WorldWideScience

Sample records for model unit map

  1. Geodesy- and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps

    Science.gov (United States)

    Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne

    2014-01-01

    The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.

  2. Genetic maps and physical units

    International Nuclear Information System (INIS)

    Karunakaran, V.; Holt, G.

    1976-01-01

    The relationships between physical and genetic units are examined. Genetic mapping involves the detection of linkage of genes and the measurement of recombination frequencies. The genetic distance is measured in map units and is proportional to the recombination frequencies between linked markers. Physical mapping of genophores, particularly the simple genomes of bacteriophages and bacterial plasmids can be achieved through heteroduplex analysis. Genetic distances are dependent on recombination frequencies and, therefore, can only be correlated accurately with physical unit lengths if the recombination frequency is constant throughout the entire genome. Methods are available to calculate the equivalent length of DNA per average map unit in different organisms. Such estimates indicate significant differences from one organism to another. Gene lengths can also be calculated from the number of amino acids in a specified polypeptide and relating this to the number of nucleotides required to code for such a polypeptide. Many attempts have been made to relate microdosimetric measurements to radiobiological data. For irradiation effects involving deletion of genetic material such a detailed correlation may be possible in systems where heteroduplex analysis or amino acid sequencing can be performed. The problems of DNA packaging and other functional associations within the cell in interpreting data is discussed

  3. Mapping and modeling the biogeochemical cycling of turf grasses in the United States.

    Science.gov (United States)

    Milesi, Cristina; Running, Steven W; Elvidge, Christopher D; Dietz, John B; Tuttle, Benjamin T; Nemani, Ramakrishna R

    2005-09-01

    Turf grasses are ubiquitous in the urban landscape of the United States and are often associated with various types of environmental impacts, especially on water resources, yet there have been limited efforts to quantify their total surface and ecosystem functioning, such as their total impact on the continental water budget and potential net ecosystem exchange (NEE). In this study, relating turf grass area to an estimate of fractional impervious surface area, it was calculated that potentially 163,800 km2 (+/- 35,850 km2) of land are cultivated with turf grasses in the continental United States, an area three times larger than that of any irrigated crop. Using the Biome-BGC ecosystem process model, the growth of warm-season and cool-season turf grasses was modeled at a number of sites across the 48 conterminous states under different management scenarios, simulating potential carbon and water fluxes as if the entire turf surface was to be managed like a well-maintained lawn. The results indicate that well-watered and fertilized turf grasses act as a carbon sink. The potential NEE that could derive from the total surface potentially under turf (up to 17 Tg C/yr with the simulated scenarios) would require up to 695 to 900 liters of water per person per day, depending on the modeled water irrigation practices, suggesting that outdoor water conservation practices such as xeriscaping and irrigation with recycled waste-water may need to be extended as many municipalities continue to face increasing pressures on freshwater.

  4. A geo-information theoretical approach to inductive erosion modelling based on terrain mapping units

    NARCIS (Netherlands)

    Suryana, N.

    1997-01-01

    Three main aspects of the research, namely the concept of object orientation, the development of an Inductive Erosion Model (IEM) and the development of a framework for handling uncertainty in the data or information resulting from a GIS are interwoven in this thesis. The first and the second aspect

  5. Modeled changes in 100 year Flood Risk and Asset Damages within Mapped Floodplains of the Contiguous United States

    Science.gov (United States)

    Wobus, C. W.; Gutmann, E. D.; Jones, R.; Rissing, M.; Mizukami, N.; Lorie, M.; Mahoney, H.; Wood, A.; Mills, D.; Martinich, J.

    2017-12-01

    A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus increasing monetary damages from flooding in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1% annual exceedance probability flood events at 57,116 locations across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century, under two greenhouse gas (GHG) emissions scenarios. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations, and trajectories of future damages that vary substantially depending on the GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches $4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long-term in terms of reduced flood risk. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages at a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1% AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results suggest that monetary damages from inland flooding could be substantially reduced through more aggressive GHG mitigation policies.

  6. Model for mapping settlements

    Science.gov (United States)

    Vatsavai, Ranga Raju; Graesser, Jordan B.; Bhaduri, Budhendra L.

    2016-07-05

    A programmable media includes a graphical processing unit in communication with a memory element. The graphical processing unit is configured to detect one or more settlement regions from a high resolution remote sensed image based on the execution of programming code. The graphical processing unit identifies one or more settlements through the execution of the programming code that executes a multi-instance learning algorithm that models portions of the high resolution remote sensed image. The identification is based on spectral bands transmitted by a satellite and on selected designations of the image patches.

  7. A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration

    Science.gov (United States)

    Moosdorf, N.; Richard, S. M.

    2012-12-01

    A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the

  8. Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping

    Science.gov (United States)

    Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.

    2017-12-01

    Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.

  9. TESTING TREE-CLASSIFIER VARIANTS AND ALTERNATE MODELING METHODOLOGIES IN THE EAST GREAT BASIN MAPPING UNIT OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    Science.gov (United States)

    We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...

  10. Basement domain map of the conterminous United States and Alaska

    Science.gov (United States)

    Lund, Karen; Box, Stephen E.; Holm-Denoma, Christopher S.; San Juan, Carma A.; Blakely, Richard J.; Saltus, Richard W.; Anderson, Eric D.; DeWitt, Ed

    2015-01-01

    The basement-domain map is a compilation of basement domains in the conterminous United States and Alaska designed to be used at 1:5,000,000-scale, particularly as a base layer for national-scale mineral resource assessments. Seventy-seven basement domains are represented as eighty-three polygons on the map. The domains are based on interpretations of basement composition, origin, and architecture and developed from a variety of sources. Analysis of previously published basement, lithotectonic, and terrane maps as well as models of planetary development were used to formulate the concept of basement and the methodology of defining domains that spanned the ages of Archean to present but formed through different processes. The preliminary compilations for the study areas utilized these maps, national-scale gravity and aeromagnetic data, published and limited new age and isotopic data, limited new field investigations, and conventional geologic maps. Citation of the relevant source data for compilations and the source and types of original interpretation, as derived from different types of data, are provided in supporting descriptive text and tables.

  11. Bedrock Geologic Map of Vermont - Units

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  12. Model test of boson mappings

    International Nuclear Information System (INIS)

    Navratil, P.; Dobes, J.

    1992-01-01

    Methods of boson mapping are tested in calculations for a simple model system of four protons and four neutrons in single-j distinguishable orbits. Two-body terms in the boson images of the fermion operators are considered. Effects of the seniority v=4 states are thus included. The treatment of unphysical states and the influence of boson space truncation are particularly studied. Both the Dyson boson mapping and the seniority boson mapping as dictated by the similarity transformed Dyson mapping do not seem to be simply amenable to truncation. This situation improves when the one-body form of the seniority image of the quadrupole operator is employed. Truncation of the boson space is addressed by using the effective operator theory with a notable improvement of results

  13. Mapping severe fire potential across the contiguous United States

    Science.gov (United States)

    Brett H. Davis

    2016-01-01

    The Fire Severity Mapping System (FIRESEV) project is an effort to provide critical information and tools to fire managers that enhance their ability to assess potential ecological effects of wildland fire. A major component of FIRESEV is the development of a Severe Fire Potential Map (SFPM), a geographic dataset covering the contiguous United States (CONUS) that...

  14. USGS Governmental Unit Boundaries Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Governmental Unit Boundaries service from The National Map (TNM) represents major civil areas for the Nation, including States or Territories, counties (or...

  15. Karst mapping in the United States: Past, present and future

    Science.gov (United States)

    Weary, David J.; Doctor, Daniel H.

    2015-01-01

    The earliest known comprehensive karst map of the entire USA was published by Stringfield and LeGrand (1969), based on compilations of William E. Davies of the U.S. Geological Survey (USGS). Various versions of essentially the same map have been published since. The USGS recently published new digital maps and databases depicting the extent of known karst, potential karst, and pseudokarst areas of the United States of America including Puerto Rico and the U.S. Virgin Islands (Weary and Doctor, 2014). These maps are based primarily on the extent of potentially karstic soluble rock types, and rocks with physical properties conducive to the formation of pseudokarst features. These data were compiled and refined from multiple sources at various spatial resolutions, mostly as digital data supplied by state geological surveys. The database includes polygons delineating areas with potential for karst and that are tagged with attributes intended to facilitate classification of karst regions. Approximately 18% of the surface of the fifty United States is underlain by significantly soluble bedrock. In the eastern United States the extent of outcrop of soluble rocks provides a good first-approximation of the distribution of karst and potential karst areas. In the arid western states, the extent of soluble rock outcrop tends to overestimate the extent of regions that might be considered as karst under current climatic conditions, but the new dataset encompasses those regions nonetheless. This database will be revised as needed, and the present map will be updated as new information is incorporated.

  16. Environmental aspects of engineering geological mapping in the United States

    Science.gov (United States)

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  17. Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Adams, Paul D.; Read, Randy J.; Zwart, Peter H.; Hung, Li-Wei

    2008-01-01

    An OMIT procedure is presented that has the benefits of iterative model building density modification and refinement yet is essentially unbiased by the atomic model that is built. A procedure for carrying out iterative model building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite ‘iterative-build’ OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular-replacement structure and with an experimentally phased structure and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank

  18. 2014 Update of the United States National Seismic Hazard Maps

    Science.gov (United States)

    Petersen, M.D.; Mueller, C.S.; Haller, K.M.; Moschetti, M.; Harmsen, S.C.; Field, E.H.; Rukstales, K.S.; Zeng, Y.; Perkins, D.M.; Powers, P.; Rezaeian, S.; Luco, N.; Olsen, A.; Williams, R.

    2012-01-01

    The U.S. National Seismic Hazard Maps are revised every six years, corresponding with the update cycle of the International Building Code. These maps cover the conterminous U.S. and will be updated in 2014 using the best-available science that is obtained from colleagues at regional and topical workshops, which are convened in 2012-2013. Maps for Alaska and Hawaii will be updated shortly following this update. Alternative seismic hazard models discussed at the workshops will be implemented in a logic tree framework and will be used to develop the seismic hazard maps and associated products. In this paper we describe the plan to update the hazard maps, the issues raised in workshops up to March 2012, and topics that will be discussed at future workshops. An advisory panel will guide the development of the hazard maps and ensure that the maps are acceptable to a broad segment of the science and engineering communities. These updated maps will then be considered by end-users for inclusion in building codes, risk models, and public policy documents.

  19. MAPPING A BASIC HEALTH UNIT: AN EXPERIENCE REPORT

    Directory of Open Access Journals (Sweden)

    Bárbara Carvalho Malheiros

    2015-01-01

    Full Text Available Backgound and Objectives: This study is an experience report on the construction of a map of a Basic Health Unit (BHU. The objective was to understand the relevance and/or importance of mapping a BHU and acquire more knowledge on the health-disease status of the registered population and identify the importance of cartography as a working tool. Case description: After reading some texts, evaluating information systems and on-site visits, it was possible to identify the health status of the population of the neighborhoods. The proposed objectives were considered to be achieved, considering the mapping of the assessed population’s health-disease situation with a closer-to-reality viewpoint, identifying the number of individuals, the diseases, living situation and health care. Conclusion: The mapping approach is a powerful working tool for allowing the planning of strategic interventions that enables the development of assistance activities, aiming to promote health and disease prevention. KEYWORDS: Mapping; Basic Health Unit; Health Planning.

  20. Modeling Research Project Risks with Fuzzy Maps

    Science.gov (United States)

    Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana

    2009-01-01

    The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…

  1. A geomorphic approach to 100-year floodplain mapping for the Conterminous United States

    Science.gov (United States)

    Jafarzadegan, Keighobad; Merwade, Venkatesh; Saksena, Siddharth

    2018-06-01

    Floodplain mapping using hydrodynamic models is difficult in data scarce regions. Additionally, using hydrodynamic models to map floodplain over large stream network can be computationally challenging. Some of these limitations of floodplain mapping using hydrodynamic modeling can be overcome by developing computationally efficient statistical methods to identify floodplains in large and ungauged watersheds using publicly available data. This paper proposes a geomorphic model to generate probabilistic 100-year floodplain maps for the Conterminous United States (CONUS). The proposed model first categorizes the watersheds in the CONUS into three classes based on the height of the water surface corresponding to the 100-year flood from the streambed. Next, the probability that any watershed in the CONUS belongs to one of these three classes is computed through supervised classification using watershed characteristics related to topography, hydrography, land use and climate. The result of this classification is then fed into a probabilistic threshold binary classifier (PTBC) to generate the probabilistic 100-year floodplain maps. The supervised classification algorithm is trained by using the 100-year Flood Insurance Rated Maps (FIRM) from the U.S. Federal Emergency Management Agency (FEMA). FEMA FIRMs are also used to validate the performance of the proposed model in areas not included in the training. Additionally, HEC-RAS model generated flood inundation extents are used to validate the model performance at fifteen sites that lack FEMA maps. Validation results show that the probabilistic 100-year floodplain maps, generated by proposed model, match well with both FEMA and HEC-RAS generated maps. On average, the error of predicted flood extents is around 14% across the CONUS. The high accuracy of the validation results shows the reliability of the geomorphic model as an alternative approach for fast and cost effective delineation of 100-year floodplains for the CONUS.

  2. Map Database for Surficial Materials in the Conterminous United States

    Science.gov (United States)

    Soller, David R.; Reheis, Marith C.; Garrity, Christopher P.; Van Sistine, D. R.

    2009-01-01

    The Earth's bedrock is overlain in many places by a loosely compacted and mostly unconsolidated blanket of sediments in which soils commonly are developed. These sediments generally were eroded from underlying rock, and then were transported and deposited. In places, they exceed 1000 ft (330 m) in thickness. Where the sediment blanket is absent, bedrock is either exposed or has been weathered to produce a residual soil. For the conterminous United States, a map by Soller and Reheis (2004, scale 1:5,000,000; http://pubs.usgs.gov/of/2003/of03-275/) shows these sediments and the weathered, residual material; for ease of discussion, these are referred to as 'surficial materials'. That map was produced as a PDF file, from an Adobe Illustrator-formatted version of the provisional GIS database. The provisional GIS files were further processed without modifying the content of the published map, and are here published.

  3. Some issues in data model mapping

    Science.gov (United States)

    Dominick, Wayne D. (Editor); Alsabbagh, Jamal R.

    1985-01-01

    Numerous data models have been reported in the literature since the early 1970's. They have been used as database interfaces and as conceptual design tools. The mapping between schemas expressed according to the same data model or according to different models is interesting for theoretical and practical purposes. This paper addresses some of the issues involved in such a mapping. Of special interest are the identification of the mapping parameters and some current approaches for handling the various situations that require a mapping.

  4. Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States

    Science.gov (United States)

    LaWen Hollingsworth; James Menakis

    2010-01-01

    This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...

  5. The Holdridge life zones of the conterminous United States in relation to ecosystem mapping

    Science.gov (United States)

    A.E. Lugo; S. L. Brown; R. Dodson; T. S Smith; H. H. Shugart

    1999-01-01

    Aim Our main goals were to develop a map of the life zones for the conterminous United States, based on the Holdridge Life Zone system, as a tool for ecosystem mapping, and to compare the map of Holdridge life zones with other global vegetation classification and mapping efforts. Location The area of interest is the forty-eight contiguous states of the United States....

  6. Specific Type of Knowledge Map: Mathematical Model

    OpenAIRE

    Milan, Houška; Martina, Beránková

    2005-01-01

    The article deals with relationships between mathematical models and knowledge maps. The goal of the article is to suggest how to use the mathematical model as a knowledge map and/or as a part (esp. the inference mechanism) of the knowledge system. The results are demonstrated on the case study, when the knowledge from a story is expressed by mathematical model. The model is used for both knowledge warehousing and inferencing new artificially derived knowledge.

  7. Towards New Mappings between Emotion Representation Models

    Directory of Open Access Journals (Sweden)

    Agnieszka Landowska

    2018-02-01

    Full Text Available There are several models for representing emotions in affect-aware applications, and available emotion recognition solutions provide results using diverse emotion models. As multimodal fusion is beneficial in terms of both accuracy and reliability of emotion recognition, one of the challenges is mapping between the models of affect representation. This paper addresses this issue by: proposing a procedure to elaborate new mappings, recommending a set of metrics for evaluation of the mapping accuracy, and delivering new mapping matrices for estimating the dimensions of a Pleasure-Arousal-Dominance model from Ekman’s six basic emotions. The results are based on an analysis using three datasets that were constructed based on affect-annotated lexicons. The new mappings were obtained with linear regression learning methods. The proposed mappings showed better results on the datasets in comparison with the state-of-the-art matrix. The procedure, as well as the proposed metrics, might be used, not only in evaluation of the mappings between representation models, but also in comparison of emotion recognition and annotation results. Moreover, the datasets are published along with the paper and new mappings might be created and evaluated using the proposed methods. The study results might be interesting for both researchers and developers, who aim to extend their software solutions with affect recognition techniques.

  8. Keeping it wild: mapping wilderness character in the United States.

    Science.gov (United States)

    Carver, Steve; Tricker, James; Landres, Peter

    2013-12-15

    A GIS-based approach is developed to identify the state of wilderness character in US wilderness areas using Death Valley National Park (DEVA) as a case study. A set of indicators and measures are identified by DEVA staff and used as the basis for developing a flexible and broadly applicable framework to map wilderness character using data inputs selected by park staff. Spatial data and GIS methods are used to map the condition of four qualities of wilderness character: natural, untrammelled, undeveloped, and solitude or primitive and unconfined recreation. These four qualities are derived from the US 1964 Wilderness Act and later developed by Landres et al. (2008a) in "Keeping it Wild: An Interagency Strategy to Monitor Trends in Wilderness Character Across the National Wilderness Preservation System." Data inputs are weighted to reflect their importance in relation to other data inputs and the model is used to generate maps of each of the four qualities of wilderness character. The combined map delineates the range of quality of wilderness character in the DEVA wilderness revealing the majority of wilderness character to be optimal quality with the best areas in the northern section of the park. This map will serve as a baseline for monitoring change in wilderness character and for evaluating the spatial impacts of planning alternatives for wilderness and backcountry stewardship plans. The approach developed could be applied to any wilderness area, either in the USA or elsewhere in the world. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Mapping variation in radon potential both between and within geological units

    International Nuclear Information System (INIS)

    Miles, J C H; Appleton, J D

    2005-01-01

    Previously, the potential for high radon levels in UK houses has been mapped either on the basis of grouping the results of radon measurements in houses by grid squares or by geological units. In both cases, lognormal modelling of the distribution of radon concentrations was applied to allow the estimated proportion of houses above the UK radon Action Level (AL, 200 Bq m -3 ) to be mapped. This paper describes a method of combining the grid square and geological mapping methods to give more accurate maps than either method can provide separately. The land area is first divided up using a combination of bedrock and superficial geological characteristics derived from digital geological map data. Each different combination of geological characteristics may appear at the land surface in many discontinuous locations across the country. HPA has a database of over 430 000 houses in which long-term measurements of radon concentration have been made, and whose locations are accurately known. Each of these measurements is allocated to the appropriate bedrock-superficial geological combination underlying it. Taking each geological combination in turn, the spatial variation of radon potential is mapped, treating the combination as if it were continuous over the land area. All of the maps of radon potential within different geological combinations are then combined to produce a map of variation in radon potential over the whole land surface

  10. Enhanced surrogate models for statistical design exploiting space mapping technology

    DEFF Research Database (Denmark)

    Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.

    2005-01-01

    We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...

  11. Documentation for the 2014 update of the United States national seismic hazard maps

    Science.gov (United States)

    Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter M.; Mueller, Charles S.; Haller, Kathleen M.; Frankel, Arthur D.; Zeng, Yuehua; Rezaeian, Sanaz; Harmsen, Stephen C.; Boyd, Oliver S.; Field, Edward; Chen, Rui; Rukstales, Kenneth S.; Luco, Nico; Wheeler, Russell L.; Williams, Robert A.; Olsen, Anna H.

    2014-01-01

    The national seismic hazard maps for the conterminous United States have been updated to account for new methods, models, and data that have been obtained since the 2008 maps were released (Petersen and others, 2008). The input models are improved from those implemented in 2008 by using new ground motion models that have incorporated about twice as many earthquake strong ground shaking data and by incorporating many additional scientific studies that indicate broader ranges of earthquake source and ground motion models. These time-independent maps are shown for 2-percent and 10-percent probability of exceedance in 50 years for peak horizontal ground acceleration as well as 5-hertz and 1-hertz spectral accelerations with 5-percent damping on a uniform firm rock site condition (760 meters per second shear wave velocity in the upper 30 m, VS30). In this report, the 2014 updated maps are compared with the 2008 version of the maps and indicate changes of plus or minus 20 percent over wide areas, with larger changes locally, caused by the modifications to the seismic source and ground motion inputs.

  12. Flow field mapping in data rack model

    Directory of Open Access Journals (Sweden)

    Matěcha J.

    2013-04-01

    Full Text Available The main objective of this study was to map the flow field inside the data rack model, fitted with three 1U server models. The server model is based on the common four-processor 1U server. The main dimensions of the data rack model geometry are taken fully from the real geometry. Only the model was simplified with respect to the greatest possibility in the experimental measurements. The flow field mapping was carried out both experimentally and numerically. PIV (Particle Image Velocimetry method was used for the experimental flow field mapping, when the flow field has been mapped for defined regions within the 2D/3D data rack model. Ansys CFX and OpenFOAM software were used for the numerical solution. Boundary conditions for numerical model were based on data obtained from experimental measurement of velocity profile at the output of the server mockup. This velocity profile was used as the input boundary condition in the calculation. In order to achieve greater consistency of the numerical model with experimental data, the numerical model was modified with regard to the results of experimental measurements. Results from the experimental and numerical measurements were compared and the areas of disparateness were identified. In further steps the obtained proven numerical model will be utilized for the real geometry of data racks and data.

  13. Classification of hyperspectral imagery using MapReduce on a NVIDIA graphics processing unit (Conference Presentation)

    Science.gov (United States)

    Ramirez, Andres; Rahnemoonfar, Maryam

    2017-04-01

    A hyperspectral image provides multidimensional figure rich in data consisting of hundreds of spectral dimensions. Analyzing the spectral and spatial information of such image with linear and non-linear algorithms will result in high computational time. In order to overcome this problem, this research presents a system using a MapReduce-Graphics Processing Unit (GPU) model that can help analyzing a hyperspectral image through the usage of parallel hardware and a parallel programming model, which will be simpler to handle compared to other low-level parallel programming models. Additionally, Hadoop was used as an open-source version of the MapReduce parallel programming model. This research compared classification accuracy results and timing results between the Hadoop and GPU system and tested it against the following test cases: the CPU and GPU test case, a CPU test case and a test case where no dimensional reduction was applied.

  14. A mitotically inheritable unit containing a MAP kinase module.

    Science.gov (United States)

    Kicka, Sébastien; Bonnet, Crystel; Sobering, Andrew K; Ganesan, Latha P; Silar, Philippe

    2006-09-05

    Prions are novel kinds of hereditary units, relying solely on proteins, that are infectious and inherited in a non-Mendelian fashion. To date, they are either based on autocatalytic modification of a 3D conformation or on autocatalytic cleavage. Here, we provide further evidence that in the filamentous fungus Podospora anserina, a MAP kinase cascade is probably able to self-activate and generate C, a hereditary unit that bears many similarities to prions and triggers cell degeneration. We show that in addition to the MAPKKK gene, both the MAPKK and MAPK genes are necessary for the propagation of C, and that overexpression of MAPK as that of MAPKKK facilitates the appearance of C. We also show that a correlation exists between the presence of C and localization of the MAPK inside nuclei. These data emphasize the resemblance between prions and a self-positively regulated cascade in terms of their transmission. This thus further expands the concept of protein-base inheritance to regulatory networks that have the ability to self-activate.

  15. Empty tracks optimization based on Z-Map model

    Science.gov (United States)

    Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao

    2017-12-01

    For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.

  16. The mirror map for invertible LG models

    OpenAIRE

    Kreuzer, M

    1994-01-01

    Calculating the (a,c) ring of the maximal phase orbifold for `invertible' Landau--Ginzburg models, we show that the Berglund--H"ubsch construction works for all potentials of the relevant type. The map that sends a monomial in the original model to a twisted state in the orbifold representation of the mirror is constructed explicitly. Via this map, the OP selection rules of the chiral ring exactly correspond to the twist selection rules for the orbifold. This shows that we indeed arrive at th...

  17. Complex motion of elevators in piecewise map model combined with circle map

    Science.gov (United States)

    Nagatani, Takashi

    2013-11-01

    We study the dynamic behavior in the elevator traffic controlled by capacity when the inflow rate of passengers into elevators varies periodically with time. The dynamics of elevators is described by the piecewise map model combined with the circle map. The motion of the elevators depends on the inflow rate, its period, and the number of elevators. The motion in the piecewise map model combined with the circle map shows a complex behavior different from the motion in the piecewise map model.

  18. From Google Maps to Google Models (Invited)

    Science.gov (United States)

    Moore, R. V.

    2010-12-01

    Why hasn’t integrated modelling taken off? To its advocates, it is self-evidently the best and arguably the only tool available for understanding and predicting the likely response of the environment to events and policies. Legislation requires managers to ensure that their plans are sustainable. How, other than by modelling the interacting processes involved, can the option with the greatest benefits be identified? Integrated modelling (IM) is seen to have huge potential. In science, IM is used to extend and encapsulate our understanding of the whole earth system. Such models are beginning to be incorporated in operational decision support systems and used to seek sustainable solutions to society’s problems, but only on a limited scale. Commercial take up is negligible yet the opportunities would appear limitless. The need is there; the potential is there, so what is inhibiting IM’s take up? What must be done to reap the rewards of the R & D to date? To answer the question, it useful to look back at the developments which have seen paper maps evolve into Google Maps and the systems that now surround it; facilities available not just to experts and governments but to anyone with a an iphone and an internet connection. The initial objective was to automate the process of drawing lines on paper, though it was quickly realised that digitising maps was the key to unlocking the information they held. However, it took thousands of PhD and MSc projects before a computer could generate a map comparable to that produced by a cartographer and many more before it was possible to extract reliable useful information from maps. It also required advances in IT and a change of mindset from one focused on paper map production to one focused on information delivery. To move from digital maps to Google Maps required the availability of data on a world scale, the resources to bring them together, the development of remote sensing, satellite navigation and communications

  19. Matching soil grid unit resolutions with polygon unit scales for DNDC modelling of regional SOC pool

    Science.gov (United States)

    Zhang, H. D.; Yu, D. S.; Ni, Y. L.; Zhang, L. M.; Shi, X. Z.

    2015-03-01

    Matching soil grid unit resolution with polygon unit map scale is important to minimize uncertainty of regional soil organic carbon (SOC) pool simulation as their strong influences on the uncertainty. A series of soil grid units at varying cell sizes were derived from soil polygon units at the six map scales of 1:50 000 (C5), 1:200 000 (D2), 1:500 000 (P5), 1:1 000 000 (N1), 1:4 000 000 (N4) and 1:14 000 000 (N14), respectively, in the Tai lake region of China. Both format soil units were used for regional SOC pool simulation with DeNitrification-DeComposition (DNDC) process-based model, which runs span the time period 1982 to 2000 at the six map scales, respectively. Four indices, soil type number (STN) and area (AREA), average SOC density (ASOCD) and total SOC stocks (SOCS) of surface paddy soils simulated with the DNDC, were attributed from all these soil polygon and grid units, respectively. Subjecting to the four index values (IV) from the parent polygon units, the variation of an index value (VIV, %) from the grid units was used to assess its dataset accuracy and redundancy, which reflects uncertainty in the simulation of SOC. Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pool, matching with soil polygon units map scales, respectively. With the optimal raster resolution the soil grid units dataset can hold the same accuracy as its parent polygon units dataset without any redundancy, when VIV indices was assumed as criteria to the assessment. An quadratic curve regression model y = -8.0 × 10-6x2 + 0.228x + 0.211 (R2 = 0.9994, p < 0.05) was revealed, which describes the relationship between optimal soil grid unit resolution (y, km) and soil polygon unit map scale (1:x). The knowledge may serve for grid partitioning of regions focused on the investigation and simulation of SOC pool dynamics at certain map scale.

  20. Models for map building and navigation

    International Nuclear Information System (INIS)

    Penna, M.A.; Jian Wu

    1993-01-01

    In this paper the authors present several models for solving map building and navigation problems. These models are motivated by biological processes, and presented in the context of artificial neural networks. Since the nodes, weights, and threshold functions of the models all have physical meanings, they can easily predict network topologies and avoid traditional trial-and-error training. On one hand, this makes their models useful in constructing solutions to engineering problems (problems such as those that occur in robotics, for example). On the other hand, this might also contribute to the ability of their models to explain some biological processes, few of which are completely understood at this time

  1. Logistic map with memory from economic model

    International Nuclear Information System (INIS)

    Tarasova, Valentina V.; Tarasov, Vasily E.

    2017-01-01

    A generalization of the economic model of logistic growth, which takes into account the effects of memory and crises, is suggested. Memory effect means that the economic factors and parameters at any given time depend not only on their values at that time, but also on their values at previous times. For the mathematical description of the memory effects, we use the theory of derivatives of non-integer order. Crises are considered as sharp splashes (bursts) of the price, which are mathematically described by the delta-functions. Using the equivalence of fractional differential equations and the Volterra integral equations, we obtain discrete maps with memory that are exact discrete analogs of fractional differential equations of economic processes. We derive logistic map with memory, its generalizations, and “economic” discrete maps with memory from the fractional differential equations, which describe the economic natural growth with competition, power-law memory and crises.

  2. Risk maps for targeting exotic plant pest detection programs in the United States

    Science.gov (United States)

    R.D. Magarey; D.M. Borchert; J.S. Engle; M Garcia-Colunga; Frank H. Koch; et al

    2011-01-01

    In the United States, pest risk maps are used by the Cooperative Agricultural Pest Survey for spatial and temporal targeting of exotic plant pest detection programs. Methods are described to create standardized host distribution, climate and pathway risk maps for the top nationally ranked exotic pest targets. Two examples are provided to illustrate the risk mapping...

  3. Reflections on the Value of Mapping the Final Theory Examination in a Molecular Biochemistry Unit

    OpenAIRE

    Eri, Rajaraman; Cook, Anthony; Brown, Natalie

    2014-01-01

    This article assesses the impact of examination mapping as a tool to enhancing assessment and teaching quality in a second-year biochemistry unit for undergraduates. Examination mapping is a process where all questions in a written examination paper are assessed for links to the unit’s intended learning outcomes. We describe how mapping a final written examination helped visualise the impact of the assessment task on intended learning outcomes and skills for that biochemistry unit. The method...

  4. Self organising maps for visualising and modelling

    Science.gov (United States)

    2012-01-01

    The paper describes the motivation of SOMs (Self Organising Maps) and how they are generally more accessible due to the wider available modern, more powerful, cost-effective computers. Their advantages compared to Principal Components Analysis and Partial Least Squares are discussed. These allow application to non-linear data, are not so dependent on least squares solutions, normality of errors and less influenced by outliers. In addition there are a wide variety of intuitive methods for visualisation that allow full use of the map space. Modern problems in analytical chemistry include applications to cultural heritage studies, environmental, metabolomic and biological problems result in complex datasets. Methods for visualising maps are described including best matching units, hit histograms, unified distance matrices and component planes. Supervised SOMs for classification including multifactor data and variable selection are discussed as is their use in Quality Control. The paper is illustrated using four case studies, namely the Near Infrared of food, the thermal analysis of polymers, metabolomic analysis of saliva using NMR, and on-line HPLC for pharmaceutical process monitoring. PMID:22594434

  5. Self organising maps for visualising and modelling.

    Science.gov (United States)

    Brereton, Richard G

    2012-05-02

    The paper describes the motivation of SOMs (Self Organising Maps) and how they are generally more accessible due to the wider available modern, more powerful, cost-effective computers. Their advantages compared to Principal Components Analysis and Partial Least Squares are discussed. These allow application to non-linear data, are not so dependent on least squares solutions, normality of errors and less influenced by outliers. In addition there are a wide variety of intuitive methods for visualisation that allow full use of the map space. Modern problems in analytical chemistry include applications to cultural heritage studies, environmental, metabolomic and biological problems result in complex datasets. Methods for visualising maps are described including best matching units, hit histograms, unified distance matrices and component planes. Supervised SOMs for classification including multifactor data and variable selection are discussed as is their use in Quality Control. The paper is illustrated using four case studies, namely the Near Infrared of food, the thermal analysis of polymers, metabolomic analysis of saliva using NMR, and on-line HPLC for pharmaceutical process monitoring.

  6. Continuous soil maps - a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models

    NARCIS (Netherlands)

    Gruijter, de J.J.; Walvoort, D.J.J.; Gaans, van P.F.M.

    1997-01-01

    Soil maps as multi-purpose models of spatial soil distribution have a much higher level of aggregation (map units) than the models of soil processes and land-use effects that need input from soil maps. This mismatch between aggregation levels is particularly detrimental in the context of precision

  7. Dose mapping in working space of KORI unit 1 using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. W.; Shin, C. H.; Kim, J. G. [Hanyang University, Seoul (Korea, Republic of); Kim, S. Y. [Innovative Techonology Center for Radiation Safety, Seoul (Korea, Republic of)

    2004-07-01

    Radiation field analysis in nuclear power plant mainly depends on actual measurements. In this study, the analysis using computational calculation is performed to overcome the limits of measurement and provide the initial information for unfolding. The radiation field mapping is performed, which makes it possible to analyze the trends of the radiation filed for whole space. By using MCNPX code, containment building inside is modeled for KORI unit 1 cycle 21 under operation. Applying the neutron spectrum from the operating reactor as a radiation source, the ambient doses are calculated in the whole space, containment building inside, for neutron and photon fields. Dose mapping is performed for three spaces, 6{approx}20, 20{approx}44, 44{approx}70 ft from bottom of the containment building. The radiation distribution in dose maps shows the effects from structures and materials of components. With this dose maps, radiation field analysis contained the region near the detect position. The analysis and prediction are possible for radiation field from other radiation source or operating cycle.

  8. Multimedia Mapping using Continuous State Space Models

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue

    2004-01-01

    In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space'. Simulations...... are performed on recordings of 3-5 sec. video sequences with sentences from the Timit database. The model is able to construct an image sequence from an unknown noisy speech sequence fairly well even though the number of training examples are limited....

  9. A statistical model for mapping morphological shape

    Directory of Open Access Journals (Sweden)

    Li Jiahan

    2010-07-01

    Full Text Available Abstract Background Living things come in all shapes and sizes, from bacteria, plants, and animals to humans. Knowledge about the genetic mechanisms for biological shape has far-reaching implications for a range spectrum of scientific disciplines including anthropology, agriculture, developmental biology, evolution and biomedicine. Results We derived a statistical model for mapping specific genes or quantitative trait loci (QTLs that control morphological shape. The model was formulated within the mixture framework, in which different types of shape are thought to result from genotypic discrepancies at a QTL. The EM algorithm was implemented to estimate QTL genotype-specific shapes based on a shape correspondence analysis. Computer simulation was used to investigate the statistical property of the model. Conclusion By identifying specific QTLs for morphological shape, the model developed will help to ask, disseminate and address many major integrative biological and genetic questions and challenges in the genetic control of biological shape and function.

  10. a Model Study of Small-Scale World Map Generalization

    Science.gov (United States)

    Cheng, Y.; Yin, Y.; Li, C. M.; Wu, W.; Guo, P. P.; Ma, X. L.; Hu, F. M.

    2018-04-01

    With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.

  11. Quaternary Geologic Map of the Regina 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Fullerton, David S.; Christiansen, Earl A.; Schreiner, Bryan T.; Colton, Roger B.; Clayton, Lee; Bush, Charles A.; Fullerton, David S.

    2007-01-01

    For scientific purposes, the map differentiates Quaternary surficial deposits and materials on the basis of clast lithology or composition, matrix texture or particle size, structure, genesis, stratigraphic relations, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the 'Description of Map Units'. Deposits of some constructional landforms, such as end moraines, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, fluvial, and lacustrine deposits that are mapped may be terraced. Differentiation of sequences of fluvial and glaciofluvial deposits at this scale is not possible. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use planning, or land-management projects can be derived and from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.

  12. Electrostatic potential map modelling with COSY Infinity

    International Nuclear Information System (INIS)

    Maloney, J.A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-01-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY’s existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  13. Deterministic SLIR model for tuberculosis disease mapping

    Science.gov (United States)

    Aziz, Nazrina; Diah, Ijlal Mohd; Ahmad, Nazihah; Kasim, Maznah Mat

    2017-11-01

    Tuberculosis (TB) occurs worldwide. It can be transmitted to others directly through air when active TB persons sneeze, cough or spit. In Malaysia, it was reported that TB cases had been recognized as one of the most infectious disease that lead to death. Disease mapping is one of the methods that can be used as the prevention strategies since it can displays clear picture for the high-low risk areas. Important thing that need to be considered when studying the disease occurrence is relative risk estimation. The transmission of TB disease is studied through mathematical model. Therefore, in this study, deterministic SLIR models are used to estimate relative risk for TB disease transmission.

  14. Bayesian disease mapping: hierarchical modeling in spatial epidemiology

    National Research Council Canada - National Science Library

    Lawson, Andrew

    2013-01-01

    .... Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications...

  15. IDAS, software support for mathematical models and map-based graphics

    International Nuclear Information System (INIS)

    Birnbaum, M.D.; Wecker, D.B.

    1984-01-01

    IDAS (Intermediate Dose Assessment System) was developed for the U.S. Nuclear Regulatory Commission as a hardware/software host for radiological models and display of map-based plume graphics at the Operations Center (HQ), regional incident response centers, and site emergency facilities. IDAS design goals acknowledged the likelihood of future changes in the suite of models and the composition of map features for analysis and graphical display. IDAS provides a generalized software support environment to programmers and users of modeling programs. A database manager process provides multi-user access control to all input and output data for modeling programs. A programmer-created data description file (schema) specifies data field names, data types, legal and recommended ranges, default values, preferred units of measurement, and ''help'' text. Subroutine calls to IDAS from a model program invoke a consistent user interface which can show any of the schema contents, convert units of measurement, and route data to multiple logical devices, including the database. A stand-alone data editor allows the user to read and write model data records without execution of a model. IDAS stores digitized map features in a 4-level naming hierarchy. A user can select the map icon, color, and whether to show a stored name tag, for each map feature. The user also selects image scale (zoom) within limits set by map digitization. The resulting image combines static map information, computed analytic modeling results, and the user's feature selections for display to decision-makers

  16. Radiation field mapping in mammography units with TLDs

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.C.O.; Silva, J.O., E-mail: jonas.silva@ufg.br [Universidade Federal de Goiás (IFG), Goiânia (Brazil). Instituto de Física; Veneziani, G.R. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo-SP (Brazil). Centro de Metrologia das Radiações

    2017-07-01

    Mammography is the most common imaging technique for breast cancer detection and its tracking. For dosimetry, is important to know the field intensity variation. In this work, TLD-100 were used to made a field mapping of a mammographic system from a hospital in Goiânia/GO. The maximum radiation intensity was 8 cm far from chest wall. The results obtained could be used in the optimization of the dosimetry in the equipment used in this work. (author)

  17. Problems In Indoor Mapping and Modelling

    Science.gov (United States)

    Zlatanova, S.; Sithole, G.; Nakagawa, M.; Zhu, Q.

    2013-11-01

    Research in support of indoor mapping and modelling (IMM) has been active for over thirty years. This research has come in the form of As-Built surveys, Data structuring, Visualisation techniques, Navigation models and so forth. Much of this research is founded on advancements in photogrammetry, computer vision and image analysis, computer graphics, robotics, laser scanning and many others. While IMM used to be the privy of engineers, planners, consultants, contractors, and designers, this is no longer the case as commercial enterprises and individuals are also beginning to apply indoor models in their business process and applications. There are three main reasons for this. Firstly, the last two decades have seen greater use of spatial information by enterprises and the public. Secondly, IMM has been complimented by advancements in mobile computing and internet communications, making it easier than ever to access and interact with spatial information. Thirdly, indoor modelling has been advanced geometrically and semantically, opening doors for developing user-oriented, context-aware applications. This reshaping of the public's attitude and expectations with regards to spatial information has realised new applications and spurred demand for indoor models and the tools to use them. This paper examines the present state of IMM and considers the research areas that deserve attention in the future. In particular the paper considers problems in IMM that are relevant to commercial enterprises and the general public, groups this paper expects will emerge as the greatest users IMM. The subject of indoor modelling and mapping is discussed here in terms of Acquisitions and Sensors, Data Structures and Modelling, Visualisation, Applications, Legal Issues and Standards. Problems are discussed in terms of those that exist and those that are emerging. Existing problems are those that are currently being researched. Emerging problems are those problems or demands that are

  18. Customer requirement modeling and mapping of numerical control machine

    Directory of Open Access Journals (Sweden)

    Zhongqi Sheng

    2015-10-01

    Full Text Available In order to better obtain information about customer requirement and develop products meeting customer requirement, it is necessary to systematically analyze and handle the customer requirement. This article uses the product service system of numerical control machine as research objective and studies the customer requirement modeling and mapping oriented toward configuration design. It introduces the conception of requirement unit, expounds the customer requirement decomposition rules, and establishes customer requirement model; it builds the house of quality using quality function deployment and confirms the weight of technical feature of product and service; it explores the relevance rules between data using rough set theory, establishes rule database, and solves the target value of technical feature of product. Using economical turning center series numerical control machine as an example, it verifies the rationality of proposed customer requirement model.

  19. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  20. Mapping and modeling of physician collaboration network.

    Science.gov (United States)

    Uddin, Shahadat; Hamra, Jafar; Hossain, Liaquat

    2013-09-10

    Effective provisioning of healthcare services during patient hospitalization requires collaboration involving a set of interdependent complex tasks, which needs to be carried out in a synergistic manner. Improved patients' outcome during and after hospitalization has been attributed to how effective different health services provisioning groups carry out their tasks in a coordinated manner. Previous studies have documented the underlying relationships between collaboration among physicians on the effective outcome in delivering health services for improved patient outcomes. However, there are very few systematic empirical studies with a focus on the effect of collaboration networks among healthcare professionals and patients' medical condition. On the basis of the fact that collaboration evolves among physicians when they visit a common hospitalized patient, in this study, we first propose an approach to map collaboration network among physicians from their visiting information to patients. We termed this network as physician collaboration network (PCN). Then, we use exponential random graph (ERG) models to explore the microlevel network structures of PCNs and their impact on hospitalization cost and hospital readmission rate. ERG models are probabilistic models that are presented by locally determined explanatory variables and can effectively identify structural properties of networks such as PCN. It simplifies a complex structure down to a combination of basic parameters such as 2-star, 3-star, and triangle. By applying our proposed mapping approach and ERG modeling technique to the electronic health insurance claims dataset of a very large Australian health insurance organization, we construct and model PCNs. We notice that the 2-star (subset of 3 nodes in which 1 node is connected to each of the other 2 nodes) parameter of ERG has significant impact on hospitalization cost. Further, we identify that triangle (subset of 3 nodes in which each node is connected to

  1. Structural Modeling Using "Scanning and Mapping" Technique

    Science.gov (United States)

    Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)

    2000-01-01

    Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar

  2. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States

    Science.gov (United States)

    Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.

    2017-06-30

    The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.

  3. Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium

    Directory of Open Access Journals (Sweden)

    M. Van Den Eeckhaut

    2009-03-01

    Full Text Available For a 277 km2 study area in the Flemish Ardennes, Belgium, a landslide inventory and two landslide susceptibility zonations were combined to obtain an optimal landslide susceptibility assessment, in five classes. For the experiment, a regional landslide inventory, a 10 m × 10 m digital representation of topography, and lithological and soil hydrological information obtained from 1:50 000 scale maps, were exploited. In the study area, the regional inventory shows 192 landslides of the slide type, including 158 slope failures occurred before 1992 (model calibration set, and 34 failures occurred after 1992 (model validation set. The study area was partitioned in 2.78×106 grid cells and in 1927 topographic units. The latter are hydro-morphological units obtained by subdividing slope units based on terrain gradient. Independent models were prepared for the two terrain subdivisions using discriminant analysis. For grid cells, a single pixel was identified as representative of the landslide depletion area, and geo-environmental information for the pixel was obtained from the thematic maps. The landslide and geo-environmental information was used to model the propensity of the terrain to host landslide source areas. For topographic units, morphologic and hydrologic information and the proportion of lithologic and soil hydrological types in each unit, were used to evaluate landslide susceptibility, including the depletion and depositional areas. Uncertainty associated with the two susceptibility models was evaluated, and the model performance was tested using the independent landslide validation set. An heuristic procedure was adopted to combine the landslide inventory and the susceptibility zonations. The procedure makes optimal use of the available landslide and susceptibility information, minimizing the limitations inherent in the inventory and the susceptibility maps. For the established susceptibility classes, regulations to

  4. Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium

    Science.gov (United States)

    van den Eeckhaut, M.; Reichenbach, P.; Guzzetti, F.; Rossi, M.; Poesen, J.

    2009-03-01

    For a 277 km2 study area in the Flemish Ardennes, Belgium, a landslide inventory and two landslide susceptibility zonations were combined to obtain an optimal landslide susceptibility assessment, in five classes. For the experiment, a regional landslide inventory, a 10 m × 10 m digital representation of topography, and lithological and soil hydrological information obtained from 1:50 000 scale maps, were exploited. In the study area, the regional inventory shows 192 landslides of the slide type, including 158 slope failures occurred before 1992 (model calibration set), and 34 failures occurred after 1992 (model validation set). The study area was partitioned in 2.78×106 grid cells and in 1927 topographic units. The latter are hydro-morphological units obtained by subdividing slope units based on terrain gradient. Independent models were prepared for the two terrain subdivisions using discriminant analysis. For grid cells, a single pixel was identified as representative of the landslide depletion area, and geo-environmental information for the pixel was obtained from the thematic maps. The landslide and geo-environmental information was used to model the propensity of the terrain to host landslide source areas. For topographic units, morphologic and hydrologic information and the proportion of lithologic and soil hydrological types in each unit, were used to evaluate landslide susceptibility, including the depletion and depositional areas. Uncertainty associated with the two susceptibility models was evaluated, and the model performance was tested using the independent landslide validation set. An heuristic procedure was adopted to combine the landslide inventory and the susceptibility zonations. The procedure makes optimal use of the available landslide and susceptibility information, minimizing the limitations inherent in the inventory and the susceptibility maps. For the established susceptibility classes, regulations to link terrain domains to appropriate land

  5. Improved predictive mapping of indoor radon concentrations using ensemble regression trees based on automatic clustering of geological units

    International Nuclear Information System (INIS)

    Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios, Martha; Baechler, Sébastien

    2015-01-01

    Purpose: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. Method: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). Results: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. Conclusion: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables

  6. Mapping past, present, and future climatic suitability for invasive Aedes aegypti and Aedes albopictus in the United States: a process-based modeling approach using CMIP5 downscaled climate scenarios

    Science.gov (United States)

    Donnelly, M. A. P.; Marcantonio, M.; Melton, F. S.; Barker, C. M.

    2016-12-01

    The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.

  7. Mapping Past, Present, and Future Climatic Suitability for Invasive Aedes Aegypti and Aedes Albopictus in the United States: A Process-Based Modeling Approach Using CMIP5 Downscaled Climate Scenarios

    Science.gov (United States)

    Donnelly, Marisa Anne Pella; Marcantonio, Matteo; Melton, Forrest S.; Barker, Christopher M.

    2016-01-01

    The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.

  8. PSA Model Improvement Using Maintenance Rule Function Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mi Ro [KHNP-CRI, Nuclear Safety Laboratory, Daejeon (Korea, Republic of)

    2011-10-15

    The Maintenance Rule (MR) program, in nature, is a performance-based program. Therefore, the risk information derived from the Probabilistic Safety Assessment model is introduced into the MR program during the Safety Significance determination and Performance Criteria selection processes. However, this process also facilitates the determination of the vulnerabilities in currently utilized PSA models and offers means of improving them. To find vulnerabilities in an existing PSA model, an initial review determines whether the safety-related MR functions are included in the PSA model. Because safety-related MR functions are related to accident prevention and mitigation, it is generally necessary for them to be included in the PSA model. In the process of determining the safety significance of each functions, quantitative risk importance levels are determined through a process known as PSA model basic event mapping to MR functions. During this process, it is common for some inadequate and overlooked models to be uncovered. In this paper, the PSA model and the MR program of Wolsong Unit 1 were used as references

  9. Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models

    Science.gov (United States)

    Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric D.; Naranjo, Ramon C.; Huntington, Justin

    2018-01-01

    The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.

  10. A Method for Mapping Future Urbanization in the United States

    Directory of Open Access Journals (Sweden)

    Lahouari Bounoua

    2018-04-01

    Full Text Available Cities are poised to absorb additional people. Their sustainability, or ability to accommodate a population increase without depleting resources or compromising future growth, depends on whether they harness the efficiency gains from urban land management. Population is often projected as a bulk national number without details about spatial distribution. We use Landsat and population data in a methodology to project and map U.S. urbanization for the year 2020 and document its spatial pattern. This methodology is important to spatially disaggregate projected population and assist land managers to monitor land use, assess infrastructure and distribute resources. We found the U.S. west coast urban areas to have the fastest population growth with relatively small land consumption resulting in future decrease in per capita land use. Except for Miami (FL, most other U.S. large urban areas, especially in the Midwest, are growing spatially faster than their population and inadvertently consuming land needed for ecosystem services. In large cities, such as New York, Chicago, Houston and Miami, land development is expected more in suburban zones than urban cores. In contrast, in Los Angeles land development within the city core is greater than in its suburbs.

  11. Very High Resolution Tree Cover Mapping for Continental United States using Deep Convolutional Neural Networks

    Science.gov (United States)

    Ganguly, Sangram; Kalia, Subodh; Li, Shuang; Michaelis, Andrew; Nemani, Ramakrishna R.; Saatchi, Sassan A

    2017-01-01

    Uncertainties in input land cover estimates contribute to a significant bias in modeled above ground biomass (AGB) and carbon estimates from satellite-derived data. The resolution of most currently used passive remote sensing products is not sufficient to capture tree canopy cover of less than ca. 10-20 percent, limiting their utility to estimate canopy cover and AGB for trees outside of forest land. In our study, we created a first of its kind Continental United States (CONUS) tree cover map at a spatial resolution of 1-m for the 2010-2012 epoch using the USDA NAIP imagery to address the present uncertainties in AGB estimates. The process involves different tasks including data acquisition ingestion to pre-processing and running a state-of-art encoder-decoder based deep convolutional neural network (CNN) algorithm for automatically generating a tree non-tree map for almost a quarter million scenes. The entire processing chain including generation of the largest open source existing aerial satellite image training database was performed at the NEX supercomputing and storage facility. We believe the resulting forest cover product will substantially contribute to filling the gaps in ongoing carbon and ecological monitoring research and help quantifying the errors and uncertainties in derived products.

  12. Very High Resolution Tree Cover Mapping for Continental United States using Deep Convolutional Neural Networks

    Science.gov (United States)

    Ganguly, S.; Kalia, S.; Li, S.; Michaelis, A.; Nemani, R. R.; Saatchi, S.

    2017-12-01

    Uncertainties in input land cover estimates contribute to a significant bias in modeled above gound biomass (AGB) and carbon estimates from satellite-derived data. The resolution of most currently used passive remote sensing products is not sufficient to capture tree canopy cover of less than ca. 10-20 percent, limiting their utility to estimate canopy cover and AGB for trees outside of forest land. In our study, we created a first of its kind Continental United States (CONUS) tree cover map at a spatial resolution of 1-m for the 2010-2012 epoch using the USDA NAIP imagery to address the present uncertainties in AGB estimates. The process involves different tasks including data acquisition/ingestion to pre-processing and running a state-of-art encoder-decoder based deep convolutional neural network (CNN) algorithm for automatically generating a tree/non-tree map for almost a quarter million scenes. The entire processing chain including generation of the largest open source existing aerial/satellite image training database was performed at the NEX supercomputing and storage facility. We believe the resulting forest cover product will substantially contribute to filling the gaps in ongoing carbon and ecological monitoring research and help quantifying the errors and uncertainties in derived products.

  13. Transient electromagnetic mapping of clay units in the San Luis Valley, Colorado

    Science.gov (United States)

    Fitterman, David V.; Grauch, V.J.S.

