WorldWideScience

Sample records for model turbine blade

  1. Modeling of uncertainties for wind turbine blade design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, Henrik Stensgaard

    2014-01-01

    Wind turbine blades are designed by a combination of tests and numerical calculations using finite element models of the blade. The blades are typically composite structures with laminates of glass-fiber and/or carbon-fibers glued together by a matrix material. This paper presents a framework...... basis in the JCSS framework for modelling material properties, Bayesian statistical methods allowing prior / expert knowledge to be accounted for and the Maximum Likelihood Method. The stochastic framework is illustrated using simulated tests which represent examples relevant for wind turbine blades....

  2. Modeling of uncertainties for wind turbine blade design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, Henrik Stensgaard

    2014-01-01

    Wind turbine blades are designed by a combination of tests and numerical calculations using finite element models of the blade. The blades are typically composite structures with laminates of glass-fiber and/or carbon-fibers glued together by a matrix material. This paper presents a framework...... for stochastic modelling of the load bearing capacity of wind turbine blades incorporating physical, model, measurement and statistical uncertainties at the different scales and also discusses the possibility to define numerical tests that can be included in the statistical basis. The stochastic modelling takes...... basis in the JCSS framework for modelling material properties, Bayesian statistical methods allowing prior / expert knowledge to be accounted for and the Maximum Likelihood Method. The stochastic framework is illustrated using simulated tests which represent examples relevant for wind turbine blades....

  3. Optimization model for rotor blades of horizontal axis wind turbines

    Institute of Scientific and Technical Information of China (English)

    LIU Xiong; CHEN Yan; YE Zhiquan

    2007-01-01

    This paper presents an optimization model for rotor blades of horizontal axis wind turbines. The model refers to the wind speed distribution function on the specific wind site, with an objective to satisfy the maximum annual energy output. To speed up the search process and guarantee a global optimal result, the extended compact genetic algorithm (ECGA) is used to carry out the search process.Compared with the simple genetic algorithm, ECGA runs much faster and can get more accurate results with a much smaller population size and fewer function evaluations. Using the developed optimization program, blades of a 1.3 MW stall-regulated wind turbine are designed. Compared with the existing blades, the designed blades have obviously better aerodynamic performance.

  4. Stochastic Models for Strength of Wind Turbine Blades using Tests

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    The structural cost of wind turbine blades is dependent on the values of the partial safety factors which reflect the uncertainties in the design values, including statistical uncertainty from a limited number of tests. This paper presents a probabilistic model for ultimate and fatigue strength...... of wind turbine blades especially considering the influence of prior knowledge and test results and how partial safety factors can be updated when additional full-scale tests are performed. This updating is performed by adopting a probabilistic design basis based on Bayesian statistical methods....

  5. Modelling the pultrusion process of off shore wind turbine blades

    NARCIS (Netherlands)

    Baran, Ismet

    2014-01-01

    This thesis is devoted to the numerical modelling of the pultrusion process for industrial products such as wind turbine blades and structural profiles. The main focus is on the thermo-chemical and mechanical analyses of the process in which the process induced tresses and shape distortions together

  6. Strength Reliability Analysis of Turbine Blade Using Surrogate Models

    Directory of Open Access Journals (Sweden)

    Wei Duan

    2014-05-01

    Full Text Available There are many stochastic parameters that have an effect on the reliability of steam turbine blades performance in practical operation. In order to improve the reliability of blade design, it is necessary to take these stochastic parameters into account. In this study, a variable cross-section twisted blade is investigated and geometrical parameters, material parameters and load parameters are considered as random variables. A reliability analysis method as a combination of a Finite Element Method (FEM, a surrogate model and Monte Carlo Simulation (MCS, is applied to solve the blade reliability analysis. Based on the blade finite element parametrical model and the experimental design, two kinds of surrogate models, Polynomial Response Surface (PRS and Artificial Neural Network (ANN, are applied to construct the approximation analytical expressions between the blade responses (including maximum stress and deflection and random input variables, which act as a surrogate of finite element solver to drastically reduce the number of simulations required. Then the surrogate is used for most of the samples needed in the Monte Carlo method and the statistical parameters and cumulative distribution functions of the maximum stress and deflection are obtained by Monte Carlo simulation. Finally, the probabilistic sensitivities analysis, which combines the magnitude of the gradient and the width of the scatter range of the random input variables, is applied to evaluate how much the maximum stress and deflection of the blade are influenced by the random nature of input parameters.

  7. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-Strike Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqun Deng

    2011-01-01

    Full Text Available Hydropower is the largest renewable energy source in the world. However, in the Columbia and Snake River basins, several species of Pacific salmon and steelhead have been listed for protection under the Endangered Species Act due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making hydroelectric facilities more fish friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for relicensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to compare fish passage performance of the newly installed advanced turbine to an existing turbine. Modeled probabilities were compared to the results of a large-scale live-fish survival study and a Sensor Fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury, while those predicted by the stochastic model were in close agreement with experimental results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, no statistical evidence suggested significant differences in blade-strike injuries between the two turbines, thus the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal to or higher than that for fish passing through the conventional turbine could not be rejected.

  8. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  9. Fish passage assessment of an advanced hydropower turbine and conventional turbine using blade-strike modeling

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z.; Carlson, T. J.; Dauble, D. D.; Ploskey, G. R. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2011-07-01

    Hydropower is the largest renewable energy source in the world. However, in the Columbia and Snake River basins, several species of Pacific salmon and steelhead have been listed for protection under the Endangered Species Act due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making hydroelectric facilities more fish friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for relicensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to compare fish passage performance of the newly installed advanced turbine to an existing turbine. Modeled probabilities were compared to the results of a large-scale live-fish survival study and a Sensor Fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury, while those predicted by the stochastic model were in close agreement with experimental results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, no statistical evidence suggested significant differences in blade-strike injuries between the two turbines, thus the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal to or higher than that for fish passing through the conventional turbine could not be rejected. (authors)

  10. Definition of a 5MW/61.5m wind turbine blade reference model.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  11. Materials of large wind turbine blades: Recent results in testing and modeling

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl; Nijssen, Rogier

    2012-01-01

    for the experimental determination of reliable material properties used in the design of wind turbine blades and experimental validation of design models, (ii) development of predictive models for the life prediction, prediction of residual strength and failure probability of the blades and (iii) analysis......The reliability of rotor blades is the pre-condition for the development and wide use of large wind turbines. In order to accurately predict and improve the wind turbine blade behavior, three main aspects of the reliability and strength of rotor blades were considered: (i) development of methods...... of the effect of the microstructure of wind turbine blade composites on their strength and ways of microstructural optimization of the materials. By testing reference coupons, the effect of testing parameters (temperature and frequency) on the lifetime of blade composites was investigated, and the input data...

  12. Comparison of linear and non-linear blade model predictions in Bladed to measurement data from GE 6MW wind turbine

    Science.gov (United States)

    Collier, W.; Milian Sanz, J.

    2016-09-01

    The length and flexibility of wind turbine blades are increasing over time. Typically, the dynamic response of the blades is analysed using linear models of blade deflection, enhanced by various ad-hoc non-linear correction models. For blades undergoing large deflections, the small deflection assumption inherent to linear models becomes less valid. It has previously been demonstrated that linear and nonlinear blade models can show significantly different blade response, particularly for blade torsional deflection, leading to load prediction differences. There is a need to evaluate how load predictions from these two approaches compare to measurement data from the field. In this paper, time domain simulations in turbulent wind are carried out using the aero-elastic code Bladed with linear and non-linear blade deflection models. The turbine blade load and deflection simulation results are compared to measurement data from an onshore prototype of the GE 6MW Haliade turbine, which features 73.5m long LM blades. Both linear and non-linear blade models show a good match to measurement turbine load and blade deflections. Only the blade loads differ significantly between the two models, with other turbine loads not strongly affected. The non-linear blade model gives a better match to the measured blade root flapwise damage equivalent load, suggesting that the flapwise dynamic behaviour is better captured by the non-linear blade model. Conversely, the linear blade model shows a better match to measurements in some areas such as blade edgewise damage equivalent load.

  13. Toward an engineering model for the aerodynamic forces acting on wind turbine blades in quasisteady standstill and blade installation situations

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Heinz, Joachim Christian; Skrzypinski, Witold Robert

    2016-01-01

    The crossflow principle is one of the key elements used in engineering models for prediction of the aerodynamic loads on wind turbine blades in standstill or blade installation situations, where the flow direction relative to the wind turbine blade has a component in the direction of the blade span...... direction. In the present work, the performance of the crossflow principle is assessed on the DTU 10MW reference blade using extensive 3D CFD calculations. Analysis of the computational results shows that there is only a relatively narrow region in which the crossflow principle describes the aerodynamic...... for the key aerodynamic loads in crossflow situations. The general validity of this model for other blade shapes should be investigated in subsequent works....

  14. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  15. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  16. Toward an Engineering Model for the Aerodynamic Forces Acting on Wind Turbine Blades in Quasisteady Standstill and Blade Installation Situations

    Science.gov (United States)

    Gaunaa, Mac; Heinz, Joachim; Skrzypiński, Witold

    2016-09-01

    The crossflow principle is one of the key elements used in engineering models for prediction of the aerodynamic loads on wind turbine blades in standstill or blade installation situations, where the flow direction relative to the wind turbine blade has a component in the direction of the blade span direction. In the present work, the performance of the crossflow principle is assessed on the DTU 10MW reference blade using extensive 3D CFD calculations. Analysis of the computational results shows that there is only a relatively narrow region in which the crossflow principle describes the aerodynamic loading well. In some conditions the deviation of the predicted loadings can be quite significant, having a large influence on for instance the integral aerodynamic moments around the blade centre of mass; which is very important for single blade installation applications. The main features of these deviations, however, have a systematic behaviour on all force components, which in this paper is employed to formulate the first version of an engineering correction method to the crossflow principle applicable for wind turbine blades. The new correction model improves the agreement with CFD results for the key aerodynamic loads in crossflow situations. The general validity of this model for other blade shapes should be investigated in subsequent works.

  17. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Kaplan Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.; Dauble, Dennis D.

    2007-11-10

    Bio-indexing of hydroturbines is an important means to optimize passage conditions for fish by identifying operations for existing and new design turbines that minimize the probability of injury. Cost-effective implementation of bio-indexing requires the use of tools such as numerical and physical turbine models to generate hypotheses for turbine operations that can be tested at prototype scales using live fish. Numerical deterministic and stochastic blade strike models were developed for a 1:25-scale physical turbine model built by the U.S. Army Corps of Engineers for the original design turbine at McNary Dam and for prototype-scale original design and replacement minimum gap runner (MGR) turbines at Bonneville Dam's first powerhouse. Blade strike probabilities predicted by both models were comparable with the overall trends in blade strike probability observed in both prototype-scale live fish survival studies and physical turbine model using neutrally buoyant beads. The predictions from the stochastic model were closer to the experimental data than the predictions from the deterministic model because the stochastic model included more realistic consideration of the aspect of fish approaching to the leading edges of turbine runner blades. Therefore, the stochastic model should be the preferred method for the prediction of blade strike and injury probability for juvenile salmon and steelhead using numerical blade-strike models.

  18. The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models

    Science.gov (United States)

    Sutrisno, Prajitno, Purnomo, W., Setyawan B.

    2016-06-01

    Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.

  19. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  20. Evaluation of blade-strike models for estimating the biological performance of large Kaplan hydro turbines

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ploskey, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2005-11-01

    Bio-indexing of hydro turbines has been identified as an important means to optimize passage conditions for fish by identifying operations for existing and new design turbines that minimize the probability of injury. Cost-effective implementation of bio-indexing requires the use of tools such as numerical and physical turbine models to generate hypotheses for turbine operations that can be tested at prototype scales using live fish. Blade strike has been proposed as an index variable for the biological performance of turbines. Report reviews an evaluation of the use of numerical blade-strike models as a means with which to predict the probability of blade strike and injury of juvenile salmon smolt passing through large Kaplan turbines on the mainstem Columbia River.

  1. A simplified model predicting the weight of the load carrying beam in a wind turbine blade

    Science.gov (United States)

    Mikkelsen, Lars P.

    2016-07-01

    Based on a simplified beam model, the loads, stresses and deflections experienced by a wind turbine blade of a given length is estimated. Due to the simplicity of the model used, the model is well suited for work investigating scaling effects of wind turbine blades. Presently, the model is used to predict the weight of the load carrying beam when using glass fibre reinforced polymers, carbon fibre reinforced polymers or an aluminium alloy as the construction material. Thereby, it is found that the weight of a glass fibre wind turbine blade is increased from 0.5 to 33 tons when the blade length grows from 20 to 90 m. In addition, it can be seen that for a blade using glass fibre reinforced polymers, the design is controlled by the deflection and thereby the material stiffness in order to avoid the blade to hit the tower. On the other hand if using aluminium, the design will be controlled by the fatigue resistance in order to making the material survive the 100 to 500 million load cycles experience of the wind turbine blade throughout the lifetime. The aluminium blade is also found to be considerably heavier compared with the composite blades.

  2. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit

    2015-01-01

    Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilit......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... studied in the numerical simulation. It is shown that the one-mode model is able to predict the sloshing force and the damped structural response accurately, since the primary damping effect on the structure is achieved by the first sloshing mode of the fluid. Although it is unable to predict the fluid...

  3. Composite wind turbine blades

    Science.gov (United States)

    Ong, Cheng-Huat

    Researchers in wind energy industry are constantly moving forward to develop higher efficiency wind turbine. One major component for wind turbine design is to have cost effective wind turbine blades. In addition to correct aerodynamic shape and blade geometry, blade performance can be enhanced further through aero-elastic tailoring design and material selections. An analytical tool for blade design has been improved and validated. This analytical tool is utilized to resolve issues related to elastic tailoring design. The investigation looks into two major issues related to the design and fabrication of a bend-twist-coupled blade. Various design parameters for a blade such as materials, laminate lay-up, skin thickness, ply orientation, internal spar, etc. have been examined for designing a bend-twist-coupled blade. The parametric study indicates that the critical design parameters are the ply material, the ply orientation, and the volume fraction ratio between the anisotropic layers and orthotropic layers. To produce a blade having the bend-twist coupling characteristics, the fiber lay-ups at the top and bottom skins of the blade must have a "mirror" lay-up in relation to the middle plane of the blade. Such lay-up causes fiber discontinuation at the seam. The joint design at the seam is one major consideration in fabricating a truly anisotropic blade. A new joint design was proposed and tensile failure tests were carried out for both the old and new joint designs. The tests investigated the effects of different types of joint designs, the laminate lay-up at the joints, and the stacking sequence of the joint retention strength. A major component of a wind turbine blade, D-spar, was designed to maximum coupling. Two D-spars were then fabricated using the new joint design; one of them was subjected to both static and modal testings. Traditionally, wind turbine blades are made of low cost glass material; however, carbon fibers are proposed as alternative material. Our

  4. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  5. Model Predictive Control of Trailing Edge Flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien; Poulsen, Niels Kjølstad; Buhl, Thomas;

    2011-01-01

    Trailing Edge Flaps on wind turbine blades have been studied in order to achieve fatigue load reduction on the turbine components. We show in this paper how Model Predictive Control can be used to do frequency weighted control of the trailing edge flaps in order to reduce fatigue damage on the bl...

  6. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.

    2005-11-30

    BioIndex testing of hydro-turbines is sought as an analog to the hydraulic index testing conducted on hydro-turbines to optimize their power production efficiency. In BioIndex testing the goal is to identify those operations within the range identified by Index testing where the survival of fish passing through the turbine is maximized. BioIndex testing includes the immediate tailrace region as well as the turbine environment between a turbine's intake trashracks and the exit of its draft tube. The US Army Corps of Engineers and the Department of Energy have been evaluating a variety of means, such as numerical and physical turbine models, to investigate the quality of flow through a hydro-turbine and other aspects of the turbine environment that determine its safety for fish. The goal is to use these tools to develop hypotheses identifying turbine operations and predictions of their biological performance that can be tested at prototype scales. Acceptance of hypotheses would be the means for validation of new operating rules for the turbine tested that would be in place when fish were passing through the turbines. The overall goal of this project is to evaluate the performance of numerical blade strike models as a tool to aid development of testable hypotheses for bioIndexing. Evaluation of the performance of numerical blade strike models is accomplished by comparing predictions of fish mortality resulting from strike by turbine runner blades with observations made using live test fish at mainstem Columbia River Dams and with other predictions of blade strike made using observations of beads passing through a 1:25 scale physical turbine model.

  7. Turbine Blade Alloy

    Science.gov (United States)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  8. Multiscale modelling and simulation of single crystal superalloy turbine blade casting during directional solidiifcation process

    Institute of Scientific and Technical Information of China (English)

    Xu Qingyan; Zhang Hang; Liu Baicheng

    2014-01-01

    As the key parts of an aero-engine, single crystal (SX) superalloy turbine blades have been the focus of much attention. However, casting defects often occur during the manufacturing process of the SX turbine blades. Modeling and simulation technology can help to optimize the manufacturing process of SX blades. Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification (DS) process. Coupled with heat transfer (macroscale) and grain growth (meso-scale), 3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale. SX grain selection behavior was studied by the simulation and experiments. The results show that the geometrical structure and technical parameters had strong inlfuences on the grain selection effectiveness. Based on the coupled models, heat transfer, grain growth and microstructure evolution of a complex holow SX blade were simulated. Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process. In order to avoid the formation of the stray crystal, the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade. The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains, which was also proved by the experiments.

  9. Multiscale modelling and simulation of single crystal superalloy turbine blade casting during directional solidification process

    Directory of Open Access Journals (Sweden)

    Xu Qingyan

    2014-07-01

    Full Text Available As the key parts of an aero-engine, single crystal (SX superalloy turbine blades have been the focus of much attention. However, casting defects often occur during the manufacturing process of the SX turbine blades. Modeling and simulation technology can help to optimize the manufacturing process of SX blades. Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification (DS process. Coupled with heat transfer (macroscale and grain growth (meso-scale, 3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale. SX grain selection behavior was studied by the simulation and experiments. The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness. Based on the coupled models, heat transfer, grain growth and microstructure evolution of a complex hollow SX blade were simulated. Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process. In order to avoid the formation of the stray crystal, the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade. The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains, which was also proved by the experiments.

  10. Experimental verification of computational model for wind turbine blade geometry design

    Directory of Open Access Journals (Sweden)

    Štorch Vít

    2015-01-01

    Full Text Available A 3D potential flow solver with unsteady force free wake model intended for optimization of blade shape for wind power generation is applied on a test case scenario formed by a wind turbine with vertical axis of rotation. The calculation is sensitive to correct modelling of wake and its interaction with blades. The validity of the flow solver is verified by comparing experimentally obtained performance data of model rotor with numerical results.

  11. Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance

    Directory of Open Access Journals (Sweden)

    Mihai Florian

    2015-09-01

    Full Text Available Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair and replacement activities as well as large revenue losses, mainly in the case of offshore wind farms. The recent development and evolution of condition monitoring techniques, as well as the fact that an increasing number of installed turbines are equipped with online monitoring systems, offers a large amount of information on the blades structural health to the decision maker. Further, inspections of the blades are often performed in connection with service. In light of the obtained information, a preventive type of maintenance becomes feasible, with the potential of predicting the blades remaining life to support O&M decisions for avoiding major failure events. The present paper presents a fracture mechanics based model for estimating the remaining life of a wind turbine blade, focusing on the crack propagation in the blades adhesive joints. A generic crack propagation model is built in Matlab based on a Paris law approach. The model is used within a risk-based maintenance decision framework to optimize maintenance planning for the blades lifetime.

  12. Application of transition modelling in CFD for use with turbine blades

    CSIR Research Space (South Africa)

    Dunn, Dwain I

    2011-09-01

    Full Text Available The design of internally-cooled gas turbine blades requires accurate predictions of distributions of blade temperature values and temperature gradients. This requires accurate predictions of heat transfer distributions from the hot gas (on the blade...

  13. Dynamic stall development in the near-root region of a model wind turbine blade

    Science.gov (United States)

    Melius, Matthew; Cal, Raul Bayoan; Mulleners, Karen

    2014-11-01

    The dynamic behavior of atmospheric flows create highly variable operational conditions which affect the life expectancy of the turbine components and the power output of the turbine. To gain insight into the unsteady aerodynamics of wind turbine blades, wind tunnel experiments were conducted with a scaled three-dimensional NREL 5MW wind turbine blade model in the 2.2 m × 1.8 m cross-section closed loop wind tunnel DLR in Göttingen. The development of dynamic stall in response to a sudden change in the blades angle of attack are studied by means of time-resolved stereoscopic PIV in span-wisely distributed planes capturing the suction side of the blade. The change in angle of attack was obtained by varying the blade pitch angle to simulate a sudden change in wind speed or pitch angle regulation. Resulting time scales associated with flow separation and reattachment are determined at different radial positions ranging from r / R = 0 . 19 to r / R = 0 . 38 . The influence of the three-dimensionality of the blade geometry on the corresponding aerodynamic effects is captured by analyzing the radial flow component in neighboring measurement fields during stall development.

  14. Finite element model for aero-elastically tailored residential wind turbine blade design

    Science.gov (United States)

    Robinson, Eric Alan

    Advances in passive wind turbine control systems have allowed wind turbines to achieve higher efficiencies and operate in wider inflow conditions than ever before. Within recent years, the adoption of aero-elastically tailored (bend-twist coupled) composite blades have been a pursued strategy. Unfortunately, for this strategy to be applied, traditional means of modeling, designing and manufacturing are no longer adequate. New parameters regarding non-linearities in deflections, stiffness, and aerodynamic loadings must now be implemented. To aid in the development of passive wind turbine system design, a finite element based aero-elastic program capable of computationally predicting blade deflection and twist under loading was constructed. The program was built around the idea of iteratively solving a blade composite structure to reach a maximum aero-elastic twist configuration under elevated wind speeds. Adopting a pre-existing blade geometry, from a pitch controlled small scale (3.5kW) turbine design, the program was tested to discover the geometry bend-twist coupling potential. This research would be a contributing factor in designing a passive pitch control replacement system for the turbine. A study of various model loading configurations was first performed to insure model validity. Then, a final model was used to analyze composite layups for selected spar configurations. Results characterize the aero-elastic twist properties for the selected configurations.

  15. Model-based fault detection of blade pitch system in floating wind turbines

    Science.gov (United States)

    Cho, S.; Gao, Z.; Moan, T.

    2016-09-01

    This paper presents a model-based scheme for fault detection of a blade pitch system in floating wind turbines. A blade pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be detected at the early stage to prevent failures. To detect faults of blade pitch actuators and sensors, an appropriate observer should be designed to estimate the states of the system. Residuals are generated by a Kalman filter and a threshold based on H optimization, and linear matrix inequality (LMI) is used for residual evaluation. The proposed method is demonstrated in a case study that bias and fixed output in pitch sensors and stuck in pitch actuators. The simulation results show that the proposed method detects different realistic fault scenarios of wind turbines under the stochastic external winds.

  16. Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    2016-01-01

    In this section the research program framework for European PhD network MARE-WINT is presented, particularly the technology development work focussing on reliability/maintenance and the models describing multi-body fluid structure interaction for the Rotor Blade structure. In order to give a cont...... a context for the effort undertaken by the individual researchers this section gives a general background for Wind Turbine blades identifying the trends and issues of importance for these structures as well as concepts for “smarter” blades that address these issues.......In this section the research program framework for European PhD network MARE-WINT is presented, particularly the technology development work focussing on reliability/maintenance and the models describing multi-body fluid structure interaction for the Rotor Blade structure. In order to give...

  17. Updating Finite Element Model of a Wind Turbine Blade Section Using Experimental Modal Analysis Results

    DEFF Research Database (Denmark)

    Luczak, Marcin; Manzato, Simone; Peeters, Bart;

    2014-01-01

    of model parameters was selected for the model updating process. Design of experiment and response surface method was implemented to find values of model parameters yielding results closest to the experimental. The updated finite element model is producing results more consistent with the measurement...... is to validate finite element model of the modified wind turbine blade section mounted in the flexible support structure accordingly to the experimental results. Bend-twist coupling was implemented by adding angled unidirectional layers on the suction and pressure side of the blade. Dynamic test and simulations...... were performed on a section of a full scale wind turbine blade provided by Vestas Wind Systems A/S. The numerical results are compared to the experimental measurements and the discrepancies are assessed by natural frequency difference and modal assurance criterion. Based on sensitivity analysis, set...

  18. Structure simulation in unidirectionally solidified turbine blade by dendrite envelope tracking model(Ⅰ): numerical modeling

    Institute of Scientific and Technical Information of China (English)

    WANG Tong-min; I. Ohnaka; H.Yasuda; SU Yan-qing; GUO Jing-jie

    2006-01-01

    A 3D dendrite envelope tracking model was developed for estimating the solidification structure of unidirectionally solidified turbine blade. The normal vector of dendrite envelope was estimated by the gradient of dendrite volume fraction, and growth velocity of the dendrite envelope (dendrite tips) was calculated with considering the anisotropy of grain growth. The solute redistribution at dendrite envelope was calculated by introducing an effective solute partition coefficient(ke). Simulation results show that the solute-build-up due to the rejection at envelope affects grain competition and consequently the solidification structure. The lower value of ke leads to more waved dendrite growth front and higher solute rejection. The model was applied to predict the structure of turbine-blade-shape samples showing good ability to reproduce the columnar and single grain structures.

  19. Recent results in characterisation and modeling of composites for wind turbine blades

    NARCIS (Netherlands)

    Nijssen, R.P.L.; Westphal, T.; Lahuerta Calahorra, F.; Van Delft, D.R.V.

    2013-01-01

    Wind turbine rotor blades are large structures which are designed to withstand extreme loading at low cost. Material and structural characterisation through modeling combined with tests are continuously developed to enable further design optimisation, larger rotors and new design concepts. This pape

  20. Development and Analysis of a Swept Blade Aeroelastic Model for a Small Wind Turbine (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Preus, R.; Damiani, R.; Lee, S.; Larwood, S.

    2014-06-01

    As part of the U.S. Department-of-Energy-funded Competitiveness Improvement Project, the National Renewable Energy Laboratory (NREL) developed new capabilities for aeroelastic modeling of precurved and preswept blades for small wind turbines. This presentation covers the quest for optimized rotors, computer-aided engineering tools, a case study, and summary of the results.

  1. Progress on modeling and simulation of directional solidification of superalloy turbine blade casting

    Directory of Open Access Journals (Sweden)

    Xu Qingyan

    2012-02-01

    Full Text Available Directional solidified turbine blades of Ni-based superalloy are widely used as key parts of the gas turbine engines. The mechanical properties of the blade are greatly influenced by the final microstructure and the grain orientation determined directly by the grain selector geometry of the casting. In this paper, mathematical models were proposed for three dimensional simulation of the grain growth and microstructure evolution in directional solidification of turbine blade casting. Ray-tracing method was applied to calculate the temperature variation of the blade. Based on the thermo model of heat transfer, the competitive grain growth within the starter block and the spiral of the grain selector, the grain growth in the blade and the microstructure evolution were simulated via a modified Cellular Automaton method. Validation experiments were carried out, and the measured results were compared quantitatively with the predicted results. The simulated cooling curves and microstructures corresponded well with the experimental results. The proposed models could be used to predict the grain morphology and the competitive grain evolution during directional solidification.

  2. Modeling the dynamic behavior of turbine runner blades during transients using indirect measurements

    Science.gov (United States)

    Diagne, I.; Gagnon, M.; Tahan, A.

    2016-11-01

    Turbine start-up transients are induced by the wicket gates opening sequence and generate high amplitude stress cycles. These stress cycles have a detrimental effect leading to faster crack growth in the runner blades. Using a series of direct measurements taken on a prototype runner in order to find the optimal start-up parameters exposes both the runner and the instrumentation to a series of successive damaging transient events during the optimization process. To solve this, finding sensors strongly correlated to strain gauges and whose signals can be easily obtained to identify a model to predict the strain, instead of directly measuring it, would reduce the risk, cost and downtime associated with a measurement campaign. This paper shows that turbine shaft torsion measurements is highly correlated to the strain at a runner blade hotspot, and we demonstrate that the ARMAX model can be used to represent the dynamic system in order to minimize the strain on blades.

  3. Damped structural dynamics models of large wind-turbine blades including material and structural damping

    Energy Technology Data Exchange (ETDEWEB)

    Chortis, D I; Chrysochoidis, N A; Saravanos, D A [Department of Mechanical Engineering and Aeronautics, University of Patras, Patras 26500 (Greece)

    2007-07-15

    The paper presents a brief description of composite damping mechanics for blade sections of arbitrary lamination and geometry. A damped 3-D shear beam element is presented enabling the assembly of damped structural dynamic models of blades with hollow multi-cell tubular laminated sections. Emphasis is placed to the inclusion of composite material coupling effects, first in the blade section stiffness and damping matrices and finally into the stiffness and damping matrices of the finite element. Evaluations of the beam element are presented, to quantify the material coupling effect on composite beams of simple box sections. Correlations between predicted and measured modal frequencies and damping values in small model Glass/Epoxy are also shown. Finally, the damped modal characteristics of a 35m realistic wind-turbine blade model design, are predicted.

  4. Modelling of lightning streamer formation and propagation in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The positioning of lightning air terminations along a wind turbine blade is a complex issue to consider when designing the lightning protection of wind turbine blades. According to the IEC 61400-24 on lightning protection of wind turbines, the interception efficiency depends on the effectiveness ...... models can involve a high level of detail and therefore be used in the detailed positioning of air terminations in blades equipped with conductive elements such as carbon fiber or electrical monitoring systems (load, temperature, etc.)....... setups. Furthermore, the tests may need to be repeated when a new conducting element is included in the blade with unpredictable effects for the lightning protection system. Numerical methods to determine the areas of a structure more likely to be struck by lightning have proved to be a useful tool....... The present paper presents a method to investigate the origin and propagation of streamers from different conductive elements of the blade when exposed to a high electric field. The calculations are performed using dynamic simulations with the finite element method, and the results have been correlated...

  5. Updating Finite Element Model of a Wind Turbine Blade Section Using Experimental Modal Analysis Results

    Directory of Open Access Journals (Sweden)

    Marcin Luczak

    2014-01-01

    Full Text Available This paper presents selected results and aspects of the multidisciplinary and interdisciplinary research oriented for the experimental and numerical study of the structural dynamics of a bend-twist coupled full scale section of a wind turbine blade structure. The main goal of the conducted research is to validate finite element model of the modified wind turbine blade section mounted in the flexible support structure accordingly to the experimental results. Bend-twist coupling was implemented by adding angled unidirectional layers on the suction and pressure side of the blade. Dynamic test and simulations were performed on a section of a full scale wind turbine blade provided by Vestas Wind Systems A/S. The numerical results are compared to the experimental measurements and the discrepancies are assessed by natural frequency difference and modal assurance criterion. Based on sensitivity analysis, set of model parameters was selected for the model updating process. Design of experiment and response surface method was implemented to find values of model parameters yielding results closest to the experimental. The updated finite element model is producing results more consistent with the measurement outcomes.

  6. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...

  7. Structural optimization study of composite wind turbine blade

    DEFF Research Database (Denmark)

    Chen, Jin; Shen, Wen Zhong; Wang, Quan;

    2013-01-01

    In this paper the initial layout of a 2. MW composite wind turbine blade is designed first. The new airfoils families are selected to design a 2. MW wind turbine blade. The finite element parametric model for the blade is established. Based on the modified Blade Element Momentum theory, a new one...

  8. Anisotropic beam model for analysis and design of passive controlled wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Branner, K.; Blasques, J.P.; Kim, T.; Fedorov, V.A.; Berring, P.; Bitsche, R.D.; Berggreen, C.

    2012-02-15

    The main objective of the project was, through theoretical and experimental research, to develop and validate a fully coupled, general beam element that can be used for advanced and rapid analysis of wind turbine blades. This is fully achieved in the project and the beam element has even been implemented in the aeroelastic code HAWC2. It has also been demonstrated through a parametric study in the project that a promising possibility with the tool is to reduce fatigue loads through structural couplings. More work is needed before these possibilities are fully explored and blades with structural couplings can be put into production. A cross section analysis tool BECAS (BEam Cross section Analysis Software) has been developed and validated in the project. BECAS is able to predict all geometrical and material induced couplings. This tool has obtained great interest from both industry and academia. The developed fully coupled beam element and cross section analysis tool has been validated against both numerical calculations and experimental measurements. Numerical validation has been performed against beam type calculations including Variational Asymptotical Beam Section Analysis (VABS) and detailed shell and solid finite element analyses. Experimental validation included specially designed beams with built-in couplings, a full-scale blade section originally without couplings, which subsequently was modified with extra composite layers in order to obtain measurable couplings. Both static testing and dynamic modal analysis tests have been performed. The results from the project now make it possible to use structural couplings in an intelligent manner for the design of future wind turbine blades. The developed beam element is especially developed for wind turbine blades and can be used for modeling blades with initial curvature (pre-bending), initial twist and taper. Finally, it have been studied what size of structural couplings can be obtained in current and future

  9. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  10. Stochastic model for aerodynamic force dynamics on wind turbine blades in unsteady wind inflow

    CERN Document Server

    Luhur, Muhammad Ramzan; Kühn, Martin; Wächter, Matthias

    2015-01-01

    The paper presents a stochastic approach to estimate the aerodynamic forces with local dynamics on wind turbine blades in unsteady wind inflow. This is done by integrating a stochastic model of lift and drag dynamics for an airfoil into the aerodynamic simulation software AeroDyn. The model is added as an alternative to the static table lookup approach in blade element momentum (BEM) wake model used by AeroDyn. The stochastic forces are obtained for a rotor blade element using full field turbulence simulated wind data input and compared with the classical BEM and dynamic stall models for identical conditions. The comparison shows that the stochastic model generates additional extended dynamic response in terms of local force fluctuations. Further, the comparison of statistics between the classical BEM, dynamic stall and stochastic models' results in terms of their increment probability density functions gives consistent results.

  11. The boundary layer over turbine blade models with realistic rough surfaces

    Science.gov (United States)

    McIlroy, Hugh M., Jr.

    The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence

  12. Dynamic and Static Characterization of Horizontal Axis Wind Turbine Blades Using Dimensionless Analysis of Scaled-Down Models

    OpenAIRE

    Abdulaziz, Ahmed Hesham; Elsabbagh, Adel Moneeb; Akl, Wael Nabil

    2016-01-01

    The blade is the most important part of the horizontal axis wind turbine. As significant as its role in the efficient function of the turbine, stands the accurate predictions of static and dynamic performances of blades during the design phase for further developments. The objective of the current research is to develop a reliable approach, in which measurements and analysis of a scaled-down model can be used to predict the performance of full-scale wind turbine blades. The Buckingham π–Theor...

  13. Inclusion of a simple dynamic inflow model in the blade element momentum theory for wind turbine application

    Directory of Open Access Journals (Sweden)

    Xiaomin Chen, Ramesh K. Agarwal

    2014-01-01

    Full Text Available It is well established that the power generated by a Horizontal-Axis Wind Turbine (HAWT is a function of the number of blades B, the tip speed ratio (blade tip speed/wind free-stream velocity and the lift to drag ratio (CL /CD of the airfoil sections of the blade. The previous studies have shown that Blade Element Momentum (BEM theory is capable of evaluating the steady-state performance of wind turbines, in particular it can provide a reasonably good estimate of generated power at a given wind speed. However in more realistic applications, wind turbine operating conditions change from time to time due to variations in wind velocity and the aerodynamic forces change to new steady-state values after the wake settles to a new equilibrium whenever changes in operating conditions occur. The goal of this paper is to modify the quasi-steady BEM theory by including a simple dynamic inflow model to capture the unsteady behavior of wind turbines on a larger time scale. The output power of the wind turbines is calculated using the improved BEM method incorporating the inflow model. The computations are performed for the original NREL Phase II and Phase III turbines and the Risoe turbine all employing the S809 airfoil section for the turbine blades. It is shown by a simple example that the improved BEM theory is capable of evaluating the wind turbine performance in practical situations where operating conditions often vary in time.

  14. Two-Equation Turbulence Models for Prediction of Heat Transfer on a Transonic Turbine Blade

    Science.gov (United States)

    Garg, Vijay K.; Ameri, Ali A.; Gaugler, R. E. (Technical Monitor)

    2001-01-01

    Two versions of the two-equation k-omega model and a shear stress transport (SST) model are used in a three-dimensional, multi-block, Navier-Stokes code to compare the detailed heat transfer measurements on a transonic turbine blade. It is found that the SST model resolves the passage vortex better on the suction side of the blade, thus yielding a better comparison with the experimental data than either of the k-w models. However, the comparison is still deficient on the suction side of the blade. Use of the SST model does require the computation of distance from a wall, which for a multiblock grid, such as in the present case, can be complicated. However, a relatively easy fix for this problem was devised. Also addressed are issues such as (1) computation of the production term in the turbulence equations for aerodynamic applications, and (2) the relation between the computational and experimental values for the turbulence length scale, and its influence on the passage vortex on the suction side of the turbine blade.

  15. Reliability design method for steam turbine blades

    Institute of Scientific and Technical Information of China (English)

    Jinyuan SHI

    2008-01-01

    Based on theories of probability and statistics, and taking static stresses, dynamic stresses, endurance strength, safety ratios, vibration frequencies and exciting force frequencies of blades as random variables, a reliabil-ity design method for steam turbine blades is presented. The purport and calculation method for blade reliability are expounded. The distribution parameters of random variables are determined after analysis and numerical cal-culation of test data. The fatigue strength and the vibra-tion design reliability of turbine blades are determined with the aid of a probabilistic design method and by inter-ference models for stress distribution and strength distri-bution. Some blade reliability design calculation formulas for a dynamic stress design method, a safety ratio design method for fatigue strength, and a vibration reliability design method for the first and second types of tuned blades and a packet of blades on a disk connected closely, are given together with some practical examples. With these methods, the design reliability of steam turbine blades can be guaranteed in the design stage. This research may provide some scientific basis for reliability design of steam turbine blades.

  16. Loadings in thermal barrier coatings of jet engine turbine blades an experimental research and numerical modeling

    CERN Document Server

    Sadowski, Tomasz

    2016-01-01

    This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.

  17. Structure defect prediction of single crystal turbine blade by dendrite envelope tracking model

    Institute of Scientific and Technical Information of China (English)

    WANG Tong-min; Itsuo OHNAKA; Hideyuki YASUDA; SU Yan-qing; GUO Jing-jie

    2006-01-01

    The structure defects such as stray grains during unidirectional solidification can severely reduce the performance of single crystal turbine blades. A dendrite envelope tracking model is developed for predicting the structure defects of unidirectional solidification turbine blade. The normal vector of dendrite envelope is estimated by the gradient of dendrite volume fraction,and the growth velocity of the dendrite envelope (dendrite tips) is calculated with considering the anisotropy of grain growth. The solute redistribution at dendrite envelope is calculated by introducing an effective solute partition coefficient. Simulation tests show that the solute-build-up due to the rejection at envelope greatly affects grain competition and consequently solidification structure. The model is applied to predict the structure defects (e.g. stray grain) of single crystal turbine blade during unidirectional solidification. The results show that the developed model is reliable and has the following abilities: reproduce the growth competition among the different-preferential-direction grains:predict the stray grain formation:simulate the structure evolution (single crystal or dendrite grains).

