon Nanotubes (MWCNT were dispersed in the host polymer at various concentrations through high shear mixing to provide electrical conductivity to the system. The PUR/MWCNT foams exhibited varying electrical conductivity on a wide range of densities and nano-filler contents. The prepared foams were subject to compression tests. Electrical resistance was recorded online during the tests to monitor the change of the bulk property of the materials. A structural-electrical cross-property relation was exhibited. The distinctive phases of foam compression were successfully identified from the electrical resistance profile recorded during the tests. A characteristic master curve of the change of electrical resistivity with respect to load and damage is proposed and analyzed. It was shown that the found electrical resistance profile is a characteristic of all the MWCNT contents and depends on density and conductivity. MWCNT content contributes mainly to the sensitivity of electrical sensing in the initial stage of compression. Later compression stages are dominated by foam microstructural damage which mask any effect of CNT dispersion. Micro-structural observations were employed to verify the experimental findings and curves.

  7. Damping of liquid sloshing by foams

    CERN Document Server

    Sauret, Alban; Cappello, Jean; Dressaire, Emilie; Stone, Howard A

    2014-01-01

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of wa ter is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, wh ich suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscill ations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissi pation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D a...

  8. A thermo-electro-mechanical simulation model for hot wire cutting of EPS foam

    DEFF Research Database (Denmark)

    Petkov, Kiril; Hattel, Jesper Henri

    2016-01-01

    A one-dimensional thermo-electro-mechanical mathematical model describing the effects taking place within a Ni-Cr20% wire used in a hot-wire cutting process for free forming and rapid prototyping of expanded polystyrene (EPS) is investigated and simulated. The model implements and solves three semi...

  9. Shape memory polymer foams

    Science.gov (United States)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  10. Similarity between humans and foams in aging dynamics

    Science.gov (United States)

    Weon, Byung Mook; Stewart, Peter S.

    2014-03-01

    Foams are cellular networks between two immiscible phases. Foams are initially unstable and finally evolve toward a state of lower energy through sequential coalescences of bubbles. In physics, foams are model systems for materials that minimize surface energy. We study coalescence dynamics of clean foams using numerical simulations with a network model. Initial clean foams consist of equally pressurized bubbles and a low fraction of liquid films without stabilizing agents. Aging of clean foams occurs with time as bubbles rapidly coalesce by film rupture and finally evolve toward a new quasi-equilibrium state. Here we find that foam aging is analogous to biological aging: the death rate of bubbles increases exponentially with time, which is similar to the Gompertz mortality law for biological populations. The coalescence evolution of foams is self-similar regardless of initial conditions. The population change of bubbles is well described by a Boltzmann sigmoidal function, indicating that the foam aging is a phase transition phenomenon. This result suggests that foams can be useful model systems for giving insights into biological aging. Suwon 440-746, South Korea.

  11. Synthesis of Photochromic AgCl-Urethane Resin Composite Films

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2012-01-01

    Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 solution, and a liquid-state urethane resin as starting materials. The obtained composite films showed a photochromic property. The rate of darkening of the composite film increased after mixing with CuCl2. The AgCl particle size in the film without heat treatment was 6–20 nm, and that of the heat-treated film was 25–80 nm; these results were confirmed using TEM observations. The fading rate of the film without heat treatment was higher than that of the heat-treated films.

  12. Prediction of acoustic foam properties by numerical simulation of polyurethane foaming process

    Directory of Open Access Journals (Sweden)

    Abdessalam Hichem

    2016-01-01

    Full Text Available This work aims to model and to simulate the polyurethane foaming process. Models taking into account the two main chemical reactions of the formation of polyurethane, the exothermic effect of these reactions as well as the thermo-rheo-kinetic coupling characterizing this process are proposed and implemented in the software NOGRID-points based on a meshless method (Finite Pointset Method. A prediction of some acoustic foam characteristics is also proposed based on the results of the numerical simulation of the foaming process and semi-phenomenological models.

  13. Spherical foam growth in Al alloy melt

    Institute of Scientific and Technical Information of China (English)

    SHANG; Jintang; HE; Deping

    2005-01-01

    Due to the demand of high-tech Al alloy foam with spherical pores, high strength and high energy-absorption capacity has become one of the research foci. The aim of this study is to ascertain the growth regularity of spherical foam in Al alloy melt. Three-dimensional packing model such as face-centered cubic is established to study the spherical foam growth. Theoretical results are compared with experimental ones, and the face-centered cubic model corresponds well with the experiment. It is reasonable to assume that the pores have the same radius, the total pore number keeps unchanged and spherical foam grows with face-centered cubic packing mode. This study presents a useful help to control the average pore radius and film thickness.

  14. Dynamic Behavior of Hybrid APM (Advanced Pore Morphology Foam and Aluminum Foam Filled Structures

    Directory of Open Access Journals (Sweden)

    Joerg Weise

    2012-06-01

    Full Text Available The aim of this work is to evaluate the effect of different densities of hybrid aluminum polymer foam on the frequency behavior of a foam filled steel structure with different ratios between steel and foam masses. The foam filled structure is composed of three steel tubes with a welded flange at both ends bolted together to form a portal grounded by its free ends. Structure, internal and ground constraints have been designed and manufactured in order to minimize nonlinear effects and to guarantee optimal constraint conditions. Mode shapes and frequencies were verified with finite elements models (FEM to be in the range of experimental modal analysis, considering the frequency measurement range limits for instrumented hammer and accelerometer. Selected modes have been identified with suitable modal parameters extraction techniques. Each structure has been tested before and after filling, in order to compute the percentage variation of modal parameters. Two different densities of hybrid aluminum polymer foam have been tested and compared with structures filled with aluminum foams produced using the powder compact melting technique. All the foam fillings were able to suppress high frequency membrane modes which results in a reduction of environmental noise and an increase in performance of the components. Low frequency modes show an increase in damping ratio only when small thickness steel frames are filled with either Hybrid APM or Alulight foam.

  15. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    Science.gov (United States)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-05-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.

  16. Investigation into stress wave propagation in metal foams

    Directory of Open Access Journals (Sweden)

    Li Lang

    2015-01-01

    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  17. Rheological properties of the soft-disk model of two-dimensional foams

    DEFF Research Database (Denmark)

    Langlois, Vincent; Hutzler, Stefan; Weaire, Denis

    2008-01-01

    -Bulkley relation, normal stress effects (dilatancy), and localization in the presence of wall drag. We show that even a model that incorporates only linear viscous effects at the local level gives rise to nonlinear (power-law) dependence of the limit stress on strain rate. With wall drag, shear localization...

  18. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  19. Application of a drainage film reduces fibroblast ingrowth into large-pored polyurethane foam during negative-pressure wound therapy in an in vitro model.

    Science.gov (United States)

    Wiegand, Cornelia; Springer, Steffen; Abel, Martin; Wesarg, Falko; Ruth, Peter; Hipler, Uta-Christina

    2013-01-01

    Negative-pressure wound therapy (NPWT) is an advantageous treatment option in wound management to promote healing and reduce the risk of complications. NPWT is mainly carried out using open-cell polyurethane (PU) foams that stimulate granulation tissue formation. However, growth of wound bed tissue into foam material, leading to disruption of newly formed tissue upon dressing removal, has been observed. Consequently, it would be of clinical interest to preserve the positive effects of open-cell PU foams while avoiding cellular ingrowth. The study presented analyzed effects of NPWT using large-pored PU foam, fine-pored PU foam, and the combination of large-pored foam with drainage film on human dermal fibroblasts grown in a collagen matrix. The results showed no difference between the dressings in stimulating cellular migration during NPWT. However, when NPWT was applied using a large-pored PU foam, the fibroblasts continued to migrate into the dressing. This led to significant breaches in the cell layers upon removal of the samples after vacuum treatment. In contrast, cell migration stopped at the collagen matrix edge when fine-pored PU foam was used, as well as with the combination of PU foam and drainage film. In conclusion, placing a drainage film between collagen matrix and the large-pored PU foam dressing reduced the ingrowth of cells into the foam significantly. Moreover, positive effects on cellular migration were not affected, and the effect of the foam on tissue surface roughness in vitro was also reduced.

  20. Beer foam physics

    NARCIS (Netherlands)

    Ronteltap, A.D.

    1989-01-01

    The physical aspects of beer foam behavior were studied in terms of the four physical processes, mainly involved in the formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence. In detail, the processes disproportionation and

  1. Beer foam physics.

    NARCIS (Netherlands)

    Ronteltap, L.

    1989-01-01

    The physical aspects of beer foam behavior were studied in terms of the four physical processes, mainly involved in the formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence. In detail, the processes disproportionation and coalescence we

  2. Chronicles of foam films.

    Science.gov (United States)

    Gochev, G; Platikanov, D; Miller, R

    2016-07-01

    The history of the scientific research on foam films, traditionally known as soap films, dates back to as early as the late 17th century when Boyle and Hooke paid special attention to the colours of soap bubbles. Their inspiration was transferred to Newton, who began systematic study of the science of foam films. Over the next centuries, a number of scientists dealt with the open questions of the drainage, stability and thickness of foam films. The significant contributions of Plateau and Gibbs in the middle/late 19th century are particularly recognized. After the "colours" method of Newton, Reinold and Rücker as well as Johhonnot developed optical methods for measuring the thickness of the thinner "non-colour" films (first order black) that are still in use today. At the beginning of the 20th century, various aspects of the foam film science were elucidated by the works of Dewar and Perrin and later by Mysels. Undoubtedly, the introduction of the disjoining pressure by Derjaguin and the manifestation of the DLVO theory in describing the film stability are considered as milestones in the theoretical development of foam films. The study of foam films gained momentum with the introduction of the microscopic foam film methodology by Scheludko and Exerowa, which is widely used today. This historical perspective serves as a guide through the chronological development of knowledge on foam films achieved over several centuries.

  3. Metal foams: A survey

    Institute of Scientific and Technical Information of China (English)

    Michael; F.; Ashby; LU; Tianjian(卢天健)

    2003-01-01

    The current state-of-the-art in the development of cellular metal foams is reviewed, with focus on their fabrication, mechanical/thermal/acoustic properties, and potential applications as lightweight panels, energy absorbers, heat exchangers, and acoustic liners. Foam property charts with scaling relations are presented, allowing scoping and selection through the use of material indices.

  4. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    CERN Document Server

    Dittrich, Bianca; Steinhaus, Sebastian

    2014-01-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. Using this novel information encoded in the decoration might eventually lead to new methods incorporating both analytical and numerical techniques.

  5. Spin Foam Models for Quantum Gravity and semi-classical limit

    CERN Document Server

    Dupuis, Maité

    2011-01-01

    The spinfoam framework is a proposal for a regularized path integral for quantum gravity. Spinfoams define quantum space-time structures describing the evolution in time of the spin network states for quantum geometry derived from Loop Quantum Gravity (LQG). The construction of this covariant approach is based on the formulation of General Relativity as a topological theory plus the so-called simplicity constraints which introduce local degrees of freedom. The simplicity constraints are essential in turning the non-physical topological theory into 4d gravity. In this PhD manuscript, an original way to impose the simplicity constraints in 4d Euclidean gravity using harmonic oscillators is proposed and new coherent states, solutions of the constraints, are given. Moreover, a consistent spinfoam model for quantum gravity has to be connected to LQG and must have the right semi-classical limit. An explicit map between the spin network states of LQG and the boundary states of spinfoam models is given connecting the...

  6. Linking covariant and canonical LQG II: Spin foam projector

    CERN Document Server

    Thiemann, Thomas

    2013-01-01

    In a seminal paper, Kaminski, Kisielowski an Lewandowski for the first time extended the definition of spin foam models to arbitrary boundary graphs. This is a prerequisite in order to make contact to the canonical formulation of Loop Quantum Gravity (LQG) and allows to investigate the question whether any of the presently considered spin foam models yield a rigging map for any of the presently defined Hamiltonian constraint operators. The KKL extension cannot be described in terms of Group Field Theory (GFT) since arbitrary foams are involved while GFT is tied to simplicial complexes. Therefore one has to define the sum over spin foams with given boundary spin networks in an independent fashion using natural axioms, most importantly a gluing property for 2-complexes. These axioms are motivated by the requirement that spin foam amplitudes should define a rigging map (physical inner product) induced by the Hamiltonian constraint. This is achieved by constructing a spin foam operator based on abstract 2-complex...

  7. Polyurethane Foam Impact Experiments and Simulations

    Science.gov (United States)

    Kipp, M. E.; Chhabildas, L. C.; Reinhart, W. D.; Wong, M. K.

    1999-06-01

    Uniaxial strain impact experiments with a rigid polyurethane foam of nominal density 0.22g/cc are reported. A 6 mm thick foam impactor is mounted on the face of a projectile and impacts a thin (1 mm) target plate of aluminum or copper, on which the rear free surface velocity history is acquired with a VISAR. Impact velocities ranged from 300 to 1500 m/s. The velocity record monitors the initial shock from the foam transmitted through the target, followed by a reverberation within the target plate as the wave interacts with the compressed foam at the impact interface and the free recording surface. These one-dimensional uniaxial strain impact experiments were modeled using a traditional p-alpha porous material model for the distended polyurethane, which generally captured the motion imparted to the target by the foam. Some of the high frequency aspects of the data, reflecting the heterogeneous nature of the foam, can be recovered with computations of fully 3-dimensional explicit representations of this porous material.

  8. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  9. Biomass derived novel functional foamy materials - BIO-FOAM

    Energy Technology Data Exchange (ETDEWEB)

    Suurnaekki, A.; Boer, H.; Forssell, P. (and others) (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: anna.suurnakki@vtt.fi

    2010-10-15

    BIO-FOAM has aimed at exploiting the potential of biomaterials in replacing synthetic polymers in solid foamy materials. The target applications have been various, including food, packaging, construction and insulation. The project activities during the second project year have focused on characterisation of the solid model foams and on modeling the behaviour of polymers at liquid- liquid interfaces. In the modelling study the intrinsic consistence of the applied thermodynamic approach was confirmed. The experimentally obtained solubility parameters of polymers were in good agreement with the calculated solubility parameters. The polymers were, however, found to posses too little surface activity to alone provide stable foams, but they were able to act as co-surfactants. In the model polymer foam work both expanded polymer foams and wood fibre based foams were prepared. Supercritical CO{sub 2}-gas chamber was found to be a useful tool to prepare expanded polymer foams in small scale. Only partial replacement of synthetic polymers could, however, be obtained with native biomaterials indicating the need of tailoring of biopolymer properties and suitable formulations including surfactants or stabilizing particles. In wood fibre-based foams both nanocellulose and lignin showed potential as additives or reinforcing components.The outcome of the extruded food snacks study was that the processing parameters were related with the equipmentvariables. Furthermore, glycerol was shown to facilitate greatly extrusion processing. In foam concrete work concrete pore structure was shown to correlate with its strength and stability. At optimum concentration wood fibres affected positively the concrete processing performance. (orig.)

  10. Mechanical and Thermal Properties of Poly(urethane urea) Nanocomposites Prepared with Diamine-Modified Laponite

    OpenAIRE

    2008-01-01

    Nanocomposites based on segmented poly(urethane urea) were prepared by reacting a poly(diisocyanate) with diamine-modified Laponite-RD nanoparticles that served as a chain extender. The nanocomposites were prepared at a constant NH2 to NCO mole ratio of 0.95, while varying the fraction of diamine-modified Laponite relative to the free diamine chain extender. Compared to neat poly(urethane urea), all nanocomposites showed increased tensile strength and elongation at break. As Laponite loading ...

  11. Properties of Syntactic Foam for Simulation of Mechanical Insults.

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Neal Benson [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haulenbeek, Kimberly K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spletzer, Matthew A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ortiz, Lyndsy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Syntactic foam encapsulation protects sensitive components. The energy mitigated by the foam is calculated with numerical simulations. The properties of a syntactic foam consisting of a mixture of an epoxy-rubber adduct and glass microballoons are obtained from published literature and test results. The conditions and outcomes of the tests are discussed. The method for converting published properties and test results to input for finite element models is described. Simulations of the test conditions are performed to validate the inputs.

  12. Porosity and cell size control in alumina foam preparation by thermo-foaming of powder dispersions in molten sucrose

    Directory of Open Access Journals (Sweden)

    Sujith Vijayan

    2016-09-01

    Full Text Available The foaming characteristics of alumina powder dispersions in molten sucrose have been studied as a function of alumina powder to sucrose weight ratio (WA/S and foaming temperature. The increase in foaming temperature significantly decreases the foaming and foam setting time and increases the foam volume due to an increase in the rate of OH condensation as well as a decrease in the viscosity of the dispersion. Nevertheless, the foam collapses beyond a critical foaming temperature, which depends on the WA/S. The sintering shrinkage depends mainly on the WA/S and marginally on the foaming temperature. The porosity (83.4–94.6 vol.% and cell size (0.55–1.6 mm increase with an increase in foaming temperature (120–170 °C and a decrease in WA/S (0.8–1.6. The drastic decrease in compressive strength and modulus beyond a WA/S of 1.2 is due to the pores generated on the cell walls and struts as a result of particle agglomeration. Gibson and Ashby plots show large deviation with respect to the model constants ‘C’ and ‘n’, especially at higher alumina powder to sucrose weight ratios.

  13. SELF-ASSEMBLED MICRO-DOMAINS ON THE UPPERMOST SURFACE OF FLUORINATED POLY(CARBONATE URETHANE)S WITH FLUORINATED SIDE CHAIN ATTACHED ON HARD SEGMENTS

    Institute of Scientific and Technical Information of China (English)

    Hong Tan; Min Guo; Jie-hua Li; Xing-yi Xie; Yin-ping Zhong; Qiang Fu

    2004-01-01

    The surface phase separated structure of polyurethanes is always desired due to the advantage of better biocompatibility, compared with the homogeneous one. The key issue is how to control and characterize the surface morphology. In this work, we report the uppermost surface morphology of fluorinated poly(carbonate urethane)s with fluorinated side chains attached to hard segments as studied by AFM, XPS and contact angle measurement. A self-assembled micro-domain with the fluorinated side chain standing up on the uppermost surface has been proposed for polyurethane with higher fluorinated content, based on the result obtained.

  14. Novel foaming agent used in preparation process of aluminum foams

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The performances of a novel foaming agent used in the preparation process of aluminum foams were investigated,and the effects of some factors,such as addition of the foaming agent,foaming temperature on the porosity,and appearance of aluminum foams were also discussed.Experimental results show that the novel foaming agent has a wide decomposition temperature range and a mild decomposed rate; the foaming agent has the ability to enhance the viscosity of aluminum melt,as a result,an extra viscosifier such as Ca or SiCp is unnecessary while using this foaming agent; the bubble-free zone in material decreases and the foaming efficiency increases with the increase of foaming agent; the bubble-free zone disappears and the foaming efficiency is near 100% when the addition of foaming agent is more than 1.4wt% ; the porosity of the aluminum foam increases with the increase of foaming agent when the addition of foaming agent is less than 2.2wt% .

  15. Foam Protection of Flight Hardware From Impact Loads Due To Drops Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an algorithm to model foam compression during impact and implement as an easy to use excel based shipping foam design tool.Refine methodology of calculating...

  16. Controlling the coal dust at transshipment point:A study of the foam-sol foaming device

    Institute of Scientific and Technical Information of China (English)

    Xi Zhilin; Jiang Manman; Sun Changping; Tu Xian

    2014-01-01

    In order to effectively control the dust at the transshipment point with foam-sol, this paper attempted to study the characteristics of dust diffusion at transshipment point and the foam-sol foaming device with diffusion outlet was also designed in this paper. To study the diffusion rules of coal dust, fluent discrete phase model was utilized in the numerical simulation, as the coal dust was thrown down at a horizontal velocity of 2.5 m/s. A foam-sol foaming device was designed, through which foaming agent could be auto-matically sucked into the Venturi by the negative pressure. The automatic controller was also equipped, which could transform the energy of the compressed air into the constant pressure difference so that the gelling agent could be qualitatively added into the gel container. The diffusion outlet that could spray out foam-sol in a continuous, conical and 3D manner was also designed. Moreover, this paper also carried out the contrast experiments on dust removal efficiency among water, aqueous foam and foam-sol. The results clearly show that the symmetrical whirlpools appeared below the inlet where the largest whirl-pool diameter was 0.52 m, and the horizontal distance from swirl range to the inlet was approximately 0.69 m. By using the self-designed foaming device, the foaming was multiplied by 30 times and the vol-ume ratio with water and foaming agent reached 95%:5%. In this context, the gas pressure was controlled at 0.3 MPa, with gas flow at 15 m3/h and water flow at 0.5 m3/h, with water pressure controlled between 0.34 and 0.36 MPa. The foam-sol has the highest dust removal efficiency than other agents.

  17. Measurement of Aqueous Foam Rheology by Acoustic Levitation

    Science.gov (United States)

    McDaniel, J. Gregory; Holt, R. Glynn; Rogers, Rich (Technical Monitor)

    2000-01-01

    An experimental technique is demonstrated for acoustically levitating aqueous foam drops and exciting their spheroidal modes. This allows fundamental studies of foam-drop dynamics that provide an alternative means of estimating the viscoelastic properties of the foam. One unique advantage of the technique is the lack of interactions between the foam and container surfaces, which must be accounted for in other techniques. Results are presented in which a foam drop with gas volume fraction phi = 0.77 is levitated at 30 kHz and excited into its first quadrupole resonance at 63 +/- 3 Hz. By modeling the drop as an elastic sphere, the shear modulus of the foam was estimated at 75 +/- 3 Pa.

  18. Data characterizing tensile behavior of cenosphere/HDPE syntactic foam

    Directory of Open Access Journals (Sweden)

    B.R. Bharath Kumar

    2016-03-01

    Full Text Available The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites “Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine” (Bharath et al., 2016 [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model.

  19. Mitigation of Blast Effects on Aluminum Foam Protected Masonry Walls

    Institute of Scientific and Technical Information of China (English)

    SU Yu; WU Chengqing; GRIFFITH Mike

    2008-01-01

    Terrorist attacks using improvised explosive devices (lED) can result in unreinforced masonry (URM) wall collapse.Protecting URM wall from lED attack is very complicated.An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy.However,mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world.In this palaer,numerical models are used to simulate the performance of aluminum foam protected URM walls subjected to blast loads.A distinctive model,in which mortar and brick units of masonry are discritized individually,is used to model the performance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model.The aluminum foam is modelled by a nonlinear elastoplastic material model.The material models for masonry,aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads.Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.