    2010-01-01

    Transient electromagnetic soundings were used to obtain information needed to refine hydrologic models of the San Luis Valley, Colorado. The soundings were able to map an aquitard called the blue clay that separates an unconfined surface aquifer from a deeper confined aquifer. The blue clay forms a conductor with an average resistivity of 6.9 ohm‐m. Above the conductor are found a mixture of gray clay and sand. The gray clay has an average resistivity of 21 ohm‐m, while the sand has a resistivity of greater than 100 ohm‐m. The large difference in resistivity of these units makes mapping them with a surface geophysical method relatively easy. The blue clay was deposited at the bottom of Lake Alamosa which filled most of the San Luis Valley during the Pleistocene. The geometry of the blue clay is influenced by a graben on the eastern side of the valley. The depth to the blue clay is greater over the graben. Along the eastern edge of valley the blue clay appears to be truncated by faults.

  14. Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle, United States and Canada

    Data.gov (United States)

    Department of the Interior — The Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as...

  15. Using historical aerial photography and softcopy photogrammetry for waste unit mapping in L Lake

    International Nuclear Information System (INIS)

    Christel, L.M.

    1997-10-01

    L Lake was developed as a cooling water reservoir for the L Reactor at the Savannah River Site. The construction of the lake, which began in the fall of 1984, altered the structure and function of Steel Creek. Completed in the fall of 1985, L Lake has a capacity of 31 million cubic meters and a normal pool of 58 meters. When L Reactor operations ceased in 1988, the water level in the lake still had to be maintained. Site managers are currently trying to determine the feasibility of draining or drawing down the lake in order to save tax dollars. In order to understand the full repercussions of such an undertaking, it was necessary to compile a comprehensive inventory of what the lake bottom looked like prior to filling. Aerial photographs, acquired nine days before the filling of the lake began, were scanned and used for softcopy photogrammetry processing. A one-meter digital elevation model was generated and a digital orthophoto mosaic was created as the base map for the project. Seven categories of features, including the large waste units used to contain the contaminated soil removed from the dam site, were screen digitized and used to generate accurate maps. Other map features include vegetation waste piles, where contaminated vegetation from the flood plain was contained, and ash piles, which are sites where vegetation debris was burned and then covered with clean soil. For all seven categories, the area of disturbance totaled just over 63 hectares. When the screen digitizing was completed, the elevation at the centroid of each disturbance was determined. When the information is used in the Savannah River Site Geographical Information System, it can be used to visualize the various L Lake draw-down scenarios suggested by site managers and hopefully, to support evaluations of the cost effectiveness for each proposed activity

  16. Karst in the United States: a digital map compilation and database

    Science.gov (United States)

    Weary, David J.; Doctor, Daniel H.

    2014-01-01

    This report describes new digital maps delineating areas of the United States, including Puerto Rico and the U.S. Virgin Islands, having karst or the potential for development of karst and pseudokarst. These maps show areas underlain by soluble rocks and also by volcanic rocks, sedimentary deposits, and permafrost that have potential for karst or pseudokarst development. All 50 States contain rocks with potential for karst development, and about 18 percent of their area is underlain by soluble rocks having karst or the potential for development of karst features. The areas of soluble rocks shown are based primarily on selection from State geologic maps of rock units containing significant amounts of carbonate or evaporite minerals. Areas underlain by soluble rocks are further classified by general climate setting, degree of induration, and degree of exposure. Areas having potential for volcanic pseudokarst are those underlain chiefly by basaltic-flow rocks no older than Miocene in age. Areas with potential for pseudokarst features in sedimentary rocks are in relatively unconsolidated rocks from which pseudokarst features, such as piping caves, have been reported. Areas having potential for development of thermokarst features, mapped exclusively in Alaska, contain permafrost in relatively thick surficial deposits containing ground ice. This report includes a GIS database with links from the map unit polygons to online geologic unit descriptions.

  17. Comparing several boson mappings with the shell model

    International Nuclear Information System (INIS)

    Menezes, D.P.; Yoshinaga, Naotaka; Bonatsos, D.

    1990-01-01

    Boson mappings are an essential step in establishing a connection between the successful phenomenological interacting boson model and the shell model. The boson mapping developed by Bonatsos, Klein and Li is applied to a single j-shell and the resulting energy levels and E2 transitions are shown for a pairing plus quadrupole-quadrupole Hamiltonian. The results are compared to the exact shell model calculation, as well as to these obtained through use of the Otsuka-Arima-Iachello mapping and the Zirnbauer-Brink mapping. In all cases good results are obtained for the spherical and near-vibrational cases

  18. A terrain-based site characterization map of California with implications for the contiguous United States

    Science.gov (United States)

    Yong, Alan K.; Hough, Susan E.; Iwahashi, Junko; Braverman, Amy

    2012-01-01

    We present an approach based on geomorphometry to predict material properties and characterize site conditions using the VS30 parameter (time‐averaged shear‐wave velocity to a depth of 30 m). Our framework consists of an automated terrain classification scheme based on taxonomic criteria (slope gradient, local convexity, and surface texture) that systematically identifies 16 terrain types from 1‐km spatial resolution (30 arcsec) Shuttle Radar Topography Mission digital elevation models (SRTM DEMs). Using 853 VS30 values from California, we apply a simulation‐based statistical method to determine the mean VS30 for each terrain type in California. We then compare the VS30 values with models based on individual proxies, such as mapped surface geology and topographic slope, and show that our systematic terrain‐based approach consistently performs better than semiempirical estimates based on individual proxies. To further evaluate our model, we apply our California‐based estimates to terrains of the contiguous United States. Comparisons of our estimates with 325 VS30 measurements outside of California, as well as estimates based on the topographic slope model, indicate our method to be statistically robust and more accurate. Our approach thus provides an objective and robust method for extending estimates of VS30 for regions where in situ measurements are sparse or not readily available.

  19. Model United Nations at CERN

    CERN Multimedia

    2012-01-01

    From 20 to 22 January, 300 young people from international secondary schools in Switzerland, France and Turkey will meet at CERN to debate scientific topics at a Model UN Conference.   Representing some 50 countries, they will form committees and a model General Assembly to discuss the meeting’s chosen topic: “UN – World Science Pole for Progress”.

  20. Quaternary allostratigraphy of surficial deposit map units at Yucca Mountain, Nevada: A progress report

    International Nuclear Information System (INIS)

    Lundstrom, S.C.; Wesling, J.R.; Swan, F.H.; Taylor, E.M.; Whitney, J.W.

    1993-01-01

    Surficial geologic mapping at Yucca Mountain, Nevada, is relevant to site characterization studies of paleoclimate, tectonics, erosion, flood hazards, and water infiltration. Alluvial, colluvial, and eolian allostratigraphic map units are defined on the basis of age-related surface characteristics and soil development, as well as lithology and sedimentology indicative of provenance and depositional mode. In gravelly alluvial units, which include interbedded debris flows, the authors observe a useful qualitative correlation between surface and soil properties. Map units of estimated middle Pleistocene age typically have a well-developed, varnished desert pavement, and minimal erosional and preserved depositional microrelief, associated with a soil with a reddened Bt horizon and stage 3 carbonate and silica morphology. Older units have greater erosional relief, an eroded argillic horizon and stage 4 carbonate morphology, whereas younger units have greater preservation of depositional morphology, but lack well-developed pavements, rock varnish, and Bt and Kqm soil horizons. Trench and gully-wall exposures show that alluvial, colluvial and eolian dominated surface units are underlain by multiple buried soils separating sedimentologically similar deposits; this stratigraphy increases the potential for understanding the long-term Quaternary paleoenvironmental history of Yucca Mountain. Age estimates for allostratigraphic units, presently based on uranium-trend dating and regional correlation using soil development, will be further constrained by ongoing dating studies that include tephra identification, uranium-series disequilibrium, and thermoluminescence methods

  1. Health risks maps. Modelling of air quality as a tool to map health risks

    International Nuclear Information System (INIS)

    Van Doorn, R.; Hegger, C.

    2000-01-01

    Environmental departments consider geographical maps with information on air quality as the final product of a complicated process of measuring, modelling and presentation. Municipal health departments consider such maps a useful starting point to solve the problem whether air pollution causes health risks for citizens. The answer to this question cannot be reduced to checking if threshold limit values are exceeded. Based on the results of measurements and modelling of concentrations of nitrogen dioxide in air, the health significance of air pollution caused by nitrogen dioxide is illuminated. A proposal is presented to map health risks of air pollution by using the results of measurements and modelling of air pollution. 7 refs

  2. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  3. Development of a new USDA plant hardiness zone map for the United States

    Science.gov (United States)

    C. Daly; M.P. Widrlechner; M.D. Halbleib; J.I. Smith; W.P. Gibson

    2012-01-01

    In many regions of the world, the extremes of winter cold are a major determinant of the geographic distribution of perennial plant species and of their successful cultivation. In the United States, the U.S. Department of Agriculture (USDA) Plant Hardiness Zone Map (PHZM) is the primary reference for defining geospatial patterns of extreme winter cold for the...

  4. Map-based model of the cardiac action potential

    International Nuclear Information System (INIS)

    Pavlov, Evgeny A.; Osipov, Grigory V.; Chan, C.K.; Suykens, Johan A.K.

    2011-01-01

    A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory. -- Highlights: → Recent experimental-data based models are complicated for analysis and simulation. → The simplified map-based model of the cardiac cell is constructed. → The model is capable for replication of different types of cardiac activity. → The spatio-temporal dynamics of ensembles of coupled maps are investigated. → Received data are analyzed in context of biophysical processes in the myocardium.

  5. Map-based model of the cardiac action potential

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, Evgeny A., E-mail: genie.pavlov@gmail.com [Department of Computational Mathematics and Cybernetics, Nizhny Novgorod State University, 23, Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation); Osipov, Grigory V. [Department of Computational Mathematics and Cybernetics, Nizhny Novgorod State University, 23, Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation); Chan, C.K. [Institute of Physics, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan (China); Suykens, Johan A.K. [K.U. Leuven, ESAT-SCD/SISTA, Kasteelpark Arenberg 10, B-3001 Leuven (Heverlee) (Belgium)

    2011-07-25

    A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory. -- Highlights: → Recent experimental-data based models are complicated for analysis and simulation. → The simplified map-based model of the cardiac cell is constructed. → The model is capable for replication of different types of cardiac activity. → The spatio-temporal dynamics of ensembles of coupled maps are investigated. → Received data are analyzed in context of biophysical processes in the myocardium.

  6. A Electronic Map Data Model Based on PDF

    Science.gov (United States)

    Zhou, Xiaodong; Yang, Chuncheng; Meng, Nina; Peng, Peng

    2018-05-01

    In this paper, we proposed the PDFEMAP (PDF electronic map) that is a kind of new electronic map products aiming at the current situation and demand of the use of electronic map products. Firstly gives the definition and characteristics of PDFEMAP, followed by a detailed description of the data model and method for generating PDFEMAP, and finally expounds application modes of the PDFEMAP which feasibility and effectiveness are verified.

  7. High Resolution Map of Water Supply and Demand for North East United States

    Science.gov (United States)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2012-12-01

    Accurate estimates of water supply and demand are crucial elements in water resources management and modeling. As part of our NSF-funded EaSM effort to build a Northeast Regional Earth System Model (NE-RESM) as a framework to improve our understanding and capacity to forecast the implications of planning decisions on the region's environment, ecosystem services, energy and economic systems through the 21st century, we are producing a high resolution map (3' x 3' lat/long) of estimated water supply and use for the north east region of United States. Focusing on water demand, results from this study enables us to quantify how demand sources affect the hydrology and thermal-chemical water pollution across the region. In an attempt to generate this 3-minute resolution map in which each grid cell has a specific estimated monthly domestic, agriculture, thermoelectric and industrial water use. Estimated Use of Water in the United States in 2005 (Kenny et al., 2009) is being coupled to high resolution land cover and land use, irrigation, power plant and population data sets. In addition to water demands, we tried to improve estimates of water supply from the WBM model by improving the way it controls discharge from reservoirs. Reservoirs are key characteristics of the modern hydrologic system, with a particular impact on altering the natural stream flow, thermal characteristics, and biogeochemical fluxes of rivers. Depending on dam characteristics, watershed characteristics and the purpose of building a dam, each reservoir has a specific optimum operating rule. It means that literally 84,000 dams in the National Inventory of Dams potentially follow 84,000 different sets of rules for storing and releasing water which must somehow be accounted for in our modeling exercise. In reality, there is no comprehensive observational dataset depicting these operating rules. Thus, we will simulate these rules. Our perspective is not to find the optimum operating rule per se but to find

  8. Chaotic and stable perturbed maps: 2-cycles and spatial models

    Science.gov (United States)

    Braverman, E.; Haroutunian, J.

    2010-06-01

    As the growth rate parameter increases in the Ricker, logistic and some other maps, the models exhibit an irreversible period doubling route to chaos. If a constant positive perturbation is introduced, then the Ricker model (but not the classical logistic map) experiences period doubling reversals; the break of chaos finally gives birth to a stable two-cycle. We outline the maps which demonstrate a similar behavior and also study relevant discrete spatial models where the value in each cell at the next step is defined only by the values at the cell and its nearest neighbors. The stable 2-cycle in a scalar map does not necessarily imply 2-cyclic-type behavior in each cell for the spatial generalization of the map.

  9. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States

    Science.gov (United States)

    Chaney, Nathaniel W; Wood, Eric F; McBratney, Alexander B; Hempel, Jonathan W; Nauman, Travis; Brungard, Colby W.; Odgers, Nathan P

    2016-01-01

    A new complete map of soil series probabilities has been produced for the contiguous United States at a 30 m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30 m) elevation data and coarse-scale (~ 2 km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security.

  10. Voltage interval mappings for an elliptic bursting model

    OpenAIRE

    Wojcik, Jeremy; Shilnikov, Andrey

    2013-01-01

    We employed Poincar\\'e return mappings for a parameter interval to an exemplary elliptic bursting model, the FitzHugh-Nagumo-Rinzel model. Using the interval mappings, we were able to examine in detail the bifurcations that underlie the complex activity transitions between: tonic spiking and bursting, bursting and mixed-mode oscillations, and finally, mixed-mode oscillations and quiescence in the FitzHugh-Nagumo-Rinzel model. We illustrate the wealth of information, qualitative and quantitati...

  11. Burn severity mapping using simulation modeling and satellite imagery

    Science.gov (United States)

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  12. Detailed mapping of surface units on Mars with HRSC color data

    Science.gov (United States)

    Combe, J.-Ph.; Wendt, L.; McCord, T. B.; Neukum, G.

    2008-09-01

    phyllosilicates form generally bright outcrops with complex contour lines that allow visual discrimination, even if this bright color is similar to well-illuminated bright red dust. When the surface is spectrally diverse like Marwth Vallis, contrast enhancement may be sufficient to reveal subtle color differences that correspond to different types of materials (Fig. 1a). However, those remain faint color variations as all the bands are highly correlated. Principal Component Analysis (PCA) PCA is a tool for decorrelation and noise removal that maximizes color unit differences. On Marwth Vallis, PCA highlights the diversity of the surface on a spectacular way (Fig. 1b). Those images may be compared to the maps of mineral composition obtained by [11] from spectral analysis imaging spectrometer data. Part of the information in Fig. 1b is likely related to surface roughness because of the complex geometry of observation of the instrument. Furthermore, only an extremely clear atmosphere and low-compressed datasets allow obtaining such sharp results. Consequently, the meaning of the colors varies from image-to-image and is qualitative only. More quantitative and comparable results require spectral analysis, either to remove or to normalize atmospheric and geometric effects. Spectral analysis on HRSC data For this application the surface units to be distinguished have to possess linear independent color vectors in the five-dimensional color space of HRSC data. It has been shown by [2-5] that on the global scale, only four spectral endmembers representing red, iron oxide-rich material, dark, basaltic material, and ice plus a shade component containing effects of observation and illumination geometry, are sufficient to explain most of the colors present in HRSC color imagery. We assess this at our test areas contain a maximum of surface mineralogy diversity by applying refined methods to model (and remove) the shade contribution in order to test if a further surface component can be

  13. Meteorite Unit Models for Structural Properties

    Science.gov (United States)

    Agrawal, Parul; Carlozzi, Alexander A.; Karajeh, Zaid S.; Bryson, Kathryn L.

    2017-10-01

    To assess the threat posed by an asteroid entering Earth’s atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory. Due to complex composition, it is challenging and expensive to obtain reliable material properties by means of laboratory test for a family of meteorites. In order to circumvent this challenge, meteorite unit models are developed to determine the effective material properties including Young’s modulus, compressive and tensile strengths and Poisson’s ratio, that in turn would help deduce the properties of asteroids. The meteorite unit model is a representative volume that accounts for diverse minerals, porosity, cracks and matrix composition.The Young’s Modulus and Poisson’s Ratio in the meteorite units are calculated by performing several hundreds of Monte Carlo simulations by randomly distributing the various phases inside these units. Once these values are obtained, cracks are introduced in these units. The size, orientation and distribution of cracks are derived by CT-scans and visual scans of various meteorites. Subsequently, simulations are performed to attain stress-strain relations, strength and effective modulus values in the presence of these cracks. The meteorite unit models are presented for H, L and LL ordinary chondrites, as well as for terrestrial basalt. In the case of the latter, data from the simulations is compared with experimental data to validate the methodology. These meteorite unit models will be subsequently used in fragmentation modeling of full scale asteroids.

  14. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The high-resolution Radarsat Antarctic Mapping Project (RAMP) Digital Elevation Model (DEM) combines topographic data from a variety of sources to provide consistent...

  15. Mapping the global depth to bedrock for land surface modelling

    Science.gov (United States)

    Shangguan, W.; Hengl, T.; Yuan, H.; Dai, Y. J.; Zhang, S.

    2017-12-01

    Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of Depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 130,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surfacee reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forests and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.

  16. Dipole-magnet field models based on a conformal map

    Directory of Open Access Journals (Sweden)

    P. L. Walstrom

    2012-10-01

    Full Text Available In general, generation of charged-particle transfer maps for conventional iron-pole-piece dipole magnets to third and higher order requires a model for the midplane field profile and its transverse derivatives (soft-edge model to high order and numerical integration of map coefficients. An exact treatment of the problem for a particular magnet requires use of measured magnetic data. However, in initial design of beam transport systems, users of charged-particle optics codes generally rely on magnet models built into the codes. Indeed, if maps to third order are adequate for the problem, an approximate analytic field model together with numerical map coefficient integration can capture the important features of the transfer map. The model described in this paper is based on the fact that, except at very large distances from the magnet, the magnetic field for parallel pole-face magnets with constant pole gap height and wide pole faces is basically two dimensional (2D. The field for all space outside of the pole pieces is given by a single (complex analytic expression and includes a parameter that controls the rate of falloff of the fringe field. Since the field function is analytic in the complex plane outside of the pole pieces, it satisfies two basic requirements of a field model for higher-order map codes: it is infinitely differentiable at the midplane and also a solution of the Laplace equation. It is apparently the only simple model available that combines an exponential approach to the central field with an inverse cubic falloff of field at large distances from the magnet in a single expression. The model is not intended for detailed fitting of magnetic field data, but for use in numerical map-generating codes for studying the effect of extended fringe fields on higher-order transfer maps. It is based on conformally mapping the area between the pole pieces to the upper half plane, and placing current filaments on the pole faces. An

  17. A New Perceptual Mapping Model Using Lifting Wavelet Transform

    OpenAIRE

    Taha TahaBasheer; Ehkan Phaklen; Ngadiran Ruzelita

    2017-01-01

    Perceptual mappingapproaches have been widely used in visual information processing in multimedia and internet of things (IOT) applications. Accumulative Lifting Difference (ALD) is proposed in this paper as texture mapping model based on low-complexity lifting wavelet transform, and combined with luminance masking for creating an efficient perceptual mapping model to estimate Just Noticeable Distortion (JND) in digital images. In addition to low complexity operations, experiments results sho...

  18. Geochemical landscapes of the conterminous United States; new map presentations for 22 elements

    Science.gov (United States)

    Gustavsson, N.; Bolviken, B.; Smith, D.B.; Severson, R.C.

    2001-01-01

    Geochemical maps of the conterminous United States have been prepared for seven major elements (Al, Ca, Fe, K, Mg, Na, and Ti) and 15 trace elements (As, Ba, Cr, Cu, Hg, Li, Mn, Ni, Pb, Se, Sr, V, Y, Zn, and Zr). The maps are based on an ultra low-density geochemical survey consisting of 1,323 samples of soils and other surficial materials collected from approximately 1960-1975. The data were published by Boerngen and Shacklette (1981) and black-and-white point-symbol geochemical maps were published by Shacklette and Boerngen (1984). The data have been reprocessed using weighted-median and Bootstrap procedures for interpolation and smoothing.

  19. Inferring the most probable maps of underground utilities using Bayesian mapping model

    Science.gov (United States)

    Bilal, Muhammad; Khan, Wasiq; Muggleton, Jennifer; Rustighi, Emiliano; Jenks, Hugo; Pennock, Steve R.; Atkins, Phil R.; Cohn, Anthony

    2018-03-01

    Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, environmental and economic consequences raised from the inability to locate buried underground utilities (such as pipes and cables) by developing a multi-sensor mobile device. The aim of MTU device is to locate different types of buried assets in real time with the use of automated data processing techniques and statutory records. The statutory records, even though typically being inaccurate and incomplete, provide useful prior information on what is buried under the ground and where. However, the integration of information from multiple sensors (raw data) with these qualitative maps and their visualization is challenging and requires the implementation of robust machine learning/data fusion approaches. An approach for automated creation of revised maps was developed as a Bayesian Mapping model in this paper by integrating the knowledge extracted from sensors raw data and available statutory records. The combination of statutory records with the hypotheses from sensors was for initial estimation of what might be found underground and roughly where. The maps were (re)constructed using automated image segmentation techniques for hypotheses extraction and Bayesian classification techniques for segment-manhole connections. The model consisting of image segmentation algorithm and various Bayesian classification techniques (segment recognition and expectation maximization (EM) algorithm) provided robust performance on various simulated as well as real sites in terms of predicting linear/non-linear segments and constructing refined 2D/3D maps.

  20. Quaternary geologic map of the Austin 4° x 6° quadrangle, United States

    Science.gov (United States)

    State compilations by Moore, David W.; Wermund, E.G.; edited and integrated by Moore, David W.; Richmond, Gerald Martin; Christiansen, Ann Coe; Bush, Charles A.

    1993-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1993. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Austin 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  1. Structural equation modelling for digital soil mapping

    NARCIS (Netherlands)

    Angelini, Marcos E.

    2018-01-01

    Climate change and land degradation are of increasing societal and governmental concern. For this reason, several international programs have been initiated in the last decade, such as the 4 per 1000 initiative and the Sustainable Development Goals of United Nations. The soil science community is

  2. Non-Markovianity Measure Based on Brukner-Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    Science.gov (United States)

    He, Zhi; Zhu, Lie-Qiang; Li, Li

    2017-03-01

    A non-Markovianity measure based on Brukner-Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner-Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner-Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01

  3. Non-Markovianity Measure Based on Brukner–Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    International Nuclear Information System (INIS)

    He Zhi; Zhu Lie-Qiang; Li Li

    2017-01-01

    A non-Markovianity measure based on Brukner–Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner–Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner–Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. (paper)

  4. Ground motion models used in the 2014 U.S. National Seismic Hazard Maps

    Science.gov (United States)

    Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.

    2015-01-01

    The National Seismic Hazard Maps (NSHMs) are an important component of seismic design regulations in the United States. This paper compares hazard using the new suite of ground motion models (GMMs) relative to hazard using the suite of GMMs applied in the previous version of the maps. The new source characterization models are used for both cases. A previous paper (Rezaeian et al. 2014) discussed the five NGA-West2 GMMs used for shallow crustal earthquakes in the Western United States (WUS), which are also summarized here. Our focus in this paper is on GMMs for earthquakes in stable continental regions in the Central and Eastern United States (CEUS), as well as subduction interface and deep intraslab earthquakes. We consider building code hazard levels for peak ground acceleration (PGA), 0.2-s, and 1.0-s spectral accelerations (SAs) on uniform firm-rock site conditions. The GMM modifications in the updated version of the maps created changes in hazard within 5% to 20% in WUS; decreases within 5% to 20% in CEUS; changes within 5% to 15% for subduction interface earthquakes; and changes involving decreases of up to 50% and increases of up to 30% for deep intraslab earthquakes for most U.S. sites. These modifications were combined with changes resulting from modifications in the source characterization models to obtain the new hazard maps.

  5. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus...... on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification methods. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We...

  6. SAT-MAP-CLIMATE project results[SATellite base bio-geophysical parameter MAPping and aggregation modelling for CLIMATE models

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.; Woetmann Nielsen, N.; Soegaard, H.; Boegh, E.; Hesselbjerg Christensen, J.; Jensen, N.O.; Schultz Rasmussen, M.; Astrup, P.; Dellwik, E.

    2002-08-01

    Earth Observation (EO) data from imaging satellites are analysed with respect to albedo, land and sea surface temperatures, land cover types and vegetation parameters such as the Normalized Difference Vegetation Index (NDVI) and the leaf area index (LAI). The observed parameters are used in the DMI-HIRLAM-D05 weather prediction model in order to improve the forecasting. The effect of introducing actual sea surface temperatures from NOAA AVHHR compared to climatological mean values, shows a more pronounced land-sea breeze effect which is also observable in field observations. The albedo maps from NOAA AVHRR are rather similar to the climatological mean values so for the HIRLAM model this is insignicant, yet most likely of some importance in the HIRHAM regional climate model. Land cover type maps are assigned local roughness values determined from meteorological field observations. Only maps with a spatial resolution around 25 m can adequately map the roughness variations of the typical patch size distribution in Denmark. A roughness map covering Denmark is aggregated (ie area-average non-linearly) by a microscale aggregation model that takes the non-linear turbulent responses of each roughness step change between patches in an arbitrary pattern into account. The effective roughnesses are calculated into a 15 km by 15 km grid for the HIRLAM model. The effect of hedgerows is included as an added roughness effect as a function of hedge density mapped from a digital vector map. Introducing the new effective roughness maps into the HIRLAM model appears to remedy on the seasonal wind speed bias over land and sea in spring. A new parameterisation on the effective roughness for scalar surface fluxes is developed and tested on synthetic data. Further is a method for the estimation the evapotranspiration from albedo, surface temperatures and NDVI succesfully compared to field observations. The HIRLAM predictions of water vapour at 12 GMT are used for atmospheric correction of

  7. Map Resource Packet: Course Models for the History-Social Science Framework, Grade Seven.

    Science.gov (United States)

    California State Dept. of Education, Sacramento.

    This packet of maps is an auxiliary resource to the "World History and Geography: Medieval and Early Modern Times. Course Models for the History-Social Science Framework, Grade Seven." The set includes: outline, precipitation, and elevation maps; maps for locating key places; landform maps; and historical maps. The list of maps are…

  8. A New Perceptual Mapping Model Using Lifting Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Taha TahaBasheer

    2017-01-01

    Full Text Available Perceptual mappingapproaches have been widely used in visual information processing in multimedia and internet of things (IOT applications. Accumulative Lifting Difference (ALD is proposed in this paper as texture mapping model based on low-complexity lifting wavelet transform, and combined with luminance masking for creating an efficient perceptual mapping model to estimate Just Noticeable Distortion (JND in digital images. In addition to low complexity operations, experiments results show that the proposed modelcan tolerate much more JND noise than models proposed before

  9. Floodplain Mapping for the Continental United States Using Machine Learning Techniques and Watershed Characteristics

    Science.gov (United States)

    Jafarzadegan, K.; Merwade, V.; Saksena, S.

    2017-12-01

    Using conventional hydrodynamic methods for floodplain mapping in large-scale and data-scarce regions is problematic due to the high cost of these methods, lack of reliable data and uncertainty propagation. In this study a new framework is proposed to generate 100-year floodplains for any gauged or ungauged watershed across the United States (U.S.). This framework uses Flood Insurance Rate Maps (FIRMs), topographic, climatic and land use data which are freely available for entire U.S. for floodplain mapping. The framework consists of three components, including a Random Forest classifier for watershed classification, a Probabilistic Threshold Binary Classifier (PTBC) for generating the floodplains, and a lookup table for linking the Random Forest classifier to the PTBC. The effectiveness and reliability of the proposed framework is tested on 145 watersheds from various geographical locations in the U.S. The validation results show that around 80 percent of total watersheds are predicted well, 14 percent have acceptable fit and less than five percent are predicted poorly compared to FIRMs. Another advantage of this framework is its ability in generating floodplains for all small rivers and tributaries. Due to the high accuracy and efficiency of this framework, it can be used as a preliminary decision making tool to generate 100-year floodplain maps for data-scarce regions and all tributaries where hydrodynamic methods are difficult to use.

  10. Mapping landscape units in Galicia (Spain: A first step for assessment and management?

    Directory of Open Access Journals (Sweden)

    Corbelle-Rico Eduardo

    2017-12-01

    Full Text Available In the beginning of 2015, the Regional Administration of Galicia (NW Spain set the requirements for a map of landscape units: it had to be produced in less than 3 months, it should cover the whole territory of the region (29,574 km², and it should be useful for management at a scale of 1:25,000. With these objectives in mind, we pro- posed a semiautomatic mapping methodology entirely based on the use of free software (GRASS GIS and already available cartographic information. Semi-automatic classification of different land-use patterns was at the heart of the proposed process. Consultation with experts of different academic background took place along the project. This consultation process allowed to identify both problems and opportunities. As it could be expected, the diverse epistemic community represented by the expert panel implied that one of the main challenges was to reach consensus on the understanding of the concept of landscape and the decisions leading to the mapping methodology proposed in this paper. This initiated a very interesting debate that, in our view, was centred around three main issues: the approach to the landscape, the purpose of the mapping exercise, and the ability to include subjectivity into the analysis.

  11. Next-generation forest change mapping across the United States: the landscape change monitoring system (LCMS)

    Science.gov (United States)

    Sean P. Healey; Warren B. Cohen; Yang Zhiqiang; Ken Brewer; Evan Brooks; Noel Gorelick; Mathew Gregory; Alexander Hernandez; Chengquan Huang; Joseph Hughes; Robert Kennedy; Thomas Loveland; Kevin Megown; Gretchen Moisen; Todd Schroeder; Brian Schwind; Stephen Stehman; Daniel Steinwand; James Vogelmann; Curtis Woodcock; Limin Yang; Zhe. Zhu

    2015-01-01

    Forest change information is critical in forest planning, ecosystem modeling, and in updating forest condition maps. The Landsat satellite platform has provided consistent observations of the world’s ecosystems since 1972. A number of innovative change detection algorithms have been developed to use the Landsat archive to identify and characterize forest change. The...

  12. Mappings from models presenting topological mass mechanisms to purely topological models

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Costa, J.V.; Bouffon, L.O.; Lemes, V.E.R.

    2004-01-01

    We discuss a class of mappings between the fields of the Cremmer-Sherk and pure BF model in 4D. These mappings are established both with an interactive procedure as well as with an exact mapping procedure. Related equivalencies in 5D and 3D are discussed. (author)

  13. Mappings From Models Presenting Topological Mass Mechanisms to Purely Topological Models

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Costa, J.V.; Ventura, O.S.; Bouffon, L.O.; Lemes, V.E.R.

    2004-01-01

    We discuss a class of mappings between the fields of the Cremmer-Sherk and pure BF model in 4D. These mappings are established both with an iterative procedure as well as with an exact mapping procedure. Related equivalences in 5D and 3D are discussed

  14. Thermal unit availability modeling in a regional simulation model

    International Nuclear Information System (INIS)

    Yamayee, Z.A.; Port, J.; Robinett, W.

    1983-01-01

    The System Analysis Model (SAM) developed under the umbrella of PNUCC's System Analysis Committee is capable of simulating the operation of a given load/resource scenario. This model employs a Monte-Carlo simulation to incorporate uncertainties. Among uncertainties modeled is thermal unit availability both for energy simulation (seasonal) and capacity simulations (hourly). This paper presents the availability modeling in the capacity and energy models. The use of regional and national data in deriving the two availability models, the interaction between the two and modifications made to the capacity model in order to reflect regional practices is presented. A sample problem is presented to show the modification process. Results for modeling a nuclear unit using NERC-GADS is presented

  15. Assessment and mapping of slope stability based on slope units: A ...

    Indian Academy of Sciences (India)

    Shallow landslide; infinite slope stability equation; return period precipitation; assessment; slope unit. ... 2010), logistic regression ... model to assess the hazard of shallow landslides ..... grating a fuzzy k-means classification and a Bayesian.

  16. Some findings on zero-inflated and hurdle poisson models for disease mapping.

    Science.gov (United States)

    Corpas-Burgos, Francisca; García-Donato, Gonzalo; Martinez-Beneito, Miguel A

    2018-05-27

    Zero excess in the study of geographically referenced mortality data sets has been the focus of considerable attention in the literature, with zero-inflation being the most common procedure to handle this lack of fit. Although hurdle models have also been used in disease mapping studies, their use is more rare. We show in this paper that models using particular treatments of zero excesses are often required for achieving appropriate fits in regular mortality studies since, otherwise, geographical units with low expected counts are oversmoothed. However, as also shown, an indiscriminate treatment of zero excess may be unnecessary and has a problematic implementation. In this regard, we find that naive zero-inflation and hurdle models, without an explicit modeling of the probabilities of zeroes, do not fix zero excesses problems well enough and are clearly unsatisfactory. Results sharply suggest the need for an explicit modeling of the probabilities that should vary across areal units. Unfortunately, these more flexible modeling strategies can easily lead to improper posterior distributions as we prove in several theoretical results. Those procedures have been repeatedly used in the disease mapping literature, and one should bear these issues in mind in order to propose valid models. We finally propose several valid modeling alternatives according to the results mentioned that are suitable for fitting zero excesses. We show that those proposals fix zero excesses problems and correct the mentioned oversmoothing of risks in low populated units depicting geographic patterns more suited to the data. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Combining forest inventory, satellite remote sensing, and geospatial data for mapping forest attributes of the conterminous United States

    Science.gov (United States)

    Mark Nelson; Greg Liknes; Charles H. Perry

    2009-01-01

    Analysis and display of forest composition, structure, and pattern provides information for a variety of assessments and management decision support. The objective of this study was to produce geospatial datasets and maps of conterminous United States forest land ownership, forest site productivity, timberland, and reserved forest land. Satellite image-based maps of...

  18. Relationship Marketing results: proposition of a cognitive mapping model

    Directory of Open Access Journals (Sweden)

    Iná Futino Barreto

    2015-12-01

    Full Text Available Objective - This research sought to develop a cognitive model that expresses how marketing professionals understand the relationship between the constructs that define relationship marketing (RM. It also tried to understand, using the obtained model, how objectives in this field are achieved. Design/methodology/approach – Through cognitive mapping, we traced 35 individual mental maps, highlighting how each respondent understands the interactions between RM elements. Based on the views of these individuals, we established an aggregate mental map. Theoretical foundation – The topic is based on a literature review that explores the RM concept and its main elements. Based on this review, we listed eleven main constructs. Findings – We established an aggregate mental map that represents the RM structural model. Model analysis identified that CLV is understood as the final result of RM. We also observed that the impact of most of the RM elements on CLV is brokered by loyalty. Personalization and quality, on the other hand, proved to be process input elements, and are the ones that most strongly impact others. Finally, we highlight that elements that punish customers are much less effective than elements that benefit them. Contributions - The model was able to insert core elements of RM, but absent from most formal models: CLV and customization. The analysis allowed us to understand the interactions between the RM elements and how the end result of RM (CLV is formed. This understanding improves knowledge on the subject and helps guide, assess and correct actions.

  19. A model for implementing soundscape maps in smart cities

    Directory of Open Access Journals (Sweden)

    Kang Jian

    2018-04-01

    Full Text Available Smart cities are required to engage with local communities by promoting a user-centred approach to deal with urban life issues and ultimately enhance people’s quality of life. Soundscape promotes a similar approach, based on individuals’ perception of acoustic environments. This paper aims to establish a model to implement soundscape maps for the monitoring and management of the acoustic environment and to demonstrate its feasibility. The final objective of the model is to generate visual maps related to perceptual attributes (e.g. ‘calm’, ‘pleasant’, starting from audio recordings of everyday acoustic environments. The proposed model relies on three main stages: (1 sound sources recognition and profiling, (2 prediction of the soundscape’s perceptual attributes and (3 implementation of soundscape maps. This research particularly explores the two latter phases, for which a set of sub-processes and methods is proposed and discussed. An accuracy analysiswas performed with satisfactory results: the prediction models of the second stage explained up to the 57.5% of the attributes’ variance; the cross-validation errors of the model were close to zero. These findings show that the proposed model is likely to produce representative maps of an individual’s sonic perception in a given environment.

  20. Model-Mapped RPA for Determining the Effective Coulomb Interaction

    Science.gov (United States)

    Sakakibara, Hirofumi; Jang, Seung Woo; Kino, Hiori; Han, Myung Joon; Kuroki, Kazuhiko; Kotani, Takao

    2017-04-01

    We present a new method to obtain a model Hamiltonian from first-principles calculations. The effective interaction contained in the model is determined on the basis of random phase approximation (RPA). In contrast to previous methods such as projected RPA and constrained RPA (cRPA), the new method named "model-mapped RPA" takes into account the long-range part of the polarization effect to determine the effective interaction in the model. After discussing the problems of cRPA, we present the formulation of the model-mapped RPA, together with a numerical test for the single-band Hubbard model of HgBa2CuO4.

  1. Utilizing Multi-Sensor Fire Detections to Map Fires in the United States

    Science.gov (United States)

    Howard, S. M.; Picotte, J. J.; Coan, M. J.

    2014-11-01

    In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.

  2. Geoelectric hazard maps for the Mid-Atlantic United States: 100 year extreme values and the 1989 magnetic storm

    Science.gov (United States)

    Love, Jeffrey J.; Lucas, Greg M.; Kelbert, Anna; Bedrosian, Paul A.

    2018-01-01

    Maps of extreme value geoelectric field amplitude are constructed for the Mid‐Atlantic United States, a region with high population density and critically important power grid infrastructure. Geoelectric field time series for the years 1983–2014 are estimated by convolving Earth surface impedances obtained from 61 magnetotelluric survey sites across the Mid‐Atlantic with historical 1 min (2 min Nyquist) measurements of geomagnetic variation obtained from a nearby observatory. Statistical models are fitted to the maximum geoelectric amplitudes occurring during magnetic storms, and extrapolations made to estimate threshold amplitudes only exceeded, on average, once per century. For the Mid‐Atlantic region, 100 year geoelectric exceedance amplitudes have a range of almost 3 orders of magnitude (from 0.04 V/km at a site in southern Pennsylvania to 24.29 V/km at a site in central Virginia), and they have significant geographic granularity, all of which is due to site‐to‐site differences in magnetotelluric impedance. Maps of these 100 year exceedance amplitudes resemble those of the estimated geoelectric amplitudes attained during the March 1989 magnetic storm, and, in that sense, the March 1989 storm resembles what might be loosely called a “100 year” event. The geoelectric hazard maps reported here stand in stark contrast with the 100 year geoelectric benchmarks developed for the North American Electric Reliability Corporation.

  3. Geoelectric Hazard Maps for the Mid-Atlantic United States: 100 Year Extreme Values and the 1989 Magnetic Storm

    Science.gov (United States)

    Love, Jeffrey J.; Lucas, Greg M.; Kelbert, Anna; Bedrosian, Paul A.

    2018-01-01

    Maps of extreme value geoelectric field amplitude are constructed for the Mid-Atlantic United States, a region with high population density and critically important power grid infrastructure. Geoelectric field time series for the years 1983-2014 are estimated by convolving Earth surface impedances obtained from 61 magnetotelluric survey sites across the Mid-Atlantic with historical 1 min (2 min Nyquist) measurements of geomagnetic variation obtained from a nearby observatory. Statistical models are fitted to the maximum geoelectric amplitudes occurring during magnetic storms, and extrapolations made to estimate threshold amplitudes only exceeded, on average, once per century. For the Mid-Atlantic region, 100 year geoelectric exceedance amplitudes have a range of almost 3 orders of magnitude (from 0.04 V/km at a site in southern Pennsylvania to 24.29 V/km at a site in central Virginia), and they have significant geographic granularity, all of which is due to site-to-site differences in magnetotelluric impedance. Maps of these 100 year exceedance amplitudes resemble those of the estimated geoelectric amplitudes attained during the March 1989 magnetic storm, and, in that sense, the March 1989 storm resembles what might be loosely called a "100 year" event. The geoelectric hazard maps reported here stand in stark contrast with the 100 year geoelectric benchmarks developed for the North American Electric Reliability Corporation.

  4. Topsoil organic carbon content of Europe, a new map based on a generalised additive model

    Science.gov (United States)

    de Brogniez, Delphine; Ballabio, Cristiano; Stevens, Antoine; Jones, Robert J. A.; Montanarella, Luca; van Wesemael, Bas

    2014-05-01

    There is an increasing demand for up-to-date spatially continuous organic carbon (OC) data for global environment and climatic modeling. Whilst the current map of topsoil organic carbon content for Europe (Jones et al., 2005) was produced by applying expert-knowledge based pedo-transfer rules on large soil mapping units, the aim of this study was to replace it by applying digital soil mapping techniques on the first European harmonised geo-referenced topsoil (0-20 cm) database, which arises from the LUCAS (land use/cover area frame statistical survey) survey. A generalized additive model (GAM) was calibrated on 85% of the dataset (ca. 17 000 soil samples) and a backward stepwise approach selected slope, land cover, temperature, net primary productivity, latitude and longitude as environmental covariates (500 m resolution). The validation of the model (applied on 15% of the dataset), gave an R2 of 0.27. We observed that most organic soils were under-predicted by the model and that soils of Scandinavia were also poorly predicted. The model showed an RMSE of 42 g kg-1 for mineral soils and of 287 g kg-1 for organic soils. The map of predicted OC content showed the lowest values in Mediterranean countries and in croplands across Europe, whereas highest OC content were predicted in wetlands, woodlands and in mountainous areas. The map of standard error of the OC model predictions showed high values in northern latitudes, wetlands, moors and heathlands, whereas low uncertainty was mostly found in croplands. A comparison of our results with the map of Jones et al. (2005) showed a general agreement on the prediction of mineral soils' OC content, most probably because the models use some common covariates, namely land cover and temperature. Our model however failed to predict values of OC content greater than 200 g kg-1, which we explain by the imposed unimodal distribution of our model, whose mean is tilted towards the majority of soils, which are mineral. Finally, average

  5. Mental maps and travel behaviour: meanings and models

    Science.gov (United States)

    Hannes, Els; Kusumastuti, Diana; Espinosa, Maikel León; Janssens, Davy; Vanhoof, Koen; Wets, Geert

    2012-04-01

    In this paper, the " mental map" concept is positioned with regard to individual travel behaviour to start with. Based on Ogden and Richards' triangle of meaning (The meaning of meaning: a study of the influence of language upon thought and of the science of symbolism. International library of psychology, philosophy and scientific method. Routledge and Kegan Paul, London, 1966) distinct thoughts, referents and symbols originating from different scientific disciplines are identified and explained in order to clear up the notion's fuzziness. Next, the use of this concept in two major areas of research relevant to travel demand modelling is indicated and discussed in detail: spatial cognition and decision-making. The relevance of these constructs to understand and model individual travel behaviour is explained and current research efforts to implement these concepts in travel demand models are addressed. Furthermore, these mental map notions are specified in two types of computational models, i.e. a Bayesian Inference Network (BIN) and a Fuzzy Cognitive Map (FCM). Both models are explained, and a numerical and a real-life example are provided. Both approaches yield a detailed quantitative representation of the mental map of decision-making problems in travel behaviour.

  6. Predictive spatial modelling for mapping soil salinity at continental scale

    Science.gov (United States)

    Bui, Elisabeth; Wilford, John; de Caritat, Patrice

    2017-04-01

    Soil salinity is a serious limitation to agriculture and one of the main causes of land degradation. Soil is considered saline if its electrical conductivity (EC) is > 4 dS/m. Maps of saline soil distribution are essential for appropriate land development. Previous attempts to map soil salinity over extensive areas have relied on satellite imagery, aerial electromagnetic (EM) and/or proximally sensed EM data; other environmental (climate, topographic, geologic or soil) datasets are generally not used. Having successfully modelled and mapped calcium carbonate distribution over the 0-80 cm depth in Australian soils using machine learning with point samples from the National Geochemical Survey of Australia (NGSA), we took a similar approach to map soil salinity at 90-m resolution over the continent. The input data were the EC1:5 measurements on the randomly sampled trees were built using the training data. The results were good with an average internal correlation (r) of 0.88 between predicted and measured logEC1:5 (training data), an average external correlation of 0.48 (test subset), and a Lin's concordance correlation coefficient (which evaluates the 1:1 fit) of 0.61. Therefore, the rules derived were mapped and the mean prediction for each 90-m pixel was used for the final logEC1:5 map. This is the most detailed picture of soil salinity over Australia since the 2001 National Land and Water Resources Audit and is generally consistent with it. Our map will be useful as a baseline salinity map circa 2008, when the NGSA samples were collected, for future State of the Environment reports.

  7. MAPPING GLAUCONITE UNITES WITH USING REMOTE SENSING TECHNIQUES IN NORTH EAST OF IRAN

    Directory of Open Access Journals (Sweden)

    R. Ahmadirouhani

    2014-10-01

    Full Text Available Glauconite is a greenish ferric-iron silicate mineral with micaceous structure, characteristically formed in shallow marine environments. Glauconite has been used as a pigmentation agent for oil paint, contaminants remover in environmental studies and a source of potassium in plant fertilizers, and other industries. Koppeh-dagh basin is extended in Iran, Afghanistan and Turkmenistan countries and Glauconite units exist in this basin. In this research for enhancing and mapping glauconitic units in Koppeh-dagh structural zone in north east of Iran, remote sensing techniques such as Spectral Angle Mapper classification (SAM, band ratio and band composition methods on SPOT, ASTER and Landsat data in 3 steps were applied.

  8. Removing non-urban roads from the National Land Cover Database to create improved urban maps for the United States, 1992-2011

    Science.gov (United States)

    Soulard, Christopher E.; Acevedo, William; Stehman, Stephen V.

    2018-01-01

    Quantifying change in urban land provides important information to create empirical models examining the effects of human land use. Maps of developed land from the National Land Cover Database (NLCD) of the conterminous United States include rural roads in the developed land class and therefore overestimate the amount of urban land. To better map the urban class and understand how urban lands change over time, we removed rural roads and small patches of rural development from the NLCD developed class and created four wall-to-wall maps (1992, 2001, 2006, and 2011) of urban land. Removing rural roads from the NLCD developed class involved a multi-step filtering process, data fusion using geospatial road and developed land data, and manual editing. Reference data classified as urban or not urban from a stratified random sample was used to assess the accuracy of the 2001 and 2006 urban and NLCD maps. The newly created urban maps had higher overall accuracy (98.7 percent) than the NLCD maps (96.2 percent). More importantly, the urban maps resulted in lower commission error of the urban class (23 percent versus 57 percent for the NLCD in 2006) with the trade-off of slightly inflated omission error (20 percent for the urban map, 16 percent for NLCD in 2006). The removal of approximately 230,000 km2 of rural roads from the NLCD developed class resulted in maps that better characterize the urban footprint. These urban maps are more suited to modeling applications and policy decisions that rely on quantitative and spatially explicit information regarding urban lands.

  9. Mapping the potential distribution of the invasive Red Shiner, Cyprinella lutrensis (Teleostei: Cyprinidae) across waterways of the conterminous United States

    Science.gov (United States)

    Poulos, Helen M.; Chernoff, Barry; Fuller, Pam L.; Butman, David

    2012-01-01

    Predicting the future spread of non-native aquatic species continues to be a high priority for natural resource managers striving to maintain biodiversity and ecosystem function. Modeling the potential distributions of alien aquatic species through spatially explicit mapping is an increasingly important tool for risk assessment and prediction. Habitat modeling also facilitates the identification of key environmental variables influencing species distributions. We modeled the potential distribution of an aggressive invasive minnow, the red shiner (Cyprinella lutrensis), in waterways of the conterminous United States using maximum entropy (Maxent). We used inventory records from the USGS Nonindigenous Aquatic Species Database, native records for C. lutrensis from museum collections, and a geographic information system of 20 raster climatic and environmental variables to produce a map of potential red shiner habitat. Summer climatic variables were the most important environmental predictors of C. lutrensis distribution, which was consistent with the high temperature tolerance of this species. Results from this study provide insights into the locations and environmental conditions in the US that are susceptible to red shiner invasion.

  10. The 2014 United States National Seismic Hazard Model

    Science.gov (United States)

    Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter; Mueller, Charles; Haller, Kathleen; Frankel, Arthur; Zeng, Yuehua; Rezaeian, Sanaz; Harmsen, Stephen; Boyd, Oliver; Field, Edward; Chen, Rui; Rukstales, Kenneth S.; Luco, Nicolas; Wheeler, Russell; Williams, Robert; Olsen, Anna H.

    2015-01-01

    New seismic hazard maps have been developed for the conterminous United States using the latest data, models, and methods available for assessing earthquake hazard. The hazard models incorporate new information on earthquake rupture behavior observed in recent earthquakes; fault studies that use both geologic and geodetic strain rate data; earthquake catalogs through 2012 that include new assessments of locations and magnitudes; earthquake adaptive smoothing models that more fully account for the spatial clustering of earthquakes; and 22 ground motion models, some of which consider more than double the shaking data applied previously. Alternative input models account for larger earthquakes, more complicated ruptures, and more varied ground shaking estimates than assumed in earlier models. The ground motions, for levels applied in building codes, differ from the previous version by less than ±10% over 60% of the country, but can differ by ±50% in localized areas. The models are incorporated in insurance rates, risk assessments, and as input into the U.S. building code provisions for earthquake ground shaking.

  11. Quaternary Geologic Map of the Lake of the Woods 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Sado, Edward V.; Fullerton, David S.; Goebel, Joseph E.; Ringrose, Susan M.; Edited and Integrated by Fullerton, David S.

    1995-01-01

    The Quaternary Geologic Map of the Lake of the Woods 4 deg x 6 deg Quadrangle, United States and Canada, was mapped as part of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420, NM-15). The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the Minnesota Geological Survey, the Manitoba Department of Energy and Mines, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and

  12. MODELING AND SIMULATION OF A HYDROCRACKING UNIT

    Directory of Open Access Journals (Sweden)

    HASSAN A. FARAG

    2016-06-01

    Full Text Available Hydrocracking is used in the petroleum industry to convert low quality feed stocks into high valued transportation fuels such as gasoline, diesel, and jet fuel. The aim of the present work is to develop a rigorous steady state two-dimensional mathematical model which includes conservation equations of mass and energy for simulating the operation of a hydrocracking unit. Both the catalyst bed and quench zone have been included in this integrated model. The model equations were numerically solved in both axial and radial directions using Matlab software. The presented model was tested against a real plant data in Egypt. The results indicated that a very good agreement between the model predictions and industrial values have been reported for temperature profiles, concentration profiles, and conversion in both radial and axial directions at the hydrocracking unit. Simulation of the quench zone conversion and temperature profiles in the quench zone was also included and gave a low deviation from the actual ones. In concentration profiles, the percentage deviation in the first reactor was found to be 9.28 % and 9.6% for the second reactor. The effect of several parameters such as: Pellet Heat Transfer Coefficient, Effective Radial Thermal Conductivity, Wall Heat Transfer Coefficient, Effective Radial Diffusivity, and Cooling medium (quench zone has been included in this study. The variation of Wall Heat Transfer Coefficient, Effective Radial Diffusivity for the near-wall region, gave no remarkable changes in the temperature profiles. On the other hand, even small variations of Effective Radial Thermal Conductivity, affected the simulated temperature profiles significantly, and this effect could not be compensated by the variations of the other parameters of the model.

  13. Algebraic models of local period maps and Yukawa algebras

    Science.gov (United States)

    Bandiera, Ruggero; Manetti, Marco

    2018-02-01

    We describe some L_{∞} model for the local period map of a compact Kähler manifold. Applications include the study of deformations with associated variation of Hodge structure constrained by certain closed strata of the Grassmannian of the de Rham cohomology. As a by-product, we obtain an interpretation in the framework of deformation theory of the Yukawa coupling.