  18. Model predictive control of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien Bruno

    , in Roskilde, Denmark. One blade of the turbine was equipped with three independent trailing edge flaps. In spite of the failure of several sensors and actuators, the test of the trailing edge flaps controller described in this thesis showed a consistent flapwise blade root fatigue load reduction. An average......Trailing edge flaps on wind turbine blades have been investigated for several years. Aero-servoelastic simulations carried out with different simulation tools, trailing edge flaps configurations and controller designs proved that trailing edge flaps are a suitable solution for reducing some...... of the wind turbine fatigue and extreme loads. This potential was confirmed with wind tunnel tests made on blade sections with trailing edge flaps and on a scaled two-bladed wind turbine in a wind tunnel. The work presented in this thesis includes a full-scale test run on a Vestas V27 wind turbine equipped...

  19. Leading edge erosion of coated wind turbine blades: Review of coating life models

    NARCIS (Netherlands)

    Slot, H.M.; Gelinck, E.R.M.; Rentrop, C.; Heider, E. van der

    2015-01-01

    Erosion of the leading edge of wind turbine blades by droplet impingement wear, reduces blade aerodynamic efficiency and power output. Eventually, it compromises the integrity of blade surfaces. Elastomeric coatings are currently used for erosion resistance, yet the life of such coatings cannot be p

  20. Shape Optimization of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun

    2009-01-01

    This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero-elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero-elastic behaviour of a real wind turbine...... of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero-elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used...... in the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 k...

  1. Model tests on cooling of gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Hosenfeld, H.G.; von Schwerdtner, O.A. (Kraftwerk Union A.G., Muelheim an der Ruhr (Germany, F.R.). Versuchswesen)

    1979-01-01

    The experimental handling of the blade cooling problems requires test facilities suited to each particular problem in order to obtain an independent variation of influence values. To carry out investigations with the high temperatures of the actual machine, however, would necessitate expenditure of time and money. Consideration of the Law of Similarity results in a reduction in temperature and pressure. A test arrangement is shown and typical results are explained by means of examples.

  2. Turbine Blade Image Processing System

    Science.gov (United States)

    Page, Neal S.; Snyder, Wesley E.; Rajala, Sarah A.

    1983-10-01

    A vision system has been developed at North Carolina State University to identify the orientation and three dimensional location of steam turbine blades that are stacked in an industrial A-frame cart. The system uses a controlled light source for structured illumination and a single camera to extract the information required by the image processing software to calculate the position and orientation of a turbine blade in real time.

  3. Modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, M.H.; Baumgart, A.

    2002-01-01

    The modal analysis technique has been used to identify essential dynamic properties of wind turbine blades like natural frequencies, damping characteristics and mode shapes. Different experimental procedures have been considered, and the most appropriateof these has been selected. Although...... the comparison is based on measurements on a LM 19 m blade, the recommendations given are believed to be valid for other wind turbine blades as well. The reliability of the selected experimental analysis has beenquantified by estimating the unsystematic variations in the experimental findings. Satisfactory....... The experimental analysis of the LM 19 m blade has been compared with results from a state-of-the-art FE-modeling ofthe same blade. For some of the higher modes substantial discrepancies between the natural frequencies originating from the FE-modeling and the modal analysis, respectively, are observed. In general...

  4. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    Science.gov (United States)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-07-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  5. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    Science.gov (United States)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-03-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  6. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The last...... two models investigated use a combination of shell and solid elements. The results from the numerical investigations are compared with measurements from testing of a section of a full-scale wind turbine blade. It is found that only the combined shell/solid models give reliable results in torsion. Both...

  7. A simplified model predicting the weight of the load carrying beam in a wind turbine blade

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    2016-01-01

    to predict the weight of the load carrying beam when using glassfibre reinforced polymers, carbon fibre reinforced polymers or an aluminium alloy as the construction material. Thereby, it is found that the weight of a glass fibre wind turbine blade is increased from 0.5 to 33 tons when the blade length grows...

  8. A Reinforced Blade for a Wind Turbine

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a reinforced blade for a wind turbine having elongated reinforcing members in the blade extending substantially in the plane of the profile chord in order to strengthen the blade against edgewise and flapwise forces....

  9. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  10. Aeroelastic Design and LPV Modelling of an Experimental Wind Turbine Blade equipped with Free-floating Flaps

    Science.gov (United States)

    Navalkar, S. T.; Bernhammer, L. O.; Sodja, J.; Slinkman, C. J.; van Wingerden, J. W.; van Kuik, G. A. M.

    2016-09-01

    Trailing edge flaps located outboard on wind turbine blades have recently shown considerable potential in the alleviation of turbine lifetime dynamic loads. The concept of the free-floating flap is specifically interesting for wind turbines, on account of its modularity and enhanced control authority. Such a flap is free to rotate about its axis; camberline control of the free-floating flap allows for aeroelastic control of blade loads. This paper describes the design of a scaled wind turbine blade instrumented with free-floating flaps, intended for use in wind tunnel experiments. The nature of the flap introduces a coupled form of flutter due to the aeroelastic coupling of flap rigid-body and blade out-of-plane modes; for maximal control authority it is desired to operate close to the flutter limit. Analytical and numerical methods are used to perform a flutter analysis of the turbine blade. It is shown that the potential flow aeroelastic model can be recast as a continuous-time Linear-Parameter-Varying (LPV) state space model of a low order, for which formal controller design methodologies are readily available.

  11. Combining Unsteady Blade Pressure Measurements and a Free-Wake Vortex Model to Investigate the Cycle-to-Cycle Variations in Wind Turbine Aerodynamic Blade Loads in Yaw

    Directory of Open Access Journals (Sweden)

    Moutaz Elgammi

    2016-06-01

    Full Text Available Prediction of the unsteady aerodynamic flow phenomenon on wind turbines is challenging and still subject to considerable uncertainty. Under yawed rotor conditions, the wind turbine blades are subjected to unsteady flow conditions as a result of the blade advancing and retreating effect and the development of a skewed vortical wake created downstream of the rotor plane. Blade surface pressure measurements conducted on the NREL Phase VI rotor in yawed conditions have shown that dynamic stall causes the wind turbine blades to experience significant cycle-to-cycle variations in aerodynamic loading. These effects were observed even though the rotor was subjected to a fixed speed and a uniform and steady wind flow. This phenomenon is not normally predicted by existing dynamic stall models integrated in wind turbine design codes. This paper couples blade pressure measurements from the NREL Phase VI rotor to a free-wake vortex model to derive the angle of attack time series at the different blade sections over multiple rotor rotations and three different yaw angles. Through the adopted approach it was possible to investigate how the rotor self-induced aerodynamic load fluctuations influence the unsteady variations in the blade angles of attack and induced velocities. The hysteresis loops for the normal and tangential load coefficients plotted against the angle of attack were plotted over multiple rotor revolutions. Although cycle-to-cycle variations in the angles of attack at the different blade radial locations and azimuth positions are found to be relatively small, the corresponding variations in the normal and tangential load coefficients may be significant. Following a statistical analysis, it was concluded that the load coefficients follow a normal distribution at the majority of blade azimuth angles and radial locations. The results of this study provide further insight on how existing engineering models for dynamic stall may be improved through

  12. A Reinforced Blade for a Wind Turbine

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a reinforced blade for a wind turbine having elongated reinforcing members in the blade extending substantially in the plane of the profile chord in order to strengthen the blade against edgewise and flapwise forces.......The present invention relates to a reinforced blade for a wind turbine having elongated reinforcing members in the blade extending substantially in the plane of the profile chord in order to strengthen the blade against edgewise and flapwise forces....

  13. Modelling the Pultrusion Process of Off Shore Wind Turbine Blades

    DEFF Research Database (Denmark)

    Baran, Ismet

    together with the thermal and cure developments are addressed. A detailed survey on pultrusion is presented including numerical and experimental studies available in the literature since the 1980s. Keeping the multi-physics and large amount of variables involved in the pultrusion process in mind...... hardening and thermal softening model is developed and a least squares non-linear regression analysis is performed. The predicted best fit results are found to agree quite well with the measured data. The temperature and degree of cure distributions inside the processing material have been calculated using...... the developed thermo-chemical numerical process models and subsequently used in the mechanical analysis of the pultrusion. The effects of the thermal contact resistance (TCR) at the die-part interface of a pultruded part are investigated using a two dimensional (2D) thermo-chemical model. It is found...

  14. Integrated circuit cooled turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  15. Systematic Geometric Error Modeling for Workspace Volumetric Calibration of a 5-axis Turbine Blade Grinding Machine

    Institute of Scientific and Technical Information of China (English)

    Abdul Wahid Khan; Chen Wuyi

    2010-01-01

    A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine.This machine is designed to serve a specific purpose to attain high accuracy and high efficiency grinding of turbine blades by eliminating the hand grinding process.Although its topology is RPPPR (P:prismatic;R:rotary),its design is quite distinct from the competitive machine tools.As error quantification is the only way to investigate,maintain and improve its accuracy,calibration is recommended for its performance assessment and acceptance testing.Systematic geometric error modeling technique is implemented and 52 position dependent and position independent errors are identified while considering the machine as five rigid bodies by eliminating the set-up errors ofworkpiece and cutting tool.39 of them are found to have influential errors and are accommodated for finding the resultant effect between the cutting tool and the workpiece in workspace volume.Rigid body kinematics techniques and homogenous transformation matrices are used for error synthesis.

  16. Dynamic Response of Flexible Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Yu-qiao Zheng

    2013-07-01

    Full Text Available Aiming at the non-stationary and stall flutter problems of wind turbine blade caused by transient load fluctuations, the dynamic properties of wind turbine were studied, the blade was simplify to a cantilever beam in case of the action of shear deformation and cross section rotating effect were considered in this analysis, equations of the blade were established based on D'Alemberts' principle and the principle of virtual displacement. The dynamic response of the wind turbine was solved by using the finite element method under the transient load environment. A 29.2 m rotor blade, previously reported in specialized literature, was chosen as a case study to validate dynamic behaviour predicted by a Timoshenko beam model. It is concluded that despite its simplicity, The cross-sectional shear-deformation  has great influence on  dynamic response of the blade.Dynamic model is sufficiently accurate to serve as a design tool for the recursive analyses required during design and optimization stages of wind turbines using only readily available computational tools.

  17. Defect distribution and reliability assessment of wind turbine blades

    DEFF Research Database (Denmark)

    Stensgaard Toft, Henrik; Branner, Kim; Berring, Peter

    2011-01-01

    In this paper, two stochastic models for the distribution of defects in wind turbine blades are proposed. The first model assumes that the individual defects are completely randomly distributed in the blade. The second model assumes that the defects occur in clusters of different size, based...... on the assumption that one error in the production process tends to trigger several defects. For both models, additional information, such as number, type, and size of the defects, is included as stochastic variables. In a numerical example, the reliability is estimated for a generic wind turbine blade model both...... the reliability for the wind turbine blade using Bayesian statistics....

  18. Blade Deterioration in a Gas Turbine Engine

    Directory of Open Access Journals (Sweden)

    W. Tabakoff

    1998-01-01

    Full Text Available A study has been conducted to predict blade erosion of gas turbine engines. The blade material erosion model is based on three dimensional particle trajectory simulation in the three-dimensional turbine flow field. The trajectories provide the special distribution of the particle impact parameters over the blade surface. A semi-empirical erosion model, derived from erosion tests of material samples at different particulate flow conditions, is used in the prediction of blade surface erosion based on the trajectory impact data. To improve the blade erosion resistance and to decrease the blade deterioration, the blades must be coated. For this purpose, an experimental study was conducted to investigate the behavior of rhodium platinum aluminide coating exposed to erosion by fly ash particles. New protective coatings are developed for erosion and thermal barrier. Chemical vapor deposition technique (CVD was used to apply the ceramic TiC coatings on INCO 718 and stainless steel 410. The erosive wear of the coated samples was investigated experimentally by exposing them to particle laden flow at velocities from 180 to 305m/s and temperatures from ambient to 538°C in a specially designed erosion wind tunnel. Both materials (INCO 718 and stainless steel 410 coated with CVD TiC showed one order of magnitude less erosion rate compared to some commercial coatings on the same substrates.

  19. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  20. Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-10-01

    Full Text Available Cyclic blade motion during operation of vertical axis wind turbines (VAWTs imposes challenges on the simulations models of the aerodynamics of VAWTs. A two-dimensional vortex model is validated against the new experimental data on a 12-kW straight-bladed VAWT, which is operated at an open site. The results on the normal force on one blade are analyzed. The model is assessed against the measured data in the wide range of tip speed ratios: from 1.8 to 4.6. The predicted results within one revolution have a similar shape and magnitude as the measured data, though the model does not reproduce every detail of the experimental data. The present model can be used when dimensioning the turbine for maximum loads.

  1. Lightning transient analysis in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...

  2. High efficiency turbine blade coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  3. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  4. Structure simulation in unidirectionally solidified turbine blade by dendrite envelope tracking model (Ⅱ): model validation and defects prediction

    Institute of Scientific and Technical Information of China (English)

    WANG Tong-min; SU Yan-qing; GUO Jing-jie; I. OHNAKA; H. YASUDA

    2006-01-01

    The developed model was validated by the checking of grain preferential growth orientation and the solidification experiment with low melting point alloy of Sn-21%Bi(mole fraction). It was also applied to predict the structure defects (e.g. stray grain) of unidirectionally solidified turbine blade. The results show that the developed model is reliable and has the following abilities: 1) reduce the misorientation caused by the orthogonal mesh used in simulation; 2) well reproduce the growth competition among the different-preferential-direction grains with less than 10% relative error; 3) predict the structure defect of stray grain with the accuracy over 80%; 4) optimize the grain selector to better obtain a single crystal avoiding the multigrain defect; 5) simulate the structure evolution (nucleation and growth) of the directional and single crystal turbine blade.

  5. Vortex lattice modelling of winglets on wind turbine blades. 3. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2007-08-15

    The power production of wind turbines can be increased by the use of winglets without increasing the swept area. This makes them suitable for sites with restrictions in rotor diameter and in wind farms. The present project aims at understanding how winglets influences the flow and the aerodynamic forces on wind turbine blades. A free wake vortex lattice code and a fast design algorithm for a horizontal axis wind turbine under steady conditions has been developed. 2 winglet designs are treated in detail. (au)

  6. Wind turbine blade life-time assessment model for preventive planning of operation and maintenance

    DEFF Research Database (Denmark)

    Florian, Mihai; Sørensen, John Dalsgaard

    2014-01-01

    Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M) practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair...

  7. Wind Turbine Blade Life-Time Assessment Model for Preventive Planning of Operation and Maintenance

    DEFF Research Database (Denmark)

    Florian, Mihai; Sørensen, John Dalsgaard

    2015-01-01

    Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M) practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair...

  8. Implementation of creep-fatigue model into finite-element code to assess cooled turbine blade.

    CSIR Research Space (South Africa)

    Dedekind, MO

    1994-01-01

    Full Text Available Turbine blades which are designed with airfoil cooling are subject to thermo-mechanical fatigue as well as creep damage. These problems arise due to thermal cycling and high operating temperatures in service. An implementation of fatigue and creep...

  9. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hughes, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paquette, J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  10. Wavelet Transformation for Damage Identication in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Skov, Jonas falk; Kirkegaard, Poul Henning

    2014-01-01

    The present paper documents a proposed modal and wavelet analysis-based structural health monitoring (SHM) method for damage identification in wind turbine blades. A finite element (FE) model of a full-scale wind turbine blade is developed and introduced to a transverse surface crack. Hereby, post...... of the first structural blade mode. However, due to the nature of the proposed method, it is also found that the accuracy of the damage assessment highly depends on the number of employed measurement points....

  11. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  12. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  13. Optimization design of blade shapes for wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Wang, Xudong; Shen, Wen Zhong

    2010-01-01

    For the optimization design of wind turbines, the new normal and tangential induced factors of wind turbines are given considering the tip loss of the normal and tangential forces based on the blade element momentum theory and traditional aerodynamic model. The cost model of the wind turbines...... and the optimization design model are developed. In the optimization model, the objective is the minimum cost of energy and the design variables are the chord length, twist angle and the relative thickness. Finally, the optimization is carried out for a 2 MW blade by using this optimization design model....... The performance of blades is validated through the comparison and analysis of the results. The reduced cost shows that the optimization model is good enough for the design of wind turbines. The results give a proof for the design and research on the blades of large scale wind turbines and also establish...

  14. Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)

    2004-06-01

    Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

  15. Modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H.; Baumgart, A.; Carlen, I.

    2002-02-01

    The modal analysis technique has been used to identify essential dynamic properties of wind turbine blades like natural frequencies, damping characteristics and mode shapes. Different experimental procedures have been considered, and the most appropriate of these has been selected. Although the comparison is based on measurements on a LM 19 m blade, the recommendations given are believed to be valid for other wind turbine blades as well. The reliability of the selected experimental analysis has been quantified by estimating the unsystematic variations in the experimental findings. Satisfactory results have been obtained for natural frequencies, damping characteristics and for the dominating deflection direction of the investigated mode shapes. For the secondary deflection directions, the observed experimental uncertainty may be considerable - especially for the torsional deflection. The experimental analysis of the LM 19 m blade has been compared with results from a state-of-the-art FE-modeling of the same blade. For some of the higher modes substantial discrepancies between the natural frequencies originating from the FE-modeling and the modal analysis, respectively, are observed. In general the qualitative features of measured and computed modes shapes are in good agreement. However, for the secondary deflection directions, substantial deviations in the absolute values may occur (when normalizing with respect to the primary deflection direction). Finally, suggestions of potential future improvements of the experimental procedure are discussed. (au)

  16. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  17. Reliability-based design of wind turbine blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    Reliability-based design of wind turbine blades requires identification of the important failure modes/limit states along with stochastic models for the uncertainties and methods for estimating the reliability. In the present paper it is described how reliability-based design can be applied to wind...... turbine blades. For wind turbine blades, tests with the basic composite materials and a few full-scale blades are normally performed during the design process. By adopting a reliability-based design approach, information from these tests can be taken into account in a rational way during the design...... process. In the present paper, a probabilistic framework for design of wind turbine blades are presented and it is demonstrated how information from tests can be taken into account using the Maximum-Likelihood method and Bayesian statistics. In a numerical example, the reliability is estimated for a wind...

  18. Reliability-based design of wind turbine blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    Reliability-based design of wind turbine blades requires identification of the important failure modes/limit states along with stochastic models for the uncertainties and methods for estimating the reliability. In the present paper it is described how reliability-based design can be applied to wind...... turbine blades. For wind turbine blades, tests with the basic composite materials and a few full-scale blades are normally performed during the design process. By adopting a reliability-based design approach, information from these tests can be taken into account in a rational way during the design...... process. In the present paper, a probabilistic framework for design of wind turbine blades are presented and it is demonstrated how information from tests can be taken into account using the Maximum-Likelihood method and Bayesian statistics. In a numerical example, the reliability is estimated for a wind...

  19. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  20. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  1. Structural analysis of composite wind turbine blades nonlinear mechanics and finite element models with material damping

    CERN Document Server

    Chortis, Dimitris I

    2013-01-01

    This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...

  2. Finite difference time domain modeling of steady state scattering from jet engines with moving turbine blades

    Science.gov (United States)

    Ryan, Deirdre A.; Langdon, H. Scott; Beggs, John H.; Steich, David J.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The approach chosen to model steady state scattering from jet engines with moving turbine blades is based upon the Finite Difference Time Domain (FDTD) method. The FDTD method is a numerical electromagnetic program based upon the direct solution in the time domain of Maxwell's time dependent curl equations throughout a volume. One of the strengths of this method is the ability to model objects with complicated shape and/or material composition. General time domain functions may be used as source excitations. For example, a plane wave excitation may be specified as a pulse containing many frequencies and at any incidence angle to the scatterer. A best fit to the scatterer is accomplished using cubical cells in the standard cartesian implementation of the FDTD method. The material composition of the scatterer is determined by specifying its electrical properties at each cell on the scatterer. Thus, the FDTD method is a suitable choice for problems with complex geometries evaluated at multiple frequencies. It is assumed that the reader is familiar with the FDTD method.

  3. Studi Eksperimental Perancangan Turbin Air Terapung Tipe Helical Blade

    OpenAIRE

    Muhammad, Andi Haris; Had, Abdul Latief; Terti, Wayan

    2016-01-01

    This research describes the design of floating helical water turbine for electric power generation in free flow and low head water operation. The design involves the use of strips attached to the blades of turbine. The efficiency of turbine (??) investigation was carried out using empirical formulas. The rotation of turbine (n) of the calculation with variation strips angles (450, 900, and 1350) were obtained through captive model tests carried out in towing tank. The result indicated the eff...

  4. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  5. Blade Profile Optimization of Kaplan Turbine Using CFD Analysis

    Directory of Open Access Journals (Sweden)

    Aijaz Bashir Janjua

    2013-10-01

    Full Text Available Utilization of hydro-power as renewable energy source is of prime importance in the world now. Hydropower energy is available in abundant in form of falls, canals rivers, dams etc. It means, there are various types of sites with different parameters like flow rate, heads, etc. Depending upon the sites, water turbines are designed and manufactured to avail hydro-power energy. Low head turbines on runof-river are widely used for the purpose. Low head turbines are classified as reaction turbines. For runof river, depending upon the variety of site data, low head Kaplan turbines are selected, designed and manufactured. For any given site requirement, it becomes very essential to design the turbine runner blades through optimization of the CAD model of blades profile. This paper presents the optimization technique carried out on a complex geometry of blade profile through static and dynamic computational analysis. It is used through change of the blade profile geometry at five different angles in the 3D (Three Dimensional CAD model. Blade complex geometry and design have been developed by using the coordinates point system on the blade in PRO-E /CREO software. Five different blade models are developed for analysis purpose. Based on the flow rate and heads, blade profiles are analyzed using ANSYS software to check and compare the output results for optimization of the blades for improved results which show that by changing blade profile angle and its geometry, different blade sizes and geometry can be optimized using the computational techniques with changes in CAD models.

  6. Applied modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Pedersen, H.B.; Kristensen, O.J.D.

    2003-01-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Differentequipment for mounting the accelerometers...... is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use ofaccelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded...... and unloaded wind turbine blade. During this campaign the modal analysis are performed on ablade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Øyes blade_EV1...

  7. Static Structural and Modal Analysis of Gas Turbine Blade

    Science.gov (United States)

    Ranjan Kumar, Ravi; Pandey, K. M., Prof.

    2017-08-01

    Gas turbine is one of the most versatile items of turbo machinery nowadays. It is used in different modes such as power generation, oil and gas, process plants, aviation, domestic and related small industries. This paper is based on the problems concerning blade profile selection, material selection and turbine rotor blade vibration that seriously impact the induced stress-deformation and structural functioning of developmental gas turbine engine. In this paper for generating specific power by rotating blade at specific RPM, blade profile and material has been decided by static structural analysis. Gas turbine rotating blade RPM is decided by Modal Analysis so that the natural frequency of blade should not match with the excitation frequency. For the above blade profile has been modeled in SOLIDWORKS and analysis has been done in ANSYS WORKBENCH 14. Existing NACA6409 profile has been selected as base model and then it is modified by bending it through 72.5° and 145°. Hence these three different blade profiles have been analyzed for three different materials viz. Super Alloy X, Nimonic 80A and Inconel 625 at three different speed viz. 20000, 40000 and 60000RPM. It is found that NACA6409 with 72.5° bent gives best result for all material at all speed. Among all the material Inconel 625 gives best result. Hence Blade of Inconel 625 having 72.5° bent profile is the best combination for all RPM.

  8. Evaluation of the durability of composite tidal turbine blades.

    Science.gov (United States)

    Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique

    2013-02-28

    The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models.

  9. Recent Development in Turbine Blade Film Cooling

    Directory of Open Access Journals (Sweden)

    Je-Chin Han

    2001-01-01

    Full Text Available Gas turbines are extensively used for aircraft propulsion, land-based power generation, and industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature (RIT. The current RIT level in advanced gas turbines is far above the .melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. Gas turbine blades are cooled internally and externally. This paper focuses on external blade cooling or so-called film cooling. In film cooling, relatively cool air is injected from the inside of the blade to the outside surface which forms a protective layer between the blade surface and hot gas streams. Performance of film cooling primarily depends on the coolant to mainstream pressure ratio, temperature ratio, and film hole location and geometry under representative engine flow conditions. In the past number of years there has been considerable progress in turbine film cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling.

  10. Turbine component, turbine blade, and turbine component fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Delvaux, John McConnell; Cairo, Ronald Ralph; Parolini, Jason Robert

    2017-05-30

    A turbine component, a turbine blade, and a turbine component fabrication process are disclosed. The turbine component includes ceramic matrix composite plies and a feature configured for preventing interlaminar tension of the ceramic matrix composite plies. The feature is selected from the group consisting of ceramic matrix composite tows or precast insert tows extending through at least a portion of the ceramic matrix composite plies, a woven fabric having fiber tows or a precast insert preventing contact between a first set of the ceramic matrix composite plies and a second set of the ceramic matrix composite plies, and combinations thereof. The process includes laying up ceramic matrix composite plies in a preselected arrangement and securing a feature configured for interlaminar tension.

  11. Optimization Method for Girder of Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Yuqiao Zheng

    2014-01-01

    Full Text Available This paper presents a recently developed numerical multidisciplinary optimization method for design of wind turbine blade. The objective was the highest possible blade weight under specified atmospheric conditions, determined by the design giving girder layer and location parameter. Wind turbine blade on box-section beams girder is calculated by ply thickness, main girder and trailing edge. In this study, a realistic 30 m blade from a 1.2 MW wind turbine model of blade girder parameters is established. The optimization evolves a structure which transforms along the length of the blade, changing from a design with spar caps at the maximum thickness and a trailing edge mass to a design with spar caps toward the tip. In addition, the cross-section structural properties and the modal characteristics of a 62 m rotor blade were predicted by the developed beam finite element. In summary, these findings indicate that the conventional structural layout of a wind turbine blade is suboptimal under the static load conditions, suggesting an opportunity to reduce blade weight and cost.

  12. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element....... The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes....

  13. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage...... from rainflow-counting of simulated time series for a 5MW reference wind turbine [1]. A possible influence of a complex stress state in the blade is not taken into account and only longitudinal stresses are considered....

  14. Flowfield Analysis of Savonius-type Wind Turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Tae Hyun; Chang, Se Myong [Kunsan National Univ., Kunsan (Korea, Republic of); Seo, Hyun Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2007-07-01

    In this paper, we researched flow of 8000 {approx} 24000 Reynolds number around a blade model of Savonius-type wind turbine with experimental and numerical method. For the blade shape of arc, we analyzed flowfield with streak-image flow visualization, measured wake, computed drag coefficients, and compared them for given angle of attacks. The result of research can be used to design aerodynamic performance of Savonius-type turbine rotor directly.

  15. Experimental Investigation of the Wind Turbine Blade Root Flow

    NARCIS (Netherlands)

    Akay, B.; Ferreira, C.S.; Van Bussel, G.J.W.

    2010-01-01

    Several methods from experimental to analytical are used to investigate the aerodynamics of a horizontal axis wind turbine. To understand 3D and rotational effects at the root region of a wind turbine blade, correct modeling of the flow field is essential. Aerodynamic models need to be validated by

  16. Ultimate Strength of Wind Turbine Blades under Multiaxial Loading

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich

    Modern wind turbine rotor blades are sophisticated lightweight structures, optimised towards achieving the best compromise between aerodynamic and structural design as well as a cost efficient manufacturing processes. They are usually designed for a lifetime of minimum 20 years, where they must...... loading effects and its influence on the ultimate strength of typical wind turbine rotor blade structures and to develop methods to perform reliable prediction of failure. For this purpose, origin and consequence of some of the typically occurring failure types in wind turbine rotor blades...... are investigated. The research aims on predicting more accurately when and how blades fail under complex loading. The main contribution from this PhD study towards more reliable and robust operating wind turbine systems can be divided into two fields. One part covers numerical modelling approaches and the other...

  17. Lightning protection of flap system for wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Madsen, Søren Find

    The aim of this PhD project was to investigate the behaviour of a Controllable Rubber Trailing Edge Flap (CRTEF) in a wind turbine blade when it is exposed to lightning discharges, and find the best technical solution to protect the CRTEF and the controlling system against lightning, based...... on the results of simulation models and high voltage tests. Wind turbines are a common target of lightning due to their height and location, and blades are the components most exposed to direct discharges. Protecting the blades against lightning is specially challenging, mainly because of the combination...... of a broader, EUDP funded project, whose overall objective was to develop a prototype active trailing edge flap system for a wind turbine blade which constitutes a complete, reliable and robust load control flap system for a full scale turbine, ready for prototype testing....

  18. Modal Analysis for Crack Detection in Small Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Skov, Jonas falk; Dickow, Kristoffer Ahrens

    2013-01-01

    The aim of the present paper is to evaluate structural health monitoring (SHM) techniques based on modal analysis for crack detection in small wind turbine blades. A finite element (FE) model calibrated to measured modal parameters will be introduced to cracks with different sizes along one edge...... of the blade. Changes in modal parameters from the FE model are compared with data obtained from experimental tests. These comparisons will be used to validate the FE model and subsequently discuss the usability of SHM techniques based on modal parameters for condition monitoring of wind turbine blades....

  19. Sandwich materials for wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Thybo Thomsen, O. [Aalborg Univ., Dept. of Mechanical Engineering, Aalborg (Denmark)

    2006-07-01

    Wind turbine blades are being manufactured using polymer matrix composite materials (PMC), in a combination of monolithic (single skin) and sandwich composites. Present day designs are mainly based on glass fibre reinforced composites (GFRP), but for very large blades carbon fibre reinforced composites (CFRP) are being used increasingly, in addition to GFRP by several manufacturers to reduce the weight. The size of wind turbines have increased significantly over the last 25 years, and this trend is expected to continue in the future. Thus, it is anticipated that wind turbines with a rated power output in the range of 8-10 MW and a rotor diameter about 170-180 m will be developed and installed within the next 10-15 years. The paper presents an overview of current day design principles and materials technology applied for wind turbine blades, and it highlights the limitations and important design issues to be addressed for up-scaling of wind turbine blades from the current maximum length in excess of 61 m to blade lengths in the vicinity of 90 m as envisaged for future very large wind turbines. In particular, the paper discusses the potential advantages and challenges of applying sandwich type construction to a larger extent than is currently being practiced for the load carrying parts of wind turbine blades. (au)

  20. Design And Analysis Of Savonius Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Kshitija. M. Deshmukh,

    2015-11-01

    Full Text Available There are two kinds of wind turbines according to the axis of rotation to the ground, horizontal axis wind turbines (HAWT and vertical axis wind turbines (VAWT. VAWTs include both a drag type configuration like Savonius wind turbine and a lift-type configuration like Darrieus wind turbine. Savonius wind rotor has many advantages such as low starting speeds and no need for external torque for its starting. Moreover it is cheaper in construction and has low maintenance. It is independent of the wind direction and has a good starting torque at lower wind speeds. The experimental study conducted in this paper aims to investigate the effect of number of blades and other criteria that can affect the performance of the model of Savonius type wind turbine. The experiments used to compare 2, 3, and 4 blades wind turbines to show tip speed ratio, torque and power coefficient related with wind speed. A simulation using ANSYS 13.0 software will show pressure distribution of wind turbine. The results of study showed that number of blades influence the performance of wind turbine. Savonius model with three blades has the best performance at high tip speed ratio.

  1. 3D shape optimization of turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Jung, A. [Siemens AG, Muelheim an der Ruhr (Germany). Power Generation Group; Kaemmerer, S. [Stuttgart Univ. (Germany). ITSM; Paffrath, M.; Wever, U. [Siemens AG, Muenchen (Germany). Corporate Technology

    2005-12-15

    In this paper, we present a complete optimization loop in order to maximize the efficiency of turbine blades. The optimization of the shape of turbine blades is considered within the context of a whole turbine stage. Thus, also stator/rotor interactions are taken into account. An essential part of the optimization loop is providing gradient information in order to increase efficiency. The derivation of the sensitivity equation and its discretization within the framework of the underlying flow solver is the main part of the paper. The performance of the optimization loop is demonstrated on a complete turbine stage. (orig.)

  2. Implementation of a Transition Model in a NASA Code and Validation Using Heat Transfer Data on a Turbine Blade

    Science.gov (United States)

    Ameri, Ali A.

    2012-01-01

    The purpose of this report is to summarize and document the work done to enable a NASA CFD code to model laminar-turbulent transition process on an isolated turbine blade. The ultimate purpose of the present work is to down-select a transition model that would allow the flow simulation of a variable speed power turbine to be accurately performed. The flow modeling in its final form will account for the blade row interactions and their effects on transition which would lead to accurate accounting for losses. The present work only concerns itself with steady flows of variable inlet turbulence. The low Reynolds number k- model of Wilcox and a modified version of the same model will be used for modeling of transition on experimentally measured blade pressure and heat transfer. It will be shown that the k- model and its modified variant fail to simulate the transition with any degree of accuracy. A case is thus made for the adoption of more accurate transition models. Three-equation models based on the work of Mayle on Laminar Kinetic Energy were explored. The three-equation model of Walters and Leylek was thought to be in a relatively mature state of development and was implemented in the Glenn-HT code. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Surface heat transfer rate serves as sensitive indicator of transition. With the newly implemented model, it was shown that the simulation of transition process is much improved over the baseline k- model for the single Reynolds number and pressure ratio attempted; while agreement with heat transfer data became more satisfactory. Armed with the new transition model, total-pressure losses of computed three-dimensional flow of E3 tip section cascade were compared to the experimental data for a range of incidence angles. The results obtained, form a partial loss bucket for the chosen blade

  3. Crack Diagnosis of Wind Turbine Blades Based on EMD Method

    Science.gov (United States)

    Hong-yu, CUI; Ning, DING; Ming, HONG

    2016-11-01

    Wind turbine blades are both the source of power and the core technology of wind generators. After long periods of time or in some extreme conditions, cracks or damage can occur on the surface of the blades. If the wind generators continue to work at this time, the crack will expand until the blade breaks, which can lead to incalculable losses. Therefore, a crack diagnosis method based on EMD for wind turbine blades is proposed in this paper. Based on aerodynamics and fluid-structure coupling theory, an aero-elastic analysis on wind turbine blades model is first made in ANSYS Workbench. Second, based on the aero-elastic analysis and EMD method, the blade cracks are diagnosed and identified in the time and frequency domains, respectively. Finally, the blade model, strain gauge, dynamic signal acquisition and other equipment are used in an experimental study of the aero-elastic analysis and crack damage diagnosis of wind turbine blades to verify the crack diagnosis method proposed in this paper.

  4. Structural analysis considerations for wind turbine blades

    Science.gov (United States)

    Spera, D. A.

    1979-01-01

    Approaches to the structural analysis of wind turbine blade designs are reviewed. Specifications and materials data are discussed along with the analysis of vibrations, loads, stresses, and failure modes.

  5. Wind Turbine Blade Design System - Aerodynamic and Structural Analysis

    Science.gov (United States)

    Dey, Soumitr

    2011-12-01

    The ever increasing need for energy and the depletion of non-renewable energy resources has led to more advancement in the "Green Energy" field, including wind energy. An improvement in performance of a Wind Turbine will enhance its economic viability, which can be achieved by better aerodynamic designs. In the present study, a design system that has been under development for gas turbine turbomachinery has been modified for designing wind turbine blades. This is a very different approach for wind turbine blade design, but will allow it to benefit from the features inherent in the geometry flexibility and broad design space of the presented system. It starts with key overall design parameters and a low-fidelity model that is used to create the initial geometry parameters. The low-fidelity system includes the axisymmetric solver with loss models, T-Axi (Turbomachinery-AXIsymmetric), MISES blade-to-blade solver and 2D wing analysis code XFLR5. The geometry parameters are used to define sections along the span of the blade and connected to the CAD model of the wind turbine blade through CAPRI (Computational Analysis PRogramming Interface), a CAD neutral API that facilitates the use of parametric geometry definition with CAD. Either the sections or the CAD geometry is then available for CFD and Finite Element Analysis. The GE 1.5sle MW wind turbine and NERL NASA Phase VI wind turbine have been used as test cases. Details of the design system application are described, and the resulting wind turbine geometry and conditions are compared to the published results of the GE and NREL wind turbines. A 2D wing analysis code XFLR5, is used for to compare results from 2D analysis to blade-to-blade analysis and the 3D CFD analysis. This kind of comparison concludes that, from hub to 25% of the span blade to blade effects or the cascade effect has to be considered, from 25% to 75%, the blade acts as a 2d wing and from 75% to the tip 3D and tip effects have to be taken into account

  6. Optimization of blade motion of vertical axis turbine

    Science.gov (United States)

    Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng

    2016-04-01

    In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.

  7. FEM Analysis of Turgo Impulse Turbine Blade

    Directory of Open Access Journals (Sweden)

    Sourabh KHURANA

    2013-07-01

    Full Text Available The present research work describes the development of Turgo turbine blades on the Solidworks software. Finite element simulation (Ansys V14 has been used for analysis of stress and total deformation produced inside the Turgo impulse turbine. Finite element simulation is effective when it is used to analyze the strain and stress distribution. It has been observed during analysis that the maximum stress occurs at the root of blade suction side.

  8. Failure analysis of jet engine turbine blade

    OpenAIRE

    MILAN T. JOVANOVIĆ; Vesna Maksimović; Ivana Cvijović-Alagić

    2016-01-01

    Jet engine turbine blade cast by investment precision casting of Ni-base superalloy, which failed during exploatation, was the subject of investigation. Failure analysis was executed applying optical microscopy (OM), transmission electron microscopy (TEM) using replica technique, scaning electron microscopy (SEM) and stress rupture life tests. On the ground of obtained results it was concluded that the failure occurred as a result of structural changes caused by turbine blade overheating abov...

  9. Failure analysis of jet engine turbine blade

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2016-03-01

    Full Text Available Jet engine turbine blade cast by investment precision casting of Ni-base superalloy, which failed during exploatation, was the subject of investigation. Failure analysis was executed applying optical microscopy (OM, transmission electron microscopy (TEM using replica technique, scaning electron microscopy (SEM and stress rupture life tests. On the ground of obtained results it was concluded that the failure occurred as a result of structural changes caused by turbine blade overheating above the exploitation temperature.

  10. Cooling arrangement for a tapered turbine blade

    Science.gov (United States)

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  11. Quick Method for Aeroelastic and Finite Element Modeling of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Bennett, Jeffrey; Bitsche, Robert; Branner, Kim;

    2014-01-01

    -sectional analysis tool in order to obtain cross-sectional properties for the aeroelastic simulations. The method utilizes detailed user inputs of the structural layup and aerodynamic profile including ply thickness, orientation, material properties and airfoils to create the models. After the process is complete...... the user has two models of the same blade, one for performing a structural finite element model analysis and one for aeroelastic simulations. Here, the method is implemented and applied to reverse engineer a structural layup for the NREL 5MW reference blade. The model is verified by comparing natural...