  20. Technology of foamed propellants

    Energy Technology Data Exchange (ETDEWEB)

    Boehnlein-Mauss, Jutta; Kroeber, Hartmut [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany)

    2009-06-15

    Foamed propellants are based on crystalline explosives bonded in energetic reaction polymers. Due to their porous structures they are distinguished by high burning rates. Energy content and material characteristics can be varied by using different energetic fillers, energetic polymers and porous structures. Foamed charges can be produced easily by the reaction injection moulding process. For the manufacturing of foamed propellants a semi-continuous remote controlled production plant in pilot scale was set up and a modified reaction injection moulding process was applied. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  1. The foaming of lavas

    Science.gov (United States)

    Okeefe, J. A.; Walton, W.

    1976-01-01

    Foaming is of great practical and theoretical significance for volcanic processes on the earth, the moon, and perhaps the meteorite parent bodies. The theory of foams agrees with steelmaking experience to indicate that their presence depends on the existence of solutes in the lavas which reduce the surface tension, and are not saturated. These solutes concentrate at the surface, and are called surfactants. The surfactant responsible for the formation of volcanic ash was not identified; it appears to be related to the oxygen partial pressure above the lava. This fact may explain why lunar and meteoritic melts are not observed to foam. Experimental studies are needed to clarify the process.

  2. The Role of Foaming Agent and Processing Route in Mechanical Performance of Fabricated Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Alexandra Byakova

    2014-01-01

    Full Text Available The results of this study highlight the role of foaming agent and processing route in influencing the contamination of cell wall material by side products, which, in turn, affects the macroscopic mechanical response of closed-cell Al-foams. Several kinds of Al-foams have been produced with pure Al/Al-alloys by the Alporas like melt process, all performed with and without Ca additive and processed either with conventional TiH2 foaming agent or CaCO3 as an alternative one. Damage behavior of contaminations was believed to affect the micromechanism of foam deformation, favoring either plastic buckling or brittle failure of cell walls. No discrepancy between experimental values of compressive strengths for Al-foams comprising ductile cell wall constituents and those prescribed by theoretical models for closed-cell structure was found while the presence of low ductile and/or brittle eutectic domains and contaminations including particles/layers of Al3Ti, residues of partially reacted TiH2, and Ca bearing compounds, results in reducing the compressive strength to values close to or even below those of open-cell foams of the same relative density.

  3. The Role of Foaming Agent and Processing Route in the Mechanical Performance of Fabricated Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Takashi Nakamura

    2012-05-01

    Full Text Available The results of the present study highlight the role of foaming agent and processing route in influencing the contamination of cell wall material by side products, which, in turn, affect the macroscopic mechanical response of closed-cell Al-foams. Several kinds of Al-foams have been produced with pure Al by the Alporas melt process and powder metallurgical technique, all performed either with conventional TiH2 foaming agent or CaCO3 as an alternative. Mechanical characteristics of contaminating products induced by processing additives, all of which were presented in one or another kind of Al-foam, have been determined in indentation experiments. Damage behavior of these contaminations affects the micro-mechanism of deformation and favors either plastic buckling or brittle failure of the cell walls. It is justified that there is no discrepancy between experimental values of compressive strengths for Al-foams comprising ductile Al + Al4Ca eutectic domains and those prescribed by theoretical models for closed-cell structure. However, the presence of low ductile Al + Al3Ti + Al4Ca eutectic domains and brittle particles/layers of Al3Ti, fine CaCO3/CaO particles, Al2O3 oxide network, and, especially, residues of partially reacted TiH2, results in reducing the compressive strength to values close to or even below those of open-cell foams of the same relative density.

  4. Structural assessment of metal foam using combined NDE and FEA

    Science.gov (United States)

    Ghosn, Louis J.; Abdul-Aziz, Ali; Young, Philippe G.; Rauser, Richard W.

    2005-05-01

    Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a high fidelity finite element analysis is conducted on as fabricated metal foam microstructures, to compare the calculated mechanical properties with the idealized theory. The high fidelity geometric models for the FEA are generated using series of 2D CT scans of the foam structure to reconstruct the 3D metal foam geometry. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile, compressive, and shear mechanical properties are deduced from the FEA model and compared with the theoretical values. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.

  5. Multiple-shape memory polymers from benzoxazine-urethane copolymers

    Science.gov (United States)

    Prathumrat, Peerawat; Tiptipakorn, Sunan; Rimdusit, Sarawut

    2017-06-01

    In this research, multiple-shape memory polymers were prepared from benzoxazine (BA-a) resin and a urethane prepolymer (PU). The effects of BA-a resin content on the thermal, mechanical and multiple-shape memory properties were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, dynamic mechanical analysis, a flexural test and a multiple-shape memory test. The results revealed that the suitable curing conversions of BA-a:PU resin mixtures affect the shape memory behaviors. The BA-a/PU copolymers demonstrated an increase in flexural strength and flexural modulus at various deformation temperatures with an increase in the BA-a mass ratio from 55%-80%, whereas the thermal properties of these binary systems, i.e. glass transition temperature (T g), degradation temperature (T d) and char yield, were also found to increase with an increase in BA-a content. In addition, the two-step bending test was carried out using a universal testing machine to evaluate the multiple-shape memory properties. The results revealed that the BA-a/PU samples exhibited high values of shape fixity (70%-96% for the first temporary shape and 83%-99% for the second temporary shape) and shape recovery (88%-96% for the first temporary shape and 97%-99% for the original shape).

  6. Shape memory polymers based on uniform aliphatic urethane networks

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  7. Modified polycarbonate urethane: synthesis, properties and biological investigation in vitro.

    Science.gov (United States)

    Szelest-Lewandowska, A; Masiulanis, B; Szymonowicz, M; Pielka, S; Paluch, D

    2007-08-01

    A new polycarbonate urethane (PCU-I) was synthesized from aliphatic monomers, i.e. polyhexamethylene carbonate diol and 4,4'-methylene-bis cyclohexane diisocyanate, a mixture of low molecular diols, and castor oil (containing mainly the triglyceride of 12-hydroxyoleic acid). The second synthesized polymer (PCU-II) did not contain castor oil. Both PCUs had good tensile strength, i.e. 32.5 and 27.8 MPa for PCU-I and PCU-II, respectively. Modification by castor oil led to a decrease in glass transition temperature (T(g) = -14 degrees C for PCU-I and -6 degrees C for PCU-II) and an increase in the softening temperature (135 and 125 degrees C for PCU-I and PCU-II, respectively). Partial crosslinking of PCU-I increased the storage modulus of elasticity and provided better resistance to sterilization by ETO and gamma radiation. Both PCUs displayed good stability when subjected to sterilization by hydrogen peroxide plasma. Neither PCU caused cytotoxic effect in mouse fibroblasts (3T3 Balb C). They also had no toxic effects on the morphotic components and did not influence changes in the hematologic parameters or plasmatic coagulation system of human blood.

  8. A study on compressive shock wave propagation in metallic foams

    Science.gov (United States)

    Wang, Zhihua; Zhang, Yifen; Ren, Huilan; Zhao, Longmao

    2010-02-01

    Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau, which makes it widely applicable in the design of structural crashworthiness. However, in some experimental studies, stress enhancement has been observed when the specimens are subjected to intense impact loads, leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model, a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived, where an explicit integration algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses, considerable energy is dissipated during the progressive collapse of foam cells, which then reduces the crush of objects. When the pulse is sufficiently high, on the other hand, stress enhancement may take place, especially in the heterogeneous foams, where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material, amplitude and period of the pulse, as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.

  9. Effect of Foamed Pattern Density on the Lost Foam Process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2007-07-01

    Full Text Available The study examines the effect of the foamed polystyrene pattern density on the process of making castings by the lost foam technique with emphasis put on the analysis of simulation tests. The simulation regarded the effect that pattern density is said to have on the mould cavity filling rate, pressure in the gas gap, and size of this gap. For simulation tests of the full mould process, a mathematical model presented in this study was used. For calculations, the author's own algorithm was applied. The investigations have proved that with decreasing pattern density the pouring rate increases, while pressure in the gas gap and the size of the gap are decreasing. The increasing pouring rate ensures correct making of castings, even if their shapes are very intricate and the wall cross-sections are very small. Smaller size of the gas gap and lower pressure of gases in this gap reduce the risk of mould damage. The author’s own investigations have proved a very significant effect of the density of foamed polystyrene pattern on the casting process, and specially on the mould pouring rate. The best pouring rate is ensured by patterns of the density comprised in a range of ρ2 =18÷25 kg/m3.

  10. Fire-Induced Response in Foam Encapsulants

    Energy Technology Data Exchange (ETDEWEB)

    Borek, T.T.; Chu, T.Y.; Erickson, K.L.; Gill, W.; Hobbs, M.L.; Humphries, L.L.; Renlund, A.M.; Ulibarri, T.A.

    1999-04-02

    The paper provides a concise overview of a coordinated experimental/theoretical/numerical program at Sandia National Laboratories to develop an experimentally validated model of fire-induced response of foam-filled engineered systems for nuclear and transportation safety applications. Integral experiments are performed to investigate the thermal response of polyurethane foam-filled systems exposed to fire-like heat fluxes. A suite of laboratory experiments is performed to characterize the decomposition chemistry of polyurethane. Mass loss and energy associated with foam decomposition and chemical structures of the virgin and decomposed foam are determined. Decomposition chemistry is modeled as the degradation of macromolecular structures by bond breaking followed by vaporization of small fragments of the macromolecule with high vapor pressures. The chemical decomposition model is validated against the laboratory data. Data from integral experiments is used to assess and validate a FEM foam thermal response model with the chemistry model developed from the decomposition experiments. Good agreement was achieved both in the progression of the decomposition front and the in-depth thermal response.

  11. Foaming Behaviour, Structure, and Properties of Polypropylene Nanocomposites Foams

    Directory of Open Access Journals (Sweden)

    M. Antunes

    2010-01-01

    Full Text Available This work presents the preparation and characterization of compression-moulded montmorillonite and carbon nanofibre-polypropylene foams. The influence of these nanofillers on the foaming behaviour was analyzed in terms of the foaming parameters and final cellular structure and morphology of the foams. Both nanofillers induced the formation of a more isometric-like cellular structure in the foams, mainly observed for the MMT-filled nanocomposite foams. Alongside their crystalline characteristics, the nanocomposite foams were also characterized and compared with the unfilled ones regarding their dynamic-mechanical thermal behaviour. The nanocomposite foams showed higher specific storage moduli due to the reinforcement effect of the nanofillers and higher cell density isometric cellular structure. Particularly, the carbon nanofibre foams showed an increasingly higher electrical conductivity with increasing the amount of nanofibres, thus showing promising results as to produce electrically improved lightweight materials for applications such as electrostatic painting.

  12. Determination of Acreage Thermal Protection Foam Loss From Ice and Foam Impacts

    Science.gov (United States)

    Carney, Kelly S.; Lawrence, Charles

    2015-01-01

    A parametric study was conducted to establish Thermal Protection System (TPS) loss from foam and ice impact conditions similar to what might occur on the Space Launch System. This study was based upon the large amount of testing and analysis that was conducted with both ice and foam debris impacts on TPS acreage foam for the Space Shuttle Project External Tank. Test verified material models and modeling techniques that resulted from Space Shuttle related testing were utilized for this parametric study. Parameters varied include projectile mass, impact velocity and impact angle (5 degree and 10 degree impacts). The amount of TPS acreage foam loss as a result of the various impact conditions is presented.

  13. Preparation and third-order nonlinear optical property of poly(urethane-imide containing dispersed red chromophore

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available A novel poly(urethane-imide (PUI containing dispersed red chromophore was synthesized. The PUI was characterized by FT-IR, UV-Vis, DSC and TGA. The results of DSC and TGA indicated that the PUI exhibited high thermal stability up to its glass-transition temperature (Tg of 196°C and 5% heat weight loss temperature of 229°C. According to UV-Vis spectrum and working curve, the maximum molar absorption coefficient and absorption wavelength were measured. They were used to calculate the third-order nonlinear optical coefficient χ(3. At the same time, the chromophore density of PUI, nonlinear refractive index coefficient and molecular hyperpolarizability of PUI were obtained. The fluorescence spectra of PUI and model compound DR-19 were determined at excitation wavelength 300 nm. The electron donor and acceptor in polymer formed the exciplex through the transfer of the electric charges. The results show that the poly(urethane-imide is a promising candidate for application in optical devices.

  14. Foaming in stout beers

    OpenAIRE

    Lee, W. T.; M. G. Devereux

    2011-01-01

    We review the differences between bubble formation in champagne and other carbonated drinks, and stout beers which contain a mixture of dissolved nitrogen and carbon dioxide. The presence of dissolved nitrogen in stout beers gives them a number of properties of interest to connoisseurs and physicists. These remarkable properties come at a price: stout beers do not foam spontaneously and special technology, such as the widgets used in cans, is needed to promote foaming. Nevertheless the same m...

  15. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  16. Ultralight metal foams

    Science.gov (United States)

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-01

    Ultralight (acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain ɛD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  17. Cause and effect relationship between foam formation and treated wastewater effluents in a transboundary river

    Science.gov (United States)

    Ruzicka, Katerina; Gabriel, Oliver; Bletterie, Ulrike; Winkler, Stefan; Zessner, Matthias

    develop measures to reduce the foam index. As no criterion exists for foam in rivers in Austria, as well as in Hungary, the not accepted degree of foam formation was defined as the limit at which population protests from Hungary arose. This approach resulted in a foam index higher than 3.5, which was observed with 40% probability during the investigation period. By developing and performing a simple mathematical regression model the required reduction of foam potential emissions could be calculated in order to minimize the foam index to an accepted standard. By the elimination of 75% of foam potential, a foam index lower than 3.5 would be assured with 95% probability based on long term discharge development.

  18. Studi Eksperimental Pengaruh Model Sistem Saluran Dan Variasi Temperatur Tuang Terhadap Prosentase Porositas, Kekerasan Dan Harga Impact Pada Pengecoran Adc 12 Dengan Metode Lost Foam Casting

    Directory of Open Access Journals (Sweden)

    Restu Yanuar Salam

    2015-03-01

    Full Text Available Metode pengecoran lost foam merupakan metode yang tergolong baru dalam industri pengecoran logam. Pada saat ini belum banyak industri pengecoran logam yang menggunakan metode ini dalam memproduksi benda cor. Sedikitnya industri yang menerapkan metode pengecoran ini, yang mendorong untuk melakukan percobaan pengecoran dengan menggunakan metode lost foam, dengan melakukan perbedaan variasi temperatur tuang dan variasi model sistem saluran. Proses pengecoran dengan metode lost foam ini menggunakan styrofoam sebagai polanya, yang ditanam dalam cetakan yang berisi pasir silika kering (tanpa pengikat kemudian cetakan digetarkan untuk memadatkan pasir. Ketika logam cair dimasukkan ke dalam cetakan, maka styrofoam akan menguap sampai cetakan tersebut terisi penuh oleh logam cair. Dalam penelitian ini, parameter yang digunakan adalah model sistem saluran dan variasi temperatur tuang terhadap kualitas hasil coran, diantaranya kekerasan, harga impact, prosentase porositas dan struktur mikro. Material yang digunakan dalam pengecoran ini adalah ADC (Aluminium Die Casting 12. Parameter pertama yaitu model sistem saluran meliputi saluran samping, saluran bawah, saluran bawah dengan 2 gate dan saluran bawah dengan 3 gate dengan temperatur tuang konstan 700°C. Parameter kedua yaitu variasi perbedaan temperatur tuang antara 700°C, 750°C, 800°C dan 850°C dengan sistem saluran samping. Dari hasil penelitian ini diperoleh bahwa sistem saluran samping memiliki prosentase cacat porositas paling sedikit dibanding sistem saluran lainnya yaitu sebesar 2,7535% dan memiliki harga impact rata-rata paling besar yaitu 0,0275 J/mm2 pada potongan 1 dan 0,0660 J/mm2 pada potongan 2. Variasi temperatur tuang berpengaruh terhadap banyaknya cacat porositas dan harga impact rata-rata. Temperatur tuang 700°C dibanding temperatur tuang yang lain memiliki cacat porositas paling sedikit dan harga impact rata-rata paling besar yaitu 0,0275 J/mm2 pada potongan 1 dan 0,0660 J/mm2

  19. Negative pressure model for surface foaming of collagen and other biopolymer films by KrF laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Lazare, S [Laboratoire de Physicochimie Moleculaire (LPCM), UMR 5803 du CNRS, Universite de Bordeaux 1, 351 cours de la Liberation, F-33405 Talence (France); Tokarev, V N [Laboratoire de Physicochimie Moleculaire (LPCM), UMR 5803 du CNRS, Universite de Bordeaux 1, 351 cours de la Liberation, F-33405 Talence (France); Sionkowska, A [Nicolaus Copernicus University, Faculty of Chemistry, Gagarin 7, 87-100 Torun (Poland); Wisniewski, M [Nicolaus Copernicus University, Faculty of Chemistry, Gagarin 7, 87-100 Torun (Poland)

    2007-04-15

    A single KrF laser pulse of energy larger than 0.5 J/cm{sup 2} is enough to create a microfoam layer on the surface of a collagen film and other related biopolymers. This is a new result that can be of interest for many new applications. The target material is excited in the radiation absorption depth of {approx}17 {mu}m and expands into a foam layer whose new surface is {approx}5 {mu}m above the original one. The estimated surface transient temperature of {approx}83deg. C at threshold fluence does not account satisfactorily for this fast foaming process but consideration of the bipolar pressure variation {approx}{+-}200 bar, i.e. laser induced acoustic wave suggests that a cold homogeneous boiling is induced by the tensile part of the pressure wave in the laser excited volume. The classical nucleation theory predicts a spontaneous dense and homogeneous bubble formation when the pressure is negative in the inviscid liquid. These results constitute new examples of laser induced fast expulsion of liquid due to the hydrodynamic pressure wave which can also be considered as resulting from the surface acceleration/deceleration sequence.

  20. Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-to-Aqueous Foam Solution Mixing Ratios

    Directory of Open Access Journals (Sweden)

    Dong-Ho Rie

    2016-06-01

    Full Text Available The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories 162 standards, with a 20-unit oil fire model (Class B applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. From the experimental results, at identical discharging flows, it was found that the fire-extinguishing effect of the aqueous film-forming foam is greatest at an air-to-aqueous solution foam ratio of 1:7 and weakest at 1:10. Moreover, the fire-extinguishing effect of the aqueous film-forming foam in the comparison experiments between the aqueous film-forming foam and the synthetic surfactant foam is greatest.

  1. One vertex spin-foams with the Dipole Cosmology boundary

    CERN Document Server

    Kisielowski, Marcin; Puchta, Jacek

    2012-01-01

    We find all the spin-foams contributing in the first order of the vertex expansion to the transition amplitude of the Bianchi-Rovelli-Vidotto Dipole Cosmology model. Our algorithm is general and provides spin-foams of arbitrarily given, fixed: boundary and, respectively, a number of internal vertices. We use the recently introduced Operator Spin-Network Diagrams framework.

  2. Nuisance foam events and Phaeocystis globosa blooms in Dutch coastal waters analyzed with fuzzy logic

    NARCIS (Netherlands)

    Blauw, A.N.; Los, F.J.; Huisman, J.; Peperzak, L.

    2010-01-01

    Phaeocystis globosa is a nuisance algal species because it can cause foam on beaches which are associated with coastal blooms. Models of Phaeocystis have considered its bloom dynamics, but not the foam formation. The process of foam formation is poorly understood which limits the suitability of trad

  3. STUDIES ON THE OXIDATION AND GRAFT COPOLYMERIZATION OF POLY(ETHER-URETHANE)

    Institute of Scientific and Technical Information of China (English)

    SUN Yanhui; QIU Kunyuan; FENG Xinde

    1983-01-01

    A new method of graft copolymerization of acrylamide (AAM) on poly(ether-urethane) (PEU)which was prepared from poly(tetramethylene ether) glycol (PTMG), 4,4'-diphenylmethane diisocyanate (MDI) and ethylene diamine or butanediol extender was investigated. Hydroperoxide group was first introduced onto the surface of PEU through photo-oxidation in the presence of hydrogen peroxide, then it was reacted with ferrous ion or N,N-dimethyl toluidine (DMT) to initiate AAM graft copolymerization on PEU surface. The graft reaction could be carried out effectively at low temperature. The formation of graft copolymer has been verified by its water absorption % and the scanning electron microscopy photographs. Some model compounds of PEU soft segment and hard segment were synthesized in order to clarify the site of graft reaction. The results of oxidation and graft copolymerization of model compounds showed that this graft copolymerization possesses higher selectivity, and it takes place predominately at the polyether segments, because the ether linkage in soft segment is very sensitive to oxidation and can form hydroperoxide easily. Thus,the grafting site appears to be at a-carbon of the ether linkage.

  4. Modelling of gas-liquid, two-phase flow in porous media and channels of a PEM water electrolysis cell using the Euler-Euler framework of OpenFOAM

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    was shown to push the limits of the codes ca-pabilities. In order to improve simulation stability and time, a new model is developed in the open source CFD software OpenFOAM. The customizability of this code not only allows for specific relaxation strategies, it also permits the implementation of various...