  14. A blueprint for mapping and modelling ecosystem services

    NARCIS (Netherlands)

    Crossman, N.; Burkhard, B.; Nedkov, S.; Willemen, L.L.J.; Petz, K.; Palomo, I.; Drakou, E.G.; Martín-Lopez, B.; McPhearson, T.; Boyanova, K.; Alkemade, R.; Egoh, B.; Dunbar, M.D.; Maes, J.

    2013-01-01

    The inconsistency in methods to quantify and map ecosystem services challenges the development of robust values of ecosystem services in national accounts and broader policy and natural resource management decision-making. In this paper we develop and test a blueprint to give guidance on modelling

  15. Mapping and modelling ecosystem services for science, policy and practice

    NARCIS (Netherlands)

    Burkhard, B.; Crossman, N.; Nedkov, S.; Petz, K.; Alkemade, R.

    2013-01-01

    Ecosystem services are a significant research and policy topic and there are many modelling and mapping approaches aimed at understanding the stocks, demands and flows of ecosystem services on different spatial and temporal scales. The integration of geo-biophysical processes and structure

  16. tential mapping, namely electrolytic tank model, for graduate and ...

    Indian Academy of Sciences (India)

    A very useful experiment of two dimensional po- tential mapping, namely electrolytic tank model, for graduate and post graduate level physics stu- dents is given here. Laplace's equation is solved for the above and the results are compared with the experiment. The agreement· is so good that this is extended to complex ...

  17. Analysis and reconstruction of stochastic coupled map lattice models

    International Nuclear Information System (INIS)

    Coca, Daniel; Billings, Stephen A.

    2003-01-01

    The Letter introduces a general stochastic coupled lattice map model together with an algorithm to estimate the nodal equations involved based only on a small set of observable variables and in the presence of stochastic perturbations. More general forms of the Frobenius-Perron and the transfer operators, which describe the evolution of densities under the action of the CML transformation, are derived

  18. Assessment of tropospheric delay mapping function models in Egypt: Using PTD database model

    Science.gov (United States)

    Abdelfatah, M. A.; Mousa, Ashraf E.; El-Fiky, Gamal S.

    2018-06-01

    For space geodetic measurements, estimates of tropospheric delays are highly correlated with site coordinates and receiver clock biases. Thus, it is important to use the most accurate models for the tropospheric delay to reduce errors in the estimates of the other parameters. Both the zenith delay value and mapping function should be assigned correctly to reduce such errors. Several mapping function models can treat the troposphere slant delay. The recent models were not evaluated for the Egyptian local climate conditions. An assessment of these models is needed to choose the most suitable one. The goal of this paper is to test the quality of global mapping function which provides high consistency with precise troposphere delay (PTD) mapping functions. The PTD model is derived from radiosonde data using ray tracing, which consider in this paper as true value. The PTD mapping functions were compared, with three recent total mapping functions model and another three separate dry and wet mapping function model. The results of the research indicate that models are very close up to zenith angle 80°. Saastamoinen and 1/cos z model are behind accuracy. Niell model is better than VMF model. The model of Black and Eisner is a good model. The results also indicate that the geometric range error has insignificant effect on slant delay and the fluctuation of azimuth anti-symmetric is about 1%.

  19. An updated stress map of the continental United States reveals heterogeneous intraplate stress

    Science.gov (United States)

    Levandowski, Will; Herrmann, Robert B.; Briggs, Rich; Boyd, Oliver; Gold, Ryan

    2018-06-01

    Knowledge of the state of stress in Earth's crust is key to understanding the forces and processes responsible for earthquakes. Historically, low rates of natural seismicity in the central and eastern United States have complicated efforts to understand intraplate stress, but recent improvements in seismic networks and the spread of human-induced seismicity have greatly improved data coverage. Here, we compile a nationwide stress map based on formal inversions of focal mechanisms that challenges the idea that deformation in continental interiors is driven primarily by broad, uniform stress fields derived from distant plate boundaries. Despite plate-boundary compression, extension dominates roughly half of the continent, and second-order forces related to lithospheric structure appear to control extension directions. We also show that the states of stress in several active eastern United States seismic zones differ significantly from those of surrounding areas and that these anomalies cannot be explained by transient processes, suggesting that earthquakes are focused by persistent, locally derived sources of stress. Such spatially variable intraplate stress appears to justify the current, spatially variable estimates of seismic hazard. Future work to quantify sources of stress, stressing-rate magnitudes and their relationship with strain and earthquake rates could allow prospective mapping of intraplate hazard.

  20. Mapping the world: cartographic and geographic visualization by the United Nations Geospatial Information Section (formerly Cartographic Section)

    Science.gov (United States)

    Kagawa, Ayako; Le Sourd, Guillaume

    2018-05-01

    United Nations Secretariat activities, mapping began in 1946, and by 1951, the need for maps increased and an office with a team of cartographers was established. Since then, with the development of technologies including internet, remote sensing, unmanned aerial systems, relationship database management and information systems, geospatial information provides an ever-increasing variation of support to the work of the Organization for planning of operations, decision-making and monitoring of crises. However, the need for maps has remained intact. This presentation aims to highlight some of the cartographic representation styles over the decades by reviewing the evolution of selected maps by the office, and noting the changing cognitive and semiotic aspects of cartographic and geographic visualization required by the United Nations. Through presentation and analysis of these maps, the changing dynamics of the Organization in information management can be reflected, with a reminder of the continuing and expanding deconstructionist role of a cartographer, now geospatial information management experts.

  1. Distributed MAP in the SpinJa Model Checker

    Directory of Open Access Journals (Sweden)

    Stefan Vijzelaar

    2011-10-01

    Full Text Available Spin in Java (SpinJa is an explicit state model checker for the Promela modelling language also used by the SPIN model checker. Designed to be extensible and reusable, the implementation of SpinJa follows a layered approach in which each new layer extends the functionality of the previous one. While SpinJa has preliminary support for shared-memory model checking, it did not yet support distributed-memory model checking. This tool paper presents a distributed implementation of a maximal accepting predecessors (MAP search algorithm on top of SpinJa.

  2. Linear models for joint association and linkage QTL mapping

    Directory of Open Access Journals (Sweden)

    Fernando Rohan L

    2009-09-01

    Full Text Available Abstract Background Populational linkage disequilibrium and within-family linkage are commonly used for QTL mapping and marker assisted selection. The combination of both results in more robust and accurate locations of the QTL, but models proposed so far have been either single marker, complex in practice or well fit to a particular family structure. Results We herein present linear model theory to come up with additive effects of the QTL alleles in any member of a general pedigree, conditional to observed markers and pedigree, accounting for possible linkage disequilibrium among QTLs and markers. The model is based on association analysis in the founders; further, the additive effect of the QTLs transmitted to the descendants is a weighted (by the probabilities of transmission average of the substitution effects of founders' haplotypes. The model allows for non-complete linkage disequilibrium QTL-markers in the founders. Two submodels are presented: a simple and easy to implement Haley-Knott type regression for half-sib families, and a general mixed (variance component model for general pedigrees. The model can use information from all markers. The performance of the regression method is compared by simulation with a more complex IBD method by Meuwissen and Goddard. Numerical examples are provided. Conclusion The linear model theory provides a useful framework for QTL mapping with dense marker maps. Results show similar accuracies but a bias of the IBD method towards the center of the region. Computations for the linear regression model are extremely simple, in contrast with IBD methods. Extensions of the model to genomic selection and multi-QTL mapping are straightforward.

  3. A REVIEW OF RECENT RESEARCH IN INDOOR MODELLING & MAPPING

    Directory of Open Access Journals (Sweden)

    M. Gunduz

    2016-06-01

    Full Text Available Indoor modeling and mapping has been an active area of research in last 20 years in order to tackle the problems related to positioning and tracking of people and objects indoors, and provides many opportunities for several domains ranging from emergency response to logistics in micro urban spaces. The outputs of recent research in the field have been presented in several scientific publications and events primarily related to spatial information science and technology. This paper summarizes the outputs of last 10 years of research on indoor modeling and mapping within a proper classification which covers 7 areas, i.e. Information Acquisition by Sensors, Model Definition, Model Integration, Indoor Positioning and LBS, Routing & Navigation Methods, Augmented and Virtual Reality Applications, and Ethical Issues. Finally, the paper outlines the current and future research directions and concluding remarks.

  4. a Review of Recent Research in Indoor Modelling & Mapping

    Science.gov (United States)

    Gunduz, M.; Isikdag, U.; Basaraner, M.

    2016-06-01

    Indoor modeling and mapping has been an active area of research in last 20 years in order to tackle the problems related to positioning and tracking of people and objects indoors, and provides many opportunities for several domains ranging from emergency response to logistics in micro urban spaces. The outputs of recent research in the field have been presented in several scientific publications and events primarily related to spatial information science and technology. This paper summarizes the outputs of last 10 years of research on indoor modeling and mapping within a proper classification which covers 7 areas, i.e. Information Acquisition by Sensors, Model Definition, Model Integration, Indoor Positioning and LBS, Routing & Navigation Methods, Augmented and Virtual Reality Applications, and Ethical Issues. Finally, the paper outlines the current and future research directions and concluding remarks.

  5. Seniority mappings for probing phenomenological nuclear boson models

    International Nuclear Information System (INIS)

    De Kock, E.A.

    1988-12-01

    The interacting boson model (IBM) and interacting boson-fermion model (IBFM) are discussed. The main ideas of boson mapping of fermion systems are introduced using Holstein-Primakoff and Dyson-Maleev mappings of angular momentum operators. Generalized Dyson-Maleev (GDM) and Holstein-Primakoff (GHP) mappings are included. In fermoin problems, the degrees of freedom of collective motion are described by a collective subalgebra of the complete bifermion subalgebra. GDM mapping of Sp(6) generators, the transformation to collect bosons and truncation to these bosons led to collective sd-boson realization of Sp(6) algebra. This resulted in an IBM-like description of the collective subspace. Non-hermitian and existing hermitian forms are indicated in the assumed structure of an IBM Hamiltonian Boson mapping based on seniority considerations and involving single-j shell approximations of the shell model are examined. One method utilized truncation of a shell model space to a space spanned by monopole (S) and quadrupole (D) pairs. The association between states in truncated fermion and sd-boson spaces constructs boson images of fermion operators by equating boson and fermion matrix elements. To obtain boson images with IBM-like structures, a zero-order approximation was adopted. This approximation retains only N-body terms in the images of N-body fermion operators. A similarity transformation re-expressing GDM images of single-j shell fermion operators in seniority bosons was applied to the GDM image of a general shell model Hamiltonian. Numerical results for the surface-delta interaction show that truncation to s- and d-bosons in the seniority image of a two-body operator is not allowed if N≥2. This transformation was extended to odd fermion systems and applied to the image of the quadrupole pairing interaction. 79 refs., 3 figs., 4 tabs

  6. Geologic Map of the Derain (H-10) Quadrangle on Mercury: The Challenges of Consistently Mapping the Intercrater Plains Unit

    Science.gov (United States)

    Whitten, J. L.; Fassett, C. I.; Ostrach, L. R.

    2018-06-01

    We present the initial mapping of the H-10 quadrangle on Mercury, a region that was imaged for the first time by MESSENGER. Geologic map with assist with further characterization of the intercrater plains and their possible formation mechanism(s).

  7. Quaternary Geologic Map of the Lake Nipigon 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Sado, Edward V.; Fullerton, David S.; Farrand, William R.; Edited and Integrated by Fullerton, David S.

    1994-01-01

    The Quaternary Geologic Map of the Lake Nipigon 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the University of Michigan, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the map unit descriptions. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of

  8. A case study on point process modelling in disease mapping

    DEFF Research Database (Denmark)

    Møller, Jesper; Waagepetersen, Rasmus Plenge; Benes, Viktor

    2005-01-01

    of the risk on the covariates. Instead of using the common areal level approaches we base the analysis on a Bayesian approach for a log Gaussian Cox point process with covariates. Posterior characteristics for a discretized version of the log Gaussian Cox process are computed using Markov chain Monte Carlo...... methods. A particular problem which is thoroughly discussed is to determine a model for the background population density. The risk map shows a clear dependency with the population intensity models and the basic model which is adopted for the population intensity determines what covariates influence...... the risk of TBE. Model validation is based on the posterior predictive distribution of various summary statistics....

  9. Stress field modelling from digital geological map data

    Science.gov (United States)

    Albert, Gáspár; Barancsuk, Ádám; Szentpéteri, Krisztián

    2016-04-01

    To create a model for the lithospheric stress a functional geodatabase is required which contains spatial and geodynamic parameters. A digital structural-geological map is a geodatabase, which usually contains enough attributes to create a stress field model. Such a model is not accurate enough for engineering-geological purposes because simplifications are always present in a map, but in many cases maps are the only sources for a tectonic analysis. The here presented method is designed for field geologist, who are interested to see the possible realization of the stress field over the area, on which they are working. This study presents an application which can produce a map of 3D stress vectors from a kml-file. The core application logic is implemented on top of a spatially aware relational database management system. This allows rapid and geographically accurate analysis of the imported geological features, taking advantage of standardized spatial algorithms and indexing. After pre-processing the map features in a GIS, according to the Type-Property-Orientation naming system, which was described in a previous study (Albert et al. 2014), the first stage of the algorithm generates an irregularly spaced point cloud by emitting a pattern of points within a user-defined buffer zone around each feature. For each point generated, a component-wise approximation of the tensor field at the point's position is computed, derived from the original feature's geodynamic properties. In a second stage a weighted moving average method calculates the stress vectors in a regular grid. Results can be exported as geospatial data for further analysis or cartographic visualization. Computation of the tensor field's components is based on the implementation of the Mohr diagram of a compressional model, which uses a Coulomb fracture criterion. Using a general assumption that the main principal stress must be greater than the stress from the overburden, the differential stress is

  10. AUTOMATIC TEXTURE MAPPING OF ARCHITECTURAL AND ARCHAEOLOGICAL 3D MODELS

    Directory of Open Access Journals (Sweden)

    T. P. Kersten

    2012-07-01

    Full Text Available Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  11. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    Science.gov (United States)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  12. Map-Based Channel Model for Urban Macrocell Propagation Scenarios

    Directory of Open Access Journals (Sweden)

    Jose F. Monserrat

    2015-01-01

    Full Text Available The evolution of LTE towards 5G has started and different research projects and institutions are in the process of verifying new technology components through simulations. Coordination between groups is strongly recommended and, in this sense, a common definition of test cases and simulation models is needed. The scope of this paper is to present a realistic channel model for urban macrocell scenarios. This model is map-based and takes into account the layout of buildings situated in the area under study. A detailed description of the model is given together with a comparison with other widely used channel models. The benchmark includes a measurement campaign in which the proposed model is shown to be much closer to the actual behavior of a cellular system. Particular attention is given to the outdoor component of the model, since it is here where the proposed approach is showing main difference with other previous models.

  13. The General Urban Plan of Casimcea territorial administrative unit, map of natural and anthropogenic risks

    Directory of Open Access Journals (Sweden)

    Sorin BĂNICĂ

    2013-08-01

    Full Text Available The General Urban Plan represents the legal ground for any development action proposed. After endorsement and approval as required by law, GUP is act of authority of local government for the area in which it applies. The aim is to establish priorities regulations applied in land use planning and construction of structures. In terms of geographical location, the administrative territory of Casimcea, Tulcea county, falls in the central Northwest Plateau Casimcei. This is the second unit of the Central Dobrogea Plateau. Geographical location in southeastern Romania, climatic and relief conditions and anthropogenic pressure, expose the village administrative territorial unit Casimcea, permanent susceptibility to produce natural and antropogenical risks. In this context, we identified the following categories of natural and anthropogenic risks: i natural risk phenomena (earthquakes, strong winds, heavy rains, floods caused by overflowing or precipitation, erosion of river banks and torrents, gravitational processes, rain droplet erosion and surface soil erosion; and ii anthropogenic risk phenomena (overgrazing, chemicals use in agriculture, road transport infrastructure and electricity, wind turbines for electricity production, waste deposits, agro-zootechnical complexs, and human cemeteries. Extending their surface was materialized by creating a map of natural and anthropogenic risk on Casimcea territorial administrative unit, explaining the share of potentially affected areas as territorial balance

  14. Unit testing, model validation, and biological simulation.

    Science.gov (United States)

    Sarma, Gopal P; Jacobs, Travis W; Watts, Mark D; Ghayoomie, S Vahid; Larson, Stephen D; Gerkin, Richard C

    2016-01-01

    The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models.

  15. Map algebra and model algebra for integrated model building

    NARCIS (Netherlands)

    Schmitz, O.; Karssenberg, D.J.; Jong, K. de; Kok, J.-L. de; Jong, S.M. de

    2013-01-01

    Computer models are important tools for the assessment of environmental systems. A seamless workflow of construction and coupling of model components is essential for environmental scientists. However, currently available software packages are often tailored either to the construction of model

  16. MELCOR modeling of Fukushima unit 2 accident

    Energy Technology Data Exchange (ETDEWEB)

    Sevon, Tuomo [VTT Technical Research Centre of Finland, Espoo (Finland)

    2014-12-15

    A MELCOR model of the Fukushima Daiichi unit 2 accident was created in order to get a better understanding of the event and to improve severe accident modeling methods. The measured pressure and water level could be reproduced relatively well with the calculation. This required adjusting the RCIC system flow rates and containment leak area so that a good match to the measurements is achieved. Modeling of gradual flooding of the torus room with water that originated from the tsunami was necessary for a satisfactory reproduction of the measured containment pressure. The reactor lower head did not fail in this calculation, and all the fuel remained in the RPV. 13 % of the fuel was relocated from the core area, and all the fuel rods lost their integrity, releasing at least some volatile radionuclides. According to the calculation, about 90 % of noble gas inventory and about 0.08 % of cesium inventory was released to the environment. The release started 78 h after the earthquake, and a second release peak came at 90 h. Uncertainties in the calculation are very large because there is scarce public data available about the Fukushima power plant and because it is not yet possible to inspect the status of the reactor and the containment. Uncertainty in the calculated cesium release is larger than factor of ten.

  17. Data layer integration for the national map of the united states

    Science.gov (United States)

    Usery, E.L.; Finn, M.P.; Starbuck, M.

    2009-01-01

    The integration of geographic data layers in multiple raster and vector formats, from many different organizations and at a variety of resolutions and scales, is a significant problem for The National Map of the United States being developed by the U.S. Geological Survey. Our research has examined data integration from a layer-based approach for five of The National Map data layers: digital orthoimages, elevation, land cover, hydrography, and transportation. An empirical approach has included visual assessment by a set of respondents with statistical analysis to establish the meaning of various types of integration. A separate theoretical approach with established hypotheses tested against actual data sets has resulted in an automated procedure for integration of specific layers and is being tested. The empirical analysis has established resolution bounds on meanings of integration with raster datasets and distance bounds for vector data. The theoretical approach has used a combination of theories on cartographic transformation and generalization, such as T??pfer's radical law, and additional research concerning optimum viewing scales for digital images to establish a set of guiding principles for integrating data of different resolutions.

  18. Modelling and mapping the topsoil organic carbon content for Tanzania

    Science.gov (United States)

    Kempen, Bas; Kaaya, Abel; Ngonyani Mhaiki, Consolatha; Kiluvia, Shani; Ruiperez-Gonzalez, Maria; Batjes, Niels; Dalsgaard, Soren

    2014-05-01

    Soil organic carbon (SOC), held in soil organic matter, is a key indicator of soil health and plays an important role in the global carbon cycle. The soil can act as a net source or sink of carbon depending on land use and management. Deforestation and forest degradation lead to the release of vast amounts of carbon from the soil in the form of greenhouse gasses, especially in tropical countries. Tanzania has a high deforestation rate: it is estimated that the country loses 1.1% of its total forested area annually. During 2010-2013 Tanzania has been a pilot country under the UN-REDD programme. This programme has supported Tanzania in its initial efforts towards reducing greenhouse gas emission from forest degradation and deforestation and towards preserving soil carbon stocks. Formulation and implementation of the national REDD strategy requires detailed information on the five carbon pools among these the SOC pool. The spatial distribution of SOC contents and stocks was not available for Tanzania. The initial aim of this research, was therefore to develop high-resolution maps of the SOC content for the country. The mapping exercise was carried out in a collaborative effort with four Tanzanian institutes and data from the Africa Soil Information Service initiative (AfSIS). The mapping exercise was provided with over 3200 field observations on SOC from four sources; this is the most comprehensive soil dataset collected in Tanzania so far. The main source of soil samples was the National Forest Monitoring and Assessment (NAFORMA). The carbon maps were generated by means of digital soil mapping using regression-kriging. Maps at 250 m spatial resolution were developed for four depth layers: 0-10 cm, 10-20 cm, 20-30 cm, and 0-30 cm. A total of 37 environmental GIS data layers were prepared for use as covariates in the regression model. These included vegetation indices, terrain parameters, surface temperature, spectral reflectances, a land cover map and a small

  19. Denitrification and Ecosystem Services: Mapping and Modeling Conservation Effects

    Science.gov (United States)

    Morris, C. K.; Walter, T.

    2012-12-01

    Precision conservation is the latest effort to increase higher efficiency in agricultural best management practices by considering the spatial and temporal variability in agroecosystems. The authors have developed a framework for incorporating the ecosystem service of denitrification into an existing precision conservation mapping tool. The model identifies areas of denitirification and quantifies potential denitrification when a conservation practice is adopted. The methodology is being tested in a small subwatershed in the Upper Susquehanna Basin of New York State.

  20. A human motion model based on maps for navigation systems

    Directory of Open Access Journals (Sweden)

    Kaiser Susanna

    2011-01-01

    Full Text Available Abstract Foot-mounted indoor positioning systems work remarkably well when using additionally the knowledge of floor-plans in the localization algorithm. Walls and other structures naturally restrict the motion of pedestrians. No pedestrian can walk through walls or jump from one floor to another when considering a building with different floor-levels. By incorporating known floor-plans in sequential Bayesian estimation processes such as particle filters (PFs, long-term error stability can be achieved as long as the map is sufficiently accurate and the environment sufficiently constraints pedestrians' motion. In this article, a new motion model based on maps and floor-plans is introduced that is capable of weighting the possible headings of the pedestrian as a function of the local environment. The motion model is derived from a diffusion algorithm that makes use of the principle of a source effusing gas and is used in the weighting step of a PF implementation. The diffusion algorithm is capable of including floor-plans as well as maps with areas of different degrees of accessibility. The motion model more effectively represents the probability density function of possible headings that are restricted by maps and floor-plans than a simple binary weighting of particles (i.e., eliminating those that crossed walls and keeping the rest. We will show that the motion model will help for obtaining better performance in critical navigation scenarios where two or more modes may be competing for some of the time (multi-modal scenarios.

  1. Spectral flow as a map between N = (2 , 0)-models

    Science.gov (United States)

    Athanasopoulos, P.; Faraggi, A. E.; Gepner, D.

    2014-07-01

    The space of (2 , 0) models is of particular interest among all heterotic-string models because it includes the models with the minimal SO (10) unification structure, which is well motivated by the Standard Model of particle physics data. The fermionic Z2 ×Z2 heterotic-string models revealed the existence of a new symmetry in the space of string configurations under the exchange of spinors and vectors of the SO (10) GUT group, dubbed spinor-vector duality. In this paper we generalize this idea to arbitrary internal rational conformal field theories (RCFTs). We explain how the spectral flow operator normally acting within a general (2 , 2) theory can be used as a map between (2 , 0) models. We describe the details, give an example and propose more simple currents that can be used in a similar way.

  2. An Improved Information Value Model Based on Gray Clustering for Landslide Susceptibility Mapping

    Directory of Open Access Journals (Sweden)

    Qianqian Ba

    2017-01-01

    Full Text Available Landslides, as geological hazards, cause significant casualties and economic losses. Therefore, it is necessary to identify areas prone to landslides for prevention work. This paper proposes an improved information value model based on gray clustering (IVM-GC for landslide susceptibility mapping. This method uses the information value derived from an information value model to achieve susceptibility classification and weight determination of landslide predisposing factors and, hence, obtain the landslide susceptibility of each study unit based on the clustering analysis. Using a landslide inventory of Chongqing, China, which contains 8435 landslides, three landslide susceptibility maps were generated based on the common information value model (IVM, an information value model improved by an analytic hierarchy process (IVM-AHP and our new improved model. Approximately 70% (5905 of the inventory landslides were used to generate the susceptibility maps, while the remaining 30% (2530 were used to validate the results. The training accuracies of the IVM, IVM-AHP and IVM-GC were 81.8%, 78.7% and 85.2%, respectively, and the prediction accuracies were 82.0%, 78.7% and 85.4%, respectively. The results demonstrate that all three methods perform well in evaluating landslide susceptibility. Among them, IVM-GC has the best performance.

  3. Quantitative analysis of terrain units mapped in the northern quarter of Venus from Venera 15/16 data

    Science.gov (United States)

    Schaber, G. G.

    1991-01-01

    The contacts between 34 geological/geomorphic terrain units in the northern quarter of Venus mapped from Venera 15/16 data were digitized and converted to a Sinusoidal Equal-Area projection. The result was then registered with a merged Pioneer Venus/Venera 15/16 altimetric database, root mean square (rms) slope values, and radar reflectivity values derived from Pioneer Venus. The resulting information includes comparisons among individual terrain units and terrain groups to which they are assigned in regard to percentage of map area covered, elevation, rms slopes, distribution of suspected craters greater than 10 km in diameter.

  4. Visualization of Nonlinear Classification Models in Neuroimaging - Signed Sensitivity Maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Schmah, Tanya; Madsen, Kristoffer Hougaard

    2012-01-01

    Classification models are becoming increasing popular tools in the analysis of neuroimaging data sets. Besides obtaining good prediction accuracy, a competing goal is to interpret how the classifier works. From a neuroscientific perspective, we are interested in the brain pattern reflecting...... the underlying neural encoding of an experiment defining multiple brain states. In this relation there is a great desire for the researcher to generate brain maps, that highlight brain locations of importance to the classifiers decisions. Based on sensitivity analysis, we develop further procedures for model...... direction the individual locations influence the classification. We illustrate the visualization procedure on a real data from a simple functional magnetic resonance imaging experiment....

  5. Performance of USGS one-year earthquake hazard map for natural and induced seismicity in the central and eastern United States

    Science.gov (United States)

    Brooks, E. M.; Stein, S.; Spencer, B. D.; Salditch, L.; Petersen, M. D.; McNamara, D. E.

    2017-12-01

    Seismicity in the central United States has dramatically increased since 2008 due to the injection of wastewater produced by oil and gas extraction. In response, the USGS created a one-year probabilistic hazard model and map for 2016 to describe the increased hazard posed to the central and eastern United States. Using the intensity of shaking reported to the "Did You Feel It?" system during 2016, we assess the performance of this model. Assessing the performance of earthquake hazard maps for natural and induced seismicity is conceptually similar but has practical differences. Maps that have return periods of hundreds or thousands of years— as commonly used for natural seismicity— can be assessed using historical intensity data that also span hundreds or thousands of years. Several different features stand out when assessing the USGS 2016 seismic hazard model for the central and eastern United States from induced and natural earthquakes. First, the model can be assessed as a forecast in one year, because event rates are sufficiently high to permit evaluation with one year of data. Second, because these models are projections from the previous year thus implicitly assuming that fluid injection rates remain the same, misfit may reflect changes in human activity. Our results suggest that the model was very successful by the metric implicit in probabilistic hazard seismic assessment: namely, that the fraction of sites at which the maximum shaking exceeded the mapped value is comparable to that expected. The model also did well by a misfit metric that compares the spatial patterns of predicted and maximum observed shaking. This was true for both the central and eastern United States as a whole, and for the region within it with the highest amount of seismicity, Oklahoma and its surrounding area. The model performed least well in northern Texas, over-stating hazard, presumably because lower oil and gas prices and regulatory action reduced the water injection volume

  6. Competency Maps: an Effective Model to Integrate Professional Competencies Across a STEM Curriculum

    Science.gov (United States)

    Sánchez Carracedo, Fermín; Soler, Antonia; Martín, Carme; López, David; Ageno, Alicia; Cabré, Jose; Garcia, Jordi; Aranda, Joan; Gibert, Karina

    2018-05-01

    Curricula designed in the context of the European Higher Education Area need to be based on both domain-specific and professional competencies. Whereas universities have had extensive experience in developing students' domain-specific competencies, fostering professional competencies poses a new challenge we need to face. This paper presents a model to globally develop professional competencies in a STEM (science, technology, engineering, and mathematics) degree program, and assesses the results of its implementation after 4 years. The model is based on the use of competency maps, in which each competency is defined in terms of competency units. Each competency unit is described by a set of expected learning outcomes at three domain levels. This model allows careful analysis, revision, and iteration for an effective integration of professional competencies in domain-specific subjects. A global competency map is also designed, including all the professional competency learning outcomes to be achieved throughout the degree. This map becomes a useful tool for curriculum designers and coordinators. The results were obtained from four sources: (1) students' grades (classes graduated from 2013 to 2016, the first 4 years of the new Bachelor's Degree in Informatics Engineering at the Barcelona School of Informatics); (2) students' surveys (answered by students when they finished the degree); (3) the government employment survey, where former students evaluate their satisfaction of the received training in the light of their work experience; and (4) the Everis Foundation University-Enterprise Ranking, answered by over 2000 employers evaluating their satisfaction regarding their employees' university training, where the Barcelona School of Informatics scores first in the national ranking. The results show that competency maps are a good tool for developing professional competencies in a STEM degree.

  7. Modeling and experiment to threshing unit of stripper combine ...

    African Journals Online (AJOL)

    Modeling and experiment to threshing unit of stripper combine. ... were conducted with the different feed rates and drum rotator speeds for the rice stripped mixtures. ... and damage as well as for threshing unit design and process optimization.

  8. Model United Nations comes to CERN

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    From 20 to 22 January pupils from international schools in Switzerland, France and Turkey came to CERN for three days of "UN-type" conferences.   The MUN organisers, who are all pupils at the Lycée international in Ferney-Voltaire, worked tirelessly for weeks to make the event a real success. The members of the MUN/MFNU association at the Lycée international in Ferney-Voltaire spent several months preparing for their first "Model United Nations" (MUN),  a simulation of a UN session at which young "diplomats" take on the role of delegates representing different nations to discuss a given topic. And as their chosen topic was science, it was only natural that they should hold the event at CERN. For three days, from 20 to 22 January, no fewer than 340 pupils from 12 international schools* in Switzerland, France and Turkey came together to deliberate, consult and debate on the importance of scientific progress fo...

  9. Integrating satellite imagery with simulation modeling to improve burn severity mapping

    Science.gov (United States)

    Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon

    2014-01-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...

  10. Navigating Without Road Maps: The Early Business of Automobile Route Guide Publishing in the United States

    Science.gov (United States)

    Bauer, John T.

    2018-05-01

    In the United States, automobile route guides were important precursors to the road maps that Americans are familiar with today. Listing turn-by-turn directions between cities, they helped drivers navigate unmarked, local roads. This paper examines the early business of route guide publishing through the Official Automobile Blue Book series of guides. It focuses specifically on the expansion, contraction, and eventual decline of the Blue Book publishing empire and also the work of professional "pathfinders" that formed the company's data-gathering infrastructure. Be- ginning in 1901 with only one volume, the series steadily grew until 1920, when thirteen volumes were required to record thousands of routes throughout the country. Bankruptcy and corporate restructuring in 1921 forced the publishers to condense the guide into a four-volume set in 1922. Competition from emerging sheet maps, along with the nationwide standardization of highway numbers, pushed a switch to an atlas format in 1926. Blue Books, however, could not remain competitive and disappeared after 1937. "Pathfinders" were employed by the publishers and equipped with reliable automobiles. Soon they developed a shorthand notation system for recording field notes and efficiently incorporating them into the development workflow. Although pathfinders did not call themselves cartographers, they were geographical data field collectors and considered their work to be an "art and a science," much the same as modern-day cartographers. The paper concludes with some comments about the place of route guides in the history of American commercial cartography and draws some parallels between "pathfinders" and the digital road mappers of today.

  11. A CASE STUDY ON POINT PROCESS MODELLING IN DISEASE MAPPING

    Directory of Open Access Journals (Sweden)

    Viktor Beneš

    2011-05-01

    Full Text Available We consider a data set of locations where people in Central Bohemia have been infected by tick-borne encephalitis (TBE, and where population census data and covariates concerning vegetation and altitude are available. The aims are to estimate the risk map of the disease and to study the dependence of the risk on the covariates. Instead of using the common area level approaches we base the analysis on a Bayesian approach for a log Gaussian Cox point process with covariates. Posterior characteristics for a discretized version of the log Gaussian Cox process are computed using Markov chain Monte Carlo methods. A particular problem which is thoroughly discussed is to determine a model for the background population density. The risk map shows a clear dependency with the population intensity models and the basic model which is adopted for the population intensity determines what covariates influence the risk of TBE. Model validation is based on the posterior predictive distribution of various summary statistics.

  12. Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model

    Directory of Open Access Journals (Sweden)

    T. M. Saloranta

    2012-11-01

    Full Text Available Daily maps of snow conditions have been produced in Norway with the seNorge snow model since 2004. The seNorge snow model operates with 1 × 1 km resolution, uses gridded observations of daily temperature and precipitation as its input forcing, and simulates, among others, snow water equivalent (SWE, snow depth (SD, and the snow bulk density (ρ. In this paper the set of equations contained in the seNorge model code is described and a thorough spatiotemporal statistical evaluation of the model performance from 1957–2011 is made using the two major sets of extensive in situ snow measurements that exist for Norway. The evaluation results show that the seNorge model generally overestimates both SWE and ρ, and that the overestimation of SWE increases with elevation throughout the snow season. However, the R2-values for model fit are 0.60 for (log-transformed SWE and 0.45 for ρ, indicating that after removal of the detected systematic model biases (e.g. by recalibrating the model or expressing snow conditions in relative units the model performs rather well. The seNorge model provides a relatively simple, not very data-demanding, yet nonetheless process-based method to construct snow maps of high spatiotemporal resolution. It is an especially well suited alternative for operational snow mapping in regions with rugged topography and large spatiotemporal variability in snow conditions, as is the case in the mountainous Norway.

  13. A multi-model ensemble approach to seabed mapping

    Science.gov (United States)

    Diesing, Markus; Stephens, David

    2015-06-01

    Seabed habitat mapping based on swath acoustic data and ground-truth samples is an emergent and active marine science discipline. Significant progress could be achieved by transferring techniques and approaches that have been successfully developed and employed in such fields as terrestrial land cover mapping. One such promising approach is the multiple classifier system, which aims at improving classification performance by combining the outputs of several classifiers. Here we present results of a multi-model ensemble applied to multibeam acoustic data covering more than 5000 km2 of seabed in the North Sea with the aim to derive accurate spatial predictions of seabed substrate. A suite of six machine learning classifiers (k-Nearest Neighbour, Support Vector Machine, Classification Tree, Random Forest, Neural Network and Naïve Bayes) was trained with ground-truth sample data classified into seabed substrate classes and their prediction accuracy was assessed with an independent set of samples. The three and five best performing models were combined to classifier ensembles. Both ensembles led to increased prediction accuracy as compared to the best performing single classifier. The improvements were however not statistically significant at the 5% level. Although the three-model ensemble did not perform significantly better than its individual component models, we noticed that the five-model ensemble did perform significantly better than three of the five component models. A classifier ensemble might therefore be an effective strategy to improve classification performance. Another advantage is the fact that the agreement in predicted substrate class between the individual models of the ensemble could be used as a measure of confidence. We propose a simple and spatially explicit measure of confidence that is based on model agreement and prediction accuracy.

  14. Citygml Modelling for Singapore 3d National Mapping

    Science.gov (United States)

    Soon, K. H.; Khoo, V. H. S.

    2017-10-01

    Since 2014, the Land Survey Division of Singapore Land Authority (SLA) has spearheaded a Whole-of-Government (WOG) 3D mapping project to create and maintain a 3D national map for Singapore. The implementation of the project is divided into two phases. The first phase of the project, which was based on airborne data collection, has produced 3D models for Relief, Building, Vegetation and Waterbody. This part of the work was completed in 2016. To complement the first phase, the second phase used mobile imaging and scanning technique. This phase is targeted to be completed by the mid of 2017 and is creating 3D models for Transportation, CityFurniture, Bridge and Tunnel. The project has extensively adopted the Open Geospatial Consortium (OGC)'s CityGML standard. Out of 10 currently supported thematic modules in CityGML 2.0, the project has implemented 8. The paper describes the adoption of CityGML in the project, and discusses challenges, data validations and management of the models.

  15. Mapping VIPS concepts for nursing interventions to the ISO reference terminology model for nursing actions: A collaborative Scandinavian analysis

    DEFF Research Database (Denmark)

    Ehnfors, Margareta; Angermo, Lilly Marit; Berring, Lene

    2006-01-01

    analyzed the VIPS model's concepts for nursing interventions using prototypical examples of nursing actions, involving 233 units of analyses, and collaborated in mapping the two models. All nursing interventions in the VIPS model comprise actions and targets, but a few lack explicit expressions of means......The aims of this study were to analyze the coherence between the concepts for nursing interventions in the Swedish VIPS model for nursing recording and the ISO Reference Terminology Model for Nursing Actions and to identify areas in the two models for further development. Seven Scandinavian experts....... In most cases, the recipient of care is implicit. Expressions for the aim of an action are absent from the ISO model. By this mapping we identified areas for future development of the VIPS model and the experience from nursing terminology work in Scandinavia can contribute to the international...

  16. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States

    Science.gov (United States)

    Wobus, Cameron; Gutmann, Ethan; Jones, Russell; Rissing, Matthew; Mizukami, Naoki; Lorie, Mark; Mahoney, Hardee; Wood, Andrew W.; Mills, David; Martinich, Jeremy

    2017-12-01

    A growing body of work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus potentially increasing flood damages in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1 % annual exceedance probability (1 % AEP, or 100-year) flood events at 57 116 stream reaches across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations and trajectories of future damages that vary substantially depending on the greenhouse gas (GHG) emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches USD 4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long term in terms of reduced flood damages. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages on a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1 % AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results indicate that monetary damages from inland flooding could be significantly reduced through substantial GHG mitigation.

  17. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States

    Directory of Open Access Journals (Sweden)

    C. Wobus

    2017-12-01

    Full Text Available A growing body of work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus potentially increasing flood damages in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5 to estimate changes in the frequency of modeled 1 % annual exceedance probability (1 % AEP, or 100-year flood events at 57 116 stream reaches across the contiguous United States (CONUS. We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations and trajectories of future damages that vary substantially depending on the greenhouse gas (GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches USD 4 billion per year by 2100 (in undiscounted 2014 dollars, suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long term in terms of reduced flood damages. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages on a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1 % AEP floods. Although future work is needed to test the sensitivity of our results to these methodological choices, our results indicate that monetary damages from inland flooding could be significantly reduced through substantial GHG mitigation.

  18. Mapping from Speech to Images Using Continuous State Space Models

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue; Hansen, Lars Kai; Larsen, Jan

    2005-01-01

    In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space...... a subjective point of view the model is able to construct an image sequence from an unknown noisy speech sequence even though the number of training examples are limited.......'. The performance of the system is critically dependent on the number of hidden variables, with too few variables the model cannot represent data, and with too many overfitting is noticed. Simulations are performed on recordings of 3-5 sec.\\$\\backslash\\$ video sequences with sentences from the Timit database. From...

  19. Review of the Space Mapping Approach to Engineering Optimization and Modeling

    DEFF Research Database (Denmark)

    Bakr, M. H.; Bandler, J. W.; Madsen, Kaj

    2000-01-01

    We review the Space Mapping (SM) concept and its applications in engineering optimization and modeling. The aim of SM is to avoid computationally expensive calculations encountered in simulating an engineering system. The existence of less accurate but fast physically-based models is exploited. S......-based Modeling (SMM). These include Space Derivative Mapping (SDM), Generalized Space Mapping (GSM) and Space Mapping-based Neuromodeling (SMN). Finally, we address open points for research and future development....

  20. Radiological mapping of functional transcription units of bacteriophage phiX174 and S13

    International Nuclear Information System (INIS)

    Pollock, T.J.; Tessman, I.; Tessman, E.S.

    1978-01-01

    It has been found that the nearest promoter is not always the primary promoter for making translatable message. The technique of ultraviolet mapping was used to determine the location of promoter sites for translated mRNA coded for by bacteriophages phiX174 and S13. The method is based on the theory that the 'target size' for u.v. inactivation of expression of a gene is proportional to the distance between the promoter and the 3' end of the gene. This method has revealed an expected and some unexpected locations for the promoters responsible for gene expression. Ultraviolet-survival curves for expression of phage genes were interpreted in the following way. The contiguous genes D, F, G and H are expressed as a unit under the control of a promoter located near gene D. However, gene B (and probably the adjacent genes K and C) are controlled by a promoter distant from gene B, possibly in the region of gene H, rather than from a promoter located just before gene B. Likewise, gene A is controlled by a promoter distant from gene A. (author)

  1. Proficient brain for optimal performance: the MAP model perspective.

    Science.gov (United States)

    Bertollo, Maurizio; di Fronso, Selenia; Filho, Edson; Conforto, Silvia; Schmid, Maurizio; Bortoli, Laura; Comani, Silvia; Robazza, Claudio

    2016-01-01

    Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS) activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP) model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1) and optimal-controlled (Type 2) performances. Methods. Ten elite shooters (6 male and 4 female) with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time) repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha) for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the "neural efficiency hypothesis." We also observed more ERD as related to optimal-controlled performance in conditions of "neural adaptability" and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques.

  2. Proficient brain for optimal performance: the MAP model perspective

    Directory of Open Access Journals (Sweden)

    Maurizio Bertollo

    2016-05-01

    Full Text Available Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1 and optimal-controlled (Type 2 performances. Methods. Ten elite shooters (6 male and 4 female with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the “neural efficiency hypothesis.” We also observed more ERD as related to optimal-controlled performance in conditions of “neural adaptability” and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques.

  3. Optimizing Crawler4j using MapReduce Programming Model

    Science.gov (United States)

    Siddesh, G. M.; Suresh, Kavya; Madhuri, K. Y.; Nijagal, Madhushree; Rakshitha, B. R.; Srinivasa, K. G.

    2017-06-01

    World wide web is a decentralized system that consists of a repository of information on the basis of web pages. These web pages act as a source of information or data in the present analytics world. Web crawlers are used for extracting useful information from web pages for different purposes. Firstly, it is used in web search engines where the web pages are indexed to form a corpus of information and allows the users to query on the web pages. Secondly, it is used for web archiving where the web pages are stored for later analysis phases. Thirdly, it can be used for web mining where the web pages are monitored for copyright purposes. The amount of information processed by the web crawler needs to be improved by using the capabilities of modern parallel processing technologies. In order to solve the problem of parallelism and the throughput of crawling this work proposes to optimize the Crawler4j using the Hadoop MapReduce programming model by parallelizing the processing of large input data. Crawler4j is a web crawler that retrieves useful information about the pages that it visits. The crawler Crawler4j coupled with data and computational parallelism of Hadoop MapReduce programming model improves the throughput and accuracy of web crawling. The experimental results demonstrate that the proposed solution achieves significant improvements with respect to performance and throughput. Hence the proposed approach intends to carve out a new methodology towards optimizing web crawling by achieving significant performance gain.

  4. Road Map to Statewide Implementation of the Pyramid Model. Roadmap to Effective Intervention Practices #6

    Science.gov (United States)

    Dunlap, Glen; Smith, Barbara J.; Fox, Lise; Blase, Karen

    2014-01-01

    This document is a guide--a "Road Map"--for implementing widespread use of the Pyramid Model for Promoting Social Emotional Competence in Infants and Young Children (http://www.challengingbehavior.org/do/pyramid_model. htm). It is a road map of systems change. The Road Map is written for statewide systems change, although it could be…

  5. SiSeRHMap v1.0: a simulator for mapped seismic response using a hybrid model

    Science.gov (United States)

    Grelle, Gerardo; Bonito, Laura; Lampasi, Alessandro; Revellino, Paola; Guerriero, Luigi; Sappa, Giuseppe; Guadagno, Francesco Maria

    2016-04-01

    The SiSeRHMap (simulator for mapped seismic response using a hybrid model) is a computerized methodology capable of elaborating prediction maps of seismic response in terms of acceleration spectra. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches and models are organized in a code architecture composed of five interdependent modules. A GIS (geographic information system) cubic model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A meta-modelling process confers a hybrid nature to the methodology. In this process, the one-dimensional (1-D) linear equivalent analysis produces acceleration response spectra for a specified number of site profiles using one or more input motions. The shear wave velocity-thickness profiles, defined as trainers, are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Emul-spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated evolutionary algorithm (EA) and the Levenberg-Marquardt algorithm (LMA) as the final optimizer. In the final step, the GCM maps executor module produces a serial map set of a stratigraphic seismic response at different periods, grid solving the calibrated Emul-spectra model. In addition, the spectra topographic amplification is also computed by means of a 3-D validated numerical prediction model. This model is built to match the results of the numerical simulations related to isolate reliefs using GIS morphometric data. In this way, different sets of seismic response maps are developed on which maps of design acceleration response spectra are also defined by means of an enveloping technique.

  6. Assessing Accessibility and Transport Infrastructure Inequities in Administrative Units in Serbia’s Danube Corridor Based on Multi-Criteria Analysis and Gis Mapping Tools

    Directory of Open Access Journals (Sweden)

    Ana VULEVIC

    2018-02-01

    Full Text Available The Danube Regions, especially the sub-national units of governance, must be ready to play an active role in spatial development policies. A precondition for this is good accessibility and the coordinated development of all transport systems in the Danube corridor. The main contribution of this paper is to provide a multi-criteria model for potential decision making related to the evaluation of transportation accessibility in Serbia’s Danube Corridor. Geographic Information Systems (GIS, based on maps, indicate the existing counties’ transport infrastructures inequities (between well-connected and isolated counties in terms of accessibility to central places. Through the research, relevant indicators have been identifi ed. This provides an outline of transportation perspectives regarding the development achieved and also fosters the increase of transportation accessibility in some peripheral Serbian Danube administrative units – counties (Nomenclature of Territorial Units for Statistics level 3 – NUTS 3.

  7. Conceptual Model of Quantities, Units, Dimensions, and Values

    Science.gov (United States)

    Rouquette, Nicolas F.; DeKoenig, Hans-Peter; Burkhart, Roger; Espinoza, Huascar

    2011-01-01

    JPL collaborated with experts from industry and other organizations to develop a conceptual model of quantities, units, dimensions, and values based on the current work of the ISO 80000 committee revising the International System of Units & Quantities based on the International Vocabulary of Metrology (VIM). By providing support for ISO 80000 in SysML via the International Vocabulary of Metrology (VIM), this conceptual model provides, for the first time, a standard-based approach for addressing issues of unit coherence and dimensional analysis into the practice of systems engineering with SysML-based tools. This conceptual model provides support for two kinds of analyses specified in the International Vocabulary of Metrology (VIM): coherence of units as well as of systems of units, and dimension analysis of systems of quantities. To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is explicitly based on the concepts defined in VIM. At the same time, the model library is designed in such a way that extensions to the ISQ (International System of Quantities) and SI Units (Systeme International d Unites) can be represented, as well as any alternative systems of quantities and units. The model library can be used to support SysML user models in various ways. A simple approach is to define and document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models.

  8. Distribution of lithostratigraphic units within the central block of Yucca Mountain, Nevada: A three-dimensional computer-based model, Version YMP.R2.0

    International Nuclear Information System (INIS)

    Buesch, D.C.; Nelson, J.E.; Dickerson, R.P.; Drake, R.M. II; San Juan, C.A.; Spengler, R.W.; Geslin, J.K.; Moyer, T.C.

    1996-01-01

    Yucca Mountain, Nevada is underlain by 14.0 to 11.6 Ma volcanic rocks tilted eastward 3 degree to 20 degree and cut by faults that were primarily active between 12.7 and 11.6 Ma. A three-dimensional computer-based model of the central block of the mountain consists of seven structural subblocks composed of six formations and the interstratified-bedded tuffaceous deposits. Rocks from the 12.7 Ma Tiva Canyon Tuff, which forms most of the exposed rocks on the mountain, to the 13.1 Ma Prow Pass Tuff are modeled with 13 surfaces. Modeled units represent single formations such as the Pah Canyon Tuff, grouped units such as the combination of the Yucca Mountain Tuff with the superjacent bedded tuff, and divisions of the Topopah Spring Tuff such as the crystal-poor vitrophyre interval. The model is based on data from 75 boreholes from which a structure contour map at the base of the Tiva Canyon Tuff and isochore maps for each unit are constructed to serve as primary input. Modeling consists of an iterative cycle that begins with the primary structure-contour map from which isochore values of the subjacent model unit are subtracted to produce the structure contour map on the base of the unit. This new structure contour map forms the input for another cycle of isochore subtraction to produce the next structure contour map. In this method of solids modeling, the model units are presented by surfaces (structure contour maps), and all surfaces are stored in the model. Surfaces can be converted to form volumes of model units with additional effort. This lithostratigraphic and structural model can be used for (1) storing data from, and planning future, site characterization activities, (2) preliminary geometry of units for design of Exploratory Studies Facility and potential repository, and (3) performance assessment evaluations

  9. 3D-Digital soil property mapping by geoadditive models

    Science.gov (United States)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  10. The Sport Education Model: A Track and Field Unit Application

    Science.gov (United States)

    O'Neil, Kason; Krause, Jennifer M.

    2016-01-01

    Track and field is a traditional instructional unit often taught in secondary physical education settings due to its history, variety of events, and potential for student interest. This article provides an approach to teaching this unit using the sport education model (SEM) of instruction, which has traditionally been presented as a model for team…

  11. Development of Water Quality Modeling in the United States

    Science.gov (United States)

    This presentation describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions. Water quality modeling has a relatively long history in the United States. While its origins lie in the work...

  12. Mapping of the stochastic Lotka-Volterra model to models of population genetics and game theory

    Science.gov (United States)

    Constable, George W. A.; McKane, Alan J.

    2017-08-01

    The relationship between the M -species stochastic Lotka-Volterra competition (SLVC) model and the M -allele Moran model of population genetics is explored via timescale separation arguments. When selection for species is weak and the population size is large but finite, precise conditions are determined for the stochastic dynamics of the SLVC model to be mappable to the neutral Moran model, the Moran model with frequency-independent selection, and the Moran model with frequency-dependent selection (equivalently a game-theoretic formulation of the Moran model). We demonstrate how these mappings can be used to calculate extinction probabilities and the times until a species' extinction in the SLVC model.

  13. Population-Based Trachoma Mapping in Six Evaluation Units of Papua New Guinea.

    Science.gov (United States)

    Ko, Robert; Macleod, Colin; Pahau, David; Sokana, Oliver; Keys, Drew; Burnett, Anthea; Willis, Rebecca; Wabulembo, Geoffrey; Garap, Jambi; Solomon, Anthony W

    2016-01-01

    We sought to determine the prevalence of trachomatous inflammation - follicular (TF) in children aged 1-9 years, and trachomatous trichiasis (TT) in those aged ≥15 years, in suspected trachoma-endemic areas of Papua New Guinea (PNG). We carried out six population-based prevalence surveys using the protocol developed as part of the Global Trachoma Mapping Project. A total of 19,013 individuals were sampled for inclusion, with 15,641 (82.3%) consenting to participate. Four evaluation units had prevalences of TF in children ≥10%, above which threshold the World Health Organization (WHO) recommends mass drug administration (MDA) of azithromycin for at least three years; Western Province (South Fly/Daru) 11.2% (95% confidence interval, CI, 6.9-17.0%), Southern Highlands (East) 12.2% (95% CI 9.6-15.0%), Southern Highlands (West) 11.7% (95% CI 8.5-15.3%), and West New Britain 11.4% (95% CI 8.7-13.9%). TF prevalence was 5.0-9.9% in Madang (9.4%, 95% CI 6.1-13.0%) and National Capital District (6.0%. 95% CI 3.2-9.1%) where consideration of a single round of MDA is warranted. Cases of TT were not found outside West New Britain, in which four cases were seen, generating an estimated population-level prevalence of TT in adults of 0.10% (95% CI 0.00-0.40%) for West New Britain, below the WHO elimination threshold of 0.2% of those aged ≥15 years. Trachoma is a public health issue in PNG. However, other than in West New Britain, there are few data to support the idea that trachoma is a cause of blindness in PNG. Further research is needed to understand the stimulus for the active trachoma phenotype in these populations.