  12. Flutter of Darrieus wind turbine blades

    Science.gov (United States)

    Ham, N. D.

    1978-01-01

    The testing of Darrieus wind turbines has indicated that under certain conditions, serious vibrations of the blades can occur, involving flatwise bending, torsion, and chordwise bending. A theoretical method of predicting the aeroelastic stability of the coupled bending and torsional motion of such blades with a view to determining the cause of these vibrations, and a means of suppressing them was developed.

  13. Cost analysis of advanced turbine blade manufacturing processes

    Science.gov (United States)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  14. An Analytical Model to Extract Wind Turbine Blade Structural Properties for Optimization and Up-scaling Studies

    NARCIS (Netherlands)

    Ashuri, T.; Van Bussel, G.J.W.; Zaayer, M.B.; Van Kuik, G.A.M.

    2010-01-01

    A wind turbine blade has a complex shape and consists of different elements with dissimilar material properties. To do any aeroelastic simulation, the structural properties of the blade such as stiffnesses and mass per unit length should be known in advance, and extracting these properties is a diff

  15. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott

    2016-01-01

    Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D; and (3) data from...... agreement between the model and the experimental data in many cases, which suggests that the current two-dimensional dynamic stall model as used in blade element momentum-based aeroelastic codes may provide a reasonably accurate representation of three-dimensional rotor aerodynamics when used in combination...

  16. Parametric study of composite wind turbine blades

    DEFF Research Database (Denmark)

    Kim, Taeseong; Branner, Kim; Hansen, Anders Melchior

    2011-01-01

    In this paper an anisotropic beam element for a composite wind turbine blades is developed. Eigenvalue analysis with the new beam element is conducted in order to understand its responses associated with the wind turbine performances. From the results of natural frequencies and mode shapes...

  17. Distribution of Defects in Wind Turbine Blades and Reliability Assessment of Blades Containing Defects

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Branner, Kim; Berring, Peter

    2009-01-01

    on the assumption that one error in the production process tends to trigger several defects. For both models additional information about number, type and size of the defects is included as stochastic variables. The probability of failure for a wind turbine blade will not only depend on variations in the material...... properties and the load but also on potential defects in the blades. As a numerical example the probability of failure is calculated for the main spar both with and without defects in terms of delaminations. The delaminations increase the probability of failure compared to a perfect blade, but by applying......In the present paper two stochastic models for the distribution of defects in wind turbine blades are proposed. The first model assumes that the individual defects are completely randomly distributed in the blade. The second model assumes that the defects occur in clusters of different size based...

  18. Flexible Blades for Wind Turbines

    Science.gov (United States)

    Collins, Madeline Carlisle; Macphee, David; Harris, Caleb

    2016-11-01

    Previous research has shown that windmills with flexible blades are more efficient than those with rigid blades. Flexibility offers passive pitch control, preferable to active pitch control which is costly and requires maintenance. Flexible blades morph such that the blade more closely resembles its design point at part load and over load. The lift-to-drag ratios on individual blades was investigated. A mold was designed and machined from an acrylic slab for the casting of blades with a NACA 0012 cross section. A flexible blade was cast from silicone and a rigid blade was cast from polyurethane. Each of these blades was tested in a wind tunnel, cantilever mounted, spanning the whole test section. The angle of attack was varied by rotating the mount. All tests were performed at the same wind speed. A load cell within the mount measured forces on the blade, from which the lift and drag forces were calculated. The stall point for the flexible blade occurred later than for the rigid blade, which agrees with previous research. Lift-to-drag ratios were larger for the flexible blade at all angles of attack tested. Flexible blades seem to be a viable option for passive pitch control. Future research will include different airfoil cross sections, wind speeds, and blade materials. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  19. Comparison of Two-Equation Turbulence Models for Prediction of Heat Transfer on Film-Cooled Turbine Blades

    Science.gov (United States)

    Garg, Vijay K.; Ameri, Ali A.

    1997-01-01

    A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely, the VKI rotor with six rows of cooling holes, including three rows on the shower head and the C3X vane with nine rows of holes, including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence model specifically, Coakley's q-omega model, Chien's k-epsilon model and Wilcox's k-omega model with Menter's modifications, have been compared with the experimental data of Camci and Arts for the VKI rotor, and of Hylton et al. for the C3X vane along with predictions using the Baldwin-Lomar (B-L) model taken from Garg and Gaugler. It is found that for the cases considered here the two equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooled holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-omega and k-epsilon models need 40% more computer time than the B-L model the k-omega model requires at least 65% more time because of the slower rate of convergence. It is found that the heat transfer coefficient exhibit a strong spanwise as well as streamwise variation for both blades and all turbulence models.

  20. LiDAR-based Localization and Mapping System using Ellipse Distance Correction Models for UAV Wind Turbine Blade Inspection

    DEFF Research Database (Denmark)

    Nikolov, Ivan Adriyanov; Madsen, Claus B.

    2016-01-01

    The wind energy sector faces a constant need for annual inspections of wind turbine blades for damage, erosion and cracks. These inspections are an important part of the wind turbine life cycle and can be very constly and hazardous to specialists. This has led to the use of automated drone...

  1. Analysis and modeling of unsteady aerodynamics with application to wind turbine blade vibration at standstill conditions

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert

    Wind turbine blade vibrations at standstill conditions were investigated in the present work. These included vortex-induced and stall-induced vibrations. Thus, it was investigated whether the stand still vibrations are vortex-induced, stall-induced or a combination of both types. The work comprised...... limits. The motivation for it was that the standard aerodynamics existing in state-of-the-art aeroelastic codes is effectively quasi-steady in deep stall. If such an assumption was incorrect, these codes could predict stall-induced vibrations inaccurately. The main conclusion drawn from these analyzes...... was that even a relatively low amount of temporal lag in the aerodynamic response may significantly increase the aerodynamic damping and therefore influence the aeroelastic stability limits, relative to quasisteady aerodynamic response. Two- and three-dimensional CFD computations included non-moving, prescribed...

  2. Numerical analysis of turbine blade tip treatments

    Science.gov (United States)

    Gopalaswamy, Nath S.; Whitaker, Kevin W.

    1992-01-01

    Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,

  3. Wind turbine blade waste in 2050.

    Science.gov (United States)

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Optimization of Blade Motion of Vertical Axis Turbine

    Institute of Scientific and Technical Information of China (English)

    马勇; 张亮; 张之阳; 韩端锋

    2016-01-01

    In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine’s energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.

  5. Finite Element Analysis for the Web Offset of Wind Turbine Blade

    Science.gov (United States)

    Zhou, Bo; Wang, Xin; Zheng, Changwei; Cao, Jinxiang; Zou, Pingguo

    2017-05-01

    The web is an important part of wind turbine blade, which improves bending properties. Much of blade process is handmade, so web offset of wind turbine blade is one of common quality defects. In this paper, a 3D parametric finite element model of a blade for 2MW turbine was established by ANSYS. Stress distributions in different web offset values were studied. There were three kinds of web offset. The systematic study of web offset was done by orthogonal experiment. The most important factor of stress distributions was found. The analysis results have certain instructive significance to design and manufacture of wind turbine blade.

  6. Wind turbine blade testing under combined loading

    DEFF Research Database (Denmark)

    Roczek-Sieradzan, Agnieszka; Nielsen, Magda; Branner, Kim;

    2011-01-01

    The paper presents full-scale blade tests under a combined flap- and edgewise loading. The main aim of this paper is to present the results from testing a wind turbine blade under such conditions and to study the structural behavior of the blade subjected to combined loading. A loading method using...... anchor plates was applied, allowing transverse shear distortion. The global and local deformation of the blade as well as the reproducibility of the test was studied and the results from the investigations are presented....

  7. An evaluation of wind turbine blade cross section analysis techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Joshua A.; Griffith, Daniel Todd; Laird, Daniel L.; Resor, Brian Ray

    2010-03-01

    The blades of a modern wind turbine are critical components central to capturing and transmitting most of the load experienced by the system. They are complex structural items composed of many layers of fiber and resin composite material and typically, one or more shear webs. Large turbine blades being developed today are beyond the point of effective trial-and-error design of the past and design for reliability is always extremely important. Section analysis tools are used to reduce the three-dimensional continuum blade structure to a simpler beam representation for use in system response calculations to support full system design and certification. One model simplification approach is to analyze the two-dimensional blade cross sections to determine the properties for the beam. Another technique is to determine beam properties using static deflections of a full three-dimensional finite element model of a blade. This paper provides insight into discrepancies observed in outputs from each approach. Simple two-dimensional geometries and three-dimensional blade models are analyzed in this investigation. Finally, a subset of computational and experimental section properties for a full turbine blade are compared.

  8. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions.

  9. Coupling analysis of wind turbine blades based on aeroelastics and aerodynsmics

    DEFF Research Database (Denmark)

    Wang, Xudong; Chen, Jin; Zhang, Shigiang

    2010-01-01

    The structural dynamic equations of blades were constructed for blades of wind turbines. The vibration velocity of blades and the relative flow velocity were calculated using the structural dynamics model. Based on the BEM (Blade Element Momentum) theory and traditional areodynamics, the coupling...

  10. A stochastic model for the simulation of wind turbine blades in static stall

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.;

    2010-01-01

    The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using a conditi......The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...... a conditional simulation technique for stochastic processes. The input data for the model can be collected either from measurements or from numerical results from a Computational Fluid Dynamics code for airfoil sections at constant angles of attack. An analysis of such data is provided, which helps to determine...

  11. Successful Solutions to SSME/AT Development Turbine Blade Distress

    Science.gov (United States)

    Montgomery, Stuart K.

    1999-01-01

    As part of the High-Pressure Fuel Turbopump/Alternate Turbopump (HPFTP/AT) turbine blade development program, unique turbine blade design features were implemented to address 2nd stage turbine blade high cycle fatigue distress and improve turbine robustness. Features included the addition of platform featherseal dampers, asymmetric blade tip seal segments, gold plating of the blade attachments, and airfoil tip trailing edge modifications. Development testing shows these features have eliminated turbine blade high cycle fatigue distress and consequently these features are currently planned for incorporation to the flight configuration. Certification testing will begin in 1999. This presentation summarizes these features.

  12. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  13. Optimization design of spar cap layup for wind turbine blade

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Based on the aerodynamic shape and structural form of the blade are fixed,a mathematical model of optimization design for wind turbine blade is established.The model is pursued with respect to minimum the blade mass to reduce the cost of wind turbine production.The material layup numbers of the spar cap are chosen as the design variables;while the demands of strength,stiffness and stability of the blade are employed as the constraint conditions.The optimization design for a 1.5 MW wind turbine blade is carried out by combing above objective and constraint conditions at the action of ultimate flapwise loads with the finite element software ANSYS.Compared with the original design,the optimization design result achieves a reduction of 7.2% of the blade mass,the stress and strain distribution of the blade is more reasonable,and there is no occurrence of resonance,therefore its effectiveness is verified.

  14. Microtextured Surfaces for Turbine Blade Impingement Cooling

    Science.gov (United States)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  15. Wireless Sensors for Wind Turbine Blades Monitoring

    Science.gov (United States)

    Iftimie, N.; Steigmann, R.; Danila, N. A.; Rosu, D.; Barsanescu, P. D.; Savin, A.

    2017-06-01

    The most common defects in turbine blades may be faulty microscopic and mesoscopic appeared in matrix, no detected by classical nondestructive testing (i.e. using phased array sensors), broken fibers can also appear and develop under moderated loads, or cracks and delaminations due to low energy impacts, etc. The paper propose to present the results obtained from testing of glass fiber reinforced plastic used in the construction of the wind turbine blades as well as the monitoring of the entire scalable blade using wireless sensors placed on critical location on blade. In order to monitories the strain/stress during the tests, the determination of the location and the nature of defects have been simulated using FEM.

  16. Vibration-based SHM System: Application to Wind Turbine Blades

    DEFF Research Database (Denmark)

    Tcherniak, D.; Mølgaard, Lasse Lohilahti

    2015-01-01

    This study presents an vibration-based system designed for structural health monitoring of wind turbine blades. Mechanical energy is introduced by means of an electromechanical actuator mounted inside the blade. The actuator's plunger periodically hits the blade structure; the induced vibrations...... propagate along the blade and are measured by an array of accelerometers. Unsupervised learning is applied to the data: the vibration patterns corresponding to the undamaged blade are used to create a statistical model of the reference state. During the detection stage, the current vibration pattern...... is compared with the reference state, and the novelties can be associated with damage. The vibration pattern is described by the covariance matrix between the accelerometer signals. The mid-range frequencies are used: this range is above the frequencies excited by blade-wind interaction, thus ensuring a good...

  17. Frequency-Weighted Model Predictive Control of Trailing Edge Flaps on a Wind Turbine Blade

    DEFF Research Database (Denmark)

    Castaignet, Damien; Couchman, Ian; Poulsen, Niels Kjølstad;

    2013-01-01

    This paper presents the load reduction achieved with trailing edge flaps during a full-scale test on a Vestas V27 wind turbine. The trailing edge flap controller is a frequency-weighted linear model predictive control (MPC) where the quadratic cost consists of costs on the zero-phase filtered...

  18. Implementation of the Blade Element Momentum Method into a High-Resolution 3-D Atmospheric Model: Evaluating a Parameterization for Wind Turbines

    Science.gov (United States)

    Sta. Maria, M.; Ketefian, G. S.; Jacobson, M. Z.

    2010-12-01

    In order to simulate better the effects of wind turbines on meteorology and climate, a parameterization based on the Blade Element Momentum (BEM) theory was developed and integrated into a high-resolution 3-D non-hydrostatic atmospheric model that conserves several domain-integrated quantities. The BEM model calculates the forces the blade exerts on the atmosphere and feeds it back as body forces in the momentum equations of the atmospheric model. Since the BEM method calculates these forces along a turbine blade, the parameterization allows for model spatial resolutions on the order of a few to tens of meters. This study examines the advantages and limitations of such a parameterization. The BEM calculates the rotational force that the blades exert on the air, and this study investigates whether this parameterization is able to capture rotation in the wake. The dependency on model resolution is also studied to determine the optimum model resolution for simulating wind turbine-atmosphere interactions. The atmospheric model is also used to estimate the distance downwind of a turbine at which wind speeds recover. This is an important parameter for determining optimal wind farm spacing. Model results will be compared with previous parameterizations and wake data gathered in the field and from wind tunnel studies.

  19. Flow separation on wind turbines blades

    Science.gov (United States)

    Corten, G. P.

    2001-01-01

    camera records the dynamic stall patterns. The images are analysed by image processing software that we developed. The program extracts the stall pattern, the blade azimuth angles and the rotor speed from the stall flags. It also measures the yaw error and the wind speed from the optical signals of other sensors, which are recorded simultaneously. We subsequently characterise the statistical stall behaviour from the sequences of thousands of analysed images. For example, the delay in the stall angle by vortex generators can be measured within 1° of accuracy from the stall flag signals. Properties of the Stall Flag The new indicators are compared to the classic tufts. Stall flags are pressure driven while tufts are driven by frictional drag, which means that they have more drag. The self-excited motion of tufts, due to the Kelvin-Helmholtz instability, complicates the interpretation and gives more drag. We designed stall flags in such a way that this instability is avoided. An experiment with a 65cm diameter propeller confirms the independence of stall flags from the centrifugal force and that stall flags respond quickly to changes in the flow. We developed an optical model of the method to find an optimum set-up. With the present system, we can take measurements on turbines of all actual diameters. The stall flag responds to separated flow with an optical signal. The contrast of this signal exceeds that of tuft-signals by a factor of at least 1000. To detect the stall flag signal we need a factor of 25 fewer pixels of the CCD chip than is necessary for tufts. Stall flags applied on fast moving objects may show light tracks due to motion blur, which in fact yields even more information. In the case of tuft visualisations, even a slight motion blur is fatal. Principal Results In dealing with the fundamental theory of wind turbines, we found a new aspect of the conversion efficiency of a wind turbine, which also concerns the stall behaviour. Another new aspect concerns the

  20. Load alleviation on wind turbine blades using variable geometry

    DEFF Research Database (Denmark)

    Basualdo, Santiago

    2005-01-01

    airfoil geometry is an effective means of reducing the vibration magnitudes of an airfoil that represents a section of a wind turbine blade, when subject to stochastic wind signals. The results of this investigation encourage further investigations with 3D aeroelastic models to predict the reduction......) wind turbines, which mainly operate under this flow condition. The results show evident reductions in the airfoil displacements by using simple control strategies having the airfoil position and its first and second derivatives as input, especially at the system's eigenfrequency. The use of variable...... in loads in real wind turbines. Keywords: Variable Geometry, Wind Turbine, Load Alleviation, Fatigue Load, Trailing Edge Flap....

  1. Electric Circuit Model for the Aerodynamic Performance Analysis of a Three-Blade Darrieus-Type Vertical Axis Wind Turbine: The Tchakoua Model

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2016-10-01

    Full Text Available The complex and unsteady aerodynamics of vertical axis wind turbines (VAWTs pose significant challenges for simulation tools. Recently, significant research efforts have focused on the development of new methods for analysing and optimising the aerodynamic performance of VAWTs. This paper presents an electric circuit model for Darrieus-type vertical axis wind turbine (DT-VAWT rotors. The novel Tchakoua model is based on the mechanical description given by the Paraschivoiu double-multiple streamtube model using a mechanical‑electrical analogy. Model simulations were conducted using MATLAB for a three-bladed rotor architecture, characterized by a NACA0012 profile, an average Reynolds number of 40,000 for the blade and a tip speed ratio of 5. The results obtained show strong agreement with findings from both aerodynamic and computational fluid dynamics (CFD models in the literature.

  2. H-Darrieus Wind Turbine with Blade Pitch Control

    Directory of Open Access Journals (Sweden)

    I. Paraschivoiu

    2009-01-01

    Full Text Available A procedure for computing the optimal variation of the blades' pitch angle of an H-Darrieus wind turbine that maximizes its torque at given operational conditions is proposed and presented along with the results obtained on a 7 kW prototype. The CARDAAV code, based on the “Double-Multiple Streamtube” model developed by the first author, is used to determine the performances of the straight-bladed vertical axis wind turbine. This was coupled with a genetic algorithm optimizer. The azimuthal variation of the blades' pitch angle is modeled with an analytical function whose coefficients are used as variables in the optimization process. Two types of variations were considered for the pitch angle: a simple sinusoidal one and one which is more general, relating closely the blades' pitch to the local flow conditions along their circular path. A gain of almost 30% in the annual energy production was obtained with the polynomial optimal pitch control.

  3. Computation of the throat area of a turbine blade ring

    Science.gov (United States)

    Mamaev, B. I.; Murashko, V. L.

    2016-01-01

    The throat area is a geometric parameter of the blade ring necessary to profile its blades and compute the turbine capacity. As applied to the filament flow model, the area is defined by the involute of the throat solid figure onto the plane formed by the cascade throat located on one of the cylindrical sections of the blade ring and the radius. An equation is derived for computing the area of the involute, which considers the effect of the shape of the ring's tailing outlines and the fillets at the transition from the outlines to the blade feather. Comparison of the area values for several turbines computed by the derived equation and by a more complex method based on a search for the minimum distances from the tailing edge of the blade to the suction surface of the neighboring blade in the channel revealed slight differences. The fluid-dynamic 2D analysis determined the radial boundaries of the filament bands, the parameters of the cascade that lie on a filament's cylindrical surfaces, and the flow velocity normal to the throat section of the filament. The proposed approach to computation of the throat area is common for problems of both designing and analyzing the turbine operation and allows for excluding, in practice, methodological differences in determination of the flow rate and the flow angles at the outlet of the blade ring.

  4. Wind turbine blade with viscoelastic damping

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Ryan A.; Mullings, Justin L.

    2017-01-10

    A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).

  5. Photoacoustic microscopy of ceramic turbine blades

    Science.gov (United States)

    Khandelwal, P. K.; Kinnick, R. R.; Heitman, P. W.

    1985-01-01

    Scanning photoacoustic microscopy (SPAM) is evaluated as a nondestructive technique for the detection of both surface and subsurface flaws in polycrystalline ceramics, such as those currently under consideration for the high temperature components of small vehicular and industrial gas turbine engines; the fracture strength of these brittle materials is controlled by small, 25-200 micron flaws. Attention is given to the correlation of SPAM-detected flaws with actual, fracture-controlling flaws in ceramic turbine blades.

  6. Experimental damage detection in a wind turbine blade model using principal components of response correlation functions

    Science.gov (United States)

    Hoell, S.; Omenzetter, P.

    2015-07-01

    The utilization of vibration signals for structural damage detection (SDD) is appealing due to the strong theoretical foundation of such approaches, ease of data acquisition and processing efficiency. Different methods are available for defining damage sensitive features (DSFs) based on vibrations, such as modal analysis or time series methods. The present paper proposes the use of partial autocorrelation coefficients of acceleration responses as DSFs. Principal component (PC) analysis is used to transform the initial DSFs to scores. The resulting scores from the healthy and damaged states are used to select the PCs which are most sensitive to damage. These are then used for making decisions about the structural state by means of statistical hypothesis testing conducted on the scores. The approach is applied to experiments with a laboratory scale wind turbine blade (WTB) made of glass-fibre reinforced epoxy composite. Damage is non-destructively simulated by attaching small masses and the WTB is excited with the help of an electrodynamic shaker using band-limited white noise. The SDD results for the selected subsets of PCs show a clear improvement of the detectability of early damages compared to other DSF selections.

  7. Vortex-induced vibrations on a modern wind turbine blade

    DEFF Research Database (Denmark)

    Heinz, Joachim Christian; Sørensen, Niels N.; Zahle, Frederik;

    2016-01-01

    with blade tip amplitudes of several metres. The investigated inflow conditions are considered realistic and might occur when the wind turbine is idling or standing still and the yaw system is unable to align the wind turbine with the incoming wind. Copyright © 2016 John Wiley & Sons, Ltd.......This article investigates the aero-elastic response of the DTU 10-MW RWT blade in deep stall conditions with angles of attack in the vicinity of 90 degrees. The simulations were conducted with the high-fidelity fluid–structure interaction simulation tool HAWC2CFD employing the multi......-body-based structural model of HAWC2 and the incompressible computational fluid dynamics solver EllipSys3D. The study utilizes detached eddy simulation computations and considers the three-dimensional blade geometry including blade twist and taper. A preliminary frequency analysis of the load variations on a stiff...

  8. Finite element analysis of the cross-section of wind turbine blades; a comparison between shell and 2D-solid models

    DEFF Research Database (Denmark)

    Pardo, D.; Branner, K.

    2005-01-01

    A very detailed 2D-solid finite element model is developed representing the load carrying box girder of a wind turbine blade. Using typical geometrical values for the girder dimensions and public available material data, the overall cross-sectional behaviour is analysed for a simple compressive...

  9. 风电叶片三维参数建模及振动分析%3D parametric modeling and vibration analysis of wind turbine blades

    Institute of Scientific and Technical Information of China (English)

    陈晨; 何斌; 傅洁; 范钦珊

    2012-01-01

    利用目前风力机叶片设计普遍采用的优化设计方法Wilson设计方法,通过MATLAB编程,开发了小型叶片气动设计的应用程序,并利用该程序设计了一台3kW小型水平轴风力机叶片.采用MATLAB和ANSYS共同建立了风力机叶片三维有限元参数模型,MATLAB编制的建模程序提高了初期设计效率,缩短了ANSYS分析前处理时间.在此基础上进行了叶片固有振动特性计算,分析了叶片的振动特性及其与结构参数之间的关系,分析方法和结果对风电叶片的结构设计和动力分析有一定的参考价值.%Wilson theory which is the best method in optimization design of blades and Matlab language programming are applied to develop an application program for aerodynamic design of small wind turbine blades,and by use of this program a 3kW small horizontal wind turbine blades has been designed Then a 3-D parametric finite element model of wind turbine blade is established by MATLAB and ANSYS, and modeling program compiled by Matlab can improve initial design efficiency and shorten pre-processing time in Ansys analysisAfterwards the natural vibration characteristic of the blade is calculated and the relationship between the structural parameters and natural vibration frequencies of the blade is analyzed, which method and result is valuable for structural design and dynamic characteristic analysis of wind turbines blade.

  10. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    is also estimated based on test results. The results show that Miners rule gives a non-conservative estimate on the accumulated damage at failure. The reliability of a wind turbine blade is estimated for both out-of-plane and in-plane loading using three different design standards. The estimated annual......In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...

  11. Optimal selection of autoregressive model coefficients for early damage detectability with an application to wind turbine blades

    Science.gov (United States)

    Hoell, Simon; Omenzetter, Piotr

    2016-03-01

    Data-driven vibration-based damage detection techniques can be competitive because of their lower instrumentation and data analysis costs. The use of autoregressive model coefficients (ARMCs) as damage sensitive features (DSFs) is one such technique. So far, like with other DSFs, either full sets of coefficients or subsets selected by trial-and-error have been used, but this can lead to suboptimal composition of multivariate DSFs and decreased damage detection performance. This study enhances the selection of ARMCs for statistical hypothesis testing for damage presence. Two approaches for systematic ARMC selection, based on either adding or eliminating the coefficients one by one or using a genetic algorithm (GA) are proposed. The methods are applied to a numerical model of an aerodynamically excited large composite wind turbine blade with disbonding damage. The GA out performs the other selection methods and enables building multivariate DSFs that markedly enhance early damage detectability and are insensitive to measurement noise.

  12. Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method

    Directory of Open Access Journals (Sweden)

    Dun-ming Liao

    2016-03-01

    Full Text Available For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification (DS process, a radiation heat transfer model based on the Finite Element Method (FEM is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process, the solidification processes of a complex superalloy turbine blade in the High Rate Solidification (HRS process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm昺in-1. Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.

  13. Modelling and simulation of load connected fixed blade wind turbine with permanent magnet synchronous generators

    OpenAIRE

    Al-Toma, AS; Taylor, GA; Abbod, M

    2015-01-01

    This paper presents the modelling and simulation of a wind turbine driven Permanent Magnet Synchronous Generator connected to a load. The system has been tested at different wind speeds. The machine side controller has been designed to match Maximum Power Point Tracking (MPPT) to obtain high extraction of wind power when connected to a load, while the load side controller fixes the DC voltage that is converted to the AC load voltage. Detailed plots of voltage and current profiles are also pre...

  14. Fatigue Life of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The present paper analyses the possibility of reducing the expected damage accumulation during tower passage by modifying the wind turbine tower design from a traditional mono-tower to a tripod. Due to a narrow stagnation zone the stress reversals and hence the damage accumulation in the blades...

  15. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades. Advances...... in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials...

  16. On the Nonlinear Structural Analysis of Wind Turbine Blades using Reduced Degree-of-Freedom Models

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Larsen, Jesper Winther; Nielsen, Søren R.K.

    2008-01-01

    , modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in predicting the nonlinear response and stability of a blade by comparison to a full model based...... on a nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred to higher modes due to parametric or nonlinear coupling terms, which influence the response...... representing the case of infinitely many included modes, is shown to predict stable and ordered response for all considered parameters. Further, the analysis shows that the reduced-degree-of-freedom model of relatively low order overestimates the response near resonance peaks, which is a consequence...

  17. Rotational effects on turbine blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  18. Methodology for Structural Integrity Analysis of Gas Turbine Blades

    Directory of Open Access Journals (Sweden)

    Tiago de Oliveira Vale

    2012-03-01

    Full Text Available One of the major sources of stress arising in turbomachinery blades are the centrifugal loads acting at any section of the airfoil. Accounting for this phenomenon stress evaluation of the blade attachment region in the disc has to be performed in order to avoid blade failure. Turbomachinery blades are generally twisted, and the cross section area varies from the root of the blade to the tip. The blade root shape at the attachment region is of great concern. Stress concentrations are predictable at this contact region. In this paper, a finite element model has been created for the purpose of assessing stress at the joint region connecting the blade to the disc slot. Particular attention was paid to the geometric modeling of the "fir-tree" fixing, which is now used in the majority of gas turbine engines. This study has been performed using the commercial software ANSYS 13.0. The disc and blade assembly are forced to move with a certain rotational velocity. Contact connections are predicted on the common faces of the blade and on the disc at the root. Solutions can be obtained to allow the evaluation of stresses. Results can be compared with the mechanical properties of the adopted material.

  19. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Berring, Peter; Branner, Kim; Berggreen, Christian

    2007-01-01

    The complete 3D static responses of two different eight meter long wind turbine blade sections were tested. To experimentally investigate the 3D response, an advanced 3D digital optical deformation measuring system (ARAMIS 2M and 4M) was applied in this work. This system measures the full......-field displacements (ux, uy and uz) of the blade surface. A least squares algorithm was developed, which fits a plane through each deformed cross section, and defines a single set of displacements and rotations (three displacements and rotations) per cross section. This least squares algorithm was also used...... to accommodate problems with a flexible boundary condition by determining the displacements and rotations for a cross section near the boundary. These displacements and rotations are subtracted from all other cross sections along the blade and thereby making the blade section fully fixed at the chosen cross...

  20. Future Materials for Wind Turbine Blades - A Critical Review

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2012-01-01

    Wind turbine industry is continuously evaluating material systems to replace the current thermoset composite technologies. Since turbine blades are the key component in the wind turbines and the size of the blade is increasing in today’s wind design, the material selection has become crucial...... higher performance under severe environmental conditions. The current article reviews various material alternatives and demonstrates the advantageous and disadvantageous for future wind turbine blade developments....

  1. A Critical Review of Future Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2014-01-01

    Wind turbine industry is continuously evaluating materials systems to replace the current thermoset composite technologies. Since turbine blades are the key component in the wind turbines and the size of the blade is increasing in todays wind design, the materials selection has become crucial...... higher performance under severe environmental conditions. The current article reviews various materials alternatives and demonstrates the advantages and disadvantages for future wind turbine blade developments....

  2. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage...

  3. Integrated Lifing Analysis of a Film-Cooled Turbine Blade

    Science.gov (United States)

    2003-02-01

    not available, and data for an isotropic superalloy were used. Obviously the inaccuracy of the FE calculations will be larger when an inaccurate...complex problem as a first stage turbine blade analysis to demonstrate your modelling tool. Have you considered applying the tool to lifing a disc

  4. Effect of RANS-Type Turbulence Models on Adiabatic Film Cooling Effectiveness over a Scaled Up Gas Turbine Blade Leading Edge Surface

    Science.gov (United States)

    Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix

    2016-06-01

    Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.

  5. A modification method on runner blades in a Bulb turbine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W; Wu, Y; Liu, S, E-mail: yang-w03@mails.tsinghua.edu.c [Department of Thermal Engineering, Tsinghua University No.1 Tsinghua Park Haidian District, Beijing, 100084 (China)

    2010-08-15

    In this paper a modification method of the runner blades in a Bulb turbine is proposed, in which the main scale of the runner is maintained. In the modification method the runner blade is expressed by a gather of coordinate points. In order to make the modification simple and efficient, one of the coordinate is fixed and only the angles of the points are changed according to different modification purposes. The Bezier curve is applied to keep the modified blades smooth. For the purpose of verification, the modification method is used in some a prototype Bulb turbine in China. In order to check the modification effectiveness, a three dimensional turbulent computation is carried out through the whole passage including the bulb body, guide vanes, runner and draft tube of a prototype Bulb turbine under its rated operation. An SST k-{omega} turbulence model is used during the flow simulation. The performance prediction of the bulb turbine is conducted by the steady flow simulation. Comparisons of the computational results between the original turbine and a modified one indicate that the modification method is practical and can improve the performance of the bulb turbine.

  6. A Novel Hybrid Approach for Numerical Modeling of the Nucleating Flow in Laval Nozzle and Transonic Steam Turbine Blades

    Directory of Open Access Journals (Sweden)

    Edris Yousefi Rad

    2017-08-01

    Full Text Available In the present research, considering the importance of desirable steam turbine design, improvement of numerical modeling of steam two-phase flows in convergent and divergent channels and the blades of transonic steam turbines has been targeted. The first novelty of this research is the innovative use of combined Convective Upstream Pressure Splitting (CUSP and scalar methods to update the flow properties at each calculation point. In other words, each property (density, temperature, pressure and velocity at each calculation point can be computed from either the CUSP or scalar method, depending on the least deviation criterion. For this reason this innovative method is named “hybrid method”. The next novelty of this research is the use of an inverse method alongside the proposed hybrid method to find the amount of the important parameter z in the CUSP method, which is herein referred to as “CUSP’s convergence parameter”. Using a relatively simple computational grid, firstly, five cases with similar conditions to those of the main cases under study in this research with available experimental data were used to obtain the value of z by the Levenberg-Marquardt inverse method. With this innovation, first, an optimum value of z = 2.667 was obtained using the inverse method and then directly used for the main cases considered in the research. Given that the aim is to investigate the two-dimensional, steady state, inviscid and adiabatic modeling of steam nucleating flows in three different nozzle and turbine blade geometries, flow simulation was performed using a relatively simple mesh and the innovative proposed hybrid method (scalar + CUSP, with the desired value of z = 2.667 . A comparison between the results of the hybrid modeling of the three main cases with experimental data showed a very good agreement, even within shock zones, including the condensation shock region, revealing the efficiency of this numerical modeling method innovation

  7. Structural health monitoring of wind turbine blades

    Science.gov (United States)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  8. Determination of Remaining Useful Life of Gas Turbine Blade

    Directory of Open Access Journals (Sweden)

    Meor Said Mior Azman

    2016-01-01

    Full Text Available The aim of this research is to determine the remaining useful life of gas turbine blade, using service-exposed turbine blades. This task is performed using Stress Rupture Test (SRT under accelerated test conditions where the applied stresses to the specimen is between 400 MPa to 600 MPa and the test temperature is 850°C. The study will focus on the creep behaviour of the 52000 hours service-exposed blades, complemented with creep-rupture modelling using JMatPro software and microstructure examination using optical microscope. The test specimens, made up of Ni-based superalloy of the first stage turbine blades, are machined based on International Standard (ISO 24. The results from the SRT will be analyzed using these two main equations – Larson-Miller Parameter and Life Fraction Rule. Based on the results of the remaining useful life analysis, the 52000h service-exposed blade has the condition to operate in the range of another 4751 hr to 18362 hr. The microstructure examinations shows traces of carbide precipitation that deteriorate the grain boundaries that occurs during creep process. Creep-rupture life modelling using JMatPro software has shown good agreement with the accelerated creep rupture test with minimal error.

  9. Deterioration of Thermal Barrier Coated Turbine Blades by Erosion

    Directory of Open Access Journals (Sweden)

    Rohan Swar

    2012-01-01

    Full Text Available A combined experimental and computational study was conducted to investigate the erosion of thermal barrier coated (TBC blade surfaces by alumina particles ingestion in a single-stage turbine. In the experimental investigation, tests were performed to determine the erosion rates and particle restitution characteristics under different impact conditions. The experimental results show that the erosion rates increase with increased impingement angle, impact velocity, and temperature. In the computational simulations, an Euler-Lagrangian two-stage approach is used in obtaining numerical solutions to the three-dimensional compressible Reynolds-Averaged Navier-Stokes equations and the particles equations of motion in each blade passage reference frame. User defined functions (UDFs were developed to represent experimentally based correlations for particle surface interaction models and TBC erosion rates models. UDFs were employed in the three-dimensional particle trajectory simulations to determine the particle rebound characteristics and TBC erosion rates on the blade surfaces. Computational results are presented in a commercial turbine and a NASA-designed automotive turbine. The similarities between the erosion patterns in the two turbines are discussed for uniform particle ingestion and for particle ingestion concentrated in the inner and outer 5% of the stator blade span to represent the flow cooling of the combustor liner.

  10. Blade pitch optimization methods for vertical-axis wind turbines

    Science.gov (United States)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  11. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  12. Application of Circulation Controlled Blades for Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Velissarios Kourkoulis

    2013-07-01

    Full Text Available The blades of a vertical axis wind turbine (VAWT rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a higher trailing-edge thickness than conventional sections giving rise to additional base drag. The choice of design parameters is a compromise between lift augmentation, additional base drag as well as the power required to pump the air jet. Although CC technology has been investigated for many years, particularly for aerospace applications, few researchers have considered VAWT applications. This paper considers the feasibility of the technology, using Computational Fluid Dynamics to evaluate a baseline CC aerofoil with different trailing-edge ellipse shapes. Lift and drag increments due to CC are considered within a momentum based turbine model to determine net power production. The study found that for modest momentum coefficients significant net power augmentation can be achieved with a relatively simple aerofoil geometry if blowing is controlled through the blades rotation.

  13. Calculation of the VKI turbine blade with LES and DES

    Institute of Scientific and Technical Information of China (English)

    F. Magagnato; B. Pritz; M. Gabi

    2007-01-01

    The prediction of the laminar to turbulent transition is essential in the calculation of turbine blades, compressor blades or airfoils of airplanes since a non negligible part of the flow field is laminar or transitional. In this paper we compare the prediction capability of the Detached Eddy Simulation (DES) with the Large Eddy Simulation (LES) using the high-pass filtered (HPF) Smagorinsky model (Stolz et al.[1]) when applied to the calculation of transitional flows on turbine blades. Detailed measurements from Canepa et al.[2] of the well known VKI-turbine blade served to compare our results with the experiments. The calculations have been made on a fraction of the blade (10%) using non-reflective boundary conditions of Freund at the inlet and outlet plane extended to internal flows by Magagnato et al.[3] in combination with the Synthetic Eddy Method (SEM) proposed by Jarrin et al. [4].The SEM has also been extended by Pritz et al.[5] for compressible flows. It has been repeatedly shown that hybrid approaches can satisfactorily predict flows of engineering relevance. In this work we wanted to investigate if they can also be used successfully in this difficult test case.

  14. MEMS inertial sensors for load monitoring of wind turbine blades

    Science.gov (United States)

    Cooperman, Aubryn M.; Martinez, Marcias J.

    2015-03-01

    Structural load monitoring of wind turbines is becoming increasingly important due increasing turbine size and offshore deployment. Rotor blades are key components that can be monitored by continuously measuring their deflection and thereby determining strain and loads on the blades. In this paper, a method is investigated for monitoring blade deformation that utilizes micro-electromechanical systems (MEMS) comprising triaxial accelerometers, magnetometers and gyroscopes. This approach is demonstrated using a cantilever beam instrumented with 5 MEMS and 4 strain gauges. The measured changes in angles obtained from the MEMS are used to determine a deformation surface which is used as an input to a finite element model in order to estimate the strain throughout the beam. The results are then verified by comparison with strain gauge measurements.

  15. Bend-twist coupling potential of wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Berggreen, Christian

    2014-01-01

    In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed...... and tested on small-scale coupled composite beams. In the proposed method the coupling coefficient for a generic beam is introduced based on the Euler-Bernoulli beam formulation. By applying the developed method for analysis of a commercial wind turbine blade structure it is demonstrated that a bend......-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling...