  5. Numerical modeling of first experiments on PbLi MHD flows in a rectangular duct with foam-based SiC flow channel insert

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Courtessole, C.; Abdou, M.; Sharafat, S. [University of California, Los Angeles (United States); Sahu, S. [Institute of Plasma Research (India); Sketchley, T. [University of California, Los Angeles (United States)

    2016-10-15

    Highlights: • Numerical studies were performed as a pre-experimental analysis to the experiment on MHD PbLi flows in a rectangular duct with a flow channel insert (FCI). • Dynamic testing of foam-based SiC foam-based CVD coated FCI has been performed using MaPLE facility at UCLA. • Two physical models were proposed to explain the experimental results and 3D and 2D computations performed using COMSOL, HIMAG and UCLA codes. • The obtained results suggest that more work on FCI development, fabrication and testing has to be done to assure good hermetic properties before the implementation in a fusion device. - Abstract: A flow channel insert (FCI) is the key element of the DCLL blanket concept. The FCI serves as electrical and thermal insulator to reduce the MHD pressure drop and to decouple the temperature-limited ferritic structure from the flowing hot lead-lithium (PbLi) alloy. The main focus of the paper is on numerical computations to simulate MHD flows in the first experiments on PbLi flows in a stainless steel rectangular duct with a foam-based silicon carbide (SiC) FCI. A single uninterrupted long-term (∼6500 h) test has recently been performed on a CVD coated FCI sample in the flowing PbLi in a magnetic field up to 1.5 T at the PbLi temperature of 300 °C using the MaPLE loop at UCLA. An unexpectedly high MHD pressure drop measured in this experiment suggests that a PbLi ingress into the FCI occurred in the course of the experiment, resulting in degradation of electroinsulating FCI properties. The ingress through the protective CVD layer was further confirmed by the post-experimental microscopic analysis of the FCI. The numerical modeling included 2D and 3D computations using HIMAG, COMSOL and a UCLA research code to address important flow features associated with the FCI finite length, fringing magnetic field, rounded FCI corners and also to predict changes in the MHD pressure drop in the unwanted event of a PbLi ingress. Two physical

  6. Mechanical Properties of a Metal Powder-Loaded Polyurethane Foam

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Neuschwanger; L. L. Whinnery; S. H. Goods

    1999-04-01

    Quasi-static compression tests have been performed on polyurethane foam specimens. The modulus of the foam exhibited a power-law dependence with respect to density of the form: E* {proportional_to} {rho}*{sup n}, where n = 1.7. The modulus data is well described by a simple geometric model (attributed to the work of Gibson and Ashby) for closed-cell foam in which the stiffness of the foam is governed by the flexure of the cell struts and cell walls. The compressive strength of the foam is also found to follow a power-law behavior with respect to foam density. In this instance, Euler buckling is used to rationalize the density dependence. The modulus of the polyurethane foam was modified by addition of a gas atomized, spherical aluminum powder. Additions of 30 and 50 weight percent of the powder significantly increased the foam modulus. However, there were only slight increases in modulus with 5 and 10 weight percent additions of the metal powder. Strength was also slightly increased at high loading fractions of powder. This increase in modulus and strength could be predicted by combining the above geometric model with a well-known model describing the effect on modulus of a rigid dispersoid in a compliant matrix.

  7. Effect of Foam Cladding for Blast Mitigation: Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    MA Guowei; YE Ziqing; ZHANG Xingui

    2006-01-01

    Two numerical simulations were performed to investigate the protective effect of the foam cladding.One simulation is based on a previous experimental study,which is a ballistic pendulum with and without a foam cladding subjected to close-range blast loading.The other model is a steel beam with and without a foam cladding under blast loading.The overpressure due to the blast event can be calculated by the empirical function ConWep or by an arbitrary Lagrangian-Eulerian (ALE)coupling model.The first approach is relatively simple and widely used.The second approach can model the propagation of the blast wave in the air and the interaction between the air and the solid.Itis found that the pendulum with the foam cladding always swings to a larger rotation angel compared to a bare pendulum.However,the steel beam with an appropriate foam cladding has a smaller deflection compared to the bare beam without a foam cladding.It is concluded that the protective effect of the foam cladding depends on the properties of the foam and the protected structure.

  8. Mechanical Properties of a Metal Powder-Loaded Polyurethane Foam

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Neuschwanger; L. L. Whinnery; S. H. Goods

    1999-04-01

    Quasi-static compression tests have been performed on polyurethane foam specimens. The modulus of the foam exhibited a power-law dependence with respect to density of the form: E* {proportional_to} {rho}*{sup n}, where n = 1.7. The modulus data is well described by a simple geometric model (attributed to the work of Gibson and Ashby) for closed-cell foam in which the stiffness of the foam is governed by the flexure of the cell struts and cell walls. The compressive strength of the foam is also found to follow a power-law behavior with respect to foam density. In this instance, Euler buckling is used to rationalize the density dependence. The modulus of the polyurethane foam was modified by addition of a gas atomized, spherical aluminum powder. Additions of 30 and 50 weight percent of the powder significantly increased the foam modulus. However, there were only slight increases in modulus with 5 and 10 weight percent additions of the metal powder. Strength was also slightly increased at high loading fractions of powder. This increase in modulus and strength could be predicted by combining the above geometric model with a well-known model describing the effect on modulus of a rigid dispersoid in a compliant matrix.

  9. Acoustic properties of sintered FeCrAlY foams with open cells (Ⅱ): Sound attenuation

    Institute of Scientific and Technical Information of China (English)

    LU TianJian; M.KEPETS; A.P.DOWLING

    2008-01-01

    Open-celled metal foams fabricated through metal sintering offers novel mechani-cal, thermal and acoustic properties. Previously, polymer foams were used as a means of absorbing acoustic energy. However, the structural applications of these foams are inherently limited. The metal sintering approach provides a cost-effective means for the mass-production of open-cell foams from a range of materials, in-cluding high-temperature steel alloys. The low Reynolds number fluid properties of sintered steel alloy (FeCrAIY) foams were investigated in a previous study. The static flow resistance of the foams was modeled based on s cylinder and s sphere arranged in a periodic lattice at general incidence to the flow, with the resulting predictions correlating well to measurements. The application of the flow resis-tance in an acoustic model is the primary focus of the present study. The predic-tions for the static flow resistance of the sintered foams are first used in a theo-retical model to determine the characteristic impedances, as well as the propaga-tion constants of the foams. Subsequently, the predicted acoustic performance of the foams is compared to experimental results. Finally, the design space for a simple acoustic absorber incorporating sintered foams is examined, with the ef-fects of absorber size, foam selection, and foam spacing explored.

  10. Acoustic properties of sintered FeCrAlY foams with open cells (Ⅱ): Sound attenuation

    Institute of Scientific and Technical Information of China (English)

    M.; KEPETS; A.; P.; DOWLING2

    2008-01-01

    Open-celled metal foams fabricated through metal sintering offers novel mechani- cal, thermal and acoustic properties. Previously, polymer foams were used as a means of absorbing acoustic energy. However, the structural applications of these foams are inherently limited. The metal sintering approach provides a cost-effective means for the mass-production of open-cell foams from a range of materials, in- cluding high-temperature steel alloys. The low Reynolds number fluid properties of sintered steel alloy (FeCrAlY) foams were investigated in a previous study. The static flow resistance of the foams was modeled based on a cylinder and a sphere arranged in a periodic lattice at general incidence to the flow, with the resulting predictions correlating well to measurements. The application of the flow resis- tance in an acoustic model is the primary focus of the present study. The predic- tions for the static flow resistance of the sintered foams are first used in a theo- retical model to determine the characteristic impedances, as well as the propaga- tion constants of the foams. Subsequently, the predicted acoustic performance of the foams is compared to experimental results. Finally, the design space for a simple acoustic absorber incorporating sintered foams is examined, with the ef- fects of absorber size, foam selection, and foam spacing explored.

  11. Structural applications of metal foams considering material and geometrical uncertainty

    Science.gov (United States)

    Moradi, Mohammadreza

    ; convergence of estimates of the Sobol' decomposition with sample size using various sampling schemes; the possibility of model reduction guided by the results of the Sobol' decomposition. For the rest of the study the different structural applications of metal foam is investigated. In the first application, it is shown that metal foams have the potential to serve as hysteric dampers in the braces of braced building frames. Using metal foams in the structural braces decreases different dynamic responses such as roof drift, base shear and maximum moment in the columns. Optimum metal foam strengths are different for different earthquakes. In order to use metal foam in the structural braces, metal foams need to have stable cyclic response which might be achievable for metal foams with high relative density. The second application is to improve strength and ductility of a steel tube by filling it with steel foam. Steel tube beams and columns are able to provide significant strength for structures. They have an efficient shape with large second moment of inertia which leads to light elements with high bending strength. Steel foams with high strength to weight ratio are used to fill the steel tube to improves its mechanical behavior. The linear eigenvalue and plastic collapse finite element (FE) analysis are performed on steel foam filled tube under pure compression and three point bending simulation. It is shown that foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior are investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve due to the change of the failure mode from local buckling to yielding. Moreover, the Sobol' decomposition is used to investigate uncertainty in the strength and ductility of

  12. Synthesis, Characterization and Biocompatibility of Biodegradable Elastomeric Poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via Melting Polymerization

    DEFF Research Database (Denmark)

    Li, Zibiao; Yang, Xiaodi; Wu, Linping

    2009-01-01

    Poly(ether-ester urethane)s (PUs) multiblock co-polymers were synthesized from telechelic hydroxylated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(ethylene glycol) (PEG) via a melting polymerization (MP) process using 1,6-hexamethylene diisocyanate (HDI) as a non-toxic couplin...

  13. Micro-structuring of polycarbonate-urethane surfaces in order to reduce platelet activation and adhesion.

    Science.gov (United States)

    Clauser, Johanna; Gester, Kathrin; Roggenkamp, Jan; Mager, Ilona; Maas, Judith; Jansen, Sebastian V; Steinseifer, Ulrich

    2014-01-01

    In the development of new hemocompatible biomaterials, surface modification appears to be a suitable method in order to reduce the thrombogenetic potential of such materials. In this study, polycarbonate-urethane (PCU) tubes with different surface microstructures to be used for aortic heart valve models were investigated with regard to the thrombogenicity. The surface structures were produced by using a centrifugal casting process for manufacturing PCU tubes with defined casting mold surfaces which are conferred to the PCU surface during the process. Tubes with different structures defined by altering groove widths were cut into films and investigated under dynamic flow conditions in contact with porcine blood. The analysis was carried out by laser scanning microscopy which allowed for counting various morphological types of platelets with regard to the grade of activation. The comparison between plain and shaped PCU samples showed that the surface topography led to a decline of the activation of the coagulation cascade and thus to the reduction of the fibrin synthesis. Comparing different types of structures revealed that smooth structures with a small groove width (d ~ 3 μm) showed less platelet activation as well as less adhesion in contrast to a distinct wave structure (d ~ 90 μm). These results prove surface modification of polymer biomaterials to be a suitable method for reducing thrombogenicity and hence give reason for further alterations and improvements.

  14. Modeling the mechanical and aging properties of silicone rubber and foam - stockpile-historical & additively manufactured materials

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A; Weisgraber, T H; Gee, R H

    2014-09-30

    M97* and M9763 belong to the M97xx series of cellular silicone materials that have been deployed as stress cushions in some of the LLNL systems. Their purpose of these support foams is to distribute the stress between adjacent components, maintain relative positioning of various components, and mitigate the effects of component size variation due to manufacturing and temperature changes. In service these materials are subjected to a continuous compressive strain over long periods of time. In order to ensure their effectiveness, it is important to understand how their mechanical properties change over time. The properties we are primarily concerned about are: compression set, load retention, and stress-strain response (modulus).

  15. Synthesis of urethane acrylates modified by linseed oil and study on EBC coatings

    Science.gov (United States)

    Xuecheng, Ju; Hongfei, Ha; Bo, Jiang; Yong, Zhou

    1999-11-01

    In this paper, five different structural urethane acrylates modified by linseed oil were synthesized and then properties of their electron beam cured (EBC) coatings, i.e., adhesion, gloss, flexibility, impact resistance, hardness, tensile strength and elongation were studied. It was shown that these synthesizing conditions of urethane acrylates modified by linseed oil were temperate. Effect of structure of urethane acrylates modified by linseed oil on these properties of their EBC coatings was obvious, except gloss. According to synthetical properties of EBC coatings, the optimum oligomer among these was No. A, whose main chains were formed by hexane diacid, average functionality was 2, and oil content was 25.5%. With increasing of absorbed doses, these properties of EBC coatings, except gloss, changed correspondingly. It was advisable that absorbed dose wasn't greater than 180 kGy. At higher absorbed doses, cobaltous naphthenate had obvious effect on these properties of EBC coatings, whose oil content of linseed oil was rather high.

  16. Dynamic length-scale characterization and nonequilibrium statistical mechanics of transport in open-cell foams.

    Science.gov (United States)

    Brosten, Tyler R; Codd, Sarah L; Maier, Robert S; Seymour, Joseph D

    2009-11-20

    Nuclear magnetic resonance measurements of scale dependent dynamics in a random solid open-cell foam reveal a characteristic length scale for transport processes in this novel type of porous medium. These measurements and lattice Boltzmann simulations for a model foam structure indicate dynamical behavior analogous to lower porosity consolidated granular porous media, despite extremely high porosity in solid cellular foams. Scaling by the measured characteristic length collapses data for different foam structures as well as consolidated granular media. The nonequilibrium statistical mechanics theory of preasymptotic dispersion, developed for hierarchical porous media, is shown to model the hydrodynamic dispersive transport in a foam structure.

  17. Aqueous foams and foam films stabilised by surfactants. Gravity-free studies

    Science.gov (United States)

    Langevin, Dominique

    2017-01-01

    There are still many open questions and problems in both fundamental research and practical applications of foams. Despite the fact that foams have been extensively studied, many aspects of foam physics and chemistry still remain unclear. Experiments on foams performed under microgravity allow studying wet foams, such as those obtained early during the foaming process. On Earth, wet foams evolve too quickly due to gravity drainage and only dry foams can be studied. This paper reviews the foam and foam film studies that we have performed in gravity-free conditions. It highlights the importance of surface rheology as well as of confinement effects in foams and foam films behaviour.

  18. Urethane anesthesia depresses activities of thalamocortical neurons and alters its response to nociception in terms of dual firing modes

    Directory of Open Access Journals (Sweden)

    Yeowool eHuh

    2013-10-01

    Full Text Available Anesthetics are often used to characterize the activity of single neurons in-vivo for its advantages such as reduced noise level and convenience in noxious stimulations. Of the anesthetics, urethane had been widely used in some thalamic studies under the assumption that sensory signals are still relayed to the thalamus under urethane anesthesia and that thalamic response would therefore reflect the response of the awake state. We tested whether this assumption stands by comparing thalamic activity in terms of tonic and burst firing modes during ‘the awake state’ or under ‘urethane anesthesia’ utilizing the extracellular single unit recording technique. First we have tested how thalamic relay neurons respond to the introduction of urethane and then tested how urethane influences thalamic discharges under formalin-induced nociception. Urethane significantly depressed overall firing rates of thalamic relay neurons, which was sustained despite the delayed increase of burst activity over the 4 hour recording period. Thalamic response to nociception under anesthesia was also similar overall except for the slight and transient increase of burst activity. Overall, results demonstrated that urethane suppresses the activity of thalamic relay neurons and that, despite the slight fluctuation of burst firing, formalin-induced nociception cannot significantly change the firing pattern of thalamic relay neurons that was caused by urethane.

  19. Surfactant monitoring by foam generation

    Science.gov (United States)

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  20. Urethane influence in the urine formation in swiss rats and syrian hamster

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Marina F.; Silva, Natanael G.; Mesquita, Carlos Henrique de, E-mail: mflima@ipen.br, E-mail: ngsilva@ipen.br, E-mail: chmesqui@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Urethane is an anaesthetic agent with minimal cardiovascular and respiratory system depression with long-lasting (6-10h) effects. Its carcinogenic potential avoids it from veterinary use. Either, the knowledge of its effects over the circulating catecholamines (cortisone and corticosterone), with reflects in the muscles physiology, it is widely used in pharmacological studies in laboratory species. At the first minutes, Urethane induces a hyperglycaemia condition due the insulin concentration decrease, later than, the insulin concentration and the condition becomes in hypoglycaemia, but the Urethane interfering in the urine production mechanisms has not been described. It is accepted that the glycolic level would not interferes in the kidney function, except in chronic states, notably associated with insulin related diseases. The relative high biological half-life of {sup 177}Lu-Dotatate allows its use in biodistribution studies among small animals whose metabolic rates are so fast that would be impossible observe them with the most part of the labeled molecules. During the performance of a cross-species extrapolation study using Urethane as anaesthesia and {sup 177}Lu-Dotatate as metabolic tracer, was observed the Urethane influence over urine formation in Swiss rats and Syrian hamster (Mesocricetus auratus). The objective of this work is only describes the Urethane action over the urine production. Firstly, four male inbread Wistar Swiss rats ({+-}250 g), are anesthetized, with around 1200 mg/kg, i.p., in groups of two. One rat from each group get ahead to the injection of {sup 177}Lu-Dotatate and Gamma camera in vivo study, the second ones, anesthetized, waited under warming lights until more than one hour to initiate the biodistribution study. The scintillographical images shown the radiopeptide stopped at the kidneys and the urinary empty in the animals who attempt more than one hour before enter to radiopharmaceutical injection and Gamma camera imaging

  1. Long lasting decontamination foam

    Science.gov (United States)

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  2. Spacetime foam in twistor string theory

    CERN Document Server

    Hartnoll, S A; Hartnoll, Sean A.; Policastro, Giuseppe

    2004-01-01

    We show how a Kahler spacetime foam in four dimensional conformal (super)gravity may be mapped to twistor spaces carrying the D1 brane charge of the B model topological string theory. The spacetime foam is obtained by blowing up an arbitrary number of points in $\\C^2$ and can be interpreted as a sum over gravitational instantons. Some twistor spaces for blowups of $\\C^2$ are known explicitly. In these cases we write down a meromorphic volume form and suggest a relation to a holomorphic superform on a corresponding super Calabi-Yau manifold.

  3. Production of lightweight foam glass (invited talk)

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass production allows low cost recycling of postconsumer glass and industrial waste materials as foaming agent or as melt resource. Foam glass is commonly produced by utilising milled glass mixed with a foaming agent. The powder mixture is heat-treated to around 10^3.7 – 10^6 Pa s, which...... result in viscous sintering and subsequent foaming of the glass melt. The porous glass melt is cooled down to room temperature to freeze-in the foam structure. The resulting foam glass is applied in constructions as a light weight material to reduce load bearing capacity and as heat insulating material...... in buildings and industry. We foam panel glass from old televisions with different foaming agents. We discuss the foaming ability and the foaming mechanism of different foaming systems. We compare several studies to define a viscous window for preparing low density foam glass. However, preparing foam glass...

  4. Preparation and properties of polymer foams for ICF targets

    Energy Technology Data Exchange (ETDEWEB)

    Letts, S.A.; Lucht, L.M.

    1986-09-01

    Low density small cell sized foams were developed to localize the liquid DT layer in a direct drive wetted foam laser fusion target. We have developed foams made from ultrahigh molecular weight polyethylene gels and polystyrene inverse emulsions. Materials in the density range of from 0.020 to 0.300 g/cc were prepared and characterized for cell size, mechanical properties, machinability, specific surface area, and wetting. Foams with a density of 0.05 g/cc were made with a cell size of less than 5 ..mu..m. A cell structure model was developed which relates the density and specific surface area to cell size and cell wall thickness. Wetting tests in organic solvents and in liquid hydrogen were used to characterize the capillary pressure, pore structure and uniformity of the foams. 13 refs., 9 figs., 2 tabs.

  5. Morphology of Low Density Foams from Crystalline Gels.

    Science.gov (United States)

    Beaucage, G.; Schaefer, D. W.; Lagasse, R. R.; Aubert, J. A.; Ehrlich, P.; Stein, R. S.; Whaley, P.; Kulkarni, S.

    1996-03-01

    Low-density polymer foams are often derived via supercritical extraction of crystalline gels. The nano-structural basis of these foams and gels, in a wide variety of systems, is distorted lamellae. We present an uncorrelated lamellar model which describes the small-angle scattering over 5 orders of size in these systems. Our approach is based on the unified approach to small-angle scattering and scattering data from 4 instruments. This approach is equally applicable to olefin foams from gelation in supercritical propane (Whaley, Kulkarni, Stein, Ehrlich), polyacrylonitrile foams and gels from DMF/ethylene glycol followed by supercritical extraction in CO2 (Lagasse) and isotactic PS foams and gels from decalin and extracted in supercritical CO2 (Aubert). Distortion of conventional crystalline morphologies can be rationalized in terms of the extent of entanglement of the polymer chains during crystallization and the deformability of lamellar platelets during supercritical drying. Correlations between melt and dilute solution morphologies are given.

  6. Mechanical properties and energy absorption characteristics of a polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Neuschwanger, C.L.; Henderson, C.; Skala, D.M.

    1997-03-01

    Tension, compression and impact properties of a polyurethane encapsulant foam have been measured as a function of foam density. Significant differences in the behavior of the foam were observed depending on the mode of testing. Over the range of densities examined, both the modulus and the elastic collapse stress of the foam exhibited power-law dependencies with respect to density. The power-law relationship for the modulus was the same for both tension and compression testing and is explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model. Euler buckling is used to rationalize the density dependence of the collapse stress. Neither tension nor compression testing yielded realistic measurements of energy absorption (toughness). In the former case, the energy absorption characteristics of the foam were severely limited due to the inherent lack of tensile ductility. In the latter case, the absence of a failure mechanism led to arbitrary measures of energy absorption that were not indicative of true material properties. Only impact testing revealed an intrinsic limitation in the toughness characteristics of the material with respect to foam density. The results suggest that dynamic testing should be used when assessing the shock mitigating qualities of a foam.

  7. X-ray Measurements of Laser Irradiated Foam Filled Liners

    Science.gov (United States)

    Patankar, Siddharth; Mariscal, Derek; Goyon, Clement; Baker, Kevin; MacLaren, Stephan; Hammer, Jim; Baumann, Ted; Amendt, Peter; Menapace, Joseph; Berger, Bob; Afeyan, Bedros; Tabak, Max; Dixit, Sham; Kim, Sung Ho; Moody, John; Jones, Ogden

    2016-10-01

    Low-density foam liners are being investigated as sources of efficient x-rays. Understanding the laser-foam interaction is key to modeling and optimizing foam composition and density for x-ray production with reduced backscatter. We report on the experimental results of laser-irradiated foam liners filled with SiO2 and Ta2O5 foams at densities between 2 to 30mg/cc. The foam liners consist of polyimide tubes filled with low-density foams and sealed with a gold foil at one end. The open end of the tube is driven with 250J of 527nm laser light in a 2ns 2-step pulse using the Jupiter Laser Facility at LLNL. A full aperture backscatter system is used to diagnose the coupled energy and losses. A streaked x-ray camera and filtered x-ray pinhole cameras are used to measure laser penetration into the low-density foam for different mass densities. A HOPG crystal spectrometer is used to estimate a thermal electron temperature. Comparisons with beam propagation and x-ray emission simulations are presented. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with funding support from the Laboratory Directed Research and Development Program under project 15.