  14. Implementation of NGA-West2 ground motion models in the 2014 U.S. National Seismic Hazard Maps

    Science.gov (United States)

    Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter; Harmsen, Stephen C.; Frankel, Arthur D.

    2014-01-01

    The U.S. National Seismic Hazard Maps (NSHMs) have been an important component of seismic design regulations in the United States for the past several decades. These maps present earthquake ground shaking intensities at specified probabilities of being exceeded over a 50-year time period. The previous version of the NSHMs was developed in 2008; during 2012 and 2013, scientists at the U.S. Geological Survey have been updating the maps based on their assessment of the “best available science,” resulting in the 2014 NSHMs. The update includes modifications to the seismic source models and the ground motion models (GMMs) for sites across the conterminous United States. This paper focuses on updates in the Western United States (WUS) due to the use of new GMMs for shallow crustal earthquakes in active tectonic regions developed by the Next Generation Attenuation (NGA-West2) project. Individual GMMs, their weighted combination, and their impact on the hazard maps relative to 2008 are discussed. In general, the combined effects of lower medians and increased standard deviations in the new GMMs have caused only small changes, within 5–20%, in the probabilistic ground motions for most sites across the WUS compared to the 2008 NSHMs.

  15. Mathematical model of parking space unit for triangular parking area

    Science.gov (United States)

    Syahrini, Intan; Sundari, Teti; Iskandar, Taufiq; Halfiani, Vera; Munzir, Said; Ramli, Marwan

    2018-01-01

    Parking space unit (PSU) is an effective measure for the area size of a vehicle, including the free space and the width of the door opening of the vehicle (car). This article discusses a mathematical model for parking space of vehicles in triangular shape area. An optimization model for triangular parking lot is developed. Integer Linear Programming (ILP) method is used to determine the maximum number of the PSU. The triangular parking lot is in isosceles and equilateral triangles shape and implements four possible rows and five possible angles for each field. The vehicles which are considered are cars and motorcycles. The results show that the isosceles triangular parking area has 218 units of optimal PSU, which are 84 units of PSU for cars and 134 units of PSU for motorcycles. Equilateral triangular parking area has 688 units of optimal PSU, which are 175 units of PSU for cars and 513 units of PSU for motorcycles.

  16. Network Unfolding Map by Vertex-Edge Dynamics Modeling.

    Science.gov (United States)

    Verri, Filipe Alves Neto; Urio, Paulo Roberto; Zhao, Liang

    2018-02-01

    The emergence of collective dynamics in neural networks is a mechanism of the animal and human brain for information processing. In this paper, we develop a computational technique using distributed processing elements in a complex network, which are called particles, to solve semisupervised learning problems. Three actions govern the particles' dynamics: generation, walking, and absorption. Labeled vertices generate new particles that compete against rival particles for edge domination. Active particles randomly walk in the network until they are absorbed by either a rival vertex or an edge currently dominated by rival particles. The result from the model evolution consists of sets of edges arranged by the label dominance. Each set tends to form a connected subnetwork to represent a data class. Although the intrinsic dynamics of the model is a stochastic one, we prove that there exists a deterministic version with largely reduced computational complexity; specifically, with linear growth. Furthermore, the edge domination process corresponds to an unfolding map in such way that edges "stretch" and "shrink" according to the vertex-edge dynamics. Consequently, the unfolding effect summarizes the relevant relationships between vertices and the uncovered data classes. The proposed model captures important details of connectivity patterns over the vertex-edge dynamics evolution, in contrast to the previous approaches, which focused on only vertex or only edge dynamics. Computer simulations reveal that the new model can identify nonlinear features in both real and artificial data, including boundaries between distinct classes and overlapping structures of data.

  17. Toward a periodic table of personality: Mapping personality scales between the five-factor model and the circumplex model.

    Science.gov (United States)

    Woods, Stephen A; Anderson, Neil R

    2016-04-01

    In this study, we examine the structures of 10 personality inventories (PIs) widely used for personnel assessment by mapping the scales of PIs to the lexical Big Five circumplex model resulting in a Periodic Table of Personality. Correlations between 273 scales from 10 internationally popular PIs with independent markers of the lexical Big Five are reported, based on data from samples in 2 countries (United Kingdom, N = 286; United States, N = 1,046), permitting us to map these scales onto the Abridged Big Five Dimensional Circumplex model (Hofstee, de Raad, & Goldberg, 1992). Emerging from our findings we propose a common facet framework derived from the scales of the PIs in our study. These results provide important insights into the literature on criterion-related validity of personality traits, and enable researchers and practitioners to understand how different PI scales converge and diverge and how compound PI scales may be constructed or replicated. Implications for research and practice are considered. (c) 2016 APA, all rights reserved).

  18. Preliminary deformation model for National Seismic Hazard map of Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Meilano, Irwan; Gunawan, Endra; Sarsito, Dina; Prijatna, Kosasih; Abidin, Hasanuddin Z. [Geodesy Research Division, Faculty of Earth Science and Technology, Institute of Technology Bandung (Indonesia); Susilo,; Efendi, Joni [Agency for Geospatial Information (BIG) (Indonesia)

    2015-04-24

    Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except in the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.

  19. Energetic Mapping of Ni Catalysts by Detailed Kinetic Modeling

    DEFF Research Database (Denmark)

    Bjørgum, Erlend; Chen, De; Bakken, Mari G.

    2005-01-01

    Temperature-programmed desorption (TPD) of CO has been performed on supported and unsupported nickel catalysts. The unsupported Ni catalyst consists of a Ni(14 13 13) single crystal which has been studied under ultrahigh vacuum conditions. The desorption energy for CO at low CO surface coverage...... was found to be 119 kJ/mol, and the binding energy of C to the Ni(111) surface of the crystal was 703 kJ/mol. The supported catalysts consist of nickel supported on hydrotalcite-like compounds with three different Mg2+/Al3+ ratios. The experimental results show that for the supported Ni catalysts TPD of CO...... precursor seems to result in more steplike sites, kinks, and defects for carbon monoxide dissociation. A detailed kinetic modeling of the TPO results based on elementary reaction steps has been conducted to give an energetic map of supported Ni catalysts. Experimental results from the ideal Ni surface fit...

  20. Representing the environment 3.0. Maps, models, networks.

    Directory of Open Access Journals (Sweden)

    Letizia Bollini

    2014-05-01

    Full Text Available Web 3.0 is changing the world we live and perceive the environment anthropomorphized, making a stratifation of levels of experience and mediated by the devices. If the urban landscape is designed, shaped and planned space, there is a social landscape that overwrite the territory of values, representations shared images, narratives of personal and collective history. Mobile technology introduces an additional parameter, a kind of non-place, which allows the coexistence of the here and elsewhere in an sort of digital landscape. The maps, mental models, the system of social networks become, then, the way to present, represented and represent themselves in a kind of ideal coring of the co-presence of levels of physical, cognitive and collective space.

  1. What Is the Unit of Visual Attention? Object for Selection, but Boolean Map for Access

    Science.gov (United States)

    Huang, Liqiang

    2010-01-01

    In the past 20 years, numerous theories and findings have suggested that the unit of visual attention is the object. In this study, I first clarify 2 different meanings of unit of visual attention, namely the unit of access in the sense of measurement and the unit of selection in the sense of division. In accordance with this distinction, I argue…

  2. Landform Evolution Modeling of Specific Fluvially Eroded Physiographic Units on Titan

    Science.gov (United States)

    Moore, J. M.; Howard, A. D.; Schenk, P. M.

    2015-01-01

    Several recent studies have proposed certain terrain types (i.e., physiographic units) on Titan thought to be formed by fluvial processes acting on local uplands of bedrock or in some cases sediment. We have earlier used our landform evolution models to make general comparisons between Titan and other ice world landscapes (principally those of the Galilean satellites) that we have modeled the action of fluvial processes. Here we give examples of specific landscapes that, subsequent to modeled fluvial work acting on the surfaces, produce landscapes which resemble mapped terrain types on Titan.

  3. NASA's Lunar and Planetary Mapping and Modeling Program

    Science.gov (United States)

    Law, E.; Day, B. H.; Kim, R. M.; Bui, B.; Malhotra, S.; Chang, G.; Sadaqathullah, S.; Arevalo, E.; Vu, Q. A.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Program produces a suite of online visualization and analysis tools. Originally designed for mission planning and science, these portals offer great benefits for education and public outreach (EPO), providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's Science EPO Infrastructure, they are available as resources for NASA STEM EPO programs, and to the greater EPO community. As new missions are planned to a variety of planetary bodies, these tools are facilitating the public's understanding of the missions and engaging the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: the Lunar Mapping and Modeling Portal or LMMP (http://lmmp.nasa.gov), Vesta Trek (http://vestatrek.jpl.nasa.gov), and Mars Trek (http://marstrek.jpl.nasa.gov). Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. Along with the web portals, the program supports additional clients, web services, and APIs that facilitate dissemination of planetary data to a range of external applications and venues. NASA challenges and hackathons are also providing members of the software development community opportunities to participate in tool development and leverage data from the portals.

  4. Heel Effect: Dose Mapping And Profiling For Mobile C-Arm Fluoroscopy Unit Toshiba SXT-1000A

    International Nuclear Information System (INIS)

    Husaini Salleh; Mohd Khalid Matori; Muhammad Jamal Md Isa; Mohd Ramli Arshad; Shahrul Azlan Azizan; Mohd Firdaus Abdul Rahman; Md Khairusalih Md Zin

    2014-01-01

    Heel Effect is the well known phenomena in x-ray production. It contributes the effect to image formation and as well as scattered radiation. But there is paucity in the study related to heel effect. This study is for mapping and profiling the dose on the surface of water phantom by using mobile C-arm unit Toshiba SXT-1000A. Based on the result the dose profile is increasing up to about 57 % from anode to cathode bound of the irradiated area. This result and information can be used as a guide to manipulate these phenomena for better image quality and radiation safety for this specific and dedicated fluoroscopy unit. (author)

  5. Cowichan Valley energy mapping and modelling. Report 5 - Energy density mapping projections. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. Task 5 focused on energy projection mapping to estimate and visualise the energy consumption density and GHG emissions under different scenarios. The scenarios from task 4 were built around the energy consumption density of the residential sector under future land use patterns and rely on different energy source combinations (the suite of pathways). In task 5 the energy usage under the different scenarios were fed back into GIS, thereby giving a visual representation of forecasted residential energy consumption per unit area. The methodology is identical to that used in task 2 where current usage was mapped, whereas the mapping in this task is for future forecasts. These results are documented in this report. In addition, GHG mapping under the various scenarios was also undertaken. (LN)

  6. Using albedo to reform wind erosion modelling, mapping and monitoring

    Science.gov (United States)

    Chappell, Adrian; Webb, Nicholas P.

    2016-12-01

    Wind erosion and dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. The models are underpinned by a two-dimensional geometric property (lateral cover; L) used to characterise the three-dimensional aerodynamic roughness (sheltered area or wakes) of the Earth's surface and calibrate the momentum it extracts from the wind. We reveal a fundamental weakness in L and demonstrate that values are an order of magnitude too small and significant aerodynamic interactions between roughness elements and their sheltered areas have been omitted, particularly under sparse surface roughness. We describe a solution which develops published work to establish a relation between sheltered area and the proportion of shadow over a given area; the inverse of direct beam directional hemispherical reflectance (black sky albedo; BSA). We show direct relations between shadow and wind tunnel measurements and thereby provide direct calibrations of key aerodynamic properties. Estimation of the aerodynamic parameters from albedo enables wind erosion assessments over areas, across platforms from the field to airborne and readily available satellite data. Our new approach demonstrated redundancy in existing wind erosion models and thereby reduced model complexity and improved fidelity. We found that the use of albedo enabled an adequate description of aerodynamic sheltering to characterise fluid dynamics and predict sediment transport without the use of a drag partition scheme (Rt) or threshold friction velocity (u∗t). We applied the calibrations to produce global maps of aerodynamic properties which showed very similar spatial patterns to each other and confirmed the redundancy in the traditional parameters of wind erosion modelling. We evaluated temporal patterns of predicted horizontal mass flux at locations across Australia which revealed variation between land cover types that would not

  7. COMPARISON of FUZZY-BASED MODELS in LANDSLIDE HAZARD MAPPING

    Directory of Open Access Journals (Sweden)

    N. Mijani

    2017-09-01

    Full Text Available Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR and Quality Sum (QS. The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.

  8. Seep Detection using E/V Nautilus Integrated Seafloor Mapping and Remotely Operated Vehicles on the United States West Coast

    Science.gov (United States)

    Gee, L. J.; Raineault, N.; Kane, R.; Saunders, M.; Heffron, E.; Embley, R. W.; Merle, S. G.

    2017-12-01

    Exploration Vessel (E/V) Nautilus has been mapping the seafloor off the west coast of the United States, from Washington to California, for the past three years with a Kongsberg EM302 multibeam sonar. This system simultaneously collects bathymetry, seafloor and water column backscatter data, allowing an integrated approach to mapping to more completely characterize a region, and has identified over 1,000 seafloor seeps. Hydrographic multibeam sonars like the EM302 were designed for mapping the bathymetry. It is only in the last decade that major mapping projects included an integrated approach that utilizes the seabed and water column backscatter information in addition to the bathymetry. Nautilus mapping in the Eastern Pacific over the past three years has included a number of seep-specific expeditions, and utilized and adapted the preliminary mapping guidelines that have emerged from research. The likelihood of seep detection is affected by many factors: the environment: seabed geomorphology, surficial sediment, seep location/depth, regional oceanography and biology, the nature of the seeps themselves: size variation, varying flux, depth, and transience, the detection system: design of hydrographic multibeam sonars limits use for water column detection, the platform: variations in the vessel and operations such as noise, speed, and swath overlap. Nautilus integrated seafloor mapping provided multiple indicators of seep locations, but it remains difficult to assess the probability of seep detection. Even when seeps were detected, they have not always been located during ROV dives. However, the presence of associated features (methane hydrate and bacterial mats) serve as evidence of potential seep activity and reinforce the transient nature of the seeps. Not detecting a seep in the water column data does not necessarily indicate that there is not a seep at a given location, but with multiple passes over an area and by the use of other contextual data, an area may

  9. Mathematical modeling of synthetic unit hydrograph case study: Citarum watershed

    Science.gov (United States)

    Islahuddin, Muhammad; Sukrainingtyas, Adiska L. A.; Kusuma, M. Syahril B.; Soewono, Edy

    2015-09-01

    Deriving unit hydrograph is very important in analyzing watershed's hydrologic response of a rainfall event. In most cases, hourly measures of stream flow data needed in deriving unit hydrograph are not always available. Hence, one needs to develop methods for deriving unit hydrograph for ungagged watershed. Methods that have evolved are based on theoretical or empirical formulas relating hydrograph peak discharge and timing to watershed characteristics. These are usually referred to Synthetic Unit Hydrograph. In this paper, a gamma probability density function and its variant are used as mathematical approximations of a unit hydrograph for Citarum Watershed. The model is adjusted with real field condition by translation and scaling. Optimal parameters are determined by using Particle Swarm Optimization method with weighted objective function. With these models, a synthetic unit hydrograph can be developed and hydrologic parameters can be well predicted.

  10. A Multianalyzer Machine Learning Model for Marine Heterogeneous Data Schema Mapping

    Directory of Open Access Journals (Sweden)

    Wang Yan

    2014-01-01

    Full Text Available The main challenges that marine heterogeneous data integration faces are the problem of accurate schema mapping between heterogeneous data sources. In order to improve the schema mapping efficiency and get more accurate learning results, this paper proposes a heterogeneous data schema mapping method basing on multianalyzer machine learning model. The multianalyzer analysis the learning results comprehensively, and a fuzzy comprehensive evaluation system is introduced for output results’ evaluation and multi factor quantitative judging. Finally, the data mapping comparison experiment on the East China Sea observing data confirms the effectiveness of the model and shows multianalyzer’s obvious improvement of mapping error rate.

  11. A Multianalyzer Machine Learning Model for Marine Heterogeneous Data Schema Mapping

    Science.gov (United States)

    Yan, Wang; Jiajin, Le; Yun, Zhang

    2014-01-01

    The main challenges that marine heterogeneous data integration faces are the problem of accurate schema mapping between heterogeneous data sources. In order to improve the schema mapping efficiency and get more accurate learning results, this paper proposes a heterogeneous data schema mapping method basing on multianalyzer machine learning model. The multianalyzer analysis the learning results comprehensively, and a fuzzy comprehensive evaluation system is introduced for output results' evaluation and multi factor quantitative judging. Finally, the data mapping comparison experiment on the East China Sea observing data confirms the effectiveness of the model and shows multianalyzer's obvious improvement of mapping error rate. PMID:25250372

  12. The pediatric intensive care unit business model.

    Science.gov (United States)

    Schleien, Charles L

    2013-06-01

    All pediatric intensivists need a primer on ICU finance. The author describes potential alternate revenue sources for the division. Differentiating units by size or academic affiliation, the author describes drivers of expense. Strategies to manage the bottom line including negotiations for hospital services are covered. Some of the current trends in physician productivity and its described metrics, with particular focus on clinical FTE management is detailed. Methods of using this data to enhance revenue are discussed. Some of the other current trends in the ICU business related to changes at the federal and state level as well as in the insurance sector, moving away from fee-for-service are covered. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Mining on Big Data Using Hadoop MapReduce Model

    Science.gov (United States)

    Salman Ahmed, G.; Bhattacharya, Sweta

    2017-11-01

    Customary parallel calculations for mining nonstop item create opportunity to adjust stack of similar data among hubs. The paper aims to review this process by analyzing the critical execution downside of the common parallel recurrent item-set mining calculations. Given a larger than average dataset, data apportioning strategies inside the current arrangements endure high correspondence and mining overhead evoked by repetitive exchanges transmitted among registering hubs. We tend to address this downside by building up a learning apportioning approach referred as Hadoop abuse using the map-reduce programming model. All objectives of Hadoop are to zest up the execution of parallel recurrent item-set mining on Hadoop bunches. Fusing the comparability metric and furthermore the locality-sensitive hashing procedure, Hadoop puts to a great degree comparative exchanges into an information segment to lift neighborhood while not making AN exorbitant assortment of excess exchanges. We tend to execute Hadoop on a 34-hub Hadoop bunch, driven by a decent change of datasets made by IBM quest market-basket manufactured data generator. Trial uncovers the fact that Hadoop contributes towards lessening system and processing masses by the uprightness of dispensing with excess exchanges on Hadoop hubs. Hadoop impressively outperforms and enhances the other models considerably.

  14. ABOUT SYSTEM MAPPING OF BIOLOGICAL RESOURCES FOR SUBSTANTIATION OF ENVIRONMENTAL MANAGEMENT OF THE ADMINISTRATED UNIT ON THE EXAMPLE OF NOVOSIBIRSK REGION

    Directory of Open Access Journals (Sweden)

    O. N. Nikolaeva

    2017-01-01

    Full Text Available The article considers the issues of systematization, modeling and presentation of regional biological resources data. The problem of providing regional state authorities with actual biological resources data and an analysis tool has been stated. The necessity of complex analysis of heterogeneous biological resources data in connection with the landscape factors has been articulated. The system of biological resources’ cartographic models (BRCM is proposed as tools for the regional authorities to develop the BRCM for practical appliances. The goal and the target audience of the system are named. The principles of cartographic visualization of information in the BRCM are formulated. The main sources of biological resources data are listed. These sources include state cadastres, monitoring and statistics. The scales for regional and topical biological resources’ cartographic models are stated. These scales comprise two scale groups for depicting the region itself and its units of internal administrative division. The specifics of cartographic modeling and visualization of relief according to legal requirements to public cartographic data are described. Various options of presentation of biological resources’ cartographic models, such as digital maps, 3Dmodels and cartographic animation are described. Examples of maps and cartographic 3D-models of Novosibirsk Region forests are shown. The conclusion about practical challenges solved with BRCM has been made.

  15. A Fire Severity Mapping System (FSMS) for real-time management applications and long term planning: Developing a map of the landscape potential for severe fire in the western United States

    Science.gov (United States)

    Gregory K. Dillon; Zachary A. Holden; Penny Morgan; Bob Keane

    2009-01-01

    The Fire Severity Mapping System project is geared toward providing fire managers across the western United States with critical information for dealing with and planning for the ecological effects of wildfire at multiple levels of thematic, spatial, and temporal detail. For this project, we are developing a comprehensive, west-wide map of the landscape potential for...

  16. An Alternative Approach to Mapping Thermophysical Units from Martian Thermal Inertia and Albedo Data Using a Combination of Unsupervised Classification Techniques

    Directory of Open Access Journals (Sweden)

    Eriita Jones

    2014-06-01

    Full Text Available Thermal inertia and albedo provide information on the distribution of surface materials on Mars. These parameters have been mapped globally on Mars by the Thermal Emission Spectrometer (TES onboard the Mars Global Surveyor. Two-dimensional clusters of thermal inertia and albedo reflect the thermophysical attributes of the dominant materials on the surface. In this paper three automated, non-deterministic, algorithmic classification methods are employed for defining thermophysical units: Expectation Maximisation of a Gaussian Mixture Model; Iterative Self-Organizing Data Analysis Technique (ISODATA; and Maximum Likelihood. We analyse the behaviour of the thermophysical classes resulting from the three classifiers, operating on the 2007 TES thermal inertia and albedo datasets. Producing a rigorous mapping of thermophysical classes at ~3 km/pixel resolution remains important for constraining the geologic processes that have shaped the Martian surface on a regional scale, and for choosing appropriate landing sites. The results from applying these algorithms are compared to geologic maps, surface data from lander missions, features derived from imaging, and previous classifications of thermophysical units which utilized manual (and potentially more time consuming classification methods. These comparisons comprise data suitable for validation of our classifications. Our work shows that a combination of the algorithms—ISODATA and Maximum Likelihood—optimises the sensitivity to the underlying dataspace, and that new information on Martian surface materials can be obtained by using these methods. We demonstrate that the algorithms used here can be applied to define a finer partitioning of albedo and thermal inertia for a more detailed mapping of surface materials, grain sizes and thermal behaviour of the Martian surface and shallow subsurface, at the ~3 km scale.

  17. Modelling Inland Flood Events for Hazard Maps in Taiwan

    Science.gov (United States)

    Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.

    2015-12-01

    Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage

  18. Using NASA Satellite Observations to Map Wildfire Risk in the United States for Allocation of Fire Management Resources

    Science.gov (United States)

    Farahmand, A.; Reager, J. T., II; Behrangi, A.; Stavros, E. N.; Randerson, J. T.

    2017-12-01

    Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and contributing significantly to both carbon emissions and changes in surface albedo. The socioeconomic impacts of wildfire activities are also significant with wildfire activity results in billions of dollars of losses every year. Fire size, area burned and frequency are increasing, thus the likelihood of fire danger, defined by United States National Interagency Fire Center (NFIC) as the demand of fire management resources as a function of how flammable fuels (a function of ignitability, consumability and availability) are from normal, is an important step toward reducing costs associated with wildfires. Numerous studies have aimed to predict the likelihood of fire danger, but few studies use remote sensing data to map fire danger at scales commensurate with regional management decisions (e.g., deployment of resources nationally throughout fire season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared Sounder (AIRS) vapor pressure deficit, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index products and landcover products, along with US Forest Service historical fire activity data to generate probabilistic monthly fire potential maps in the United States. These maps can be useful in not only government operational allocation of fire management resources, but also improving understanding of the Earth System and how it is changing in order to refine predictions of fire extremes.

  19. Interactive Mapping on Virtual Terrain Models Using RIMS (Real-time, Interactive Mapping System)

    Science.gov (United States)

    Bernardin, T.; Cowgill, E.; Gold, R. D.; Hamann, B.; Kreylos, O.; Schmitt, A.

    2006-12-01

    Recent and ongoing space missions are yielding new multispectral data for the surfaces of Earth and other planets at unprecedented rates and spatial resolution. With their high spatial resolution and widespread coverage, these data have opened new frontiers in observational Earth and planetary science. But they have also precipitated an acute need for new analytical techniques. To address this problem, we have developed RIMS, a Real-time, Interactive Mapping System that allows scientists to visualize, interact with, and map directly on, three-dimensional (3D) displays of georeferenced texture data, such as multispectral satellite imagery, that is draped over a surface representation derived from digital elevation data. The system uses a quadtree-based multiresolution method to render in real time high-resolution (3 to 10 m/pixel) data over large (800 km by 800 km) spatial areas. It allows users to map inside this interactive environment by generating georeferenced and attributed vector-based elements that are draped over the topography. We explain the technique using 15 m ASTER stereo-data from Iraq, P.R. China, and other remote locations because our particular motivation is to develop a technique that permits the detailed (10 m to 1000 m) neotectonic mapping over large (100 km to 1000 km long) active fault systems that is needed to better understand active continental deformation on Earth. RIMS also includes a virtual geologic compass that allows users to fit a plane to geologic surfaces and thereby measure their orientations. It also includes tools that allow 3D surface reconstruction of deformed and partially eroded surfaces such as folded bedding planes. These georeferenced map and measurement data can be exported to, or imported from, a standard GIS (geographic information systems) file format. Our interactive, 3D visualization and analysis system is designed for those who study planetary surfaces, including neotectonic geologists, geomorphologists, marine

  20. Elaboration Of A Classification Of Geomorphologic Units And The Basis Of A Digital Data-Base For Establishing Geomorphologic Maps In Egypt

    International Nuclear Information System (INIS)

    EI Gammal, E.A.; Cherif, O.H.; Abdel Aleem, E.

    2003-01-01

    A database for the classification and description of basic geomorphologic land form units has been prepared for establishing geomorphologic maps in Egyptian terrains. This database includes morpho-structural, lithological, denudational and depositional units. The database.is included in tables with proper coding to be used for establishing automatically the color, symbols and legend of the maps. Also the system includes description of various geomorphic units. The system is designed to be used with the ARC Map software. The AUTOCAD 2000 software has been used to trace the maps. The database has been applied to produce five new geomorphologic maps with a scale of I: 100 000. These are: Wadi Feiran Sheet, Wadi Kid Sheet, Gabal Katherina Sheet in South Sinai, Shelattein area (South Eastern Desert) and Baharia Oasis area (Western Desert)

  1. Cowichan Valley energy mapping and modelling. Report 2 - Energy consumption and density mapping. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. The second task in the overall project was the mapping of regional energy consumption density. Combined with the findings from task one, this enables comparison of energy consumption density per area unit with the renewable energy resource availability. In addition, it provides an energy baseline against which future energy planning activities can be evaluated. The mapping of the energy consumption density was divided into categories to correspond with local British Columbia Assessment Authority (BCAA) reporting. The residential sub-categories were comprised of single family detached dwellings, single family attached dwellings, apartments, and moveable dwellings. For commercial and industrial end-users the 14 sub-categories are also in line with BCAA as well as the on-going provincial TaNDM project of which the CVRD is a partner. The results of task two are documented in this report. (LN)

  2. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    Science.gov (United States)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  3. Site-conditions map for Portugal based on VS measurements: methodology and final model

    Science.gov (United States)

    Vilanova, Susana; Narciso, João; Carvalho, João; Lopes, Isabel; Quinta Ferreira, Mario; Moura, Rui; Borges, José; Nemser, Eliza; Pinto, carlos

    2017-04-01

    In this paper we present a statistically significant site-condition model for Portugal based on shear-wave velocity (VS) data and surface geology. We also evaluate the performance of commonly used Vs30 proxies based on exogenous data and analyze the implications of using those proxies for calculating site amplification in seismic hazard assessment. The dataset contains 161 Vs profiles acquired in Portugal in the context of research projects, technical reports, academic thesis and academic papers. The methodologies involved in characterizing the Vs structure at the sites in the database include seismic refraction, multichannel analysis of seismic waves and refraction microtremor. Invasive measurements were performed in selected locations in order to compare the Vs profiles obtained from both invasive and non-invasive techniques. In general there was good agreement in the subsurface structure of Vs30 obtained from the different methodologies. The database flat-file includes information on Vs30, surface geology at 1:50.000 and 1:500.000 scales, elevation and topographic slope and based on SRTM30 topographic dataset. The procedure used to develop the site-conditions map is based on a three-step process that includes defining a preliminary set of geological units based on the literature, performing statistical tests to assess whether or not the differences in the distributions of Vs30 are statistically significant, and merging of the geological units accordingly. The dataset was, to some extent, affected by clustering and/or preferential sampling and therefore a declustering algorithm was applied. The final model includes three geological units: 1) Igneous, metamorphic and old (Paleogene and Mesozoic) sedimentary rocks; 2) Neogene and Pleistocene formations, and 3) Holocene formations. The evaluation of proxies indicates that although geological analogues and topographic slope are in general unbiased, the latter shows significant bias for particular geological units and

  4. Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval

    Science.gov (United States)

    Alford, John A., II

    2012-01-01

    We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.

  5. Okeanos Explorer (EX1606): CAPSTONE Wake Island Unit PRIMNM (ROV & Mapping)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will use the ship’s deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, ADCPs, and Knudsen 3260 chirp...

  6. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  7. Comparison of model reference and map based control method for vehicle stability enhancement

    NARCIS (Netherlands)

    Baek, S.; Son, M.; Song, J.; Boo, K.; Kim, H.

    2012-01-01

    A map based controller method to improve a vehicle lateral stability is proposed in this study and compared with the conventional method, a model referenced controller. A model referenced controller to determine compensated yaw moment uses the sliding mode method, but the proposed map based

  8. Numerical model for mapping of complex hydrogeological conditions: the Chmielnik area (South Poland) case study

    Science.gov (United States)

    Buszta, Kamila; Szklarczyk, Tadeusz; Malina, Grzegorz

    2017-04-01

    Detailed analysis of hydrogeological conditions at a study area is the basis for characterising adjacent groundwater circulation systems. It is also an essential element during executing hydrogeological documentations. The goal of this work was to reconstruct on a numerical model natural groundwater circulation systems of the studied area located within the municipality of Chmielnik in the region of Kielce (South Poland). The area is characterized by a complex geological structure, which along with the existing hydrographic network, makes the scheme of groundwater circulation complicated and difficult to map on a numerical model. The studied area is situated at the border of three geological units: on the North - the extended portion of the Palaeozoic Swietokrzyskie Mountains (mainly Devonian and Permian), in the center - the S-W part of the Mesozoic Margin of the Swietokrzyskie Mountains, and on the South - a marginal zone of the Carpathian Foredeep. The whole area belongs to the Vistula river basin, and it includes catchments of its left tributaries: the Nida and Czarna Staszowska rivers. Based on the collected field and archival hydrogeological, hydrological and sozological data a conceptual model was built, under which a numerical model of groundwater flow was developed using the specialized software - Visual MODFLOW. The numerical model maps the five-layer groundwater circulation system in conjunction with surface watercourses. Such division reflects appropriately the variability of hydrogeological parameters within the geological structures. Two principal and exploited aquifers comprise: a fractured-porous Neogene and fractured Upper Jurassic formations. The external model borders are based primarily on surface watercourses and locally on watersheds. The modelled area of 130 km2 was divided into square grids of 50 m. The model consists of 275 rows and 277 columns. Each of five layers was simulated with the same number of active blocks. In the construction of

  9. Taxonomic classification of world map units in crop producing areas of Argentina and Brazil with representative US soil series and major land resource areas in which they occur

    Science.gov (United States)

    Huckle, H. F. (Principal Investigator)

    1980-01-01

    The most probable current U.S. taxonomic classification of the soils estimated to dominate world soil map units (WSM)) in selected crop producing states of Argentina and Brazil are presented. Representative U.S. soil series the units are given. The map units occurring in each state are listed with areal extent and major U.S. land resource areas in which similar soils most probably occur. Soil series sampled in LARS Technical Report 111579 and major land resource areas in which they occur with corresponding similar WSM units at the taxonomic subgroup levels are given.

  10. Evaluation of Electromagnetic Induction to Characterize and Map Sodium-Affected Soils in the Northern Great Plains of the United States

    Science.gov (United States)

    Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.

    2012-04-01

    Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.

  11. Application of Prognostic Mesoscale Modeling in the Southeast United States

    International Nuclear Information System (INIS)

    Buckley, R.L.

    1999-01-01

    A prognostic model is being used to provide regional forecasts for a variety of applications at the Savannah River Site (SRS). Emergency response dispersion models available at SRS use the space and time-dependent meteorological data provided by this model to supplement local and regional observations. Output from the model is also used locally to aid in forecasting at SRS, and regionally in providing forecasts of the potential time and location of hurricane landfall within the southeast United States

  12. Mapping critical levels of ozone, sulfur dioxide and nitrogen oxide for crops, forests and natural vegetation in the United States

    International Nuclear Information System (INIS)

    Rosenbaum, B.J.; Strickland, T.C.; McDowell, M.K.

    1994-01-01

    Air pollution abatement strategies for controlling nitrogen dioxide, sulfur dioxide, and ozone emissions in the United States focus on a 'standards-based' approach. This approach places limits on air pollution by maintaining a baseline value for air quality, no matter what the ecosystem can or cannot withstand. This paper, presents example critical levels maps for the conterminous U.S. developed using the 'effects-based' mapping approach as defined by the United Nations Economic Commission for Europe's Convention on Long-Range Transboundary Air Pollution, Task Force on Mapping. This approach emphasizes the pollution level or load capacity an ecosystem can accommodate before degradation occurs, and allows for analysis of cumulative effects. Presents the first stage of an analysis that reports the distribution of exceedances of critical levels for NO 2 , SO 2 , and O 3 in sensitive forest, crop, and natural vegetation ecosystems in the contiguous United States. It is concluded that extrapolation to surrounding geographic areas requires the analysis of diverse and compounding factors that preclude simple extrapolation methods. Pollutant data depicted in this analysis are limited to locationally specific data, and would be enhanced by utilizing spatial statistics, along with converging associated anthropogenic and climatological factors. Values used for critical levels were derived from current scientific knowledge. While not intended to be a definitive value, adjustments will occur as the scientific community gains new insight to pollutant/receptor relationships. We recommend future analysis to include a refinement of sensitive receptor data coverages and to report relative proportions of exceedances at varying grid scales. 27 refs., 4 figs., 1 tab

  13. MaMR: High-performance MapReduce programming model for material cloud applications

    Science.gov (United States)

    Jing, Weipeng; Tong, Danyu; Wang, Yangang; Wang, Jingyuan; Liu, Yaqiu; Zhao, Peng

    2017-02-01

    With the increasing data size in materials science, existing programming models no longer satisfy the application requirements. MapReduce is a programming model that enables the easy development of scalable parallel applications to process big data on cloud computing systems. However, this model does not directly support the processing of multiple related data, and the processing performance does not reflect the advantages of cloud computing. To enhance the capability of workflow applications in material data processing, we defined a programming model for material cloud applications that supports multiple different Map and Reduce functions running concurrently based on hybrid share-memory BSP called MaMR. An optimized data sharing strategy to supply the shared data to the different Map and Reduce stages was also designed. We added a new merge phase to MapReduce that can efficiently merge data from the map and reduce modules. Experiments showed that the model and framework present effective performance improvements compared to previous work.

  14. Modeling, Designing, and Implementing an Avatar-based Interactive Map

    Directory of Open Access Journals (Sweden)

    Stefan Andrei

    2016-03-01

    Full Text Available Designing interactive maps has always been a challenge due to the geographical complexity of the earth’s landscape and the difficulty of resolving details to a high resolution. In the past decade or so, one of the most impressive map-based software application, the Global Positioning System (GPS, has probably the highest level of interaction with the user. This article describes an innovative technique for designing an avatar-based virtual interactive map for the Lamar University Campus, which will entail the buildings’ exterior as well as their interiors. Many universities provide 2D or 3D maps and even interactive maps. However, these maps do not provide a complete interaction with the user. To the best of our knowledge, this project is the first avatar-based interaction game that allows 100% interaction with the user. This work provides tremendous help to the freshman students and visitors of Lamar University. As an important marketing tool, the main objective is to get better visibility of the campus worldwide and to increase the number of students attending Lamar University.

  15. Mapping watershed potential to contribute phosphorus from geologic materials to receiving streams, southeastern United States

    Science.gov (United States)

    Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria

    2010-01-01

    As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.

  16. Heat Maps of Hypertension, Diabetes Mellitus, and Smoking in the Continental United States.

    Science.gov (United States)

    Loop, Matthew Shane; Howard, George; de Los Campos, Gustavo; Al-Hamdan, Mohammad Z; Safford, Monika M; Levitan, Emily B; McClure, Leslie A

    2017-01-01

    Geographic variations in cardiovascular mortality are substantial, but descriptions of geographic variations in major cardiovascular risk factors have relied on data aggregated to counties. Herein, we provide the first description of geographic variation in the prevalence of hypertension, diabetes mellitus, and smoking within and across US counties. We conducted a cross-sectional analysis of baseline risk factor measurements and latitude/longitude of participant residence collected from 2003 to 2007 in the REGARDS study (Reasons for Geographic and Racial Differences in Stroke). Of the 30 239 participants, all risk factor measurements and location data were available for 28 887 (96%). The mean (±SD) age of these participants was 64.8(±9.4) years; 41% were black; 55% were female; 59% were hypertensive; 22% were diabetic; and 15% were current smokers. In logistic regression models stratified by race, the median(range) predicted prevalence of the risk factors were as follows: for hypertension, 49% (45%-58%) among whites and 72% (68%-78%) among blacks; for diabetes mellitus, 14% (10%-20%) among whites and 31% (28%-41%) among blacks; and for current smoking, 12% (7%-16%) among whites and 18% (11%-22%) among blacks. Hypertension was most prevalent in the central Southeast among whites, but in the west Southeast among blacks. Diabetes mellitus was most prevalent in the west and central Southeast among whites but in south Florida among blacks. Current smoking was most prevalent in the west Southeast and Midwest among whites and in the north among blacks. Geographic disparities in prevalent hypertension, diabetes mellitus, and smoking exist within states and within counties in the continental United States, and the patterns differ by race. © 2017 American Heart Association, Inc.

  17. ESTIMAP: A GIS-BASED MODEL TO MAP ECOSYSTEM SERVICES IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    G. Zulian

    2014-04-01

    Full Text Available Policies of the European Union which affect the use or protection of natural resources increasingly need spatial data on the supply, the flow and the demand of ecosystem services. The model ESTIMAP was developed to this purpose. ESTIMAP departs from land cover and land use maps to which it adds other spatial information with the objective to map various ecosystem services. This study introduces the ESTIMAP map as tool to support the mapping and modelling of ecosystem services at European scale. Examples are provided for three regulating ecosystem services, air quality regulation, coastal protection, and pollination and one cultural ecosystem services, recreation. 

  18. Neural Networks in Modelling Maintenance Unit Load Status

    Directory of Open Access Journals (Sweden)

    Anđelko Vojvoda

    2002-03-01

    Full Text Available This paper deals with a way of applying a neural networkfor describing se1vice station load in a maintenance unit. Dataacquired by measuring the workload of single stations in amaintenance unit were used in the process of training the neuralnetwork in order to create a model of the obse1ved system.The model developed in this way enables us to make more accuratepredictions over critical overload. Modelling was realisedby developing and using m-functions of the Matlab software.

  19. Neuro-fuzzy modelling of hydro unit efficiency

    International Nuclear Information System (INIS)

    Iliev, Atanas; Fushtikj, Vangel

    2003-01-01

    This paper presents neuro-fuzzy method for modeling of the hydro unit efficiency. The proposed method uses the characteristics of the fuzzy systems as universal function approximates, as well the abilities of the neural networks to adopt the parameters of the membership's functions and rules in the consequent part of the developed fuzzy system. Developed method is practically applied for modeling of the efficiency of unit which will be installed in the hydro power plant Kozjak. Comparison of the performance of the derived neuro-fuzzy method with several classical polynomials models is also performed. (Author)

  20. A Modified Microfinance Model Proposed for the United States

    Directory of Open Access Journals (Sweden)

    Eldon H Bernstein

    2014-07-01

    While the goal in the traditional model in developing markets is the elimination of poverty, we show how those critical conditions help to explain the lack of success in the United States.  We propose a modified model whose goal is the creation of an entrepreneurial venture or improving the performance of an existing small enterprise.

  1. Mountain Permafrost in the Yukon Territory, Canada: Mapping and Modelling

    Science.gov (United States)

    Lewkowicz, A. G.; Bonnaventure, P.; Schultz, E.; Etzelmuller, B.

    2006-12-01

    The distribution and characteristics of mountain permafrost in North America are poorly known compared to lowland permafrost, and predictions of climatic change impacts are therefore subject to a higher degree of uncertainty. Recent DC resistivity soundings in association with borehole temperature information in the Yukon Territory, show the wide range of permafrost conditions that can exist at sites separated by short distances. To provide baseline information for future modelling, efforts are underway to produce a detailed map of permafrost probability in the mountains of the southern half of the Yukon Territory (60-65°N), an area greater than 200 x 103km2. The methodology is based on the Basal Temperature of Snow (BTS) technique, first developed in the European Alps. Ground surface temperatures measured at the base of snow > 80 cm thick in late winter are an indicator of permafrost presence or absence. We have used this method successfully in three study areas of about 200 km2: first, Wolf Creek basin near Whitehorse (Lewkowicz and Ednie, 2004) and now the western side of the Ruby Range adjacent to Kluane Lake, and the Haines Summit area in northwestern British Columbia. In each area, (1) we installed miniature temperature loggers at the ground surface and in the air to check on the timing of the BTS measurements; (2) we measured BTS values in the elevation zone across which permafrost was expected to become widespread; (3) we modelled the BTS spatial field using elevation (from a 30 m DEM) and potential incoming solar radiation (PISR) as the independent variables; and (4) we used logistic regression to compare the modelled BTS values with pit observations made in late-summer of the presence or absence of frozen ground. Both elevation and PISR were significant in the Wolf Creek and Ruby Range sites which have relatively continental climates and fall within the Upper Yukon-Stikine Basin climatic region (Wahl et al., 1987). For the Haines Summit area, however

  2. Evaluation of using digital gravity field models for zoning map creation

    Science.gov (United States)

    Loginov, Dmitry

    2018-05-01

    At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.

  3. Modeling Late-Summer Distribution of Golden Eagles (Aquila chrysaetos) in the Western United States.

    Science.gov (United States)

    Nielson, Ryan M; Murphy, Robert K; Millsap, Brian A; Howe, William H; Gardner, Grant

    2016-01-01

    Increasing development across the western United States (USA) elevates concerns about effects on wildlife resources; the golden eagle (Aquila chrysaetos) is of special concern in this regard. Knowledge of golden eagle abundance and distribution across the western USA must be improved to help identify and conserve areas of major importance to the species. We used distance sampling and visual mark-recapture procedures to estimate golden eagle abundance from aerial line-transect surveys conducted across four Bird Conservation Regions in the western USA between 15 August and 15 September in 2006-2010, 2012, and 2013. To assess golden eagle-habitat relationships at this scale, we modeled counts of golden eagles seen during surveys in 2006-2010, adjusted for probability of detection, and used land cover and other environmental factors as predictor variables within 20-km2 sampling units randomly selected from survey transects. We found evidence of positive relationships between intensity of use by golden eagles and elevation, solar radiation, and mean wind speed, and of negative relationships with the proportion of landscape classified as forest or as developed. The model accurately predicted habitat use observed during surveys conducted in 2012 and 2013. We used the model to construct a map predicting intensity of use by golden eagles during late summer across our ~2 million-km2 study area. The map can be used to help prioritize landscapes for conservation efforts, identify areas where mitigation efforts may be most effective, and identify regions for additional research and monitoring. In addition, our map can be used to develop region-specific (e.g., state-level) density estimates based on the latest information on golden eagle abundance from a late-summer survey and aid designation of geographic management units for the species.

  4. Mapping Investments and Published Outputs in Norovirus Research: A Systematic Analysis of Research Funded in the United States and United Kingdom During 1997-2013.

    Science.gov (United States)

    Head, Michael G; Fitchett, Joseph R; Lichtman, Amos B; Soyode, Damilola T; Harris, Jennifer N; Atun, Rifat

    2016-02-01

    Norovirus accounts for a considerable portion of the global disease burden. Mapping national or international investments relating to norovirus research is limited. We analyzed the focus and type of norovirus research funding awarded to institutions in the United States and United Kingdom during 1997-2013. Data were obtained from key public and philanthropic funders across both countries, and norovirus-related research was identified from study titles and abstracts. Included studies were further categorized by the type of scientific investigation, and awards related to vaccine, diagnostic, and therapeutic research were identified. Norovirus publication trends are also described using data from Scopus. In total, US and United Kingdom funding investment for norovirus research was £97.6 million across 349 awards; 326 awards (amount, £84.9 million) were received by US institutions, and 23 awards (£12.6 million) were received by United Kingdom institutions. Combined, £81.2 million of the funding (83.2%) was for preclinical research, and £16.4 million (16.8%) was for translational science. Investments increased from £1.7 million in 1997 to £11.8 million in 2013. Publication trends showed a consistent temporal increase from 48 in 1997 to 182 in 2013. Despite increases over time, trends in US and United Kingdom funding for norovirus research clearly demonstrate insufficient translational research and limited investment in diagnostics, therapeutics, or vaccine research. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Distributed model based control of multi unit evaporation systems

    International Nuclear Information System (INIS)

    Yudi Samyudia

    2006-01-01

    In this paper, we present a new approach to the analysis and design of distributed control systems for multi-unit plants. The approach is established after treating the effect of recycled dynamics as a gap metric uncertainty from which a distributed controller can be designed sequentially for each unit to tackle the uncertainty. We then use a single effect multi-unit evaporation system to illustrate how the proposed method is used to analyze different control strategies and to systematically achieve a better closed-loop performance using a distributed model-based controller

  6. The preparation of landslide map by Landslide Numerical Risk Factor (LNRF model and Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi Torkashvand

    2014-12-01

    Full Text Available One of the risks to threaten mountainous areas is that hillslope instability caused damage to lands. One of the most dangerous instabilities is mass movement and much movement occurs due to slip. The aim of this study is zonation of landslide hazards in a basin of the Ardebil province, the eastern slopes of Sabalan, Iran. Geological and geomorphologic conditions, climate and type of land use have caused susceptibility of this watershed to landslides. Firstly, maps of the main factors affecting landslide occurrence including slope, distance from faults, lithology, elevation and precipitation were prepared and digitized. Then, by using interpretation of aerial photos and satellite images and field views, the ground truth map of landslides was prepared. Each basic layer (factor and landslide map were integrated to compute the numeric value of each factor with the help of a Landslide Numerical Risk Factor (LNRF model and landslide occurrence percent obtained in different units from each of the maps. Finally, with overlapping different data layers, a landslide hazard zonation map was prepared. Results showed that 67.85% of the basin has high instability, 7.76% moderate instability and 24.39% low instability.

  7. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  8. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Bergman, Torbjoern; Isaksson, Hans; Petersson, Jesper

    2008-12-01

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  9. One-dimensional map-based neuron model: A logistic modification

    International Nuclear Information System (INIS)

    Mesbah, Samineh; Moghtadaei, Motahareh; Hashemi Golpayegani, Mohammad Reza; Towhidkhah, Farzad

    2014-01-01

    A one-dimensional map is proposed for modeling some of the neuronal activities, including different spiking and bursting behaviors. The model is obtained by applying some modifications on the well-known Logistic map and is named the Modified and Confined Logistic (MCL) model. Map-based neuron models are known as phenomenological models and recently, they are widely applied in modeling tasks due to their computational efficacy. Most of discrete map-based models involve two variables representing the slow-fast prototype. There are also some one-dimensional maps, which can replicate some of the neuronal activities. However, the existence of four bifurcation parameters in the MCL model gives rise to reproduction of spiking behavior with control over the frequency of the spikes, and imitation of chaotic and regular bursting responses concurrently. It is also shown that the proposed model has the potential to reproduce more realistic bursting activity by adding a second variable. Moreover the MCL model is able to replicate considerable number of experimentally observed neuronal responses introduced in Izhikevich (2004) [23]. Some analytical and numerical analyses of the MCL model dynamics are presented to explain the emersion of complex dynamics from this one-dimensional map

  10. Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

    2012-12-14

    The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National

  11. The Facebook Influence Model: A Concept Mapping Approach

    Science.gov (United States)

    Kota, Rajitha; Schoohs, Shari; Whitehill, Jennifer M.

    2013-01-01

    Abstract Facebook is a popular social media Web site that has been hypothesized to exert potential influence over users' attitudes, intentions, or behaviors. The purpose of this study was to develop a conceptual framework to explain influential aspects of Facebook. This mixed methods study applied concept mapping methodology, a validated five-step method to visually represent complex topics. The five steps comprise preparation, brainstorming, sort and rank, analysis, and interpretation. College student participants were identified using purposeful sampling. The 80 participants had a mean age of 20.5 years, and included 36% males. A total of 169 statements were generated during brainstorming, and sorted into between 6 and 22 groups. The final concept map included 13 clusters. Interpretation data led to grouping of clusters into four final domains, including connection, comparison, identification, and Facebook as an experience. The Facebook Influence Concept Map illustrates key constructs that contribute to influence, incorporating perspectives of older adolescent Facebook users. While Facebook provides a novel lens through which to consider behavioral influence, it can best be considered in the context of existing behavioral theory. The concept map may be used toward development of potential future intervention efforts. PMID:23621717

  12. The Facebook influence model: a concept mapping approach.

    Science.gov (United States)

    Moreno, Megan A; Kota, Rajitha; Schoohs, Shari; Whitehill, Jennifer M

    2013-07-01

    Facebook is a popular social media Web site that has been hypothesized to exert potential influence over users' attitudes, intentions, or behaviors. The purpose of this study was to develop a conceptual framework to explain influential aspects of Facebook. This mixed methods study applied concept mapping methodology, a validated five-step method to visually represent complex topics. The five steps comprise preparation, brainstorming, sort and rank, analysis, and interpretation. College student participants were identified using purposeful sampling. The 80 participants had a mean age of 20.5 years, and included 36% males. A total of 169 statements were generated during brainstorming, and sorted into between 6 and 22 groups. The final concept map included 13 clusters. Interpretation data led to grouping of clusters into four final domains, including connection, comparison, identification, and Facebook as an experience. The Facebook Influence Concept Map illustrates key constructs that contribute to influence, incorporating perspectives of older adolescent Facebook users. While Facebook provides a novel lens through which to consider behavioral influence, it can best be considered in the context of existing behavioral theory. The concept map may be used toward development of potential future intervention efforts.

  13. Enhancing Simulation Learning with Team Mental Model Mapping

    Science.gov (United States)

    Goltz, Sonia M.

    2017-01-01

    Simulations have been developed for many business courses because of enhanced student engagement and learning. A challenge for instructors using simulations is how to take this learning to the next level since student reflection and learning can vary. This article describes how to use a conceptual mapping game at the beginning and end of a…

  14. A framework for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps

    Science.gov (United States)

    Xu, Jin; Li, Zheng; Li, Shuliang; Zhang, Yanyan

    2015-07-01

    There is still a lack of effective paradigms and tools for analysing and discovering the contents and relationships of project knowledge contexts in the field of project management. In this paper, a new framework for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps under big data environments is proposed and developed. The conceptual paradigm, theoretical underpinning, extended topic model, and illustration examples of the ontology model for project knowledge maps are presented, with further research work envisaged.

  15. Mapping marginal croplands suitable for cellulosic feedstock crops in the Great Plains, United States

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2016-01-01

    Growing cellulosic feedstock crops (e.g., switchgrass) for biofuel is more environmentally sustainable than corn-based ethanol. Specifically, this practice can reduce soil erosion and water quality impairment from pesticides and fertilizer, improve ecosystem services and sustainability (e.g., serve as carbon sinks), and minimize impacts on global food supplies. The main goal of this study was to identify high-risk marginal croplands that are potentially suitable for growing cellulosic feedstock crops (e.g., switchgrass) in the US Great Plains (GP). Satellite-derived growing season Normalized Difference Vegetation Index, a switchgrass biomass productivity map obtained from a previous study, US Geological Survey (USGS) irrigation and crop masks, and US Department of Agriculture (USDA) crop indemnity maps for the GP were used in this study. Our hypothesis was that croplands with relatively low crop yield but high productivity potential for switchgrass may be suitable for converting to switchgrass. Areas with relatively low crop indemnity (crop indemnity marginal croplands in the GP are potentially suitable for switchgrass development. The total estimated switchgrass biomass productivity gain from these suitable areas is about 5.9 million metric tons. Switchgrass can be cultivated in either lowland or upland regions in the GP depending on the local soil and environmental conditions. This study improves our understanding of ecosystem services and the sustainability of cropland systems in the GP. Results from this study provide useful information to land managers for making informed decisions regarding switchgrass development in the GP.