  16. The environmental impact of wind turbine blades

    Science.gov (United States)

    Liu, P.; Barlow, C. Y.

    2016-07-01

    The first generation of wind turbine (WT) blades are now reaching their end of life, signalling the beginning of a large problem for the future. Currently most waste is sent to landfill, which is not an environmentally desirable solution. Awareness of this issue is rising, but no studies have fully assessed the eco impact of WT blades. The present study aims to provide a macroscopic quantitative assessment of the lifetime environmental impact of WT blades. The first stage has been to analyse global data to calculate the amount of WT blade materials consumed in the past. The life cycle environmental impact of a single WT blade has then been estimated using eco data for raw materials, manufacturing processes, transportation, and operation and maintenance processes. For a typical 45.2 meter 1.5 MW blade this is 795 GJ (CO2 footprint 42.1 tonnes), dominated by manufacturing processes and raw materials (96% of the total. Based on the 2014 installed capacity, the total mass of WTB is 78 kt, their energy consumption is 82 TJ and the carbon dioxide footprint is 4.35 Mt. These figures will provide a basis for suggesting possible solutions to reduce WTB environmental impact.

  17. Vibration-based SHM System: Application to Wind Turbine Blades

    Science.gov (United States)

    Tcherniak, D.; Mølgaard, L. L.

    2015-07-01

    This study presents an vibration-based system designed for structural health monitoring of wind turbine blades. Mechanical energy is introduced by means of an electromechanical actuator mounted inside the blade. The actuator's plunger periodically hits the blade structure; the induced vibrations propagate along the blade and are measured by an array of accelerometers. Unsupervised learning is applied to the data: the vibration patterns corresponding to the undamaged blade are used to create a statistical model of the reference state. During the detection stage, the current vibration pattern is compared with the reference state, and the novelties can be associated with damage. The vibration pattern is described by the covariance matrix between the accelerometer signals. The mid-range frequencies are used: this range is above the frequencies excited by blade-wind interaction, thus ensuring a good signal-to-noise ratio. Simultaneously, the frequencies are low enough to be able to propagate the entire blade length, so good results can be obtained even using only one actuator. The system is demonstrated on a real 34m blade mounted on a test rig. Using the suggested approach, the system enables detection of, e.g., a 20cm long trailing edge opening under realistic noise conditions. It is also demonstrated that the system provides rough information about damage location. Progression of damage, if any, can also be detected.

  18. Turbine blade with tuned damping structure

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Christian X.; Messmann, Stephen J.

    2015-09-01

    A turbine blade is provided comprising: a root; an airfoil comprising an external wall extending radially from the root and having a radially outermost portion; and a damping structure. The external wall may comprise first and second side walls joined together to define an inner cavity of the airfoil. The damping structure may be positioned within the airfoil inner cavity and coupled to the airfoil so as to define a tuned mass damper.

  19. Turbine Blade Cooling System Optimization

    OpenAIRE

    GIRARDEAU, Julian; PAILHES, Jérôme; SEBASTIAN, Patrick; PARDO, Frédéric; Nadeau, Jean-Pierre

    2013-01-01

    The authors wish to thank turbine designers from TURBOMECA SAFRAN Group.; International audience; Designing high performance cooling systems suitable for preserving the service lifetime of nozzle guide vanes of turboshaft engines leads to significant aerodynamic losses. These losses jeopardize the performance of the whole engine. In the same time, a low efficiency cooling system may affect the costs of maintenance repair and overhaul of the engine as component life decreases. Consequently, de...

  20. Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion

    Science.gov (United States)

    Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo

    2007-04-01

    In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.

  1. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading...... and environmental conditions. This paper highlights recent advances in methods used to characterize adhesive joints in wind turbine blades and the manner in which laboratory data is used to predict the structural response of wind turbine blades....

  2. Bamboo as a potential material used for windmill turbine blades

    OpenAIRE

    Xu, Jie; Qin, Yinyao; Zhang, Yu

    2009-01-01

    A mass of studies about windmill turbine blades have been addressed in the recent few decades. This report focus on the development of using bamboo composite materials for producing windmill turbine blades related to the life cycle assessment with sustainable perspective. So we made the problem formulation like this: How can bamboo fibers be used in the design and production of wind mill blades and how would it influence the impact of wind mill blades in a lifecycle perspective? In order to a...

  3. Application of Circulation Controlled Blades for Vertical Axis Wind Turbines

    OpenAIRE

    Shires, A.; Kourkoulis, V

    2013-01-01

    The blades of a vertical axis wind turbine (VAWT) rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC) VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a hi...

  4. 基于MATLAB的风力机叶片自动化有限元建模%Automatic Finite Element Modeling of Wind Turbines Blade Based on MATLAB

    Institute of Scientific and Technical Information of China (English)

    凡盛; 刘雄伟; 王林

    2013-01-01

    The blade which can extract energy from wind plays a key role in a wind turbine system.Recently,finite element technology has been widely used in modem wind turbine blade design and analysis.However,due to the extremely complicated geometry shape and structure lay-out of the blade,finite element modeling of the blade becomes a quite challenge task and consumes a lot of time.In order to improve the efficiency of wind turbine blade design and analysis,this paper integrates Matlab language and APDL (Ansys Parametric Design Language) to develop a Matlab GUI (Graphic User Interface),which can generate the APDL commands used for building up the finite element model of blade while complete the blade geometry design.A 10kW fixed-pitch stall-regulated wind turbine blade is chosen as a case study to demonstrate the efficiency,accuracy and practicality of this method.%叶片是风力机获取风能最为关键的部件之一.近年来,有限元技术已经广泛地运用到风力机叶片设计和分析中.然而,由于风力机叶片极为复杂的曲面外形和铺层结构,使得叶片有限元建模变成一项极具挑战性和耗时的任务.为了提高风力机叶片设计和分析的效率,本文结合Matlab语言和APDL(Ansys参数化设计语言)编程,开发了Matlab GUI(用户图形界面),能够在完成风力机叶片几何外形设计的同时,自动生成用于建立叶片有限元模型的APDL命令流.本文以一台10kW定桨距失速型风力机叶片的设计和有限元建模为实例,阐述其思想并验证了此方法的高效性、正确性和实用性.

  5. Time domain analysis method for aerodynamic noises from wind turbine blades

    Directory of Open Access Journals (Sweden)

    Hua ZHAO

    2015-04-01

    Full Text Available The issue of the aerodynamic noises from wind turbine blades affecting the surrounding residents life begins to attract researcher's attention. Most of the existing researches are based on CFD software or experimental data fitting method to analyze the aerodynamic noises, so it is difficult to adapt the demand to dynamic analysis of the aerodynamic noises from wind speed variation. In this paper, the operation parameters, the inflow wind speed and the receiver location are considered, and a modified model to calculate aerodynamic noises from wind turbine blades which is based on traditional acoustic formulas is established. The program to calculate the aerodynamic noises from the 2 MW wind turbine blades is compiled using a time-domain analysis method based on the Simulink modular in Matlab software. And the pressure time sequence diagrams of the aerodynamic noises from wind turbine blades are drawn. It has provided a theoretical foundation to develop low noise wind turbine blades.

  6. Cable connected active tuned mass dampers for control of in-plane vibrations of wind turbine blades

    Science.gov (United States)

    Fitzgerald, B.; Basu, B.

    2014-11-01

    In-plane vibrations of wind turbine blades are of concern in modern multi-megawatt wind turbines. Today's turbines with capacities of up to 7.5 MW have very large, flexible blades. As blades have grown longer the increasing flexibility has led to vibration problems. Vibration of blades can reduce the power produced by the turbine and decrease the fatigue life of the turbine. In this paper a new active control strategy is designed and implemented to control the in-plane vibration of large wind turbine blades which in general is not aerodynamically damped. A cable connected active tuned mass damper (CCATMD) system is proposed for the mitigation of in-plane blade vibration. An Euler-Lagrangian wind turbine model based on energy formulation has been developed for this purpose which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane vibrations and also the interaction between the blades and the tower including the CCATMDs. The CCATMDs are located inside the blades and are controlled by an LQR controller. The turbine is subject to turbulent aerodynamic loading simulated using a modification to the classic Blade Element Momentum (BEM) theory with turbulence generated from rotationally sampled spectra. The turbine is also subject to gravity loading. The effect of centrifugal stiffening of the rotating blades has also been considered. Results show that the use of the proposed new active control scheme significantly reduces the in-plane vibration of large, flexible wind turbine blades.

  7. Design for the automation of composite wind turbine blade manufacture

    Science.gov (United States)

    Polcari, M. J.; White, K. D.; Sherwood, J. A.

    2016-10-01

    The majority of large wind turbine blades are manufactured from textile-reinforced resin-infused composites using an open mold. The placement of the textile reinforcements in the mold is traditionally accomplished by a manual process where dozens of workers hand place each dry fabric in the mold. Depending on the level of skill and experience of each worker and the relative complexity of the mold geometry, local areas may exhibit out-of-plane wrinkling and in-plane waviness. Fabric imperfections such as these can adversely impact the strength and stiffness of the blade, thereby compromising its durability in service. In an effort to reduce the variabilities associated with a manual-labor process, an automated piecewise shifting method has been proposed for fabric placement. This automated layup method saves time on the preform process and reduces variability from blade to blade. In the current research the automated shifting layup method is investigated using a robust and easy-to-use finite element modelling approach. User-defined material models utilizing a mesoscopic unit-cell modeling approach are linked with Abaqus to capture the evolution of the fabric shear stiffness and changes in the fiber orientations during the fabric-placement process. The simulation approach is demonstrated for the geometry of the trailing edge of a typical wind turbine blade. The simulation considers the mechanical behavior of the fabric and reliably predicts fabric deformation and failure zones.

  8. Bioinspired turbine blades offer new perspectives for wind energy

    Science.gov (United States)

    Cognet, V.; Courrech du Pont, S.; Dobrev, I.; Massouh, F.; Thiria, B.

    2017-02-01

    Wind energy is becoming a significant alternative solution for future energy production. Modern turbines now benefit from engineering expertise, and a large variety of different models exists, depending on the context and needs. However, classical wind turbines are designed to operate within a narrow zone centred around their optimal working point. This limitation prevents the use of sites with variable wind to harvest energy, involving significant energetic and economic losses. Here, we present a new type of bioinspired wind turbine using elastic blades, which passively deform through the air loading and centrifugal effects. This work is inspired from recent studies on insect flight and plant reconfiguration, which show the ability of elastic wings or leaves to adapt to the wind conditions and thereby to optimize performance. We show that in the context of energy production, the reconfiguration of the elastic blades significantly extends the range of operating regimes using only passive, non-consuming mechanisms. The versatility of the new turbine model leads to a large increase of the converted energy rate, up to 35%. The fluid/elasticity mechanisms involved for the reconfiguration capability of the new blades are analysed in detail, using experimental observations and modelling.

  9. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil

    Science.gov (United States)

    Li, Ming

    2017-01-01

    The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift. PMID:28243053

  10. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil.

    Science.gov (United States)

    Tian, Weijun; Yang, Zhen; Zhang, Qi; Wang, Jiyue; Li, Ming; Ma, Yi; Cong, Qian

    2017-01-01

    The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.

  11. Feasibility study on a strain based deflection monitoring system for wind turbine blades

    Science.gov (United States)

    Lee, Kyunghyun; Aihara, Aya; Puntsagdash, Ganbayar; Kawaguchi, Takayuki; Sakamoto, Hiraku; Okuma, Masaaki

    2017-01-01

    The bending stiffness of the wind turbine blades has decreased due to the trend of wind turbine upsizing. Consequently, the risk of blades breakage by hitting the tower has increased. In order to prevent such incidents, this study proposes a deflection monitoring system that can be installed to already operating wind turbine's blades. The monitoring system is composed of an estimation algorithm to detect blade deflection and a wireless sensor network as a hardware equipment. As for the estimation method for blade deflection, a strain-based estimation algorithm and an objective function for optimal sensor arrangement are proposed. Strain-based estimation algorithm is using a linear correlation between strain and deflections, which can be expressed in a form of a transformation matrix. The objective function includes the terms of strain sensitivity and condition number of the transformation matrix between strain and deflection. In order to calculate the objective function, a simplified experimental model of the blade is constructed by interpolating the mode shape of a blade from modal testing. The interpolation method is effective considering a practical use to operating wind turbines' blades since it is not necessary to establish a finite element model of a blade. On the other hand, a sensor network with wireless connection with an open source hardware is developed. It is installed to a 300 W scale wind turbine and vibration of the blade on operation is investigated.

  12. Design and analysis of small wind turbine blades with wakes similar to those of industrial scale turbines

    Science.gov (United States)

    Hassanzadeh, Arash; Naughton, Jonathan

    2016-11-01

    A new design approach has been developed for wind turbine blades to be used in wind tunnel experiments that study wind turbine wakes. The approach allows wakes of small scale (2 m diameter) wind turbine rotors to simulate the important physics of wakes generated by a "parent" industrial scale wind turbine rotor despite the difference in size. The design approach forces the normalized normal and tangential force distributions of the small scale wind turbine blades to match those of the "parent" industrial scale wind turbine blades. The wake arises from the interaction between the flow and the blade, which imparts a momentum deficit and rotation to the flow due to the forces created by the blade on the flow. In addition, the wake dynamics and stability are affected by the load distribution across the blade. Thus, it is expected that matching normalized force distributions should result in similar wake structure. To independently assess the blades designed using this approach, the "parent" industrial scale and small scale wind turbine rotors are modeled using a free vortex wake method to study the generation and evolution of the two wakes. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  13. Influence of Icing on the Modal Behavior of Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Sudhakar Gantasala

    2016-10-01

    Full Text Available Wind turbines installed in cold climate sites accumulate ice on their structures. Icing of the rotor blades reduces turbine power output and increases loads, vibrations, noise, and safety risks due to the potential ice throw. Ice accumulation increases the mass distribution of the blade, while changes in the aerofoil shapes affect its aerodynamic behavior. Thus, the structural and aerodynamic changes due to icing affect the modal behavior of wind turbine blades. In this study, aeroelastic equations of the wind turbine blade vibrations are derived to analyze modal behavior of the Tjaereborg 2 MW wind turbine blade with ice. Structural vibrations of the blade are coupled with a Beddoes-Leishman unsteady attached flow aerodynamics model and the resulting aeroelastic equations are analyzed using the finite element method (FEM. A linearly increasing ice mass distribution is considered from the blade root to half-length and thereafter constant ice mass distribution to the blade tip, as defined by Germanischer Lloyd (GL for the certification of wind turbines. Both structural and aerodynamic properties of the iced blades are evaluated and used to determine their influence on aeroelastic natural frequencies and damping factors. Blade natural frequencies reduce with ice mass and the amount of reduction in frequencies depends on how the ice mass is distributed along the blade length; but the reduction in damping factors depends on the ice shape. The variations in the natural frequencies of the iced blades with wind velocities are negligible; however, the damping factors change with wind velocity and become negative at some wind velocities. This study shows that the aerodynamic changes in the iced blade can cause violent vibrations within the operating wind velocity range of this turbine.

  14. Investigation of structural behaviour due to bend-twist couplings in wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimiroy; Berggreen, Christian;

    2009-01-01

    The structural behaviour of a composite wind turbine blade with implemented bend-twist coupling is examined in this paper. Several shell finite element models of the blade have been developed and validated against full-scale tests. All shell models performed well for flap-wise bending, but perfor......The structural behaviour of a composite wind turbine blade with implemented bend-twist coupling is examined in this paper. Several shell finite element models of the blade have been developed and validated against full-scale tests. All shell models performed well for flap-wise bending...

  15. Bend-twist coupling potential of wind turbine blades

    Science.gov (United States)

    Fedorov, V.; Berggreen, C.

    2014-06-01

    In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed and tested on small-scale coupled composite beams. In the proposed method the coupling coefficient for a generic beam is introduced based on the Euler-Bernoulli beam formulation. By applying the developed method for analysis of a commercial wind turbine blade structure it is demonstrated that a bend-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling into a blade on such important blade structural properties as bending and torsional stiffness is demonstrated.

  16. Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution: Wind energy, actuator line model

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Tossas, L. A. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218 MD USA; Churchfield, M. J. [National Renewable Energy Laboratory, Golden 80401 CO USA; Meneveau, C. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218 MD USA

    2017-01-20

    The actuator line model (ALM) is a commonly used method to represent lifting surfaces such as wind turbine blades within large-eddy simulations (LES). In the ALM, the lift and drag forces are replaced by an imposed body force that is typically smoothed over several grid points using a Gaussian kernel with some prescribed smoothing width e. To date, the choice of e has most often been based on numerical considerations related to the grid spacing used in LES. However, especially for finely resolved LES with grid spacings on the order of or smaller than the chord length of the blade, the best choice of e is not known. In this work, a theoretical approach is followed to determine the most suitable value of e, based on an analytical solution to the linearized inviscid flow response to a Gaussian force. We find that the optimal smoothing width eopt is on the order of 14%-25% of the chord length of the blade, and the center of force is located at about 13%-26% downstream of the leading edge of the blade for the cases considered. These optimal values do not depend on angle of attack and depend only weakly on the type of lifting surface. It is then shown that an even more realistic velocity field can be induced by a 2-D elliptical Gaussian lift-force kernel. Some results are also provided regarding drag force representation.

  17. Lifetime modelling for MCrAlY coatings in industrial gas turbine blades

    Directory of Open Access Journals (Sweden)

    Krukovsky Pavel

    2004-01-01

    Full Text Available A novel theoretical and experimental approach for lifetime modelling of MCrAlY coatings for stationary gas turbines has been undertaken using the Inverse Problem Solution (IPS technique. With this technique feasible experimental data acquired after a defined experimental time t e are used as input values for the model parameters estimation. In the first stage of the approach a model, based on the oxidation and diffusion processes (Fick's first and second law was assumed, which considers the Al concentration profile across the coating. The measured average Al concentration profiles in the two-phase g+b and g - regions of coating as well as base metal were used as input values for the model parameters estimation and calculational prediction of the long term diffusion and oxidation behavior of the coating was performed. The time, when the b-NiAl phase is completely consumed was assumed as the coating lifetime end. Exposure experiments were carried out with a NiCoCrAlY coating (200 micron thickness with 8% Al in air at 900 °C and 950 °C, currently up to 10000 h. The oxide scale is growing continuously and no other oxides were observed. The average and b-NiAl phase concentration profiles of Al across the coating thickness were determined by electron microprobe and image analysis systems in the initial state after 700 and 10000 h of oxidation. The concentration profile measured after 700 h was used as input values for the model parameters estimation in order to calculate the Al and b-NiAl phase concentration profiles after 10000 h. The computational forecast for 10000 h at 950 °C and 900 °C are in good agreement with the measured data. The approach was applied for NiCoCrAlY (200 micron thickness coating lifetime modelling at 950 °C and 900 °C as well as for different coating thicknesses at 950 °C.

  18. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    Energy Technology Data Exchange (ETDEWEB)

    Claytor, Thomas N [Los Alamos National Laboratory; Ammerman, Curtt N [Los Alamos National Laboratory; Park, Gyu Hae [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Atterbury, Marie K [Los Alamos National Laboratory

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  19. Experiments of Wind Turbine Blades with Rocket Triggered Lightning

    Science.gov (United States)

    Minowa, Masayuki; Sumi, Shinichi; Minami, Masayasu; Horii, Kenji

    This paper describes the results of the experiments of wind turbine blades with rocket triggered lightning. A number of wind power stations have been projected and planted. Lightning damage to wind turbines has been an increasing problem recently. So development on protection of wind power plants from lightning is necessary to be fully run for the future. In the experiments, the 1.8m long blade was struck by the lightning discharge triggered by rocket. For the blade kept dry inside, the very strong discharge of positive peak current 28kV, total charge 520 Coulombs, was triggered, but the breakdown did not occur through the blade into inside. Another blade polluted by salty wet inside was struck by the lightning discharge of negative peak current of 4kA with 0.5 Coulombs. The lightning was small, nevertheless, the blade was broken at the upper edge and the blade was disconnected by crack. For the protection of blade, the blade surface was covered with stainless steel plate. The blade itself was safe when the big positive lightning discharged, while most part of stainless steel cover was burned out. Supplement breakdown tests of wind turbine blade were carried out with lightning impulse voltage in laboratory. As a result, it became clear that the blade kept dry inside was an effective lightning protection of wind turbine blades.

  20. Damage tolerance and structural monitoring for wind turbine blades.

    Science.gov (United States)

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind.

  1. Damage tolerance and structural monitoring for wind turbine blades

    Science.gov (United States)

    McGugan, M.; Pereira, G.; Sørensen, B. F.; Toftegaard, H.; Branner, K.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858

  2. Damage tolerance and structural monitoring for wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Pereira, Gilmar Ferreira; Sørensen, Bent F.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation...... it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective...

  3. Tuned liquid column dampers for mitigation of edgewise vibrations in rotating wind turbine blades

    DEFF Research Database (Denmark)

    Zhang, Zili; Basu, Biswajit; Nielsen, Søren R.K.

    2015-01-01

    , with the consideration of both the space limitation inside the blade and the constraint of the liquid motion. The edgewise modal load for the 2-DOF model has been calculated from a more sophisticated 13-DOF aeroelastic wind turbine model, which includes the coupling of the blade-tower-drivetrain vibration......Edgewise vibrations in wind turbine blades are lightly damped, and large amplitude vibrations induced by the turbulence may significantly shorten the fatigue life of the blade. This paper investigates the performance of tuned liquid column dampers (TLCDs) for mitigating edgewise vibrations...... in rotating wind turbine blades. Normally, the centrifugal acceleration at the outboard portion of a rotating blade can reach to a magnitude of 7–8 g, which makes it possible to use a TLCD with a very small mass for suppressing edgewise vibrations effectively. The parameters of the TLCD to be optimized...

  4. Tip cap for a turbine rotor blade

    Science.gov (United States)

    Kimmel, Keith D

    2014-03-25

    A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.

  5. Numerical Simulation and Shrinkage Defects Prediction of a Turbine Blade Investment Casting

    Institute of Scientific and Technical Information of China (English)

    Jing TIAN; Xiang XUE; Yuebing ZHANG; Yalong GAO; Luzhi LIU; Qin SUN; Shiyou YUAN

    2003-01-01

    By adopting the solid modeling software SoldEdge and the enmeshment software SRIFCast as the pre-processingplatform, a Ni based alloy turbine blade was three-dimensionally modeled and automatically enmeshed. A softwarecode for numerical simulation of flui

  6. Aeroelastic multidisciplinary design optimization of a swept wind turbine blade

    DEFF Research Database (Denmark)

    Pavese, Christian; Tibaldi, Carlo; Zahle, Frederik

    2017-01-01

    Mitigating loads on a wind turbine rotor can reduce the cost of energy. Sweeping blades produces a structural coupling between flapwise bending and torsion, which can be used for load alleviation purposes. A multidisciplinary design optimization (MDO) problem is formulated including the blade sweep...... against time-domain full design load basis aeroelastic simulations to ensure that they comply with the constraints. A 10-MW wind turbine blade is optimized by minimizing a cost function that includes mass and blade root flapwise fatigue loading. The design space is subjected to constraints that represent...... this achievement, a set of optimized straight blade designs is compared to a set of optimized swept blade designs. Relative to the respective optimized straight designs, the blade mass of the swept blades is reduced of an extra 2% to 3% and the blade root flapwise fatigue damage equivalent load by a further 8%....

  7. Subcomponent testing of trailing edge panels in wind turbine blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Haselbach, Philipp Ulrich

    2016-01-01

    This paper proposes a static subcomponent test method designed to check the compressive strength of the trailing edge region in wind turbine blades under a simplified loading. The paper presents numerical simulations using the proposed subcomponent test method and discusses its ability to be used...... for checking the compressive strength of the trailing edge region in wind turbine blades....

  8. CFD-RANS analysis of the rotational effects on the boundary layer of wind turbine blades

    DEFF Research Database (Denmark)

    Carcangiu, Carlo Enrico; Sørensen, Jens Nørkær; Cambuli, Francesco

    2007-01-01

    The flow field past the rotating blade of a horizontal axis wind turbine has been modeled with a full 3-D steady-RANS approach. Flow computations have been performed using the commercial finite-volume solver Fluent. A number of blade sections from the 3-D rotating geometry were chosen and the cor......The flow field past the rotating blade of a horizontal axis wind turbine has been modeled with a full 3-D steady-RANS approach. Flow computations have been performed using the commercial finite-volume solver Fluent. A number of blade sections from the 3-D rotating geometry were chosen...

  9. Diagnostic methods of a bladed disc mode shape evaluation used for shrouded blades in steam turbines

    Science.gov (United States)

    Strnad, Jaromir; Liska, Jindrich

    2015-11-01

    This paper deals with advanced methods for the evaluation of a bladed disc behavior in terms of the wheel vibration and blade service time consumption. These methods are developed as parts of the noncontact vibration monitoring system of the steam turbine shrouded blades. The proposed methods utilize the time-frequency processing (cross spectra) and the method using least squares to analyse the data from the optical and magnetoresistive sensors, which are mounted in the stator radially above the rotor blades. Fundamentally, the blade vibrations are detected during the blade passages under the sensors and the following signal processing, which covers also the proposed methods, leads to the estimation of the blade residual service life. The prototype system implementing above mentioned techniques was installed into the last stage of the new steam turbine (LP part). The methods for bladed disc mode shape evaluation were successfully verified on the signals, which were obtained during the commission operation of the turbine.

  10. POD based analysis of three-dimensional stall over a pitching wind turbine blade

    Science.gov (United States)

    Melius, Matthew; Bayoan Cal, Raul; Mulleners, Karen

    2015-11-01

    Aerodynamic performance of a wind turbine blade is a predominant factor in its power production. Under dynamic loading conditions, predicted aerodynamic loads often do not match operational loads. In the interest of gaining understanding of the complex flow over wind turbine blades, a three-dimensional scaled blade model has been designed and manufactured to be dynamically similar to a rotating full-scale NREL 5MW wind turbine blade. Time resolved particle image velocimetry (PIV) measurements collected over the suction surface of an inboard section of the experimental turbine blade. Flow characteristics are analyzed using coherent structure identification techniques to capture dynamic stall behavior. Proper orthogonal decomposition (POD) is applied to the velocity field providing information about separation point and stall development time scales based on the associated time coefficients and modes. Additionally, continuity and circulation calculations are used to capture three dimensional effects within stalled volumes during developing stall and re-attachment phases of dynamic stall.

  11. A PARAMETRIC MODELING OF WIND TURBINE BLADE USING API IN CATIA%基于CATIA二次开发的风力机叶片参数化建模

    Institute of Scientific and Technical Information of China (English)

    王永志; 张卫民; 康传明; 岳良明

    2012-01-01

    在对风力机叶片进行参数化描述的基础上,基于CATIA二次开发,采用VB语言实现风力机叶片的参数化建模程序.通过研究发现,风力机叶片造型的关键是确定生成叶片蒙皮的导线.实例表明,参数化建模程序运行稳定,执行效率较高,输出的模型可直接用于结构分析,并为叶片气动结构一体化设计打下了基础.%Quick generation of a three-dimensional shape model of blade is one of the most important issues in the process of wind turbine blade design and analysis. The parametric representation of the wind turbine blade configuration was investigated. A Microsoft Visual Basic routine for the parametric geometric modeling of wind turbine blade using API in CATIA was described in this paper. The key issue in wind turbine blade modeling is to determine the guideline of the skin. The example shows that the parametric modeling routine developed here can rapidly generate 3-D shape of wind turbine blade and the model can be directly used in structure analysis and integrated design of aerodynamics and structure.

  12. Crack of a first stage blade in a steam turbine

    Directory of Open Access Journals (Sweden)

    M. Nurbanasari

    2014-10-01

    Full Text Available The failure of the first stage blade in a steam turbine of 55 MW was investigated. The blade was made of 17-4 PH stainless steel and has been used for 12 years before failure. The current work aims to find out the main cause of the first stage blade failure. The methods for investigation were metallurgical analysis, chemical composition test, and hardness measurement. The result showed that there was no evidence the blade failure was due to material. The damage found on the blade namely crack on the blade root. Two locations of the crack observed at the blade root, which was at the tang and the fillet, with different failure modes. In general, the damage of the blade was started by the corrosion occurred on the blade root. The crack at the blade root tang was due to corrosion fatigue and the crack occurred at the blade root fillet owing to stress corrosion cracking.

  13. Flow Characteristics Study of Wind Turbine Blade with Vortex Generators

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2016-01-01

    Full Text Available The blade root flow control is of particular importance to the aerodynamic characteristic of large wind turbines. The paper studies the feasibility of improving blade pneumatic power by applying vortex generators (VGs to large variable propeller shaft horizontal axis wind turbines, with 2 MW variable propeller shaft horizontal axis wind turbine blades as research object. In the paper, three cases of VGs installation are designed; they are scattered in different chordwise position at the blade root, and then they are calculated, respectively, with CFD method. The results show that VGs installed in the separation line upstream, with the separation line of the blade root as a benchmark, show a better effect. Pneumatic power of blades increases by 0.6% by installing VGs. Although the effect on large wind turbines is not obvious, there is a space for optimization.

  14. A Long-Period Grating Sensor for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars

    This PhD project concerns the applied research for providing a novel sensor for measurements on wind turbine blades, based on Long-Period Gratings. The idea is based on the utilization of a special asymmetrical optical fibre with Long-Period Gratings for directional sensitive bend sensing....... The project involves the processes from feasibility study of fibre grating technology to full scale test on a wind turbine blade. The project has involved the design and manufacturing of a D-shape optical fibre. The project includes the process of embedding the optical fibre directly into the wind turbine...... blade material, where a suitable process and recoating material were investigated. The sensor was implemented and tested on a full scale wind turbine blade placed on a test rig. This first prototype has demonstrated the capability of the sensor for wind turbine blade monitoring, particular...

  15. Effect of the blade arc angle on the performance of a Savonius wind turbine

    Directory of Open Access Journals (Sweden)

    Zhaoyong Mao

    2015-05-01

    Full Text Available Savonius wind turbine is a common vertical axis wind turbine which simply comprises two or three arc-type blades and can generate power under poor wind conditions. With the aim of increasing the turbine’s power efficiency, the effect of the blade arc angle on the performance of a typical two-bladed Savonius wind turbine is investigated with a transient computational fluid dynamics method. Simulations were based on the Reynolds Averaged Navier–Stokes equations, and the renormalization group k − ε turbulent model was utilized. The numerical method was validated with existing experimental data. The results indicate that the turbine with a blade arc angle of 160 ∘ generates the maximum power coefficient, 0.2836, which is 8.37% higher than that from a conventional Savonius turbine.

  16. Active Tuned Mass Dampers for Control of In-Plane Vibrations of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fitzgerald, B.; Basu, Biswajit; Nielsen, Søren R.K.

    2013-01-01

    This paper investigates the use of active tuned mass dampers (ATMDs) for the mitigation of in-plane vibrations in rotating wind turbine blades. The rotating wind turbine blades with tower interaction represent time-varying dynamical systems with periodically varying mass, stiffness, and damping......, centrifugal, and turbulent aerodynamic loadings. Investigations show promising results for the use of ATMDs in the vibration control of wind turbine blades....... matrices. The aim of this paper is to determine whether ATMDs could be used to reduce in-plane blade vibrations in wind turbines with better performance than compared with their passive counterparts. A Euler–Lagrangian wind turbine mathematical model based on energy formulation was developed...

  17. Experimental investigation of the influence of blade height and blade number on the performance of low head axial flow turbines

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Punit; Nestmann, Franz [Institute for Water and River Basin Management (IWG), University of Karlsruhe, Kaiser Str. 12, D 76128, Karlsruhe (Germany)

    2011-01-15

    Investigations regarding the influence of design parameters in low head axial flow turbines like blade profiles, blade height and blade number for micro-hydro application continue to be inadequate, even though there is a need and potential for the application of such turbines. This inadequacy provides a good ground to make a detailed experimental study to characterize these influences. The paper presents a holistic theoretical model that attempts to bring out a functionality of the internal performance parameters of the runner and attempts to establish a physical relationship between the two design parameters (blade height and blade number) and the performance parameters. The experimental results on 3 runners showed that with an increase in the number of blades, the efficiency of the runner dropped drastically due to the change in direction of the relative flow vector at the runner exit, which decreased the net rotational momentum and increased the axial flow velocity. The decrease of blade height on the other hand decreased the overall runner loss coefficient quite drastically but this could not result in major performance gains. The study concluded that the influence of blade number is more dominating compared to that of the blade height and that choice of blade number should be carefully made. On the hydraulic level, the study found interesting effects like the slip phenomenon and loss mechanisms within the runner. The paper also looks into the possible errors within the theoretical model developed and the extent of their influence on the conclusions. The paper suggests more experimental studies to separately study the effects of blade number and blade height. It further makes a strong case to initiate a computational work to validate all the experimental findings, fill the gaps in the theoretical model and use it as an optimization and standardization tool for axial flow turbines in the specialized application of micro-hydro. (author)

  18. Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes

    Directory of Open Access Journals (Sweden)

    Wenlong Tian

    2015-07-01

    Full Text Available The Savonius wind turbine is a type of vertical axis wind turbine (VAWTs that is simply composed of two or three arc-type blades which can generate power even under poor wind conditions. A modified Savonius wind turbine with novel blade shapes is introduced with the aim of increasing the power coefficient of the turbine. The effect of blade fullness, which is a main shape parameter of the blade, on the power production of a two-bladed Savonius wind turbine is investigated using transient computational fluid dynamics (CFD. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS equations with a renormalization group turbulent model. This numerical method is validated with existing experimental data and then utilized to quantify the performance of design variants. Results quantify the relationship between blade fullness and turbine performance with a blade fullness of 1 resulting in the highest coefficient of power, 0.2573. This power coefficient is 10.98% higher than a conventional Savonius turbine.

  19. Protection of large wind turbine blades against lightning

    OpenAIRE

    Montañá Puig, Juan; Rachidi-Haeri, Farhad; Rubinstein, Marcos; Bermúdez, José Luis; Solà de Las Fuentes, Gloria; Hermoso Alameda, Blas

    2008-01-01

    Lightning protection of modern wind turbines presents a number of new challenges due to the geometrical, electrical and mechanical particularities of the turbines. The risk assessment requires the estimation of the number of expected strikes. In the case of modern turbines, most of the expected lightning flashes will be upward. In addition, due to the rotation of the blades, modern wind turbines may trigger their own lightning. Moreover, since wind turbines are becoming tall struc...

  20. Acoustic emission monitoring of wind turbine blades

    Science.gov (United States)

    Van Dam, Jeremy; Bond, Leonard J.

    2015-03-01

    Damage to wind turbine blades can, if left uncorrected, evolve into catastrophic failures resulting in high costs and significant losses for the operator. Detection of damage, especially in real time, has the potential to mitigate the losses associated with such catastrophic failure. To address this need various forms of online monitoring are being investigated, including acoustic emission detection. In this paper, pencil lead breaks are used as a standard reference source and tests are performed on unidirectional glass-fiber-reinforced-polymer plates. The mechanical pencil break is used to simulate an acoustic emission (AE) that generates elastic waves in the plate. Piezoelectric sensors and a data acquisition system are used to detect and record the signals. The expected dispersion curves generated for Lamb waves in plates are calculated, and the Gabor wavelet transform is used to provide dispersion curves based on experimental data. AE sources using an aluminum plate are used as a reference case for the experimental system and data processing validation. The analysis of the composite material provides information concerning the wave speed, modes, and attenuation of the waveform, which can be used to estimate maximum AE event - receiver separation, in a particular geometry and materials combination. The foundational data provided in this paper help to guide improvements in online structural health monitoring of wind turbine blades using acoustic emission.

  1. Complicated hollow turbine blades and surface grain refinement process

    OpenAIRE

    Peng Zhijiang; Jia Shuqin; Zhang Zehai

    2010-01-01

    The control of grain size in superalloys is critical in the manufacture of gas turbine blades. The aim of the present research is to provide the technology for producing complicated hollow turbine blades with fine surface grains and better comprehensive mechanical properties. By melt superheating treatment and coating the internal surfaces of shell mould using a cobalt aluminate-bearing coating material, the influence of cobalt aluminate as inoculant on the surface grain sizes of turbine blad...

  2. 风力机叶片三维模型颤振问题%Study on Flutter of Three-dimensional Model of Wind Turbine Blades

    Institute of Scientific and Technical Information of China (English)

    王伟; 廖明夫; Martin Kühn

    2013-01-01

    Flutter has an enormous destructive power to wind turbine blades. As a typical dynamic aeroelastic stability problem, people are paying more and more attentions to the flutter in the design of the blades. This article established a three-dimensional model for a blade and a vibration structural model for the entire wind turbine. Using the modal superposition method, the natural frequencies, damping ratios and mode-shapes of different vibration modes of the blade were computed. The affect of the structural parameters of the blade on the flutter was obtained. Results show that, the distance from mass center to torsion center, flapwise bending stiffness and edgewise bending stiffness have great impact on the flutter.%颤振对风力机叶片有巨大破坏力,作为一种典型的气动弹性稳定性问题,在现代风力机的叶片设计中越来越受到重视。建立叶片三维叶型模型和整机振动结构模型,利用振型叠加法计算不同振动模态下的特征频率、阻尼比和振型,得出不同叶片结构参数与颤振的关系。结果表明,叶片型面质心和扭转中心的距离、拍打方向弯曲刚度和挥舞方向弯曲刚度对颤振发生有较大影响。

  3. Microwaves Sensor for Wind Turbine Blade Inspection

    Science.gov (United States)

    Li, Zhen; Haigh, Arthur; Soutis, Constantinos; Gibson, Andrew; Sloan, Robin

    2017-04-01

    The structural integrity of wind turbine blades can be adversely affected by their structural dynamics, temperature extremes, lightning strikes, ultraviolet radiation from sunlight and airborne particulate matter such as hailstones and sand. If subsurface delamination occurs and is undetected then this can lead to fibre breakage and catastrophic failures in composite blades. In this paper we introduce a microwave scanning technique that detects such delamination in practical blade assemblies. Using an open-ended waveguide sensor, the electromagnetic signal reflected from the composite is found to have a phase profile that can detect changes in the composite cross section. Glass fibre T-joints are scanned and the results used to detect thickness variations (e.g., the presence of the web) and delamination. Results are compared across the 18-20 GHz frequency band. The dielectric permittivity of the composite system is measured and is used to estimate the stand-off distance and operating frequency of the sensor. This is critical to the system's ability to detect damage. When the sensor is close to the surface of the structure (standoff distance ≈ 5 mm), delamination down to 0.2 mm in width could be detected.