  8. Mechanical properties and energy absorption characteristics of a polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Neuschwanger, C.L.; Henderson, C.; Skala, D.M.

    1997-03-01

    Tension, compression and impact properties of a polyurethane encapsulant foam have been measured as a function of foam density. Significant differences in the behavior of the foam were observed depending on the mode of testing. Over the range of densities examined, both the modulus and the elastic collapse stress of the foam exhibited power-law dependencies with respect to density. The power-law relationship for the modulus was the same for both tension and compression testing and is explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model. Euler buckling is used to rationalize the density dependence of the collapse stress. Neither tension nor compression testing yielded realistic measurements of energy absorption (toughness). In the former case, the energy absorption characteristics of the foam were severely limited due to the inherent lack of tensile ductility. In the latter case, the absence of a failure mechanism led to arbitrary measures of energy absorption that were not indicative of true material properties. Only impact testing revealed an intrinsic limitation in the toughness characteristics of the material with respect to foam density. The results suggest that dynamic testing should be used when assessing the shock mitigating qualities of a foam.

  9. Porous decellularized adipose tissue foams for soft tissue regeneration.

    Science.gov (United States)

    Yu, Claire; Bianco, Juares; Brown, Cody; Fuetterer, Lydia; Watkins, John F; Samani, Abbas; Flynn, Lauren E

    2013-04-01

    To design tissue-specific bioscaffolds with well-defined properties and 3-D architecture, methods were developed for preparing porous foams from enzyme-solubilized human decellularized adipose tissue (DAT). Additionally, a technique was established for fabricating "bead foams" comprised of interconnected networks of porous DAT beads fused through a controlled freeze-thawing and lyophilization procedure. In characterization studies, the foams were stable without the need for chemical crosslinking, with properties that could be tuned by controlling the protein concentration and freezing rate during synthesis. Adipogenic differentiation studies with human adipose-derived stem cells (ASCs) suggested that stiffness influenced ASC adipogenesis on the foams. In support of our previous work with DAT scaffolds and microcarriers, the DAT foams and bead foams strongly supported adipogenesis and were also adipo-inductive, as demonstrated by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, endpoint RT-PCR analysis of adipogenic gene expression, and intracellular lipid accumulation. Adipogenic differentiation was enhanced on the microporous DAT foams, potentially due to increased cell-cell interactions in this group. In vivo assessment in a subcutaneous Wistar rat model demonstrated that the DAT bioscaffolds were well tolerated and integrated into the host tissues, supporting angiogenesis and adipogenesis. The DAT-based foams induced a strong angiogenic response, promoted inflammatory cell migration and gradually resorbed over the course of 12 weeks, demonstrating potential as scaffolds for wound healing and soft tissue regeneration.

  10. 酚醛泡沫力学性能及其密度-力学性能模型研究%Research on Mechanical Properties and Densities-Mechanical Properties Model of Phenolic Foam

    Institute of Scientific and Technical Information of China (English)

    马玉峰; 张伟; 王春鹏; 储富祥

    2012-01-01

    以多聚甲醛代替甲醛溶液制备高固含可发性酚醛树脂,在70℃发泡制备酚醛泡沫材料,研究了表面活性剂、固化剂和发泡剂对泡沫的密度、力学性能的影响.研究结果表明,在表面活性剂添加量为12%,固化剂添加量为30%,发泡剂添加量为5%时,制备的泡沫性能较优.通过Gibson-Ashby提出的泡沫塑料的力学性能与密度的关系模型,创建酚醛泡沫密度-力学性能模型,结果表明泡沫力学性能与密度呈现良好的指数关系,且间接拟合和直接拟合2种方法得出的模型指数基本相符.%Paraformaldehyde was used to instead of formaldehyde to prepare high solids and expandable phenolic resin, and phenolic resin was used to prepare phenolic foam at 70℃. The influences of the surface-active agent,curing agent and blowing agent on foam density, mechanical properties were researched. The results showed that when the amount of surfactant,blowing agent,curing agent was 12%,30%,5% respectively,the properties of foam was better. The model of phenolic foam density-mechanical properties was established by the foam model of Gibson-Ashby's mechanical properties and density, the results showed that there was good exponential relationship between mechanical properties and density, and exponents acquired by indirect and direct fitting were basically consistent.

  11. Behaviour of Metal Foam Sandwich Panels

    DEFF Research Database (Denmark)

    2011-01-01

    Sandwich panels as used in structures comprise of a foam core enclosed by thin high strength steel faces. This paper discusses currently design formulae of local buckling behaviour of such panels using the finite element method. Multiple wave finite element models were adopted to investigate...

  12. Rupture mechanism and interface separation in foam rubber models of earthquakes: a possible solution to the heat flow paradox and the paradox of large overthrusts

    Science.gov (United States)

    Brune, James N.; Brown, Stephen; Johnson, Peggy A.

    1993-02-01

    Spontaneous stick-slip along the interface between stressed foam rubber blocks is a simple analog of earthquake rupture and stick-slip. Results from this model are used to elucidate the role of normal stress variations along the interface in the stick-slip process. Observations indicate significant normal interface vibrations and separation during slip, suggesting that dynamic changes in normal stress (rather than a drop in the coefficient of friction) may control stick-slip, as suggested, for example, by Tolstoi, Oden and Martins and Brune and co-workers. Observations of particle trajectories indicate that stick-slip shear motion is associated with various degrees of fault separation. For an asymmetric model, the motion is consistent with slipping motion of the type suggested by Schallamach and Price. For a symmetric model, the motion is similar to that suggested by Comninou and Dundurs. If interface waves of this type, involving separation during slip, occur in earthquakes, they may be a solution to the heat flow paradox, since a major part of the slip occurs during separation and during low normal stress. Thus frictional heat generation is reduced. Normal interface vibrations during stick-slip may explain the high corner frequency of P wave spectra and the generally high levels of P wave spectra beyond the corner frequency. Schallamach-Comninou type waves are consistent with the partial stress drop-abrupt locking-self healing models of Brune and Heaton.

  13. Synthesis and application of novel EB curable polyester urethane acrylate modified by linseed oil fatty acid

    Science.gov (United States)

    Jun, Li; Xuecheng, Ju; Min, Yi; Jinshan, Wei; Hongfei, Ha

    1999-06-01

    A novel polyester urethane acrylate resin modified by linseed oil fatty acid (LFA) was synthesized and EB curing coating was formulated in this work. When the coating cured by EB radiation on the timber, the cured coating was possessed of good performances.

  14. Thermo-mechanical characterization of silicone foams

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, Partha [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Nickolaus A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cady, Carl M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Matthew W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-01

    Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compression for ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperatures

  15. Indentation of aluminium foam at low velocity

    Directory of Open Access Journals (Sweden)

    Shi Xiaopeng

    2015-01-01

    Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.

  16. Thio-urethanes improve properties of dual-cured composite cements.

    Science.gov (United States)

    Bacchi, A; Dobson, A; Ferracane, J L; Consani, R; Pfeifer, C S

    2014-12-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm(2) × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey's test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  17. Thio-urethanes Improve Properties of Dual-cured Composite Cements

    Science.gov (United States)

    Bacchi, A.; Dobson, A.; Ferracane, J.L.; Consani, R.; Pfeifer, C.S.

    2014-01-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm2 × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey’s test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  18. Early exposure to urethane anesthesia: Effects on neuronal activity in the piriform cortex of the developing brain.

    Science.gov (United States)

    Kajiwara, Riichi; Takashima, Ichiro

    2015-07-23

    Exposure to urethane anesthesia reportedly produces selective neuronal cell loss in the piriform cortex of young brains; however, resulting functional deficits have not been investigated. The present study found abnormalities in piriform cortex activity of isolated brains in vitro that were harvested from guinea pigs exposed to urethane anesthesia at 14 days of age. Current source density (CSD) analysis and voltage-sensitive dye (VSD) imaging experiments were conducted 48h after urethane injection. We applied paired-pulse stimulation to the lateral olfactory tract (LOT) and assessed short-interval intra-cortical inhibition in the piriform cortex. CSD analysis revealed that a current sink in layer Ib remained active in response to successive stimuli, with an inter-stimulus interval of 30-60 ms, which was typically strongly inhibited. VSD imaging demonstrated stronger and extended neural activity in the urethane-treated piriform cortex, even in response to a second stimulus delivered in short succession. We identified gamma-aminobutyric acid (GABA) ergic neurons in the piriform cortex of sham and urethane-treated animals and found a decrease in GABA-immunoreactive cell density in the urethane group. These results suggest that urethane exposure induces loss of GABAergic interneurons and a subsequent reduction in paired-pulse inhibition in the immature piriform cortex.

  19. Investigation of the morphology and surface properties of crosslinked poly(urethane-ester-siloxanes

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan

    2012-01-01

    Full Text Available Two series of crosslinked poly(urethane-ester-siloxanes were synthesized from α,ω-dihydroxy-(ethylene oxide-poly(dimethylsiloxane-ethylene oxide (EO-PDMS-EO, 4,4’-methylenediphenyl diisocyanate and Boltorn® hyperbranched polyesters of the second and third pseudo generation, by a two-step polymerization in solution. The effect of the EO-PDMS-EO content and functionality of the applied crosslinking agent on the morphology and surface properties of the prepared poly(urethane-ester-siloxanes was investigated by FTIR spectroscopy, small-angle X-ray scattering (SAXS, atomic force microscopy (AFM, scanning electron microscopy (SEM and water absorption measurement. Different techniques (FTIR peak deconvolution, SAXS and AFM revealed that decrease of the crosslinking agent functionality and EO-PDMS-EO content promotes microphase separation in the synthesized poly(urethane-ester-siloxanes. SEM analysis and water absorption experiments showed that due to the hydrophobic character of EO-PDMS-EO and its ability to migrate to the surface of poly(urethane-ester-siloxanes, samples synthesized with higher EO-PDMS-EO content and crosslinking agent of lower functionality have more hydrophobic surface and better waterproof performances. The obtained results indicate that the synthesis of poly(urethane-ester-siloxanes based on EO-PDMS-EO and Boltorn® hyperbranched polyesters leads to the creation of networks with interesting morphological and surface properties, which can be easily tailored by changing the content of EO-PDMS-EO segment or functionality of hyperbranched polyester.

  20. Thermo-mechanical interaction effects in foam cored sandwich panels-correlation between High-order models and Finite element analysis results

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Santiuste, Carlos; Thomsen, Ole Thybo;

    2010-01-01

    Thermo-mechanical interaction effects including thermal material degradation in polymer foam cored sandwich structures is investigated using the commercial Finite Element Analysis (FEA) package ABAQUS/Standard. Sandwich panels with different boundary conditions in the form of simply supported...

  1. Open Cell Conducting Foams for High Synchrotron Radiation Beam Liners

    CERN Document Server

    Petracca, Stefania

    2014-01-01

    The possible use of open-cell conductive foams in high synchrotron radiation particle accelerator beam liners is considered. Available materials and modeling tools are reviewed, potential pros and cons are discussed, and preliminary conclusions are drawn.

  2. Synthesis of polymer materials by low energy electron beam. IV. EB-polymerized urethane-acrylate, -methacrylate and -acrylamide

    Science.gov (United States)

    Ando, Masayuki; Uryu, Toshiyuki

    The structure and properties before and after electron beam (EB) irradiation were investigated using urethane prepolymers with different terminal groups of 2-hydroxyethyl acrylate (HEA), 2-hydroxyethyl methacrylate (HEMA) and N-hydroxymethyl acrylamide (HMAAm). The prepolymers were synthesized by reaction of HEA, HEMA and HMAAm with the isocyanate-capped intermediate, which was obtained by reaction of poly(butylene adipate)diol (PBAD) with 4,4'-diphenylmethane diisocyanate. The resulting urethane-acrylate (UA-251M), -methacrylate (UMA-251M) and -acrylamide (UNAA-251M) had the crystallinity arising from PBAD moieties, and UA-251M and UMA-251M had higher crystallinity than UNAA-251M. IR results indicated that UNAA-251M was larger in the fraction of free NH stretching absorption than UA-251M and UMA-251M regardless of the number of NH group per a molecule. Accordingly, it was assumed that the difference in crystallinity was attributed to the polarity of terminal group. Hence, the rate of gel formation for UA-251M and UMA-251M was higher than that of UNAA-251M. The crystallinity based on PBAD of the prepolymers was remained also after EB irradiation. Spherulitic texture was observed on the EB-polymerized gel film surfaces for UA-251M and UMA-251M, while it was almost destroyed for UNAA-251M. Mechanical properties of UA-251M and UMA-251M gel films were much superior to those of UNAA-251M gel film according to the phase structure. Especially, UMA-251M gel film represented most excellent mechanical properties. Schematic models of the phase structure for UA-251M, UMA-251M and UNAA-251M were suggested from all experimental results.

  3. Coarse graining flow of spin foam intertwiners

    Science.gov (United States)

    Dittrich, Bianca; Schnetter, Erik; Seth, Cameron J.; Steinhaus, Sebastian

    2016-12-01

    Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behavior on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group SU (2 )k×SU (2 )k, which implement the simplicity constraints analogous to four-dimensional Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail as they can be of use in other contexts. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a two-dimensional topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different topological phases. Most of these phases correspond to decoupling spin foam vertices; however we find also a new phase in which this is not the case, and in which a nontrivial version of the simplicity constraints holds. The coarse graining flow of the BC spin net models indicates furthermore that the transitions between these phases are not of second order. The EPRL/FK model by contrast reveals a far more intricate and complex dynamics. We observe an immediate flow away from the original simplicity constraints; however, with the truncation employed here, the models generically do not converge to a fixed point. The results show that the imposition of simplicity constraints can indeed lead to interesting and also very complex dynamics. Thus we need to further develop coarse graining tools to efficiently study the large scale behavior of spin foam models, in particular for the EPRL/FK model.

  4. Biocatalytic nerve agent detoxification in fire fighting foams.

    Science.gov (United States)

    LeJeune, K E; Russell, A J

    1999-03-20

    Current events across the globe necessitate rapid technological advances to combat the epidemic of nerve agent chemical weapons. Biocatalysis has emerged as a viable tool in the detoxification of organophosphorus neurotoxins, such as the chemical weapons VX and sarin. Efficient detoxification of contaminated equipment, machinery, and soils are of principal concern. This study describes the incorporation of a biocatalyst (organophosphorus hydrolase, E.C. 3.1.8.1) into conventional formulations of fire fighting foam. The capacity of fire fighting foams to decrease volatilization of contained contaminants, increase surface wettability, and control the rate of enzyme delivery to large areas makes them useful vehicles for enzyme application at surfaces. The performance of enzyme containing foams has been shown to be not only reproducible but also predictable. An empirical model provides reasonable estimations for the amounts of achievable surface decontamination as a function of the important parameters of the system. Theoretical modeling illustrates that the enzyme-containing foam is capable of extracting agent from the surface and is catalytically active at the foam-surface interface and throughout the foam itself. Biocatalytic foam has proven to be an effective, "environmentally friendly" means of surface and soil decontamination.

  5. Capillary foams: highly stable bubbles formed by synergistic action of particles and immiscible liquid

    Science.gov (United States)

    Meredith, Carson; Zhang, Yi; Behrens, Sven

    2015-03-01

    Liquid foams are a familiar part of everyday life from beer and frothed milk to bubble baths; they also play important roles in enhanced oil recovery, lightweight packaging, and insulation. We report a new class of foams, obtained by frothing a suspension of colloidal particles in the presence of a small amount of an immiscible secondary liquid. A unique aspect of the new foams, termed capillary foams, is that suspended particles mediate spreading of a minority liquid around gas bubbles. The resulting mixed particle/liquid coating can stabilize bubbles against coalescence even when the particles alone cannot. We demonstrate the generality of capillary foams by forming them from a diverse set of particle/liquid combinations and rationalize the results with a simple free energy model. In addition to many applications as liquid foams, capillary foams can serve as precursors for hierarchically-structured solids with porosity on different length scales and with significant application potential.

  6. An overview of polyurethane foams in higher specification foam mattresses.

    Science.gov (United States)

    Soppi, Esa; Lehtiö, Juha; Saarinen, Hannu

    2015-02-01

    Soft polyurethane foams exist in thousands of grades and constitute essential components of hospital mattresses. For pressure ulcer prevention, the ability of foams to control the immersion and envelopment of patients is essential. Higher specification foam mattresses (i.e., foam mattresses that relieve pressure via optimum patient immersion and envelopment while enabling patient position changes) are claimed to be more effective for preventing pressure ulcers than standard mattresses. Foam grade evaluations should include resiliency, density, hardness, indentation force/load deflection, progressive hardness, tensile strength, and elongation along with essential criteria for higher specification foam mattresses. Patient-specific requirements may include optimal control of patient immersion and envelopment. Mattress cover characteristics should include breathability, impermeability to fluids, and fire safety and not affect mattress function. Additional determinations such as hardness are assessed according to the guidelines of the American Society for Testing and Materials and the International Organization for Standardization. At this time, no single foam grade provides an optimal combination of the above key requirements, but the literature suggests a combination of at least 2 foams may create an optimal higher specification foam mattress for pressure ulcer prevention. Future research and the development of product specification accuracy standards are needed to help clinicians make evidence-based decisions about mattress use.

  7. Mg Alloy Foam Fabrication via Melt Foaming Method

    Institute of Scientific and Technical Information of China (English)

    Donghui YANC; Changhwan SEO; Bo-Young HUR

    2008-01-01

    For the first time AZ91 (MgAl9Zn1) and AM60 (MgAl6) Mg alloy foams with homogeneous pore structures were prepared successfully via melt foaming method using CaCO3 as blowing agent. It is revealed that the blowing gas to foam the melt is not CO2 but CO, which comes from liquid-solid reaction between Mg melt. The reaction temperature is more than 100℃ lower than CaCO3 decomposition, which makes Mg alloy melts foam into cellular structure much more easily in the temperature range from 690℃ to 750℃.

  8. Mixing foams and grains in Hele-Shaw cells

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A P B; Tufaile, A; Haddad, T A S, E-mail: tufaile@usp.b [Escola de Artes, Ciencias e Humanidades da Universidade de Sao Paulo, R. Arlindo Bettio, 1000, 03828-000, Sao Paulo (Brazil)

    2010-09-01

    We have observed some features of the coexistence of foams and granular materials in Hele-Shaw cells. The most part of the liquid and granular material stays at the bottom of the cell, with only a small quantity of the mixture resting on the froth. The fractal dimensions of the final states of the foams are close to the values obtained from the Random Apollonian Packing model. The disperse structure of the granular material affects the probability distribution of number of sides of the foam bubbles. The nearest neighbor distances between the peaks of the sand piles at the bottom of the cell are close to a lognormal distribution.

  9. A combined NDE/FEA approach to evaluate the structural response of a metal foam

    Science.gov (United States)

    Ghosn, Louis J.; Abdul-Aziz, Ali; Raj, Sai V.; Rauser, Richard W.

    2007-04-01

    Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight metal foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a detailed three dimensional foam structure is generated using series of 2D Computer Tomography (CT) scans. The series of the 2D images are assembled to construct a high precision solid model capturing all the fine details within the metal foam as detected by the CT scanning technique. Moreover, a finite element analysis is then performed on as fabricated metal foam microstructures, to calculate the foam mechanical properties with the idealized theory. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile and compressive mechanical properties are deduced from the FEA model and compared with the theoretical values for three different foam densities. The combined NDE/FEA provided insight in the variability of

  10. Development of nonflammable cellulosic foams

    Science.gov (United States)

    Luttinger, M.

    1972-01-01

    The development of a moldable cellulosic foam for use in Skylab instrument storage cushions is considered. Requirements include density of 10 lb cu ft or less, minimal friability with normal handling, and nonflammability in an atmosphere of 70 percent oxygen and 30 percent nitrogen at 6.2 psia. A study of halogenated foam components was made, including more highly chlorinated binders, halogen-containing additives, and halogenation of the cellulose. The immediate objective was to reduce the density of the foam through reduction in inorganic phosphate without sacrificing flame-retarding properties of the foams. The use of frothing techniques was investigated, with particular emphasis on a urea-formaldehyde foam. Halogen-containing flame retardants were deemphasized in favor of inorganic salts and the preparation of phosphate and sulphate esters of cellulose. Utilization of foam products for civilian applications was also considered.

  11. Foaming in manure based digesters

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    Anaerobic digestion foaming is one of the major problems that occasionally occurred in the Danish full-scale biogas plants, affecting negatively the overall digestion process. The foam is typically formatted in the main biogas reactor or in the pre-storage tank and the entrapped solids in the foam...... cause severe operational problems, such as blockage of mixing devices, and collapse of pumps. Furthermore, the foaming problem is linked with economic consequences for biogas plants, due to income losses derived from the reduced biogas production, extra labour work and additional maintenance costs....... Moreover, foaming presents adverse environmental impacts owing to the overflowing of the pre-storage or digester tanks. So far, there has never been thoroughly investigation of foaming problem in manure-based digester, which is the main anaerobic digestion applied in Denmark. The purpose of the present...

  12. A study on compressive shock wave propagation in metallic foams

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau,which makes it widely applicable in the design of structural crashworthiness. However,in some experimental studies,stress enhancement has been observed when the specimens are subjected to intense impact loads,leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model,a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived,where an explicit integra-tion algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses,considerable energy is dissipated during the progressive collapse of foam cells,which then reduces the crush of objects. When the pulse is sufficiently high,on the other hand,stress enhancement may take place,especially in the heterogeneous foams,where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material,amplitude and period of the pulse,as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.