  16. Mapping water availability, projected use and cost in the western United States

    Science.gov (United States)

    Tidwell, Vincent C.; Moreland, Barbara D.; Zemlick, Katie M.; Roberts, Barry L.; Passell, Howard D.; Jensen, Daniel; Forsgren, Christopher; Sehlke, Gerald; Cook, Margaret A.; King, Carey W.; Larsen, Sara

    2014-05-01

    New demands for water can be satisfied through a variety of source options. In some basins surface and/or groundwater may be available through permitting with the state water management agency (termed unappropriated water), alternatively water might be purchased and transferred out of its current use to another (termed appropriated water), or non-traditional water sources can be captured and treated (e.g., wastewater). The relative availability and cost of each source are key factors in the development decision. Unfortunately, these measures are location dependent with no consistent or comparable set of data available for evaluating competing water sources. With the help of western water managers, water availability was mapped for over 1200 watersheds throughout the western US. Five water sources were individually examined, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped was projected change in consumptive water use from 2010 to 2030. Associated costs to acquire, convey and treat the water, as necessary, for each of the five sources were estimated. These metrics were developed to support regional water planning and policy analysis with initial application to electric transmission planning in the western US.

  17. Combining Kohonen maps with Arima time series models to forecast traffic flow

    NARCIS (Netherlands)

    van der Voort, Mascha C.; Dougherty, Mark; Dougherty, M.S.; Watson, Susan

    1996-01-01

    A hybrid method of short-term traffic forecasting is introduced; the KARIMA method. The technique uses a Kohonen self-organizing map as an initial classifier; each class has an individually tuned ARIMA model associated with it. Using a Kohonen map which is hexagonal in layout eases the problem of

  18. Simulation of seagrass bed mapping by satellite images based on the radiative transfer model

    Science.gov (United States)

    Sagawa, Tatsuyuki; Komatsu, Teruhisa

    2015-06-01

    Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.

  19. The research of selection model based on LOD in multi-scale display of electronic map

    Science.gov (United States)

    Zhang, Jinming; You, Xiong; Liu, Yingzhen

    2008-10-01

    This paper proposes a selection model based on LOD to aid the display of electronic map. The ratio of display scale to map scale is regarded as a LOD operator. The categorization rule, classification rule, elementary rule and spatial geometry character rule of LOD operator setting are also concluded.

  20. Hierarchical Object-Based Mapping of Riverscape Units and in-Stream Mesohabitats Using LiDAR and VHR Imagery

    Directory of Open Access Journals (Sweden)

    Luca Demarchi

    2016-01-01

    Full Text Available In this paper, we present a new, semi-automated methodology for mapping hydromorphological indicators of rivers at a regional scale using multisource remote sensing (RS data. This novel approach is based on the integration of spectral and topographic information within a multilevel, geographic, object-based image analysis (GEOBIA. Different segmentation levels were generated based on the two sources of Remote Sensing (RS data, namely very-high spatial resolution, near-infrared imagery (VHR and high-resolution LiDAR topography. At each level, different input object features were tested with Machine Learning classifiers for mapping riverscape units and in-stream mesohabitats. The GEOBIA approach proved to be a powerful tool for analyzing the river system at different levels of detail and for coupling spectral and topographic datasets, allowing for the delineation of the natural fluvial corridor with its primary riverscape units (e.g., water channel, unvegetated sediment bars, riparian densely-vegetated units, etc. and in-stream mesohabitats with a high level of accuracy, respectively of K = 0.91 and K = 0.83. This method is flexible and can be adapted to different sources of data, with the potential to be implemented at regional scales in the future. The analyzed dataset, composed of VHR imagery and LiDAR data, is nowadays increasingly available at larger scales, notably through European Member States. At the same time, this methodology provides a tool for monitoring and characterizing the hydromorphological status of river systems continuously along the entire channel network and coherently through time, opening novel and significant perspectives to river science and management, notably for planning and targeting actions.

  1. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. An unit commitment model for hydrothermal systems; Um modelo de unit commitment para sistemas hidrotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Thiago de Paula; Luciano, Edson Jose Rezende; Nepomuceno, Leonardo [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Dept. de Engenharia Eletrica], Emails: ra611191@feb.unesp.br, edson.joserl@uol.com.br, leo@feb.unesp.br

    2009-07-01

    A model of Unit Commitment to hydrothermal systems that includes the costs of start/stop of generators is proposed. These costs has been neglected in a good part of the programming models for operation of hydrothermal systems (pre-dispatch). The impact of the representation of costs in total production costs is evaluated. The proposed model is solved by a hybrid methodology, which involves the use of genetic algorithms (to solve the entire part of the problem) and sequential quadratic programming methods. This methodology is applied to the solution of an IEEE test system. The results emphasize the importance of representation of the start/stop in the generation schedule.

  3. Automatic 3D City Modeling Using a Digital Map and Panoramic Images from a Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    Hyungki Kim

    2014-01-01

    Full Text Available Three-dimensional city models are becoming a valuable resource because of their close geospatial, geometrical, and visual relationship with the physical world. However, ground-oriented applications in virtual reality, 3D navigation, and civil engineering require a novel modeling approach, because the existing large-scale 3D city modeling methods do not provide rich visual information at ground level. This paper proposes a new framework for generating 3D city models that satisfy both the visual and the physical requirements for ground-oriented virtual reality applications. To ensure its usability, the framework must be cost-effective and allow for automated creation. To achieve these goals, we leverage a mobile mapping system that automatically gathers high-resolution images and supplements sensor information such as the position and direction of the captured images. To resolve problems stemming from sensor noise and occlusions, we develop a fusion technique to incorporate digital map data. This paper describes the major processes of the overall framework and the proposed techniques for each step and presents experimental results from a comparison with an existing 3D city model.

  4. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    Science.gov (United States)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  5. Method for Pre-Conditioning a Measured Surface Height Map for Model Validation

    Science.gov (United States)

    Sidick, Erkin

    2012-01-01

    This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to

  6. Modeling the effect of short stay units on patient admissions

    NARCIS (Netherlands)

    Zonderland, Maartje Elisabeth; Boucherie, Richardus J.; Carter, Michael W.; Stanford, David A.

    Two purposes of Short Stay Units (SSU) are the reduction of Emergency Department crowding and increased urgent patient admissions. At an SSU urgent patients are temporarily held until they either can go home or transferred to an inpatient ward. In this paper we present an overflow model to evaluate

  7. Model United Nations and Deep Learning: Theoretical and Professional Learning

    Science.gov (United States)

    Engel, Susan; Pallas, Josh; Lambert, Sarah

    2017-01-01

    This article demonstrates that the purposeful subject design, incorporating a Model United Nations (MUN), facilitated deep learning and professional skills attainment in the field of International Relations. Deep learning was promoted in subject design by linking learning objectives to Anderson and Krathwohl's (2001) four levels of knowledge or…

  8. Experimentation of cooperative learning model Numbered Heads Together (NHT) type by concept maps and Teams Games Tournament (TGT) by concept maps in terms of students logical mathematics intellegences

    Science.gov (United States)

    Irawan, Adi; Mardiyana; Retno Sari Saputro, Dewi

    2017-06-01

    This research is aimed to find out the effect of learning model towards learning achievement in terms of students’ logical mathematics intelligences. The learning models that were compared were NHT by Concept Maps, TGT by Concept Maps, and Direct Learning model. This research was pseudo experimental by factorial design 3×3. The population of this research was all of the students of class XI Natural Sciences of Senior High School in all regency of Karanganyar in academic year 2016/2017. The conclusions of this research were: 1) the students’ achievements with NHT learning model by Concept Maps were better than students’ achievements with TGT model by Concept Maps and Direct Learning model. The students’ achievements with TGT model by Concept Maps were better than the students’ achievements with Direct Learning model. 2) The students’ achievements that exposed high logical mathematics intelligences were better than students’ medium and low logical mathematics intelligences. The students’ achievements that exposed medium logical mathematics intelligences were better than the students’ low logical mathematics intelligences. 3) Each of student logical mathematics intelligences with NHT learning model by Concept Maps has better achievement than students with TGT learning model by Concept Maps, students with NHT learning model by Concept Maps have better achievement than students with the direct learning model, and the students with TGT by Concept Maps learning model have better achievement than students with Direct Learning model. 4) Each of learning model, students who have logical mathematics intelligences have better achievement then students who have medium logical mathematics intelligences, and students who have medium logical mathematics intelligences have better achievement than students who have low logical mathematics intelligences.

  9. Advanced competencies mapping of critical care nursing: a qualitative research in two Intensive Care Units.

    Science.gov (United States)

    Alfieri, Emanuela; Mori, Marina; Barbui, Valentina; Sarli, Leopoldo

    2017-07-18

    Nowadays, in Italy, the nursing profession has suffered important changes in response to the needs of citizens' health and to improve the quality of the health service in the country.  At the basis of this development there is an increase of the nurses' knowledge, competencies and responsibilities. Currently, the presence of nurses who have followed post-basic training paths, and the subsequent acquisition of advanced clinical knowledge and specializations, has made it essential for the presence of competencies mappings for each specialty, also to differentiate them from general care nurses. The objective is to get a mapping of nurse's individual competencies working in critical care, to analyze the context of the Parma Hospital and comparing it with the Lebanon Heart Hospital in Lebanon. The survey has been done through a series of interviews involving some of the hospital staff, in order to collect opinions about the ICU nurses' competencies. What emerged from the data allowed us to get a list of important abilities, competencies, character traits and  intensive care nurse activities. Italians and Lebanese nurses appear to be prepared from a technical point of view, with a desire for improvement through specializations, masters and enabling courses in advanced health maneuvers. By respondents nurses can seize a strong desire for professional improvement. At the end of our research we were able to draw a list of different individual competencies, behavioral and moral characteristics. The nurse figure has a high potential and large professional improvement prospects, if more taken into account by the health system.

  10. A Mathematical Model for Storage and Recall of Images using Targeted Synchronization of Coupled Maps.

    Science.gov (United States)

    Palaniyandi, P; Rangarajan, Govindan

    2017-08-21

    We propose a mathematical model for storage and recall of images using coupled maps. We start by theoretically investigating targeted synchronization in coupled map systems wherein only a desired (partial) subset of the maps is made to synchronize. A simple method is introduced to specify coupling coefficients such that targeted synchronization is ensured. The principle of this method is extended to storage/recall of images using coupled Rulkov maps. The process of adjusting coupling coefficients between Rulkov maps (often used to model neurons) for the purpose of storing a desired image mimics the process of adjusting synaptic strengths between neurons to store memories. Our method uses both synchronisation and synaptic weight modification, as the human brain is thought to do. The stored image can be recalled by providing an initial random pattern to the dynamical system. The storage and recall of the standard image of Lena is explicitly demonstrated.

  11. Applying Quality Function Deployment Model in Burn Unit Service Improvement.

    Science.gov (United States)

    Keshtkaran, Ali; Hashemi, Neda; Kharazmi, Erfan; Abbasi, Mehdi

    2016-01-01

    Quality function deployment (QFD) is one of the most effective quality design tools. This study applies QFD technique to improve the quality of the burn unit services in Ghotbedin Hospital in Shiraz, Iran. First, the patients' expectations of burn unit services and their priorities were determined through Delphi method. Thereafter, burn unit service specifications were determined through Delphi method. Further, the relationships between the patients' expectations and service specifications and also the relationships between service specifications were determined through an expert group's opinion. Last, the final importance scores of service specifications were calculated through simple additive weighting method. The findings show that burn unit patients have 40 expectations in six different areas. These expectations are in 16 priority levels. Burn units also have 45 service specifications in six different areas. There are four-level relationships between the patients' expectations and service specifications and four-level relationships between service specifications. The most important burn unit service specifications have been identified in this study. The QFD model developed in the study can be a general guideline for QFD planners and executives.

  12. 3D Reflection Map Modeling for Optical Emitter-receiver Pairs

    DEFF Research Database (Denmark)

    Christensen, Henrik Vie

    2004-01-01

    A model for a model-based 3D-position determination system for a passive object is presented. Infrared emitter/receiver pairs are proposed as sensing part to acquire information on a ball shaped object's position. A 3D reflection map model is derived trough geometrical considerations. The model...

  13. Similarity and accuracy of mental models formed during nursing handovers: A concept mapping approach.

    Science.gov (United States)

    Drach-Zahavy, Anat; Broyer, Chaya; Dagan, Efrat

    2017-09-01

    Shared mental models are crucial for constructing mutual understanding of the patient's condition during a clinical handover. Yet, scant research, if any, has empirically explored mental models of the parties involved in a clinical handover. This study aimed to examine the similarities among mental models of incoming and outgoing nurses, and to test their accuracy by comparing them with mental models of expert nurses. A cross-sectional study, exploring nurses' mental models via the concept mapping technique. 40 clinical handovers. Data were collected via concept mapping of the incoming, outgoing, and expert nurses' mental models (total of 120 concept maps). Similarity and accuracy for concepts and associations indexes were calculated to compare the different maps. About one fifth of the concepts emerged in both outgoing and incoming nurses' concept maps (concept similarity=23%±10.6). Concept accuracy indexes were 35%±18.8 for incoming and 62%±19.6 for outgoing nurses' maps. Although incoming nurses absorbed fewer number of concepts and associations (23% and 12%, respectively), they partially closed the gap (35% and 22%, respectively) relative to expert nurses' maps. The correlations between concept similarities, and incoming as well as outgoing nurses' concept accuracy, were significant (r=0.43, p<0.01; r=0.68 p<0.01, respectively). Finally, in 90% of the maps, outgoing nurses added information concerning the processes enacted during the shift, beyond the expert nurses' gold standard. Two seemingly contradicting processes in the handover were identified. "Information loss", captured by the low similarity indexes among the mental models of incoming and outgoing nurses; and "information restoration", based on accuracy measures indexes among the mental models of the incoming nurses. Based on mental model theory, we propose possible explanations for these processes and derive implications for how to improve a clinical handover. Copyright © 2017 Elsevier Ltd. All

  14. Moon Trek: NASA's New Online Portal for Lunar Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E. S.

    2016-11-01

    This presentation introduces Moon Trek, a new name for a major new release of NASA's Lunar Mapping and Modeling Portal (LMMP). The new Trek interface provides greatly improved navigation, 3D visualization, performance, and reliability.

  15. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere...

  16. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere impacts and...

  17. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2013-01-01

    Robust generation of pelvic finite element models is necessary to understand the variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis and their strain distributions evaluated. Morphing and mapping techniques were effectively applied to generate good quality geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2012-08-01

    Robust generation of pelvic finite element models is necessary to understand variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity-based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis, and their strain distributions were evaluated. Morphing and mapping techniques were effectively applied to generate good quality and geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  19. PENGEMBANGAN BAHAN AJAR DENGAN MODEL MIND MAP UNTUK PEMBELAJARAN ILMU PENGETAHUAN SOSIAL SMP

    OpenAIRE

    Lukman Lukman; Ishartiwi Ishartiwi

    2014-01-01

    Penelitian ini bertujuan untuk menghasilkan bahan ajar dengan model mind map yang layak digunakan pada pembelajaran Ilmu Pengetahuan Sosial (IPS) untuk siswa SMP, serta mengetahui keefektifan bahan ajar hasil pengembangan. Penelitian ini merupakan penelitian dan pengembangan (Research and Development). Hasil penelitian adalah sebagi berikut: (1) menghasilkan bahan ajar dengan model mind map untuk pembelajaran Ilmu Pengetahuan Sosial siswa SMP yang dikemas dalam bentuk buku dengan materi “Perk...

  20. Stakeholder approach, Stakeholders mental model: A visualization test with cognitive mapping technique

    Directory of Open Access Journals (Sweden)

    Garoui Nassreddine

    2012-04-01

    Full Text Available The idea of this paper is to determine the mental models of actors in the firm with respect to the stakeholder approach of corporate governance. The use of the cognitive map to view these diagrams to show the ways of thinking and conceptualization of the stakeholder approach. The paper takes a corporate governance perspective, discusses stakeholder model. It takes also a cognitive mapping technique.

  1. Color reproduction system based on color appearance model and gamut mapping

    Science.gov (United States)

    Cheng, Fang-Hsuan; Yang, Chih-Yuan

    2000-06-01

    By the progress of computer, computer peripherals such as color monitor and printer are often used to generate color image. However, cross media color reproduction by human perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human psychology. In this thesis, a color reproduction system based on color appearance model and gamut mapping is proposed. It consists of four parts; device characterization, color management technique, color appearance model and gamut mapping.

  2. Remote sensing sensors and applications in environmental resources mapping and modeling

    Science.gov (United States)

    Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  3. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey

    Directory of Open Access Journals (Sweden)

    Vahdettin Demir

    2016-01-01

    Full Text Available In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS. In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1 digitization of topographical data and preparation of digital elevation model using ArcGIS, (2 simulation of flood lows of different return periods using a hydraulic model (HEC-RAS, and (3 preparation of flood risk maps by integrating the results of (1 and (2.

  4. A Multiyear Model of Influenza Vaccination in the United States.

    Science.gov (United States)

    Kamis, Arnold; Zhang, Yuji; Kamis, Tamara

    2017-07-28

    Vaccinating adults against influenza remains a challenge in the United States. Using data from the Centers for Disease Control and Prevention, we present a model for predicting who receives influenza vaccination in the United States between 2012 and 2014, inclusive. The logistic regression model contains nine predictors: age, pneumococcal vaccination, time since last checkup, highest education level attained, employment, health care coverage, number of personal doctors, smoker status, and annual household income. The model, which classifies correctly 67 percent of the data in 2013, is consistent with models tested on the 2012 and 2014 datasets. Thus, we have a multiyear model to explain and predict influenza vaccination in the United States. The results indicate room for improvement in vaccination rates. We discuss how cognitive biases may underlie reluctance to obtain vaccination. We argue that targeted communications addressing cognitive biases could be useful for effective framing of vaccination messages, thus increasing the vaccination rate. Finally, we discuss limitations of the current study and questions for future research.

  5. Modeling of the positioning system and visual mark-up of historical cadastral maps

    Directory of Open Access Journals (Sweden)

    Tomislav Jakopec

    2013-03-01

    Full Text Available The aim of the paper is to present of the possibilities of positioning and visual markup of historical cadastral maps onto Google maps using open source software. The corpus is stored in the Croatian State Archives in Zagreb, in the Maps Archive for Croatia and Slavonia. It is part of cadastral documentation that consists of cadastral material from the period of first cadastral survey conducted in the Kingdom of Croatia and Slavonia from 1847 to 1877, and which is used extensively according to the data provided by the customer service of the Croatian State Archives. User needs on the one side and the possibilities of innovative implementation of ICT on the other have motivated the development of the system which would use digital copies of original cadastral maps and connect them with systems like Google maps, and thus both protect the original materials and open up new avenues of research related to the use of originals. With this aim in mind, two cadastral map presentation models have been created. Firstly, there is a detailed display of the original, which enables its viewing using dynamic zooming. Secondly, the interactive display is facilitated through blending the cadastral maps with Google maps, which resulted in establishing links between the coordinates of the digital and original plans through transformation. The transparency of the original can be changed, and the user can intensify the visibility of the underlying layer (Google map or the top layer (cadastral map, which enables direct insight into parcel dynamics over a longer time-span. The system also allows for the mark-up of cadastral maps, which can lead to the development of the cumulative index of all terms found on cadastral maps. The paper is an example of the implementation of ICT for providing new services, strengthening cooperation with the interested public and related institutions, familiarizing the public with the archival material, and offering new possibilities for

  6. Comparison of Four Different Energy Balance Models for Estimating Evapotranspiration in the Midwestern United States

    Directory of Open Access Journals (Sweden)

    Ramesh K. Singh

    2015-12-01

    Full Text Available The development of different energy balance models has allowed users to choose a model based on its suitability in a region. We compared four commonly used models—Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC model, Surface Energy Balance Algorithm for Land (SEBAL model, Surface Energy Balance System (SEBS model, and the Operational Simplified Surface Energy Balance (SSEBop model—using Landsat images to estimate evapotranspiration (ET in the Midwestern United States. Our models validation using three AmeriFlux cropland sites at Mead, Nebraska, showed that all four models captured the spatial and temporal variation of ET reasonably well with an R2 of more than 0.81. Both the METRIC and SSEBop models showed a low root mean square error (<0.93 mm·day−1 and a high Nash–Sutcliffe coefficient of efficiency (>0.80, whereas the SEBAL and SEBS models resulted in relatively higher bias for estimating daily ET. The empirical equation of daily average net radiation used in the SEBAL and SEBS models for upscaling instantaneous ET to daily ET resulted in underestimation of daily ET, particularly when the daily average net radiation was more than 100 W·m−2. Estimated daily ET for both cropland and grassland had some degree of linearity with METRIC, SEBAL, and SEBS, but linearity was stronger for evaporative fraction. Thus, these ET models have strengths and limitations for applications in water resource management.

  7. Mapping grasslands suitable for cellulosic biofuels in the Greater Platte River Basin, United States

    Science.gov (United States)

    Wylie, Bruce K.; Gu, Yingxin

    2012-01-01

    Biofuels are an important component in the development of alternative energy supplies, which is needed to achieve national energy independence and security in the United States. The most common biofuel product today in the United States is corn-based ethanol; however, its development is limited because of concerns about global food shortages, livestock and food price increases, and water demand increases for irrigation and ethanol production. Corn-based ethanol also potentially contributes to soil erosion, and pesticides and fertilizers affect water quality. Studies indicate that future potential production of cellulosic ethanol is likely to be much greater than grain- or starch-based ethanol. As a result, economics and policy incentives could, in the near future, encourage expansion of cellulosic biofuels production from grasses, forest woody biomass, and agricultural and municipal wastes. If production expands, cultivation of cellulosic feedstock crops, such as switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus species), is expected to increase dramatically. The main objective of this study is to identify grasslands in the Great Plains that are potentially suitable for cellulosic feedstock (such as switchgrass) production. Producing ethanol from noncropland holdings (such as grassland) will minimize the effects of biofuel developments on global food supplies. Our pilot study area is the Greater Platte River Basin, which includes a broad range of plant productivity from semiarid grasslands in the west to the fertile corn belt in the east. The Greater Platte River Basin was the subject of related U.S. Geological Survey (USGS) integrated research projects.

  8. Development of Wolsong Unit 2 Containment Analysis Model

    Energy Technology Data Exchange (ETDEWEB)

    Hoon, Choi [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Jin, Ko Bong; Chan, Park Young [Hanbat National Univ., Daejeon (Korea, Republic of)

    2014-05-15

    To be prepared for the full scope safety analysis of Wolsong unit 2 with modified fuel, input decks for the various objectives, which can be read by GOTHIC 7.2b(QA), are developed and tested for the steady state simulation. A detailed nodalization of 39 control volumes and 92 flow paths is constructed to determine the differential pressure across internal walls or hydrogen concentration and distribution inside containment. A lumped model with 15 control volumes and 74 flow paths has also been developed to reduce the computer run time for the assessments in which the analysis results are not sensitive to detailed thermal hydraulic distribution inside containment such as peak pressure, pressure dependent signal and radionuclide release. The input data files provide simplified representations of the geometric layout of the containment building (volumes, dimensions, flow paths, doors, panels, etc.) and the performance characteristics of the various containment subsystems. The parameter values are based on best estimate or design values for that parameter. The analysis values are determined by conservatism depending on the analysis objective and may be different for various analysis objectives. Basic input decks of Wolsong unit 2 were developed for the various analysis purposes with GOTHIC 7.2b(QA). Depend on the analysis objective, two types of models are prepared. Detailed model models each confined room in the containment as a separate node. All of the geometric data are based on the drawings of Wolsong unit 2. Developed containment models are simulating the steady state well to the designated initial condition. These base models will be used for Wolsong unit 2 in case of safety analysis of full scope is needed.

  9. Hydrothermal alteration maps of the central and southern Basin and Range province of the United States compiled from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    Science.gov (United States)

    Mars, John L.

    2013-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map hydrothermally altered rocks in the central and southern parts of the Basin and Range province of the United States. The hydrothermally altered rocks mapped in this study include (1) hydrothermal silica-rich rocks (hydrous quartz, chalcedony, opal, and amorphous silica), (2) propylitic rocks (calcite-dolomite and epidote-chlorite mapped as separate mineral groups), (3) argillic rocks (alunite-pyrophyllite-kaolinite), and (4) phyllic rocks (sericite-muscovite). A series of hydrothermal alteration maps, which identify the potential locations of hydrothermal silica-rich, propylitic, argillic, and phyllic rocks on Landsat Thematic Mapper (TM) band 7 orthorectified images, and geographic information systems shape files of hydrothermal alteration units are provided in this study.

  10. Self-Organizing Map Models of Language Acquisition

    Directory of Open Access Journals (Sweden)

    Ping eLi

    2013-11-01

    Full Text Available Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic PDP architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development.

  11. Choosing colors for map display icons using models of visual search.

    Science.gov (United States)

    Shive, Joshua; Francis, Gregory

    2013-04-01

    We show how to choose colors for icons on maps to minimize search time using predictions of a model of visual search. The model analyzes digital images of a search target (an icon on a map) and a search display (the map containing the icon) and predicts search time as a function of target-distractor color distinctiveness and target eccentricity. We parameterized the model using data from a visual search task and performed a series of optimization tasks to test the model's ability to choose colors for icons to minimize search time across icons. Map display designs made by this procedure were tested experimentally. In a follow-up experiment, we examined the model's flexibility to assign colors in novel search situations. The model fits human performance, performs well on the optimization tasks, and can choose colors for icons on maps with novel stimuli to minimize search time without requiring additional model parameter fitting. Models of visual search can suggest color choices that produce search time reductions for display icons. Designers should consider constructing visual search models as a low-cost method of evaluating color assignments.

  12. Application of the Lean Office philosophy and mapping of the value stream in the process of designing the banking units of a financial company

    Directory of Open Access Journals (Sweden)

    Nelson Antônio Calsavara

    2016-09-01

    Full Text Available The purpose of this study is to conduct a critical analysis of the effects of Lean Office on the design process of the banking units of a financial company and how the implementation of this philosophy may contribute to productivity, thus reducing implementation time. A literature review of the Toyota Production System was conducted, as well as studies on its methods, with advancement to lean thinking and consistent application of Lean philosophies in services and Office. A bibliographic and documentary survey of the Lean processes and procedures for opening bank branches was taken. A Current State Map was developed, modeling the current operating procedures. Soon after the identification and analysis of waste, proposals were presented for reducing deadlines and eliminating and grouping stages, with consequent development of the Future State Map, implementation and monitoring of stages, and the measurement of estimated time gains in operation, demonstrating an estimated 45% reduction, in days, from start to end of the process, concluding that the implementation of the Lean Office philosophy contributed to the process.

  13. Mapping and Assessment of the United States Ocean Wave Energy Resource

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Paul T; Hagerman, George; Scott, George

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  14. Resonating, Rejecting, Reinterpreting: Mapping the Stabilization Discourse in the United Nations Security Council, 2000–14

    Directory of Open Access Journals (Sweden)

    David Curran

    2015-10-01

    Full Text Available This article charts the evolution of the conceptualisation of stabilization in the UN Security Council (UNSC during the period 2001–2014. UNSC open meetings provide an important dataset for a critical review of stabilization discourse and an opportunity to chart the positions of permanent Members, rotating Members and the UN Secretariat towards this concept. This article is the first to conduct an analysis of this material to map the evolution of stabilization in this critical chamber of the UN. This dataset of official statements will be complemented by a review of open source reporting on UNSC meetings and national stabilization doctrines of the ‘P3’ – France, the UK and the US. These countries have developed national stabilization doctrines predominantly to deal with cross-governmental approaches to counterinsurgency operations conducted during the 2000s. The article therefore presents a genealogy of the concept of stabilization in the UNSC to help understand implications for its future development in this multilateral setting. This article begins by examining efforts by the P3 to ‘upload’ their conceptualisations of stabilization into UN intervention frameworks. Secondly, the article uses a content analysis of UNSC debates during 2000–2014 to explore the extent to which the conceptualisation of stabilization resonated with other Council members, were rejected in specific contexts or in general, or were re-interpreted by member states to suit alternative security agendas and interests. Therefore, the article not only examines the UNSC debates surrounding existing UN ‘stabilization operations’ (MONUSCO, MINUSTAH, MINUSCA, MINUSMA, which could be regarded as evidence that this ‘western’ concept has resonated with other UNSC members and relevant UN agencies, but also documents the appearance of stabilization in other contexts too. The article opens new avenues of research into concepts of stabilization within the UN, and

  15. Auxiliary variables for the mapping of the drainage network: spatial correlation between relieve units, lithotypes and springs in Benevente River basin-ES

    Directory of Open Access Journals (Sweden)

    Tony Vinicius Moreira Sampaio

    2014-12-01

    Full Text Available Process of the drainage network mapping present methodological limitations re- sulting in inaccurate maps, restricting their use in environmental studies. Such problems demand the realization of long field surveys to verify the error and the search for auxiliary variables to optimize this works and turn possible the analysis of map accuracy. This research aims at the measurement of the correlation be- tween springs, lithotypes and relieve units, characterized by Roughness Concentration Index (RCI in River Basin Benevente-ES, focusing on the operations of map algebra and the use of spatial statistical techniques. These procedures have identified classes of RCI and lithotypes that present the highest and the lowest correlation with the spatial distribution of springs, indicating its potential use as auxiliary variables to verify the map accuracy.

  16. Soil mapping and processes modelling for sustainable land management: a review

    Science.gov (United States)

    Pereira, Paulo; Brevik, Eric; Muñoz-Rojas, Miriam; Miller, Bradley; Smetanova, Anna; Depellegrin, Daniel; Misiune, Ieva; Novara, Agata; Cerda, Artemi

    2017-04-01

    Soil maps and models are fundamental for a correct and sustainable land management (Pereira et al., 2017). They are an important in the assessment of the territory and implementation of sustainable measures in urban areas, agriculture, forests, ecosystem services, among others. Soil maps represent an important basis for the evaluation and restoration of degraded areas, an important issue for our society, as consequence of climate change and the increasing pressure of humans on the ecosystems (Brevik et al. 2016; Depellegrin et al., 2016). The understanding of soil spatial variability and the phenomena that influence this dynamic is crucial to the implementation of sustainable practices that prevent degradation, and decrease the economic costs of soil restoration. In this context, soil maps and models are important to identify areas affected by degradation and optimize the resources available to restore them. Overall, soil data alone or integrated with data from other sciences, is an important part of sustainable land management. This information is extremely important land managers and decision maker's implements sustainable land management policies. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. References Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. (2016) Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274. Depellegrin, D.A., Pereira, P., Misiune, I., Egarter-Vigl, L. (2016) Mapping Ecosystem Services in Lithuania. International Journal of Sustainable Development and World Ecology, 23, 441-455. Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B., Smetanova, A., Depellegrin, D., Misiune, I., Novara, A., Cerda, A. (2017) Soil mapping and process modelling for sustainable land management. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B

  17. Modeling of Flood Risk for the Continental United States

    Science.gov (United States)

    Lohmann, D.; Li, S.; Katz, B.; Goteti, G.; Kaheil, Y. H.; Vojjala, R.

    2011-12-01

    The science of catastrophic risk modeling helps people to understand the physical and financial implications of natural catastrophes (hurricanes, flood, earthquakes, etc.), terrorism, and the risks associated with changes in life expectancy. As such it depends on simulation techniques that integrate multiple disciplines such as meteorology, hydrology, structural engineering, statistics, computer science, financial engineering, actuarial science, and more in virtually every field of technology. In this talk we will explain the techniques and underlying assumptions of building the RMS US flood risk model. We especially will pay attention to correlation (spatial and temporal), simulation and uncertainty in each of the various components in the development process. Recent extreme floods (e.g. US Midwest flood 2008, US Northeast flood, 2010) have increased the concern of flood risk. Consequently, there are growing needs to adequately assess the flood risk. The RMS flood hazard model is mainly comprised of three major components. (1) Stochastic precipitation simulation module based on a Monte-Carlo analogue technique, which is capable of producing correlated rainfall events for the continental US. (2) Rainfall-runoff and routing module. A semi-distributed rainfall-runoff model was developed to properly assess the antecedent conditions, determine the saturation area and runoff. The runoff is further routed downstream along the rivers by a routing model. Combined with the precipitation model, it allows us to correlate the streamflow and hence flooding from different rivers, as well as low and high return-periods across the continental US. (3) Flood inundation module. It transforms the discharge (output from the flow routing) into water level, which is further combined with a two-dimensional off-floodplain inundation model to produce comprehensive flood hazard map. The performance of the model is demonstrated by comparing to the observation and published data. Output from

  18. Self-organizing map models of language acquisition

    Science.gov (United States)

    Li, Ping; Zhao, Xiaowei

    2013-01-01

    Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic parallel distributed processing architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper, we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development. We suggest future directions in which these models can be extended, to better connect with behavioral and neural data, and to make clear predictions in testing relevant psycholinguistic theories. PMID:24312061

  19. Analytical modeling for thermal errors of motorized spindle unit

    OpenAIRE

    Liu, Teng; Gao, Weiguo; Zhang, Dawei; Zhang, Yifan; Chang, Wenfen; Liang, Cunman; Tian, Yanling

    2017-01-01

    Modeling method investigation about spindle thermal errors is significant for spindle thermal optimization in design phase. To accurately analyze the thermal errors of motorized spindle unit, this paper assumes approximately that 1) spindle linear thermal error on axial direction is ascribed to shaft thermal elongation for its heat transfer from bearings, and 2) spindle linear thermal errors on radial directions and angular thermal errors are attributed to thermal variations of bearing relati...

  20. Mapping Antimicrobial Stewardship in Undergraduate Medical, Dental, Pharmacy, Nursing and Veterinary Education in the United Kingdom.

    Directory of Open Access Journals (Sweden)

    Enrique Castro-Sánchez

    Full Text Available To investigate the teaching of antimicrobial stewardship (AS in undergraduate healthcare educational degree programmes in the United Kingdom (UK.Cross-sectional survey of undergraduate programmes in human and veterinary medicine, dentistry, pharmacy and nursing in the UK. The main outcome measures included prevalence of AS teaching; stewardship principles taught; estimated hours apportioned; mode of content delivery and teaching strategies; evaluation methodologies; and frequency of multidisciplinary learning.80% (112/140 of programmes responded adequately. The majority of programmes teach AS principles (88/109, 80.7%. 'Adopting necessary infection prevention and control precautions' was the most frequently taught principle (83/88, 94.3%, followed by 'timely collection of microbiological samples for microscopy, culture and sensitivity' (73/88, 82.9% and 'minimisation of unnecessary antimicrobial prescribing' (72/88, 81.8%. The 'use of intravenous administration only to patients who are severely ill, or unable to tolerate oral treatment' was reported in ~50% of courses. Only 32/88 (36.3% programmes included all recommended principles.Antimicrobial stewardship principles are included in most undergraduate healthcare and veterinary degree programmes in the UK. However, future professionals responsible for using antimicrobials receive disparate education. Education may be boosted by standardisation and strengthening of less frequently discussed principles.

  1. Microscopic structure of an interacting boson model in terms of the dyson boson mapping

    International Nuclear Information System (INIS)

    Geyer, H.B.; Lee, S.Y.

    1982-01-01

    In an application of the generalized Dyson boson mapping to a shell model Hamiltonian acting in a single j shell, a clear distinction emerges between pair bosons and kinematically determined seniority bosons. As in the Otsuka-Arima-Iachello method it is found that the latter type of boson determines the structure of an interactive boson-model-like Hamiltonian for the single j-shell model. It is furthermore shown that the Dyson boson mapping formalism is equally well suited for investigating possible interactive boson-model-like structures in a multishell case, where dynamical considerations are expected to play a much more important role in determining the structure of physical bosons

  2. From representing to modelling knowledge: Proposing a two-step training for excellence in concept mapping

    Directory of Open Access Journals (Sweden)

    Joana G. Aguiar

    2017-09-01

    Full Text Available Training users in the concept mapping technique is critical for ensuring a high-quality concept map in terms of graphical structure and content accuracy. However, assessing excellence in concept mapping through structural and content features is a complex task. This paper proposes a two-step sequential training in concept mapping. The first step requires the fulfilment of low-order cognitive objectives (remember, understand and apply to facilitate novices’ development into good Cmappers by honing their knowledge representation skills. The second step requires the fulfilment of high-order cognitive objectives (analyse, evaluate and create to grow good Cmappers into excellent ones through the development of knowledge modelling skills. Based on Bloom’s revised taxonomy and cognitive load theory, this paper presents theoretical accounts to (1 identify the criteria distinguishing good and excellent concept maps, (2 inform instructional tasks for concept map elaboration and (3 propose a prototype for training users on concept mapping combining online and face-to-face activities. The proposed training application and the institutional certification are the next steps for the mature use of concept maps for educational as well as business purposes.

  3. Modelling Multi Hazard Mapping in Semarang City Using GIS-Fuzzy Method

    Science.gov (United States)

    Nugraha, A. L.; Awaluddin, M.; Sasmito, B.

    2018-02-01

    One important aspect of disaster mitigation planning is hazard mapping. Hazard mapping can provide spatial information on the distribution of locations that are threatened by disaster. Semarang City as the capital of Central Java Province is one of the cities with high natural disaster intensity. Frequent natural disasters Semarang city is tidal flood, floods, landslides, and droughts. Therefore, Semarang City needs spatial information by doing multi hazard mapping to support disaster mitigation planning in Semarang City. Multi Hazards map modelling can be derived from parameters such as slope maps, rainfall, land use, and soil types. This modelling is done by using GIS method with scoring and overlay technique. However, the accuracy of modelling would be better if the GIS method is combined with Fuzzy Logic techniques to provide a good classification in determining disaster threats. The Fuzzy-GIS method will build a multi hazards map of Semarang city can deliver results with good accuracy and with appropriate threat class spread so as to provide disaster information for disaster mitigation planning of Semarang city. from the multi-hazard modelling using GIS-Fuzzy can be known type of membership that has a good accuracy is the type of membership Gauss with RMSE of 0.404 the smallest of the other membership and VAF value of 72.909% of the largest of the other membership.

  4. Enhanced Map-Matching Algorithm with a Hidden Markov Model for Mobile Phone Positioning

    Directory of Open Access Journals (Sweden)

    An Luo

    2017-10-01

    Full Text Available Numerous map-matching techniques have been developed to improve positioning, using Global Positioning System (GPS data and other sensors. However, most existing map-matching algorithms process GPS data with high sampling rates, to achieve a higher correct rate and strong universality. This paper introduces a novel map-matching algorithm based on a hidden Markov model (HMM for GPS positioning and mobile phone positioning with a low sampling rate. The HMM is a statistical model well known for providing solutions to temporal recognition applications such as text and speech recognition. In this work, the hidden Markov chain model was built to establish a map-matching process, using the geometric data, the topologies matrix of road links in road network and refined quad-tree data structure. HMM-based map-matching exploits the Viterbi algorithm to find the optimized road link sequence. The sequence consists of hidden states in the HMM model. The HMM-based map-matching algorithm is validated on a vehicle trajectory using GPS and mobile phone data. The results show a significant improvement in mobile phone positioning and high and low sampling of GPS data.

  5. A regularized, model-based approach to phase-based conductivity mapping using MRI.

    Science.gov (United States)

    Ropella, Kathleen M; Noll, Douglas C

    2017-11-01

    To develop a novel regularized, model-based approach to phase-based conductivity mapping that uses structural information to improve the accuracy of conductivity maps. The inverse of the three-dimensional Laplacian operator is used to model the relationship between measured phase maps and the object conductivity in a penalized weighted least-squares optimization problem. Spatial masks based on structural information are incorporated into the problem to preserve data near boundaries. The proposed Inverse Laplacian method was compared against a restricted Gaussian filter in simulation, phantom, and human experiments. The Inverse Laplacian method resulted in lower reconstruction bias and error due to noise in simulations than the Gaussian filter. The Inverse Laplacian method also produced conductivity maps closer to the measured values in a phantom and with reduced noise in the human brain, as compared to the Gaussian filter. The Inverse Laplacian method calculates conductivity maps with less noise and more accurate values near boundaries. Improving the accuracy of conductivity maps is integral for advancing the applications of conductivity mapping. Magn Reson Med 78:2011-2021, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Mapping integration of midwives across the United States: Impact on access, equity, and outcomes.

    Directory of Open Access Journals (Sweden)

    Saraswathi Vedam

    Full Text Available Our multidisciplinary team examined published regulatory data to inform a 50-state database describing the environment for midwifery practice and interprofessional collaboration. Items (110 detailed differences across jurisdictions in scope of practice, autonomy, governance, and prescriptive authority; as well as restrictions that can affect patient safety, quality, and access to maternity providers across birth settings. A nationwide survey of state regulatory experts (n = 92 verified the 'on the ground' relevance, importance, and realities of local interpretation of these state laws. Using a modified Delphi process, we selected 50/110 key items to include in a weighted, composite Midwifery Integration Scoring (MISS system. Higher scores indicate greater integration of midwives across all settings. We ranked states by MISS scores; and, using reliable indicators in the CDC-Vital Statistics Database, we calculated correlation coefficients between MISS scores and maternal-newborn outcomes by state, as well as state density of midwives and place of birth. We conducted hierarchical linear regression analysis to control for confounding effects of race.MISS scores ranged from lowest at 17 (North Carolina to highest at 61 (Washington, out of 100 points. Higher MISS scores were associated with significantly higher rates of spontaneous vaginal delivery, vaginal birth after cesarean, and breastfeeding, and significantly lower rates of cesarean, preterm birth, low birth weight infants, and neonatal death. MISS scores also correlated with density of midwives and access to care across birth settings. Significant differences in newborn outcomes accounted for by MISS scores persisted after controlling for proportion of African American births in each state.The MISS scoring system assesses the level of integration of midwives and evaluates regional access to high quality maternity care. In the United States, higher MISS Scores were associated with significantly

  7. Soil mapping and process modeling for sustainable land use management: a brief historical review

    Science.gov (United States)

    Brevik, Eric C.; Pereira, Paulo; Muñoz-Rojas, Miriam; Miller, Bradley A.; Cerdà, Artemi; Parras-Alcántara, Luis; Lozano-García, Beatriz

    2017-04-01

    Basic soil management goes back to the earliest days of agricultural practices, approximately 9,000 BCE. Through time humans developed soil management techniques of ever increasing complexity, including plows, contour tillage, terracing, and irrigation. Spatial soil patterns were being recognized as early as 3,000 BCE, but the first soil maps didn't appear until the 1700s and the first soil models finally arrived in the 1880s (Brevik et al., in press). The beginning of the 20th century saw an increase in standardization in many soil science methods and wide-spread soil mapping in many parts of the world, particularly in developed countries. However, the classification systems used, mapping scale, and national coverage varied considerably from country to country. Major advances were made in pedologic modeling starting in the 1940s, and in erosion modeling starting in the 1950s. In the 1970s and 1980s advances in computing power, remote and proximal sensing, geographic information systems (GIS), global positioning systems (GPS), and statistics and spatial statistics among other numerical techniques significantly enhanced our ability to map and model soils (Brevik et al., 2016). These types of advances positioned soil science to make meaningful contributions to sustainable land use management as we moved into the 21st century. References Brevik, E., Pereira, P., Muñoz-Rojas, M., Miller, B., Cerda, A., Parras-Alcantara, L., Lozano-Garcia, B. Historical perspectives on soil mapping and process modelling for sustainable land use management. In: Pereira, P., Brevik, E., Muñoz-Rojas, M., Miller, B. (eds) Soil mapping and process modelling for sustainable land use management (In press). Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. 2016. Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274.

  8. Risk predicting of macropore flow using pedotransfer functions, textural maps and modeling

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Børgesen, Christen Duus; Lægdsmand, Mette

    2011-01-01

    of this study were first to develop pedotransfer functions (PTFs) predicting near-saturated [k(−1)] and saturated (Ks) hydraulic conductivity using simple soil parameters as predictors and second to use this information and a newly developed rasterbased soil property map of Denmark to identify risk areas...... modeling were used to construct a new map dividing Denmark into risk categories for macropore flow. This map can be combined with other tools to identify areas where there is a high risk of contaminants leaching out of the root zone....

  9. Interpreting predictive maps of disease: highlighting the pitfalls of distribution models in epidemiology

    Directory of Open Access Journals (Sweden)

    Nicola A. Wardrop

    2014-11-01

    Full Text Available The application of spatial modelling to epidemiology has increased significantly over the past decade, delivering enhanced understanding of the environmental and climatic factors affecting disease distributions and providing spatially continuous representations of disease risk (predictive maps. These outputs provide significant information for disease control programmes, allowing spatial targeting and tailored interventions. However, several factors (e.g. sampling protocols or temporal disease spread can influence predictive mapping outputs. This paper proposes a conceptual framework which defines several scenarios and their potential impact on resulting predictive outputs, using simulated data to provide an exemplar. It is vital that researchers recognise these scenarios and their influence on predictive models and their outputs, as a failure to do so may lead to inaccurate interpretation of predictive maps. As long as these considerations are kept in mind, predictive mapping will continue to contribute significantly to epidemiological research and disease control planning.

  10. Using concept maps to describe undergraduate students’ mental model in microbiology course

    Science.gov (United States)

    Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.

    2018-05-01

    The purpose of this research was to describe students’ mental model in a mental model based-microbiology course using concept map as assessment tool. Respondents were 5th semester of undergraduate students of Biology Education of Universitas Pendidikan Indonesia. The mental modelling instrument used was concept maps. Data were taken on Bacteria sub subject. A concept map rubric was subsequently developed with a maximum score of 4. Quantitative data was converted into a qualitative one to determine mental model level, namely: emergent = score 1, transitional = score 2, close to extended = score 3, and extended = score 4. The results showed that mental model level on bacteria sub subject before the implementation of mental model based-microbiology course was at the transitional level. After implementation of mental model based-microbiology course, mental model was at transitional level, close to extended, and extended. This indicated an increase in the level of students’ mental model after the implementation of mental model based-microbiology course using concept map as assessment tool.

  11. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Jesper (Vattenfall Power Consultant AB, Stockholm (Sweden)); Curtis, Philip; Bockgaard, Niclas (Golder Associates AB (Sweden)); Mattsson, Haakan (GeoVista AB, Luleaa (Sweden))

    2011-01-15

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images

  12. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    International Nuclear Information System (INIS)

    Petersson, Jesper; Curtis, Philip; Bockgaard, Niclas; Mattsson, Haakan

    2011-01-01

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images, or a

  13. A 30m resolution hydrodynamic model of the entire conterminous United States.

    Science.gov (United States)

    Bates, P. D.; Neal, J. C.; Smith, A.; Sampson, C.; Johnson, K.; Wing, O.

    2016-12-01

    In this paper we describe the development and validation of a 30m resolution hydrodynamic model covering the entire conterminous United States. The model can be used to simulate inundation and water depths resulting from either return period flows (so equivalent to FEMA Flood Insurance Rate Maps), hindcasts of historic events or forecasts of future river flow from a rainfall-runoff or land surface model. As topographic data the model uses the U.S. Geological Survey National Elevation Dataset or NED, and return period flows are generated using a regional flood frequency analysis methodology (Smith et al., 2015. Worldwide flood frequency estimation. Water Resources Research, 51, 539-553). Flood defences nationwide are represented using data from the US Army Corps of Engineers. Using these data flows are simulated using an explicit and highly efficient finite difference solution of the local inertial form of the Shallow Water equations identical to that implemented in the LISFLOOD-FP model. Even with this efficient numerical solution a simulation at this resolution over a whole continent is a huge undertaking, and a variety of High Performance Computing technologies therefore need to be employed to make these simulations possible. The size of the output datasets is also challenging, and to solve this we use the GIS and graphical display functions of Google Earth Engine to facilitate easy visualisation and interrogation of the results. The model is validated against the return period flood extents contained in FEMA Flood Insurance Rate Maps and real flood event data from the Texas 2015 flood event which was hindcast using the model. Finally, we present an application of the model to the Upper Mississippi river basin where simulations both with and without flood defences are used to determine floodplain areas benefitting from protection in order to quantify the benefits of flood defence spending.

  14. Mapping integration of midwives across the United States: Impact on access, equity, and outcomes

    Science.gov (United States)

    Stoll, Kathrin; MacDorman, Marian; Declercq, Eugene; Cramer, Renee; Cheyney, Melissa; Fisher, Timothy; Butt, Emma; Yang, Y. Tony; Powell Kennedy, Holly

    2018-01-01

    birth settings. Significant differences in newborn outcomes accounted for by MISS scores persisted after controlling for proportion of African American births in each state. Conclusion The MISS scoring system assesses the level of integration of midwives and evaluates regional access to high quality maternity care. In the United States, higher MISS Scores were associated with significantly higher rates of physiologic birth, less obstetric interventions, and fewer adverse neonatal outcomes. PMID:29466389

  15. Dynamics of chaotic maps for modelling the multifractal spectrum of human brain Diffusion Tensor Images

    International Nuclear Information System (INIS)

    Provata, A.; Katsaloulis, P.; Verganelakis, D.A.

    2012-01-01

    Highlights: ► Calculation of human brain multifractal spectra. ► Calculations are based on Diffusion Tensor MRI Images. ► Spectra are modelled by coupled Ikeda map dynamics. ► Coupled lattice Ikeda maps model well only positive multifractal spectra. ► Appropriately modified coupled lattice Ikeda maps give correct spectra. - Abstract: The multifractal spectra of 3d Diffusion Tensor Images (DTI) obtained by magnetic resonance imaging of the human brain are studied. They are shown to deviate substantially from artificial brain images with the same white matter intensity. All spectra, obtained from 12 healthy subjects, show common characteristics indicating non-trivial moments of the intensity. To model the spectra the dynamics of the chaotic Ikeda map are used. The DTI multifractal spectra for positive q are best approximated by 3d coupled Ikeda maps in the fully developed chaotic regime. The coupling constants are as small as α = 0.01. These results reflect not only the white tissue non-trivial architectural complexity in the human brain, but also demonstrate the presence and importance of coupling between neuron axons. The architectural complexity is also mirrored by the deviations in the negative q-spectra, where the rare events dominate. To obtain a good agreement in the DTI negative q-spectrum of the brain with the Ikeda dynamics, it is enough to slightly modify the most rare events of the coupled Ikeda distributions. The representation of Diffusion Tensor Images with coupled Ikeda maps is not unique: similar conclusions are drawn when other chaotic maps (Tent, Logistic or Henon maps) are employed in the modelling of the neuron axons network.

  16. Spatial analysis and risk mapping of soil-transmitted helminth infections in Brazil, using Bayesian geostatistical models.

    Science.gov (United States)

    Scholte, Ronaldo G C; Schur, Nadine; Bavia, Maria E; Carvalho, Edgar M; Chammartin, Frédérique; Utzinger, Jürg; Vounatsou, Penelope

    2013-11-01

    Soil-transmitted helminths (Ascaris lumbricoides, Trichuris trichiura and hookworm) negatively impact the health and wellbeing of hundreds of millions of people, particularly in tropical and subtropical countries, including Brazil. Reliable maps of the spatial distribution and estimates of the number of infected people are required for the control and eventual elimination of soil-transmitted helminthiasis. We used advanced Bayesian geostatistical modelling, coupled with geographical information systems and remote sensing to visualize the distribution of the three soil-transmitted helminth species in Brazil. Remotely sensed climatic and environmental data, along with socioeconomic variables from readily available databases were employed as predictors. Our models provided mean prevalence estimates for A. lumbricoides, T. trichiura and hookworm of 15.6%, 10.1% and 2.5%, respectively. By considering infection risk and population numbers at the unit of the municipality, we estimate that 29.7 million Brazilians are infected with A. lumbricoides, 19.2 million with T. trichiura and 4.7 million with hookworm. Our model-based maps identified important risk factors related to the transmission of soiltransmitted helminths and confirm that environmental variables are closely associated with indices of poverty. Our smoothed risk maps, including uncertainty, highlight areas where soil-transmitted helminthiasis control interventions are most urgently required, namely in the North and along most of the coastal areas of Brazil. We believe that our predictive risk maps are useful for disease control managers for prioritising control interventions and for providing a tool for more efficient surveillance-response mechanisms.