  4. Performance Analysis of NACA2420 as Wind Turbine Propeller Blade

    Directory of Open Access Journals (Sweden)

    Sulaeman Mustafa

    2017-03-01

    Full Text Available Wind is one of the popular renewable energy sources which is abundantly available either in land or at sea. The wind energy can be converted into electrical energy using wind turbines or wind energy conversion systems. However, the exploration and utilization of wind energy potential in Indonesia is not optimal yet. Therefore, in the present study, the performance of a NACA2420 airfoil as wind turbine blade is evaluated. The main objective of the present research is to determine the optimum angle of the propeller blade that can deliver the most optimum performance. In order to achieve the objectives, the wind turbine blade model was tested using a wind tunnel at wind speeds varying from 2 to 9 m/s. From this research, it is demonstrated that the tunnel has helped to increase the wind speed. The maximum wind speed was generated from the tunnel when the fan distance was 1.1 m. In addition, the experiment was also carried out by varying the pitch angles to be 00, 50, 80, 150, and 300. From the test measurements, it was found that the pitch angle of 50 produces the most optimal power which was at 221.039 watts with 0.401 of power coefficient.

  5. Computational method for the design of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)

  6. Effects of Location, Size and Number of Wind Turbine Receptors on Blade Lightning Protection

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Electric and magnetic fields generated by lightning cause a serious hazard to various systems. Now wind turbine installations with higher power capacity are increasing. Higher power capacity requires higher height and so there is more probability of lightning strike. Blades are the most probable components )to be struck by lightning. The most common lightning protection system for the blades consists of several metallic receptors on the blade surface. Those are connected to the ground by metallic down-conductors placed inside the blade shell. This paper studies effects of the receptor configurations on protecting the blade against lightning strike, For this purpose, an analysis procedure based on finite element method (FEM) in COMSOL Multiphysics software environment is used. The voltage distribution around the blade is simulated for various configurations of receptors. The best configuration is presented. Simulations are performed on the blade model of a special wind turbine, which is "VESTAS V47".

  7. Dynamic stall of an experimental wind turbine blade

    Science.gov (United States)

    Melius, Matthew; Cal, Raúl Bayoán; Mulleners, Karen

    2016-03-01

    To understand the complex flow phenomena over wind turbine blades during stall development, a scaled three-dimensional non-rotating blade model is designed to be dynamically similar to a rotating full-scale NREL 5 MW wind turbine blade. A time-resolved particle image velocimetry (PIV) investigation of flow behavior during the stall cycle examines the processes of stall development and flow reattachment. Proper orthogonal decomposition (POD) and vortex detection techniques are applied to the PIV fields to quantify relevant flow characteristics such as vortex size, separation angle, and separation point throughout a dynamic pitching cycle. The behavior of the POD coefficients provides time scales for the transitional stages which are quantified and compared, revealing that transition from attached flow to full stall is delayed to higher angles of attack and occurs at a higher rate than the transition from full stall to attached flow. The instantaneous flow fields are then reconstructed using the first four POD modes to demonstrate their prominent roles throughout the stall cycle and their ability to capture the general separation behavior over the blade surface.

  8. Study on torsion arc blade type horizontal axis wind turbine; Nejire enko yokugata suihei jiku fusha ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, N.; Kishimura, K. [Meiji University, Tokyo (Japan)

    1996-10-27

    Discussing the rotor blades of the torsion arc blade type (TABT) wind turbine, difference in windmilling characteristics was determined between elliptic blades and rectangular blades by theoretical analysis and model experiment. Experimental generation of power was carried out using a test wind turbine in the natural wind. First, elliptic blades were bent into arcs and fixed to shaft. The action force was determined calculating the blade area and the wind velocity vertical thereto. Furthermore, the force in the direction to turn the rotor was determined with the effect of the part behind the blade taken into account. The rotation-curbing air resistance in the flank direction that a rotor experiences was subtracted to determine the torque generated. A formula was derived for the elliptic blade. Second, a formula was derived in the same way for the case of rectangular blades. In conclusion, in the case of 6-blade wind turbine, the rate of responsibility for wind turbine rotation of the part behind the blade was approximately 50% of the part in front of the blade. Shape coefficients were introduced into the theory, which resulted in values agreeing well with values obtained from experiments. Elliptic blades yielded more power than rectangular blades at the same wind velocity. High in durability, the TABT wind turbine is expected to be put into practical use as a compact auxiliary power generating device. 2 refs., 14 figs.

  9. Dynamic study of a wind turbine blade with horizontal axis

    Energy Technology Data Exchange (ETDEWEB)

    Yousi, R.; El-Batanony, I.; Tritsch, J.B.; Naji, H.; Landjerit, B. [EUDIL, Dept. Mecanique, LML, CNRS URA 1441, 59 - Villeneuve d' Ascq (France)

    2001-04-01

    The study of the dynamic behavior of a wind turbine with horizontal axis can be undertaken by various methods of analysis. The effects of the change of the aerodynamic flow (in the steady and unsteady cases), the variation of parameters of the cinematic movement (angle of attack, pitch angle and yaw angle) and the definition of subsystems characteristics that makes the wind turbine (blade, nacelle and pylon) allow one to characterize the structural dynamic behavior of the wind turbine. It is therefore necessary to develop these items. Once this is done, the structural dynamic behavior of the system can be improved. The term 'improve' means the increase of the life duration by mastering the fatigue effects and the reduction of cost without sacrificing the aerodynamic output. The present study aims to examine the behavior of the blade, which is the main part of the wind turbine in that it that transmits forces to all other parts of the structure. The model is based on the theory of three-dimensional beams, under the assumption of variable sections of the type NACA 4415 airfoil, and takes into account membrane, transversal shear, flexion and free torsion effects. With regards to the aerodynamic loads (the lift, the drag and the pitching moment), a validation has been undertaken by considering experimental data and numerical results obtained by a CFD code (Fluent). The forces are obtained by means of a parametric CAD method interpolation of the aerodynamic poles by Bezier patch under geometrical constraints solved by a Simplex type algorithm. The emphasis is put on dynamic aspects by a complete processing of the dynamic equilibrium equation, applied to the wind turbine blade with horizontal axis. (authors)

  10. Airfoil family design for large offshore wind turbine blades

    Science.gov (United States)

    Méndez, B.; Munduate, X.; San Miguel, U.

    2014-06-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  11. Study to Improve Airframe Turbine Engine Rotor Blade Containment

    Science.gov (United States)

    1977-07-01

    high turbine, and low turbine were determined.* It was assumed that multiple blade fragments behaved as a single mass equivalent to the mass sum of all...case in the low turbine area generally produces detectable noise, thrust losses and vibration and in all probability the engine would be shut down

  12. Research on algorithm of blade vibration for general wind turbine

    Science.gov (United States)

    Wang, Long; Sun, Lun-ye; Wu, Guang; Li, Xue-bin; Lai, Yong-bin; Zhou, Yi-jun

    2016-01-01

    Evaluation of vibration characteristics for wind turbine blades is one of the important contents in the wind turbine research. This paper uses the compressible flow equations with the preconditioning technique, based on the finite volume method and combined with the LU-SGS algorithm for solving the flow area; meanwhile adopts the two degree of freedom of vibration equation with the vertical and torsional vibration for blades to simulate the vibration trajectory of blade under the aerodynamic force, uses the motion grid algorithm for changes in grid computing domain. Calculation program was developed autonomous in the C ++ platform, and the development of software correctness was verified by contrast the results of the classic cylindrical examples. Finally, the vibration characteristics of a wind turbine blade was given, and the software developed in this paper can provide technical support for wind turbine blade vibration study.

  13. Digital Manufacture Techniques for Large Hydro Turbine's Blades

    Institute of Scientific and Technical Information of China (English)

    LAI Xide; ZHANG Qinghua; ZHOU Yunfei; YAN Sijie

    2006-01-01

    Blades are one of the vital components and most difficulty in manufacturing of large hydro turbines. In order to cost-effectively and productively manufacture these kinds of blades, a series of digital techniques in manufacturing have been developed, which includes digital design of hydro turbine blades based on manufacture' requirements, Computer-aided location and the machined error evaluation by using 3-dimensional digitized measuring, tool path generation strategy to meet requirements of enhancing machining efficiency and controlling deviation in NC machining, tool path generation and NC machining simulation by establishing a virtual NC machining environment for blades, and reasonable and feasible strategy and the systematic scheme for manufacturing of large blades by using 5-axis simultaneous CNC machining. The developed digital manufacture techniques have been successfully applied in manufacturing of both the large Kaplan and Francis hydraulic turbine blades; it shows that higher efficiency and the better surfaces finish accuracy can be achieved.

  14. Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade

    Science.gov (United States)

    Yang; Baeder, J. D.

    2016-09-01

    The flatback trailing edge design for modern 100meter wind turbine blade has been developed and proposed to make wind turbine blade to be slender and lighter. On the other hand, it will increase aerodynamic drag; consequently the increased drag diminishes turbine power generation. Thus, an aerodynamic drag reducing technique should be accompanied with the flatback trailing edge in order to prevent loss of turbine power generation. In this work, a drag mitigation design, span-wise wavy trailing edge blade, has been applied to a modern 100meter blade. The span-wise trailing edge acts as a vortex generator, and breaks up the strong span-wise coherent trailing edge vortex structure at the flatback airfoil trailing edge which is a major source of large drag. Three-dimensional unsteady Computational Fluid Dynamics (CFD) simulations have been performed for real scale wind turbine blade geometries. Delayed Detached Eddy Simulation (DDES) with the modified laminar-turbulent transition model has been applied to obtain accurate flow field predictions. Graphical Processor Unit (GPU)-accelerated computation has been conducted to reduce computational costs of the real scale wind turbine blade simulations. To verify the structural reliability of the wavy modification of the blade a simple Eigen buckling analysis has been performed in the current study.

  15. The calculation of blade structure design for wind turbine model%风力机模型叶片结构设计计算

    Institute of Scientific and Technical Information of China (English)

    胡丹梅; 孙凯; 张志超

    2013-01-01

    设计了一种用于风洞实验的风力机模型叶片,为了使模型叶片的结构设计达到试验要求,基于传统Wilson方法,考虑叶尖损失和失速状态下动量理论的失效修正,采用改进后的Wilson优化设计方法,利用MATLAB优化工具箱计算出各截面的参数,然后针对叶片的受力情况,根据各截面几何参数利用材料力学理论知识对叶片的强度和刚度进行校核,计算得到叶片的总应力、转角和挠度沿叶高的分布曲线.分析表明,叶片的最大总应力、最大转角和最大挠度都远小于叶片材料的许用值.因此,该风力机模型叶片在结构设计、强度和刚度上是满足要求的,为风力机模型的进一步试验研究奠定了基础.%A kind of wind turbine model blade which is used for wind tunnel test is designed in the paper.The structure design of the blade model has achieved the requirements of experiment by steps bellow,tip loss is considered and failure of momentum theory under stall condition is corrected based on the traditional Wilson method.After using the improved Wilson optimization design method,the parameters of each section are calculated by MATLAB optimization toolbox.Then aiming at the stress of the blade and according to each section geometry parameters,material mechanics theory is used to check the blade strength and stiffness.Finally the distribution curves of the total stress,the blade relative angle and deflection calculated along the blade height are got.The results show that the maximum total stress,maximum relative angle and maximum deflection are far less than the blade material allowable values.Therefore,the blade structure design,the blade strength and rigidity meet the requirements,and lay foundation for subsequent experimental analysis research.

  16. Long-period gratings for selective monitoring of loads on a wind turbine blade.

    Science.gov (United States)

    Glavind, L; Buggy, S; Canning, J; Gao, S; Cook, K; Luo, Y; Peng, G D; Skipper, B F; Kristensen, M

    2014-06-20

    An optical fiber sensor based on long-period gratings (LPG) for selective measurements of flap- and edge-wise bending of a wind turbine blade is presented. Two consecutive LPGs separated by 40 mm interfere to improve resolution and reduce noise in a D-shaped fiber. The mode profile of the device was characterized experimentally to provide a model describing the mode couplings. The sensor was tested on a wind turbine blade.

  17. INFLUENCE OF BLADES' STRESS STATE ON FRANCIS TURBINE RUNNER'S INVALIDATION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Numerical simulation on Francis turbine runner's welding temperature field and welding stress field is carried out on the base of solving the problem of welding heat source's movement along any spatial routes and the problem of heat elimination between the complicated blade and air. The evolvement law of welding stress and the distribution of the stress field after welding are obtained.The results indicate that the peak value of the welding residual stress appears on the outlet edge of blade near the contact area between blade and band or blade and crown. Associated with the distribution of the runner's working stress, the invalidation reason of the Francis turbine runner is explained.

  18. Modal analysis and SHM investigation of CX-100 wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Deines, Krystal E [Los Alamos National Laboratory; Marinone, Timothy [Los Alamos National Laboratory; Schultz, Ryan A [Los Alamos National Laboratory; Farinholt, Kevin R [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2010-11-08

    This paper presents the dynamic characterization of a CX-100 wind turbine blade using modal testing. Obtaining a thorough dynamic characterization of turbine blades is important because they are complex structures, making them very difficult to accurately model without supplementing with experimental data. The results of this dynamic characterization can be used to validate a numerical model and understand the effect of structural damage on the performance of the blades. Also covered is an exploration into Structural Health Monitoring (SHM) techniques employed on the blade surface to detect changes in the blade dynamic properties. SHM design parameters such as traveling distance of the wave were examined . Results obtained during modal and SHM testing will provide a baseline for future work in blade damage detection and mitigation.

  19. Paths of Improving the Technological Process of Manufacture of GTE Turbine Blades

    Science.gov (United States)

    Vdovin, R. A.; Smelov, V. G.; Bolotov, M. A.; Pronichev, N. D.

    2016-08-01

    The article provides an analysis of the problems at manufacture of blades of the turbine of gas-turbine engines and power stations is provided in article, and also paths of perfecting of technological process of manufacture of blades are offered. The analysis of the main systems of basing of blades in the course of machining and the control methods of the processed blades existing at the enterprises with the indication of merits and demerits is carried out. In work criteria in the form of the mathematical models of a spatial distribution of an allowance considering the uniform distribution of an allowance on a feather profile are developed. The considered methods allow to reduce percent of release of marriage and to reduce labor input when polishing path part of a feather of blades of the turbine.

  20. Turbine blade with spar and shell

    Science.gov (United States)

    Davies, Daniel O [Palm City, FL; Peterson, Ross H [Loxahatchee, FL

    2012-04-24

    A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.

  1. Impact of blade geometry differences for the CFD performance analysis of existing turbines

    Energy Technology Data Exchange (ETDEWEB)

    Nicolle, J; Labbe, P; Gauthier, G; Lussier, M, E-mail: nicolle.jonathan@ireq.c [IREQ-Hydro-Quebec Research Institute 1800 Lionel-Boulet, Varennes, J3X 1S1 (Canada)

    2010-08-15

    Hydro-Quebec has been using CFD to analyze the performance of its existing turbines for many years. Most of those analyses are based on the measurement of a single runner blade. However, due to manufacturing techniques, in-situ modifications or repairs, there are often small differences between individual blades of the same runner. The impact of this non uniformity was not known thus far and was often assumed to be negligible given the size of the runner. This paper highlights the impact of such differences by presenting the CFD analysis of various blades measured on the same runner. Two different geometries are used for demonstration: the AxialT model propeller and a 50-MW Francis turbine. In both cases, about 50% of the blades could not be considered as representative of the whole turbine and using them could lead to wrong conclusions regarding the turbine performance.

  2. Development and Verification of 3000Rpm 48Inch Integral Shroud Blade for Steam Turbine

    Science.gov (United States)

    Kaneko, Yasutomo; Mori, Kazushi; Ohyama, Hiroharu

    The 3000rpm 48inch blade for steam turbine was developed as one of the new standard series of LP end blades. The new LP end blades are characterized by the ISB (Integral Shroud Blade) structure. In the ISB structure, blades are continuously coupled by blade untwist due to centrifugal force when the blades rotate at high speed. Therefore, the number of the resonant vibration modes can be reduced by virtue of the vibration characteristics of the circumferentially continuous blades, and the resonant stress can be decreased due to the additional friction damping generated at shrouds and stubs. In order to develop the 3000rpm 48inch blade, the latest analysis methods to predict the vibration characteristics of the ISB structure were applied, after confirming their validity to the blade design. Moreover, the verification tests such as rotational vibration tests and model turbine tests were carried out in the shop to confirm the reliability of the developed blade. As the final verification test, the field test of the actual steam turbine was carried out in the site during the trial operation, and the vibration stress of the 3000rpm 48inch blade was measured by use of telemetry system. In the field test, the vibratory stress of the blade was measured under various operating conditions for more than one month. This paper first presents the up-to-date design technology applied to the design of the 3000rpm 48inch blade. In the second place, the results of the various verification tests carried out in the shop are presented as well as their procedure. Lastly, the results of the final verification tests of 3000rpm 48inch blade carried out in the site are presented.

  3. Analysis of Fretting Fatigue Strength of Integral Shroud Blade for Steam Turbine

    Science.gov (United States)

    Kaneko, Yasutomo; Tomii, Masayuki; Ohyama, Hiroharu; Kurimura, Takayuki

    To improve the reliability and the thermal efficiency of LP (Low Pressure) end blades of steam turbine, new standard series of LP end blades have been developed. The new LP end blades are characterized by the ISB (Integral Shroud Blade) structure. In the ISB structure, blades are continuously coupled by blade untwist due to centrifugal force when the blades rotate at high speed. One of the probable failure modes of the ISB structure seems to be fretting fatigue, because the ISB utilizes friction damping between adjacent shrouds and stubs. Therefore, in order to design a blade with high reliability, the design procedure for evaluating the fretting fatigue strength was established by the model test and the nonlinear contact analysis. This paper presents the practical design method for predicting the fretting fatigue strength of the ISB structure, and the some applications are explained.

  4. Revealing fatigue damage evolution in unidirectional composites for wind turbine blades using x-ray computed tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    failure during the fatigue loading. The load carrying laminates in wind turbine blades is typically based on a number of non-crimp fabrics in where the load carrying fibres are oriented in the axial direction of the blades. In order to ease the handling of the fabric during the dry fabric layup......Understanding fatigue damage evolution in the load carrying laminates of wind turbine blade play an important role designing longer and lighter turbine blades. Turbine blades which will make it possible to increase the size of wind turbines or to upgrade existing turbines for lower wind classes...... sample has be explored. Thereby, the fatigue failure mechanism has been uncovered showing fibre breakage regions growing from cross-over regions of the backing bundles. Based on those observations, more realistic micromechanical based fatigue damage models as well as suggestions on bundle arrangement...

  5. Numerical and experimental investigation of turbine blade film cooling

    Science.gov (United States)

    Berkache, Amar; Dizene, Rabah

    2017-06-01

    The blades in a gas turbine engine are exposed to extreme temperature levels that exceed the melting temperature of the material. Therefore, efficient cooling is a requirement for high performance of the gas turbine engine. The present study investigates film cooling by means of 3D numerical simulations using a commercial code: Fluent. Three numerical models, namely k-ɛ, RSM and SST turbulence models; are applied and then prediction results are compared to experimental measurements conducted by PIV technique. The experimental model realized in the ENSEMA laboratory uses a flat plate with several rows of staggered holes. The performance of the injected flow into the mainstream is analyzed. The comparison shows that the RANS closure models improve the over-predictions of center-line film cooling velocities that is caused by the limitations of the RANS method due to its isotropy eddy diffusivity.

  6. Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine

    Institute of Scientific and Technical Information of China (English)

    张立勋; 梁迎彬; 刘小红; 郭健

    2014-01-01

    Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine (S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.

  7. Aerodynamic design and analysis of small horizontal axis wind turbine blades

    Science.gov (United States)

    Tang, Xinzi

    This work investigates the aerodynamic design and analysis of small horizontal axis wind turbine blades via the blade element momentum (BEM) based approach and the computational fluid dynamics (CFD) based approach. From this research, it is possible to draw a series of detailed guidelines on small wind turbine blade design and analysis. The research also provides a platform for further comprehensive study using these two approaches. The wake induction corrections and stall corrections of the BEM method were examined through a case study of the NREL/NASA Phase VI wind turbine. A hybrid stall correction model was proposed to analyse wind turbine power performance. The proposed model shows improvement in power prediction for the validation case, compared with the existing stall correction models. The effects of the key rotor parameters of a small wind turbine as well as the blade chord and twist angle distributions on power performance were investigated through two typical wind turbines, i.e. a fixed-pitch variable-speed (FPVS) wind turbine and a fixed-pitch fixed-speed (FPFS) wind turbine. An engineering blade design and analysis code was developed in MATLAB to accommodate aerodynamic design and analysis of the blades.. The linearisation for radial profiles of blade chord and twist angle for the FPFS wind turbine blade design was discussed. Results show that, the proposed linearisation approach leads to reduced manufacturing cost and higher annual energy production (AEP), with minimal effects on the low wind speed performance. Comparative studies of mesh and turbulence models in 2D and 3D CFD modelling were conducted. The CFD predicted lift and drag coefficients of the airfoil S809 were compared with wind tunnel test data and the 3D CFD modelling method of the NREL/NASA Phase VI wind turbine were validated against measurements. Airfoil aerodynamic characterisation and wind turbine power performance as well as 3D flow details were studied. The detailed flow

  8. Predictions of the cycle-to-cycle aerodynamic loads on a yawed wind turbine blade under stalled conditions using a 3D empirical stochastic model

    Science.gov (United States)

    ELGAMMI, MOUTAZ; SANT, TONIO

    2016-09-01

    This paper investigates a new approach to model the stochastic variations in the aerodynamic loads on yawed wind turbines experienced at high angles of attack. The method applies the one-dimensional Langevin equation in conjunction with known mean and standard deviation values for the lift and drag data. The method is validated using the experimental data from the NREL Phase VI rotor in which the mean and standard deviation values for the lift and drag are derived through the combined use of blade pressure measurements and a free-wake vortex model. Given that direct blade pressure measurements are used, 3D flow effects arising from the co-existence of dynamic stall and stall delay are taken into account. The model is an important step towards verification of several assumptions characterized as the estimated standard deviation, Gaussian white noise of the data and the estimated drift and diffusion coefficients of the Langevin equation. The results using the proposed assumptions lead to a good agreement with measurements over a wide range of operating conditions. This provides motivation to implement a general fully independent theoretical stochastic model within a rotor aerodynamics model, such as the free-wake vortex or blade-element momentum code, whereby the mean lift and drag coefficients can be estimated using 2D aerofoil data with correction models for 3D dynamic stall and stall delay phenomena, while the corresponding standard derivations are estimated through CFD.

  9. Vibration-Based Damage Identification in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Damkilde, Lars

    Due to the existing trend of placing wind turbines in impassable terrain, for example, offshore, these structures constitute prime candidates for being subjected to structural health monitoring (SHM). The wind turbine blades have in particular been paid research attention [1] as these compose one...... of the most common and critical components to fail in the turbines [2]. The standard structural integrity assessment of blades is based on visual inspection, which requires the turbine in question to be stopped while inspections are conducted. This procedure is extremely costly and tedious, hence emphasizing...

  10. Design and manufacture of turbine runner blades using CAD/CAM technology

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.; Winkler, S.

    1986-05-01

    Advances in hydraulic and mechanical design and manufacture of hydraulic turbines have occured over the last years. The turbines have reached a high level of performance. This is especially a result of a proper design and accurate manufacture of the turbine runner due to the application of the computer aided design and computer aided manufacturing systems combined with new computerized analysis techniques. The various steps of the modular numerical system - hydraulic computation, interactive blade design, fluid flow analysis, stress analysis and CNC-manufacture of the model blade - are shown on the example of a runner blade for axial turbines. For optimizing the manufacturing of the prototype blade the CAD/CAM-technology is applied. The data flow from the model blade, measured on an electronic coordinate measurement machine, via the CAD/CAM-system, which represents the blade surface in a mathematical form and calculates the tool paths, to the five axis CNC-milling machine is demonstrated. Through the application of the CAD/CAM-technology to hydraulic blades the time frame for designing and manufacturing has been reduced while improving quality and accuracy of the blades.

  11. A review of damage detection methods for wind turbine blades

    Science.gov (United States)

    Li, Dongsheng; Ho, Siu-Chun M.; Song, Gangbing; Ren, Liang; Li, Hongnan

    2015-03-01

    Wind energy is one of the most important renewable energy sources and many countries are predicted to increase wind energy portion of their whole national energy supply to about twenty percent in the next decade. One potential obstacle in the use of wind turbines to harvest wind energy is the maintenance of the wind turbine blades. The blades are a crucial and costly part of a wind turbine and over their service life can suffer from factors such as material degradation and fatigue, which can limit their effectiveness and safety. Thus, the ability to detect damage in wind turbine blades is of great significance for planning maintenance and continued operation of the wind turbine. This paper presents a review of recent research and development in the field of damage detection for wind turbine blades. Specifically, this paper reviews frequently employed sensors including fiber optic and piezoelectric sensors, and four promising damage detection methods, namely, transmittance function, wave propagation, impedance and vibration based methods. As a note towards the future development trend for wind turbine sensing systems, the necessity for wireless sensing and energy harvesting is briefly presented. Finally, existing problems and promising research efforts for online damage detection of turbine blades are discussed.

  12. Microscale Fracture of Composite Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Martyniuk, Karolina

    materials models can be developed if the understanding of the microscale damage- the first stage of material failure- is increased. Therefore it is important to characterize materials’ microstructures and micro-cracks initiation and propagation.The microstructure of fibre reinforced composite materials...... which are the most extensively used in the rotor blades, has been shown to play an important role on the overall response of the material. The properties of a fibre/matrix interface have been found to have a significant influence on the macroscopic behavior of composites. Therefore, the characterization......Due to the increase in wind turbines size it is essential that weight savings due to design changes do not compromise the reliability of the rotor blades. The reliability can be increased by improving design rules and the material models that describe the materials properties. More reliable...

  13. Ultimate Strength of Wind Turbine Blades under Multiaxial Loading

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich

    loading effects and its influence on the ultimate strength of typical wind turbine rotor blade structures and to develop methods to perform reliable prediction of failure. For this purpose, origin and consequence of some of the typically occurring failure types in wind turbine rotor blades...... the ultimate strength of wind turbine rotor blades under multiaxial loadings. Failure origin and effects are studied numerically and experimentally with the purpose to investigate root causes of blade failure and to find generalities for their origin. The main contributions from this PhD study covering...... criteria are studied and their limitations demonstrated by comparing numerical and experimental results of a full scale blade loaded to ultimate failure. The main contributions from this PhD thesis dealing with failure origin and effects are the determination of generalities of failure. For buckling driven...

  14. Design of low noise wind turbine blades using Betz and Joukowski concepts

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Hrgovan, Iva; Okulov, Valery

    2014-01-01

    /reference turbine rotor with a diameter of 80 m. To reduce the noise emission from the baseline rotor, the rotor is reconstructed with the low noise CQU-DTU-LN1 series of airfoils which has been tested in the acoustic wind tunnel located at Virginia Tech. Finally, 3MW low noise turbine rotors are designed using......This paper presents the aerodynamic design of low noise wind turbine blades using Betz and Joukowski concepts. The aerodynamic model is based on Blade Element Momentum theory whereas the aeroacoustic prediction model is based on the BPM model. The investigation is started with a 3MW baseline...

  15. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    2016-08-01

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both of the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.

  16. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    2016-07-29

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both of the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.

  17. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...

  18. Blade Bearing Friction Estimation of Operating Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    Blade root bearing on a wind turbine (WTG) enables pitching of blades for power control and rotor braking and is a WTG critical component. As the size of modern WTGs is constantly increasing, this leads to relatively less rigid bearings, more sensitive to deformations, thus WTG operational...... reliability can be increased by continuous monitoring of blade bearing. High blade bearing friction is undesirable, as it may be associated with excessive heating of the surfaces, damage and/or inefficient operation. Thus, continuous observation of bearing friction level is crucial for blade bearing health...

  19. Blade loss transient dynamics analysis, volume 1. Task 1: Survey and perspective. [aircraft gas turbine engines

    Science.gov (United States)

    Gallardo, V. C.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.

    1981-01-01

    An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration.

  20. LiDAR-based 2D Localization and Mapping System using Elliptical Distance Correction Models for UAV Wind Turbine Blade Inspection

    DEFF Research Database (Denmark)

    Nikolov, Ivan Adriyanov; Madsen, Claus B.

    2017-01-01

    The wind energy sector faces a constant need for annual inspections of wind turbine blades for damage, erosion and cracks. These inspections are an important part of the wind turbine life cycle and can be very costly and hazardous to specialists. This has led to the use of automated drone...... inspections and the need for accurate, robust and inexpensive systems for localization of drones relative to the wing. Due to the lack of visual and geometrical features on the wind turbine blade, conventional SLAM algorithms have a limited use. We propose a cost-effective, easy to implement and extend system...

  1. Wind Turbine Blade CAD Models Used as Scaffolding Technique to Teach Design Engineers

    Science.gov (United States)

    Irwin, John

    2013-01-01

    The Siemens PLM CAD software NX is commonly used for designing mechanical systems, and in complex systems such as the emerging area of wind power, the ability to have a model controlled by design parameters is a certain advantage. Formula driven expressions based on the amount of available wind in an area can drive the amount of effective surface…

  2. Wind Turbine Blade CAD Models Used as Scaffolding Technique to Teach Design Engineers

    Science.gov (United States)

    Irwin, John

    2013-01-01

    The Siemens PLM CAD software NX is commonly used for designing mechanical systems, and in complex systems such as the emerging area of wind power, the ability to have a model controlled by design parameters is a certain advantage. Formula driven expressions based on the amount of available wind in an area can drive the amount of effective surface…

  3. Modal testing of the TX-100 wind turbine blade.

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Sarah; Griffith, Daniel Todd; Casias, Miguel; Simmermacher, Todd William; Smith, Gregory A.

    2006-05-01

    This test report covers the SNL modal test results for two nominally identical TX-100 wind turbine blades. The TX-100 blade design is unique in that it features a passive braking, force-shedding mechanism where bending and torsion are coupled to produce desirable aerodynamic characteristics. A specific aim of this test is to characterize the coupling between bending and torsional dynamics. The results of the modal tests and the subsequent analysis characterize the natural frequencies, damping, and mode shapes of the individual blades. The results of this report are expected to be used for model validation--the frequencies and mode shapes from the experimental analysis can be compared with those of a finite-element analysis. Damping values are included in the results of these tests to potentially improve the fidelity of numerical simulations, although numerical finite element models typically have no means of predicting structural damping characteristics. Thereafter, an additional objective of the test is achieved in evaluating the test to test and unit variation in the modal parameters of the two blades.

  4. Hybrid anisotropic materials for wind power turbine blades

    CERN Document Server

    Golfman, Yosif

    2012-01-01

    Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades. This boo

  5. Draft IEC 61400-24 wind turbines: lightning protection blades

    OpenAIRE

    Hermoso Alameda, Blas; Montañá Puig, Juan

    2009-01-01

    Wind turbine blades are the most exposed parts of the turbine, and would experience the full impact from the electric fields as associated with the lightning attachment process, the lightning currents, and the magnetic field associated with lightning currents.At some point in time hopes were high that lightning would not strike blades made of non-conducting material only, but practical experiences have clearly demonstrated that this is not the case. Lightning does in fact st...

  6. On Structural Health Monitoring of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Skov, Jonas falk; Ulriksen, Martin Dalgaard; Dickow, Kristoffer Ahrens

    2013-01-01

    The aim of the present paper is to provide a state-of-the-art outline of structural health monitoring (SHM) techniques, utilizing temperature, noise and vibration, for wind turbine blades, and subsequently perform a typology on the basis of the typical four damage identification levels in SHM....... Before presenting the state-of-the-art outline, descriptions of structural damages typically occurring in wind turbine blades are provided along with a brief description of the four damage identification levels....

  7. Internal coating of air cooled gas turbine blades

    Science.gov (United States)

    Ahuja, P. L.

    1979-01-01

    Six coating systems were evaluated for internal coating of decent stage (DS) eutectic high pressure turbine blades. Sequential deposition of electroless Ni by the hydrazine process, slurry Cr, and slurry Al, followed by heat treatment provided the coating composition and thickness for internal coating of DS eutectic turbine blades. Both NiCr and NiCrAl coating compositions were evaluated for strain capability and ductile to brittle transition temperature.

  8. Water droplet erosion of stainless steel steam turbine blades

    Science.gov (United States)

    Kirols, H. S.; Kevorkov, D.; Uihlein, A.; Medraj, M.

    2017-08-01

    Steam turbine blades are highly subjected to water droplet erosion (WDE) caused by high energy impingement of liquid water droplets. However, most of the published research on this wear phenomenon is performed on laboratory test rigs, instead of addressing WDE of actual steam turbine blades. In this work, the progression of erosion on the surface of ex-service low pressure steam turbine blades was investigated using scanning electron microscopy. The erosion appearance and mechanisms are compared with laboratory test rig results that are carried out using a rotating disk rig according to ASTM G73 standard. Initial and advanced erosion stages could be observed on the steam turbine blades. Similar to the WDE rig coupons, initial pits and cracks were preceded by blade surface roughening through the formation of asperities and depressions. In addition, it was also observed that the twist angle of the turbine blade around its diagonal, is an important parameter that influences its WDE. Twist angle has an effect on: impact angle, erosion appearance, impact speed, and the affected area. Furthermore, according to the current experimental results, multi-ray rig erosion test results are considered the closest simulation to the actual ex-service blade in terms of damage appearance.

  9. Structural modelling of composite beams with application to wind turbine rotor blades

    DEFF Research Database (Denmark)

    Couturier, Philippe

    represented within the elements. A post processing scheme is also presented to recover inter laminar stresses via equilibrium equations of 3D elasticity derived in the laminate coordinate system.In the final part of the thesis a flexible method for analysing two types of instabilities associated with bending...... of thin-walled prismatic beams is presented. First, the flattening instability from the Brazier effect is modelled by representing the cross-section by two-dimensional non-linear co-rotating beam elements with imposed in-plane loads proportional to the curvature. Second, the bifurcation instability from...... distributions.In the second part a formulation developed for analysis of the stiffness properties of general cross-sections with arbitrary geometry and material distribution is presented.The full six by six cross-section stiffness matrix is obtained by imposing simple deformation modes on a single layer of 3D...

  10. Blade Vortex Interaction of Bi-directional flow in a Uni-directional Impulse Turbine

    Science.gov (United States)

    Velez, Carlos

    2011-11-01

    Uni-directional impulse turbines are used for the extraction of wave energy by converting oscillating air flow generated by waves into uni-directional rotational energy. The symmetric airfoil design requires a large camber, in order to function in bi-directional flow, which creates a large boundary layer separation region towards the trailing edge of the blade. A three-dimensional, viscous, transient turbulent CFD model with rotating reference frame is created to model the blade vortex interaction (BVI) which occurs during transient bi-directional air flow. Various LES models are compared to determine an adequate turbulence model to accurately resolve the vortices created on the blade trailing edge. A study of the adverse effects of this BVI is conducted and a novel blade jet technique is introduced to prevent the separation of air flow from the trailing edge of the blade. Results show strong stresses arise from BVI during bi-directional transitional flow and the effectiveness of the blade jet technique in diminishing flow separation is successfully demonstrated. Results indicate that the increase in blade lift is linearly proportional to the blade jet mass flow rate once the jet velocity reaches approximately 120% of the turbine inlet velocity and that the increase in efficiency created by the blade jets are greater than the loss in efficiency in reducing the mass flow rate extracted from the inlet to the blade jet.

  11. Accelerated rain erosion of wind turbine blade coatings

    DEFF Research Database (Denmark)

    Zhang, Shizhong

    During operation, the fast-moving blades of wind turbines are exposed to continuous impacts with rain droplets, hail, insects, or solid particles. This can lead to erosion of the blades, whereby the electrical efficiency is compromised and expensive repairs may be required. One possible solution...

  12. Sources of fatigue damage to passive yaw wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  13. Aerodynamic investigation of winglets on wind turbine blades using CFD

    OpenAIRE

    Johansen, Jeppe; Sørensen, Niels N.

    2006-01-01

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of themwere pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets...

  14. Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller.

    Science.gov (United States)

    Gelves, Ricardo; Dietrich, A; Takors, Ralf

    2014-03-01

    A combined computational fluid dynamics (CFD) and population balance model (PBM) approach has been applied to simulate hydrodynamics and mass transfer in a 0.18 m(3) gas-liquid stirred bioreactor agitated by (1) a Rushton turbine, and (2) a new pitched blade geometry with rotating cartridges. The operating conditions chosen were motivated by typical settings used for culturing mammalian cells. The effects of turbulence, rotating flow, bubbles breakage and coalescence were simulated using the k-ε, multiple reference frame (MRF), Sliding mesh (SM) and PBM approaches, respectively. Considering the new pitched blade geometry with rotating aeration microspargers, [Formula: see text] mass transfer was estimated to be 34 times higher than the conventional Rushton turbine set-up. Notably, the impeller power consumption was modeled to be about 50 % lower. Independent [Formula: see text] measurements applying the same operational conditions confirmed this finding. Motivated by these simulated and experimental results, the new aeration and stirring device is qualified as a very promising tool especially useful for cell culture applications which are characterized by the challenging problem of achieving relatively high mass transfer conditions while inserting only low stirrer energy.

  15. Active load reduction by means of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Couchman, Ian; Castaignet, Damien; Poulsen, Niels Kjølstad

    2014-01-01

    This paper presents the blade fatigue load reduction achieved with a trailing edge flap during a full scale test on a Vestas V27 wind turbine. A frequency-weighted linear model predictive control (MPC) is tuned to decrease flapwise blade root fatigue loads at the frequencies where most of the bla...... was first tested in aero-servo-elastic simulations, before being implemented on a Vestas V27 wind turbine. Consistent load reduction is achieved during the full-scale test. An average of 14% flapwise blade root fatigue load reduction is measured....

  16. Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip

    Science.gov (United States)

    Azad, Gm S.; Han, Je-Chin; Teng, Shuye; Boyle, Robert J.

    2000-01-01

    Heat transfer coefficient and static pressure distributions are experimentally investigated on a gas turbine blade tip in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a first stage gas turbine rotor blade with a blade tip profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1 x 10(exp 6). The middle 3-blade has a variable tip gap clearance. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Heat transfer measurements are also made at two different turbulence intensity levels of 6.1 % and 9.7% at the cascade inlet. Static pressure measurements are made in the mid-span and the near-tip regions as well as on the shroud surface, opposite the blade tip surface. Detailed heat transfer coefficient distributions on the plane tip surface are measured using a transient liquid crystal technique. Results show various regions of high and low heat transfer coefficient on the tip surface. Tip clearance has a significant influence on local tip beat transfer coefficient distribution. Heat transfer coefficient also increases about 15-20% along the leakage flow path at higher turbulence intensity level of 9.7% over 6.1 %.

  17. Service failure of hot-stage turbine blades:

    Science.gov (United States)

    Oldfield, William; Oldfield, Freda M.