  13. Foams structure and dynamics

    CERN Document Server

    Cantat, Isabelle; Graner, François; Pitois, Olivier; Höhler, Reinard; Elias, Florence; Saint-Jalmes, Arnaud; Rouyer, Florence

    2013-01-01

    This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.

  14. Polyurethane Foam Roofing.

    Science.gov (United States)

    1987-04-01

    underfilled a second or third application of foam may be required to completely fill the void . If a second or third application or pour is required, pour(s...often creates other problems such as pinholes, voids (or "holidays") and cracking. Occasionally, small areas of marginal coating coverage may be found on...which can be worked down into small voids , crevices and pinholes. Suitable caulk sealants can also be used to make corrections. Such corrective

  15. Laser assisted foaming of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kathuria, Y.P. [Laser X Co. Ltd., Aichi (Japan)

    2001-09-01

    Recently aluminum foams have evoked considerable interest as an alternative material owing to their wide range of applications ranging from microelectronics, through automobiles to aerospace industries. The manufacturing techniques and characterization methods for aluminum foams require further development to achieve effective and economical use of this material. In this communication the authors demonstrate the feasibility of unidirectional and localized expansion of the aluminum foam using the Nd-YAG/CO{sub 2} laser and powder metallurgy. (orig.)

  16. Foam cell formation by particulate matter (PM) exposure: a review.

    Science.gov (United States)

    Cao, Yi; Long, Jimin; Ji, Yuejia; Chen, Gui; Shen, Yuexin; Gong, Yu; Li, Juan

    2016-11-01

    Increasing evidence suggests that exposure of particulate matter (PM) from traffic vehicles, e.g., diesel exhaust particles (DEP), was associated with adverse vascular effects, e.g., acceleration of atherosclerotic plaque progression. By analogy, engineered nanoparticles (NPs) could also induce similar effects. The formation of lipid laden foam cells, derived predominately from macrophages and vascular smooth muscle cells (VSMC), is closely associated with the development of atherosclerosis and adverse vascular effects. We reviewed current studies about particle exposure-induced lipid laden foam cell formation. In vivo studies using animal models have shown that exposure of air pollution by PM promoted lipid accumulation in alveolar macrophages or foam cells in plaques, which was likely associated with pulmonary inflammation or systemic oxidative stress, but not blood lipid profile. In support of these findings, in vitro studies showed that direct exposure of cultured macrophages to DEP or NP exposure, with or without further exposure to external lipids, promoted intracellular lipid accumulation. The mechanisms remained unknown. Although a number studies found increased reactive oxygen species (ROS) or an adaptive response to oxidative stress, the exact role of oxidative stress in mediating particle-induced foam cell formation requires future research. There is currently lack of reports concerning VSMC as a source for foam cells induced by particle exposure. In the future, it is necessary to explore the role of foam cell formation in particle exposure-induced atherosclerosis development. In addition, the formation of VSMC derived foam cells by particle exposure may also need extensive studies.

  17. Steam foam studies in the presence of residual oil

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.A.; Demiral, B.; Castanier, L.M.

    1992-05-01

    The lack of understanding regarding foam flow in porous media necessitates further research. This paper reports on going work at Stanford University aimed at increasing our understanding in the particular area of steam foams. The behavior of steam foam is investigated with a one dimensional (6 ft. {times} 2.15 in.) sandpack under residual oil conditions of approximately 12 percent. The strength of the in-situ generated foam, indicated by pressure drops, is significantly affected by injection procedure, slug size, and steam quality. The surfactant concentration effect is minor in the range studied. In the presence of residual oil the simultaneous injection of steam and surfactant fails to generate foam in the model even though the same procedure generates a strong foam in the absence of oil. Nevertheless when surfactant is injected as a slug ahead of the steam using a surfactant alternating (SAG) procedure, foam is generated. The suggested reason for the success of SAG is the increased phase mixing that results from steam continually having to reestablish a path through a slug of surfactant solution.

  18. Modelling Adsorption of Foam-Forming Surfactants Modélisation de l'adsorption des produits tensio-actifs moussants

    Directory of Open Access Journals (Sweden)

    Mannhardt K.

    2006-11-01

    Full Text Available There is considerable interest in the use of foam-forming surfactants for mobility control in gas flooding enhanced oil recovery processes. The success of any such process is strongly affected by the rate of propagation of the surfactant through the reservoir. A sound understanding of surfactant adsorption on rock surfaces at reservoir conditions is therefore essential. This paper describes a model for the evaluation of adsorption during flow of surfactant solutions through porous media. The adsorption term in the flow equation is expressed in terms of the surface excess which proves to be more generally applicable than, for example, the Langmuir adsorption isotherm. Adsorption isotherms of three types of commercially available foam-forming surfactants are determined from core flooding data at different temperatures and brine salinities. L'utilisation de produits tensio-actifs moussants pour le contrôle de mobilité dans les procédés de récupération assistée du pétrole par injection de gaz suscite actuellement un grand intérêt. Mais le succès d'un tel procédé dépend largement de la vitesse de propagation du tensioactif dans le réservoir. Il est donc indispensable d'avoir une bonne connaissance de l'adsorption du tensio-actif sur les surfaces de la roche, dans les conditions de réservoir. Cet article décrit un modèle qui permet d'évaluer l'adsorption pendant l'écoulement de solutions tensio-actives en milieu poreux. Le terme qui représente l'adsorption dans l'équation de l'écoulement est exprimé en fonction de l'excédent de surface, concept qui s'est révélé d'une application plus générale que, par exemple, l'isotherme d'adsorption de Langmuir. Les isothermes d'adsorption de trois types de tensio-actifs moussants disponibles sur le marché sont déterminées à partir de données obtenues lors d'essais de déplacement dans des carottes, à différentes températures et avec des saumures de différentes salinités.

  19. The Feynman propagator for quantum gravity: spin foams, proper time, orientation, causality and timeless-ordering

    CERN Document Server

    Oriti, D

    2004-01-01

    We discuss the notion of causality in Quantum Gravity in the context of sum-over-histories approaches, in the absence therefore of any background time parameter. In the spin foam formulation of Quantum Gravity, we identify the appropriate causal structure in the orientation of the spin foam 2-complex and the data that characterize it; we construct a generalised version of spin foam models introducing an extra variable with the interpretation of proper time and show that different ranges of integration for this proper time give two separate classes of spin foam models: one corresponds to the spin foam models currently studied, that are independent of the underlying orientation/causal structure and are therefore interpreted as a-causal transition amplitudes; the second corresponds to a general definition of causal or orientation dependent spin foam models, interpreted as causal transition amplitudes or as the Quantum Gravity analogue of the Feynman propagator of field theory, implying a notion of ''timeless ord...

  20. 泡沫铝率相关本构模型及其在三明治夹芯板冲击吸能特性的应用研究%A RATE-DEPENDENT CONSTITUTIVE MODEL FOR ALUMINUM FOAMS AND ITS APPLICATION TO THE ENERGY ABSORPTION OF LIGHTWEIGHT SANDWICH PANELS WITH ALUMINUM FOAM CORES

    Institute of Scientific and Technical Information of China (English)

    寇玉亮; 陈常青; 卢天建

    2011-01-01

    Aluminum foam sandwich structures with the excellent mechanical and physical properties as lightweight, high specific stiffness and strength, vibration damping and energy absorption, have been wildly applied in the energy absorption device under impact. In this paper, a transverse isotropic rate-dependent constitutive model for aluminum foams has been developed for the strain rate sensitive behavior of the foams. Numerical algorithm for computing the rate-dependent constitutive model in finite element method is presented and has been coded into the commercial software package ABAQUS/Explicit through the user subroutine interface VUMAT. The numerical stability and reliability of the code are verified using a single element model and compared to available experimental results. The implemented model is then used to study the energy absorption capacity of aluminum foam core sandwich panels subject to impact loading.The effect of strain rate of the foam core is explored. Obtained results show that, with the increase of rate sensitivity parameter the energy capacity of the foam core increases and the deformation of the bottom panel decreases.%高孔隙率泡沫铝芯体三明治板具有轻质、高比刚度和减振吸能等优良的力学特性和物理特性,被广泛地应用于碰撞吸能部件上.近年来,高孔隙率泡沫铝在动态压缩下是否具有应变率敏感性成为广大学者的研究焦点.论文建立了横观各向同性率相关本构模型来描述高孔隙率泡沫铝的应变率效应,给出了有限元的计算步骤,基于ABAQUS/Explicit平台开发了子程序VUMAT,并在单个单元模型中验证了计算结果的稳定性和可靠性.将其作为三明治板芯体的材料属性,研究了不同率敏感系数对整个结构冲击吸能能力的影响.结果表明,随着率敏感系数的增加,芯体吸收的能量也随之增加,而底面面板的变形会越小,再一次验证了该子程序可以用来描述泡沫铝的应变率

  1. Polyurethane Foams with Pyrimidine Rings

    Directory of Open Access Journals (Sweden)

    Kania Ewelina

    2014-09-01

    Full Text Available Oligoetherols based on pyrimidine ring were obtained upon reaction of barbituric acid with glycidol and alkylene carbonates. These oligoetherols were then used to obtain polyurethane foams in the reaction of oligoetherols with isocyanates and water. The protocol of foam synthesis was optimized by the choice of proper kind of oligoetherol and synthetic composition. The thermal resistance was studied by dynamic and static methods with concomitant monitoring of compressive strength. The polyurethane foams have similar physical properties as the classic ones except their enhanced thermal resistance. They stand long-time heating even at 200°C. Moreover thermal exposition of foams results generally in increase of their compressive strength.

  2. A semi-parabolic wake model for large offshore wind farms based on the open source CFD solver OpenFOAM

    Directory of Open Access Journals (Sweden)

    Cabezón D.

    2014-01-01

    Full Text Available Wake effect represents one of the main sources of energy loss and uncertainty when designing offshore wind farms. Traditionally analytical models have been used to optimize and estimate power deficits. However these models have shown to underestimate wake effect and consequently overestimate output power [1, 2]. This means that analytical models can be very helpful at optimizing preliminary layouts but not as accurate as needed for an ultimate fine design. Different techniques can be found in the literature to study wind turbine wakes that include simplified kinematic models and more advanced field models, that solve flow equations with different turbulence closure schemes. See the review papers of Crespo et al. [3], Vermeer et al. [4], and Sanderse et al. [5]. Purely elliptic Computational Fluid Dynamics (CFD models based on the actuator disk technique have been developed during the last years [6–8]. They consider wind turbine rotor as a disk where a distribution of axial forces act over the incoming air. It is a fair approach but it can still be computationally expensive for big wind farms in an operative mode. With this technique still active, an alternative approach inspired on the parabolic wake models [9, 10] is proposed. Wind turbine rotors continue to be represented as actuator disks but now the domain is split into subdomains containing one or more wind turbines. The output of each subdomain is mapped onto the input boundary of the next one until the end of the domain is reached, getting a considerable decrease on computational time, by a factor of order 10. As the model is based on the open source CFD solver OpenFOAM, it can be parallelized to speed-up convergence. The near wake is calculated so no initial wind speed deficit profiles have to be supposed as in totally parabolic models and alternative turbulence models, such as the anisotropic Reynolds Stress Model (RSM can be used. Traditional problems of elliptic models related to

  3. Investigation of the foam influence on the wind-wave momentum exchange and cross-polarization microwave radar return within laboratory modeling of atmosphere-ocean boundary layer

    Science.gov (United States)

    Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim; Ermoshkin, Alexey

    2016-04-01

    The effect of foam presence on the transfer processes and the parameters of the surface roughness within the laboratory simulation of wind-wave interaction was carried out on the Thermostratified Wind-Wave Tank (TSWiWaT) IAP, using a specially designed foam generator. The parameters of air flow profiles and waves elevation were measured with scanning Pitot gauge and wire wave gauges respectively in the range of equivalent wind speed U10 from 12 to 38 m/s (covering strong winds) on the clean water and with foam. It was shown that the foam reduces the amplitudes and slopes of the waves in comparison with the clean water in the hole range of wind speeds investigated, and the peak frequency and wave numbers remain almost constant. The drag coefficient calculating by profiling method demonstrated similar behavior (almost independent on U10) for case of foam and increased compared with clear water, particularly noticeable for low wind speeds. Simultaneously the investigations of influence of the foam on the peculiarity of the microwave radio back scattering of X-diapason was investigated. These measurements were carried for different sensing angles (30, 40 i 50 degrees from vertical) and for four polarizations: co-polarized HH and VV, and de-polarized HV and VH. It was shown that foam leads to decrease of specific radar cross section of the wavy surface in comparison with clean water. The work was supported by the Russian Foundation for Basic Research (grants No. 15-35-20953, 14-05-00367, 16-55-52022) and project ASIST of FP7. The experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), radilocation measurments are partially supported by Russian Science Foundation (Agreement No. 14-17-00667).

  4. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... microscope above maximum foaming temperature gives a suitable foaming temperature for the remaining samples. We show that the foaming kinetics depend on the type of gas and the pressure. A critical pressure of around 20 MPa is found to give the largest expansion for all gasses. Samples are obtained with 100...

  5. Rheology of Foam Near the Order-Disorder Transition

    Science.gov (United States)

    Holt, R. Glynn; McDaniel, J. Gregory

    2001-01-01

    The first part of our research results are summarized in the recent journal publication: J. Gregory McDaniel and R. Glynn Holt, 'Measurement of aqueous foam rheology by acoustic levitation', Phys. Rev. E 61, 2204 (2000). This aspect of the work was a combination of experiment and analysis. We built a levitation system capable of acoustically levitating small samples of aqueous foam of arbitrary gas and liquid volume fractions. We then modulated the acoustic field to induce normal mode oscillations of the foam samples. The observables from the experiment were frequency and mode number. For dry (roughly > 70% gas by volume) foams and small deformations, we developed an effective medium, normal-modes analysis which took the frequency and mode number from experiment, and gave us the shear elastic modulus of the foam as a function of Poisson's ratio. The second part of our results may be found in a soon-to-be submitted manuscript 'Dynamics of aqueous foam drops', I.Sh. Akhatov, J.G. McDaniel and R.G. Holt, describing our modeling in the wet foam limit by considering the acoustic problem. This aspect of the research is purely theoretical. Beginning from a mass-conserving mixture law, the fully nonlinear equations of motion for a wet (roughly < 10% gas by volume) foam drop of initially spherical shape were derived. The frequencies for normal mode oscillations were derived in the linear inviscid limit. The nonlinear equations were numerically solved to elicit the motion of a foam drop under acoustic excitation. The role of the time-varying void fraction in breathing-mode oscillations is of particular interest. As of the end of the current (NAG#3-2121) grant, this work was not yet concluded. We continue to work on this aspect in order to extend the analysis to cover the transition regime of gas volume fractions, as well as to compare to experiments in the wet regime.

  6. Drug distribution in wet granulation: foam versus spray.

    Science.gov (United States)

    Tan, Melvin X L; Nguyen, Thanh H; Hapgood, Karen P

    2013-09-01

    Foam granulation technology is a new wet granulation approach for pharmaceutical formulations. This study evaluates the performance of foam and spray granulation in achieving uniform drug distribution using a model formulation. To observe wetting and nuclei formation, single drop/foam penetration experiments were performed on a static powder bed comprised of varying compositions of hydrophilic/hydrophobic glass ballotini, and hydrophilic lactose/hydrophobic salicylic acid respectively. High shear granulation experiments were performed in a 5L mixer using varying compositions of hydrophilic lactose and hydrophobic salicylic acid. Four percent hydroxylpropyl methylcellulose (HPMC) solution was delivered at 90 g/min as either a foam (92% FQ) or an atomized spray whilst recording impeller power consumption. After drying, the granule size distribution was measured and the granule composition was estimated using gravimetric filtration in methanol. Foam penetration was less dependent on the powder hydrophobicity compared to drop penetration. For glass ballotini powder mixtures, foam induced nucleation created nuclei with relatively uniform structure and size regardless of the powder hydrophobicity. For salicylic acid and lactose mixtures, increasing the proportion of salicylic acid reduced the nuclei granule size for both foam and drop binder addition. The granule drug distribution was not significantly affected by the binder addition method. Processing conditions, including liquid binder amount, impeller speed, wet massing, and the wettability properties of the formulation were the dominant factors for delivering homogeneous granules. The study reveals that foam and spray granulation involve different nucleation mechanisms - spray tends to incur early liquid penetration whereas foam granulation operates well in mechanical dispersion.

  7. Permeability of Aluminium Foams Produced by Replication Casting

    Directory of Open Access Journals (Sweden)

    Maxim L. Cherny

    2012-12-01

    Full Text Available The replication casting process is used for manufacturing open-pore aluminum foams with advanced performances, such as stability and repeatability of foam structure with porosity over 60%. A simple foam structure model based on the interaction between sodium chloride solid particles poorly wetted by melted aluminum, which leads to the formation of air pockets (or “air collars”, is proposed for the permeability of porous material. The equation for the minimum pore radius of replicated aluminum foam is derived. According to the proposed model, the main assumption of the permeability model consists in a concentration of flow resistance in a circular aperture of radius rmin. The permeability of aluminum open-pore foams is measured using transformer oil as the fluid, changing the fractions of initial sodium chloride. Measured values of minimum pore size are close to theoretically predicted ones regardless of the particle shape. The expression for the permeability of replicated aluminum foam derived on the basis of the “bottleneck” model of porous media agrees well with the experimental data. The obtained data can be applied for commercial filter cells and pneumatic silencers.

  8. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    Science.gov (United States)

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  9. Average foam life and foaming intensity of foaming phenomenon originating from decomposition reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.; Wang, Y.; Liang, Z.; Liu, X.; Yao, K.; Zhao, J. [Beijing Univ. of Science and Technology, Metallurgy School (China)

    2003-06-01

    The average foam life anti {tau} and foam intensity i have been defined. The expression of anti {tau} and i were given through the relationship between the gas quantity of carbonate decomposition and time, which could be determined by the mass and heat balance. anti {tau} means the effective foaming endurance time. i is a dimensionless number and means the intensity of the foaming process. With these two parameters and the supplement formation and rupture coefficients (K and k), the foaming process originating from decomposition reaction in the melt can be described quantitatively. Through the experiment in the laboratory, the foam height has been measured during the foaming process originating from reaction of the carbonate decomposition in Na{sub 2}B{sub 4}O{sub 7} melt. By means of the experimental results and through the self-developed calculation program, the foam behaviour parameters (K, k, anti {tau} and i) for the foaming process could be determined under different conditions, such as variations of crucible diameter, added carbonate quantity, initial slag height and foaming agent radius and so on. In this way the foam behaviour of the different foaming processes originating from reaction of carbonate decomposition in Na{sub 2}B{sub 4}O{sub 7} melt would be analysed quantitatively. It was shown that the crucible diameter has little effect on rupture coefficient k, average foam life anti {tau} and foam intensity i, just like the foam caused by blowing gas. However, formation coefficient K was affected by the crucible diameter quite a lot. With increased carbonate and initial slag height, anti {tau} and i increase too. In addition anti {tau} and i are influenced by the particle size of the carbonate added to the Na{sub 2}B{sub 4}O{sub 7} melt. The larger the particle, the lower anti {tau} and i. With addition of the two different sizes of particles, both of them were getting larger. The composition of the melt has also an influence on the foaming process

  10. On the growth of pneumatic foams.

    Science.gov (United States)

    Karakashev, Stoyan I; Georgiev, Petyr; Balashev, Konstantin

    2013-02-01

    critical value, above which substantial increase is observed. It was finally concluded that both the tenacious and the transient foams have completely different behaviour. For this reason they should be modeled separately but more experimental data are still needed.

  11. Degenerate Plebanski Sector and its Spin Foam Quantization

    CERN Document Server

    Alexandrov, Sergei

    2012-01-01

    We show that the degenerate sector of Spin(4) Plebanski formulation of four-dimensional gravity is exactly solvable and describes covariantly embedded SU(2) BF theory. This fact provides its spin foam quantization and allows to test various approaches of imposing the simplicity constraints. Our analysis suggests a unique method of imposing the constraints which leads to a consistent and well defined spin foam model.

  12. Domain and rim growth kinetics in stratifying foam films

    Science.gov (United States)

    Zhang, Yiran; Yilixiati, Subinuer; Sharma, Vivek

    Foam films are freely standing thin liquid films that typically consist of two surfactant-laden surfaces that are ~5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, a layered ordering of micelles inside the foam films (thickness capture the rim evolution dynamics. Finally, we also develop a theoretical model to describe both rim evolution and domain growth dynamics.

  13. High Strength Wood-based Sandwich Panels Reinforced with Fiberglass and Foam

    Directory of Open Access Journals (Sweden)

    Jinghao Li

    2014-02-01

    Full Text Available Mechanical analysis is presented for new high-strength sandwich panels made from wood-based phenolic impregnated laminated paper assembled with an interlocking tri-axial ribbed core. Four different panel configurations were tested, including panels with fiberglass fabric bonded to both outside faces with self-expanding urethane foam used to fill the ribbed core. The mechanical behaviors of the sandwich panels were strength tested via flatwise compression, edgewise compression, and third-point load bending. Panels with fiberglass exhibited significantly increased strength and apparent MOE in edgewise compression and bending, but there were no noticeable effects in flatwise compression. The foam provided improved support that resisted both rib buckling and face buckling for both compression and bending tests. Post-failure observation indicated that core buckling dominated the failures for all configurations used. It is believed that using stiffer foam or optimizing the dimension of the core might further improve the mechanical performance of wood-based sandwich panels.

  14. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    Science.gov (United States)

    Colombo, N.B.R.; Rangel, M.P.; Martins, V.; Hage, M.; Gelain, D.P.; Barbeiro, D.F.; Grisolia, C.K.; Parra, E.R.; Capelozzi, V.L.

    2015-01-01

    The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress. PMID:26200231

  15. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    N.B.R. Colombo

    2015-01-01

    Full Text Available The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.

  16. Polymerization shrinkage and stress development in amorphous calcium phosphate/urethane dimethacrylate polymeric composites

    Science.gov (United States)

    Antonucci, J.M.; Regnault, W. F.; Skrtic, D.