  17. Malaria in Africa: vector species' niche models and relative risk maps.

    Directory of Open Access Journals (Sweden)

    Alexander Moffett

    2007-09-01

    Full Text Available A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km. Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes. For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The "additive" model assumes no interaction; the "minimax" model assumes maximum relative risk due to any vector in a cell; and the "competitive exclusion" model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease.

  18. Financial Viability of Emergency Department Observation Unit Billing Models.

    Science.gov (United States)

    Baugh, Christopher W; Suri, Pawan; Caspers, Christopher G; Granovsky, Michael A; Neal, Keith; Ross, Michael A

    2018-05-16

    Outpatients receive observation services to determine the need for inpatient admission. These services are usually provided without the use of condition-specific protocols and in an unstructured manner, scattered throughout a hospital in areas typically designated for inpatient care. Emergency department observation units (EDOUs) use protocolized care to offer an efficient alternative with shorter lengths of stay, lower costs and higher patient satisfaction. EDOU growth is limited by existing policy barriers that prevent a "two-service" model of separate professional billing for both emergency and observation services. The majority of EDOUs use the "one-service" model, where a single composite professional fee is billed for both emergency and observation services. The financial implications of these models are not well understood. We created a Monte Carlo simulation by building a model that reflects current clinical practice in the United States and uses inputs gathered from the most recently available peer-reviewed literature, national survey and payer data. Using this simulation, we modeled annual staffing costs and payments for professional services under two common models of care in an EDOU. We also modeled cash flows over a continuous range of daily EDOU patient encounters to illustrate the dynamic relationship between costs and revenue over various staffing levels. We estimate the mean (±SD) annual net cash flow to be a net loss of $315,382 ±$89,635 in the one-service model and a net profit of $37,569 ±$359,583 in the two-service model. The two-service model is financially sustainable at daily billable encounters above 20 while in the one-service model, costs exceed revenue regardless of encounter count. Physician cost per hour and daily patient encounters had the most significant impact on model estimates. In the one-service model, EDOU staffing costs exceed payments at all levels of patient encounters, making a hospital subsidy necessary to create a

  19. Malaria Disease Mapping in Malaysia based on Besag-York-Mollie (BYM) Model

    Science.gov (United States)

    Azah Samat, Nor; Mey, Liew Wan

    2017-09-01

    Disease mapping is the visual representation of the geographical distribution which give an overview info about the incidence of disease within a population through spatial epidemiology data. Based on the result of map, it helps in monitoring and planning resource needs at all levels of health care and designing appropriate interventions, tailored towards areas that deserve closer scrutiny or communities that lead to further investigations to identify important risk factors. Therefore, the choice of statistical model used for relative risk estimation is important because production of disease risk map relies on the model used. This paper proposes Besag-York-Mollie (BYM) model to estimate the relative risk for Malaria in Malaysia. The analysis involved using the number of Malaria cases that obtained from the Ministry of Health Malaysia. The outcomes of analysis are displayed through graph and map, including Malaria disease risk map that constructed according to the estimation of relative risk. The distribution of high and low risk areas of Malaria disease occurrences for all states in Malaysia can be identified in the risk map.

  20. A Conceptual Model for the Creation of a Process-Oriented Knowledge Map (POK-Map and Implementation in an Electric Power Distribution Company

    Directory of Open Access Journals (Sweden)

    Babak Teimourpour

    2015-12-01

    Full Text Available Helping a company organize and capture the knowledge used by its employees and business processes is a daunting task. In this work we examine several proposed methodologies and synthesize them into a new methodology that we demonstrate through a case study of an electric power distribution company. This is a practical research study. First, the research approach for creating the knowledge map is process-oriented and the processes are considered as the main elements of the model. This research was done in four stages: literature review, model editing, model validation and case study. The Delphi method was used for the research model validation. Some of the important outputs of this research were mapping knowledge flows, determining the level of knowledge assets, expert-area knowledge map, preparing knowledge meta-model, and updating the knowledge map according to the company’s processes. Besides identifying, auditing and visualizing tacit and explicit knowledge, this knowledge mapping enables us to analyze the knowledge areas’ situation and subsequently help us to improve the processes and overall performance. So, a process map does knowledge mapping in a clear and accurate frame. Once the knowledge is used in processes, it creates value.

  1. An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling

    Science.gov (United States)

    Allen, T.I.; Wald, D.J.; Earle, P.S.; Marano, K.D.; Hotovec, A.J.; Lin, K.; Hearne, M.G.

    2009-01-01

    We present an Atlas of ShakeMaps and a catalog of human population exposures to moderate-to-strong ground shaking (EXPO-CAT) for recent historical earthquakes (1973-2007). The common purpose of the Atlas and exposure catalog is to calibrate earthquake loss models to be used in the US Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER). The full ShakeMap Atlas currently comprises over 5,600 earthquakes from January 1973 through December 2007, with almost 500 of these maps constrained-to varying degrees-by instrumental ground motions, macroseismic intensity data, community internet intensity observations, and published earthquake rupture models. The catalog of human exposures is derived using current PAGER methodologies. Exposure to discrete levels of shaking intensity is obtained by correlating Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data, such as PAGER-CAT, provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. We illustrate two example uses for EXPO-CAT; (1) simple objective ranking of country vulnerability to earthquakes, and; (2) the influence of time-of-day on earthquake mortality. In general, we observe that countries in similar geographic regions with similar construction practices tend to cluster spatially in terms of relative vulnerability. We also find little quantitative evidence to suggest that time-of-day is a significant factor in earthquake mortality. Moreover, earthquake mortality appears to be more systematically linked to the population exposed to severe ground shaking (Modified Mercalli Intensity VIII+). Finally, equipped with the full Atlas of ShakeMaps, we merge each of these maps and find the maximum estimated peak ground acceleration at any grid point in the world for the past 35 years. We subsequently compare this "composite ShakeMap" with existing global

  2. Quantum Programs as Kleisli Maps

    Directory of Open Access Journals (Sweden)

    Abraham Westerbaan

    2017-01-01

    Full Text Available Furber and Jacobs have shown in their study of quantum computation that the category of commutative C*-algebras and PU-maps (positive linear maps which preserve the unit is isomorphic to the Kleisli category of a comonad on the category of commutative C*-algebras with MIU-maps (linear maps which preserve multiplication, involution and unit. [Furber and Jacobs, 2013] In this paper, we prove a non-commutative variant of this result: the category of C*-algebras and PU-maps is isomorphic to the Kleisli category of a comonad on the subcategory of MIU-maps. A variation on this result has been used to construct a model of Selinger and Valiron's quantum lambda calculus using von Neumann algebras. [Cho and Westerbaan, 2016

  3. What are we 'tweeting' about obesity? Mapping tweets with Topic Modeling and Geographic Information System.

    Science.gov (United States)

    Ghosh, Debarchana Debs; Guha, Rajarshi

    2013-01-01

    Public health related tweets are difficult to identify in large conversational datasets like Twitter.com. Even more challenging is the visualization and analyses of the spatial patterns encoded in tweets. This study has the following objectives: How can topic modeling be used to identify relevant public health topics such as obesity on Twitter.com? What are the common obesity related themes? What is the spatial pattern of the themes? What are the research challenges of using large conversational datasets from social networking sites? Obesity is chosen as a test theme to demonstrate the effectiveness of topic modeling using Latent Dirichlet Allocation (LDA) and spatial analysis using Geographic Information System (GIS). The dataset is constructed from tweets (originating from the United States) extracted from Twitter.com on obesity-related queries. Examples of such queries are 'food deserts', 'fast food', and 'childhood obesity'. The tweets are also georeferenced and time stamped. Three cohesive and meaningful themes such as 'childhood obesity and schools', 'obesity prevention', and 'obesity and food habits' are extracted from the LDA model. The GIS analysis of the extracted themes show distinct spatial pattern between rural and urban areas, northern and southern states, and between coasts and inland states. Further, relating the themes with ancillary datasets such as US census and locations of fast food restaurants based upon the location of the tweets in a GIS environment opened new avenues for spatial analyses and mapping. Therefore the techniques used in this study provide a possible toolset for computational social scientists in general and health researchers in specific to better understand health problems from large conversational datasets.

  4. Modeling and Simulation of Claus Unit Reaction Furnace

    Directory of Open Access Journals (Sweden)

    Maryam Pahlavan

    2016-01-01

    Full Text Available Reaction furnace is the most important part of the Claus sulfur recovery unit and its performance has a significant impact on the process efficiency. Too many reactions happen in the furnace and their kinetics and mechanisms are not completely understood; therefore, modeling reaction furnace is difficult and several works have been carried out on in this regard so far. Equilibrium models are commonly used to simulate the furnace, but the related literature states that the outlet of furnace is not in equilibrium and the furnace reactions are controlled by kinetic laws; therefore, in this study, the reaction furnace is simulated by a kinetic model. The predicted outlet temperature and concentrations by this model are compared with experimental data published in the literature and the data obtained by PROMAX V2.0 simulator. The results show that the accuracy of the proposed kinetic model and PROMAX simulator is almost similar, but the kinetic model used in this paper has two importance abilities. Firstly, it is a distributed model and can be used to obtain the temperature and concentration profiles along the furnace. Secondly, it is a dynamic model and can be used for analyzing the transient behavior and designing the control system.

  5. Modelling of temperature distribution and pulsations in fast reactor units

    International Nuclear Information System (INIS)

    Ushakov, P.A.; Sorokin, A.P.

    1994-01-01

    Reasons for the occurrence of thermal stresses in reactor units have been analyzed. The main reasons for this analysis are: temperature non-uniformity at the output of reactor core and breeder and the ensuing temperature pulsation; temperature pulsations due to mixing of sodium jets of a different temperature; temperature nonuniformity and pulsations resulting from the part of loops (circuits) un-plug; temperature nonuniformity and fluctuations in transient and accidental shut down of reactor or transfer to cooling by natural circulation. The results of investigating the thermal hydraulic characteristics are obtained by modelling the processes mentioned above. Analysis carried out allows the main lines of investigation to be defined and conclusions can be drawn regarding the problem of temperature distribution and fluctuation in fast reactor units

  6. A network application for modeling a centrifugal compressor performance map

    Science.gov (United States)

    Nikiforov, A.; Popova, D.; Soldatova, K.

    2017-08-01

    The approximation of aerodynamic performance of a centrifugal compressor stage and vaneless diffuser by neural networks is presented. Advantages, difficulties and specific features of the method are described. An example of a neural network and its structure is shown. The performances in terms of efficiency, pressure ratio and work coefficient of 39 model stages within the range of flow coefficient from 0.01 to 0.08 were modeled with mean squared error 1.5 %. In addition, the loss and friction coefficients of vaneless diffusers of relative widths 0.014-0.10 are modeled with mean squared error 2.45 %.

  7. Improving snow cover mapping in forests through the use of a canopy reflectance model

    International Nuclear Information System (INIS)

    Klein, A.G.; Hall, D.K.; Riggs, G.A.

    1998-01-01

    MODIS, the moderate resolution imaging spectro radiometer, will be launched in 1998 as part of the first earth observing system (EOS) platform. Global maps of land surface properties, including snow cover, will be created from MODIS imagery. The MODIS snow-cover mapping algorithm that will be used to produce daily maps of global snow cover extent at 500 m resolution is currently under development. With the exception of cloud cover, the largest limitation to producing a global daily snow cover product using MODIS is the presence of a forest canopy. A Landsat Thematic Mapper (TM) time-series of the southern Boreal Ecosystem–Atmosphere Study (BOREAS) study area in Prince Albert National Park, Saskatchewan, was used to evaluate the performance of the current MODIS snow-cover mapping algorithm in varying forest types. A snow reflectance model was used in conjunction with a canopy reflectance model (GeoSAIL) to model the reflectance of a snow-covered forest stand. Using these coupled models, the effects of varying forest type, canopy density, snow grain size and solar illumination geometry on the performance of the MODIS snow-cover mapping algorithm were investigated. Using both the TM images and the reflectance models, two changes to the current MODIS snow-cover mapping algorithm are proposed that will improve the algorithm's classification accuracy in forested areas. The improvements include using the normalized difference snow index and normalized difference vegetation index in combination to discriminate better between snow-covered and snow-free forests. A minimum albedo threshold of 10% in the visible wavelengths is also proposed. This will prevent dense forests with very low visible albedos from being classified incorrectly as snow. These two changes increase the amount of snow mapped in forests on snow-covered TM scenes, and decrease the area incorrectly identified as snow on non-snow-covered TM scenes. (author)

  8. Mapping quantitative trait loci in a selectively genotyped outbred population using a mixture model approach

    NARCIS (Netherlands)

    Johnson, David L.; Jansen, Ritsert C.; Arendonk, Johan A.M. van

    1999-01-01

    A mixture model approach is employed for the mapping of quantitative trait loci (QTL) for the situation where individuals, in an outbred population, are selectively genotyped. Maximum likelihood estimation of model parameters is obtained from an Expectation-Maximization (EM) algorithm facilitated by

  9. Computer Games versus Maps before Reading Stories: Priming Readers' Spatial Situation Models

    Science.gov (United States)

    Smith, Glenn Gordon; Majchrzak, Dan; Hayes, Shelley; Drobisz, Jack

    2011-01-01

    The current study investigated how computer games and maps compare as preparation for readers to comprehend and retain spatial relations in text narratives. Readers create situation models of five dimensions: spatial, temporal, causal, goal, and protagonist (Zwaan, Langston, & Graesser 1995). Of these five, readers mentally model the spatial…

  10. Modeling Košice Green Roofs Maps

    Science.gov (United States)

    Poorova, Zuzana; Vranayova, Zuzana

    2017-06-01

    The need to house population in urban areas is expected to rise to 66% in 2050, according to United Nations. The replacement of natural permeable green areas with concrete constructions and hard surfaces will be noticed. The densification of existing built-up areas is responsible for the decreasing vegetation, which results in the lack of evapotranspiration cooling the air. Such decreasing vegetation causes urban heat islands. Since roofs and pavements have a very low albedo, they absorb a lot of sunlight. Several studies have shown that natural and permeable surfaces, as in the case of green roofs, can play crucial role in mitigating this negative climate phenomenon and providing higher efficiency for the building, leading to savings. Such as water saving, what is the main idea of this research.

  11. A model for fine mapping in family based association studies.

    Science.gov (United States)

    Boehringer, Stefan; Pfeiffer, Ruth M

    2009-01-01

    Genome wide association studies for complex diseases are typically followed by more focused characterization of the identified genetic region. We propose a latent class model to evaluate a candidate region with several measured markers using observations on families. The main goal is to estimate linkage disequilibrium (LD) between the observed markers and the putative true but unobserved disease locus in the region. Based on this model, we estimate the joint distribution of alleles at the observed markers and the unobserved true disease locus, and a penetrance parameter measuring the impact of the disease allele on disease risk. A family specific random effect allows for varying baseline disease prevalences for different families. We present a likelihood framework for our model and assess its properties in simulations. We apply the model to an Alzheimer data set and confirm previous findings in the ApoE region.

  12. Bayesian disease mapping: hierarchical modeling in spatial epidemiology

    National Research Council Canada - National Science Library

    Lawson, Andrew

    2013-01-01

    Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas...

  13. A geographical information system-based web model of arbovirus transmission risk in the continental United States of America

    Directory of Open Access Journals (Sweden)

    Sarah K. Konrad

    2012-11-01

    Full Text Available A degree-day (DD model of West Nile virus capable of forecasting real-time transmission risk in the continental United States of America up to one week in advance using a 50-km grid is available online at https://sites. google.com/site/arbovirusmap/. Daily averages of historical risk based on temperatures for 1994-2003 are available at 10- km resolution. Transmission risk maps can be downloaded from 2010 to the present. The model can be adapted to work with any arbovirus for which the temperature-related parameters are known, e.g. Rift Valley fever virus. To more effectively assess virus establishment and transmission, the model incorporates “compound risk” maps and forecasts, which includes livestock density as a parameter.

  14. Integrating Remote Sensing with Species Distribution Models; Mapping Tamarisk Invasions Using the Software for Assisted Habitat Modeling (SAHM)

    OpenAIRE

    West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Young, Nicholas E.; Stohlgren, Thomas J.; Talbert, Colin; Talbert, Marian; Morisette, Jeffrey; Anderson, Ryan

    2016-01-01

    Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tama...

  15. Developing Land Use Land Cover Maps for the Lower Mekong Basin to Aid SWAT Hydrologic Modeling

    Science.gov (United States)

    Spruce, J.; Bolten, J. D.; Srinivasan, R.

    2017-12-01

    This presentation discusses research to develop Land Use Land Cover (LULC) maps for the Lower Mekong Basin (LMB). Funded by a NASA ROSES Disasters grant, the main objective was to produce updated LULC maps to aid the Mekong River Commission's (MRC's) Soil and Water Assessment Tool (SWAT) hydrologic model. In producing needed LULC maps, temporally processed MODIS monthly NDVI data for 2010 were used as the primary data source for classifying regionally prominent forest and agricultural types. The MODIS NDVI data was derived from processing MOD09 and MYD09 8-day reflectance data with the Time Series Product Tool, a custom software package. Circa 2010 Landsat multispectral data from the dry season were processed into top of atmosphere reflectance mosaics and then classified to derive certain locally common LULC types, such as urban areas and industrial forest plantations. Unsupervised ISODATA clustering was used to derive most LULC classifications. GIS techniques were used to merge MODIS and Landsat classifications into final LULC maps for Sub-Basins (SBs) 1-8 of the LMB. The final LULC maps were produced at 250-meter resolution and delivered to the MRC for use in SWAT modeling for the LMB. A map accuracy assessment was performed for the SB 7 LULC map with 14 classes. This assessment was performed by comparing random locations for sampled LULC types to geospatial reference data such as Landsat RGBs, MODIS NDVI phenologic profiles, high resolution satellite data from Google Map/Earth, and other reference data from the MRC (e.g., crop calendars). LULC accuracy assessment results for SB 7 indicated an overall agreement to reference data of 81% at full scheme specificity. However, by grouping 3 deciduous forest classes into 1 class, the overall agreement improved to 87%. The project enabled updated LULC maps, plus more specific rice types were classified compared to the previous LULC maps. The LULC maps from this project should improve the use of SWAT for modeling

  16. Close-range geophotogrammetric mapping of trench walls using multi-model stereo restitution software

    International Nuclear Information System (INIS)

    Coe, J.A.; Taylor, E.M.; Schilling, S.P.

    1991-01-01

    Methods for mapping geologic features exposed on trench walls have advanced from conventional gridding and sketch mapping to precise close-range photogrammetric mapping. In our study, two strips of small-format (60 x 60) stereo pairs, each containing 42 photos and covering approximately 60 m of nearly vertical trench wall (2-4 m high), were contact printed onto eight 205 x 255-mm transparent film sheets. Each strip was oriented in a Kern DSR15 analytical plotter using the bundle adjustment module of Multi-Model Stereo Restitution Software (MMSRS). We experimented with several systematic-control-point configurations to evaluate orientation accuracies as a function of the number and position of control points. We recommend establishing control-point columns (each containing 2-3 points) in every 5th photo to achieve the 7-mm Root Mean Square Error (RMSE) accuracy required by our trench-mapping project. 7 refs., 8 figs., 1 tab

  17. Close-range geophotogrammetric mapping of trench walls using multi-model stereo restitution software

    Energy Technology Data Exchange (ETDEWEB)

    Coe, J.A.; Taylor, E.M.; Schilling, S.P.

    1991-06-01

    Methods for mapping geologic features exposed on trench walls have advanced from conventional gridding and sketch mapping to precise close-range photogrammetric mapping. In our study, two strips of small-format (60 {times} 60) stereo pairs, each containing 42 photos and covering approximately 60 m of nearly vertical trench wall (2-4 m high), were contact printed onto eight 205 {times} 255-mm transparent film sheets. Each strip was oriented in a Kern DSR15 analytical plotter using the bundle adjustment module of Multi-Model Stereo Restitution Software (MMSRS). We experimented with several systematic-control-point configurations to evaluate orientation accuracies as a function of the number and position of control points. We recommend establishing control-point columns (each containing 2-3 points) in every 5th photo to achieve the 7-mm Root Mean Square Error (RMSE) accuracy required by our trench-mapping project. 7 refs., 8 figs., 1 tab.

  18. Classical mapping for Hubbard operators: Application to the double-Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin; Miller, William H. [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Levy, Tal J.; Rabani, Eran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-05-28

    A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to be accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.

  19. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR.

  20. Modeling Forest Succession among Ecological Land Units in Northern Minnesota

    Directory of Open Access Journals (Sweden)

    George Host

    1998-12-01

    Full Text Available Field and modeling studies were used to quantify potential successional pathways among fine-scale ecological classification units within two geomorphic regions of north-central Minnesota. Soil and overstory data were collected on plots stratified across low-relief ground moraines and undulating sand dunes. Each geomorphic feature was sampled across gradients of topography or soil texture. Overstory conditions were sampled using five variable-radius point samples per plot; soil samples were analyzed for carbon and nitrogen content. Climatic, forest composition, and soil data were used to parameterize the sample plots for use with LINKAGES, a forest growth model that simulates changes in composition and soil characteristics over time. Forest composition and soil properties varied within and among geomorphic features. LINKAGES simulations were using "bare ground" and the current overstory as starting conditions. Northern hardwoods or pines dominated the late-successional communities of morainal and dune landforms, respectively. The morainal landforms were dominated by yellow birch and sugar maple; yellow birch reached its maximum abundance in intermediate landscape positions. On the dune sites, pine was most abundant in drier landscape positions, with white spruce increasing in abundance with increasing soil moisture and N content. The differences in measured soil properties and predicted late-successional composition indicate that ecological land units incorporate some of the key variables that govern forest composition and structure. They further show the value of ecological classification and modeling for developing forest management strategies that incorporate the spatial and temporal dynamics of forest ecosystems.

  1. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    International Nuclear Information System (INIS)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung

    2014-01-01

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR

  2. a Target Aware Texture Mapping for Sculpture Heritage Modeling

    Science.gov (United States)

    Yang, C.; Zhang, F.; Huang, X.; Li, D.; Zhu, Y.

    2017-08-01

    In this paper, we proposed a target aware image to model registration method using silhouette as the matching clues. The target sculpture object in natural environment can be automatically detected from image with complex background with assistant of 3D geometric data. Then the silhouette can be automatically extracted and applied in image to model matching. Due to the user don't need to deliberately draw target area, the time consumption for precisely image to model matching operation can be greatly reduced. To enhance the function of this method, we also improved the silhouette matching algorithm to support conditional silhouette matching. Two experiments using a stone lion sculpture of Ming Dynasty and a potable relic in museum are given to evaluate the method we proposed. The method we proposed in this paper is extended and developed into a mature software applied in many culture heritage documentation projects.

  3. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation

    International Nuclear Information System (INIS)

    Kumar, Prashant; Bansod, Baban K.S.; Debnath, Sanjit K.; Thakur, Praveen Kumar; Ghanshyam, C.

    2015-01-01

    Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models have been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper

  4. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Prashant, E-mail: prashantkumar@csio.res.in [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Bansod, Baban K.S.; Debnath, Sanjit K. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Thakur, Praveen Kumar [Indian Institute of Remote Sensing (ISRO), Dehradun 248001 (India); Ghanshyam, C. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India)

    2015-02-15

    Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models have been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper.

  5. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    Science.gov (United States)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  6. Lakshmi Planum, Venus: Assessment of models using observations from geological mapping

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2008-09-01

    Introduction: Lakshmi Planum is a highstanding plateau (3.5-4.5 km above MPR) surrounded by the highest mountain ranges on Venus [1-6]. Lakshmi represents a unique type of elevated region different from dome-shaped and rifted rises and tessera-bearing plateaus. The unique characteristics of Lakshmi suggest that it formed by an unusual combination of processes. Lakshmi was studied with Venera-15/16 [7-10, 5,11] and Magellan data [12-14], resulting in two classes of models, divergent and convergent, to explain its unusual characteristics. Divergent models explain Lakshmi as a site of mantle upwelling [10,15-18] due to rising and subsequent collapse of a mantle diapir; such models explain emplacement of a lava plateau inside Lakshmi and, in some circumstances, formation of the mountain ranges. The convergent models consider Lakshmi as a locus of mantle downwelling, convergence, underthrusting, and possible subduction [19,11,20-29]. Key features in these models are the mountain ranges, high topography of Lakshmi interior, and the large volcanic centers in the plateau center. These divergent and convergent models entail principally different mechanisms of formation and suggest different geodynamic regimes on Venus. Almost all models make either explicit or implicit predictions about the type and sequence of major events during formation and evolution of Lakshmi and thus detailed geological mapping can be used to test them. Here we present the results of such geological mapping (the V-7 quadrangle, 50- 75N, 300-360E; scale 1:5M) that allows testing the proposed models for Lakshmi. Material units: Eleven material units make up the V-7 quadrangle. (1) Tessera (t), exposed inside and outside Lakshmi appears to be the oldest material. (2) Densely lineated plains (pdl) postdate tessera and form one of the oldest units; patches occur outside Lakshmi Planum. (3) Ridged plains (pr) postdate pdl and occur outside Lakshmi. (4) Shield plains (psh) display abundant small shields

  7. Modeling of the CTEx subcritical unit using MCNPX code

    International Nuclear Information System (INIS)

    Santos, Avelino; Silva, Ademir X. da; Rebello, Wilson F.; Cunha, Victor L. Lassance

    2011-01-01

    The present work aims at simulating the subcritical unit of Army Technology Center (CTEx) namely ARGUS pile (subcritical uranium-graphite arrangement) by using the computational code MCNPX. Once such modeling is finished, it could be used in k-effective calculations for systems using natural uranium as fuel, for instance. ARGUS is a subcritical assembly which uses reactor-grade graphite as moderator of fission neutrons and metallic uranium fuel rods with aluminum cladding. The pile is driven by an Am-Be spontaneous neutron source. In order to achieve a higher value for k eff , a higher concentration of U235 can be proposed, provided it safely remains below one. (author)

  8. Mapping the Business Model Canvas to ArchiMate

    NARCIS (Netherlands)

    Meertens, Lucas Onno; Iacob, Maria Eugenia; Nieuwenhuis, Lambertus Johannes Maria; Jonkers, H.; van Sinderen, Marten J.; Quartel, D.; Quartel, Dick; Ossowski, S.; Lecca, P.

    Many IT projects fail to succeed in the market, as they start purely from technology. Much effort is therefore wasted, while the potential benefits are not realized. We argue that the design process should start with creating a business model, which is then translated to an architecture to ensure

  9. Models of asthma: density-equalizing mapping and output benchmarking

    Directory of Open Access Journals (Sweden)

    Fischer Tanja C

    2008-02-01

    Full Text Available Abstract Despite the large amount of experimental studies already conducted on bronchial asthma, further insights into the molecular basics of the disease are required to establish new therapeutic approaches. As a basis for this research different animal models of asthma have been developed in the past years. However, precise bibliometric data on the use of different models do not exist so far. Therefore the present study was conducted to establish a data base of the existing experimental approaches. Density-equalizing algorithms were used and data was retrieved from a Thomson Institute for Scientific Information database. During the period from 1900 to 2006 a number of 3489 filed items were connected to animal models of asthma, the first being published in the year 1968. The studies were published by 52 countries with the US, Japan and the UK being the most productive suppliers, participating in 55.8% of all published items. Analyzing the average citation per item as an indicator for research quality Switzerland ranked first (30.54/item and New Zealand ranked second for countries with more than 10 published studies. The 10 most productive journals included 4 with a main focus allergy and immunology and 4 with a main focus on the respiratory system. Two journals focussed on pharmacology or pharmacy. In all assigned subject categories examined for a relation to animal models of asthma, immunology ranked first. Assessing numbers of published items in relation to animal species it was found that mice were the preferred species followed by guinea pigs. In summary it can be concluded from density-equalizing calculations that the use of animal models of asthma is restricted to a relatively small number of countries. There are also differences in the use of species. These differences are based on variations in the research focus as assessed by subject category analysis.

  10. Coupled iterated map models of action potential dynamics in a one-dimensional cable of cardiac cells

    International Nuclear Information System (INIS)

    Wang Shihong; Xie Yuanfang; Qu Zhilin

    2008-01-01

    Low-dimensional iterated map models have been widely used to study action potential dynamics in isolated cardiac cells. Coupled iterated map models have also been widely used to investigate action potential propagation dynamics in one-dimensional (1D) coupled cardiac cells, however, these models are usually empirical and not carefully validated. In this study, we first developed two coupled iterated map models which are the standard forms of diffusively coupled maps and overcome the limitations of the previous models. We then determined the coupling strength and space constant by quantitatively comparing the 1D action potential duration profile from the coupled cardiac cell model described by differential equations with that of the coupled iterated map models. To further validate the coupled iterated map models, we compared the stability conditions of the spatially uniform state of the coupled iterated maps and those of the 1D ionic model and showed that the coupled iterated map model could well recapitulate the stability conditions, i.e. the spatially uniform state is stable unless the state is chaotic. Finally, we combined conduction into the developed coupled iterated map model to study the effects of coupling strength on wave stabilities and showed that the diffusive coupling between cardiac cells tends to suppress instabilities during reentry in a 1D ring and the onset of discordant alternans in a periodically paced 1D cable

  11. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    Science.gov (United States)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  12. Introduction: Special issue on advances in topobathymetric mapping, models, and applications

    Science.gov (United States)

    Gesch, Dean B.; Brock, John C.; Parrish, Christopher E.; Rogers, Jeffrey N.; Wright, C. Wayne

    2016-01-01

    Detailed knowledge of near-shore topography and bathymetry is required for many geospatial data applications in the coastal environment. New data sources and processing methods are facilitating development of seamless, regional-scale topobathymetric digital elevation models. These elevation models integrate disparate multi-sensor, multi-temporal topographic and bathymetric datasets to provide a coherent base layer for coastal science applications such as wetlands mapping and monitoring, sea-level rise assessment, benthic habitat mapping, erosion monitoring, and storm impact assessment. The focus of this special issue is on recent advances in the source data, data processing and integration methods, and applications of topobathymetric datasets.

  13. Sv-map between type I and heterotic sigma models

    Science.gov (United States)

    Fan, Wei; Fotopoulos, A.; Stieberger, S.; Taylor, T. R.

    2018-05-01

    The scattering amplitudes of gauge bosons in heterotic and open superstring theories are related by the single-valued projection which yields heterotic amplitudes by selecting a subset of multiple zeta value coefficients in the α‧ (string tension parameter) expansion of open string amplitudes. In the present work, we argue that this relation holds also at the level of low-energy expansions (or individual Feynman diagrams) of the respective effective actions, by investigating the beta functions of two-dimensional sigma models describing world-sheets of open and heterotic strings. We analyze the sigma model Feynman diagrams generating identical effective action terms in both theories and show that the heterotic coefficients are given by the single-valued projection of the open ones. The single-valued projection appears as a result of summing over all radial orderings of heterotic vertices on the complex plane representing string world-sheet.

  14. Collaborative Art Practices in HE: Mapping and Developing Pedagogical Models

    OpenAIRE

    Wilsmore, R; Alix, C; Dobson, E; University of Huddersfield; University of Hull; University of York St John; The Higher Education Academy; Palatine

    2010-01-01

    This project asks ‘How is interdisciplinary collaboration "taught" in HE institutions?’ and ‘What pedagogical models can be identified and developed?’\\ud Performing and Creative Arts departments in HE institutions engage students in collaborative practice within a singular discipline or across disciplines, through interdisciplinary or hybridised art forms, as curricula or extra-curricula activity. Where students are engaged with interdisciplinary collaboration within the curriculum, tuition m...

  15. Mapping Nuclear Fallout Using the Weather Research & Forecasting (WRF) Model

    Science.gov (United States)

    2012-09-01

    Meterological Magazine, 47, pp. 295-308, 1998. [17] Air Resources Laboratory. (2012, April) Air Resources Laboratory. [Online]. http://www.arl.noaa.gov...Reanalysis Project," Bulletin of the American Meterological Society, pp. 437-471, 1996. [25] Steve Warner, Nathan Platt, and James F. Heagy, "User...Oriented Two-Dimensional Measure of Effectiveness for the Evaluation of Transport and Dispersion Models," Journal of Applied Meterology Vol. 43, pp. 58

  16. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    Science.gov (United States)

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  17. Evaluation of statistical and geostatistical models of digital soil properties mapping in tropical mountain regions

    Directory of Open Access Journals (Sweden)

    Waldir de Carvalho Junior

    2014-06-01

    Full Text Available Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR and geostatistical (ordinary kriging and co-kriging. The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap. Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI, soil wetness index (SWI, normalized difference vegetation index (NDVI, and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.

  18. Modelling and Mapping Oxygen-18 Isotope Composition of Precipitation in Spain for Hydrologic and Climatic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Arevalo, J.; Diaz-Teijeiro, M. F. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Madrid (Spain); Castano, S. [Geological Survey of Spain (IGME), Madrid (Spain)

    2013-07-15

    A simple multiple regression model based on two geographic factors (latitude and elevation) has been developed that reproduces reasonably well the spatial distribution of the current mean oxygen-18 isotope composition in precipitation over spain. In a preliminary analysis, additional geographic and climatic factors do not improve the performance of the model. A continuous digital map of oxygen-18 isotope composition in precipitation has been produced by combining the polynomial model with a digital elevation model using GIS tools. Application of the resulting map to several groundwater case studies in spain has shown it to be useful as a reference of the input function to recharge. Further validation of the model, and further testing of its usefulness in surface hydrology and climatic studies, is ongoing through comparison of model results with isotope data from the GNIP database and from isotope studies in hydrogeology and climate change taking place in spain. (author)

  19. High resolution linkage maps of the model organism Petunia reveal substantial synteny decay with the related genome of tomato

    OpenAIRE

    Bossolini, Eligio; Klahre, Ulrich; Brandenburg, Anna; Reinhardt, Didier; Kuhlemeier, Cris

    2011-01-01

    Two linkage maps were constructed for the model plant Petunia. Mapping populations were obtained by crossing the wild species Petunia axillaris subsp. axillaris with Petunia inflata, and Petunia axillaris subsp. parodii with Petunia exserta. Both maps cover the seven chromosomes of Petunia, and span 970 centimorgans (cM) and 700 cM of the genomes, respectively. In total, 207 markers were mapped. Of these, 28 are multilocus amplified fragment length polymorphism (AFLP) markers and 179 are gene...

  20. Milgrom Relation Models for Spiral Galaxies from Two-Dimensional Velocity Maps

    OpenAIRE

    Barnes, Eric I.; Kosowsky, Arthur; Sellwood, Jerry A.

    2007-01-01

    Using two-dimensional velocity maps and I-band photometry, we have created mass models of 40 spiral galaxies using the Milgrom relation (the basis of modified Newtonian dynamics, or MOND) to complement previous work. A Bayesian technique is employed to compare several different dark matter halo models to Milgrom and Newtonian models. Pseudo-isothermal dark matter halos provide the best statistical fits to the data in a majority of cases, while the Milgrom relation generally provides good fits...

  1. Reionization Models Classifier using 21cm Map Deep Learning

    Science.gov (United States)

    Hassan, Sultan; Liu, Adrian; Kohn, Saul; Aguirre, James E.; La Plante, Paul; Lidz, Adam

    2018-05-01

    Next-generation 21cm observations will enable imaging of reionization on very large scales. These images will contain more astrophysical and cosmological information than the power spectrum, and hence providing an alternative way to constrain the contribution of different reionizing sources populations to cosmic reionization. Using Convolutional Neural Networks, we present a simple network architecture that is sufficient to discriminate between Galaxy-dominated versus AGN-dominated models, even in the presence of simulated noise from different experiments such as the HERA and SKA.

  2. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive

  3. Hurricane Havoc - Mapping the Mayhem with NOAA's National Water Model

    Science.gov (United States)

    Aggett, G. R.; Stone, M.

    2017-12-01

    With Hurricane Irene as an example, this work demonstrates the versatility of NOAA's new National Water Model (NWM) as a tool for analyzing hydrologic hazards before, during, and after events. Hurricane Irene made landfall on the coast of North Carolina on August 27, 2011, and made its way up the East Coast over the next 3 days. This storm caused widespread flooding across the Northeast, where rain totals over 20" and wind speeds of 100mph were recorded, causing loss of life and significant damage to infrastructure. Large portions of New York and Vermont were some of the hardest hit areas. This poster will present a suite of post-processed products, derived from NWM output, that are currently being developed at NOAA's National Water Center in Tuscaloosa, AL. The National Water Model is allowing NOAA to expand its water prediction services to the approximately 2.7 million stream reaches across the U.S. The series of forecasted and real-time analysis products presented in this poster will demonstrate the strides NOAA is taking to increase preparedness and aid response to severe hydrologic events, like Hurricane Irene.

  4. A Joint Land Cover Mapping and Image Registration Algorithm Based on a Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Apisit Eiumnoh

    2013-10-01

    Full Text Available Traditionally, image registration of multi-modal and multi-temporal images is performed satisfactorily before land cover mapping. However, since multi-modal and multi-temporal images are likely to be obtained from different satellite platforms and/or acquired at different times, perfect alignment is very difficult to achieve. As a result, a proper land cover mapping algorithm must be able to correct registration errors as well as perform an accurate classification. In this paper, we propose a joint classification and registration technique based on a Markov random field (MRF model to simultaneously align two or more images and obtain a land cover map (LCM of the scene. The expectation maximization (EM algorithm is employed to solve the joint image classification and registration problem by iteratively estimating the map parameters and approximate posterior probabilities. Then, the maximum a posteriori (MAP criterion is used to produce an optimum land cover map. We conducted experiments on a set of four simulated images and one pair of remotely sensed images to investigate the effectiveness and robustness of the proposed algorithm. Our results show that, with proper selection of a critical MRF parameter, the resulting LCMs derived from an unregistered image pair can achieve an accuracy that is as high as when images are perfectly aligned. Furthermore, the registration error can be greatly reduced.

  5. Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping.

    Science.gov (United States)

    Chang, Meiping; Smith, Sarah; Thorpe, Andrew; Barratt, Michael J; Karim, Farzana

    2010-09-16

    We have previously used the rat 4 day Complete Freund's Adjuvant (CFA) model to screen compounds with potential to reduce osteoarthritic pain. The aim of this study was to identify genes altered in this model of osteoarthritic pain and use this information to infer analgesic potential of compounds based on their own gene expression profiles using the Connectivity Map approach. Using microarrays, we identified differentially expressed genes in L4 and L5 dorsal root ganglia (DRG) from rats that had received intraplantar CFA for 4 days compared to matched, untreated control animals. Analysis of these data indicated that the two groups were distinguishable by differences in genes important in immune responses, nerve growth and regeneration. This list of differentially expressed genes defined a "CFA signature". We used the Connectivity Map approach to identify pharmacologic agents in the Broad Institute Build02 database that had gene expression signatures that were inversely related ('negatively connected') with our CFA signature. To test the predictive nature of the Connectivity Map methodology, we tested phenoxybenzamine (an alpha adrenergic receptor antagonist) - one of the most negatively connected compounds identified in this database - for analgesic activity in the CFA model. Our results indicate that at 10 mg/kg, phenoxybenzamine demonstrated analgesia comparable to that of Naproxen in this model. Evaluation of phenoxybenzamine-induced analgesia in the current study lends support to the utility of the Connectivity Map approach for identifying compounds with analgesic properties in the CFA model.

  6. Twist map, the extended Frenkel-Kontorova model and the devil's staircase

    International Nuclear Information System (INIS)

    Aubry, S.

    1982-01-01

    Exact results obtained on the discrete Frenkel Kontorova (FK) model and its extensions during the past few years are reviewed. These models are associated with area preserving twist maps of the cylinder (or a part of it) onto itself. The theorems obtained for the FK model thus yields new theorems for the twist maps. The exact structure of the ground-states which are either commensurate or incommensurate and assert the existence of elementary discommensurations under certain necessary and sufficient conditions is described. Necessary conditions for the trajectories to represent metastable configurations, which can be chaotic, are given. The existence of a finite Peierl Nabarro barrier for elementary discommensurations is connected with a property of non-integrability of the twist map. The existence of KAM tori corresponds to undefectible incommensurate ground-states and a theorem is given which asserts that when the phenon spectrum of an incommensurate ground-state exhibits a finite gap, then the corresponding trajectory is dense on a Cantor set with zero measure length. These theorems, when applied to the initial FK model, allows one to prove the existence of the transition by breaking of analyticity for the incommensurate structures when the parameter which describes the discrepancy of the model to the integrable limit varies. Finally, we describe a theorem proving the existence of a devil's staircase for the variation curve of the atomic mean distance versus a chemical potential, for certain properties of the twist map which are generally satisfied

  7. Robust stabilization control based on guardian maps theory for a longitudinal model of hypersonic vehicle.

    Science.gov (United States)

    Liu, Yanbin; Liu, Mengying; Sun, Peihua

    2014-01-01

    A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods.

  8. A unified theoretical framework for mapping models for the multi-state Hamiltonian.

    Science.gov (United States)

    Liu, Jian

    2016-11-28

    We propose a new unified theoretical framework to construct equivalent representations of the multi-state Hamiltonian operator and present several approaches for the mapping onto the Cartesian phase space. After mapping an F-dimensional Hamiltonian onto an F+1 dimensional space, creation and annihilation operators are defined such that the F+1 dimensional space is complete for any combined excitation. Commutation and anti-commutation relations are then naturally derived, which show that the underlying degrees of freedom are neither bosons nor fermions. This sets the scene for developing equivalent expressions of the Hamiltonian operator in quantum mechanics and their classical/semiclassical counterparts. Six mapping models are presented as examples. The framework also offers a novel way to derive such as the well-known Meyer-Miller model.

  9. Integrating advanced 3D Mapping into Improved Hydrogeologic Frameworks, a Future path for Groundwater Modeling? Results from Western Nebraska

    Science.gov (United States)

    Cannia, J. C.; Abraham, J. D.; Peterson, S. M.; Sibray, S. S.

    2012-12-01

    The U.S. Geological Survey and its partners have collaborated to provide an innovative, advanced 3 dimensional hydrogeologic framework which was used in a groundwater model designed to test water management scenarios. Principal aquifers for the area mostly consist of Quaternary alluvium and Tertiary-age fluvial sediments which are heavily used for irrigation, municipal and environmental uses. This strategy used airborne electromagnetic (AEM) surveys, validated through sensitivity analysis of geophysical and geological ground truth to provide new geologic interpretation to characterize the hydrogeologic framework in the area. The base of aquifer created through this work leads to new interpretations of saturated thickness and groundwater connectivity to the surface water system. The current version of the groundwater model which uses the advanced hydrogeologic framework shows a distinct change in flow path orientation, timing and amount of base flow to the streams of the area. Ongoing efforts for development of the hydrogeologic framework development include subdivision of the aquifers into new hydrostratigraphic units based on analysis of geophysical and lithologic characteristics which will be incorporated into future groundwater models. The hydrostratigraphic units are further enhanced by Nuclear Magnetic Resonance (NMR) measurements to characterize aquifers. NMR measures the free water in the aquifer in situ allowing for a determination of hydraulic conductivity. NMR hydraulic conductivity values will be mapped to the hydrostratigraphic units, which in turn are incorporated into the latest versions of the groundwater model. The addition of innovative, advanced 3 dimensional hydrogeologic frameworks, which incorporates AEM and NMR, for groundwater modeling, has a definite advantage over traditional frameworks. These groundwater models represent the natural system at a level of reality not achievable by other methods, which lead to greater confidence in the

  10. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.

    Science.gov (United States)

    Faisan, Sylvain; Thoraval, Laurent; Armspach, Jean-Paul; Foucher, Jack R; Metz-Lutz, Marie-Noëlle; Heitz, Fabrice

    2005-01-01

    Most methods used in functional MRI (fMRI) brain mapping require restrictive assumptions about the shape and timing of the fMRI signal in activated voxels. Consequently, fMRI data may be partially and misleadingly characterized, leading to suboptimal or invalid inference. To limit these assumptions and to capture the broad range of possible activation patterns, a novel statistical fMRI brain mapping method is proposed. It relies on hidden semi-Markov event sequence models (HSMESMs), a special class of hidden Markov models (HMMs) dedicated to the modeling and analysis of event-based random processes. Activation detection is formulated in terms of time coupling between (1) the observed sequence of hemodynamic response onset (HRO) events detected in the voxel's fMRI signal and (2) the "hidden" sequence of task-induced neural activation onset (NAO) events underlying the HROs. Both event sequences are modeled within a single HSMESM. The resulting brain activation model is trained to automatically detect neural activity embedded in the input fMRI data set under analysis. The data sets considered in this article are threefold: synthetic epoch-related, real epoch-related (auditory lexical processing task), and real event-related (oddball detection task) fMRI data sets. Synthetic data: Activation detection results demonstrate the superiority of the HSMESM mapping method with respect to a standard implementation of the statistical parametric mapping (SPM) approach. They are also very close, sometimes equivalent, to those obtained with an "ideal" implementation of SPM in which the activation patterns synthesized are reused for analysis. The HSMESM method appears clearly insensitive to timing variations of the hemodynamic response and exhibits low sensitivity to fluctuations of its shape (unsustained activation during task). Real epoch-related data: HSMESM activation detection results compete with those obtained with SPM, without requiring any prior definition of the expected

  11. Method for mapping population-based case-control studies: an application using generalized additive models

    Directory of Open Access Journals (Sweden)

    Aschengrau Ann

    2006-06-01

    Full Text Available Abstract Background Mapping spatial distributions of disease occurrence and risk can serve as a useful tool for identifying exposures of public health concern. Disease registry data are often mapped by town or county of diagnosis and contain limited data on covariates. These maps often possess poor spatial resolution, the potential for spatial confounding, and the inability to consider latency. Population-based case-control studies can provide detailed information on residential history and covariates. Results Generalized additive models (GAMs provide a useful framework for mapping point-based epidemiologic data. Smoothing on location while controlling for covariates produces adjusted maps. We generate maps of odds ratios using the entire study area as a reference. We smooth using a locally weighted regression smoother (loess, a method that combines the advantages of nearest neighbor and kernel methods. We choose an optimal degree of smoothing by minimizing Akaike's Information Criterion. We use a deviance-based test to assess the overall importance of location in the model and pointwise permutation tests to locate regions of significantly increased or decreased risk. The method is illustrated with synthetic data and data from a population-based case-control study, using S-Plus and ArcView software. Conclusion Our goal is to develop practical methods for mapping population-based case-control and cohort studies. The method described here performs well for our synthetic data, reproducing important features of the data and adequately controlling the covariate. When applied to the population-based case-control data set, the method suggests spatial confounding and identifies statistically significant areas of increased and decreased odds ratios.

  12. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping

    Science.gov (United States)

    Naghibi, Seyed Amir; Moghaddam, Davood Davoodi; Kalantar, Bahareh; Pradhan, Biswajeet; Kisi, Ozgur

    2017-05-01

    In recent years, application of ensemble models has been increased tremendously in various types of natural hazard assessment such as landslides and floods. However, application of this kind of robust models in groundwater potential mapping is relatively new. This study applied four data mining algorithms including AdaBoost, Bagging, generalized additive model (GAM), and Naive Bayes (NB) models to map groundwater potential. Then, a novel frequency ratio data mining ensemble model (FREM) was introduced and evaluated. For this purpose, eleven groundwater conditioning factors (GCFs), including altitude, slope aspect, slope angle, plan curvature, stream power index (SPI), river density, distance from rivers, topographic wetness index (TWI), land use, normalized difference vegetation index (NDVI), and lithology were mapped. About 281 well locations with high potential were selected. Wells were randomly partitioned into two classes for training the models (70% or 197) and validating them (30% or 84). AdaBoost, Bagging, GAM, and NB algorithms were employed to get groundwater potential maps (GPMs). The GPMs were categorized into potential classes using natural break method of classification scheme. In the next stage, frequency ratio (FR) value was calculated for the output of the four aforementioned models and were summed, and finally a GPM was produced using FREM. For validating the models, area under receiver operating characteristics (ROC) curve was calculated. The ROC curve for prediction dataset was 94.8, 93.5, 92.6, 92.0, and 84.4% for FREM, Bagging, AdaBoost, GAM, and NB models, respectively. The results indicated that FREM had the best performance among all the models. The better performance of the FREM model could be related to reduction of over fitting and possible errors. Other models such as AdaBoost, Bagging, GAM, and NB also produced acceptable performance in groundwater modelling. The GPMs produced in the current study may facilitate groundwater exploitation

  13. Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2014-04-01

    Full Text Available Segmented mesocosms (n = 3 packed with sand, sandy loam or clay loam soil were used to determine the effect of soil texture and depth on transport of two septic tank effluent (STE-borne microbial pathogen surrogates—green fluorescent protein-labeled E. coli (GFPE and MS-2 coliphage—in soil treatment units. HYDRUS 2D/3D software was used to model the transport of these microbes from the infiltrative surface. Mesocosms were spiked with GFPE and MS-2 coliphage at 105 cfu/mL STE and 105–106 pfu/mL STE, respectively. In all soils, removal rates were >99.99% at 25 cm. The transport simulation compared (1 optimization; and (2 trial-and-error modeling approaches. Only slight differences between the transport parameters were observed between these approaches. Treating both the die-off rates and attachment/detachment rates as variables resulted in an overall better model fit, particularly for the tailing phase of the experiments. Independent of the fitting procedure, attachment rates computed by the model were higher in sandy and sandy loam soils than clay, which was attributed to unsaturated flow conditions at lower water content in the coarser-textured soils. Early breakthrough of the bacteria and virus indicated the presence of preferential flow in the system in the structured clay loam soil, resulting in faster movement of water and microbes through the soil relative to a conservative tracer (bromide.

  14. Design and implementation of segment oriented spatio-temporal model in urban panoramic maps

    Science.gov (United States)

    Li, Haiting; Fei, Lifan; Peng, Qingshan; Li, Yanhong

    2009-10-01

    Object-oriented spatio-temporal model is directed by human cognition that each object has what/where/when attributes. The precise and flexible structure of such models supports multi-semantics of space and time. This paper reviews current research of spatio-temporal models using object-oriented approach and proposed a new spatio-temporal model based on segmentation in order to resolve the updating problem of some special GIS system by taking advantages of object-oriented spatio-temporal model and adopting category theory. Category theory can be used as a unifying framework for specifying complex systems and it provides rules on how objects may be joined. It characterizes the segments of object through mappings between them. The segment-oriented spatio-temporal model designed for urban panoramic maps is described and implemented. We take points and polylines as objects in this model in the management of panoramic map data. For the randomness of routes which transportation vehicle adopts each time, road objects in this model are split into some segments by crossing points. The segments still remains polyline type, but the splitting makes it easier to update the panoramic data when new photos are captured. This model is capable of eliminating redundant data and accelerating data access when panoramas are unchanged. For evaluation purpose, the data types and operations are designed and implemented in PostgreSQL and the results of experiments come out to prove that this model is efficient and expedient in the application of urban panoramic maps.

  15. Model Data Interoperability for the United States Integrated Ocean Observing System (IOOS)

    Science.gov (United States)

    Signell, Richard P.

    2010-05-01

    Model data interoperability for the United States Integrated Ocean Observing System (IOOS) was initiated with a focused one year project. The problem was that there were many regional and national providers of oceanographic model data; each had unique file conventions, distribution techniques and analysis tools that made it difficult to compare model results and observational data. To solve this problem, a distributed system was built utilizing a customized middleware layer and a common data model. This allowed each model data provider to keep their existing model and data files unchanged, yet deliver model data via web services in a common form. With standards-based applications that used these web services, end users then had a common way to access data from any of the models. These applications included: (1) a 2D mapping and animation using a web browser application, (2) an advanced 3D visualization and animation using a desktop application, and (3) a toolkit for a common scientific analysis environment. Due to the flexibility and low impact of the approach on providers, rapid progress was made. The system was implemented in all eleven US IOOS regions and at the NOAA National Coastal Data Development Center, allowing common delivery of regional and national oceanographic model forecast and archived results that cover all US waters. The system, based heavily on software technology from the NSF-sponsored Unidata Program Center, is applicable to any structured gridded data, not just oceanographic model data. There is a clear pathway to expand the system to include unstructured grid (e.g. triangular grid) data.