    1993-10-01

    Surface-connected porosity in current military aircraft hot-stage turbine engine blades is associated with blade failure. Oxidation ratcheting is suggested as the failure mechanism. Sta- tistical comparison of new and used blade populations showed that for blades cast with an equiaxed structure, the porosity in new blades was associated with crack formation on the con- cave surface of the used blades. The pores did not tend to develop into cracks on the compressed (convex) surface of the blade. Insufficient suitable data on directionally solidified blades pre- vented similar statistical correlations. However, metallography of the directionally solidified blades showed that the in-service cracks were related to oxidation inside surface-connected pores and that the cracks were oriented in the same direction as the (axial) casting pores. Thus, the proposed failure mechanism through ratcheting is based on the following insights: (1) the blades are thermally cycled as a normal part of service; (2) the hot blades expand and the open pores are filled with oxide; (3) when the blade is cooled, thermal contraction of the metal is greater than the oxide, causing compressive stress and yield; and (4) thermal expansion of the blades opens the pores again, since yield relaxed compressive stress at low temperature. These insights were supported by metallographic and computer-simulation studies which showed that the pores grow 20 to 50 pct in width per 100 missions (about 90 hours of operation) for a military aircraft on a typical mission profile.

  18. Fluid Flow Phenomenon in a Three-Bladed Power-Generating Archimedes Screw Turbine

    Directory of Open Access Journals (Sweden)

    Tineke Saroinsong

    2016-05-01

    Full Text Available Experimental studies of the Archimedes screw turbine are applied as a micro hydro power plant for low head focused on the fluid flow. Fluid flow on a screw turbine is not completely filled water flow there is still a free surface between the water fluid and atmospheric air. Except the screw geometry, the turbine screw free surface allows the flow phenomena that are important in the process of turbine screw power generation. The Archimedes screw turbine main driving force is the fluid-gravity weight, which is affected by the inflow depth, inflow velocity and the turbine shaft’s slope. The dimensionless parameter Froude number (Fr is connected to analyze the screw turbine efficiency. The purpose of this study is to figure out the fluid flow role when power generated by a three blades Archimedes screw turbine observed visualized, and also observed the turbine rotation and torque. The observed parameters are varied in inflow depth as the characteristic length (y of Froude Number, inflow velocity (co, and the turbine shaft slope (α. The screw turbine model, were made under a laboratory scale and made from acrylic material. The geometric form is the three bladed screws which have seven screw respectively, the number of helix turns is 21, the angle of screw blade is 30°, radius ratio of 0.54 with a pitch distance of 2,4 Ro. The result from this study revealed a phenomenon of fluid flow between the screw blades a whirlpool wave occurs or vortex due to the linear momentum in a form of the hydrostatic force against the blade screw which occurs in two opposite directions and the effect of the turbine shaft angular momentum. The vortex would affect the screw turbine power generation process as most of the kinetic energy that goes into the screw turbine sucked into the vortex between the screw blades, but this phenomenon can be reduced by reducing the turbine shaft slope. The highest turbine efficiency of 89% occurred in the turbine shaft’s slope of 25

  19. Effect of the number of blades and solidity on the performance of a vertical axis wind turbine

    Science.gov (United States)

    Delafin, PL; Nishino, T.; Wang, L.; Kolios, A.

    2016-09-01

    Two, three and four bladed ϕ-shape Vertical Axis Wind Turbines are simulated using a free-wake vortex model. Two versions of the three and four bladed turbines are considered, one having the same chord length as the two-bladed turbine and the other having the same solidity as the two-bladed turbine. Results of the two-bladed turbine are validated against published experimental data of power coefficient and instantaneous torque. The effect of solidity on the power coefficient is presented and the instantaneous torque, thrust and lateral force of the two-, three- and four-bladed turbines are compared for the same solidity. It is found that increasing the number of blades from two to three significantly reduces the torque, thrust and lateral force ripples. Adding a fourth blade further reduces the ripples except for the torque at low tip speed ratio. This work aims to help choosing the number of blades during the design phase of a vertical axis wind turbine.

  20. Failures in Trailing Edge Bondlines of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jensen, F. M.; Sørensen, John Dalsgaard; Nielsen, P. H.

    2011-01-01

    Bonded joints in composite structures are often en object for concern. This is also true for wind turbine blades, where damage occurs in the trailing edge due to fatigue loads. Reliability of wind turbines becomes increasingly important when used offshore, where operation and maintenance costs co...

  1. Actuator Control of Edgewise Vibrations in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Staino, A.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    Edgewise vibrations with low aerodynamic damping are of particular concern in modern multi-megawatt wind turbines, as large amplitude cyclic oscillations may significantly shorten the life-time of wind turbine components, and even lead to structural damages or failures. In this paper, a new blade ...

  2. The Effect of Blade Aeroelasticity and Turbine Parameters on Wind Turbine Noise

    OpenAIRE

    Wu, Daniel

    2017-01-01

    In recent years, the demand for wind energy has dramatically increased as well as the number and size of commercial wind turbines. These large turbines are loud and can cause annoyance to nearby communities. Therefore, the prediction of large wind turbine noise over long distances is critical. The wind turbine noise prediction is a very complex problem since it has to account for atmospheric conditions (wind and temperature), ground absorption, un-even terrain, turbine wake, and blade deforma...

  3. Fracture analysis of adhesive joints in wind turbine blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert

    2015-01-01

    the air-flow rejoins and leaves the blade. Maintenance inspections of wind turbine rotor blades show that among other forms of damage, local debonding of the shells along the trailing edge is a frequent failure type. The cause of trailing edge failure in wind turbine blades is complex, and detailed...... information is scarce. This paper is concerned with the fracture analysis of adhesive joints in general, with a particular focus on trailing edges. For that, the energy release rates in prescribed cracks present in the bond line of a generic trailing edge joint are investigated. In connection...

  4. Computational investigation of flow control by means of tubercles on Darrieus wind turbine blades

    Science.gov (United States)

    Sevinç, K.; Özdamar, G.; Şentürk, U.; Özdamar, A.

    2015-09-01

    This work presents the current status of the computational study of the boundary layer control of a vertical axis wind turbine blade by modifying the blade geometry for use in wind energy conversion. The control method is a passive method which comprises the implementation of the tubercle geometry of a humpback whale flipper onto the leading edge of the blades. The baseline design is an H-type, three-bladed Darrieus turbine with a NACA 0015 cross-section. Finite-volume based software ANSYS Fluent was used in the simulations. Using the optimum control parameters for a NACA 634-021 profile given by Johari et al. (2006), turbine blades were modified. Three dimensional, unsteady, turbulent simulations for the blade were conducted to look for a possible improvement on the performance. The flow structure on the blades was investigated and flow phenomena such as separation and stall were examined to understand their impact on the overall performance. For a tip speed ratio of 2.12, good agreement was obtained in the validation of the baseline model with a relative error in time- averaged power coefficient of 1.05%. Modified turbine simulations with a less expensive but less accurate turbulence model yielded a decrease in power coefficient. Results are shown comparatively.

  5. Gas turbine blade with metal core and ceramic blade. Gasturbinenschaufel mit Metallkern und Keramikblatt

    Energy Technology Data Exchange (ETDEWEB)

    Huether, W.

    1984-03-29

    This is a gas turbine blade with a metal core connected to the rotor disc and a ceramic profile blade surrounding this core at a certain spacing, where a metal mesh is inserted between the metal core and the ceramic covering.

  6. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Zheng-Yong Yu

    2017-05-01

    Full Text Available As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB and Fatemi-Socie (FS models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  7. SHM of wind turbine blades using piezoelectric active-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyuhae [Los Alamos National Laboratory; Taylor, Stuart G [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-01-01

    This paper presents a variety of structural health monitoring (SHM) techniques, based on the use of piezoelectric active-sensors, used to determine the structural integrity of wind turbine blades. Specifically, Lamb wave propagations, frequency response functions, and time series based methods are utilized to estimate the condition of wind turbine blades. For experiments, a 1m section of a 9m CX100 blade is used. Overall, these three methods yielded a sufficient damage detection capability to warrant further investigation into field deployment. A full-scale fatigue test of a CX-100 wind turbine blade is also conducted. This paper summarizes considerations needed to design such SHM systems, experimental procedures and results, and practical implementation issues that can be used as guidelines for future investigations.

  8. Unsustainable Wind Turbine Blade Disposal Practices in the United States.

    Science.gov (United States)

    Ramirez-Tejeda, Katerin; Turcotte, David A; Pike, Sarah

    2017-02-01

    Finding ways to manage the waste from the expected high number of wind turbine blades in need of disposal is crucial to harvest wind energy in a truly sustainable manner. Landfilling is the most cost-effective disposal method in the United States, but it imposes significant environmental impacts. Thermal, mechanical, and chemical processes allow for some energy and/or material recovery, but they also carry potential negative externalities. This article explores the main economic and environmental issues with various wind turbine blade disposal methods. We argue for the necessity of policy intervention that encourages industry to develop better technologies to make wind turbine blade disposal sustainable, both environmentally and economically. We present some of the technological initiatives being researched, such as the use of bio-derived resins and thermoplastic composites in the manufacturing process of the blades.

  9. Numerical modeling of separated flows at moderate Reynolds numbers appropriate for turbine blades and unmanned aero vehicles

    Science.gov (United States)

    Castiglioni, Giacomo

    Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical Reynolds averaged Navier-Stokes turbulence models are inadequate for such flows. Direct numerical simulation is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of immersed boundary methods and large eddy simulations to reduce the computational requirements for such flows and still provide high quality results. Two-dimensional and three-dimensional simulations of a laminar separation bubble on a NACA-0012 airfoil at Rec = 5x104 and at 5° of incidence have been performed with an immersed boundary code and a commercial code using body fitted grids. Several sub-grid scale models have been implemented in both codes and their performance evaluated. For the two-dimensional simulations with the immersed boundary method the results show good agreement with the direct numerical simulation benchmark data for the pressure coefficient Cp and the friction coefficient Cf, but only when using dissipative numerical schemes. There is evidence that this behavior can be attributed to the ability of dissipative schemes to damp numerical noise coming from the immersed boundary. For the three-dimensional simulations the results show a good prediction of the separation point, but an inaccurate prediction of the reattachment point unless full direct numerical simulation resolution is used. The commercial code shows good agreement with the direct numerical simulation benchmark data in both two and three-dimensional simulations, but the presence of significant, unquantified numerical dissipation prevents a conclusive assessment of the actual prediction capabilities of very coarse large eddy simulations with low order schemes in general

  10. Multidisciplinary design optimization of film-cooled gas turbine blades

    Directory of Open Access Journals (Sweden)

    Talya Shashishekara S.

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  11. 汽轮机叶片汽道的结构模型研究%Study on structural model of steam turbine blade

    Institute of Scientific and Technical Information of China (English)

    曾岳飞; 谌永祥; 钟成明; 江敏; 吴越

    2012-01-01

    As an important part of the steam turbine,blade determines the energy conversion efficiency.The features of the structure of steam turbine blades will be researched in it.And according to the characteristics of blade profile as well as the requirements of STEP issued by ISO, Cubic Uniform Rational B-spline and 2×3 drgee Non-Uniform Rational B-spline will be chosen to build the mathematical model of the blade,which matrix expression is later deduced respectively that prove the continuity of the curve,realize the digital expression for the blades. From the matrix expression, obvious Cubic Uniform Rational B-spline has more advantages than 2×3 drgee Non-Uniform Rational B-spline method,such as less computations ,simple and easy control, etc, which can provide theoretical support for subsequent interpolation algorithms.%叶片作为汽轮机的重要组成部分,决定着能量的转换效率.对汽轮机动叶片的结构特征进行了研究,从叶型的特点,结合国际标准化组织颁布的工业产品数据交换标准的要求,选取了三次均匀有理B样条和2×3次非均匀有理B样条为叶型的数学模型,推导了各自的矩阵表达式,证明了曲线的连续性,实现了叶片的数字化表示.由矩阵表达式可以看出,明显的三次均匀有理B样条比2×3次非均匀有理B样条方法的计算量小、简单和便于控制等,为后续的插补算法研究提供了理论支持.

  12. The effect of blade pitch in the rotor hydrodynamics of a cross-flow turbine

    Science.gov (United States)

    Somoano, Miguel; Huera-Huarte, Francisco

    2016-11-01

    In this work we will show how the hydrodynamics of the rotor of a straight-bladed Cross-Flow Turbine (CFT) are affected by the Tip Speed Ratio (TSR), and the blade pitch angle imposed to the rotor. The CFT model used in experiments consists of a three-bladed (NACA-0015) vertical axis turbine with a chord (c) to rotor diameter (D) ratio of 0.16. Planar Digital Particle Image Velocimetry (DPIV) was used, with the laser sheet aiming at the mid-span of the blades, illuminating the inner part of the rotor and the near wake of the turbine. Tests were made by forcing the rotation of the turbine with a DC motor, which provided precise control of the TSR, while being towed in a still-water tank at a constant Reynolds number of 61000. A range of TSRs from 0.7 to 2.3 were covered for different blade pitches, ranging from 8° toe-in to 16° toe-out. The interaction between the blades in the rotor will be discussed by examining dimensionless phase-averaged vorticity fields in the inner part of the rotor and mean velocity fields in the near wake of the turbine. Supported by the Spanish Ministry of Economy and Competitiveness, Grant BES-2013-065366 and project DPI2015-71645-P.

  13. Reflection error correction of gas turbine blade temperature

    Science.gov (United States)

    Kipngetich, Ketui Daniel; Feng, Chi; Gao, Shan

    2016-03-01

    Accurate measurement of gas turbine blades' temperature is one of the greatest challenges encountered in gas turbine temperature measurements. Within an enclosed gas turbine environment with surfaces of varying temperature and low emissivities, a new challenge is introduced into the use of radiation thermometers due to the problem of reflection error. A method for correcting this error has been proposed and demonstrated in this work through computer simulation and experiment. The method assumed that emissivities of all surfaces exchanging thermal radiation are known. Simulations were carried out considering targets with low and high emissivities of 0.3 and 0.8 respectively while experimental measurements were carried out on blades with emissivity of 0.76. Simulated results showed possibility of achieving error less than 1% while experimental result corrected the error to 1.1%. It was thus concluded that the method is appropriate for correcting reflection error commonly encountered in temperature measurement of gas turbine blades.

  14. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    Energy Technology Data Exchange (ETDEWEB)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  15. Calculating the reflected radiation error between turbine blades and vanes based on double contour integral method

    Science.gov (United States)

    Feng, Chi; Li, Dong; Gao, Shan; Daniel, Ketui

    2016-11-01

    This paper presents a CFD (Computation Fluid Dynamic) simulation and experimental results for the reflected radiation error from turbine vanes when measuring turbine blade's temperature using a pyrometer. In the paper, an accurate reflection model based on discrete irregular surfaces is established. Double contour integral method is used to calculate view factor between the irregular surfaces. Calculated reflected radiation error was found to change with relative position between blades and vanes as temperature distribution of vanes and blades was simulated using CFD. Simulation results indicated that when the vanes suction surface temperature ranged from 860 K to 1060 K and the blades pressure surface average temperature is 805 K, pyrometer measurement error can reach up to 6.35%. Experimental results show that the maximum pyrometer absolute error of three different targets on the blade decreases from 6.52%, 4.15% and 1.35% to 0.89%, 0.82% and 0.69% respectively after error correction.

  16. Vibration Analysis of Large Composite Blade Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yuqiao Zheng

    2013-09-01

    Full Text Available This paper presents a recently developed the finite model method for analysis of horizontal axis wind turbine blades.Free vibration equation is proposed based on theory of  the classical lamination and  Lagrange method.. A 40 m rotor blade was chosen as a example study to validate the static and dynamic behaviour predicted by shell model built in ANSYS,Given uncertainty of material properties involved,An accurate agreement was found for static deformation curves, as well as a good prediction of the lowest frequency modes in terms of resonance frequencies, the highest (eighth frequency modes show only a fair agreement as expected for an FE model,Flap-wise, edge-wise and  torsional  natural  frequencies of  a  variable  length  blade  have been investigated,The results show that the approach used in this study is very efficient and produces improved designs as compared with a reference or baseline design.

  17. Electro-thermal protection system design against atmospheric frost on turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Noui, M.A.; Perron, J.; Fortin, G. [Quebec Univ., Chicoutimi, PQ (Canada). Anti-Icing Materials International Laboratory

    2010-07-01

    This presentation discussed a research program developed to adapt de-icing thermal heating systems for use in wind turbines. The presence of ice on turbine blades can significantly deteriorate rotor performance. Accumulations of ice can increase the radial load on the turbine blades. The uneven formations of ice can lead to vibrations and the expulsion of pieces of ice into surrounding areas. Ice can also reduce the accuracy of various wind measuring devices. A recent study in Finland showed that turbine heating systems consume 3.6 per cent of annual wind production energy. De-icing systems include protective covers; air inlets; sealing systems; inflation tubes; elastomeric ply; and bond ply. The systems also include blade trailing and loading edges, and blade roots. The energy dissipated by the system's heating element is lost by conduction to the interior of the profile. The research program is now developing a system to improve electrothermal protection against frost that is suitable for turbine blades, as well as a thermal model for simulating its operation in a wind turbine. tabs., figs.

  18. Innovative design approaches for large wind turbine blades : final report.

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    The goal of the Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. A series of analysis tasks were completed in support of the design effort. We began with a parametric scaling study to assess blade structure using current technology. This was followed by an economic study of the cost to manufacture, transport and install large blades. Subsequently we identified several innovative design approaches that showed potential for overcoming fundamental physical and manufacturing constraints. The final stage of the project was used to develop several preliminary 50m blade designs. The key design impacts identified in this study are: (1) blade cross-sections, (2) alternative materials, (3) IEC design class, and (4) root attachment. The results show that thick blade cross-sections can provide a large reduction in blade weight, while maintaining high aerodynamic performance. Increasing blade thickness for inboard sections is a key method for improving structural efficiency and reducing blade weight. Carbon/glass hybrid blades were found to provide good improvements in blade weight, stiffness, and deflection when used in the main structural elements of the blade. The addition of carbon resulted in modest cost increases and provided significant benefits, particularly with respect to deflection. The change in design loads between IEC classes is quite significant. Optimized blades should be designed for each IEC design class. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of blade fasteners has a positive effect on total weight, because it reduces the required root laminate thickness.

  19. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  20. Aeroelastic Behavior of a Wind Turbine Blade by a Fluid -Structure Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Farouk O. Hamdoon

    2013-01-01

    Full Text Available In this paper, a numerical model for fluid-structure interaction (FSI analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between the structure and fluid by using a Newmark’s implicit time integration scheme. The results obtained from this paper show that the proposed modeling can be used for a quick assessment of the wind turbine blades taking the fluid-structure interaction into account. This modeling can also be a useful tool for the analysis of airplane propeller blades.

  1. Evaluation of service-induced damage and restoration of cast turbine blades

    Science.gov (United States)

    Persson, C.; Persson, P.-O.

    1993-08-01

    Conventionally cast turbine blades of Inconel 713C, from a military gas turbine aircraft engine, have been investigated with regard to service-induced microstructural damage and residual creep life time. For cast turbine blades, service life is defined by statistical values. The statistical methods can prove to be uneconomical, because safe limits must be stated with regard to the statistical probability that some blades will have higher damage than normal. An alternative approach is to determine the service-induced microstructural damage on each blade, or a representative number of blades, to better optimize blade us-age. Ways to use service-induced γ rafting and void formation as quantified microstructural damage pa-rameters in a service lifetime prediction model are suggested. The damage parameters were quantified, in blades with different service exposure levels, and correlated to remaining creep life evaluated from creep test specimens taken from different positions of serviced blades. Results from tests with different rejuvenation treatments, including hot isostatic pressing andJor heat treatment, are discussed briefly.

  2. Evaluation of service-induced damage and restoration of cast turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Persson, C.; Persson, P.O. (Celsius Materialteknik, Linkoeping (Sweden))

    1993-08-01

    Conventionally cast turbine blades of Inconel 713C, from a military gas turbine aircraft engine, have been investigated with regard to service-induced microstructural damage and residual creep life time. For cast turbine blades, service life is defined by statistical values. The statistical methods can prove to be uneconomical, because safe limits must be stated with regard to the statistical probability that some blades will have higher damage than normal. An alternative approach is to determine the service-induced microstructural damage on each blade, or a representative number of blades, to better optimize blade usage. Ways to use service-induced [gamma][prime] rafting and void formation as quantified microstructural damage parameters in a service lifetime prediction model are suggested. The damage parameters were quantified, in blades with different service exposure levels, and correlated to remaining creep life evaluated from creep test specimens taken from different positions of serviced blades. Results from tests with different rejuvenation treatments, including hot isostatic pressing and/or heat treatment, are discussed briefly.

  3. Crack growth sparse pursuit for wind turbine blade

    Science.gov (United States)

    Li, Xiang; Yang, Zhibo; Zhang, Han; Du, Zhaohui; Chen, Xuefeng

    2015-01-01

    One critical challenge to achieving reliable wind turbine blade structural health monitoring (SHM) is mainly caused by composite laminates with an anisotropy nature and a hard-to-access property. The typical pitch-catch PZTs approach generally detects structural damage with both measured and baseline signals. However, the accuracy of imaging or tomography by delay-and-sum approaches based on these signals requires improvement in practice. Via the model of Lamb wave propagation and the establishment of a dictionary that corresponds to scatters, a robust sparse reconstruction approach for structural health monitoring comes into view for its promising performance. This paper proposes a neighbor dictionary that identifies the first crack location through sparse reconstruction and then presents a growth sparse pursuit algorithm that can precisely pursue the extension of the crack. An experiment with the goal of diagnosing a composite wind turbine blade with an artificial crack is performed, and it validates the proposed approach. The results give competitively accurate crack detection with the correct locations and extension length.

  4. Design studies for twist-coupled wind turbine blades.

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, Ulyses (Wichita State University, Wichita, KS); Locke, James (Wichita State University, Wichita, KS)

    2004-06-01

    This study presents results obtained for four hybrid designs of the Northern Power Systems (NPS) 9.2-meter prototype version of the ERS-100 wind turbine rotor blade. The ERS-100 wind turbine rotor blade was designed and developed by TPI composites. The baseline design uses e-glass unidirectional fibers in combination with {+-}45-degree and random mat layers for the skin and spar cap. This project involves developing structural finite element models of the baseline design and carbon hybrid designs with and without twist-bend coupling. All designs were evaluated for a unit load condition and two extreme wind conditions. The unit load condition was used to evaluate the static deflection, twist and twist-coupling parameter. Maximum deflections and strains were determined for the extreme wind conditions. Linear and nonlinear buckling loads were determined for a tip load condition. The results indicate that carbon fibers can be used to produce twist-coupled designs with comparable deflections, strains and buckling loads to the e-glass baseline.

  5. Transient power coefficients for a two-blade Savonius wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Naterer, G. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    The wind power industry had a 29 percent growth rate in installed capacity in 2008, and technological advances are helping to speed up growth by significantly increasing wind turbine power yields. While the majority of the industry's growth has come from large horizontal axis wind turbine installations, small wind turbines can also be used in a wide variety of applications. This study predicted the transient power coefficient for a Savonius vertical axis wind turbine (VAWT) wind turbine with 2 blades. The turbine's flow field was used to analyze pressure distribution along the rotor blades in relation to the momentum, lift, and drag forces on the rotor surfaces. The integral force balance was used to predict the transient torque and power output of the turbine. The study examined the implications of the addition of a second blade on the model's ability to predict transient power outputs. Computational fluid dynamics (CFD) programs were used to verify that the formulation can be used to accurately predict the transient power coefficients of VAWTs with Savonius blades. 11 refs., 1 tab., 6 figs.

  6. On the aero-elastic design of the DTU 10MW wind turbine blade for the LIFES50+ wind tunnel scale model

    DEFF Research Database (Denmark)

    Bayati, I.; Belloli, M.; Bernini, L.

    2016-01-01

    and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist to match the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre was CNC manufactured based on B-Splines CAD......This paper illustrates the aero-elastic optimal design, the realization and the verification of the wind tunnel scale model blades for the DTU 10 MW wind turbine model, within LIFES50+ project. The aerodynamic design was focused on the minimization of the difference, in terms of thrust coefficient......, with respect to the full scale reference. From the Selig low Reynolds database airfoils, the SD7032 was chosen for this purpose and a proper constant section wing was tested at DTU red wind tunnel, providing force and distributed pressure coefficients for the design, in the Reynolds range 30-250 E3...

  7. Dendritic Structure Analysis of CMSX-4 Cored Turbine Blades Roots

    Directory of Open Access Journals (Sweden)

    Krawczyk J.

    2016-06-01

    Full Text Available The microstructure of as-cast cored turbine blades roots, made of the single-crystal CMSX-4 nickel-based superalloy was investigated. Analysed blades were obtained by directional solidification technique in the industrial ALD Bridgman induction furnace. The investigations of the microstructure of blades roots were performed using SEM and X-ray techniques including diffraction topography with the use of Auleytner method. Characteristic shapes of dendrites with various arrangement were observed on the SEM images taken from the cross-sections, made transversely to the main blades axis. The differences in quality of the structure in particular areas of blades roots were revealed. Based on the results, the influence of cooling bores on blades root structure was analysed and the changes in the distribution and geometry of cooling bores were proposed.

  8. Effect of Leading Edge Tubercles on Marine Tidal Turbine Blades

    Science.gov (United States)

    Murray, Mark; Gruber, Timothy; Fredriksson, David

    2010-11-01

    This project investigated the impact that the addition of leading edge protuberances (tubercles) have on the effectiveness of marine tidal turbine blades, especially at lower flow speeds. The addition of leading edge tubercles to lifting foils has been shown, in previous research, to delay the onset of stall without significant hydrodynamic costs. The experimental results obtained utilizing three different blade designs (baseline and two tubercle modified) are compared. All blades were designed in SolidWorks and manufactured utilizing rapid prototype techniques. All tests were conducted in the 120 ft tow tank at the U.S. Naval Academy using a specifically designed experimental apparatus. Results for power coefficients are presented for a range of tip speed ratios. Cut-in velocity is also compared between the blade designs. For all test criteria, the tubercle modified blades significantly outperformed the smooth leading edge baseline design blades.

  9. The Concept of Segmented Wind Turbine Blades: A Review

    Directory of Open Access Journals (Sweden)

    Mathijs Peeters

    2017-07-01

    Full Text Available There is a trend to increase the length of wind turbine blades in an effort to reduce the cost of energy (COE. This causes manufacturing and transportation issues, which have given rise to the concept of segmented wind turbine blades. In this concept, multiple segments can be transported separately. While this idea is not new, it has recently gained renewed interest. In this review paper, the concept of wind turbine blade segmentation and related literature is discussed. The motivation for dividing blades into segments is explained, and the cost of energy is considered to obtain requirements for such blades. An overview of possible implementations is provided, considering the split location and orientation, as well as the type of joint to be used. Many implementations draw from experience with similar joints such as the joint at the blade root, hub and root extenders and joints used in rotor tips and glider wings. Adhesive bonds are expected to provide structural and economic efficiency, but in-field assembly poses a big issue. Prototype segmented blades using T-bolt joints, studs and spar bridge concepts have proven successful, as well as aerodynamically-shaped root and hub extenders.

  10. Effects of Dynamic Pitching on Wind Turbine Blade Performance

    Science.gov (United States)

    Naughton, Jonathan; Babbitt, Ashli; Strike, John; Hind, Michael; Magstadt, Andrew; Nikoueeyan, Pourya

    2012-11-01

    Due to turbulence in the wind and the rotation of the blade through a shear layer, wind turbine blade flows are inherently unsteady. Over the past five years, a number of wind turbine blade sections used for inboard, mid-span, and tip regions of the blade (including flatback airfoils) have been tested at a Reynolds number of 225,000. The airfoils have been tested at reduced frequencies cω / 2 U , where c is the chord length, ω is the oscillation frequency (radians/sec), and U is the air velocity ahead of the blade, relevant to commercial wind turbines. Unsteady pressure measurements and Particle Image Velocimetry (PIV) have provided information about the surface properties and surrounding flow field and their relationship. The results have shown that, depending on the reduced frequency, a lag in pressure and flow-field structures is experienced by the blade. When the blade is operating at angles above the static stall angle, delayed separation is experience as expected. The reattachment of the flow is also delayed, and, at higher reduced frequencies, the flow can remain separated throughout the entire downward pitching movement. Such dynamic data result in a better understanding of the unsteady flow physics necessary for improved designs. Support from DOE and BP is acknowledged.

  11. Life assessment of gas turbine blades after long term service

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, Pertti; Salonen, Jorma [VTT, Espoo (Finland); Maekinen, Sari [Helsingin Energia, Helsinki (Finland); Karvonen, Ikka; Tanttari, Heikki [Lappeenrannan Laempoevoima, Lappeenranta (Finland); Kangas, Pekka [Neste Oil, Kilpilahti (Finland); Scholz, Alfred [Technische Univ. Darmstadt (Germany); Vacchieri, Erica [Ansaldo Richerche, Genoa (Italy)

    2010-07-01

    Turbine blade samples from three land based gas turbines have been subjected to systematic condition and life assessment after long term service (88000 - 109000 equivalent operating hours, eoh), when approaching the nominal or suggested life limits. The blades represent different machine types, materials and design generations, and uncooled blading outside the hottest front end of the turbine, i.e. blades with relatively large size and considerable expected life. For a reasonable assessment, a range of damage mechanisms need to be addressed and evaluated for the impact in the residual life. The results suggested significant additional safe life for all three blade sets. In some cases this could warrant yet another life cycle comparable to that of new blades, even after approaching the nominal end of life in terms of recommended equivalent operating hours. This is thought to be partly because of base load combined cycle operation and natural gas fuel, or modest operational loading if the design also accounted for more intensive cycling operation and more corrosive oil firing. In any case, long term life extension is only appropriate if not intervened by events of overloading, overheating or other sudden events such as foreign object damage (FOD), and if supported by the regular inspection and maintenance program to control in-service damage. Condition based assessment therefore remains an important part of the blade life management after the decision of accepted life extension. (orig.)

  12. Mechanical power efficiency of modified turbine blades

    Science.gov (United States)

    Mahmud, Syahir; Sampebatu, Limbran; Kwang, Suendy Ciayadi

    2017-01-01

    Abstract-The problem of energy crisis has become one of the unsolved issues until today. Indonesia has a lot of non-conventional energy sources that does not utilized effectively yet. For that the available resources must utilized efficiently due to the energy crisis and the growing energy needs. Among the abundant resources of energy, one potential source of energy is hydroelectric energy. This research compares the mechanical power efficiency generated by the Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. The comparation of the mechanical power amongst the three turbine starts from the measurement of the water flow rate, water temperature, turbine rotation and force on the shaft on each type of turbine. The comparison will show the mechanical power efficiency of each turbine to find the most efficient turbine that can work optimally. The results show that with 0.637m/s flow velocity and 44.827 Watt of water flow power, the Darrieus-Savonius turbine can generate power equal to 29.927 Watt and shaft force around by 17 N. The Darrieus-Savonius turbine provides around 66.76% efficiency betwen the three turbines; Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. Overall, the Darrieus Savonius turbine has the ability to work optimally at the research location.

  13. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    at low rotational speed producing very less noise during operation, although these are less efficient than Horizontal Axis Wind Turbines (HAWT). The efficiency of a VAWT has been significantly improved by H-Darrieus VAWT design based on double airfoil technology as demonstrated by the authors...... in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  14. Comparison of blade-strike modeling results with empirical data

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-03-01

    This study is the initial stage of further investigation into the dynamics of injury to fish during passage through a turbine runner. As part of the study, Pacific Northwest National Laboratory (PNNL) estimated the probability of blade strike, and associated injury, as a function of fish length and turbine operating geometry at two adjacent turbines in Powerhouse 1 of Bonneville Dam. Units 5 and 6 had identical intakes, stay vanes, wicket gates, and draft tubes, but Unit 6 had a new runner and curved discharge ring to minimize gaps between the runner hub and blades and between the blade tips and discharge ring. We used a mathematical model to predict blade strike associated with two Kaplan turbines and compared results with empirical data from biological tests conducted in 1999 and 2000. Blade-strike models take into consideration the geometry of the turbine blades and discharges as well as fish length, orientation, and distribution along the runner. The first phase of this study included a sensitivity analysis to consider the effects of difference in geometry and operations between families of turbines on the strike probability response surface. The analysis revealed that the orientation of fish relative to the leading edge of a runner blade and the location that fish pass along the blade between the hub and blade tip are critical uncertainties in blade-strike models. Over a range of discharges, the average prediction of injury from blade strike was two to five times higher than average empirical estimates of visible injury from shear and mechanical devices. Empirical estimates of mortality may be better metrics for comparison to predicted injury rates than other injury measures for fish passing at mid-blade and blade-tip locations.

  15. Effects of wake-turbine blade interactions on power production of wind turbines

    Science.gov (United States)

    Tadokoro, Maki; Yokoyama, Hiroshi; Iida, Akiyoshi

    2017-01-01

    In offshore wind farms, deterioration in power generation performance due to the mutual interference of flow around the wind turbines is a serious issue. To clarify the effects of wake-turbine blade interactions on the performance of wind farms, we conducted large-scale simulations of the flow around two full-scale wind turbines in a tandem-arrangement with two different spacings. The spacing between the two turbines was L/D = 1.0 and L/D = 2.0, with D being the rotor diameter. The predicted results show that vortices generated in the wake of the first turbine interfere with the blades of the second turbine and the interference becomes more intense for the case of L/D = 1.0. Thus, the power coefficient of the downstream turbine becomes lower by 80% for the case of L/D = 1.0 compared with the case of a single wind turbine.

  16. Advanced HP/IP Blading Technologies for the Design of Highly Efficient Steam Turbines

    Institute of Scientific and Technical Information of China (English)

    Mathias Deckers; Ernst Wilhelm Pfitzinger; Wilfried Ulm

    2004-01-01

    This paper presents Siemens' latest improvements in steam turbine blading and blading design tools. The technology offers improved performance and highest efficiencies for a wide range of steam turbine applications.

  17. Advanced HP/IP Blading Technologies for the Design of Highly Efficient Steam Turbines

    Institute of Scientific and Technical Information of China (English)

    MathiasDeckers; ErnstWilhelmPfitzinger; WilfriedUlm

    2004-01-01

    This paper presents Siemens’ latest improvements in steam turbine blading and blading design tools. The technology offers improved performance and highest efficiencies for a wide range of steam turbine applications.

  18. Development of flow separation control system to reduce the vibration of wind turbine blades

    Science.gov (United States)

    Kim, Ho-Young; Kim, Ho-Hyun; Han, Jong-Seob; Han, Jae-Hung

    2017-04-01

    The size of wind turbine blade has been continuously increased. Large-scale wind turbine blades induce loud noise, vibration; and maintenance difficulty is also increased. It causes the eventual increases of the cost of energy. The vibration of wind turbine blade is caused by several reasons such as a blade rotation, tower shadow, wind shear, and flow separation of a wind turbine blade. This wind speed variation changes in local angle of attack of the blades and create the vibration. The variation of local angle of attack influences the lift coefficient and causes the large change of the lift. In this study, we focus on the lift coefficient control using a flow control device to reduce the vibration. DU35-A15 airfoil was employed as baseline model. A plasma actuator was installed to generate the upwind jet in order to control the lift coefficient. Wind tunnel experiment was performed to demonstrate of the performance of the plasma actuator. The results show the plasma actuator can induce the flow separation compared with the baseline model. In addition, the actuator can delay the flow separation depending on the input AC frequency with the same actuator configuration.

  19. Innovative manufacture of impulse turbine blades for wave energy power conversion

    Energy Technology Data Exchange (ETDEWEB)

    Thakker, A.; Khaleeq, H.B. [Limerick Univ., Wave Energy Research Team, Limerick (Ireland); Limerick Univ., Dept. of Mechanical and Aeronautical Engineering, Limerick (Ireland); Sheahan, C. [Limerick Univ., Wave Energy Research Team, Limerick (Ireland); Limerick Univ., Dept. of Manufacture and Operations Engineering, Limerick (Ireland); Frawley, P. [Limerick Univ., Dept. of Mechanical and Aeronautical Engineering, Limerick (Ireland)

    2002-07-01

    An innovative approach to the manufacture of impulse turbine blades using rapid prototyping, fused decomposition modelling (FDM), is presented in this paper. These blades were designed and manufactured by the Wave Energy Research Team (WERT) at the University of Limerick for the experimental analysis of a 0.6 m impulse turbine with fixed guide vanes for wave energy power conversion. The computer aided design/manufacture (CAD/CAM) package Pro-Engineer 2000i was used for three-dimensional solid modelling of the individual blades. A detailed finite element analysis (FEA) of the blades under centrifugal loads was performed using Pro-Mechanica. Based on this analysis and FDM machine capabilities, blades were redesigned. Finally, Pro-E data were transferred to an FDM machine for the manufacture of turbine blades. The objective of this paper is to present the innovative method used to design, modify and manufacture blades in a time and cost effective manner using a concurrent engineering approach. (Author)

  20. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex E. Full-scale test of wind turbine blade, using sensors and NDT

    DEFF Research Database (Denmark)

    Kristensen, O.J.D.; McGugan, Malcolm; Sendrup, P.

    2002-01-01

    A 19.1 metre wind turbine blade was subjected to static tests. The purpose of the test series was to verify the abilities of different types of sensors to detect damage in wind turbine blades. Prior to each of the static test-series an artificial damagewas made on the blade. The damage made...

  1. Torsional Stiffness Effects on the Dynamic Stability of a Horizontal Axis Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Min-Soo Jeong

    2013-04-01

    Full Text Available Aeroelastic instability problems have become an increasingly important issue due to the increased use of larger horizontal axis wind turbines. To maintain these large structures in a stable manner, the blade design process should include studies on the dynamic stability of the wind turbine blade. Therefore, fluid-structure interaction analyses of the large-scaled wind turbine blade were performed with a focus on dynamic stability in this study. A finite element method based on the large deflection beam theory is used for structural analysis considering the geometric nonlinearities. For the stability analysis, a proposed aerodynamic approach based on Greenberg’s extension of Theodorsen’s strip theory and blade element momentum method were employed in conjunction with a structural model. The present methods proved to be valid for estimations of the aerodynamic responses and blade behavior compared with numerical results obtained in the previous studies. Additionally, torsional stiffness effects on the dynamic stability of the wind turbine blade were investigated. It is demonstrated that the damping is considerably influenced by variations of the torsional stiffness. Also, in normal operating conditions, the destabilizing phenomena were observed to occur with low torsional stiffness.

  2. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  3. Improving Bending Moment Measurements on Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan L.

    2016-03-15

    Full-scale fatigue testing of wind turbine blades is conducted using resonance test techniques where the blade plus additional masses is excited at its first resonance frequency to achieve the target loading amplitude. Because there is not a direct relationship between the force applied by an actuator and the bending moment, the blade is instrumented with strain gauges that are calibrated under static loading conditions to determine the sensitivity or relationship between strain and applied moment. Then, during dynamic loading the applied moment is calculated using the strain response of the structure. A similar procedure is also used in the field to measure in-service loads on turbine blades. Because wind turbine blades are complex twisted structures and the deflections are large, there is often significant cross-talk coupling in the sensitivity of strain gauges placed on the structure. Recent work has shown that a sensitivity matrix with nonzero cross terms must be employed to find constant results when a blade is subjected to both flap and lead-lag loading. However, even under controlled laboratory conditions, potential for errors of 3 percent or more in the measured moment exist when using the typical cross-talk matrix approach due to neglecting the influence of large deformations and torsion. This is particularly critical when considering a biaxial load as would be applied on the turbine or during a biaxial fatigue test. This presentation describes these results demonstrating errors made when performing current loads measurement practices on wind turbine blades in the lab and evaluating potential improvements using enhanced cross-talk matrix approaches and calibration procedures.