    2010-01-01

    This study explores how substituting a new high molecular mass oligomeric poly(ethylene glycol) extended urethane dimethacrylate (PEG-U) for 2-hydroxyethyl methacrylate (HEMA) in photo-activated urethane dimethacrylate (UDMA) resins affects degree of vinyl conversion (DC), polymerization shrinkage (PS), stress development (PSSD) and biaxial flexure strength (BFS) of their amorphous calcium phosphate (ACP) composites. The composites were prepared from four types of resins (UDMA, PEG-U, UDMA/HEMA and UDMA/PEG-U) and zirconia-hybridized ACP. Introducing PEG-U improved DC while not adversely affecting PS, PSSD and the BFS of composites. This improvement in DC is attributed to the long, more flexible structure between the vinyl groups of PEG-U and its higher molecular mass compared to poly(HEMA). The results imply that PEG-U has the potential to serve as an alternative to HEMA in dental and other biomedical applications. PMID:20169007

  17. Development of Photocrosslinkable Urethane-Doped Polyester Elastomers for Soft Tissue Engineering

    OpenAIRE

    Zhang, Yi; Tran, Richard T.; Gyawali, Dipendra; Yang, Jian

    2011-01-01

    Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-cro...

  18. In-vivo degradation of poly(carbonate-urethane) based spine implants

    OpenAIRE

    Cipriani, E.; Bracco, P; Kurtz, S.M.; Costa, L.; Zanetti, M.

    2013-01-01

    Fourteen explanted Dynesys® spinal devices were analyzed for biostability and compared with a reference, never implanted, control. Both poly(carbonate-urethane) (PCU) spacers and polyethylene-terephthalate (PET) cords were analyzed. The effect of implantation was evaluated through the observation of physical alterations of the device surfaces, evaluation of the chemical degradation and fluids absorption on the devices and examination of the morphological and mechanical features. PCU spacers e...

  19. Poly(hydroxyl urethane) compositions and methods of making and using the same

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2016-01-26

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  20. Thio-urethane oligomers improve the properties of light-cured resin cements.

    Science.gov (United States)

    Bacchi, Ataís; Consani, Rafael L; Martim, Gedalias C; Pfeifer, Carmem S

    2015-05-01

    Thio-urethanes were synthesized by combining 1,6-hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 10-30 phr to BisGMA-UDMA-TEGDMA (5:3:2, BUT). 25 wt% silanated inorganic fillers were added. Commercial cement (Relyx Veneer, 3M-ESPE) was also evaluated with 10-20 phr of aromatic oligomer. Near-IR was used to follow methacrylate conversion (DC) and rate of polymerization (Rpmax). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Volumetric shrinkage (VS, %) was measured with the bonded disk technique. Results were analyzed with ANOVA/Tukey's test (α=5%). In general terms, for BUT cements, conversion and mechanical properties in flexure increased for selected groups with the addition of thio-urethane oligomers. The aromatic versions resulted in greater FS/FM than aliphatic. Fracture toughness increased by two-fold in the experimental groups (from 1.17 ± 0.36 MPam(1/2) to around 3.23 ± 0.22 MPam(1/2)). Rpmax decreased with the addition of thio-urethanes, though the vitrification point was not statistically different from the control. VS and PS decreased with both oligomers. For the commercial cement, 20 phr of oligomer increased DC, vitrification, reduced Rpmax and also significantly increased KIC, and reduced PS and FM. Thio-urethane oligomers were shown to favorably modify conventional dimethacrylate networks. Significant reductions in polymerization stress were achieved at the same time conversion and fracture toughness increased.

  1. Electrospun poly(ester-Urethane)- and poly(ester-Urethane-Urea) fleeces as promising tissue engineering scaffolds for adipose-derived stem cells.

    Science.gov (United States)

    Gugerell, Alfred; Kober, Johanna; Laube, Thorsten; Walter, Torsten; Nürnberger, Sylvia; Grönniger, Elke; Brönneke, Simone; Wyrwa, Ralf; Schnabelrauch, Matthias; Keck, Maike

    2014-01-01

    An irreversible loss of subcutaneous adipose tissue in patients after tumor removal or deep dermal burns makes soft tissue engineering one of the most important challenges in biomedical research. The ideal scaffold for adipose tissue engineering has yet not been identified though biodegradable polymers gained an increasing interest during the last years. In the present study we synthesized two novel biodegradable polymers, poly(ε-caprolactone-co-urethane-co-urea) (PEUU) and poly[(L-lactide-co-ε-caprolactone)-co-(L-lysine ethyl ester diisocyanate)-block-oligo(ethylene glycol)-urethane] (PEU), containing different types of hydrolytically cleavable bondings. Solutions of the polymers at appropriate concentrations were used to fabricate fleeces by electrospinning. Ultrastructure, tensile properties, and degradation of the produced fleeces were evaluated. Adipose-derived stem cells (ASCs) were seeded on fleeces and morphology, viability, proliferation and differentiation were assessed. The biomaterials show fine micro- and nanostructures composed of fibers with diameters of about 0.5 to 1.3 µm. PEUU fleeces were more elastic, which might be favourable in soft tissue engineering, and degraded significantly slower compared to PEU. ASCs were able to adhere, proliferate and differentiate on both scaffolds. Morphology of the cells was slightly better on PEUU than on PEU showing a more physiological appearance. ASCs differentiated into the adipogenic lineage. Gene analysis of differentiated ASCs showed typical expression of adipogenetic markers such as PPARgamma and FABP4. Based on these results, PEUU and PEU meshes show a promising potential as scaffold materials in adipose tissue engineering.

  2. Lost Foam Casting in China

    Institute of Scientific and Technical Information of China (English)

    YE Sheng-ping; WU Zhi-chao

    2006-01-01

    @@ 1. Lost Foam Casting Committee of Foundry Institution of Chinese Mechanical Engineering Society (FICMES) From the beginning of the 1990s, China entered a research and expansion climax in lost foam casting technology realm after the United States, Germany, and Japan etc.

  3. Foaming-electrolyte fuel cell

    Science.gov (United States)

    Nanis, L.; Saunders, A. P.

    1970-01-01

    Foam structure feeds fuel gas solution into electrolyte. Fuel gas reacts at static, three-phase interface between fuel gas, electrolyte, and electrode material. The foam forms an electrical contact between main body of electrolyte and the electrode, and aids in removal of by-products of the chemical reaction.

  4. Synthesis of poly(methyl urethane) acrylate oligomer using 2-isocyanatoethyl methacrylate for UV curable coating.

    Science.gov (United States)

    Park, M N; Oh, S W; Ahn, B H; Moon, M J; Kang, Y S

    2009-02-01

    The poly(methyl urethane) acrylate oligomer was obtained by the reaction of methyl acrylate oligomer and 2-isocyanatoethyl methacrylate. Synthesis of poly(methyl urethane) acrylate oligomer was done with 2-mercaptoethanol (2-MEOH), methyl acrylate, 2,2'-azobisisobutyronitrile (AIBN, initiator) and dibutyltin dilaurate as a catalyst. Then 2-MEOH was used for functional chain transfer agent. The structure and property of the synthesized oligomers were characterized by FT-IR, FT-NMR, rheometer, and DSC. In this study, by synthetic method including the addition of 2-isocyanatoethyl methacrylate, thermal behavior of synthesized material was improved more than that reported in the previous study. Poly(methyl urethane) oligomer can be used for UV curable coatings, inks and adhesives. UV curable coating have high resistance against weather, ozone, aging, frictional wear, and heat. Besides they can absorb the shock and resist rust according to the thickness of film. It is used as an adhesive, paint, optical fiber coating agent, and waterproof agent because of these advantages at the present time.

  5. Mechanical and Thermal Properties of Poly(urethane urea Nanocomposites Prepared with Diamine-Modified Laponite

    Directory of Open Access Journals (Sweden)

    Joe-Lahai Sormana

    2008-01-01

    Full Text Available Nanocomposites based on segmented poly(urethane urea were prepared by reacting a poly(diisocyanate with diamine-modified Laponite-RD nanoparticles that served as a chain extender. The nanocomposites were prepared at a constant NH2 to NCO mole ratio of 0.95, while varying the fraction of diamine-modified Laponite relative to the free diamine chain extender. Compared to neat poly(urethane urea, all nanocomposites showed increased tensile strength and elongation at break. As Laponite loading increased, tensile properties passed through a maximum at a particle concentration of 1 mass%, at which a 300% increase in tensile strength and 40% increase in elongation at break were observed. A maximum in urea and urethane hard-domain melting endotherms was also observed at this Laponite loading. Optimal mechanical and thermal properties coincided with a minimum in the size of the inorganic Laponite phase. Nanocomposites containing diamine-modified Laponite had higher tensile strengths than those with nonreactive monoamine-modified Laponite or diamine-modified Cloisite.

  6. WATER-BLOWN POLYURETHANE RIGID FOAMS MODIFIED BY CHEMICAL PLASTICATION

    Institute of Scientific and Technical Information of China (English)

    YU Ming; XU Qiang

    2006-01-01

    Water-blown polyurethane rigid foams are getting more and more attention, because the traditional blowing agent HCFC141b has already been abolished to prevent the ozone layer from destruction. However, the polyurethane rigid foams blown by water have serious defects, i.e. friability and resulting lower adhesion strength. Thus, the purpose of this study is to resolve the problems by chemical plastication. The maleate was added to polyol-premix containing water or to polyisocyanate,with both of which maleate does not react. To prove the reaction when polyol-premix and polyisocyanate were mixed, the model composite was synthesized and analyzed by IR, NMR and ESI (MS). Furthermore, a series of water-blown polyurethane rigid foams added different amount maleate were successfully prepared. By testing impact strength and adhesion strength of the foams, the actual effect of adding maleate was obtained.

  7. Hyperbolic prisms and foams in Hele-Shaw cells

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil); Tufaile, A.P.B. [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil)

    2011-10-03

    The propagation of light in foams creates patterns which are generated due to the reflection and refraction of light. One of these patterns is observed by the formation of multiple mirror images inside liquid bridges in a layer of bubbles in a Hele-Shaw cell. We are presenting the existence of these patterns in foams and their relation with hyperbolic geometry and Sierpinski gaskets using the Poincare disk model. The images obtained from the experiment in foams are compared to the case of hyperbolic optical elements. -- Highlights: → The chaotic scattering of light in foams generating deltoid patterns is based on hyperbolic geometry. → The deltoid patterns are obtained through the Plateau borders in a Hele-Shaw cell. → The Plateau borders act like hyperbolic prism. → Some effects of the refraction and reflection of the light rays were studied using a hyperbolic prism.

  8. Spin foams without spins

    Science.gov (United States)

    Hnybida, Jeff

    2016-10-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  9. Pore-level mechanics of foam generation and coalescence in the presence of oil.

    Science.gov (United States)

    Almajid, Muhammad M; Kovscek, Anthony R

    2016-07-01

    The stability of foam in porous media is extremely important for realizing the advantages of foamed gas on gas mobility reduction. Foam texture (i.e., bubbles per volume of gas) achieved is dictated by foam generation and coalescence processes occurring at the pore-level. For foam injection to be widely applied during gas injection projects, we need to understand these pore-scale events that lead to foam stability/instability so that they are modeled accurately. Foam flow has been studied for decades, but most efforts focused on studying foam generation and coalescence in the absence of oil. Here, the extensive existing literature is reviewed and analyzed to identify open questions. Then, we use etched-silicon micromodels to observe foam generation and coalescence processes at the pore-level. Special emphasis is placed on foam coalescence in the presence of oil. For the first time, lamella pinch-off as described by Myers and Radke [40] is observed in porous media and documented. Additionally, a new mechanism coined "hindered generation" is found. Hindered generation refers to the role oil plays in preventing the successful formation of a lamella following snap-off near a pore throat.

  10. The role of nanocrystalline cellulose on the microstructure of foamed castor-oil polyurethane nanocomposites.

    Science.gov (United States)

    Cordero, Andrés Ignacio; Amalvy, Javier Ignacio; Fortunati, Elena; Kenny, José María; Chiacchiarelli, Leonel Matías

    2015-12-10

    Nanocrystalline cellulose (CNC), obtained by sulphuric acid hydrolysis, was used to synthesize polyurethane foams (PUFs) based on a functionalized castor oil polyol and a Methylene diphenyl diisocyanate (MDI). Formulations with varying isocyanate index (FI) and NCO number were prepared. At 0.5 wt.%, SEM's of the fractured surface underlined that the CNC acted both as a nucleation agent and as a particulate surfactant with cell geometries and apparent density changing selectively. The chemical structure of the PUF (FTIR) changed after the incorporation of CNC by a relative change of the amount of urea, urethane and isocyanurate groups. A low NCO number and isocyanate index contributed to the migration of the CNC to the Hard Segment (HS), acting as reinforcement and improving substantially the compressive mechanical properties (Ec and σc improvements of 63 and 50%, respectively). For a high NCO number or isocyanate index, the CNC migrated to the Soft Segment (SS), without causing a reinforcement effect. The migration of the CNC was also detected with DSC, TGA and DMA, furtherly supporting the hypothesis that a low NCO number and index contributed both to the formation of a microstructure with a higher content of urethane groups.

  11. Flow of foams in two-dimensional disordered porous media

    Science.gov (United States)

    Dollet, Benjamin; Geraud, Baudouin; Jones, Sian A.; Meheust, Yves; Cantat, Isabelle; Institut de Physique de Rennes Team; Geosciences Rennes Team

    2015-11-01

    Liquid foams are a yield stress fluid with elastic properties. When a foam flow is confined by solid walls, viscous dissipation arises from the contact zones between soap films and walls, giving very peculiar friction laws. In particular, foams potentially invade narrow pores much more efficiently than Newtonian fluids, which is of great importance for enhanced oil recovery. To quantify this effect, we study experimentally flows of foam in a model two-dimensional porous medium, consisting of an assembly of circular obstacles placed randomly in a Hele-Shaw cell, and use image analysis to quantify foam flow at the local scale. We show that bubbles split as they flow through the porous medium, by a mechanism of film pinching during contact with an obstacle, yielding two daughter bubbles per split bubble. We quantify the evolution of the bubble size distribution as a function of the distance along the porous medium, the splitting probability as a function of bubble size, and the probability distribution function of the daughter bubbles. We propose an evolution equation to model this splitting phenomenon and compare it successfully to the experiments, showing how at long distance, the porous medium itself dictates the size distribution of the foam.

  12. Comparative Heat Conduction Model of a Cold Storage with Puf & Eps Insulation Using Taguchi Methodology

    Directory of Open Access Journals (Sweden)

    Dr. N. Mukhopadhyay

    2015-05-01

    Full Text Available In this project work a mathematical heat conduction model of a cold storage (with the help of computer program; and multiple regression analysis has been proposed which can be used for further development of cold storages in the upcoming future. In cold storage refrigeration system brings down the temperature initially during start up but thermal insulation maintains the temperature later on continuously. In this view, the simple methodology is presented to calculate heat transfer by analytical method also attempt has been made to minimize the energy consumption by replacing 150 mm Expanded polystyrene (EPS by 100 mm Poly Urethane foam (PUF insulation. The methodology is validated against actual data obtained from Penguin cold storage situated in Pune, India. Insulation thickness of the side walls (TW, area of the wall (AW, and insulation thickness of the roof (TR have been chosen as predictor variables of the study.

  13. Foam flotation as a separation process

    Science.gov (United States)

    Currin, B. L.

    1986-01-01

    The basic principles of foam separation techniques are discussed. A review of the research concerning bubble-particle interaction and its role in the kinetics of the flotation process is given. Most of the research in this area deals with the use of theoretical models to predict the effects of bubble and particle sizes, of liquid flow, and of various forces on the aperture and retention of particles by bubbles. A discussion of fluid mechanical aspects of particle flotation is given.

  14. Preparation and characterization of starch-based loose-fill packaging foams

    Science.gov (United States)

    Fang, Qi

    Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant

  15. The Construction of Spin Foam Vertex Amplitudes

    CERN Document Server

    Bianchi, Eugenio

    2012-01-01

    Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. They fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4 dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barret and Crane and Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  16. The Construction of Spin Foam Vertex Amplitudes

    Directory of Open Access Journals (Sweden)

    Eugenio Bianchi

    2013-01-01

    Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  17. Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles.

    Science.gov (United States)

    Yang, M; Zhang, Z; Hahn, C; Laroche, G; King, M W; Guidoin, R

    1999-01-01

    In the development of a new generation of totally implantable artificial hearts and left ventricular assist devices (VADs) for long-term use, the selection of an acceptable material for the fabrication of the ventricles probably represents one of the greatest challenges. Segmented polyether urethanes used to be the material of choice due to their superior flexural performance, acceptable blood compatibility, and ease of processing. However, because they are known to degrade and to be readily permeable to water, they cannot meet the rigorous requirements needed for a new generation of implantable artificial hearts and VADs. Therefore, the objective of the present study was to identify alternative polymeric materials that would be satisfactory for fabricating the ventricles, and in particular, to determine the water permeability through membranes made from four commercial polycarbonate urethanes (Carbothane PC3570A, Chronoflex AR, Corethane 80A, and Corethane 55D) in comparison to those made from two traditional polyether urethanes (Tecoflex EG80A and Tecothane TT-1074A). In addition to determining the rate of water transmission through the six membranes by exposing them to deionized water, saline, and albumin-Krebs solution under pressure and measuring the displacement of liquid by means of a recently developed capillary method, the inherent surface and chemical properties of the six membranes were characterized by SEM, contact angle measurements, FTIR, DSC, and GPC techniques. The results of the study demonstrated that the rate of water transmission through the four polycarbonate urethane membranes was significantly lower than through the two polyether urethanes. In fact the lowest values were recorded with the two Corethane membranes, and the harder type 55D polymer had a lower value (2.7 x 10(-7) g/s cm2) than the softer 80A version (3.3 x 10(-7) g/s cm2). This level of water vapor permeability, which appears to be controlled primarily by a Fickian diffusion

  18. Application of epoxy resin to a solid-foam pelvic model: creating a dry-erase pelvis.

    Science.gov (United States)

    Weaver, Michael J; Brubacher, Jacob W; Vrahas, Mark S

    2014-11-01

    The value of preoperative planning and templating has been well-established in fracture surgery. We have found that using 3-dimensional (3-D) models in preoperative planning aids in the understanding of anatomy, fracture-reduction techniques, and fixation methods, particularly in pelvic and acetabular fractures. To facilitate the correction of errors and reuse for future cases, we coat pelvic models with dry-erase epoxy resin. Fracture lines and planned implants are drawn onto the models with dry-erase markers. The creation of 3-D planning tools is useful in understanding the anatomy of pelvic and acetabular fractures.

  19. Biodegradable calcium polyphosphate/polyvinyl-urethane carbonate composites for osteosynthesis applications

    Science.gov (United States)

    Ramsay, Scott Desmond

    The formation of biodegradable implants for use in osteosynthesis has been a major goal of biomaterials research for the past two to three decades. Self-reinforced polylactide systems represent the most significant success of this research to date, however with elastic constants of, at most, 12--15 GPa, they fail to provide the necessary initial stiffness required of devices designed for stabilizing fractures of major load-bearing bones. One objective of this study has been the development of a biodegradable composite suitable for fabrication of implants for the repair of fractures of major load-bearing bones. Specifically, this research has focussed on the use of calcium polyphosphate (CPP), an uiorganic polymer in combination with polyvinyl-urethane carbonate (PVUC) organic polymers. Composite samples were formed as interpenetrating phase composites (IPC), particle-reinforced composites (PRC), and fibre-reinforced composites (FRC). Additionally, the IPCs were produced as both monolithic and laminated specimens. PRC samples exhibit too low asmade elastic constant for fracture fixation applications, while the IPC and FRC samples exhibit desired as-made strength and bending stiffness but lose these properties too rapidly when exposed to aqueous-based in vitro aging, simulating in vivo conditions. An investigation to determine the mechanism of the rapid in vitro degradation was undertaken using a model IPC system to study the effect of the interfacial strength on the mechanical properties of the composite. In addition, these studies provided further support for a hypothesis to explain the observed high mechanical properties of the as-made CPP-PVUC interpenetrating phase composites. It was found that strong interfacial strength is very significant in obtaining appropriate mechanical properties in the IPC system. Results support the conclusion that a rapid loss of the CPP-PVUC interface through exposure to an aqueous environment, as well as stresses imposed on the CPP

  20. Low-temperature oxidative degradation of PBX 9501 and its components determined via molecular weight analysis of the poly [ester urethane] binder

    Energy Technology Data Exchange (ETDEWEB)

    Kress, Joel D [Los Alamos National Laboratory

    2008-01-01

    The results of following the oxidative degradation of a plastic-bonded explosive (PBX 9501) are reported. Into over 1100 sealed containers were placed samples of PBX 9501 and combinations of its components and aged at relatively low temperatures to induce oxidative degradation of the samples. One of the components of the explosive is a poly(ester urethane) polymer and the oxidative degradation of the samples were following by measuring the molecular weight change of the polymer by gel permeation chromatography (coupled with both differential refractive index and multiangle laser light scattering detectors). Multiple temperatures between 40 and 64 {sup o}C were used to accelerate the aging of the samples. Interesting induction period behavior, along with both molecular weight increasing (crosslinking) and decreasing (chain scissioning) processes, were found at these relatively mild conditions. The molecular weight growth rates were fit to a random crosslinking model for all the combinations of components. The fit rate coefficients show Arrhenius behavior and activation energies and frequency factors were obtained. The kinetics of molecular weight growth shows a compensatory effect between the Arrhenius prefactors and activation energies, suggesting a common degradation process between PBX 9501 and the various combinations of its constituents. An oxidative chemical mechanism of the polymer is postulated, consistent with previous experimental results, that involves a competition between urethane radical crosslinking and carbonyl formation.