  16. Resolution and Probabilistic Models of Components in CryoEM Maps of Mature P22 Bacteriophage

    Science.gov (United States)

    Pintilie, Grigore; Chen, Dong-Hua; Haase-Pettingell, Cameron A.; King, Jonathan A.; Chiu, Wah

    2016-01-01

    CryoEM continues to produce density maps of larger and more complex assemblies with multiple protein components of mixed symmetries. Resolution is not always uniform throughout a cryoEM map, and it can be useful to estimate the resolution in specific molecular components of a large assembly. In this study, we present procedures to 1) estimate the resolution in subcomponents by gold-standard Fourier shell correlation (FSC); 2) validate modeling procedures, particularly at medium resolutions, which can include loop modeling and flexible fitting; and 3) build probabilistic models that combine high-accuracy priors (such as crystallographic structures) with medium-resolution cryoEM densities. As an example, we apply these methods to new cryoEM maps of the mature bacteriophage P22, reconstructed without imposing icosahedral symmetry. Resolution estimates based on gold-standard FSC show the highest resolution in the coat region (7.6 Å), whereas other components are at slightly lower resolutions: portal (9.2 Å), hub (8.5 Å), tailspike (10.9 Å), and needle (10.5 Å). These differences are indicative of inherent structural heterogeneity and/or reconstruction accuracy in different subcomponents of the map. Probabilistic models for these subcomponents provide new insights, to our knowledge, and structural information when taking into account uncertainty given the limitations of the observed density. PMID:26743049

  17. Trajectories of Attentional Development: An Exploration with the Master Activation Map Model

    Science.gov (United States)

    Michael, George A.; Lete, Bernard; Ducrot, Stephanie

    2013-01-01

    The developmental trajectories of several attention components, such as orienting, inhibition, and the guidance of selection by relevance (i.e., advance knowledge relevant to the task) were investigated in 498 participants (ages 7, 8, 9, 10, 11, and 20). The paradigm was based on Michael et al.'s (2006) master activation map model and consisted of…

  18. STEM Engagement with NASA's Solar System Treks Portals for Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Law, E. S.; Day, B. H.

    2018-01-01

    This presentation will provide an overview of the uses and capabilities of NASA's Solar System Treks family of online mapping and modeling portals. While also designed to support mission planning and scientific research, this presentation will focus on the Science, Technology, Engineering, and Math (STEM) engagement and public outreach capabilities of these web based suites of data visualization and analysis tools.

  19. Modeling and Mapping Personal Learning Environment of Thai International Higher Education Students

    Science.gov (United States)

    Sharafuddin, Mohamed Ali; Sawad, Buncha Panacharoen; Wongwai, Sarun

    2018-01-01

    This research article is part of a periodic study conducted to understand, model, map and to develop an integrated approach for effective and interactive self-learning phases of Thai International Hospitality and Tourism higher education students. Questionnaire containing both qualitative and quantitative questions was distributed at the beginning…

  20. Development of a Greek solar map based on solar model estimations

    Science.gov (United States)

    Kambezidis, H. D.; Psiloglou, B. E.; Kavadias, K. A.; Paliatsos, A. G.; Bartzokas, A.

    2016-05-01

    The realization of Renewable Energy Sources (RES) for power generation as the only environmentally friendly solution, moved solar systems to the forefront of the energy market in the last decade. The capacity of the solar power doubles almost every two years in many European countries, including Greece. This rise has brought the need for reliable predictions of meteorological data that can easily be utilized for proper RES-site allocation. The absence of solar measurements has, therefore, raised the demand for deploying a suitable model in order to create a solar map. The generation of a solar map for Greece, could provide solid foundations on the prediction of the energy production of a solar power plant that is installed in the area, by providing an estimation of the solar energy acquired at each longitude and latitude of the map. In the present work, the well-known Meteorological Radiation Model (MRM), a broadband solar radiation model, is engaged. This model utilizes common meteorological data, such as air temperature, relative humidity, barometric pressure and sunshine duration, in order to calculate solar radiation through MRM for areas where such data are not available. Hourly values of the above meteorological parameters are acquired from 39 meteorological stations, evenly dispersed around Greece; hourly values of solar radiation are calculated from MRM. Then, by using an integrated spatial interpolation method, a Greek solar energy map is generated, providing annual solar energy values all over Greece.

  1. A Case of Quality Prediction of Architecture Knowledge Sharing through Model Mapping

    NARCIS (Netherlands)

    Liang, Peng; Jansen, Anton; Avgeriou, Paris

    2008-01-01

    In this report, we introduce the AK sharing activity with a query-based scenario, and the motivation for the prediction of AK sharing quality prediction. In the end, a concrete case of quality prediction of AK sharing through model mapping was presented with assumptions.

  2. Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling

    Science.gov (United States)

    Papaioannou, George; Vasiliades, Lampros; Loukas, Athanasios; Aronica, Giuseppe T.

    2017-04-01

    Probabilistic flood inundation mapping is performed and analysed at the ungauged Xerias stream reach, Volos, Greece. The study evaluates the uncertainty introduced by the roughness coefficient values on hydraulic models in flood inundation modelling and mapping. The well-established one-dimensional (1-D) hydraulic model, HEC-RAS is selected and linked to Monte-Carlo simulations of hydraulic roughness. Terrestrial Laser Scanner data have been used to produce a high quality DEM for input data uncertainty minimisation and to improve determination accuracy on stream channel topography required by the hydraulic model. Initial Manning's n roughness coefficient values are based on pebble count field surveys and empirical formulas. Various theoretical probability distributions are fitted and evaluated on their accuracy to represent the estimated roughness values. Finally, Latin Hypercube Sampling has been used for generation of different sets of Manning roughness values and flood inundation probability maps have been created with the use of Monte Carlo simulations. Historical flood extent data, from an extreme historical flash flood event, are used for validation of the method. The calibration process is based on a binary wet-dry reasoning with the use of Median Absolute Percentage Error evaluation metric. The results show that the proposed procedure supports probabilistic flood hazard mapping at ungauged rivers and provides water resources managers with valuable information for planning and implementing flood risk mitigation strategies.

  3. Modelling and mapping the suitability of European forest formations at 1-km resolution

    DEFF Research Database (Denmark)

    Casalegno, Stefano; Amatulli, Giuseppe; Bastrup-Birk, Annemarie

    2011-01-01

    factors. Here, we used the bootstrap-aggregating machine-learning ensemble classifier Random Forest (RF) to derive a 1-km resolution European forest formation suitability map. The statistical model use as inputs more than 6,000 field data forest inventory plots and a large set of environmental variables...

  4. SModelS v1.1 user manual: Improving simplified model constraints with efficiency maps

    Science.gov (United States)

    Ambrogi, Federico; Kraml, Sabine; Kulkarni, Suchita; Laa, Ursula; Lessa, Andre; Magerl, Veronika; Sonneveld, Jory; Traub, Michael; Waltenberger, Wolfgang

    2018-06-01

    SModelS is an automatized tool for the interpretation of simplified model results from the LHC. It allows to decompose models of new physics obeying a Z2 symmetry into simplified model components, and to compare these against a large database of experimental results. The first release of SModelS, v1.0, used only cross section upper limit maps provided by the experimental collaborations. In this new release, v1.1, we extend the functionality of SModelS to efficiency maps. This increases the constraining power of the software, as efficiency maps allow to combine contributions to the same signal region from different simplified models. Other new features of version 1.1 include likelihood and χ2 calculations, extended information on the topology coverage, an extended database of experimental results as well as major speed upgrades for both the code and the database. We describe in detail the concepts and procedures used in SModelS v1.1, explaining in particular how upper limits and efficiency map results are dealt with in parallel. Detailed instructions for code usage are also provided.

  5. A general mixture model for mapping quantitative trait loci by using molecular markers

    NARCIS (Netherlands)

    Jansen, R.C.

    1992-01-01

    In a segregating population a quantitative trait may be considered to follow a mixture of (normal) distributions, the mixing proportions being based on Mendelian segregation rules. A general and flexible mixture model is proposed for mapping quantitative trait loci (QTLs) by using molecular markers.

  6. Integrating laser-range finding, electronic compass measurements and GPS to rapidly map vertical changes in volcanic stratigraphy and constrain unit thicknesses and volumes: two examples from the northern Cordilleran volcanic province

    Science.gov (United States)

    Nogier, M.; Edwards, B. R.; Wetherell, K.

    2005-12-01

    We present preliminary results of laser-range finding-GPS surveys from two separate locations in northern British Columbia, in the south-central northern Cordilleran volcanic province: Hoodoo Mountain volcano and Craven Lake cone. This technique, described in detail below, is appropriate for rapidly measuring changes in vertical thicknesses of units that either would be difficult or impossible to measure by most other techniques. The ability to accurately measure thicknesses of geologic units in otherwise difficult-to-access locations will aide in generating better quantitative estimates of deposit geometries and eruption volumes. Such data is particularly important for constraining quantitative models of magma production and eruption dynamics. The deposits of interest in this study comprised at least partly inaccessible, largely pyroclastic units, although the technique could be used to map any vertical surfaces. The first field location was the northern side of Hoodoo Mountain volcano (56deg47'23.72'N/131deg17'36.97'W/1208m-asl), where a sequence of welded to unwelded, trachytic-phonolitic tephra was deposited in a paleovalley. This deposit is informally referred to as the Pointer Ridge deposit, and it comprises at least 7 distinct subunits. The horizontal limit of the exposures is approximately 1.5km, and the vertical limit is approximately 250m. Three different GPS base stations were used to map the lateral and vertical variations in the deposit. The second field location is north of Craven Lake (56deg54'44.55'N/129deg21'42.17'W/1453m-asl), along Craven Creek, where a sequence of basaltic tephra is overlain by pillow lava and glacial diamicton. This exposure is 200m long and approximately 30m high, much smaller than the area mapped at Hoodoo Mountain. The basaltic tephra appears to comprise 4 distinct sequences (measured thicknesses vary from 3-4m) not including the overlying pillow lava (measured thickness varies from 2 to 10m), and measurements of the

  7. Continuous bedside pressure mapping and rates of hospital-associated pressure ulcers in a medical intensive care unit.

    Science.gov (United States)

    Behrendt, Robert; Ghaznavi, Amir M; Mahan, Meredith; Craft, Susan; Siddiqui, Aamir

    2014-03-01

    Critically ill patients are vulnerable to the development of hospital-associated pressure ulcers (HAPUs). Positioning of patients is an essential component of pressure ulcer prevention because it off-loads areas of high pressure. However, the effectiveness of such positioning is debatable. A continuous bedside pressure mapping (CBPM) device can provide real-time feedback of optimal body position though a pressure-sensing mat that displays pressure images at a patient's bedside, allowing off-loading of high-pressure areas and possibly preventing HAPU formation. A prospective controlled study was designed to determine if CBPM would reduce the number of HAPUs in patients treated in our medical intensive care unit. In 2 months, 422 patients were enrolled and assigned to beds equipped with or without a CBPM device. Patients' skin was assessed daily and weekly to determine the presence and progress of HAPUs. All patients were turned every 2 hours. CBPM patients were repositioned to off-load high-pressure points during turning, according to a graphic display. The number of newly formed HAPUs was the primary outcome measured. A χ(2) test was then used to compare the occurrence of HAPUs between groups. HAPUs developed in 2 of 213 patients in the CBPM group (0.9%; both stage II) compared with 10 of 209 in the control group (4.8%; all stage II; P = .02). Significantly fewer HAPUs occurred in the CBPM group than the control group, indicating the effectiveness of real-time visual feedback in repositioning of patients to prevent the formation of new HAPUs.

  8. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    Science.gov (United States)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  9. Modeling Small Scale Solar Powered ORC Unit for Standalone Application

    Directory of Open Access Journals (Sweden)

    Enrico Bocci

    2012-01-01

    Full Text Available When the electricity from the grid is not available, the generation of electricity in remote areas is an essential challenge to satisfy important needs. In many developing countries the power generation from Diesel engines is the applied technical solution. However the cost and supply of fuel make a strong dependency of the communities on the external support. Alternatives to fuel combustion can be found in photovoltaic generators, and, with suitable conditions, small wind turbines or microhydroplants. The aim of the paper is to simulate the power generation of a generating unit using the Rankine Cycle and using refrigerant R245fa as a working fluid. The generation unit has thermal solar panels as heat source and photovoltaic modules for the needs of the auxiliary items (pumps, electronics, etc.. The paper illustrates the modeling of the system using TRNSYS platform, highlighting standard and “ad hoc” developed components as well as the global system efficiency. In the future the results of the simulation will be compared with the data collected from the 3 kW prototype under construction in the Tuscia University in Italy.

  10. Bladder cancer mapping in Libya based on standardized morbidity ratio and log-normal model

    Science.gov (United States)

    Alhdiri, Maryam Ahmed; Samat, Nor Azah; Mohamed, Zulkifley

    2017-05-01

    Disease mapping contains a set of statistical techniques that detail maps of rates based on estimated mortality, morbidity, and prevalence. A traditional approach to measure the relative risk of the disease is called Standardized Morbidity Ratio (SMR). It is the ratio of an observed and expected number of accounts in an area, which has the greatest uncertainty if the disease is rare or if geographical area is small. Therefore, Bayesian models or statistical smoothing based on Log-normal model are introduced which might solve SMR problem. This study estimates the relative risk for bladder cancer incidence in Libya from 2006 to 2007 based on the SMR and log-normal model, which were fitted to data using WinBUGS software. This study starts with a brief review of these models, starting with the SMR method and followed by the log-normal model, which is then applied to bladder cancer incidence in Libya. All results are compared using maps and tables. The study concludes that the log-normal model gives better relative risk estimates compared to the classical method. The log-normal model has can overcome the SMR problem when there is no observed bladder cancer in an area.

  11. Learning from Nature - Mapping of Complex Hydrological and Geomorphological Process Systems for More Realistic Modelling of Hazard-related Maps

    Science.gov (United States)

    Chifflard, Peter; Tilch, Nils

    2010-05-01

    Introduction Hydrological or geomorphological processes in nature are often very diverse and complex. This is partly due to the regional characteristics which vary over time and space, as well as changeable process-initiating and -controlling factors. Despite being aware of this complexity, such aspects are usually neglected in the modelling of hazard-related maps due to several reasons. But particularly when it comes to creating more realistic maps, this would be an essential component to consider. The first important step towards solving this problem would be to collect data relating to regional conditions which vary over time and geographical location, along with indicators of complex processes. Data should be acquired promptly during and after events, and subsequently digitally combined and analysed. Study area In June 2009, considerable damage occurred in the residential area of Klingfurth (Lower Austria) as a result of great pre-event wetness and repeatedly heavy rainfall, leading to flooding, debris flow deposit and gravitational mass movement. One of the causes is the fact that the meso-scale watershed (16 km²) of the Klingfurth stream is characterised by adverse geological and hydrological conditions. Additionally, the river system network with its discharge concentration within the residential zone contributes considerably to flooding, particularly during excessive rainfall across the entire region, as the flood peaks from different parts of the catchment area are superposed. First results of mapping Hydro(geo)logical surveys across the entire catchment area have shown that - over 600 gravitational mass movements of various type and stage have occurred. 516 of those have acted as a bed load source, while 325 mass movements had not reached the final stage yet and could thus supply bed load in the future. It should be noted that large mass movements in the initial or intermediate stage were predominately found in clayey-silty areas and weathered material

  12. Foreground removal from Planck Sky Model temperature maps using a MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik; Hebert, K.

    2009-01-01

    with no systematic errors. To demonstrate the feasibility of a simple multilayer perceptron (MLP) neural network for extracting the CMB temperature signal, we have analyzed a specific data set, namely the Planck Sky Model maps, developed for evaluation of different component separation methods before including them...... in the Planck data analysis pipeline. It is found that a MLP neural network can provide a CMB map of about 80% of the sky to a very high degree uncorrelated with the foreground components. Also the derived power spectrum shows little evidence for systematic errors....

  13. Mapping the q-voter model: From a single chain to complex networks

    Science.gov (United States)

    Jȩdrzejewski, Arkadiusz; Sznajd-Weron, Katarzyna; Szwabiński, Janusz

    2016-03-01

    We propose and compare six different ways of mapping the modified q-voter model to complex networks. Considering square lattices, Barabási-Albert, Watts-Strogatz and real Twitter networks, we ask the question if always a particular choice of the group of influence of a fixed size q leads to different behavior at the macroscopic level. Using Monte Carlo simulations we show that the answer depends on the relative average path length of the network and for real-life topologies the differences between the considered mappings may be negligible.

  14. Rural model dedicated education unit: partnership between college and hospital.

    Science.gov (United States)

    Harmon, Lisa M

    2013-02-01

    This article describes the pilot project development of a rural model Dedicated Education Unit (DEU) by a rural college nursing program and a rural hospital to increase student nurses' confidence and proficiency and improve recruitment of prepared rural staff nurses. Traditionally, for economies of scale, most student clinical rotations occurred in urban settings with the number of students per clinical instructor allowed by the state board of nursing. College budget constraints negated the placement of fewer than this mandated maximum number of students in a rural hospital with a clinical instructor; moreover, rural hospitals could not accommodate 10 students at one time. Rural nursing students were anxious in the urban settings, and this anxiety precluded learning in many instances. Rural hospitals face higher registered nurse vacancies than urban centers. Of the nurses applying for open positions, many were not prepared for the demands of rural nursing, resulting in increased turnover and high orientation costs. The rural model DEU addressed issues of both the nursing program and the hospital. The design and development of the rural model DEU and the advantages of the partnership for the college nursing program and the hospital are discussed. Initial outcomes and serendipitous findings from the pilot project are also discussed. Copyright 2013, SLACK Incorporated.

  15. Soil mapping and processes models to support climate change mitigation and adaptation strategies: a review

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Jordan, Antonio

    2017-04-01

    As agreed in Paris in December 2015, global average temperature is to be limited to "well below 2 °C above pre-industrial levels" and efforts will be made to "limit the temperature increase to 1.5 °C above pre-industrial levels. Thus, reducing greenhouse gas emissions (GHG) in all sectors becomes critical and appropriate sustainable land management practices need to be taken (Pereira et al., 2017). Mitigation strategies focus on reducing the rate and magnitude of climate change by reducing its causes. Complementary to mitigation, adaptation strategies aim to minimise impacts and maximize the benefits of new opportunities. The adoption of both practices will require developing system models to integrate and extrapolate anticipated climate changes such as global climate models (GCMs) and regional climate models (RCMs). Furthermore, integrating climate models driven by socio-economic scenarios in soil process models has allowed the investigation of potential changes and threats in soil characteristics and functions in future climate scenarios. One of the options with largest potential for climate change mitigation is sequestering carbon in soils. Therefore, the development of new methods and the use of existing tools for soil carbon monitoring and accounting have therefore become critical in a global change context. For example, soil C maps can help identify potential areas where management practices that promote C sequestration will be productive and guide the formulation of policies for climate change mitigation and adaptation strategies. Despite extensive efforts to compile soil information and map soil C, many uncertainties remain in the determination of soil C stocks, and the reliability of these estimates depends upon the quality and resolution of the spatial datasets used for its calculation. Thus, better estimates of soil C pools and dynamics are needed to advance understanding of the C balance and the potential of soils for climate change mitigation. Here

  16. Modeling Directional Selectivity Using Self-Organizing Delay-Aadaptation Maps

    OpenAIRE

    Tversky, Mr. Tal; Miikkulainen, Dr. Risto

    2002-01-01

    Using a delay adaptation learning rule, we model the activity-dependent development of directionally selective cells in the primary visual cortex. Based on input stimuli, a learning rule shifts delays to create synchronous arrival of spikes at cortical cells. As a result, delays become tuned creating a smooth cortical map of direction selectivity. This result demonstrates how delay adaption can serve as a powerful abstraction for modeling temporal learning in the brain.

  17. A new coupled map car-following model considering drivers' steady desired speed

    International Nuclear Information System (INIS)

    Zhou Tong; Sun Di-Hua; Li Hua-Min; Liu Wei-Ning

    2014-01-01

    Based on the pioneering work of Konishi et al., in consideration of the influence of drivers' steady desired speed effect on the traffic flow, we develop a new coupled map car-following model in the real world. By use of the control theory, the stability condition of our model is derived. The validity of the present theoretical scheme is verified via numerical simulation, confirming the correctness of our theoretical analysis. (general)

  18. Dynamic neural network modeling of HF radar current maps for forecasting oil spill trajectories

    International Nuclear Information System (INIS)

    Tissot, P.; Perez, J.; Kelly, F.J.; Bonner, J.; Michaud, P.

    2001-01-01

    This paper examined the concept of dynamic neural network (NN) modeling for short-term forecasts of coastal high-frequency (HF) radar current maps offshore of Galveston Texas. HF radar technology is emerging as a viable and affordable way to measure surface currents in real time and the number of users applying the technology is increasing. A 25 megahertz, two site, Seasonde HF radar system was used to map ocean and bay surface currents along the coast of Texas where wind and river discharge create complex and rapidly changing current patters that override the weaker tidal flow component. The HF radar system is particularly useful in this type of setting because its mobility makes it a good marine spill response tool that could provide hourly current maps. This capability helps improve deployment of response resources. In addition, the NN model recently developed by the Conrad Blucher Institute can be used to forecast water levels during storm events. Forecasted currents are based on time series of current vectors from HF radar plus wind speed, wind direction, and water levels, as well as tidal forecasts. The dynamic NN model was tested to evaluate its performance and the results were compared with a baseline model which assumes the currents do not change from the time of the forecast up to the forecasted time. The NN model showed improvements over the baseline model for forecasting time equal or greater than 3 hours, but the difference was relatively small. The test demonstrated the ability of the dynamic NN model to link meteorological forcing functions with HF radar current maps. Development of the dynamic NN modeling is still ongoing. 18 refs., 1 tab., 5 figs

  19. Integrating Remote Sensing with Species Distribution Models; Mapping Tamarisk Invasions Using the Software for Assisted Habitat Modeling (SAHM).

    Science.gov (United States)

    West, Amanda M; Evangelista, Paul H; Jarnevich, Catherine S; Young, Nicholas E; Stohlgren, Thomas J; Talbert, Colin; Talbert, Marian; Morisette, Jeffrey; Anderson, Ryan

    2016-10-11

    Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tamarix spp.) along the Arkansas River in Southeastern Colorado. The models tested included boosted regression trees (BRT), Random Forest (RF), multivariate adaptive regression splines (MARS), generalized linear model (GLM), and Maxent. These analyses were conducted using a newly developed software package called the Software for Assisted Habitat Modeling (SAHM). All models were trained with 499 presence points, 10,000 pseudo-absence points, and predictor variables acquired from the Landsat 5 Thematic Mapper (TM) sensor over an eight-month period to distinguish tamarisk from native riparian vegetation using detection of phenological differences. From the Landsat scenes, we used individual bands and calculated Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and tasseled capped transformations. All five models identified current tamarisk distribution on the landscape successfully based on threshold independent and threshold dependent evaluation metrics with independent location data. To account for model specific differences, we produced an ensemble of all five models with map output highlighting areas of agreement and areas of uncertainty. Our results demonstrate the usefulness of species distribution models in analyzing remotely sensed data and the utility of ensemble mapping, and showcase the capability of SAHM in pre-processing and executing multiple complex models.

  20. Integrating remote sensing with species distribution models; Mapping tamarisk invasions using the Software for Assisted Habitat Modeling (SAHM)

    Science.gov (United States)

    West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Young, Nicholas E.; Stohlgren, Thomas J.; Talbert, Colin; Talbert, Marian; Morisette, Jeffrey; Anderson, Ryan

    2016-01-01

    Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tamarix spp.) along the Arkansas River in Southeastern Colorado. The models tested included boosted regression trees (BRT), Random Forest (RF), multivariate adaptive regression splines (MARS), generalized linear model (GLM), and Maxent. These analyses were conducted using a newly developed software package called the Software for Assisted Habitat Modeling (SAHM). All models were trained with 499 presence points, 10,000 pseudo-absence points, and predictor variables acquired from the Landsat 5 Thematic Mapper (TM) sensor over an eight-month period to distinguish tamarisk from native riparian vegetation using detection of phenological differences. From the Landsat scenes, we used individual bands and calculated Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and tasseled capped transformations. All five models identified current tamarisk distribution on the landscape successfully based on threshold independent and threshold dependent evaluation metrics with independent location data. To account for model specific differences, we produced an ensemble of all five models with map output highlighting areas of agreement and areas of uncertainty. Our results demonstrate the usefulness of species distribution models in analyzing remotely sensed data and the utility of ensemble mapping, and showcase the capability of SAHM in pre-processing and executing multiple complex models.

  1. Mapping rice ecosystem dynamics and greenhouse gas emissions using multiscale imagery and biogeochemical models

    Science.gov (United States)

    Salas, W.; Torbick, N.

    2017-12-01

    Rice greenhouse gas (GHG) emissions in production hot spots have been mapped using multiscale satellite imagery and a processed-based biogeochemical model. The multiscale Synthetic Aperture Radar (SAR) and optical imagery were co-processed and fed into a machine leanring framework to map paddy attributes that are tuned using field observations and surveys. Geospatial maps of rice extent, crop calendar, hydroperiod, and cropping intensity were then used to parameterize the DeNitrification-DeComposition (DNDC) model to estimate emissions. Results, in the Red River Detla for example, show total methane emissions at 345.4 million kgCH4-C equivalent to 11.5 million tonnes CO2e (carbon dioxide equivalent). We further assessed the role of Alternative Wetting and Drying and the impact on GHG and yield across production hot spots with uncertainty estimates. The approach described in this research provides a framework for using SAR to derive maps of rice and landscape characteristics to drive process models like DNDC. These types of tools and approaches will support the next generation of Monitoring, Reporting, and Verification (MRV) to combat climate change and support ecosystem service markets.

  2. Flood Hazard Mapping using Hydraulic Model and GIS: A Case Study in Mandalay City, Myanmar

    Directory of Open Access Journals (Sweden)

    Kyu Kyu Sein

    2016-01-01

    Full Text Available This paper presents the use of flood frequency analysis integrating with 1D Hydraulic model (HECRAS and Geographic Information System (GIS to prepare flood hazard maps of different return periods in Ayeyarwady River at Mandalay City in Myanmar. Gumbel’s distribution was used to calculate the flood peak of different return periods, namely, 10 years, 20 years, 50 years, and 100 years. The flood peak from frequency analysis were input into HEC-RAS model to find the corresponding flood level and extents in the study area. The model results were used in integrating with ArcGIS to generate flood plain maps. Flood depths and extents have been identified through flood plain maps. Analysis of 100 years return period flood plain map indicated that 157.88 km2 with the percentage of 17.54% is likely to be inundated. The predicted flood depth ranges varies from greater than 0 to 24 m in the flood plains and on the river. The range between 3 to 5 m were identified in the urban area of Chanayetharzan, Patheingyi, and Amarapua Townships. The highest inundated area was 85 km2 in the Amarapura Township.

  3. PENGEMBANGAN BAHAN AJAR DENGAN MODEL MIND MAP UNTUK PEMBELAJARAN ILMU PENGETAHUAN SOSIAL SMP

    Directory of Open Access Journals (Sweden)

    Lukman Lukman

    2014-12-01

    Full Text Available Penelitian ini bertujuan untuk menghasilkan bahan ajar dengan model mind map yang layak digunakan pada pembelajaran Ilmu Pengetahuan Sosial (IPS untuk siswa SMP, serta mengetahui keefektifan bahan ajar hasil pengembangan. Penelitian ini merupakan penelitian dan pengembangan (Research and Development. Hasil penelitian adalah sebagi berikut: (1 menghasilkan bahan ajar dengan model mind map untuk pembelajaran Ilmu Pengetahuan Sosial siswa SMP yang dikemas dalam bentuk buku dengan materi “Perkembangan pada Masa Islam di Indonesia”. Produk yang dihasilkan layak digunakan untuk pembelajaran berdasarkan validasi dari ahli materi, ahli media, uji coba terbatas, serta uji coba lapangan. (2 Bahan ajar hasil pengembangan untuk siswa kelas VII di SMP N 3 Berbah ini efektif digunakan untuk pembelajaran IPS. Peningkatan skor postes pada kelas yang menggunakan bahan ajar dengan model mind map sebesar 13,87% dengan nilai gain score 0,45 dan ketuntasan siswa 100%. Sedangkan kelas yang menggunakan buku paket IPS dengan peningkatan skor postes sebesar 10,26% dengan nilai gain score 0,35 dan ketuntasan siswa 87,1%. Kata kunci: bahan ajar, mind map, ilmu pengetahuan sosial

  4. Geospatial compilation and digital map of centerpivot irrigated areas in the mid-Atlantic region, United States

    Science.gov (United States)

    Finkelstein, Jason S.; Nardi, Mark R.

    2015-01-01

    To evaluate water availability within the Northern Atlantic Coastal Plain, the U.S. Geological Survey, in cooperation with the University of Delaware Agricultural Extension, created a dataset that maps the number of acres under center-pivot irrigation in the Northern Atlantic Coastal Plain study area. For this study, the extent of the Northern Atlantic Coastal Plain falls within areas of the States of New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina. The irrigation dataset maps about 271,900 acres operated primarily under center-pivot irrigation in 57 counties. Manual digitizing was performed against aerial imagery in a process where operators used observable center-pivot irrigation signatures—such as irrigation arms, concentric wheel paths through cropped areas, and differential colors—to identify and map irrigated areas. The aerial imagery used for digitizing came from a variety of sources and seasons. The imagery contained a variety of spatial resolutions and included online imagery from the U.S. Department of Agriculture National Agricultural Imagery Program, Microsoft Bing Maps, and the Google Maps mapping service. The dates of the source images ranged from 2010 to 2012 for the U.S. Department of Agriculture imagery, whereas maps from the other mapping services were from 2013.

  5. Trace map and eigenstates of a Thue-Morse chain in a general model

    Science.gov (United States)

    Cheng, Sheng-Feng; Jin, Guo-Jun

    2002-04-01

    By the standard method proposed by Kolar and Nori [Phys. Rev. B 42, 1062 (1990)], a rigorous eight-dimensional (8D) trace map for a general model of Thue-Morse (TM) sequences is obtained. Using this trace map, the characteristics of electronic eigenstates in TM lattices are explored in a very broad way. Simultaneously, a constraint condition for energy parameters, under which the complex 8D trace map can be simplified into the ordinary form, is found. It is also proved analytically that all eigenstates of TM lattices are extended when this constraint conditon is fulfilled. Furthermore, the properties of eigenstates beyond this constraint are investigated and some wave functions with critical features are discovered by the multifractal analysis. Our results support the previous viewpoint that a TM lattice is an intermediate stage between periodic and Fibonacci structures.

  6. Scaling properties of a simplified bouncer model and of Chirikov's standard map

    International Nuclear Information System (INIS)

    Ladeira, Denis Gouvea; Silva, Jafferson Kamphorst Leal da

    2007-01-01

    Scaling properties of Chirikov's standard map are investigated by studying the average value of I 2 , where I is the action variable, for initial conditions in (a) the stability island and (b) the chaotic component. Scaling behavior appears in three regimes, defined by the value of the control parameter K: (i) the integrable to non-integrable transition (K ∼ 0) and K c (K c ∼ 0.9716); (ii) the transition from limited to unlimited growth of I 2 , K ∼> K c ; (iii) the regime of strong nonlinearity, K >> K c . Our scaling results are also applicable to Pustylnikov's bouncer model, since it is globally equivalent to the standard map. We also describe the scaling properties of a stochastic version of the standard map, which exhibits unlimited growth of I 2 even for small values of K

  7. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment.

    Science.gov (United States)

    Shahabi, Himan; Hashim, Mazlan

    2015-04-22

    This research presents the results of the GIS-based statistical models for generation of landslide susceptibility mapping using geographic information system (GIS) and remote-sensing data for Cameron Highlands area in Malaysia. Ten factors including slope, aspect, soil, lithology, NDVI, land cover, distance to drainage, precipitation, distance to fault, and distance to road were extracted from SAR data, SPOT 5 and WorldView-1 images. The relationships between the detected landslide locations and these ten related factors were identified by using GIS-based statistical models including analytical hierarchy process (AHP), weighted linear combination (WLC) and spatial multi-criteria evaluation (SMCE) models. The landslide inventory map which has a total of 92 landslide locations was created based on numerous resources such as digital aerial photographs, AIRSAR data, WorldView-1 images, and field surveys. Then, 80% of the landslide inventory was used for training the statistical models and the remaining 20% was used for validation purpose. The validation results using the Relative landslide density index (R-index) and Receiver operating characteristic (ROC) demonstrated that the SMCE model (accuracy is 96%) is better in prediction than AHP (accuracy is 91%) and WLC (accuracy is 89%) models. These landslide susceptibility maps would be useful for hazard mitigation purpose and regional planning.

  8. Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows

    Science.gov (United States)

    Herkül, Kristjan; Peterson, Anneliis; Paekivi, Sander

    2017-06-01

    Both basic science and marine spatial planning are in a need of high resolution spatially continuous data on seabed habitats and biota. As conventional point-wise sampling is unable to cover large spatial extents in high detail, it must be supplemented with remote sensing and modeling in order to fulfill the scientific and management needs. The combined use of in situ sampling, sonar scanning, and mathematical modeling is becoming the main method for mapping both abiotic and biotic seabed features. Further development and testing of the methods in varying locations and environmental settings is essential for moving towards unified and generally accepted methodology. To fill the relevant research gap in the Baltic Sea, we used multibeam sonar and mathematical modeling methods - generalized additive models (GAM) and random forest (RF) - together with underwater video to map seabed substrate and epibenthos of offshore shallows. In addition to testing the general applicability of the proposed complex of techniques, the predictive power of different sonar-based variables and modeling algorithms were tested. Mean depth, followed by mean backscatter, were the most influential variables in most of the models. Generally, mean values of sonar-based variables had higher predictive power than their standard deviations. The predictive accuracy of RF was higher than that of GAM. To conclude, we found the method to be feasible and with predictive accuracy similar to previous studies of sonar-based mapping.

  9. Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Samat, N. A.; Ma' arof, S. H. Mohd Imam [Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak (Malaysia)

    2014-12-04

    This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Dengue and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases.

  10. Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia

    International Nuclear Information System (INIS)

    Samat, N. A.; Ma'arof, S. H. Mohd Imam

    2014-01-01

    This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Dengue and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases

  11. Eliciting geologists' tacit model of the uncertainty of mapped geological boundaries

    Science.gov (United States)

    Lark, R. M.; Lawley, R. S.; Barron, A. J. M.; Aldiss, D. T.; Ambrose, K.; Cooper, A. H.; Lee, J. R.; Waters, C. N.

    2015-01-01

    It is generally accepted that geological linework, such as mapped boundaries, are uncertain for various reasons. It is difficult to quantify this uncertainty directly, because the investigation of error in a boundary at a single location may be costly and time consuming, and many such observations are needed to estimate an uncertainty model with confidence. However, it is also recognized across many disciplines that experts generally have a tacit model of the uncertainty of information that they produce (interpretations, diagnoses etc.) and formal methods exist to extract this model in usable form by elicitation. In this paper we report a trial in which uncertainty models for mapped boundaries in six geological scenarios were elicited from a group of five experienced geologists. In five cases a consensus distribution was obtained, which reflected both the initial individually elicted distribution and a structured process of group discussion in which individuals revised their opinions. In a sixth case a consensus was not reached. This concerned a boundary between superficial deposits where the geometry of the contact is hard to visualize. The trial showed that the geologists' tacit model of uncertainty in mapped boundaries reflects factors in addition to the cartographic error usually treated by buffering linework or in written guidance on its application. It suggests that further application of elicitation, to scenarios at an appropriate level of generalization, could be useful to provide working error models for the application and interpretation of linework.

  12. Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia

    Science.gov (United States)

    Samat, N. A.; Ma'arof, S. H. Mohd Imam

    2014-12-01

    This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Dengue and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases.

  13. Candidate gene database and transcript map for peach, a model species for fruit trees.

    Science.gov (United States)

    Horn, Renate; Lecouls, Anne-Claire; Callahan, Ann; Dandekar, Abhaya; Garay, Lilibeth; McCord, Per; Howad, Werner; Chan, Helen; Verde, Ignazio; Main, Doreen; Jung, Sook; Georgi, Laura; Forrest, Sam; Mook, Jennifer; Zhebentyayeva, Tatyana; Yu, Yeisoo; Kim, Hye Ran; Jesudurai, Christopher; Sosinski, Bryon; Arús, Pere; Baird, Vance; Parfitt, Dan; Reighard, Gregory; Scorza, Ralph; Tomkins, Jeffrey; Wing, Rod; Abbott, Albert Glenn

    2005-05-01

    Peach (Prunus persica) is a model species for the Rosaceae, which includes a number of economically important fruit tree species. To develop an extensive Prunus expressed sequence tag (EST) database for identifying and cloning the genes important to fruit and tree development, we generated 9,984 high-quality ESTs from a peach cDNA library of developing fruit mesocarp. After assembly and annotation, a putative peach unigene set consisting of 3,842 ESTs was defined. Gene ontology (GO) classification was assigned based on the annotation of the single "best hit" match against the Swiss-Prot database. No significant homology could be found in the GenBank nr databases for 24.3% of the sequences. Using core markers from the general Prunus genetic map, we anchored bacterial artificial chromosome (BAC) clones on the genetic map, thereby providing a framework for the construction of a physical and transcript map. A transcript map was developed by hybridizing 1,236 ESTs from the putative peach unigene set and an additional 68 peach cDNA clones against the peach BAC library. Hybridizing ESTs to genetically anchored BACs immediately localized 11.2% of the ESTs on the genetic map. ESTs showed a clustering of expressed genes in defined regions of the linkage groups. [The data were built into a regularly updated Genome Database for Rosaceae (GDR), available at (http://www.genome.clemson.edu/gdr/).].

  14. State space modeling of time-varying contemporaneous and lagged relations in connectivity maps.

    Science.gov (United States)

    Molenaar, Peter C M; Beltz, Adriene M; Gates, Kathleen M; Wilson, Stephen J

    2016-01-15

    Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. Published by Elsevier Inc.

  15. MAP, MAC, and vortex-rings configurations in the Weinberg-Salam model

    Science.gov (United States)

    Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming

    2015-11-01

    We report on the presence of new axially symmetric monopoles, antimonopoles and vortex-rings solutions of the SU(2)×U(1) Weinberg-Salam model of electromagnetic and weak interactions. When the ϕ-winding number n = 1, and 2, the configurations are monopole-antimonopole pair (MAP) and monopole-antimonopole chain (MAC) with poles of alternating sign magnetic charge arranged along the z-axis. Vortex-rings start to appear from the MAP and MAC configurations when the winding number n = 3. The MAP configurations possess zero net magnetic charge whereas the MAC configurations possess net magnetic charge of 4 πn / e. In the MAP configurations, the monopole-antimonopole pair is bounded by the Z0 field flux string and there is an electromagnetic current loop encircling it. The monopole and antimonopole possess magnetic charges ± 4πn/e sin2θW respectively. In the MAC configurations there is no string connecting the monopole and the adjacent antimonopole and they possess magnetic charges ± 4 πn/e respectively. The MAC configurations possess infinite total energy and zero magnetic dipole moment whereas the MAP configurations which are actually sphalerons possess finite total energy and magnetic dipole moment. The configurations were investigated for varying values of Higgs self-coupling constant 0 ≤ λ ≤ 40 at Weinberg angle θW = π/4.

  16. Dense gene physical maps of the non-model species Drosophila subobscura.

    Science.gov (United States)

    Orengo, Dorcas J; Puerma, Eva; Papaceit, Montserrat; Segarra, Carmen; Aguadé, Montserrat

    2017-06-01

    The comparative analysis of genetic and physical maps as well as of whole genome sequences had revealed that in the Drosophila genus, most structural rearrangements occurred within chromosomal elements as a result of paracentric inversions. Genome sequence comparison would seem the best method to estimate rates of chromosomal evolution, but the high-quality reference genomes required for this endeavor are still scanty. Here, we have obtained dense physical maps for Muller elements A, C, and E of Drosophila subobscura, a species with an extensively studied rich and adaptive chromosomal polymorphism. These maps are based on 462 markers: 115, 236, and 111 markers for elements A, C, and E, respectively. The availability of these dense maps will facilitate genome assembly and will thus greatly contribute to obtaining a good reference genome, which is a required step for D. subobscura to attain the model species status. The comparative analysis of these physical maps and those obtained from the D. pseudoobscura and D. melanogaster genomes allowed us to infer the number of fixed inversions and chromosomal evolutionary rates for each pairwise comparison. For all three elements, rates inferred from the more closely related species were higher than those inferred from the more distantly related species, which together with results of relative-rate tests point to an acceleration in the D. subobscura lineage at least for elements A and E.

  17. SEMI-AUTOMATIC BUILDING MODELS AND FAÇADE TEXTURE MAPPING FROM MOBILE PHONE IMAGES

    Directory of Open Access Journals (Sweden)

    J. Jeong

    2016-06-01

    Full Text Available Research on 3D urban modelling has been actively carried out for a long time. Recently the need of 3D urban modelling research is increased rapidly due to improved geo-web services and popularized smart devices. Nowadays 3D urban models provided by, for example, Google Earth use aerial photos for 3D urban modelling but there are some limitations: immediate update for the change of building models is difficult, many buildings are without 3D model and texture, and large resources for maintaining and updating are inevitable. To resolve the limitations mentioned above, we propose a method for semi-automatic building modelling and façade texture mapping from mobile phone images and analyze the result of modelling with actual measurements. Our method consists of camera geometry estimation step, image matching step, and façade mapping step. Models generated from this method were compared with actual measurement value of real buildings. Ratios of edge length of models and measurements were compared. Result showed 5.8% average error of length ratio. Through this method, we could generate a simple building model with fine façade textures without expensive dedicated tools and dataset.

  18. Quantitative T2 mapping evaluation for articular cartilage lesions in a rabbit model of anterior cruciate ligament transection osteoarthritis.

    Science.gov (United States)

    Wei, Zheng-mao; Du, Xiang-ke; Huo, Tian-long; Li, Xu-bin; Quan, Guang-nan; Li, Tian-ran; Cheng, Jin; Zhang, Wei-tao

    2012-03-01

    Quantitative T2 mapping has been a widely used method for the evaluation of pathological cartilage properties, and the histological assessment system of osteoarthritis in the rabbit has been published recently. The aim of the study was to investigate the effectiveness of quantitative T2 mapping evaluation for articular cartilage lesions of a rabbit model of anterior cruciate ligament transection (ACLT) osteoarthritis. Twenty New Zealand White (NZW) rabbits were divided into ACLT surgical group and sham operated group equally. The anterior cruciate ligaments of the rabbits in ACLT group were transected, while the joints were closed intactly in sham operated group. Magnetic resonance (MR) examinations were performed on 3.0T MR unit at week 0, week 6, and week 12. T2 values were computed on GE ADW4.3 workstation. All rabbits were killed at week 13, and left knees were stained with Haematoxylin and Eosin. Semiquantitative histological grading was obtained according to the osteoarthritis cartilage histopathology assessment system. Computerized image analysis was performed to quantitate the immunostained collagen type II. The average MR T2 value of whole left knee cartilage in ACLT surgical group ((29.05±12.01) ms) was significantly higher than that in sham operated group ((24.52±7.97) ms) (P=0.024) at week 6. The average T2 value increased to (32.18±12.79) ms in ACLT group at week 12, but remained near the baseline level ((27.66±8.08) ms) in the sham operated group (P=0.03). The cartilage lesion level of left knee in ACLT group was significantly increased at week 6 (P=0.005) and week 12 (PT2 values had positive correlation with histological grading scores, but inverse correlation with optical densities (OD) of type II collagen. This study demonstrated the reliability and practicability of quantitative T2 mapping for the cartilage injury of rabbit ACLT osteoarthritis model.

  19. A posteriori model validation for the temporal order of directed functional connectivity maps.

    Science.gov (United States)

    Beltz, Adriene M; Molenaar, Peter C M

    2015-01-01

    A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data).

  20. A posteriori model validation for the temporal order of directed functional connectivity maps

    Directory of Open Access Journals (Sweden)

    Adriene M. Beltz

    2015-08-01

    Full Text Available A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests, and (b to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates and substantive implications (e.g., higher order lags may be common in resting state data.

  1. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    Directory of Open Access Journals (Sweden)

    Hyeyeong Choe

    Full Text Available Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the

  2. Object-Oriented Approach to Modeling Units of Pneumatic Systems

    Directory of Open Access Journals (Sweden)

    Yu. V. Kyurdzhiev

    2014-01-01

    Full Text Available The article shows the relevance of the approaches to the object-oriented programming when modeling the pneumatic units (PU.Based on the analysis of the calculation schemes of aggregates pneumatic systems two basic objects, namely a cavity flow and a material point were highlighted.Basic interactions of objects are defined. Cavity-cavity interaction: ex-change of matter and energy with the flows of mass. Cavity-point interaction: force interaction, exchange of energy in the form of operation. Point-point in-teraction: force interaction, elastic interaction, inelastic interaction, and inter-vals of displacement.The authors have developed mathematical models of basic objects and interactions. Models and interaction of elements are implemented in the object-oriented programming.Mathematical models of elements of PU design scheme are implemented in derived from the base class. These classes implement the models of flow cavity, piston, diaphragm, short channel, diaphragm to be open by a given law, spring, bellows, elastic collision, inelastic collision, friction, PU stages with a limited movement, etc.A numerical integration of differential equations for the mathematical models of PU design scheme elements is based on the Runge-Kutta method of the fourth order. On request each class performs a tact of integration i.e. calcu-lation of the coefficient method.The paper presents an integration algorithm of the system of differential equations. All objects of the PU design scheme are placed in a unidirectional class list. Iterator loop cycle initiates the integration tact of all the objects in the list. One in four iteration makes a transition to the next step of integration. Calculation process stops when any object shows a shutdowns flag.The proposed approach was tested in the calculation of a number of PU designs. With regard to traditional approaches to modeling, the authors-proposed method features in easy enhancement, code reuse, high reliability

  3. High resolution global flood hazard map from physically-based hydrologic and hydraulic models.

    Science.gov (United States)

    Begnudelli, L.; Kaheil, Y.; McCollum, J.

    2017-12-01

    The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak

  4. A fuzzy neural network model to forecast the percent cloud coverage and cloud top temperature maps

    Directory of Open Access Journals (Sweden)

    Y. Tulunay

    2008-12-01

    Full Text Available Atmospheric processes are highly nonlinear. A small group at the METU in Ankara has been working on a fuzzy data driven generic model of nonlinear processes. The model developed is called the Middle East Technical University Fuzzy Neural Network Model (METU-FNN-M. The METU-FNN-M consists of a Fuzzy Inference System (METU-FIS, a data driven Neural Network module (METU-FNN of one hidden layer and several neurons, and a mapping module, which employs the Bezier Surface Mapping technique. In this paper, the percent cloud coverage (%CC and cloud top temperatures (CTT are forecast one month ahead of time at 96 grid locations. The probable influence of cosmic rays and sunspot numbers on cloudiness is considered by using the METU-FNN-M.

  5. Quantifying Uncertainty in Flood Inundation Mapping Using Streamflow Ensembles and Multiple Hydraulic Modeling Techniques

    Science.gov (United States)

    Hosseiny, S. M. H.; Zarzar, C.; Gomez, M.; Siddique, R.; Smith, V.; Mejia, A.; Demir, I.

    2016-12-01

    The National Water Model (NWM) provides a platform for operationalize nationwide flood inundation forecasting and mapping. The ability to model flood inundation on a national scale will provide invaluable information to decision makers and local emergency officials. Often, forecast products use deterministic model output to provide a visual representation of a single inundation scenario, which is subject to uncertainty from various sources. While this provides a straightforward representation of the potential inundation, the inherent uncertainty associated with the model output should be considered to optimize this tool for decision making support. The goal of this study is to produce ensembles of future flood inundation conditions (i.e. extent, depth, and velocity) to spatially quantify and visually assess uncertainties associated with the predicted flood inundation maps. The setting for this study is located in a highly urbanized watershed along the Darby Creek in Pennsylvania. A forecasting framework coupling the NWM with multiple hydraulic models was developed to produce a suite ensembles of future flood inundation predictions. Time lagged ensembles from the NWM short range forecasts were used to account for uncertainty associated with the hydrologic forecasts. The forecasts from the NWM were input to iRIC and HEC-RAS two-dimensional software packages, from which water extent, depth, and flow velocity were output. Quantifying the agreement between output ensembles for each forecast grid provided the uncertainty metrics for predicted flood water inundation extent, depth, and flow velocity. For visualization, a series of flood maps that display flood extent, water depth, and flow velocity along with the underlying uncertainty associated with each of the forecasted variables were produced. The results from this study demonstrate the potential to incorporate and visualize model uncertainties in flood inundation maps in order to identify the high flood risk zones.

  6. Decoding implicit information from the soil map of Belgium and implications for spatial modelling and soil classification

    Science.gov (United States)

    Dondeyne, Stefaan; Legrain, Xavier; Colinet, Gilles; Van Ranst, Eric; Deckers, Jozef

    2014-05-01

    A systematic soil survey of Belgium was conducted from 1948 to 1991. Field surveys were done at the detailed scale of 1:5000 with the final maps published at a 1:20,000 scale. Soil surveyors were classifying soils in the field according to physical and morphogenetic characteristics such as texture, drainage class and profile development. Mapping units are defined as a combination of these characteristics but to which modifiers can be added such as parent material, stoniness or depth to substrata. Interpretation of the map towards predicting soil properties seems straight forward. Consequently, since the soil map has been digitized, it has been used for e.g. hydrological modelling or for estimating soil organic carbon content at sub-national and national level. Besides the explicit information provided by the legend, a wealth of implicit information is embedded in the map. Based on three cases, we illustrate that by decoding this information, properties pertaining to soil drainage or soil organic carbon content can be assessed more accurately. First, the presence/absence of fragipans affects the soil hydraulic conductivity. Although a dedicated symbol exits for fragipans (suffix "...m"), it is only used explicitly in areas where fragipans are not all that common. In the Belgian Ardennes, where fragipans are common, their occurrence is implicitly implied for various soil types mentioned in explanatory booklets. Second, whenever seasonal or permanent perched water tables were observed, these were indicated by drainage class ".h." or ".i.", respectively. Stagnic properties have been under reported as typical stagnic mottling - i.e. when the surface of soil peds are lighter and/or paler than the more reddish interior - were not distinguished from mottling due to groundwater gley. Still, by combining information on topography and the occurrence of substratum layers, stagnic properties can be inferred. Thirdly, soils with deep anthropogenic enriched organic matter

  7. Comparative benefit of malaria chemoprophylaxis modelled in United Kingdom travellers.

    Science.gov (United States)

    Toovey, Stephen; Nieforth, Keith; Smith, Patrick; Schlagenhauf, Patricia; Adamcova, Miriam; Tatt, Iain; Tomianovic, Danitza; Schnetzler, Gabriel

    2014-01-01

    Chemoprophylaxis against falciparum malaria is recommended for travellers from non-endemic countries to malarious destinations, but debate continues on benefit, especially with regard to mefloquine. Quantification of benefit for travellers from the United Kingdom (UK) was modelled to assist clinical and public health decision making. The model was constructed utilising: World Tourism Organization data showing total number of arrivals from the UK in countries with moderate or high malaria risk; data from a retrospective UK Clinical Practice Research Datalink (CPRD) drug utilisation study; additional information on chemoprophylaxis, case fatality and tolerability were derived from the travel medicine literature. Chemoprophylaxis with the following agents was considered: atovaquone-proguanil (AP), chloroquine with and without proguanil (C ± P), doxycycline (Dx), mefloquine (Mq). The model was validated for the most recent year with temporally matched datasets for UK travel destinations and imported malaria (2007) against UK Health Protection Agency data on imported malaria. The median (mean) duration of chemoprophylaxis for each agent in weeks (CPRD) was: AP 3.3 (3.5), C ± P 9 (12.1), Dx 8 (10.3), Mq 9 (12.3): the maximum duration of use of all regimens was 52 weeks. The model correctly predicted falciparum malaria deaths and gave a robust estimate of total cases--model: 5 deaths from 1118 cases; UK Health Protection Agency: 5 deaths from 1153 cases. The number needed to take chemoprophylaxis (NNP) to prevent a case of malaria considered against the 'background' reported incidence in non-users of chemoprophylaxis deemed in need of chemoprophylaxis was: C ± P 272, Dx 269, Mq 260, AP 252; the NNP to prevent a UK traveller malaria death was: C ± P 62613, Dx 61923, Mq 59973, AP 58059; increasing the 'background' rate by 50% yielded NNPs of: C ± P 176, Dx 175, Mq 171, AP 168. The impact of substituting atovaquone-proguanil for all mefloquine usage resulted in a 2

  8. Translation of overlay models of student knowledge for relative domains based on domain ontology mapping

    DEFF Research Database (Denmark)

    Sosnovsky, Sergey; Dolog, Peter; Henze, Nicola

    2007-01-01

    The effectiveness of an adaptive educational system in many respects depends on the precision of modeling assumptions it makes about a student. One of the well-known challenges in student modeling is to adequately assess the initial level of student's knowledge when s/he starts working...... with a system. Sometimes potentially handful data are available as a part of user model from a system used by the student before. The usage of external user modeling information is troublesome because of differences in system architecture, knowledge representation, modeling constraints, etc. In this paper, we...... argue that the implementation of underlying knowledge models in a sharable format, as domain ontologies - along with application of automatic ontology mapping techniques for model alignment - can help to overcome the "new-user" problem and will greatly widen opportunities for student model translation...