  4. Research on the Finite Element Model of Large Wind Turbine Blade%大型风力机叶片有限元建模研究

    Institute of Scientific and Technical Information of China (English)

    张军; 武美萍

    2013-01-01

    介绍了基于ANSYS软件的大型风力机叶片有限元模型的直接建模方法,详细阐述了ANSYS自底向上建模过程和步骤.对复合材料结构有限元模型单元定义、材料参数定义、网格划分等进行了深入讨论,为更好地进行风力机叶片结构设计、强度分析和铺层优化奠定了基础.%It introduces a direct way to establish the finite model of blade based on ANSYS,expresses the steps and progress of modeling in a bottom to top way.At the same time,it seeks into the process of defining dement types,material parameters and meshing deeply.This method provides conveniences for the future research of wind turbine blade,including structure design,strength analysis and layup optimization.

  5. Dynamic Stall on Vertical Axis Wind Turbine Blades

    Science.gov (United States)

    Dunne, Reeve

    In this study the dynamics of flow over the blades of vertical axis wind turbines was investigated using a simplified periodic motion to uncover the fundamental flow physics and provide insight into the design of more efficient turbines. Time-resolved, two-dimensional velocity measurements were made with particle image velocimetry on a wing undergoing pitching and surging motion to mimic the flow on a turbine blade in a non-rotating frame. Dynamic stall prior to maximum angle of attack and a leading edge vortex development were identified in the phase-averaged flow field and captured by a simple model with five modes, including the first two harmonics of the pitch/surge frequency identified using the dynamic mode decomposition. Analysis of these modes identified vortical structures corresponding to both frequencies that led the separation and reattachment processes, while their phase relationship determined the evolution of the flow. Detailed analysis of the leading edge vortex found multiple regimes of vortex development coupled to the time-varying flow field on the airfoil. The vortex was shown to grow on the airfoil for four convection times, before shedding and causing dynamic stall in agreement with 'optimal' vortex formation theory. Vortex shedding from the trailing edge was identified from instantaneous velocity fields prior to separation. This shedding was found to be in agreement with classical Strouhal frequency scaling and was removed by phase averaging, which indicates that it is not exactly coupled to the phase of the airfoil motion. The flow field over an airfoil undergoing solely pitch motion was shown to develop similarly to the pitch/surge motion; however, flow separation took place earlier, corresponding to the earlier formation of the leading edge vortex. A similar reduced-order model to the pitch/surge case was developed, with similar vortical structures leading separation and reattachment; however, the relative phase lead of the separation mode

  6. Advanced Turbine Blade Cooling Techniques Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can...

  7. Structural Reliability of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    by developing new models and standards or carrying out tests The following aspects are covered in detail: ⋅ The probabilistic aspects of ultimate strength of composite laminates are addressed. Laminated plates are considered as a general structural reliability system where each layer in a laminate is a separate...... system component. Methods for solving the system reliability are discussed in an example problem. ⋅ Probabilistic models for fatigue life of laminates and sandwich core are developed and calibrated against measurement data. A modified, nonlinear S-N relationship is formulated where the static strength...... the reliability against several modes of failure in two different structures. This includes reliability against blade-tower collision, and the reliability against ultimate and fatigue failure of a sandwich panel. The results from the reliability analyses are then used for calibrating partial safety factors...

  8. Multi-dimensional optimization of small wind turbine blades

    DEFF Research Database (Denmark)

    Sessarego, Matias; Wood, David

    2015-01-01

    This paper describes a computer method to allow the design of small wind turbine blades for the multiple objectives of rapid starting, efficient power extraction, low noise, and minimal mass. For the sake of brevity, only the first two and the last objectives are considered in this paper. The opt......This paper describes a computer method to allow the design of small wind turbine blades for the multiple objectives of rapid starting, efficient power extraction, low noise, and minimal mass. For the sake of brevity, only the first two and the last objectives are considered in this paper...

  9. Ultimate strength of a large wind turbine blade

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt

    2009-01-01

    The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural...... behaviour of wind turbine blades. Four failure mechanisms observed during the fullscale tests and the corresponding FE-analysis are presented. Elastic mechanisms associated with failure, such as buckling, localized bending and the Brazier effect, are studied. In the thesis six different types of structural...

  10. Potential Coir Fibre Composite for Small Wind Turbine Blade Application

    Directory of Open Access Journals (Sweden)

    Bakri Bakri

    2017-03-01

    Full Text Available Natural fibers have been developed as reinforcement of composite to shift synthetic fibers. One of potential natural fibers developed is coir fiber. This paper aims to describe potential coir fiber as reinforcement of composite for small wind turbine blade application. The research shows that mechanical properties ( tensile, impact, shear, flexural and compression strengths of coir fiber composite have really similar to wood properties for small wind turbine blade material, but inferior to glass fiber composite properties. The effect of weathering was also evaluated to coir fiber composite in this paper.

  11. Complicated hollow turbine blades and surface grain refinement process

    Directory of Open Access Journals (Sweden)

    Peng Zhijiang

    2010-05-01

    Full Text Available The control of grain size in superalloys is critical in the manufacture of gas turbine blades. The aim of the present research is to provide the technology for producing complicated hollow turbine blades with fine surface grains and better comprehensive mechanical properties. By melt superheating treatment and coating the internal surfaces of shell mould using a cobalt aluminate-bearing coating material, the influence of cobalt aluminate as inoculant on the surface grain sizes of turbine blade was studied with addition of cobalt aluminate: 0, 35%, 45% – 65% and 100% respectively. At the same time, the effects of cooling circumstances of the blades on surface grain sizes were also experimented under the same addition of cobalt aluminate. The results showed that the melt superheating treatment plays a significant role in the grain size and carbide morphology; and fine surface grains were obtained when the internal surfaces of shell mould were coated using cobalt aluminate coatings. When the addition of cobalt aluminate in coating is between 45% - 65%, and the melt is poured into preheated shell moulds with fine silica sand as backing sand, the blades satisfied the surface grain size requirement is over 90%. In addition, comparisons of the surface grain size and the mechanical properties were also conducted between home-made and foreign-made blades.

  12. Numerical results in a vertical wind axis turbine with relative rotating blades

    Energy Technology Data Exchange (ETDEWEB)

    Bayeul-Laine, Annie-Claude; Dockter, Aurore; Simonet, Sophie; Bois, Gerard [Arts et Metiers PARISTECH (France)

    2011-07-01

    The use of wind energy to produce electricity through wind turbines has spread world-wide. The quantity of electricity produced is affected by numerous factors such as wind speed and direction and turbine design; the aim of this paper is to assess the influence of different blades on the performance of a turbine. This study was performed on a turbine in which the blades have a rotating movement, each around its own axis and around the turbine's axis. Unsteady simulations were carried out with several blade stagger angles and one wind speed and 2 different blade geometries were used for 4 rotational speeds. Results showed that the studied turbine gave better performance than vertical axis wind turbines and that blade sketch, blade speed ratios, and blade stagger angle were important influences on the performance. This study showed that this kind of turbine has the potential to achieve good performance but that further work needs to be done.

  13. Wind turbine blade testing system using base excitation

    Science.gov (United States)

    Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay

    2014-03-25

    An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).

  14. Aerodynamic investigation of winglets on wind turbine blades using CFD

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Sørensen, Niels N.

    2006-01-01

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side...... (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets. Results show that adding a winglet to the existing blade increase the force distribution...... on the outer approx 14 % of the blade leading to increased produced power of around 0.6% to 1.4% for wind speeds larger than 6 m/s. This has to be compared to the increase in thrust of around 1.0% to 1.6%. Pointing the winglet downstream increases the power production even further. The effect of sweep and cant...

  15. Non-linear dynamic response of a wind turbine blade

    Science.gov (United States)

    Chopra, I.; Dugundji, J.

    1979-01-01

    The paper outlines the nonlinear dynamic analysis of an isolated three-degree flap-lag-feather wind turbine blade under a gravity field and with shear flow. Lagrangian equations are used to derive the nonlinear equations of motion of blade for arbitrarily large angular deflections. The limit cycle analysis for forced oscillations and the determination of the principal parametric resonance of the blade due to periodic forces from the gravity field and wind shear are performed using the harmonic balance method. Results are obtained first for a two-degree flap-lag blade, then the effect of the third degree of freedom (feather) is studied. The self-excited flutter solutions are obtained for a uniform wind and with gravity forces neglected. The effects of several parameters on the blade stability are examined, including coning angle, structural damping, Lock number, and feather frequency. The limit cycle flutter solution of a typical configuration shows a substantial nonlinear softening spring behavior.

  16. Blade Bearing Friction Estimation of Operating Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    Blade root bearing on a wind turbine (WTG) enables pitching of blades for power control and rotor braking and is a WTG critical component. As the size of modern WTGs is constantly increasing, this leads to relatively less rigid bearings, more sensitive to deformations, thus WTG operational...... reliability can be increased by continuous monitoring of blade bearing. High blade bearing friction is undesirable, as it may be associated with excessive heating of the surfaces, damage and/or inefficient operation. Thus, continuous observation of bearing friction level is crucial for blade bearing health...... monitoring systems. A novel algorithm for online monitoring of bearing friction level is developed combining physical knowledge about pitch system dynamics with state estimator, i.e. observer theory and signal processing assuming realistic sensor availability. Results show estimation of bearing friction...

  17. Effects of Freestream Turbulence on Turbine Blade Heat Transfer

    Science.gov (United States)

    Boyle, Robert J.; Giel, Paul W.; Ames, Forrest E.

    2004-01-01

    Experiments have shown that moderate turbulence levels can nearly double turbine blade stagnation region heat transfer. Data have also shown that heat transfer is strongly affected by the scale of turbulence as well as its level. In addition to the stagnation region, turbulence is often seen to increase pressure surface heat transfer. This is especially evident at low to moderate Reynolds numbers. Vane and rotor stagnation region, and vane pressure surface heat transfer augmentation is often seen in a pre-transition environment. Accurate predictions of transition and relaminarization are critical to accurately predicting blade surface heat transfer. An approach is described which incorporates the effects of both turbulence level and scale into a CFD analysis. The model is derived from experimental data for cylindrical and elliptical leadng edges. Results using this model are compared to experimental data for both vane and rotor geometries. The comparisons are made to illustrate that using a model which includes the effects of turbulence length scale improves agreement with data, and to illustrate where improvements in the modeling are needed.

  18. Improved design for large wind turbine blades of fibre composites (Phase 4) - Summary report

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Toftegaard, Helmuth Langmaack; Goutianos, Stergios

    growth with large scale bridging and the use of cohesive laws in finite element programmes for simulating wind turbine blade failure. An overview is given of the methods and the major research results of the project. The implementation of the knowledge in the industry is discussed. Finally, some ideas......Results are summarised for the project "Improved design for large wind turbine blades (Phase 4)", partially supported by the Danish Energy Agency under the Ministry of Climate and Energy through the EUDP journal no.: 33033-0267. The aim of the project was to develop new and better design methods...... for wind turbine blades, so that uncertainties associated with damage and defects can be reduced. The topics that are studied include buckling-driven delamination of flat load-carrying laminates, cracking along interfaces in material joints (fracture mechanical characterisation and modelling), cyclic crack...

  19. Improved design for large wind turbine blades of fibre composites (Phase 4) - Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B.F.; Toftegaard, H.; Goutanos, S. (Risoe DTU, Materials Research Div., Roskilde (Denmark)); Branner, K.; Berring, P. (Risoe DTU, Wind Energy Div., Roskilde (Denmark)); Lund, E. (Aalborg Univ., Dept. of Mechanical Engineering, Aalborg (Denmark)); Wedel-Heinen, J. (Vestas Wind System, Randers (Denmark)); Garm, J.H. (LM Wind Power, Kolding (Denmark))

    2010-06-15

    Results are summarised for the project 'Improved design for large wind turbine blades (Phase 4)', partially supported by the Danish Energy Agency under the Ministry of Climate and Energy through the EUDP journal no.: 33033-0267. The aim of the project was to develop new and better design methods for wind turbine blades, so that uncertainties associated with damage and defects can be reduced. The topics that are studied include buckling-driven delamination of flat load-carrying laminates, cracking along interfaces in material joints (fracture mechanical characterisation and modelling), cyclic crack growth with large scale bridging and the use of cohesive laws in finite element programmes for simulating wind turbine blade failure. An overview is given of the methods and the major research results of the project. The implementation of the knowledge in the industry is discussed. Finally, some ideas for future research activities are considered. (author)

  20. Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi; Mr. Aleks Plavsic

    2010-10-30

    IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5 kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.

  1. The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2013-06-01

    Full Text Available A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study.

  2. Savonius wind turbines: Design and testing of unique blade designs

    Science.gov (United States)

    McPherson, Paul B.

    As the idea of implementing alternative energy systems into urbanized areas continues to gain popularity, there is a growing need to improve the efficiency of such systems. Therefore, the purpose of this research was to determine whether or not six unique blade designs, developed by the researcher, would lead to a more efficient vertical axis Savonius wind turbine. This report provides details regarding the study of aerodynamic forces, drag coefficients, and flow characteristics around each blade as well as information pertaining to the assembly and field testing of a turbine. The researcher began by conducting wind tunnel tests and computational fluid dynamic simulations on a single blade with the proposed designs. The data from these experiments was then used to calculate the driving and opposing forces and drag coefficients that would be present when each blade design is used in a fully assembled turbine. Lastly, the researcher determined the theoretical maximum efficiency of each turbine by multiplying the difference between the drag coefficients with the Betz Limit (4/27). Upon analyzing the results, the researcher discovered that the forces that were reported in the CFD analysis were more than double those measured in the wind tunnel. In addition, upon calculating the performance of each blade design when assembled into a full turbine, it was found that the turbines may not perform as well as the researcher initially expected; with only one having an efficiency of greater than 12%. However, because of the differences between the wind tunnel and CFD results, the researcher suggests that further experimentation and analysis needs to be completed to accurately justify the performance calculations.

  3. Combined Experimental and Numerical Simulations of Thermal Barrier Coated Turbine Blades Erosion

    Science.gov (United States)

    Hamed, Awate; Tabakoff, Widen; Swar, Rohan; Shin, Dongyun; Woggon, Nthanial; Miller, Robert

    2013-01-01

    A combined experimental and computational study was conducted to investigate the erosion of thermal barrier coated (TBC) blade surfaces by alumina particles ingestion in a single stage turbine. In the experimental investigation, tests of particle surface interactions were performed in specially designed tunnels to determine the erosion rates and particle restitution characteristics under different impact conditions. The experimental results show that the erosion rates increase with increased impingement angle, impact velocity and temperature. In the computational simulations, an Euler-Lagrangian two stage approach is used in obtaining numerical solutions to the three-dimensional compressible Reynolds Averaged Navier-Stokes equations and the particles equations of motion in each blade passage reference frame. User defined functions (UDF) were developed to represent experimentally-based correlations for particle surface interaction models which were employed in the three-dimensional particle trajectory simulations to determine the particle rebound characteristics after each surface impact. The experimentally based erosion UDF model was used to predict the TBC erosion rates on the turbine blade surfaces based on the computed statistical data of the particles impact locations, velocities and angles relative to the blade surface. Computational results are presented for the predicted TBC blade erosion in a single stage commercial APU turbine, for a NASA designed automotive turbine, and for the NASA turbine scaled for modern rotorcraft operating conditions. The erosion patterns in the turbines are discussed for uniform particle ingestion and for particle ingestion concentrated in the inner and outer 5 percent of the stator blade span representing the flow cooling the combustor liner.

  4. Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes

    OpenAIRE

    2015-01-01

    The Savonius wind turbine is a type of vertical axis wind turbine (VAWTs) that is simply composed of two or three arc-type blades which can generate power even under poor wind conditions. A modified Savonius wind turbine with novel blade shapes is introduced with the aim of increasing the power coefficient of the turbine. The effect of blade fullness, which is a main shape parameter of the blade, on the power production of a two-bladed Savonius wind turbine is investigated using transient com...

  5. Simulation of 3D Flow in Turbine Blade Rows including the Effects of Coolant Ejection

    Institute of Scientific and Technical Information of China (English)

    Jian-Jun LIU; Bai-Tao AN; Yun-Tao ZENG

    2008-01-01

    This paper describes the numerical simulation of three-dimensional viscous flows in air-cooled turbine blade rows with the effects of coolant ejection. A TVD Navier-Stokes flow solver incorporated with Baldwin-Lomax turbulence model and multi-grid convergence acceleration algorithm are used for the simulation. The influences of coolant ejection on the main flow are accounted by volumetric coolant source terms. Numerical results for a four-stage turbine are presented and discussed.

  6. Unsteady flow and vibrations induced in turbine blades: Contributions to theoretical and experimental investigations

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, G.; Troilo, M. (L' Aquila Univ. (Italy); Genoa Univ. (Italy))

    1988-06-01

    A mathematical model is developed for fluid dynamic auto-excitated vibrations in turbine blades. In particular, with reference to theoretical aspects, the paper deals with the numerical analytical methods developed for the prediction of flutter instability in turbine cascades. With reference to experimental aspects, a description is given of recently installed instrumentation (at the test facility of the University of Genoa, Italy) for flow visualization and detection of unsteady flows by means of interferometry.

  7. 基于逆向工程的汽轮机叶片型面CAD 建模方法的研究%Study of CAD modeling for turbine blade profile based on reverse engineering

    Institute of Scientific and Technical Information of China (English)

    邢健; 付大鹏; 郝德成

    2011-01-01

    It discusses a method of CAD modeling for turbine blade profile based on reverse engineering technology,in which the significance of modeling the turbine blade profile is analyzed by applying reverse engineering.It briefly introduces the method for collecting reverse engineering data and its classification.Then the mathematical model for complexcurve and profile is stated.Furthermore ,the processing methods and procedures of blade point cloud data made with software Imageware combinig the modeling of blade profile by using Pro/E software are demonstrated.Meanwhile optimization of the blade profile is proposed by application of Pro/E software,on which the turbine blade profile shall be machined on NC machine.%探讨了基于逆向工程技术的汽轮机叶片型面CAD建模的一种方法.分析说明了应用逆向工程对汽轮机叶片建模的意义,简要地介绍了逆向工程数据采集方法及其分类,并对复杂曲线曲面的数学模型进行了详细的论述.阐述了逆向工程软件Imageware对叶片点云数据处理的具体方法和步骤.结合应用Pro/E软件完成叶片型面的造型,同时提出应用Pro/E软件对叶片型面进行优化的方法,在此基础上完成汽轮机叶片型面的数控加工.

  8. Mobile platform for hydraulic turbine blade repair robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The wall-climbing mobile platform (MP) of a robot for repairing a hydraulic turbine blade onsite is developed.The MP is equipped with ferromagnetic adhesive devices and can work on a spatial curved surface.The contradiction between mobility and load-bearing ability is analyzed,and the problem of self-adaptation to the curved face is solved using differential-driven wheeled locomotion with ferromagnetic adhesive devices.The platform adheres to the blade surface through the force provided by the ferromagnetic devices,and a certain gap exists between the magnetic devices and the blade's surface.A mechanism of three revolution degrees of freedom,which connects the magnetic devices with the platform's chassis,is developed to make the platform self-adapt to the complex curved surface of the turbine blade.A proofof-principle prototype has been manufactured,and experiments prove the success of the MP.The payload of the zero-turn-radius MP with excellent maneuverability exceeds 80 kg.The platform can automatically adapt to complex spatial surfaces,which satisfy the requirements of a hydraulic turbine blade in-situ repair robot.

  9. A morphing trailing edge flap system for wind turbine blades

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Barlas, Athanasios; Løgstrup Andersen, Tom

    2015-01-01

    and glued together with a load carrying part with a connector part that allows an easy attachment on the blade section. After tests in the laboratory the flap was mounted on a 2m long blade section mounted on a newly developed test rig. A 10m long boom with the blade section was installed on a 100kW turbine...... hub where the original blades were taken down. It means that the flap system was tested under realistic rotating conditions with real atmospheric turbulent inflow and with a g loading up to 10g which represents the conditions on the outer part of a MW turbine blade. The measured performance......The development of a morphing trailing edge system for wind turbines, also called a flap system, is presented. The functionality is simple as the flap deflection is controlled by pressurized air or a fluid in a number of voids in the flap made of an elastic material. It is thus a robust system...

  10. Wind Turbine Blades: An End of Life Perspective

    DEFF Research Database (Denmark)

    Beauson, Justine; Brøndsted, Povl

    2016-01-01

    In 2016, the first offshore windfarm constructed in the world—located in Denmark, near Ravnsborg—is turning 25 years old, and will soon be decommissioned. After decommissioning, most of the material of the turbine can be recycled; only the composite materials found in the blades represent...

  11. Thermoplastic Composite Wind Turbine Blades: Kinetics and Processability

    NARCIS (Netherlands)

    Teuwen, J.J.E.

    2011-01-01

    In previous research, the potential of glass fibre reinforced anionic polyamide-6 (APA-6) composites for use in wind turbine blades was proven. Based on polymer properties, viscosity, processing time, costs and recyclability, APA-6 composites are considered the most suitable reactive thermoplastic m

  12. Thermoplastic Composite Wind Turbine Blades: An Integrated Design Approach

    NARCIS (Netherlands)

    Joncas, S.

    2010-01-01

    This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising

  13. Thermoplastic Composite Wind Turbine Blades: An Integrated Design Approach

    NARCIS (Netherlands)

    Joncas, S.

    2010-01-01

    This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising the

  14. Numerical Simulation of Wind Turbine Blade-Tower Interaction

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; Hu Zhou; Decheng Wan

    2012-01-01

    Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented.The governing equations were the unsteady Reynolds-averaged Navier-Stokes (PANS) which were solved by the pimpleDyMFoam solver,and the AMI method was employed to handle mesh movements.The National Renewable Energy Laboratory (NREL) phase Ⅵ wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds (5,10,15,and 25 m/s) at a fixed blade pitch and constant rotational speed.Detailed numerical results of vortex structure,time histories of thrust,and pressure distribution on the blade and tower were presented.The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine,while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower.Also,strong interaction of blade tip vortices with separation from the tower was observed.

  15. Uncertainty assessment using uncalibrated objects: calibration of a Turbine Blade

    DEFF Research Database (Denmark)

    Savio, Enrico; Costacurta, A.; De Chiffre, Leonardo

    . The Centre for Geometrical Metrology (CGM) at the Technical University of Denmark takes care of free form measurements, in collaboration with DIMEG, University of Padova, Italy. The present report describes the calibration of a turbine blade using the method described in the draft ISO/TS 15530-6....

  16. Numerical investigation of three wind turbine blade tips

    DEFF Research Database (Denmark)

    Johansen, J.; Sørensen, Niels N.

    2002-01-01

    The complex three-dimensional flow around three different tip shapes on a rotating wind turbine blade is investigated and analyzed using Computational Fluid Dynamics. Differences in production, flapwise bending moments and forces are discussed. A methodfor determining the local inflow angle...

  17. Online Estimation of wind turbine blade deflection with UWB signals

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Jakobsen, Morten Lomholt; Østergaard, Jan

    2015-01-01

    In this paper we use ultra-wideband (UWB) signals for the localization of blade tips on wind turbines. Our approach is to acquire two separate distances to each tip via time-delay estimation, and each tip is then localized by triangulation. We derive an approximate maximum a posteriori (MAP) delay...

  18. Thermoplastic Composite Wind Turbine Blades: Kinetics and Processability

    NARCIS (Netherlands)

    Teuwen, J.J.E.

    2011-01-01

    In previous research, the potential of glass fibre reinforced anionic polyamide-6 (APA-6) composites for use in wind turbine blades was proven. Based on polymer properties, viscosity, processing time, costs and recyclability, APA-6 composites are considered the most suitable reactive thermoplastic

  19. Full scale wind turbine test of vortex generators mounted on the entire blade

    DEFF Research Database (Denmark)

    Bak, Christian; Skrzypinski, Witold Robert; Gaunaa, Mac;

    2016-01-01

    are compared to the predictions carried out by a developed design tool, where the effect of vortex generators and leading edge roughness is simulated using engineering models. The measurements showed that if vortex generators are mounted there is an increase in flapwise blade moments if the blades are clean......Measurements on a heavily instrumented pitch regulated variable speed Vestas V52 850 kW wind turbine situated at the DTU Risø Campus are carried out, where the effect of vortex generators mounted on almost the entire blade is tested with and without leading edge roughness. The measurements...

  20. Experimental and Numerical Study of the Aerodynamic Characteristics of an Archimedes Spiral Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Kyung Chun Kim

    2014-11-01

    Full Text Available A new type of horizontal axis wind turbine adopting the Archimedes spiral blade is introduced for urban-use. Based on the angular momentum conservation law, the design formula for the blade was derived using a variety of shape factors. The aerodynamic characteristics and performance of the designed Archimedes wind turbine were examined using computational fluid dynamics (CFD simulations. The CFD simulations showed that the new type of wind turbine produced a power coefficient (Cp of approximately 0.25, which is relatively high compared to other types of urban-usage wind turbines. To validate the CFD results, experimental studies were carried out using a scaled-down model. The instantaneous velocity fields were measured using the two-dimensional particle image velocimetry (PIV method in the near field of the blade. The PIV measurements revealed the presence of dominant vortical structures downstream the hub and near the blade tip. The interaction between the wake flow at the rotor downstream and the induced velocity due to the tip vortices were strongly affected by the wind speed and resulting rotational speed of the blade. The mean velocity profiles were compared with those predicted by the steady state and unsteady state CFD simulations. The unsteady CFD simulation agreed better with those of the PIV experiments than the steady state CFD simulations.

  1. An aerodynamic performance analysis of a perforated wind turbine blade

    Science.gov (United States)

    Didane, D. H.; Mohd, S.; Subari, Z.; Rosly, N.; Ghafir, M. F. Abdul; Mohd Masrom, M. F.

    2016-11-01

    Wind power is one of the important renewable energy sources. Currently, many researches are focusing on improving the aerodynamic performance of wind turbine blades through simulations and wind tunnel testing. In the present study, the aerodynamic performance of the perforated Eqwin blade (shell type blade) is investigated by using numerical simulation. Three types of slots namely circular, horizontal rectangular and vertical rectangular were evaluated. It was found that the optimum angle of attack for a perforated shell type blade was 12° with maximum Cl/Cd value of 6.420. In general, for all the perforated blade cases, Cl/Cd tended to decrease as the slot size increased except for the circular slot with 5 mm diameter. This was due to the disturbance of the airflow in lower side region which passed through the bigger slot size. Among the modified slots; the circular slot with diameter of 5 mm would be the best slot configuration that can be considered for blade fabrication. The Cl/Cd obtained was 6.46 which is about 5% more than the value of the reference blade. Moreover, the introduced slot would also reduce the overall weight of the blade by 1.3%.

  2. Pose estimation for mobile robots working on turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.D.; Chen, Q.; Liu, J.J.; Sun, Z.G.; Zhang, W.Z. [Tsinghua Univ., Beijing (China). Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Dept. of Mechanical Engineering

    2009-03-11

    This paper discussed a features point detection and matching task technique for mobile robots used in wind turbine blade applications. The vision-based scheme used visual information from the robot's surrounding environment to match successive image frames. An improved pose estimation algorithm based on a scale invariant feature transform (SIFT) was developed to consider the characteristics of local images of turbine blades, pose estimation problems, and conditions. The method included a pre-subsampling technique for reducing computation and bidirectional matching for improving precision. A random sample consensus (RANSAC) method was used to estimate the robot's pose. Pose estimation conditions included a wide pose range; the distance between neighbouring blades; and mechanical, electromagnetic, and optical disturbances. An experimental platform was used to demonstrate the validity of the proposed algorithm. 20 refs., 6 figs.

  3. Blade Shape Optimization of Liquid Turbine Flow Sensor

    Institute of Scientific and Technical Information of China (English)

    郭素娜; 张涛; 孙立军; 杨振; 杨文量

    2016-01-01

    Based on the characteristic curve analysis, the method using 2D(K ) square difference of meter factor at different flow rates was developed to evaluate the performance of turbine flow sensor in this study. Then according to the distribution of entrance velocity, it was supposed that reducing the blade area near the tip could decrease the linearity error of a sensor. Therefore, the influence of different blade shape parameters on the performance of the sensor was investigated by combining computational fluid dynamics(CFD)simulation with experimental test. The experimental results showed that, for the liquid turbine flow sensor with a diameter of 10 mm, the linearity error was smallest, and the performance of sensor was optimal when blade shape parameter equaled 0.25.

  4. Production laser hardfacing of jet engine turbine blades

    Science.gov (United States)

    Duhamel, R. F.; Banas, C. M.; Kosenski, R. L.

    1986-01-01

    A high wear point exists at the notch between adjacent blades forming the outer shroud of a jet engine turbine stage. This notch is commonly hardfaced to reduce wear and improve turbine blade endurance. Until recently, the blades were manually hardfaced by the gas tungsten arc process. A laser hardfacing process was developed for this application which has increased production rates and reduced rework requirements. The laser's precise energy control, inherent repeatability, and ability to be automated are the principal reasons for these process improvements. Laser hardfacing fundamentals and process development are described. Production equipment characteristics are reviewed and unique features of the process are identified. Finally, the results of several years of production hardfacing experiences are discussed.

  5. Demonstration of partial pitch 2-bladed wind turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong; Zahle, Frederik; Troldborg, Niels;

    This is the final report for the EUDP project performed from January 2012 to December 2015. The main objective for the project was to demonstrate the potential of the partial pitch two-bladed (PP-2B) technology. DTU Wind Energy took a responsibility for three workpackages (WPs) among 6 WPs which...... were aerodynamic evaluation of partial pitch technology (WP2), aeroelastic analysis of two-bladed turbine (WP3) and On-site testing (WP4). For the WP2, a comprehensive set of 3D CFD simulations including the gap between inner and outer part of the blade and vortex generators (VGs) of both cross...... pitch concept and detailed load analyses were performed. Also the comparison studies between numerical results and experimental results were performed. Moreover stability analyses for the PP- 2B turbine have been performed with HAWC2 and modal analysis using Hill’s method was performed to calculate...

  6. Fluid-structure coupling for wind turbine blade analysis using OpenFOAM

    Science.gov (United States)

    Dose, Bastian; Herraez, Ivan; Peinke, Joachim

    2015-11-01

    Modern wind turbine rotor blades are designed increasingly large and flexible. This structural flexibility represents a problem for the field of Computational Fluid Dynamics (CFD), which is used for accurate load calculations and detailed investigations of rotor aerodynamics. As the blade geometries within CFD simulations are considered stiff, the effect of blade deformation caused by aerodynamic loads cannot be captured by the common CFD approach. Coupling the flow solver with a structural solver can overcome this restriction and enables the investigation of flexible wind turbine blades. For this purpose, a new Finite Element (FE) solver was implemented into the open source CFD code OpenFOAM. Using a beam element formulation based on the Geometrically Exact Beam Theory (GEBT), the structural model can capture geometric non-linearities such as large deformations. Coupled with CFD solvers of the OpenFOAM package, the new framework represents a powerful tool for aerodynamic investigations. In this work, we investigated the aerodynamic performance of a state of the art wind turbine. For different wind speeds, aerodynamic key parameters are evaluated and compared for both, rigid and flexible blade geometries. The present work is funded within the framework of the joint project Smart Blades (0325601D) by the German Federal Ministry for Economic Affairs and Energy (BMWi) under decision of the German Federal Parliament.

  7. Energy harvesting to power sensing hardware onboard wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Clinton P [Los Alamos National Laboratory; Schichting, Alexander D [Los Alamos National Laboratory; Quellette, Scott [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-10-05

    Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

  8. Progress in the utilization of an oxide-dispersion-strengthened alloy for small engine turbine blades

    Science.gov (United States)

    Beatty, T. G.; Millan, P. P.

    1984-01-01

    The conventional means of improving gas turbine engine performance typically involves increasing the turbine inlet temperature; however, at these higher operational temperatures the high pressure turbine blades require air-cooling to maintain durability. Air-cooling imposes design, material, and economic constraints not only on the turbine blades but also on engine performance. The use of uncooled turbine blades at increased operating temperatures can offer significantly improved performance in small gas turbine engines. A program to demonstrate uncooled MA6000 high pressure turbine blades in a GTEC TFE731 turbofan engine is being conducted. The project goals include demonstration of the advantages of using uncooled MA6000 turbine blades as compared with cast directionally solidified MAR-M 247 blades.

  9. Dynamic Response of a Simplified Turbine Blade Model with Under-Platform Dry Friction Dampers Considering Normal Load Variation

    National Research Council Canada - National Science Library

    Bingbing He; Huajiang Ouyang; Xingmin Ren; Shangwen He

    2017-01-01

    ... with the blade platform in the vertical direction. The horizontal and vertical vibrations of the two dampers, and the horizontal and transverse platform vibrations are coupled by friction at the contact interfaces which is assumed to follow...

  10. Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving......Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... are controlled by pitching the blades and by controlling the electro-magnetic torque of the generator, thus slowing the rotation of the blades. Improved control of wind turbines, leading to reduced fatigue loads, can be exploited by using less materials in the construction of the wind turbine or by reducing...

  11. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model...... validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models...

  12. Turbine blade and non-integral platform with pin attachment

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Christian Xavier; Eng, Darryl; Marra, John J.

    2016-08-02

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pin attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.

  13. Turbine blade and non-integral platform with pin attachment

    Science.gov (United States)

    Campbell, Christian X; Eng, Darryl; Marra, John J

    2015-01-27

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pin attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.

  14. Wind Turbine Blade Monitoring with Brillouin-Based Fiber-Optic Sensors

    OpenAIRE

    Agnese Coscetta; Aldo Minardo; Lucio Olivares; Maurizio Mirabile; Mario Longo; Michele Damiano; Luigi Zeni

    2017-01-01

    Wind turbine (WT) blade is one of the most important components in WTs, as it is the key component for receiving wind energy and has direct influence on WT operation stability. As the size of modern turbine blade increases, condition monitoring and maintenance of blades become more important. Strain detection is one of the most effective methods to monitor blade conditions. In this paper, a distributed fiber-optic strain sensor is used for blade monitoring. Preliminary experimental tests have...

  15. Improved design of large wind turbine blades of fibre composites (Phase 2) - Summary Report

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Branner, K.; Stang, H.

    2005-01-01

    The major results of Phase 2 of a project concerning the development of new design methods for wind turbine blades are summarised. Finite element models were used for studying the buckling behaviour of a box girder, tested to failure in Phase 1 of thisproject. The deformation behaviour of a box...

  16. Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade

    Science.gov (United States)

    Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.

    2016-08-01

    To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.

  17. The role of free stream turbulence and blade surface conditions on the aerodynamic performance of wind turbine blades

    Science.gov (United States)

    Maldonado, Victor Hugo

    Wind turbines operate within the atmospheric boundary layer (ABL) which gives rise to turbulence among other flow phenomena. There are several factors that contribute to turbulent flow: The operation of wind turbines in two layers of the atmosphere, the surface layer and the mixed layer. These layers often have unstable wind conditions due to the daily heating and cooling of the atmosphere which creates turbulent thermals. In addition, wind turbines often operate in the wake of upstream turbines such as in wind farms; where turbulence generated by the rotor can be compounded if the turbines are not sited properly. Although turbulent flow conditions are known to affect performance, i.e. power output and lifespan of the turbine, the flow mechanisms by which atmospheric turbulence and other external conditions (such as blade debris contamination) adversely impact wind turbines are not known in enough detail to address these issues. The main objectives of the current investigation are thus two-fold: (i) to understand the interaction of the turbulent integral length scales and surface roughness on the blade and its effect on aerodynamic performance, and (ii) to develop and apply flow control (both passive and active) techniques to alleviate some of the adverse fluid dynamics phenomena caused by the atmosphere (i.e. blade contamination) and restore some of the aerodynamic performance loss. In order to satisfy the objectives of the investigation, a 2-D blade model based on the S809 airfoil for horizontal axis wind turbine (HAWT) applications was manufactured and tested at the Johns Hopkins University Corrsin Stanley Wind Tunnel facility. Additional levels of free stream turbulence with an intensity of 6.14% and integral length scale of about 0.321 m was introduced into the flow via an active grid. The free stream velocity was 10 m/s resulting in a Reynolds number based on blade chord of Rec ≃ 2.08x105. Debris contamination on the blade was modeled as surface roughness

  18. Large-area photogrammetry based testing of wind turbine blades

    Science.gov (United States)

    Poozesh, Peyman; Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter; Harvey, Eric; Yarala, Rahul

    2017-03-01

    An optically based sensing system that can measure the displacement and strain over essentially the entire area of a utility-scale blade leads to a measurement system that can significantly reduce the time and cost associated with traditional instrumentation. This paper evaluates the performance of conventional three dimensional digital image correlation (3D DIC) and three dimensional point tracking (3DPT) approaches over the surface of wind turbine blades and proposes a multi-camera measurement system using dynamic spatial data stitching. The potential advantages for the proposed approach include: (1) full-field measurement distributed over a very large area, (2) the elimination of time-consuming wiring and expensive sensors, and (3) the need for large-channel data acquisition systems. There are several challenges associated with extending the capability of a standard 3D DIC system to measure entire surface of utility scale blades to extract distributed strain, deflection, and modal parameters. This paper only tries to address some of the difficulties including: (1) assessing the accuracy of the 3D DIC system to measure full-field distributed strain and displacement over the large area, (2) understanding the geometrical constraints associated with a wind turbine testing facility (e.g. lighting, working distance, and speckle pattern size), (3) evaluating the performance of the dynamic stitching method to combine two different fields of view by extracting modal parameters from aligned point clouds, and (4) determining the feasibility of employing an output-only system identification to estimate modal parameters of a utility scale wind turbine blade from optically measured data. Within the current work, the results of an optical measurement (one stereo-vision system) performed on a large area over a 50-m utility-scale blade subjected to quasi-static and cyclic loading are presented. The blade certification and testing is typically performed using International

  19. Effects of Blade Boundary Layer Transition and Daytime Atmospheric Turbulence on Wind Turbine Performance Analyzed with Blade-Resolved Simulation and Field Data

    Science.gov (United States)

    Nandi, Tarak Nath

    , ≈3 s) and sub-1P scale (velocity vector inclination in the airfoil plane, modulated by eddy passage at longer time scales. Generator power is found to respond strongly to large-eddy wind modulations. The experimental data show that internal dynamics of blade boundary layer near the trailing edge is temporally modulated by the nonsteady external ABL flow that was measured at the leading edge, as well as blade generated turbulence motions. A blade boundary layer resolved CFD study of a GE 1.5MW wind turbine blade is carried out using a hybrid URANS/LES framework to quantify the influence of transition on the blade boundary layer dynamics and subsequent loadings, and also to predict the velocity magnitude data set measured by the trailing edge rakes in the experiment. A URANS based transition model is used as the near-wall model, and its ability to predict nonsteady boundary layer dynamics is assessed for flow over an oscillating airfoil exhibiting varying extents of nonsteady behavior. The CFD study shows that, at rated conditions, the transition and separation locations on the blade surface can be quite dynamic, but the transitional flow has negligible influence on the determination of the separation location and the overall pressure distribution at various blade sections, and subsequently the power output. But this conclusion should be accepted with caution for wind turbines running in off-design conditions (e.g. with significant yaw error, off-design pitch or rapid changes in pitch), where massive separation and dynamic stall may occur. Analysis of the near-blade flow field shows strong three dimensional flow in the inboard regions, which can possibly weaken the chordwise flow in the relatively outboard regions and make them more prone to separation. The trailing edge velocity profiles show qualitative resemblance with some specific cycles observed in the field experiment. The factors leading to the observed differences from the experimental data are also

  20. Optimized chord and twist angle distributions of wind turbine blade considering Reynolds number effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Tang, X. [Univ. of Central Lancashire. Engineering and Physical Sciences, Preston (United Kingdom); Liu, X. [Univ. of Cumbria. Sustainable Engineering, Workington (United Kingdom)

    2012-07-01

    The aerodynamic performance of a wind turbine depends very much on its blade geometric design, typically based on the blade element momentum (BEM) theory, which divides the blade into several blade elements. In current blade design practices based on Schmitz rotor design theory, the blade geometric parameters including chord and twist angle distributions are determined based on airfoil aerodynamic data at a specific Reynolds number. However, rotating wind turbine blade elements operate at different Reynolds numbers due to variable wind speed and different blade span locations. Therefore, the blade design through Schmitz rotor theory at a specific Reynolds number does not necessarily provide the best power performance under operational conditions. This paper aims to provide an optimal blade design strategy for horizontal-axis wind turbines operating at different Reynolds numbers. A fixed-pitch variable-speed (FPVS) wind turbine with S809 airfoil is chosen as a case study and a Matlab program which considers Reynolds number effects is developed to determine the optimized chord and twist angle distributions of the blade. The performance of the optimized blade is compared with that of the preliminary blade which is designed based on Schmitz rotor design theory at a specific Reynolds number. The results demonstrate that the proposed blade design optimization strategy can improve the power performance of the wind turbine. This approach can be further developed for any practice of horizontal axis wind turbine blade design. (Author)

  1. Aeroelastic tailoring in wind-turbine blade applications

    Energy Technology Data Exchange (ETDEWEB)

    Veers, P.; Lobitz, D. [Sandia National Labs., Albuquerque, NM (United States); Bir, G. [National Renewable Energy Lab., Golden, CO (United States). National Wind Technology Center

    1998-04-01

    This paper reviews issues related to the use of aeroelastic tailoring as a cost-effective, passive means to shape the power curve and reduce loads. Wind turbine blades bend and twist during operation, effectively altering the angle of attack, which in turn affects loads and energy production. There are blades now in use that have significant aeroelastic couplings, either on purpose or because of flexible and light-weight designs. Since aeroelastic effects are almost unavoidable in flexible blade designs, it may be desirable to tailor these effects to the authors advantage. Efforts have been directed at adding flexible devices to a blade, or blade tip, to passively regulate power (or speed) in high winds. It is also possible to build a small amount of desirable twisting into the load response of a blade with proper asymmetric fiber lay up in the blade skin. (Such coupling is akin to distributed {delta}{sub 3} without mechanical hinges.) The tailored twisting can create an aeroelastic effect that has payoff in either better power production or in vibration alleviation, or both. Several research efforts have addressed different parts of this issue. Research and development in the use of aeroelastic tailoring on helicopter rotors is reviewed. Potential energy gains as a function of twist coupling are reviewed. The effects of such coupling on rotor stability have been studied and are presented here. The ability to design in twist coupling with either stretching or bending loads is examined also.