  1. Low-temperature oxidative degradation of PBX 9501 and its components determined via molecular weight analysis of the poly [ester urethane] binder

    Energy Technology Data Exchange (ETDEWEB)

    Kress, Joel D [Los Alamos National Laboratory

    2008-01-01

    The results of following the oxidative degradation of a plastic-bonded explosive (PBX 9501) are reported. Into over 1100 sealed containers were placed samples of PBX 9501 and combinations of its components and aged at relatively low temperatures to induce oxidative degradation of the samples. One of the components of the explosive is a poly(ester urethane) polymer and the oxidative degradation of the samples were following by measuring the molecular weight change of the polymer by gel permeation chromatography (coupled with both differential refractive index and multiangle laser light scattering detectors). Multiple temperatures between 40 and 64 {sup o}C were used to accelerate the aging of the samples. Interesting induction period behavior, along with both molecular weight increasing (crosslinking) and decreasing (chain scissioning) processes, were found at these relatively mild conditions. The molecular weight growth rates were fit to a random crosslinking model for all the combinations of components. The fit rate coefficients show Arrhenius behavior and activation energies and frequency factors were obtained. The kinetics of molecular weight growth shows a compensatory effect between the Arrhenius prefactors and activation energies, suggesting a common degradation process between PBX 9501 and the various combinations of its constituents. An oxidative chemical mechanism of the polymer is postulated, consistent with previous experimental results, that involves a competition between urethane radical crosslinking and carbonyl formation.

  2. Mechanical properties of a structural polyurethane foam and the effect of particulate loading

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Neuschwanger, C.L.; Whinnery, L.L.

    1998-04-01

    The room temperature mechanical properties of a closed-cell, polyurethane encapsulant foam have been measured as a function of foam density. Tests were performed on both unfilled and filler reinforced specimens. Over the range of densities examined, the modulus of the unloaded foam could be described by a power-law relationship with respect to density. This power-law relationship could be explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model found in the literature. The collapse stress of the foam was also found to exhibit a power-law relationship with respect to density. Additions of an aluminum powder filler increased the modulus relative to the unfilled foam.

  3. Impact of fillers on dissolution kinetic of fenofibrate dry foams.

    Science.gov (United States)

    Lenz, Elisabeth; Sprunk, Angela; Kleinebudde, Peter; Page, Susanne

    2015-01-01

    Dry foam technology reveals the opportunity to improve the dissolution behavior of poorly soluble drugs tending to agglomeration due to micronization. In this study, the impact of fillers on the manufacturability, the properties of dry foams and granules as well as the dissolution kinetics of dry foam tablets was investigated using fenofibrate as a model compound. Different maltodextrins and dried glucose syrups, a maltodextrin-phosphatidylcholine complex, isomalt and a 1:1 mixture of mannitol/glucose syrup were used as filler. Within the group of maltodextrins and glucose syrups, the influences of dextrose equivalent (DE), particle morphology and botanical source of starch were investigated. Comparable macroscopic foam structures were obtained with maltodextrins and glucose syrups whereas different foam morphologies were obtained for the other fillers tested. Regarding the maltodextrins and glucose syrups, different physicochemical and particle properties had a minor impact on granule characteristics and tablet dissolution. Using the maltodextrin-phosphatidylcholine complex resulted in a low specific surface area of the granules and a slow tablet dissolution caused by a slow disintegration. In contrast, a high specific surface area and a fast release were obtained with isomalt and glucose syrup/mannitol mixture indicating that high soluble low molecular weight fillers enable the development of fast dissolving dry foam tablets.

  4. PCM/ graphite foam composite for thermal energy storage device

    Science.gov (United States)

    Guo, C. X.; Ma, X. L.; Yang, L.

    2015-07-01

    Numerical studies are proposed to predict and investigate the thermal characteristics of a thermal storage device consists of graphite foam matrix saturated with phase change material, PCM. The composite (graphite foam matrix saturated with PCM) is prepared by impregnation method under vacuum condition, and then is introduced into a cylindrical shell and tube device while it experiences its heat from an inner tube fluid. The two-dimensional numerical simulation is performed using the volume averaging technique; while the phases change process is modelled using the enthalpy porosity method. A series of numerical calculations have been done in order to analyze the influence of fluid operating conditions on the melting process of the paraffin/graphite foam. The results are given in terms of temperature or liquid fraction time history in paraffin/graphite foam composite, which show that the heat transfer rate of the device is effectively improved due to the high thermal conductivity of graphite foams. Therefore, paraffin/graphite foam composite can be considered as suitable candidates for latent heat thermal energy storage device.

  5. Determination of effective thermal conductivity for polyurethane foam by use of fractal method

    Institute of Scientific and Technical Information of China (English)

    SHI; Mingheng; LI; Xiaochuan; CHEN; Yongping

    2006-01-01

    The microstructure of polyurethane foam is disordered, which influences the foam heat conduction process significantly. In this paper foam structure is described by using the local area fractal dimension in a certain small range of length scales. An equivalent element cell is constructed based on the local fractal dimensions along the directions parallel and transverse to the heat flux. By use of fractal void fraction a simplified heat conduction model is proposed to calculate the effective thermal conductivity of polyurethane foam. The predicted effective thermal conductivity agrees well with the experimental data.

  6. Foaming and emulsifying properties of pectin isolated from different plant materials

    Directory of Open Access Journals (Sweden)

    Yancheva Nikoleta

    2016-03-01

    Full Text Available The foaming and emulsifying properties of pectins obtained from waste rose petals, citrus pressings, grapefruit peels and celery were studied. It was found that the highest foaming capacity showed pectin derived from celery. The effect of pectin concentration on the foaming capacity of pectin solutions was investigated. For all the investigated pectins increasing the concentration led to increase of the foaming capacity. Emulsifying activity and emulsion stability of model emulsion systems (50 % oil phase with 0.6 % pectic solutions were determined. The highest emulsifying activity and stability showed pectin isolated by dilute acid extraction from waste rose petals.

  7. Foaming and emulsifying properties of pectin isolated from different plant materials

    Science.gov (United States)

    Yancheva, Nikoleta; Markova, Daniela; Murdzheva, Dilyana; Vasileva, Ivelina; Slavov, Anton

    2016-03-01

    The foaming and emulsifying properties of pectins obtained from waste rose petals, citrus pressings, grapefruit peels and celery were studied. It was found that the highest foaming capacity showed pectin derived from celery. The effect of pectin concentration on the foaming capacity of pectin solutions was investigated. For all the investigated pectins increasing the concentration led to increase of the foaming capacity. Emulsifying activity and emulsion stability of model emulsion systems (50 % oil phase) with 0.6 % pectic solutions were determined. The highest emulsifying activity and stability showed pectin isolated by dilute acid extraction from waste rose petals.

  8. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  9. Electrospun poly(ester-Urethane- and poly(ester-Urethane-Urea fleeces as promising tissue engineering scaffolds for adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Alfred Gugerell

    Full Text Available An irreversible loss of subcutaneous adipose tissue in patients after tumor removal or deep dermal burns makes soft tissue engineering one of the most important challenges in biomedical research. The ideal scaffold for adipose tissue engineering has yet not been identified though biodegradable polymers gained an increasing interest during the last years. In the present study we synthesized two novel biodegradable polymers, poly(ε-caprolactone-co-urethane-co-urea (PEUU and poly[(L-lactide-co-ε-caprolactone-co-(L-lysine ethyl ester diisocyanate-block-oligo(ethylene glycol-urethane] (PEU, containing different types of hydrolytically cleavable bondings. Solutions of the polymers at appropriate concentrations were used to fabricate fleeces by electrospinning. Ultrastructure, tensile properties, and degradation of the produced fleeces were evaluated. Adipose-derived stem cells (ASCs were seeded on fleeces and morphology, viability, proliferation and differentiation were assessed. The biomaterials show fine micro- and nanostructures composed of fibers with diameters of about 0.5 to 1.3 µm. PEUU fleeces were more elastic, which might be favourable in soft tissue engineering, and degraded significantly slower compared to PEU. ASCs were able to adhere, proliferate and differentiate on both scaffolds. Morphology of the cells was slightly better on PEUU than on PEU showing a more physiological appearance. ASCs differentiated into the adipogenic lineage. Gene analysis of differentiated ASCs showed typical expression of adipogenetic markers such as PPARgamma and FABP4. Based on these results, PEUU and PEU meshes show a promising potential as scaffold materials in adipose tissue engineering.

  10. Spin Foams Without Spins

    CERN Document Server

    Hnybida, Jeff

    2015-01-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. Thus the sums over spins have been carried out. We focus on the character expansion of Yang-Mills theory which is an approximate heat kernel regularization of BF theory. The boundary data of each $n$-valent node is an element of the Grassmannian Gr(2,$n$) which carries a coherent representation of U($n$) and a geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  11. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  12. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  13. Final Report: Use of Graphite Foam as a Thermal Performance Enhancement of Heavy Hybrid Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klett, James William [ORNL; Conklin, Jim [ORNL

    2011-06-01

    Oak Ridge National Laboratory's graphite foam has the potential to be used as a heat exchanger for the Army's Future Combat System Manned Ground Vehicle and thus has the potential to improve its thermal performance. The computational fluid dynamics (CFD) program FLOW3D was used to develop a new CFD model for the graphite foam to be used in the development of a proper heat exchanger. The program was calibrated by first measuring the properties of the solid foams and determining the parameters to be used in the CFD model. Then the model was used to predict within 5% error the performance of finned foam heat sinks. In addition, the f factors and j factors commonly used to predict pressure drop and heat transfer were calculated for both the solid and finned structures. There was some evidence that corrugating the foams would yield higher j/f ratios than state of the art heat exchangers, confirming previously measured data. Because the results show that the CFD model was validated, it is recommended that the funding for Phases 2 through 5 be approved for the design of both the finned heat exchanger using tubes and round fin structures and the solid foam design using corrugated foams. It was found that the new CFD model using FLOW3D can predict both solid foam heat transfer and finned foam heat transfer with the validated model parameters. In addition, it was found that the finned foam structures exhibited j/f ratios that indicate that significant heat transfer is occurring within the fin structures due to aerodynamically induced flow, which is not present in solid aluminum fin structures. It is possible that the foam surfaces can act as turbulators that increase heat transfer without affecting pressure drop, like the vortex generators seen in state of the art heat exchangers. These numbers indicate that the foam can be engineered into an excellent heat exchanger. It was also found that corrugating the solid foams would increase the j/f ratio dramatically

  14. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  15. Mechanical Property of Foamed Metal

    Institute of Scientific and Technical Information of China (English)

    LIU Pei-sheng; SANG Hai-bo

    2004-01-01

    A comprehensive study on the mechanical behavior of foamed metals was demonstrated. The relationship among their mechanical properties, preparation method, porosity and the structure was briefly studied as well.

  16. Amorphous microcellular polytetrafluoroethylene foam film

    Science.gov (United States)

    Tang, Chongzheng

    1991-11-01

    We report herein the preparation of novel low-density ultramicrocellular fluorocarbon foams and their application. These fluorocarbon foams are of interest for the biochemistry arena in numerous applications including foodstuff, pharmacy, wine making, beer brewery, fermentation medical laboratory, and other processing factories. All of those require good quality processing programs in which, after eliminating bacterium and virus, compressed air is needed. Ordinarily, compressed air contains bacterium and virus, its size is 0.01 - 2 micrometers fluorocarbon foam films. Having average porous diameter 0.04 - 0.1 micrometers , these are stable to high temperature (280 degree(s)C) and chemical environments, and generally have good engineering and mechanical properties (e.g., low coefficient of thermal expansion, high modulus, and good dimensional stability). Our new process for preparing low density fluorocarbon foams provides materials with unique properties. As such, they offer the possibility for being superior to earlier materials for a number of the filter applications mentioned.

  17. Oil-foam interactions in a micromodel

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, N.S.; Castanier, L.M.

    1997-11-01

    This report presents results of a pore-level visualization study of foam stability in the presence of oil. Many laboratory investigations have been carried out in the absence of oil, but comparatively few have been carried out in the presence of oil. For a field application, where the residual oil saturation may vary from as low as 0 to as high as 40% depending on the recovery method applied, any effect of the oil on foam stability becomes a crucial matter. Sandstone patterns were used in this study. The micromodels used are two-dimensional replicas of the flow path of Berea sandstone etched on to a silicon wafer to a prescribed depth, adapting fabrication techniques from the computer chip industry. After flooding the models up to connate water and residual oil saturations, surfactant flood followed by gas injection to generate foam was done. Visual observations were made using a high resolution microscope and pictures were recorded on videotape before being processed as they appear in this report.

  18. Composite and Nanocomposite Metal Foams

    Directory of Open Access Journals (Sweden)

    Isabel Duarte

    2016-01-01

    Full Text Available Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams.

  19. Stability of metallic foams studied under microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Wuebben, Th [University of Bremen (Germany); Stanzick, H [Fraunhofer-Institute (IFAM), Bremen (Germany); Banhart, J [Hahn-Meitner-Institute Berlin, (Germany); Odenbach, S [University of Bremen (Germany)

    2003-01-15

    Metal foams are prepared by mixing a metal powder and a gas-releasing blowing agent, by densifying the mix to a dense precursor and finally foaming by melting the powder compact. The foaming process of aluminium foams is monitored in situ by x-ray radioscopy. One observes that foam evolution is accompanied by film rupture processes which lead to foam coalescence. In order to elucidate the importance of oxides for foam stability, lead foams were manufactured from lead powders having two different oxide contents. The two foam types were generated on Earth and under weightlessness during parabolic flights. The measurements show that the main function of oxide particles is to prevent coalescence, while their influence on bulk viscosity of the melt is of secondary importance.

  20. Targeted deletion of Nrf2 reduces urethane-induced lung tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Alison K Bauer

    Full Text Available Nrf2 is a key transcription factor that regulates cellular redox and defense responses. However, permanent Nrf2 activation in human lung carcinomas promotes pulmonary malignancy and chemoresistance. We tested the hypothesis that Nrf2 has cell survival properties and lack of Nrf2 suppresses chemically-induced pulmonary neoplasia by treating Nrf2(+/+ and Nrf2(-/- mice with urethane. Airway inflammation and injury were assessed by bronchoalveolar lavage analyses and histopathology, and lung tumors were analyzed by gross and histologic analysis. We used transcriptomics to assess Nrf2-dependent changes in pulmonary gene transcripts at multiple stages of neoplasia. Lung hyperpermeability, cell death and apoptosis, and inflammatory cell infiltration were significantly higher in Nrf2(-/- mice compared to Nrf2(+/+ mice 9 and 11 wk after urethane. Significantly fewer lung adenomas were found in Nrf2(-/- mice than in Nrf2(+/+ mice at 12 and 22 wk. Nrf2 modulated expression of genes involved cell-cell signaling, glutathione metabolism and oxidative stress response, and immune responses during early stage neoplasia. In lung tumors, Nrf2-altered genes had roles in transcriptional regulation of cell cycle and proliferation, carcinogenesis, organismal injury and abnormalities, xenobiotic metabolism, and cell-cell signaling genes. Collectively, Nrf2 deficiency decreased susceptibility to urethane-induced lung tumorigenesis in mice. Cell survival properties of Nrf2 were supported, at least in part, by reduced early death of initiated cells and heightened advantage for tumor cell expansion in Nrf2(+/+ mice relative to Nrf2(-/- mice. Our results were consistent with the concept that Nrf2 over-activation is an adaptive response of cancer conferring resistance to anti-cancer drugs and promoting malignancy.

  1. Water Impact of Syntactic Foams

    Directory of Open Access Journals (Sweden)

    Adel Shams

    2017-02-01

    Full Text Available Syntactic foams are particulate composite materials that are extensively integrated in naval and aerospace structures as core materials for sandwich panels. While several studies have demonstrated the potential of syntactic foams as energy absorbing materials in impact tests, our understanding of their response to water impact remains elusive. In this work, we attempt a first characterization of the behavior of a vinyl ester/glass syntactic subject to slamming. High-speed imaging is leveraged to elucidate the physics of water impact of syntactic foam wedges in a free-fall drop tower. From the images, we simultaneously measure the deformation of the wedge and the hydrodynamic loading, thereby clarifying the central role of fluid–structure interaction during water impact. We study two different impact heights and microballoon density to assess the role of impact energy and syntactic foam composition on the slamming response. Our results demonstrate that both these factors have a critical role on the slamming response of syntactic foams. Reducing the density of microballoons might help to reduce the severity of the hydrodynamic loading experienced by the wedge, but this comes at the expense of a larger deformation. Such a larger deformation could ultimately lead to failure for large drop heights. These experimental results offer compelling evidence for the role of hydroelastic coupling in the slamming response of syntactic foams.

  2. Microcellular foams made from gliadin.

    Science.gov (United States)

    Quester, S; Dahesh, M; Strey, R

    2014-01-01

    We have generated closed-cell microcellular foams from gliadin, an abundantly available wheat storage protein. The extraction procedure of gliadin from wheat gluten, which involves only the natural solvents water and ethanol, respectively, is described with emphasis on the precipitation step of gliadin which results in a fine dispersion of mostly spherical, submicron gliadin particles composed of myriad of protein molecules. A dense packing of these particles was hydrated and subjected to an atmosphere of carbon dioxide or nitrogen in a high-pressure cell at 250 bar. Subsequent heating to temperatures close to but still below 100 °C followed by sudden expansion and simultaneous cooling resulted in closed-cell microcellular foam. The spherical gliadin templates along with the resulting foam have been analyzed by scanning electron microscope (SEM) pictures. The size distribution of the primary particles shows diameters peaked around 0.54 μm, and the final foam cell size peaks around 1.2 μm, at a porosity of about 80 %. These are the smallest foam cell sizes ever reported for gliadin. Interestingly, the cell walls of these microcellular foams are remarkably thin with thicknesses in the lower nanometer range, thus nourishing the hope to be able to reach gliadin nanofoam.

  3. Scaling up the Fabrication of Mechanically-Robust Carbon Nanofiber Foams

    Directory of Open Access Journals (Sweden)

    William Curtin

    2016-02-01

    Full Text Available This work aimed to identify and address the main challenges associated with fabricating large samples of carbon foams composed of interwoven networks of carbon nanofibers. Solutions to two difficulties related with the process of fabricating carbon foams, maximum foam size and catalyst cost, were developed. First, a simple physical method was invented to scale-up the constrained formation of fibrous nanostructures process (CoFFiN to fabricate relatively large foams. Specifically, a gas deflector system capable of maintaining conditions supportive of carbon nanofiber foam growth throughout a relatively large mold was developed. ANSYS CFX models were used to simulate the gas flow paths with and without deflectors; the data generated proved to be a very useful tool for the deflector design. Second, a simple method for selectively leaching the Pd catalyst material trapped in the foam during growth was successfully tested. Multiple techniques, including scanning electron microscopy, surface area measurements, and mechanical testing, were employed to characterize the foams generated in this study. All results confirmed that the larger foam samples preserve the basic characteristics: their interwoven nanofiber microstructure forms a low-density tridimensional solid with viscoelastic behavior. Fiber growth mechanisms are also discussed. Larger samples of mechanically-robust carbon nanofiber foams will enable the use of these materials as strain sensors, shock absorbers, selective absorbents for environmental remediation and electrodes for energy storage devices, among other applications.

  4. Effects of Excess Cu Addition on Photochromic Properties of AgCl-Urethane Resin Composite Films

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2013-01-01

    Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 ethanol solutions, and a urethane resin as starting materials. The AgCl particle size in the composite films, which was confirmed via TEM observations, was 23–43 nm. The AgCl composite films showed photochromic properties: coloring induced by UV-vis irradiation and bleaching induced by cessation of UV-vis irradiation. The coloring and bleaching speed of the composite film increases with increasing CuCl2 mixing ratio.

  5. Electron beam curing of dimer acid-based urethane acrylates for pressure sensitive adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takashi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Takeda, Satoe; Shiraishi, Katsutoshi

    1995-03-01

    Polyester urethane diacrylate prepolymers prepared from dimer acids (DUA) were cured with low energy electron beams to investigate adhesive properties of cured films. Among various type monomers added, monofunctional methacrylates such as isobornyl methacrylate (IBXMA) were effective for higher peel strength cured films although the dose-to-cure for the mixtures increased to 100 kGy or more. The increase in the molecular weight of prepolymers resulted in lower curing rates but higher peel strength. Aging tests up to 80degC for four weeks proved good stability in peel strength of the stored products. (author).

  6. ASPECTS OF THE MECHNANICAL BEHAVIOR OF STITCHED T300 MAT/URETHANE 420 IMR COMPOSITE

    Energy Technology Data Exchange (ETDEWEB)

    Deng, S.

    2002-11-25

    This report presents experimental and analytical results concerning the behavior of crossply and quasi-isotropic laminates manufactured of stitch-bonded T300 urethane 420 IMR polymeric composites. Based on extensive creep and recovery data at various levels of stress and temperature, as well as on strain-to-failure information, it was possible to arrive at empirical expressions relating deformation to the previous input as well as to input duration. These expressions were incorporated within the formalisms of viscoelasticity and laminate theory to illuminate some basic underlying mechanistic aspects of the material at hand, thereby enabling the prediction of anticipated response under more complex stress and temperature inputs.

  7. Exploratory Randomized Clinical Trial of an Experimental Gel-to-Foam Fluoride Dentifrice Formulation Using an In Situ Caries Model.

    Science.gov (United States)

    Barlow, Ashley; Butler, Andrew; Mason, Stephen; Zero, Domenick

    2015-01-01

    To evaluate the in situ caries performance and safety of two experimental fluoride dentifrice formulations (1450 ppm fluoride) with and without 2% isopentane as an excipient, in comparison to a positive control, currently marketed dentifrice (1450 ppm fluoride) and a negative control dentifrice (0 ppm fluoride). This was a single-center, examiner-blind, randomized, controlled, four-treatment cross-over study. During each treatment period, the subject wore a modified mandibular partial denture fitted with two gauze-covered, partially demineralized human enamel specimens, and brushed at home for one timed minute, twice daily, for two weeks. At the end of each treatment period, the enamel specimens were removed from the dentures for analysis. During the week between treatment periods, subjects returned to their usual dental hygiene practices for four to five days, received a dental prophylaxis, and used a study-designated non-fluoride dentifrice for two to three days before starting the next treatment. Treatment effect on enamel specimen remineralization was assessed by surface microhardness (SMH). Enamel fluoride uptake was assessed using microdrill enamel biopsy. All fluoride-containing dentifrices demonstrated significant, superior SMH recovery and levels of fluoride uptake compared to the negative control dentifrice. No significant differences were observed for either efficacy variable between the experimental dentifrice formulations and the positive control dentifrice. No significant difference was observed between the 2% isopentane dentifrice and the 0% isopentane dentifrice for SMH recovery. The addition of 2% isopentane did not positively or negatively affect fluoride efficacy in this model.