  9. MAPPING OF THE RUSSIAN NORTHERN SEAS BOTTOM RELIEF USING DIGITAL ELEVATION MODELS

    Directory of Open Access Journals (Sweden)

    S. M. Koshel

    2014-01-01

    Full Text Available The task of the project is the design of the digital elevation models (DEM of the bottoms of Barents Sea, Pechora Sea, and the White Sea. Accuracy (resolution of DEMs allows for adequate delineation of morphological structures and peculiarities of the sea bottoms and the design of bathymetrical and derivative maps. DEMs of the sea bottom were compiled using data from navigation charts of different scales, where additional isobaths were drawn manually taking into account the classification features of the bottom topography forms. Next procedures were carried out: scanning of these charts, processing of scanned images, isobaths vectorization and creation of attribute tables, vector layers transformation to geographical coordinates as well editing, merging and joining of the map sheets, correction of geometry and attributes. For generation of digital model of bottom topography it is important to choose algorithm which allows for representation all of the sea bottom features expressed by isobaths in most details. The original algorithm based on fast calculation of distances to the two different nearest isobaths was used. Interpretation of isolines as vector linear objects is the main peculiarity of this algorithm. The resulted DEMs were used to design bathymetrical maps of Barents Sea of 1:2 500 000 scale, Pechora Sea of 1:1 000 000 scale, and White Sea of 1:750 000 scale. Different derivative maps were compiled based on DEM of the White Sea.

  10. KEEFEKTIFAN PEMBELAJARAN KOOPERATIF MODEL MIND MAPPING BERBANTUAN CD PEMBELAJARAN TERHADAP HASIL BELAJAR

    Directory of Open Access Journals (Sweden)

    Ratri Rahayu

    2012-06-01

    Full Text Available Abstract Tujuan penelitian ini adalah untuk mengetahui keefektifan pembelajaran kooperatif model mind mapping berbantuan CD pembelajaran terhadaphasil belajar peserta didik kelas VIII SMP Negeri 2 Semarang tahun pelajaran 2011/2012. Populasi dalam penelitian ini adalah peserta didik kelas VIII SMP Negeri 2 Semarang tahun pelajaran 2011/2012 yang berada dalam enam kelas. Sampel diambil secara random sampling. Metode pengumpulan data yang digunakan adalah dengan metode dokumentasi dan tes. Hasil penelitian menunjukkan rata-rata hasil belajar matematika dengan pembelajaran mind mapping berbantuan CD pembelajaran lebih baik dari rata-rata hasil belajar matematika dengan pembelajaran direct instruction, hasil belajar peserta didik mencapai KKM, dan proporsi hasil belajar peserta didik yang diajar dengan pembelajaran mind mapping berbantuan CD pembelajaran yang telah memenuhi KKM lebih baik daripada proporsi hasil belajar peserta didik yang diajar dengan pembelajaran direct instruction. Simpulan yang diperoleh dalam penelitian ini adalah pembelajaran mind mapping berbantuan CD pembelajaran lebih efektif daripada pembelajaran matematika dengan direct instruction untuk meningkatkan hasil belajar peserta didik kelas VIII pada materi pokok teorema Pythagoras. The purpose of this study was to determine the effectiveness of cooperative learning model of mind mapping assisted CD learning againts learning outcomes class VIII students of SMP Negeri 2 Semarang school year 2011/2012. The population in this study is class VIII students of SMP Negeri 2 Semarang school year 2011/2012 which is in six classes. Samples were taken by random sampling. Data collection methods used are the methods of documentation and tests. The results show the average results of math learning with mind mapping learning assisted CD learning is better than average learning outcomes of learning mathematics with direct instruction, student learning outcomes achieved KKM, and the proportion

  11. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    Science.gov (United States)

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  12. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping.

    Science.gov (United States)

    Chen, Zikuan; Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization.

  13. Suitability aero-geophysical methods for generating conceptual soil maps and their use in the modeling of process-related susceptibility maps

    Science.gov (United States)

    Tilch, Nils; Römer, Alexander; Jochum, Birgit; Schattauer, Ingrid

    2014-05-01

    In the past years, several times large-scale disasters occurred in Austria, which were characterized not only by flooding, but also by numerous shallow landslides and debris flows. Therefore, for the purpose of risk prevention, national and regional authorities also require more objective and realistic maps with information about spatially variable susceptibility of the geosphere for hazard-relevant gravitational mass movements. There are many and various proven methods and models (e.g. neural networks, logistic regression, heuristic methods) available to create such process-related (e.g. flat gravitational mass movements in soil) suszeptibility maps. But numerous national and international studies show a dependence of the suitability of a method on the quality of process data and parameter maps (f.e. Tilch & Schwarz 2011, Schwarz & Tilch 2011). In this case, it is important that also maps with detailed and process-oriented information on the process-relevant geosphere will be considered. One major disadvantage is that only occasionally area-wide process-relevant information exists. Similarly, in Austria often only soil maps for treeless areas are available. However, in almost all previous studies, randomly existing geological and geotechnical maps were used, which often have been specially adapted to the issues and objectives. This is one reason why very often conceptual soil maps must be derived from geological maps with only hard rock information, which often have a rather low quality. Based on these maps, for example, adjacent areas of different geological composition and process-relevant physical properties are razor sharp delineated, which in nature appears quite rarly. In order to obtain more realistic information about the spatial variability of the process-relevant geosphere (soil cover) and its physical properties, aerogeophysical measurements (electromagnetic, radiometric), carried out by helicopter, from different regions of Austria were interpreted

  14. Numerical modelling of forces, stresses and breakages of concrete armour units

    NARCIS (Netherlands)

    Latham, John Paul; Xiang, Jiansheng; Anastasaki, Eleni; Guo, Liwei; Karantzoulis, Nikolaos; Viré, A.C.; Pain, Christopher

    2014-01-01

    Numerical modelling has the potential to probe the complexity of the interacting physics of rubble mound armour systems. Through forward modelling of armour unit packs, stochastic variables such as unit displacement and maximum contact force per unit during an external oscillatory disturbance can

  15. The capital asset pricing model versus the three factor model: A United Kingdom Perspective

    Directory of Open Access Journals (Sweden)

    Chandra Shekhar Bhatnagar

    2013-07-01

    Full Text Available The Sharpe (1964, Lintner (1965 and Black (1972 Capital Asset Pricing Model (CAPM postulates that the equilibrium rates of return on all risky assets are a linear function of their covariance with the market portfolio. Recent work by Fama and French (1996, 2006 introduce a Three Factor Model that questions the “real world application” of the CAPM Theorem and its ability to explain stock returns as well as value premium effects in the United States market. This paper provides an out-of-sample perspective to the work of Fama and French (1996, 2006. Multiple regression is used to compare the performance of the CAPM, a split sample CAPM and the Three Factor Model in explaining observed stock returns and value premium effects in the United Kingdom market. The methodology of Fama and French (2006 was used as the framework for this study. The findings show that the Three Factor Model holds for the United Kingdom Market and is superior to the CAPM and the split sample CAPM in explaining both stock returns and value premium effects. The “real world application” of the CAPM is therefore not supported by the United Kingdom data.

  16. The influence of uncertain map features on risk beliefs and perceived ambiguity for maps of modeled cancer risk from air pollution

    Science.gov (United States)

    Myers, Jeffrey D.

    2012-01-01

    Maps are often used to convey information generated by models, for example, modeled cancer risk from air pollution. The concrete nature of images, such as maps, may convey more certainty than warranted for modeled information. Three map features were selected to communicate the uncertainty of modeled cancer risk: (a) map contours appeared in or out of focus, (b) one or three colors were used, and (c) a verbal-relative or numeric risk expression was used in the legend. Study aims were to assess how these features influenced risk beliefs and the ambiguity of risk beliefs at four assigned map locations that varied by risk level. We applied an integrated conceptual framework to conduct this full factorial experiment with 32 maps that varied by the three dichotomous features and four risk levels; 826 university students participated. Data was analyzed using structural equation modeling. Unfocused contours and the verbal-relative risk expression generated more ambiguity than their counterparts. Focused contours generated stronger risk beliefs for higher risk levels and weaker beliefs for lower risk levels. Number of colors had minimal influence. The magnitude of risk level, conveyed using incrementally darker shading, had a substantial dose-response influence on the strength of risk beliefs. Personal characteristics of prior beliefs and numeracy also had substantial influences. Bottom-up and top-down information processing suggest why iconic visual features of incremental shading and contour focus had the strongest visual influences on risk beliefs and ambiguity. Variations in contour focus and risk expression show promise for fostering appropriate levels of ambiguity. PMID:22985196

  17. ADVANCED EARTH OBSERVATION APPROACH FOR MULTISCALE FOREST ECOSYSTEM SERVICES MODELING AND MAPPING (MIMOSE

    Directory of Open Access Journals (Sweden)

    G. Chirici

    2014-04-01

    Full Text Available In the last decade ecosystem services (ES have been proposed as a method for quantifying the multifunctional role of forest ecosystems. Their spatial distribution on large areas is frequently limited by the lack of information, because field data collection with traditional methods requires much effort in terms of time and cost.  In this contribution we propose a methodology (namely, MultIscale Mapping Of ecoSystem servicEs - MIMOSE based on the integration of remotely sensed images and field observation to produce a wall-to-wall geodatabase of forest parcels accompanied with several information useful as a basis for future trade-off analysis of different ES. Here, we present the application of the MIMOSE approach to a study area of 443,758 hectares  coincident with administrative Molise Region in Central Italy. The procedure is based on a local high resolution forest types map integrated with information on the main forest management approaches. Through the non-parametric k-Nearest Neighbors techniques, we produced a growing stock volume map integrating a local forest inventory with a multispectral satellite IRS LISS III imagery. With the growing stock volume map we derived a forest age map for even-aged forest types. Later these information were used to automatically create a vector forest parcels map by multidimensional image segmentation that were finally populated with a number of information useful for ES spatial estimation. The contribution briefly introduce to the MIMOSE methodology presenting the preliminary results we achieved which constitute the basis for a future implementation of ES modeling.

  18. KEEFEKTIFAN MODEL PBL DENGAN MIND MAP MELALUI HANDS ON ACTIVITY TERHADAP KEMAMPUAN BERPIKIR KREATIF SISWA

    Directory of Open Access Journals (Sweden)

    Istika Ramadhani

    2015-08-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui keefektifan pembelajaran model PBL dengan mind map melalui hands on activity terhadap kemampuan berpikir kreatif siswa. Populasi dalam penelitian ini adalah siswa kelas VII SMP Negeri 7 Semarang Tahun Ajaran 2014/2015. Pemilihan sampel dengan menggunakan cluster random sampling, diperoleh siswa kelas VII G sebagai kelas eksperimen1, kelas VII E sebagai kelas eksperimen 2, dan kelas VII C sebagai kelas kontrol. Kelas eksperimen 1 diberikan pembelajaran model PBL dengan mind map melalui hands on activity, kelas eksperimen 2 diberikan pembelajaran model PBL dengan mind map, dan kelas kontrol diberikan pembelajaran model ekspositori. Instrumen penelitian yang digunakan adalah tes kemampuan berpikir kreatif dan lembar pengamatan aktivitas siswa. Data dianalisis dengan uji proporsi, uji beda rata dengan anava, uji lanjut LSD, dan uji regresi. Hasil penelitian adalah (1 kemampuan berpikir kreatif siswa pada kelas eksperimen 1 dapat mencapai kriteria ketuntasan belajar; (2 kemampuan berpikir kreatif siswa pada kelas eksperimen 2 dapat mencapai kriteria ketuntasan belajar; (3 terdapat perbedaan kemampuan berpikir kreatif antara siswa pada kelas eksperimen 1, eksperimen 2, dan kelas kontrol. (4 terdapat pengaruh positif dari aktivitas belajar siswa pada kelas eksperimen 1 terhadap kemampuan berpikir kreatif siswa

  19. Development of mapped stress-field boundary conditions based on a Hill-type muscle model.

    Science.gov (United States)

    Cardiff, P; Karač, A; FitzPatrick, D; Flavin, R; Ivanković, A

    2014-09-01

    Forces generated in the muscles and tendons actuate the movement of the skeleton. Accurate estimation and application of these musculotendon forces in a continuum model is not a trivial matter. Frequently, musculotendon attachments are approximated as point forces; however, accurate estimation of local mechanics requires a more realistic application of musculotendon forces. This paper describes the development of mapped Hill-type muscle models as boundary conditions for a finite volume model of the hip joint, where the calculated muscle fibres map continuously between attachment sites. The applied muscle forces are calculated using active Hill-type models, where input electromyography signals are determined from gait analysis. Realistic muscle attachment sites are determined directly from tomography images. The mapped muscle boundary conditions, implemented in a finite volume structural OpenFOAM (ESI-OpenCFD, Bracknell, UK) solver, are employed to simulate the mid-stance phase of gait using a patient-specific natural hip joint, and a comparison is performed with the standard point load muscle approach. It is concluded that physiological joint loading is not accurately represented by simplistic muscle point loading conditions; however, when contact pressures are of sole interest, simplifying assumptions with regard to muscular forces may be valid. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Mapping information exposure on social media to explain differences in HPV vaccine coverage in the United States.

    Science.gov (United States)

    Dunn, Adam G; Surian, Didi; Leask, Julie; Dey, Aditi; Mandl, Kenneth D; Coiera, Enrico

    2017-05-25

    Together with access, acceptance of vaccines affects human papillomavirus (HPV) vaccine coverage, yet little is known about media's role. Our aim was to determine whether measures of information exposure derived from Twitter could be used to explain differences in coverage in the United States. We conducted an analysis of exposure to information about HPV vaccines on Twitter, derived from 273.8 million exposures to 258,418 tweets posted between 1 October 2013 and 30 October 2015. Tweets were classified by topic using machine learning methods. Proportional exposure to each topic was used to construct multivariable models for predicting state-level HPV vaccine coverage, and compared to multivariable models constructed using socioeconomic factors: poverty, education, and insurance. Outcome measures included correlations between coverage and the individual topics and socioeconomic factors; and differences in the predictive performance of the multivariable models. Topics corresponding to media controversies were most closely correlated with coverage (both positively and negatively); education and insurance were highest among socioeconomic indicators. Measures of information exposure explained 68% of the variance in one dose 2015 HPV vaccine coverage in females (males: 63%). In comparison, models based on socioeconomic factors explained 42% of the variance in females (males: 40%). Measures of information exposure derived from Twitter explained differences in coverage that were not explained by socioeconomic factors. Vaccine coverage was lower in states where safety concerns, misinformation, and conspiracies made up higher proportions of exposures, suggesting that negative representations of vaccines in the media may reflect or influence vaccine acceptance. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. National implementation of the UNECE convention on long-range transboundary air pollution (effects). Pt. 1. Deposition loads: methods, modelling and mapping results, trends

    Energy Technology Data Exchange (ETDEWEB)

    Gauger, Thomas [Federal Agricultural Research Centre, Braunschweig (DE). Inst. of Agroecology (FAL-AOE); Stuttgart Univ. (Germany). Inst. of Navigation; Haenel, Hans-Dieter; Roesemann, Claus [Federal Agricultural Research Centre, Braunschweig (DE). Inst. of Agroecology (FAL-AOE)

    2008-09-15

    The report on the implementation of the UNECE convention on long-range transboundary air pollution Pt.1, deposition loads (methods, modeling and mapping results, trends) includes the following chapters: Introduction, deposition on air pollutants used for the input for critical loads in exceeding calculations, methods applied for mapping total deposition loads, mapping wet deposition, wet deposition mapping results, mapping dry deposition, dry deposition mapping results, cloud and fog mapping results, total deposition mapping results, modeling the air concentration of acidifying components and heavy metals, agricultural emissions of acidifying and eutrophying species.

  2. A Sharable and Efficient Metadata Model for Heterogeneous Earth Observation Data Retrieval in Multi-Scale Flood Mapping

    Directory of Open Access Journals (Sweden)

    Nengcheng Chen

    2015-07-01

    Full Text Available Remote sensing plays an important role in flood mapping and is helping advance flood monitoring and management. Multi-scale flood mapping is necessary for dividing floods into several stages for comprehensive management. However, existing data systems are typically heterogeneous owing to the use of different access protocols and archiving metadata models. In this paper, we proposed a sharable and efficient metadata model (APEOPM for constructing an Earth observation (EO data system to retrieve remote sensing data for flood mapping. The proposed model contains two sub-models, an access protocol model and an enhanced encoding model. The access protocol model helps unify heterogeneous access protocols and can achieve intelligent access via a semantic enhancement method. The enhanced encoding model helps unify a heterogeneous archiving metadata model. Wuhan city, one of the most important cities in the Yangtze River Economic Belt in China, is selected as a study area for testing the retrieval of heterogeneous EO data and flood mapping. The past torrential rain period from 25 March 2015 to 10 April 2015 is chosen as the temporal range in this study. To aid in comprehensive management, mapping is conducted at different spatial and temporal scales. In addition, the efficiency of data retrieval is analyzed, and validation between the flood maps and actual precipitation was conducted. The results show that the flood map coincided with the actual precipitation.

  3. Evaluation of various modelling approaches in flood routing simulation and flood area mapping

    Science.gov (United States)

    Papaioannou, George; Loukas, Athanasios; Vasiliades, Lampros; Aronica, Giuseppe

    2016-04-01

    An essential process of flood hazard analysis and mapping is the floodplain modelling. The selection of the modelling approach, especially, in complex riverine topographies such as urban and suburban areas, and ungauged watersheds may affect the accuracy of the outcomes in terms of flood depths and flood inundation area. In this study, a sensitivity analysis implemented using several hydraulic-hydrodynamic modelling approaches (1D, 2D, 1D/2D) and the effect of modelling approach on flood modelling and flood mapping was investigated. The digital terrain model (DTMs) used in this study was generated from Terrestrial Laser Scanning (TLS) point cloud data. The modelling approaches included 1-dimensional hydraulic-hydrodynamic models (1D), 2-dimensional hydraulic-hydrodynamic models (2D) and the coupled 1D/2D. The 1D hydraulic-hydrodynamic models used were: HECRAS, MIKE11, LISFLOOD, XPSTORM. The 2D hydraulic-hydrodynamic models used were: MIKE21, MIKE21FM, HECRAS (2D), XPSTORM, LISFLOOD and FLO2d. The coupled 1D/2D models employed were: HECRAS(1D/2D), MIKE11/MIKE21(MIKE FLOOD platform), MIKE11/MIKE21 FM(MIKE FLOOD platform), XPSTORM(1D/2D). The validation process of flood extent achieved with the use of 2x2 contingency tables between simulated and observed flooded area for an extreme historical flash flood event. The skill score Critical Success Index was used in the validation process. The modelling approaches have also been evaluated for simulation time and requested computing power. The methodology has been implemented in a suburban ungauged watershed of Xerias river at Volos-Greece. The results of the analysis indicate the necessity of sensitivity analysis application with the use of different hydraulic-hydrodynamic modelling approaches especially for areas with complex terrain.

  4. Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model.

    Science.gov (United States)

    Ugarte, Juan P; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John

    2014-01-01

    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping.

  5. Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model

    Science.gov (United States)

    Ugarte, Juan P.; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John

    2014-01-01

    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping. PMID:25489858

  6. [Application of biotope mapping model integrated with vegetation cover continuity attributes in urban biodiversity conservation].

    Science.gov (United States)

    Gao, Tian; Qiu, Ling; Chen, Cun-gen

    2010-09-01

    Based on the biotope classification system with vegetation structure as the framework, a modified biotope mapping model integrated with vegetation cover continuity attributes was developed, and applied to the study of the greenbelts in Helsingborg in southern Sweden. An evaluation of the vegetation cover continuity in the greenbelts was carried out by the comparisons of the vascular plant species richness in long- and short-continuity forests, based on the identification of woodland continuity by using ancient woodland indicator species (AWIS). In the test greenbelts, long-continuity woodlands had more AWIS. Among the forests where the dominant trees were more than 30-year-old, the long-continuity ones had a higher biodiversity of vascular plants, compared with the short-continuity ones with the similar vegetation structure. The modified biotope mapping model integrated with the continuity features of vegetation cover could be an important tool in investigating urban biodiversity, and provide corresponding strategies for future urban biodiversity conservation.

  7. Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Antero Kukko

    2008-09-01

    Full Text Available Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.

  8. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    International Nuclear Information System (INIS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales

  9. The chemical energy unit partial oxidation reactor operation simulation modeling

    Science.gov (United States)

    Mrakin, A. N.; Selivanov, A. A.; Batrakov, P. A.; Sotnikov, D. G.

    2018-01-01

    The chemical energy unit scheme for synthesis gas, electric and heat energy production which is possible to be used both for the chemical industry on-site facilities and under field conditions is represented in the paper. The partial oxidation reactor gasification process mathematical model is described and reaction products composition and temperature determining algorithm flow diagram is shown. The developed software product verification showed good convergence of the experimental values and calculations according to the other programmes: the temperature determining relative discrepancy amounted from 4 to 5 %, while the absolute composition discrepancy ranged from 1 to 3%. The synthesis gas composition was found out practically not to depend on the supplied into the partial oxidation reactor (POR) water vapour enthalpy and compressor air pressure increase ratio. Moreover, air consumption coefficient α increase from 0.7 to 0.9 was found out to decrease synthesis gas target components (carbon and hydrogen oxides) specific yield by nearly 2 times and synthesis gas target components required ratio was revealed to be seen in the water vapour specific consumption area (from 5 to 6 kg/kg of fuel).

  10. Manifestation of a neuro-fuzzy model to produce landslide susceptibility map using remote sensing data derived parameters

    Science.gov (United States)

    Pradhan, Biswajeet; Lee, Saro; Buchroithner, Manfred

    Landslides are the most common natural hazards in Malaysia. Preparation of landslide suscep-tibility maps is important for engineering geologists and geomorphologists. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. In this study, a new attempt is tried to produce landslide susceptibility map of a part of Cameron Valley of Malaysia. This paper develops an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment for landslide susceptibility mapping. To ob-tain the neuro-fuzzy relations for producing the landslide susceptibility map, landslide locations were identified from interpretation of aerial photographs and high resolution satellite images, field surveys and historical inventory reports. Landslide conditioning factors such as slope, plan curvature, distance to drainage lines, soil texture, lithology, and distance to lineament were extracted from topographic, soil, and lineament maps. Landslide susceptible areas were analyzed by the ANFIS model and mapped using the conditioning factors. Furthermore, we applied various membership functions (MFs) and fuzzy relations to produce landslide suscep-tibility maps. The prediction performance of the susceptibility map is checked by considering actual landslides in the study area. Results show that, triangular, trapezoidal, and polynomial MFs were the best individual MFs for modelling landslide susceptibility maps (86

  11. Global river flood hazard maps: hydraulic modelling methods and appropriate uses

    Science.gov (United States)

    Townend, Samuel; Smith, Helen; Molloy, James

    2014-05-01

    Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some

  12. An expanded model: flood-inundation maps for the Leaf River at Hattiesburg, Mississippi, 2013

    Science.gov (United States)

    Storm, John B.

    2014-01-01

    Digital flood-inundation maps for a 6.8-mile reach of the Leaf River at Hattiesburg, Mississippi (Miss.), were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Leaf River at Hattiesburg, Miss. (station no. 02473000). Current conditions for estimating near-real-time areas of inundation by use of USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations at the Leaf River at Hattiesburg, Miss. streamgage (02473000) and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system (GIS

  13. An associative model of adaptive inference for learning word-referent mappings.

    Science.gov (United States)

    Kachergis, George; Yu, Chen; Shiffrin, Richard M

    2012-04-01

    People can learn word-referent pairs over a short series of individually ambiguous situations containing multiple words and referents (Yu & Smith, 2007, Cognition 106: 1558-1568). Cross-situational statistical learning relies on the repeated co-occurrence of words with their intended referents, but simple co-occurrence counts cannot explain the findings. Mutual exclusivity (ME: an assumption of one-to-one mappings) can reduce ambiguity by leveraging prior experience to restrict the number of word-referent pairings considered but can also block learning of non-one-to-one mappings. The present study first trained learners on one-to-one mappings with varying numbers of repetitions. In late training, a new set of word-referent pairs were introduced alongside pretrained pairs; each pretrained pair consistently appeared with a new pair. Results indicate that (1) learners quickly infer new pairs in late training on the basis of their knowledge of pretrained pairs, exhibiting ME; and (2) learners also adaptively relax the ME bias and learn two-to-two mappings involving both pretrained and new words and objects. We present an associative model that accounts for both results using competing familiarity and uncertainty biases.

  14. Deep-sea benthic habitats modeling and mapping in a NE Atlantic seamount (Galicia Bank)

    Science.gov (United States)

    Serrano, A.; González-Irusta, J. M.; Punzón, A.; García-Alegre, A.; Lourido, A.; Ríos, P.; Blanco, M.; Gómez-Ballesteros, M.; Druet, M.; Cristobo, J.; Cartes, J. E.

    2017-08-01

    This study presents the results of seafloor habitat identification and mapping of a NE Atlantic deep seamount. An ;assemble first, predict later; approach has been followed to identify and map the benthic habitats of the Galicia Bank (NW Iberian). Biotic patterns inferred from the survey data have been used to drive the definition of benthic assemblages using multivariate tools. Eight assemblages, four hard substrates and four sedimentary ones, have been described from a matrix of structural species. Distribution of these assemblages was correlated with environmental factors (multibeam and backscatter data) using binomial GAMs. Finally, the distribution model of each assemblage was applied to produce continuous maps and pooled in a final map with the distribution of the main benthic habitats. Depth and substrate type are key factors when determining soft bottom communities, whereas rocky habitat distribution is mainly explained by rock slope and orientation. Enrichment by northern water masses (LSW) arriving to GB and possible zooplankton biomass increase at vertical-steep walls by ;bottom trapping; can explain the higher diversity of habitat providing filter-feeders at slope rocky breaks. These results concerning vulnerable species and habitats, such as Lophelia and Madrepora communities and black and bamboo coral aggregations were the basis of the Spanish proposal of inclusion within the Natura 2000 network. The aim of the present study was to establish the scientific criteria needed for managing and protecting those environmental values.

  15. Cowichan Valley energy mapping and modelling. Report 6 - Findings and recommendations. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    This report is the final report in a series of six reports detailing the findings from the Cowichan Valley Energy Mapping and Modelling project that was carried out from April of 2011 to March of 2012 by Ea Energy Analyses in conjunction with Geographic Resource Analysis and Science (GRAS). The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. The present report is the final report and presents a summary of the findings of project tasks 1-5 and provides a set of recommendations to the CVRD based on the work done and with an eye towards the next steps in the energy planning process of the CVRD. (LN)

  16. Digital elevation model production from scanned topographic contour maps via thin plate spline interpolation

    International Nuclear Information System (INIS)

    Soycan, Arzu; Soycan, Metin

    2009-01-01

    GIS (Geographical Information System) is one of the most striking innovation for mapping applications supplied by the developing computer and software technology to users. GIS is a very effective tool which can show visually combination of the geographical and non-geographical data by recording these to allow interpretations and analysis. DEM (Digital Elevation Model) is an inalienable component of the GIS. The existing TM (Topographic Map) can be used as the main data source for generating DEM by amanual digitizing or vectorization process for the contours polylines. The aim of this study is to examine the DEM accuracies, which were obtained by TMs, as depending on the number of sampling points and grid size. For these purposes, the contours of the several 1/1000 scaled scanned topographical maps were vectorized. The different DEMs of relevant area have been created by using several datasets with different numbers of sampling points. We focused on the DEM creation from contour lines using gridding with RBF (Radial Basis Function) interpolation techniques, namely TPS as the surface fitting model. The solution algorithm and a short review of the mathematical model of TPS (Thin Plate Spline) interpolation techniques are given. In the test study, results of the application and the obtained accuracies are drawn and discussed. The initial object of this research is to discuss the requirement of DEM in GIS, urban planning, surveying engineering and the other applications with high accuracy (a few deci meters). (author)

  17. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    International Nuclear Information System (INIS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space

  18. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    Energy Technology Data Exchange (ETDEWEB)

    Nedialkova, Lilia V.; Amat, Miguel A. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Chemical and Biological Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); Hummer, Gerhard, E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main (Germany)

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  19. Spectral flow as a map between N=(2,0)-models

    International Nuclear Information System (INIS)

    Athanasopoulos, P.; Faraggi, A.E.; Gepner, D.

    2014-01-01

    The space of (2,0) models is of particular interest among all heterotic-string models because it includes the models with the minimal SO(10) unification structure, which is well motivated by the Standard Model of particle physics data. The fermionic Z 2 ×Z 2 heterotic-string models revealed the existence of a new symmetry in the space of string configurations under the exchange of spinors and vectors of the SO(10) GUT group, dubbed spinor–vector duality. In this paper we generalize this idea to arbitrary internal rational conformal field theories (RCFTs). We explain how the spectral flow operator normally acting within a general (2,2) theory can be used as a map between (2,0) models. We describe the details, give an example and propose more simple currents that can be used in a similar way

  20. Maps of estimated nitrate and arsenic concentrations in basin-fill aquifers of the southwestern United States

    Science.gov (United States)

    Beisner, Kimberly R.; Anning, David W.; Paul, Angela P.; McKinney, Tim S.; Huntington, Jena M.; Bexfield, Laura M.; Thiros, Susan A.

    2012-01-01

    Human-health concerns and economic considerations associated with meeting drinking-water standards motivated a study of the vulnerability of basin-fill aquifers to nitrate contamination and arsenic enrichment in the southwestern United States. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid representing about 190,600 square miles of basin-fill aquifers in parts of Arizona, California, Colorado, Nevada, New Mexico, and Utah. The statistical models, referred to as classifiers, reflect natural and human-related factors that affect aquifer vulnerability to contamination and relate nitrate and arsenic concentrations to explanatory variables representing local- and basin-scale measures of source and aquifer susceptibility conditions. Geochemical variables were not used in concentration predictions because they were not available for the entire study area. The models were calibrated to assess model accuracy on the basis of measured values.Only 2 percent of the area underlain by basin-fill aquifers in the study area was predicted to equal or exceed the U.S. Environmental Protection Agency drinking-water standard for nitrate as N (10 milligrams per liter), whereas 43 percent of the area was predicted to equal or exceed the standard for arsenic (10 micrograms per liter). Areas predicted to equal or exceed the drinking-water standard for nitrate include basins in central Arizona near Phoenix; the San Joaquin Valley, the Santa Ana Inland, and San Jacinto Basins of California; and the San Luis Valley of Colorado. Much of the area predicted to equal or exceed the drinking-water standard for arsenic is within a belt of basins along the western portion of the Basin and Range Physiographic Province that includes almost all of Nevada and parts of California and Arizona. Predicted nitrate and arsenic concentrations are substantially lower than the drinking-water standards in much of

  1. Precast concrete unit assessment through GPR survey and FDTD modelling

    Science.gov (United States)

    Campo, Davide

    2017-04-01

    Precast concrete elements are widely used within United Kingdom house building offering ease in assembly and added values as structural integrity, sound and thermal insulation; most common concrete components include walls, beams, floors, panels, lintels, stairs, etc. The lack of respect of the manufacturer instruction during assembling, however, may induce cracking and short/long term loss of bearing capacity. GPR is a well-established not destructive technique employed in the assessment of structural elements because of real-time imaging, quickness of data collecting and ability to discriminate finest structural details. In this work, GPR has been used to investigate two different precast elements: precast reinforced concrete planks constituting the roof slab of a school and precast wood-cement blocks with insulation material pre-fitted used to build a perimeter wall of a private building. Visible cracks affected both constructions. For the assessment surveys, a GSSI 2.0 GHz GPR antenna has been used because of the high resolution required and the small size of the antenna case (155 by 90 by 105mm) enabling scanning up to 45mm from any obstruction. Finite Difference Time Domain (FDTD) numerical modelling was also performed to build a scenario of the expected GPR signal response for a preliminary real-time interpretation and to help solve uncertainties due to complex reflection patterns: simulated radargrams were built using Reflex Software v. 8.2, reproducing the same GPR pulse used for the surveys in terms of wavelet, nominal frequency, sample frequency and time window. Model geometries were derived from the design projects available both for the planks and the blocks; the electromagnetic properties of the materials (concrete, reinforcing bars, air-filled void, insulation and wooden concrete) were inferred from both values reported in literature and a preliminary interpretation of radargrams where internal layer interfaces were clearly recognizable and

  2. Mapping the course of the EU "Power Target Model"... on its own terms

    OpenAIRE

    GLACHANT, Jean-Michel

    2016-01-01

    The European Union took more than 20 years to start defining a common market design for its internal electricity market: a European Power Target Model. And, a further 10 years to fully implement it. Meanwhile, the reference generation set of that model has shifted from CCGT burning gas to RES units transforming intermittent natural resources. Could the existing EU target model continue to work well for the short- term operation and long-term investment? If not, can the existing EU institution...

  3. Modeling speech imitation and ecological learning of auditory-motor maps

    Directory of Open Access Journals (Sweden)

    Claudia eCanevari

    2013-06-01

    Full Text Available Classical models of speech consider an antero-posterior distinction between perceptive and productive functions. However, the selective alteration of neural activity in speech motor centers, via transcranial magnetic stimulation, was shown to affect speech discrimination. On the automatic speech recognition (ASR side, the recognition systems have classically relied solely on acoustic data, achieving rather good performance in optimal listening conditions. The main limitations of current ASR are mainly evident in the realistic use of such systems. These limitations can be partly reduced by using normalization strategies that minimize inter-speaker variability by either explicitly removing speakers’ peculiarities or adapting different speakers to a reference model. In this paper we aim at modeling a motor-based imitation learning mechanism in ASR. We tested the utility of a speaker normalization strategy that uses motor representations of speech and compare it with strategies that ignore the motor domain. Specifically, we first trained a regressor through state-of-the-art machine learning techniques to build an auditory-motor mapping, in a sense mimicking a human learner that tries to reproduce utterances produced by other speakers. This auditory-motor mapping maps the speech acoustics of a speaker into the motor plans of a reference speaker. Since, during recognition, only speech acoustics are available, the mapping is necessary to recover motor information. Subsequently, in a phone classification task, we tested the system on either one of the speakers that was used during training or a new one. Results show that in both cases the motor-based speaker normalization strategy almost always outperforms all other strategies where only acoustics is taken into account.

  4. Modelling and Mapping Oxygen-18 Isotope Composition of Precipitation in Spain for Hydrologic and Climatic Applications

    International Nuclear Information System (INIS)

    Rodriguez-Arevalo, J.; Diaz-Teijeiro, M.F.; Castano, S.

    2011-01-01

    A simple multiple regression model based on two geographic factors (latitude and elevation) has been developed that reproduces reasonably well the spatial distribution of the current mean oxygen-18 isotope composition in precipitation over Spain. In a preliminary analysis, additional geographic and climatic factors do not improve the performance of the model. A continuous digital map of oxygen-18 isotope composition in precipitation has been produced by combining the polynomial model with a Digital Elevation Model using GIS tools. Application of the resulting map to several case studies in Spain has shown it to be useful as a reference of the isotope input function to groundwater recharge and surface runoff. The results obtained so far show a good fit between modelled stable isotope values and those measured in surface and ground waters from different aquifers and recharge areas. The GIS tools applied to a continuous digital layer of spatial isotope are able to provide accurate information at detailed scales that are not affordable by other means. Further validation of the model, and further testing of its usefulness in surface hydrology and climatic studies, is going on.

  5. Mapping Stormwater Retention in the Cities: A Flexible Model for Data-Scarce Environments

    Science.gov (United States)

    Hamel, P.; Keeler, B.

    2014-12-01

    There is a growing demand for understanding and mapping urban hydrological ecosystem services, including stormwater retention for flood mitigation and water quality improvement. Progress in integrated urban water management and low impact development in Western countries increased our understanding of how grey and green infrastructure interact to enhance these services. However, valuation methods that account for a diverse group of beneficiaries are typically not made explicit in urban water management models. In addition, the lack of spatial data on the stormwater network in developing countries makes it challenging to apply state-of-the-art models needed to understand both the magnitude and spatial distribution of the stormwater retention service. To fill this gap, we designed the Urban InVEST stormwater retention model, a tool that complements the suite of InVEST software models to quantify and map ecosystem services. We present the model structure emphasizing the data requirements from a user's perspective and the representation of services and beneficiaries. We illustrate the model application with two case studies in a data-rich (New York City) and data-scarce environment. We discuss the difference in the level of information obtained when less resources (data, time, or expertise) are available, and how this affects multiple ecosystem service assessments that the tool is ultimately designed for.

  6. Mapping using the Tsyganenko long magnetospheric model and its relationship to Viking auroral images

    International Nuclear Information System (INIS)

    Elphinstone, R.D.; Hearn, D.; Murphree, J.S.; Cogger, L.L.

    1991-01-01

    The Tsyganenko long magnetospheric model (1987) has been used in conjunction with ultra-violet images taken by the Viking spacecraft to investigate the relationship of the auroral distribution to different magnetospheric regions. The model describes the large-scale structure of the magnetosphere reasonably well for dipole tilt angles near zero, but it appears to break down at higher tilt angles. Even so, a wide variety of auroral configurations can be accurately described by the model. It appears that the open-closed field line boundary is a poor indicator of auroral arc systems with the possible exception of high-latitude polar arcs. The auroral distribution typically called the oval maps to a region in the equatorial plane quite close to the Earth and can be approximately located by mapping the model current density maximum from the equatorial plane into the ionosphere. Although the model may break down along the flanks of the magnetotail, the large-scale auroral distribution generally reflects variations in the near-Earth region and can be modeled quite effectively

  7. OBLIMAP 2.0: a fast climate model-ice sheet model coupler including online embeddable mapping routines

    Science.gov (United States)

    Reerink, Thomas J.; van de Berg, Willem Jan; van de Wal, Roderik S. W.

    2016-11-01

    This paper accompanies the second OBLIMAP open-source release. The package is developed to map climate fields between a general circulation model (GCM) and an ice sheet model (ISM) in both directions by using optimal aligned oblique projections, which minimize distortions. The curvature of the surfaces of the GCM and ISM grid differ, both grids may be irregularly spaced and the ratio of the grids is allowed to differ largely. OBLIMAP's stand-alone version is able to map data sets that differ in various aspects on the same ISM grid. Each grid may either coincide with the surface of a sphere, an ellipsoid or a flat plane, while the grid types might differ. Re-projection of, for example, ISM data sets is also facilitated. This is demonstrated by relevant applications concerning the major ice caps. As the stand-alone version also applies to the reverse mapping direction, it can be used as an offline coupler. Furthermore, OBLIMAP 2.0 is an embeddable GCM-ISM coupler, suited for high-frequency online coupled experiments. A new fast scan method is presented for structured grids as an alternative for the former time-consuming grid search strategy, realising a performance gain of several orders of magnitude and enabling the mapping of high-resolution data sets with a much larger number of grid nodes. Further, a highly flexible masked mapping option is added. The limitation of the fast scan method with respect to unstructured and adaptive grids is discussed together with a possible future parallel Message Passing Interface (MPI) implementation.

  8. Spatiotemporal modelling and mapping of the bubonic plague epidemic in India

    Directory of Open Access Journals (Sweden)

    Christakos George

    2006-03-01

    Full Text Available Abstract Background This work studies the spatiotemporal evolution of bubonic plague in India during 1896–1906 using stochastic concepts and geographical information science techniques. In the past, most investigations focused on selected cities to conduct different kinds of studies, such as the ecology of rats. No detailed maps existed incorporating the space-time dependence structure and uncertainty sources of the epidemic system and providing a composite space-time picture of the disease propagation characteristics. Results Informative spatiotemporal maps were generated that represented mortality rates and geographical spread of the disease, and epidemic indicator plots were derived that offered meaningful characterizations of the spatiotemporal disease distribution. The bubonic plague in India exhibited strong seasonal and geographical features. During its entire duration, the plague continued to invade new geographical areas, while it followed a re-emergence pattern at many localities; its rate changed significantly during each year and the mortality distribution exhibited space-time heterogeneous patterns; prevalence usually occurred in the autumn and spring, whereas the plague stopped moving towards new locations during the summers. Conclusion Modern stochastic modelling and geographical information science provide powerful means to study the spatiotemporal distribution of the bubonic plague epidemic under conditions of uncertainty and multi-sourced databases; to account for various forms of interdisciplinary knowledge; and to generate informative space-time maps of mortality rates and propagation patterns. To the best of our knowledge, this kind of plague maps and plots become available for the first time, thus providing novel perspectives concerning the distribution and space-time propagation of the deadly epidemic. Furthermore, systematic maps and indicator plots make possible the comparison of the spatial-temporal propagation

  9. Modeling of stochastic broadening in a poloidally diverted discharge with piecewise analytic symplectic mapping flux functions

    International Nuclear Information System (INIS)

    Punjabi, Alkesh; Ali, Halima; Evans, Todd; Boozer, Allen

    2008-01-01

    A highly accurate calculation of the magnetic field line Hamiltonian in DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] is made from piecewise analytic equilibrium fit data for shot 115467 3000 ms. The safety factor calculated from this Hamiltonian has a logarithmic singularity at an ideal separatrix. The logarithmic region inside the ideal separatrix contains 2.5% of toroidal flux inside the separatrix. The logarithmic region is symmetric about the separatrix. An area-preserving map for the field line trajectories is obtained in magnetic coordinates from the Hamiltonian equations of motion for the lines and a canonical transformation. This map is used to calculate trajectories of magnetic field lines in DIII-D. The field line Hamiltonian in DIII-D is used as the generating function for the map and to calculate stochastic broadening from field-errors and spatial noise near the separatrix. A very negligible amount (0.03%) of magnetic flux is lost from inside the separatrix due to these nonaxisymmetric fields. It is quite easy to add magnetic perturbations to generating functions and calculate trajectories for maps in magnetic coordinates. However, it is not possible to integrate across the separatrix. It is also difficult to find the physical position corresponding to magnetic coordinates. For open field lines, periodicity in the poloidal angle is assumed, which is not satisfactory. The goal of this paper is to demonstrate the efficacy of the symplectic mapping approach rather than using realistic DIII-D parameters or modeling specific experimental results

  10. Proton Therapy Expansion Under Current United States Reimbursement Models

    Energy Technology Data Exchange (ETDEWEB)

    Kerstiens, John [Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Johnstone, Peter A.S., E-mail: pajohnst@iupui.edu [Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States)

    2014-06-01

    Purpose: To determine whether all the existing and planned proton beam therapy (PBT) centers in the United States can survive on a local patient mix that is dictated by insurers, not by number of patients. Methods and Materials: We determined current and projected cancer rates for 10 major US metropolitan areas. Using published utilization rates, we calculated patient percentages who are candidates for PBT. Then, on the basis of current published insurer coverage policies, we applied our experience of what would be covered to determine the net number of patients for whom reimbursement is expected. Having determined the net number of covered patients, we applied our average beam delivery times to determine the total number of minutes needed to treat that patient over the course of their treatment. We then calculated our expected annual patient capacity per treatment room to determine the appropriate number of treatment rooms for the area. Results: The population of patients who will be both PBT candidates and will have treatments reimbursed by insurance is significantly smaller than the population who should receive PBT. Coverage decisions made by insurers reduce the number of PBT rooms that are economically viable. Conclusions: The expansion of PBT centers in the US is not sustainable under the current reimbursement model. Viability of new centers will be limited to those operating in larger regional metropolitan areas, and few metropolitan areas in the US can support multiple centers. In general, 1-room centers require captive (non–PBT-served) populations of approximately 1,000,000 lives to be economically viable, and a large center will require a population of >4,000,000 lives. In areas with smaller populations or where or a PBT center already exists, new centers require subsidy.

  11. Landscape epidemiology: An emerging perspective in the mapping and modelling of disease and disease risk factors

    Directory of Open Access Journals (Sweden)

    Nnadi Nnaemeka Emmanuel

    2011-09-01

    Full Text Available Landscape epidemiology describes how the temporal dynamics of host, vector, and pathogen populations interact spatially within a permissive environment to enable transmission. It also aims at understanding the vegetation and geologic conditions that are necessary for the maintenance and transmission of a particular pathogen. The current review describes the evolution of landscape epidemiology. As a science, it also highlights the various methods of mapping and modeling diseases and disease risk factors. The key tool to characterize landscape is satellite remote sensing and these data are used as inputs to drive spatial models of transmission risk.

  12. Measuring, modeling and mapping ecosystem services in the Eastern Arc Mountains of Tanzania

    DEFF Research Database (Denmark)

    Fisher, B.; Turner, R. K.; Burgess, Neil David

    2011-01-01

    sourced data, data-driven models, and socio-economic scenarios coupled with rule-based assumptions. Here we describe the construction of this spatial information and how it can help to shed light on the complex relationships between ecological and social systems. There are obvious difficulties......In light of the significance that ecosystem service research is likely to play in linking conservation activities and human welfare, systematic approaches to measuring, modeling and mapping ecosystem services (and their value to society) are sorely needed. In this paper we outline one such approach...

  13. Testing of motor unit synchronization model for localized muscle fatigue.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar

    2009-01-01

    Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.

  14. Theoretical model simulations for the global Thermospheric Mapping Study (TMS) periods

    Science.gov (United States)

    Rees, D.; Fuller-Rowell, T. J.

    Theoretical and semiempirical models of the solar UV/EUV and of the geomagnetic driving forces affecting the terrestrial mesosphere and thermosphere have been used to generate a series of representative numerical time-dependent and global models of the thermosphere, for the range of solar and geoamgnetic activity levels which occurred during the three Thermospheric Mapping Study periods. The simulations obtained from these numerical models are compared with observations, and with the results of semiempirical models of the thermosphere. The theoretical models provide a record of the magnitude of the major driving forces which affected the thermosphere during the study periods, and a baseline against which the actual observed structure and dynamics can be compared.

  15. Complex motion in nonlinear-map model of elevators in energy-saving traffic

    International Nuclear Information System (INIS)

    Nagatani, Takashi

    2011-01-01

    We have studied the dynamic behavior and dynamic transitions of elevators in a system for reducing energy consumption. We present a nonlinear-map model for the dynamics of M elevators. The motion of elevators depends on the loading parameter and their number M. The dependence of the fixed points on the loading parameter is derived. The dynamic transitions occur at 2(M-1) stages with increasing the value of loading parameter. At the dynamic transition point, the motion of elevators changes from a stable state to an unstable state and vice versa. The elevators display periodic motions with various periods in the unstable state. In the unstable state, the number of riding passengers fluctuates in a complex manner over various trips. - Highlights: → We propose the nonlinear-map model in energy-saving traffic of elevators. → We study the dynamical behavior and dynamical transitions in the system of elevators. → We derive the fixed point of the nonlinear map analytically. → We clarify the dependence of the motion on the loading parameter and the number.

  16. Complex motion in nonlinear-map model of elevators in energy-saving traffic

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Takashi, E-mail: tmtnaga@ipc.shizuoka.ac.j [Department of Mechanical Engineering, Division of Thermal Science, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2011-05-16

    We have studied the dynamic behavior and dynamic transitions of elevators in a system for reducing energy consumption. We present a nonlinear-map model for the dynamics of M elevators. The motion of elevators depends on the loading parameter and their number M. The dependence of the fixed points on the loading parameter is derived. The dynamic transitions occur at 2(M-1) stages with increasing the value of loading parameter. At the dynamic transition point, the motion of elevators changes from a stable state to an unstable state and vice versa. The elevators display periodic motions with various periods in the unstable state. In the unstable state, the number of riding passengers fluctuates in a complex manner over various trips. - Highlights: We propose the nonlinear-map model in energy-saving traffic of elevators. We study the dynamical behavior and dynamical transitions in the system of elevators. We derive the fixed point of the nonlinear map analytically. We clarify the dependence of the motion on the loading parameter and the number.

  17. Using Openstreetmap Data to Generate Building Models with Their Inner Structures for 3d Maps

    Science.gov (United States)

    Wang, Z.; Zipf, A.

    2017-09-01

    With the development of Web 2.0, more and more data related to indoor environments has been collected within the volunteered geographic information (VGI) framework, which creates a need for construction of indoor environments from VGI. In this study, we focus on generating 3D building models from OpenStreetMap (OSM) data, and provide an approach to support construction and visualization of indoor environments on 3D maps. In this paper, we present an algorithm which can extract building information from OSM data, and can construct building structures as well as inner building components (e.g., doors, rooms, and windows). A web application is built to support the processing and visualization of the building models on a 3D map. We test our approach with an indoor dataset collected from the field. The results show the feasibility of our approach and its potentials to provide support for a wide range of applications, such as indoor and outdoor navigation, urban planning, and incident management.

  18. USING OPENSTREETMAP DATA TO GENERATE BUILDING MODELS WITH THEIR INNER STRUCTURES FOR 3D MAPS

    Directory of Open Access Journals (Sweden)

    Z. Wang

    2017-09-01

    Full Text Available With the development of Web 2.0, more and more data related to indoor environments has been collected within the volunteered geographic information (VGI framework, which creates a need for construction of indoor environments from VGI. In this study, we focus on generating 3D building models from OpenStreetMap (OSM data, and provide an approach to support construction and visualization of indoor environments on 3D maps. In this paper, we present an algorithm which can extract building information from OSM data, and can construct building structures as well as inner building components (e.g., doors, rooms, and windows. A web application is built to support the processing and visualization of the building models on a 3D map. We test our approach with an indoor dataset collected from the field. The results show the feasibility of our approach and its potentials to provide support for a wide range of applications, such as indoor and outdoor navigation, urban planning, and incident management.

  19. Geologic map of the Nepenthes Planum Region, Mars

    Science.gov (United States)

    Skinner, James A.; Tanaka, Kenneth L.

    2018-03-26

    This map product contains a map sheet at 1:1,506,000 scale that shows the geology of the Nepenthes Planum region of Mars, which is located between the cratered highlands that dominate the southern hemisphere and the less-cratered sedimentary plains that dominate the northern hemisphere.  The map region contains cone- and mound-shaped landforms as well as lobate materials that are morphologically similar to terrestrial igneous or mud vents and flows. This map is part of an informal series of small-scale (large-area) maps aimed at refining current understanding of the geologic units and structures that make up the highland-to-lowland transition zone. The map base consists of a controlled Thermal Emission Imaging System (THEMIS) daytime infrared image mosaic (100 meters per pixel resolution) supplemented by a Mars Orbiter Laser Altimeter (MOLA) digital elevation model (463 meters per pixel resolution). The map includes a Description of Map Units and a Correlation of Map Units that describes and correlates units identified across the entire map region. The geologic map was assembled using ArcGIS software by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS project, geodatabase, base map, and all map components are included online as supplemental data.

  20. Mathematical modeling of a fast-breeder-reactor generating unit

    International Nuclear Information System (INIS)

    Kim, V.E.; Golovach, E.A.; Senkin, V.I.

    1984-01-01

    Dynamics equations are given for a reactor, intermediate heat exchanger, steam generator, and turbogenerator. The dynamic characteristics of the generating unit are described when perturbations occur in grid frequency, turbine valves, and feedwater consumption