  8. Effects of the combination of hydrophobic polypeptides, iso-alpha acids, and malto-oligosaccharides on beer foam stability.

    Science.gov (United States)

    Ferreira, Isabel M P L V O; Jorge, Kátia; Nogueira, Luciana C; Silva, Filipe; Trugo, Luiz C

    2005-06-15

    The influence of hydrophobic polypeptides concentrated in beer foam, together with the composition of iso-alpha acids and the content of malto-oligosaccharides in beer on foam stability, has been investigated. The objective was to find out whether a shortage of one of these positive contributors to foam stability could be compensated for by an increased presence of another or whether optimum levels of each contributor is necessary. For that purpose, an image analysis method to evaluate beer foam quality was developed. The foam collapse time was the parameter chosen to group beers according to their foam stability. Profiles of hydrophobic polypeptides that concentrate in beer foam, iso-alpha acids, and malto-oligosaccharides of 14 beer brands were acquired by high-performance liquid chromatography. Principal component analysis (PCA) was performed to show the relationship between beer brands and its composition. Beers that contained propylene glycol alginate as a foam enhancer showed high foam stability except for one beer, which had a low content of hydrophobic polypeptides, thereby highlighting the requirement of threshold levels of hydrophobic polypeptides to obtain stable foam. The data of samples that were devoid of a foam additive were subjected to a discriminant statistical analysis. Foam stability declined in proportion to decreases in hydrophobic polypeptides and to a lesser extent to decreases in iso-alpha-acid contents. Apparently, the content of malto-oligosaccharides were found to have no major influence on foam stability. The model of discriminate analysis was found to explain 100% of the variance in data with 85.2% success in classifying all samples according to the model, suggesting that foam stability is mainly governed by the beer constituents evaluated in this study.

  9. Ameliorative effects of gallic acid, quercetin and limonene on urethane-induced genotoxicity and oxidative stress in Drosophila melanogaster.

    Science.gov (United States)

    Nagpal, Isha; Abraham, Suresh K

    2017-05-01

    The main objective of our present work was to ascertain the efficacy of Drosophila melanogaster model for assessing antigenotoxic and antioxidant effects of dietary phytochemicals gallic acid (GA), quercetin (QC) and limonene (Lim) against urethane (URE), a genotoxic environmental carcinogen. Oregon-K (ORK) adult male flies were fed GA, QC and Lim in combination with URE (20 mM) in 10% sucrose for 72 h. Third instar larvae were fed instant medium containing the above phytochemicals and URE for 24 h. Sex-linked recessive lethal (SLRL) test and assays for estimating glutathione content (GSH), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and lipid peroxidation (MDA content) were performed. Adult feeding experiments demonstrated that co-treatment of flies with URE and the test phytochemicals has significantly decreased the frequencies of SLRL mutations in all the germ cell stages when compared to that with URE alone. Larval feeding experiments also showed a similar pattern. The above results correlate well with antioxidative potentials of the test agents where we observed the elevated enzymatic levels with a significant reduction in MDA level in Drosophila larvae. The results further suggest that the dietary phytochemicals have an antioxidant and antimutagenic property which can be assessed using D. melanogaster.

  10. Strain-rate dependence for Ni/Al hybrid foams

    Directory of Open Access Journals (Sweden)

    Jung Anne

    2015-01-01

    Full Text Available Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  11. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  12. Implementing causality in the spin foam quantum geometry

    CERN Document Server

    Livine, E R; Livine, Etera R.; Oriti, Daniele

    2003-01-01

    We analyse the classical and quantum geometry of the Barrett-Crane spin foam model for four dimensional quantum gravity, explaining why it has to be considering as a covariant realization of the projector operator onto physical quantum gravity states. We discuss how causality requirements can be consistently implemented in this framework, and construct causal transiton amplitudes between quantum gravity states, i.e. realising in the spin foam context the Feynman propagator between states. The resulting causal spin foam model can be seen as a path integral quantization of Lorentzian first order Regge calculus, and represents a link between several approaches to quantum gravity as canonical loop quantum gravity, sum-over-histories formulations, dynamical triangulations and causal sets. In particular, we show how the resulting model can be rephrased within the framework of quantum causal sets (or histories).

  13. Development of Defoamers for Confinenment Foam

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D M; Mitchell, A R

    2005-08-10

    Aqueous foam concentrate (AFC) 380 foam was developed by Sandia National Laboratory as a blast mitigation foam for unexploded ordnance (UXO) and its ''engineered foam structure'' is reported to be able to ''envelop chemical or biological aerosols'' [1]. It is similar to commercial fire-fighting foams, consisting mostly of water with small amounts of two alcohols, an ether and surfactant. It also contains xanthan gum, probably, to strengthen the foam film and delay drainage. The concentrate is normally diluted in a 6:94 ratio with water for foaming applications. The diluted solution is normally foamed with air to an expansion factor of about 100 (density 0.01 g/cc), which is called ''dry'' foam. Higher density foam (0.18 > {rho} > 0.03 g/cc) was discovered which had quite different characteristics from ''dry'' foam and was called ''wet'' foam. Some characterization of these foams has also been carried out, but the major effort described in this document is the evaluation, at the small and medium scale, of chemical, mechanical and thermal approaches to defoaming AFC 380 foam. Several chemical approaches to defoaming were evaluated including oxidation and precipitation of the xanthan, use of commercial oil-emulsion or suspension defoamers, pH modification, and cation exchange with the surfactant. Of these the commercial defoamers were most effective. Two mechanical approaches to defoaming were evaluated: pressure and foam rupture with very fine particles. Pressure and vacuum techniques were considered too difficult for field applications but high surface area silica particles worked very well on dry foam. Finally simple thermal techniques were evaluated. An order-disorder transition occurs in xanthan solutions at about 60 C, which may be responsible for the effectiveness of hot air as a defoamer. During defoaming of 55 gallons of foam with hot air, after about 70% of

  14. Development of drilling foams for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

    1980-01-01

    The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

  15. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    William R. Rossen

    2005-03-16

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research is to lay the groundwork for more-applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media.

  16. Drag coefficient for the air-sea exchange: foam impact in hurricane conditions

    CERN Document Server

    Golbraikh, Ephim

    2014-01-01

    A physical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, C_d, with reference to the wind speed U10 in stormy and hurricane conditions. In the present model C_d is approximated by partitioning the sea surface into foam-covered and foam-free areas. Based on the available optical and radiometric measurements of the fractional foam coverage and the characteristic roughness of the sea-surface in the saturation limit of the foam coverage, the model yields the resulting dependence of C_d vs U10. This dependence is in fair agreement with that evaluated from field measurements of the vertical variation of the mean wind speed.

  17. Coarse graining flow of spin foam intertwiners

    CERN Document Server

    Dittrich, Bianca; Seth, Cameron J; Steinhaus, Sebastian

    2016-01-01

    Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behaviour on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group $\\text{SU}(2)_k \\times \\text{SU}(2)_k$, which implement the simplicity constraints analogous to 4D Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a 2D topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different ...

  18. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  19. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, F., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT (Germany); Elsner, P., E-mail: peter.elsner@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT, Germany and Karlsruhe Institute of Technology KIT (Germany)

    2014-05-15

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  20. The Spin Foam Approach to Quantum Gravity

    CERN Document Server

    Perez, Alejandro

    2012-01-01

    This article reviews the present status of the spin foam approach to the quantization of gravity. Special attention is payed to the pedagogical presentation of the recently introduced new models for four dimensional quantum gravity. The models are motivated by a suitable implementation of the path integral quantization of the Plebanski formulation of gravity on a simplicial regularization. The article also includes a self-contained treatment of the 2+1 gravity. The simple nature of the latter provides the basis and a perspective for the analysis of both conceptual and technical issues that remain open in four dimensions.

  1. Research on experiment and calculation of foam bursting device

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This research presents experimental data on mechanical foam bursting device, based on the high speed of air fluid impinging insidethe foam bursting device, foam bubbles disrupted as a consequence of pressures changed very quickly as shear force and their impact forces. Experimental data on foam-bursting capacity have been presented. Designed device can provide effective foam bursting on collapse foam.

  2. Changes in porosity of foamed aluminum during solidification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  3. Stability analysis of uniform equilibrium foam states for EOR processes

    NARCIS (Netherlands)

    Ashoori, E.; Marchesin, D.; Rossen, W.R.

    2011-01-01

    The use of foam for mobility control is a promising mean to improve sweep efficiency in EOR. Experimental studies discovered that foam exhibits three different states (weak foam, intermediate foam, and strong foam). The intermediate-foam state is found to be unstable in the lab whereas the weak- and

  4. Foaming of mixtures of pure hydrocarbons

    Science.gov (United States)

    Robinson, J. V.; Woods, W. W.

    1950-01-01

    Mixtures of pure liquid hydrocarbons are capable of foaming. Nine hydrocarbons were mixed in pairs, in all possible combinations, and four proportions of each combination. These mixtures were sealed in glass tubes, and the foaming was tested by shaking. Mixtures of aliphatic with other aliphatic hydrocarbons, or of alkyl benzenes with other alkyl benzenes, did not foam. Mixtures of aliphatic hydrocarbons with alkyl benzenes did foam. The proportions of the mixtures greatly affected the foaming, the maximum foaming of 12 of 20 pairs being at the composition 20 percent aliphatic hydrocarbon, 80 percent alkyl benzene. Six seconds was the maximum foam lifetime of any of these mixtures. Aeroshell 120 lubricating oil was fractionated into 52 fractions and a residue by extraction with acetone in a fractionating extractor. The index of refraction, foam lifetime, color, and viscosity of these fractions were measured. Low viscosity and high index fractions were extracted first. The viscosity of the fractions extracted rose and the index decreased as fractionation proceeded. Foam lifetimes and color were lowest in the middle fractions. Significance is attached to the observation that none of the foam lifetimes of the fractions or residue is as high as the foam lifetime of the original Aeroshell, indicating that the foaming is not due to a particular foaming constituent, but rather to the entire mixture.

  5. External Tank (ET) Foam Thermal/Structural Analysis Project

    Science.gov (United States)

    Moore, David F.; Ungar, Eugene K.; Chang, Li C.; Malroy, Eric T.; Stephan, Ryan A.

    2008-01-01

    An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.

  6. Simulation of the densification of real open-celled foam microstructures

    Science.gov (United States)

    Brydon, A. D.; Bardenhagen, S. G.; Miller, E. A.; Seidler, G. T.

    2005-12-01

    Ubiquitous in nature and finding applications in engineering systems, cellular solids are an increasingly important class of materials. Foams are an important subclass of cellular solids with applications as packing materials and energy absorbers due to their unique properties. A better understanding of foam mechanical properties and their dependence on microstructural details would facilitate manufacture of tailored materials and development of constitutive models for their bulk response. Numerical simulation of these materials, while offering great promise toward furthering understanding, has also served to convincingly demonstrate the inherent complexity and associated modeling challenges. The large range of deformations which foams are subjected to in routine engineering applications is a fundamental source of complication in modeling the details of foam deformation on the scale of foam struts. It requires accurate handling of large material deformations and complex contact mechanics, both well established numerical challenges. A further complication is the replication of complex foam microstructure geometry in numerical simulations. Here various advantages of certain particle methods, in particular their compatibility with the determination of three-dimensional geometry via X-ray microtomography, are exploited to simulate the compression of "real" foam microstructures into densification. With attention paid to representative volume element size, predictions are made regarding bulk response, dynamic effects, and deformed microstructural character, for real polymeric, open-cell foams. These predictions include a negative Poisson's ratio in the stress plateau, and increased difficulty in removing residual porosity during densification.

  7. Attenuation of fluorocarbons released from foam insulation in landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Dote, Yukata; Fredenslund, Anders Michael

    2007-01-01

    Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) have been used as blowing agents (BAs) for foam insulation in home appliances and building materials, which after the end of their useful life are disposed of in landfills. The objective of this project...... in any of the experiments within a run time of up to 200 days. The obtained degradation rate coefficients were used as input for an extended version of an existing landfill fate model incorporating a time dependent BA release from co-disposed foam insulation waste. Predictions with the model indicate...

  8. Stabilized aqueous foam systems, concentrate for producing a stabilized aqueous foam and method of producing said foam

    Energy Technology Data Exchange (ETDEWEB)

    Rand, P.B.

    This invention comprises a combination of a water soluble polymer of the polyacrylic acid type, a foam stabilizer of dodecyl alcohol, a surfactant, a solvent and water as a concentrate for use in producing stabilized aqueous foams. In another aspect, the invention comprises a solution of the concentrate with water. In still another aspect the invention includes a method of generating stabilized aqueous foams. The stable foams have utility in security systems.

  9. The mechanism of foaming and thermal conductivity of glasses foamed with MnO2

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2015-01-01

    bubbles and subsequent growth. We discuss evolution of pore morphology in terms of pore number density, pore size and closed porosity. The thermal conductivity of the foam glasses is linearly dependent on density. The heat transfer mechanism is revealed by comparing the experimental data with structural...... data and analytical models.We show that the effect of pore size, presence of crystal inclusions and degree of closed porosity do not affect the overall thermal conductivity....

  10. The amount effect of catalyst on the urethane reaction of o-hydroxybenzyl alcohol

    Institute of Scientific and Technical Information of China (English)

    Peng Fei Yang; Yan Hong Yu; Shun Ping Wang; Tian Duo Li

    2012-01-01

    The urethane reaction of o-hydroxybenzyl alcohol with phenyl isocyanate was monitored with in situ FT-IR.Dibutyltin dilaurate was used as catalyst and its amount effect was investigated.It was found that there was an obvious induction period before reaction began.It was interesting that the time of induction period climbed up and then declined with the increase of dibutyltin dilaurate.When the concentration of dibutyltin dilaurate reached 9.58 × 10 5 mol/L,the induction period disappeared completely and hereafter did not appear any more.Furthermore,the urethane reaction kinetics was studied.When the concentration of dibutyltin dilaurate increased,the reaction rate of phenolic group (k1) increased sharply,but the reaction rate of alcoholic group (k2) appeared of little change on the whole.k1 increased about 20-fold,yet k2 increased about 2-fold when the concentration of dibutyltin dilaurate varied from 9.58 × 10 6 mol/L to 1.92 × 10-4 mol/L,which made the value of k1/k2 enlarge.

  11. Domain structure and time-dependent properties of a crosslinked urethane elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, R.R.

    1977-09-01

    The morphology of a chemically crosslinked urethane elastomer is correlated with its time-dependent mechanical properties. Evaluation of this amorphous elastomer by electron microscopy and small-angle x-ray scattering reveals that incompatible chain segments cluster into separate microphases having a periodicity in electron density of about 90 A. This observed domain structure is similar to that seen previously in uncrosslinked, thermoplastic urethane elastomers. As in earlier studies on such linear systems, thermal pretreatment of the crosslinked elastomer causes a time-dependent change in its room temperature modulus. However, the magnitude of this modulus change (about 20%) is generally less than observed previously with the linear systems. Another contrast with previous findings is that this time-dependent phenomenon is apparently not caused by thermally activated changes in microphase segregation. Rather, the observed time dependence in modulus is believed to be caused by molecular relaxation resulting in densification of amorphous packing within the hard-segment domains. The validity of this proposed mechanism is supported by differential scanning calorimetry experiments showing evidence of enthalpy relaxation during room-temperature aging of the elastomer. This relaxation is qualitatively similar to that observed previously during sub-T/sub g/ annealing of single-phase glassy polymers.

  12. Tracheotomy improves experiment success rate in mice during urethane anesthesia and stereotaxic surgery.

    Science.gov (United States)

    Moldestad, Olve; Karlsen, Pernille; Molden, Sturla; Storm, Johan F

    2009-01-30

    Urethane anesthesia is frequently used for acute experiments on small rodents in physiology and neuroscience. Severe respiratory distress is a common side-effect of urethane anesthesia in many strains of mice. Associated complications interfere with completion of experiments, and as a consequence more animals must be sacrificed. During experiments with stereotaxic brain surgery, we found that intubation by means of tracheotomy is an efficient way to maintain patent airways in these animals. Artificial ventilation of the animals is not required. In this paper we describe a simple, fast and reliable method for intubation of mice in experiments that involve a stereotaxic instrument. The method proved considerably easier to learn and apply than conventional intubation through the oral route. The incidence of breathing problems decreased from 77% in untreated mice to 9% in those that underwent tracheotomy. In addition, the success rate for our acute electrophysiological experiments increased from 24 to 77%. We conclude that tracheotomy reduces the number of sacrificed animals, and saves time and labor.

  13. Casting Loop Quantum Cosmology in the Spin Foam Paradigm

    CERN Document Server

    Ashtekar, Abhay; Henderson, Adam

    2010-01-01

    The goal of spin foam models is to provide a viable path integral formulation of quantum gravity. Because of background independence, their underlying framework has certain novel features that are not shared by path integral formulations of familiar field theories in Minkowski space. As a simple viability test, these features were recently examined through the lens of loop quantum cosmology (LQC). Results of that analysis, reported in a brief communication [1], turned out to provide concrete arguments in support of the spin foam paradigm. We now present detailed proofs of those results. Since the quantum theory of LQC models is well understood, this analysis also serves to shed new light on some long standing issues in the spin foam and group field theory literature. In particular, it suggests an intriguing possibility for addressing the question of why the cosmological constant is positive and small.

  14. Operator Spin Foams: holonomy formulation and coarse graining

    CERN Document Server

    Bahr, Benjamin

    2011-01-01

    A dual holonomy version of operator spin foam models is presented, which is particularly adapted to the notion of coarse graining. We discuss how this leads to a natural way of comparing models on different discretization scales, and a notion of renormalization group flow on the partially ordered set of 2-complexes.

  15. Thermal Infrared Signatures and Heat Fluxes of Sea Foam

    Science.gov (United States)

    2015-01-13

    Santa Barbara Infrared model 11104). A visible band camera (Point Grey Flea 3, resolution and fov) provided reference images of the foam layer from...theoretical modeling and experimental results from the frog 2003 field experiment, IEEE Transactions on Geoscience and Remote Sensing, 43, 5. Jeong

  16. The dynamics of foams with mobile interfaces

    Science.gov (United States)

    Gratton, Michael B.; Davis, Stephen H.

    2011-11-01

    Using a novel technique for resolving nearly singular integrals, we investigate the dynamics of two-dimensional foams with mobile interfaces and an incompressible, inviscid gas phase by a boundary integral method. For foams with small liquid fractions (CMMI-0826703.

  17. Carbon foam derived from pitches modified with mineral acids by a low pressure foaming process

    Energy Technology Data Exchange (ETDEWEB)

    Tsyntsarski, B.; Petrova, B.; Budinova, T.; Petrov, N.; Krzesinska, M.; Pusz, S.; Majewska, J.; Tzvetkov, P. [Bulgarian Academy of Science, Sofia (Bulgaria). Inst. of Organic Chemistry

    2010-10-15

    Carbon foams with an anisotropic texture and high mechanical strength were produced using precursors obtained after thermo-oxidation treatment of commercial coal-tar pitch with H{sub 2}SO{sub 4} and HNO{sub 3}. The investigations of the relation between the properties of the precursor and the structure of obtained foam indicate, that the composition and softening point of the pitch precursor significantly affect the foaming process, foam structure and foam mechanical strength. The composition and properties of the modified pitches allow foam formation at relatively low pressure and fast heating rate during the foaming process without a stabilization treatment. The foaming process of pitch-based carbon foams, pretreatment of the precursors, and the properties of resultant foams are discussed in this paper.

  18. THE STRUCTURE CONTROL OF ALUMINUM FOAMS PRODUCED BY POWDER COMPACTED FOAMING PROCESS

    Institute of Scientific and Technical Information of China (English)

    X.H. You; F. Wang; L.C. Wang

    2004-01-01

    A new technique, powder compact foaming process for the production of aluminum foams has been studied in this article. According to this method, the aluminum powder is mixed with a powder foaming agent (TiH2). Subsequent to mixing, the powder blend is hot compacted to obtain a dense semi-finished product. Upon heating to temperatures within the range of the melting point, the foaming agent decomposes to evolve gas and the semi-finished product expands into a porous cellular aluminum. Foaming process is the key in this method. Based on experiments, the foaming characteristics were mainly analyzed and discussed. Experiments show that the aluminum-foam with closed pores and a uniform cell structure of high porosity can be obtained using this method by adjusting the foaming parameters: the content of foaming agent and foaming temperature.

  19. Study on the melting process of phase change materials in metal foams using lattice Boltzmann method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A thermal lattice Boltzmann model is developed for the melting process of phase change material (PCM) embedded in open-cell metal foams. Natural convection in the melt PCM is considered. Under the condition of local thermal non-equilibrium between the metal matrix and PCM, two evolution equations of temperature distribution function are pre-sented through selecting an equilibrium distribution function and a nonlinear source term properly. The enthalpy-based method is employed to copy with phase change problem. Melting process in a cavity of the metal foams is simulated using the present model. The melting front locations and the temperature distributions in the metal foams filled with PCM are obtained by the lattice Boltzmann method. The effects of the porosity and pore size on the melting are also investigated and discussed. The re-sults indicate that the effects of foam porosity play important roles in the overall heat transfer. For the lower porosity foams, the melting rate is comparatively greater than the higher porosity foams, due to greater heat conduction from metal foam with high heat conductivity. The foam pore size has a limited effect on the melting rate due to two counteracting effects between conduction and convection heat transfer.

  20. Basics of compounding foam dosage forms.

    Science.gov (United States)

    Allen, Loyd V

    2013-01-01

    The purpose of this article is to provide information on the use of foam dosage forms and pharmacists' ability to extemporaneously compound them. The article provides: (1) a discussion on the rationale and advantages of using foams, (2) a differentiation between the various types and structures of foams, (3) a list of the various types of ingredients and examples of each, and (4) a description of the preparation of pharmaceutical foams.