  2. Comparative analysis of steady state heat transfer in a TBC and functionally graded air cooled gas turbine blade

    Indian Academy of Sciences (India)

    Nilanjan Coomar; Ravikiran Kadoli

    2010-02-01

    Internal cooling passages and thermal barrier coatings (TBCs) are presently used to control metal temperatures in gas turbine blades. Functionally graded materials (FGMs), which are typically mixtures of ceramic and metal, have been proposed for use in turbine blades because they possess smooth property gradients thereby rendering them more durable under thermal loads. In the present work, a functionally graded model of an air-cooled turbine blade with airfoil geometry conforming to the NACA0012 is developed which is then used in a finite element algorithm to obtain a non-linear steady state solution to the heat equation for the blade under convection and radiation boundary conditions. The effects of external gas temperature, coolant temperature, surface emissivity changes and different average ceramic/metal content of the blade on the temperature distributions are examined. Simulations are also carried out to compare cooling effectiveness of functionally graded blades with that of blades having TBC. The results highlight the effect of including radiation in the simulation and also indicate that external gas temperature influences the blade heat transfer more strongly. It is also seen that graded blades with about 70% ceramic content can deliver better cooling effectiveness than conventional blades with TBC.

  3. Behavior of the Blade Tip Vortices of a Wind Turbine Equipped with a Brimmed-Diffuser Shroud

    Directory of Open Access Journals (Sweden)

    Takanori Uchida

    2012-12-01

    Full Text Available To clarify the behavior of the blade tip vortices of a wind turbine equipped with a brimmed-diffuser shroud, called a “Wind-Lens turbine”, we conducted a three-dimensional numerical simulation using a large eddy simulation (LES. Since this unique wind turbine consists of not only rotating blades but also a diffuser shroud with a broad-ring brim at the exit periphery, the flow field around the turbine is highly complex and unsteady. Previously, our research group conducted numerical simulations using an actuator-disc approximation, in which the rotating blades were simply modeled as an external force on the fluid. Therefore, the detailed flow patterns around the rotating blades and the shroud, including the blade tip vortices, could not be simulated. Instead of an actuator-disc approximation, we used a moving boundary technique in the present CFD simulation to simulate the flow around a rotating blade in order to focus especially on blade tip vortices. The simulation results showed a pair of vortices consisting of a blade tip vortex and a counter-rotating vortex which was generated between the blade tip and the inner surface of the diffuser. Since these vortices interacted with each other, the blade tip vortex was weakened by the counter-rotating vortex. The results showed good agreement with past wind tunnel experiments.

  4. Bonding quality evaluation of wind turbine blades by pulsed thermography

    Science.gov (United States)

    He, Rui-gang; Kong, De-juan; Zeng, Zhi; Tao, Ning; Zhang, Cun-lin; Feng, Li-chun

    2011-08-01

    The glue defects of the wind turbine blades which are composed of the glass fiber reinforced plastic (GFRP) composite plates make its strength greatly reduced, so security issues could be caused. To improve the safety of wind turbine blades, nondestructive testing technique using pulsed thermography is being investigated in this study. The results of ultrasonic C scan test were compared with the results of thermography. The current results indicated that both methods can successfully detect two gluing situations. However, the inspect specimens need to be putted in the water in the detection process by ultrasonic C scan, and the detection time lasts much longer than pulsed thermography. And in situ applications, the measured wind turbine blades are normally in the size of several tens meter, and also only one side is available for the inspection especially at the tip of blades. Thus, ultrasonic C scan of current experimental setup is not suitable for the applications in the field. Pulsed thermography is not necessary to contact with inspected specimens. The infrared results by pulsed thermography indicate that the shape and size of deficiency glue defects in the specimens show good agreement with the real situation, so it is more suitable for the inspection in the field. The preliminary results in this study indicate that pulse thermography can be used to detect glue faults of GFRP which are not too thick.

  5. A comparative study on river hydrokinetic turbines blade profiles

    Directory of Open Access Journals (Sweden)

    Kamal A.R.Ismail

    2015-05-01

    Full Text Available Diesel based electricity supply is the common practice in rural and isolated areas in the North of Brazil. The diesel fuel is usually transported from a nearby city as Manaus by river to these isolated communities. During wet seasons and inundations this means of transport is very risky and not usually safe. The hydrokinetic technology is among the promising technologies for most of the Amazon areas because of the large hydraulic capacity and low density population settlements. In this paper the authors propose a cheap hydrokinetic turbine system whose blades are easy to design, manufacture, replace when necessary and its operation is independent of flow direction. In this work CFD, RANS (Reynolds Average Navier Stokes equations are used to characterize and develop a methodology of numerical simulation of a vertical axis hydrokinetic turbine. In the simulations, four blade profiles were investigated. The effects of the number of blades, blade profile and water flow velocity on the turbine torque and power coefficients were presented and discussed.

  6. Flow characteristics on the blade channel vortex in the Francis turbine

    Science.gov (United States)

    Guo, P. C.; Wang, Z. N.; Luo, X. Q.; Wang, Y. L.; Zuo, J. L.

    2016-05-01

    Depending on the long-term hydraulic development of Francis turbine, the blade channel vortex phenomenon was investigated systematically from hydraulic design, experimental and numerical computation in this paper. The blade channel vortex difference between the high water head and low water head turbine was also analyzed. Meanwhile, the relationship between the blade channel vortex and the operating stability of hydraulic turbine was also investigated. The results show that the phenomenon of blade channel vortex is an intrinsic property for Francis turbine under small flow rate condition, the turning-point of the blade channel vortex inception curve appears at low unit speed region, and the variation trend of the blade channel vortex inception curve is closely related to the blade inlet edge profile. In addition to, the vortex of the high water head turbine can generally be excluded from the stable operation region, while which is more different for the one of the low water head turbine.

  7. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    Science.gov (United States)

    Kim, Sang-Woo; Kang, Woo-Ram; Jeong, Min-Soo; Lee, In; Kwon, Il-Bum

    2013-12-01

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors.

  8. Edgewise vibration control of wind turbine blades using roller and liquid dampers

    Science.gov (United States)

    Zhang, Z. L.; Nielsen, S. R. K.

    2014-06-01

    This paper deals with the passive vibration control of edgewise vibrations by means of roller dampers and tuned liquid column dampers (TLCDs). For a rotating blade, the large centrifugal acceleration makes it possible to use roller dampers or TLCDs with rather small masses for effectively suppressing edgewise vibrations. The roller dampers are more volumetrically efficient due to the higher mass density of the steel comparing with the liquid. On the other hand, TLCDs have their advantage that it is easier to specify the optimum damping of the damper by changing the opening ratio of the orifice. In this paper, 2-DOF nonlinear models are suggested for tuning a roller damper or a TLCD attached to a rotating wind turbine blade, ignoring the coupling between the blade and the tower. The decoupled optimization is verified by incorporating the optimized damper into a more sophisticated 13- DOF wind turbine model with due consideration of the coupled blade-tower-drivetrain vibrations, quasi-static aeroelasticity as well as a collective pitch controller. Performances of the dampers are compared in terms of the control efficiency and the practical applications. The results indicate that roller dampers and TLCDs at optimal tuning can effectively suppress the dynamic response of wind turbine blades.

  9. Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors

    Science.gov (United States)

    Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.

    2014-12-01

    This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.

  10. A method to estimate wind turbine blade damage and to design damage-resilient blades

    Science.gov (United States)

    Fiore, Giovanni

    Wind turbine blades are affected by continuous impacts with airborne particles that deteriorate the blade surface and yield to a drop in output power. Based on the climatic conditions and geographic locations of a given wind farm, multiple types of particles are observed in air. The present study focuses on simulating the impact of four types of particles, namely insects, sand grains, hailstones, and rain drops with the blade surface. A numerical inviscid flowfield code, coupled with a particle position predictor code was used. Upon impact, the damaging effect to the blade surface was evaluated. Each type of particle was associated with a damage mode, which depends on the mass, size, and hardness of the particle. It was found that insects strike and adhere to the blade in a region close to the leading edge. On the other hand, it was seen that sand grains promote erosion just downstream of the leading edge, where local velocity reaches a maximum and the impact angle is shallow. Moreover, particles such as rain drops are associated with fatigue and erosion at the very leading edge and on the upper side of the blade section. Finally, hailstones promote delamination and fatigue in the composite panels of the blade surface. Photographic evidence of damaged blade surfaces was used in the present research as a comparison with the simulations performed for various types of particle and different initial conditions. Based on such observations, a theorization of the damage pattern and evolution was proposed. Finally, given a set of well-established blade section geometries, such as the Delft University and NREL S airfoil families, a comparison of airfoil damage fitness was proposed and possible means of shape optimization were discussed. The investigation of blade geometry features to mitigate damage was performed. Based on previous results, it was argued that a viable blade section optimization may be performed for the lightest and smallest particles considered in the study

  11. Improved blade element momentum theory for wind turbine aerodynamic computations

    DEFF Research Database (Denmark)

    Sun, Zhenye; Chen, Jin; Shen, Wen Zhong

    2016-01-01

    Blade element momentum (BEM) theory is widely used in aerodynamic performance predictions and design applications for wind turbines. However, the classic BEM method is not quite accurate which often tends to under-predict the aerodynamic forces near root and over-predict its performance near tip...... for the MEXICO rotor. Results show that the improved BEM theory gives a better prediction than the classic BEM method, especially in the blade tip region, when comparing to the MEXICO measurements. (C) 2016 Elsevier Ltd. All rights reserved....

  12. Effect of blade loading and rotor speed on the optimal aerodynamic performance of wind turbine blades

    Science.gov (United States)

    Bryson, Christopher; Hussain, Fazle; Barhorst, Alan

    2015-11-01

    Optimization of wind turbine torque as a function of angle of attack - over the entire speed range from start-up to cut-off - is studied by considering the full trigonometric relations projecting lift and drag to thrust and torque. Since driving force and thrust are geometrically constrained, one cannot be changed without affecting the other. Increasing lift to enhance torque simultaneously increases thrust, which subsequently reduces the inflow angle with respect to the rotor plane via an increased reduction in inflow velocity. Reducing the inflow angle redirects the lift force away from the driving force generating the torque, which may reduce overall torque. Similarly, changes in the tip-speed ratio (TSR) affect the inflow angle and thus the optimal torque. Using the airfoil data from the NREL 5 MW reference turbine, the optimal angle of attack over the operational TSR range (4 to 15) was computed using a BEM model to incorporate the dynamic coupling, namely the interdependency of blade loading and inflow angle. The optimal angle of attack is close to minimum drag during start-up phase (high TSR) and continuously increases toward maximum lift at high wind speeds (low TSR).

  13. Composite materials for wind power turbine blades

    DEFF Research Database (Denmark)

    Brøndsted, P.; Lilholt, H.; Lystrup, Aa.

    2005-01-01

    Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind turbine and the rotorblade concepts are reviewed, and loadings by wind and gravity as important factors for the fatigue performance of the materials are considered. Wood...... procedures for documentation of properties are reviewed, and fatigue loading histories are discussed, together with methods for data handling and statistical analysis of (large) amounts of test data. Future challenges for materials in the field of wind turbines are presented, with a focus on thermoplastic...

  14. On the aero-elastic design of the DTU 10MW wind turbine blade for the LIFES50+ wind tunnel scale model

    Science.gov (United States)

    Bayati, I.; Belloli, M.; Bernini, L.; Mikkelsen, R.; Zasso, A.

    2016-09-01

    This paper illustrates the aero-elastic optimal design, the realization and the verification of the wind tunnel scale model blades for the DTU 10 MW wind turbine model, within LIFES50+ project. The aerodynamic design was focused on the minimization of the difference, in terms of thrust coefficient, with respect to the full scale reference. From the Selig low Reynolds database airfoils, the SD7032 was chosen for this purpose and a proper constant section wing was tested at DTU red wind tunnel, providing force and distributed pressure coefficients for the design, in the Reynolds range 30-250 E3 and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist to match the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre was CNC manufactured based on B-Splines CAD definition of the external geometry. Then the wind tunnel tests at Politecnico di Milano confirmed successful design and manufacturing approaches.

  15. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Lading, L.; Sendrup, P.

    2002-01-01

    transducer was found to work well for detectingadhesive failure. Modelling work shows that damage in a wind turbine blade causes a significant change in the modal shape when the damage is in the or-der of 0.5-1 m. Rough estimates of the prices of complete sensor systems were made. The system based onacoustic......This summary-report describes the results of a pre-project that has the aim of estab-lishing the basic technical knowledge to evaluate whether remote surveillance of the rotor blades of large off-shore wind turbines has technical and economical potential.A cost-benefit analysis was developed......, showing that it is economically attractive to use sensors embedded in the blade. Specific technical requirements were defined for the sensors capability to detect the most important damage types in wind turbineblades. Three different sensor types were selected for use in laboratory experiments and full...

  16. Local fatigue behavior in tapered areas of large offshore wind turbine blades

    DEFF Research Database (Denmark)

    Raeis Hosseiny, Seyed Aydin; Jakobsen, Johnny

    2016-01-01

    failure of an entire blade structure. The local strength degradation under an ultimate static loading, subsequent to several years of fatigue, is predicted for an offshore wind turbine blade. Fatigue failure indexes of different damage modes are calculated using a sub-modeling approach. Multi axial...... stresses are accounted for using a developed failure criterion with residual strengths instead of the virgin strengths. Damage initiation is predicted by including available Wohler curve data of E-Glass fabrics and epoxy matrix into multi-axial fatigue failure criteria. As a result of this study, proper...... knock-down factors for ply-drop effects in wind turbine blades under multi-axial static and fatigue loadings can be obtained....

  17. Local fatigue behavior in tapered areas of large offshore wind turbine blades

    Science.gov (United States)

    Aydin Raeis Hosseiny, Seyed; Jakobsen, Johnny

    2016-07-01

    Thickness transitions in load carrying elements lead to improved geometries and efficient material utilization. However, these transitions may introduce localized areas with high stress concentrations and may act as crack initiators that could potentially cause delamination and further catastrophic failure of an entire blade structure. The local strength degradation under an ultimate static loading, subsequent to several years of fatigue, is predicted for an offshore wind turbine blade. Fatigue failure indexes of different damage modes are calculated using a sub-modeling approach. Multi axial stresses are accounted for using a developed failure criterion with residual strengths instead of the virgin strengths. Damage initiation is predicted by including available Wohler curve data of E-Glass fabrics and epoxy matrix into multi-axial fatigue failure criteria. As a result of this study, proper knock-down factors for ply-drop effects in wind turbine blades under multi-axial static and fatigue loadings can be obtained.

  18. Experimental and Numerical Study of Rotor Dynamics of a Two- and Three-Bladed Wind Turbine

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Kim, Taeseong

    2016-01-01

    In this paper the dynamics of a two-bladed turbine is investigated numerically as well as experimentally with respect to how the turbine frequencies change with the rotor speed. It is shown how the turbine frequencies of a two-bladed rotor change with the azimuthal position at standstill and how ...

  19. High Humidity Aerodynamic Effects Study on Offshore Wind Turbine Airfoil/Blade Performance through CFD Analysis

    Directory of Open Access Journals (Sweden)

    Weipeng Yue

    2017-01-01

    Full Text Available Damp air with high humidity combined with foggy, rainy weather, and icing in winter weather often is found to cause turbine performance degradation, and it is more concerned with offshore wind farm development. To address and understand the high humidity effects on wind turbine performance, our study has been conducted with spread sheet analysis on damp air properties investigation for air density and viscosity; then CFD modeling study using Fluent was carried out on airfoil and blade aerodynamic performance effects due to water vapor partial pressure of mixing flow and water condensation around leading edge and trailing edge of airfoil. It is found that the high humidity effects with water vapor mixing flow and water condensation thin film around airfoil may have insignificant effect directly on airfoil/blade performance; however, the indirect effects such as blade contamination and icing due to the water condensation may have significant effects on turbine performance degradation. Also it is that found the foggy weather with microwater droplet (including rainy weather may cause higher drag that lead to turbine performance degradation. It is found that, at high temperature, the high humidity effect on air density cannot be ignored for annual energy production calculation. The blade contamination and icing phenomenon need to be further investigated in the next study.

  20. Flow separation on wind turbines blades

    NARCIS (Netherlands)

    Corten, G.P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine bl

  1. Flow separation on wind turbines blades

    NARCIS (Netherlands)

    Corten, G.P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine

  2. Simulating Blade-Strike on Fish passing through Marine Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-06-16

    The study reported here evaluated the occurrence, frequency, and intensity of blade strike of fish on an axial-flow marine hydrokinetic turbine by using two modeling approaches: a conventional kinematic formulation and a proposed Lagrangian particle- based scheme. The kinematic model included simplifying assumptions of fish trajectories such as distribution and velocity. The proposed method overcame the need for such simplifications by integrating the following components into a computational fluid dynamics (CFD) model: (i) advanced eddy-resolving flow simulation, (ii) generation of ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The test conditions to evaluate the blade-strike probability and fish survival rate were: (i) the turbulent environment, (ii) the fish size, and (iii) the approaching flow velocity. The proposed method offered the ability to produce potential fish trajectories and their interaction with the rotating turbine. Depending upon the scenario, the percentile of particles that registered a collision event ranged from 6% to 19% of the released sample size. Next, by using a set of experimental correlations of the exposure-response of living fish colliding with moving blades, the simulated collision data were used as input variables to estimate the survival rate of fish passing through the operating turbine. The resulting survival rates were greater than 96% in all scenarios, which is comparable to or better than known survival rates for conventional hydropower turbines. The figures of strike probability and mortality rate were amplified by the kinematic model. The proposed method offered the advantage of expanding the evaluation of other mechanisms of stress and injury on fish derived from hydrokinetic turbines and related devices.

  3. Resonant vibrations resulting from the re-engineering of a constant-speed 2-bladed turbine to a variable-speed 3-bladed turbine

    NARCIS (Netherlands)

    Fleming, P.A.; Wright, A.D.; Fingersh, L.J.; Van Wingerden, J.W.

    2011-01-01

    The CART3 (Controls Advanced Research Turbine, 3-bladed) at the National Wind Technology Center has recently been converted from a 2-bladed constant speed machine to a 3-bladed variable speed machine designed specifically for controls research. The purpose of this conversion was to develop an advanc

  4. Blade pitch control of straight-bladed vertical axis wind turbine

    Institute of Scientific and Technical Information of China (English)

    梁迎彬; 张立勋; 李二肖; 张凤月

    2016-01-01

    Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity. Comparative analysis of straight-bladed vertical axis wind turbine(SB-VAWT) with or without pitch control was conducted from the aspects of aerodynamic force, flow structure and power coefficient. The computational fluid dynamics (CFD) prediction results show a significant increase in power coefficient for SB-VAWT with pitch control. According to the aerodynamic forces and total torque coefficient obtained at various tip speed ratios (TSRs), the results indicate that the blade pitch method can increase the power output and decrease the deformation of blade;especially, the total torque coefficient of blade pitch control at TSR 1.5 is about 2.5 times larger than that of fixed pitch case. Furthermore, experiment was carried out to verify the feasibility of pitch control methods. The results show that the present collective pitch control and individual pitch control methods can improve the self-starting capacity of SB-VAWT, and the former is much better and its proper operating TSRs ranges from 0.4 to 0.6.

  5. Two LQRI based Blade Pitch Controls for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yoonsu Nam

    2012-06-01

    Full Text Available As the wind turbine size has been increasing and their mechanical components are built lighter, the reduction of the structural loads becomes a very important task of wind turbine control in addition to maximum wind power capture. In this paper, we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI, and utilize Kalman filters to estimate system states and wind speed. Compared to previous works in this area, our pitch control algorithms can control rotor speed and blade bending moments at the same time to improve the trade-off between rotor speed regulation and load reduction, while both collective and individual pitch controls can be designed separately. Simulation results show that the proposed collective and individual pitch controllers achieve very good rotor speed regulation and significant reduction of blade bending moments.

  6. Aeroelastically coupled blades for vertical axis wind turbines

    Science.gov (United States)

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  7. Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades

    Science.gov (United States)

    Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris; hide

    2017-01-01

    Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed

  8. Three-dimensional turbine blade design using a Navier-Stokes solver and Artificial Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, S.; Braembussche, R.A. van den [Von Karman Institute, Rhode-Saint-Genese (Belgium)

    1999-07-01

    Improving turbine efficiency by applying non-radial stacking and three-dimensional design techniques has received considerable attention in the recent years. A big source of losses is the spanwise non-uniformity of the next stage inlet flow angle resulting form the non-uniformity of the outlet flow angle of the preceding blade row. This non-uniformity can be reduced by adjusting the 2D sections along the span and/or by leaning the blades. The present method describes the design of a 3D blade geometry built by a radial stacking of several 2D blade sections which are provided by a 2D design system. A 3D Navier-Stokes solver is used to check the blade performance and to update the requirements imposed for the next design of the 2D blade sections. The 2D sections are designed using an Artificial Neural Network (ANN). The latter one constructs an approximate model (response surface) using a database containing the 2D Navier-Stokes solutions obtained from previous designs. It is used for the optimisation of the 2D blade geometry by means of Simulated Annealing (SA). The optimum 2D geometry is then verified by a 2D Navier-Stokes solver. This procedure results in a considerable speed-up of the design process by reducing both the interventions of the operator and the computational effort. It also allows the design of more efficient blades, satisfying both the aerodynamic and mechanical constraints. The method has been used to design different types of turbine blades of which one example will be presented. (Author)

  9. Application of piezoelectric active-sensors for SHM of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyuhae [Los Alamos National Laboratory; Taylor, Stuart G. [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-10-04

    The goal of this study is to characterize the dynamic response of a CX-100 wind blade and the design parameters of SHM techniques as they apply to wind turbine blades, and to investigate the performance of high-frequency active-sensing SHM techniques, including lamb wave and frequency response functions, as a way to monitor the health of a wind turbine blade. The results of the dynamic characterization will be used to validate a numerical model and understand the effect of structural damage on the performance of the blades. The focus of SHM study is to assess and compare the performance of each method in identifying incipient damage, with a special consideration given to field deployability. For experiments, a 9-m CX-100 blade was used. Overall, the methods yielded sufficient damage detection to warrant further investigation into field deployment. This paper also summarizes the SHM results of a full-scale fatigue test of 9-m CX-100 blade using piezoelectric active-sensors.

  10. Load consequences when sweeping blades - A case study of a 5 MW pitch controlled wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Verelst, D.R.S.; Larsen, Torben J.

    2010-08-15

    The generic 5 MW NREL wind turbine model is used in Risoe's aeroelastic simulator HAWC2 to investigate 120 different swept blade configurations (forward and backward sweep). Sensitivity for 2 different controllers is considered as well. Backward sweep results in a pitch to feather torsional moment of the blade, effectively reducing blade twist angles under increased loading. This behaviour results in decreased flap-wise fatigue and extreme loads, an increase for edge-wise fatigue loading and status quo or slight decrease in extreme loads (depending on the controller). Tower base and shaft-end bending moments are reduced as well. Forward sweep leads to an increase in angle of attack under loading. For a pitch controlled turbine this leads to an increase in fatigue and extreme loading in all cases. A controller inflicted instability is present for the more extreme forward swept cases. Due to the shape of considered sweep curves, an inherent and significant increase in torsional blade root bending moment is noted. A boomerang shaped sweep curve is proposed to counteract this problematic increased loading. Controller sensitivity shows that adding sweep affects some loadings differently. Power output is reduced for backward sweep since the blade twist is optimized as a rigid structure, ignoring the torsional deformations which for a swept blade can be significant. (author)

  11. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States). Dept. of Mechanical Engineering

    1995-12-31

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines; however there is practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  12. Preform spar cap for a wind turbine rotor blade

    Science.gov (United States)

    Livingston, Jamie T [Simpsonville, SC; Driver, Howard D [Greer, SC; van Breugel, Sjef [Enschede, NL; Jenkins, Thomas B [Cantonment, FL; Bakhuis, Jan Willem [Nijverdal, NL; Billen, Andrew J [Daarlerveen, NL; Riahi, Amir [Pensacola, FL

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  13. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  14. Local Mass and Heat Transfer on a Turbine Blade Tip

    Directory of Open Access Journals (Sweden)

    P. Jin

    2003-01-01

    Full Text Available Local mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord are investigated at various exit Reynolds numbers (4–7 × 105 and turbulence intensities (0.2 and 12.0%.

  15. Slotted Blades Savonius Wind Turbine Analysis by CFD

    OpenAIRE

    Andrea Alaimo; Antonio Esposito; Alberto Milazzo; Calogero Orlando; Flavio Trentacosti

    2013-01-01

    In this paper a new bucket configuration for a Savonius wind generator is proposed. Numerical analyses are performed to estimate the performances of the proposed configuration by means of the commercial code COMSOL Multiphysics ® with respect to Savonius wind turbine with overlap only. Parametric analyses are performed, for a fixed overlap ratio, by varying the slot position; the results show that for slot positioned near the blade root, the Savonius rotor improves performances at low tip spe...

  16. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    DEFF Research Database (Denmark)

    Toft, Anders; Roe-Poulsen, Bjarke Nørskov; Christiansen, Rasmus;

    2016-01-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based...

  17. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    As Development of small vertical axis wind turbines (VAWT) for urban use is becoming an interesting topic both within industry and academia. However, there are few new designs of vertical axis turbines which are customized for building integration. These are getting importance because they operate...... at low rotational speed producing very less noise during operation, although these are less efficient than Horizontal Axis Wind Turbines (HAWT). The efficiency of a VAWT has been significantly improved by H-Darrieus VAWT design based on double airfoil technology as demonstrated by the authors...... multiple stream tube method is used to determine the performance of the H-Darrieus VAWT. The power coefficient is compared with that of a fixed pitch and a variable pitch double airfoil blade VAWT. It is demonstrated that an improvement in power coefficient by 20% is achieved and the turbine could start...

  18. Parametric study of turbine NGV blade lean and vortex design

    Institute of Scientific and Technical Information of China (English)

    Zhang Shaowen; David G. MacManus; Luo Jianqiao

    2016-01-01

    The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV) are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainties which have arisen from previous studies where conflicting results have been reported for the effect on the NGV. The configuration was initially based on the energy efficient engine turbine which also served as the validation case for the computational method. A total of 17 NGV configurations were evaluated to study the effects of lean and vortex design on row efficiency and secondary kinetic energy. The distribution of mass flow ratio is introduced as an additional factor in the assessment of blade lean effects. The results show that in the turbine entry NGV, the secondary flow strength is not a dominant factor that determines NGV losses and therefore the changes of loading distribution due to blade lean and the associated loss mecha-nisms should be regarded as a key factor. Radial mass flow redistribution under different NGV lean and twist is demonstrated as an addition key factor influencing row efficiency.

  19. Parametric study of turbine NGV blade lean and vortex design

    Directory of Open Access Journals (Sweden)

    Zhang Shaowen

    2016-02-01

    Full Text Available The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainties which have arisen from previous studies where conflicting results have been reported for the effect on the NGV. The configuration was initially based on the energy efficient engine turbine which also served as the validation case for the computational method. A total of 17 NGV configurations were evaluated to study the effects of lean and vortex design on row efficiency and secondary kinetic energy. The distribution of mass flow ratio is introduced as an additional factor in the assessment of blade lean effects. The results show that in the turbine entry NGV, the secondary flow strength is not a dominant factor that determines NGV losses and therefore the changes of loading distribution due to blade lean and the associated loss mechanisms should be regarded as a key factor. Radial mass flow redistribution under different NGV lean and twist is demonstrated as an addition key factor influencing row efficiency.

  20. Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Seong-Won Choi

    2014-01-01

    Full Text Available This paper presents the experimental results of active-sensing structural health monitoring (SHM techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrant further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  1. A method for the assessment of operational severity for a high pressure turbine blade of an aero-engine

    Science.gov (United States)

    Haslam, Anthony; Abu, Abdullahi; Laskaridis, Panagiotis

    2015-12-01

    This paper provides a tool for the estimation of the operational severity of a high pressure turbine blade of an aero engine. A multidisciplinary approach using aircraft/ engine performance models which provide inputs to a thermo-mechanical fatigue damage model is presented. In the analysis, account is taken of blade size, blade metal temperature distribution, relevant heat transfer coefficients and mechanical and thermal stresses. The leading edge of the blade is selected as the critical part in the estimation of damage severity for different design and operational parameters. The study also suggests a method for production of operational severity data for the prediction of maintenance intervals.

  2. Computer-automated multi-disciplinary analysis and design optimization of internally cooled turbine blades

    Science.gov (United States)

    Martin, Thomas Joseph

    This dissertation presents the theoretical methodology, organizational strategy, conceptual demonstration and validation of a fully automated computer program for the multi-disciplinary analysis, inverse design and optimization of convectively cooled axial gas turbine blades and vanes. Parametric computer models of the three-dimensional cooled turbine blades and vanes were developed, including the automatic generation of discretized computational grids. Several new analysis programs were written and incorporated with existing computational tools to provide computer models of the engine cycle, aero-thermodynamics, heat conduction and thermofluid physics of the internally cooled turbine blades and vanes. A generalized information transfer protocol was developed to provide the automatic mapping of geometric and boundary condition data between the parametric design tool and the numerical analysis programs. A constrained hybrid optimization algorithm controlled the overall operation of the system and guided the multi-disciplinary internal turbine cooling design process towards the objectives and constraints of engine cycle performance, aerodynamic efficiency, cooling effectiveness and turbine blade and vane durability. Several boundary element computer programs were written to solve the steady-state non-linear heat conduction equation inside the internally cooled and thermal barrier-coated turbine blades and vanes. The boundary element method (BEM) did not require grid generation inside the internally cooled turbine blades and vanes, so the parametric model was very robust. Implicit differentiations of the BEM thermal and thereto-elastic analyses were done to compute design sensitivity derivatives faster and more accurately than via explicit finite differencing. A factor of three savings of computer processing time was realized for two-dimensional thermal optimization problems, and a factor of twenty was obtained for three-dimensional thermal optimization problems

  3. Full scale wind turbine test of vortex generators mounted on the entire blade

    Science.gov (United States)

    Bak, Christian; Skrzypiński, Witold; Gaunaa, Mac; Villanueva, Hector; Brønnum, Niels F.; Kruse, Emil K.

    2016-09-01

    Measurements on a heavily instrumented pitch regulated variable speed Vestas V52 850 kW wind turbine situated at the DTU Risø Campus are carried out, where the effect of vortex generators mounted on almost the entire blade is tested with and without leading edge roughness. The measurements are compared to the predictions carried out by a developed design tool, where the effect of vortex generators and leading edge roughness is simulated using engineering models. The measurements showed that if vortex generators are mounted there is an increase in flapwise blade moments if the blades are clean, but also that the loads are almost neutral when vortex generators are installed if there is leading edge roughness on the blades. Finally, it was shown that there was a good agreement between the measurements and the predictions from the design tool.

  4. Non-machined Surface Protection Process of Electrochemical Machining Based on Repaired Turbine Blade

    Directory of Open Access Journals (Sweden)

    LIU Wei-dong

    2016-11-01

    Full Text Available In order to improve the efficiency of turbine blade repairing, protection processes of non-machined surface in Electrochemical Machining (ECM based on blade repairing were studied. Mathematical model of electric field was developed to obtain current density distribution on anode surface, and to study the repairing principle and consequently analyze the defects forming mechanism by conventional electrolytic repair process. Sacrificial layer process was proposed to protect the non-machined surface in this work and an experimental system was developed to shape overlay welded TC4 blades. The results show that directly shaping process and insulated layer process produce stray dissolution and "stair" defects respectively,while sacrificial layer process achieves acceptable machining performance. With shaping time of 60s, the efficiency is improved; shaped blades have higher precision and surface roughness is Ra≤0.6μm, and with higher repeatability, the design requirements can be met.

  5. Effect of the blade arc angle on the performance of a Savonius wind turbine

    OpenAIRE

    2015-01-01

    Savonius wind turbine is a common vertical axis wind turbine which simply comprises two or three arc-type blades and can generate power under poor wind conditions. With the aim of increasing the turbine’s power efficiency, the effect of the blade arc angle on the performance of a typical two-bladed Savonius wind turbine is investigated with a transient computational fluid dynamics method. Simulations were based on the Reynolds Averaged Navier–Stokes equations, and the renormalization group k ...

  6. Design analysis and development of a high temperature actuaror for gas turbine blade tip clearance control

    OpenAIRE

    2011-01-01

    During a typical startup cycle industrial gas turbine blades experience rapid radial thermal expansion while bulky shroud structure with larger thermal inertia requires much longer period to reach its operating temperature. Turbine designers have to leave a safe radial distance in order to prevent contact of blades to the surrounding annular casing. However, when thermal steady state in the turbine stage is achieved, shroud and casing grow and excessive amount of blade-shroud clearance remain...

  7. Experimental and numerical investigations on the dynamic response of turbine blades with tip pin dampers

    Science.gov (United States)

    Zucca, S.; Berruti, T.; Cosi, L.

    2016-09-01

    Friction dampers are used to reduce vibration amplitude of turbine blades. The dynamics of these assemblies (blades + dampers) is nonlinear and the analysis is challenging from both the experimental and the numerical point of view. The study of the dynamics of blades with a tip damper is the aim of the present paper. The blades with axial-entry fir tree attachment carry a damper in a pocket between the blade covers. Pin dampers significantly affect the resonance frequency of the first blade bending mode and introduces non linearity due to friction contacts. A test rig, made of two blades held in a fixture by an hydraulic press with one damper between the blades was used for the experimental activity. Three different types of dampers (cylindrical, asymmetrical, wedge) have been experimentally investigated and experiments have shown that asymmetrical damper performs better than the others. The response of the blades with the asymmetrical damper was then simulated with a non linear code based on the Harmonic Balance Method (HBM). In the analysis, both the blade and the damper are modelled with the Finite Elements and then the matrices reduced with the Craig- Bampton Component Mode Synthesis (CB-CMS), while the periodical contact forces are modelled with state-of-the-art node-to-node contact elements. Numerical analysis has shown a strong influence of the actual extent of the contact area on the dynamics of the assembly. A model updating process was necessary. In the end, the numerical predictions match very well with the experimental curves.

  8. blades

    Directory of Open Access Journals (Sweden)

    Shashishekara S. Talya

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  9. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    Science.gov (United States)

    Toft, Anders; Roe-Poulsen, Bjarke; Christiansen, Rasmus; Knudsen, Torben

    2016-09-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods. The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy for actuation as it always operates at the blade eigenfrequency.

  10. Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    Directory of Open Access Journals (Sweden)

    J. G. Fantidis

    2011-01-01

    Full Text Available Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find defects in the wind turbine blade and reduce the cost of inspection. A transportable neutron radiography system, incorporating an Sb–Be source, has been simulated using the MCNPX code. The simulated system has a wide range of radiography parameters.

  11. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  12. Aerodynamic investigation of winglets on wind turbine blades using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Jeppe; Soerensen, Niels N.

    2006-02-15

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets. Results show that adding a winglet to the existing blade increase the force distribution on the outer approx 14 % of the blade leading to increased produced power of around 0.6% to 1.4% for wind speeds larger than 6 m/s. This has to be compared to the increase in thrust of around 1.0% to 1.6%. Pointing the winglet downstream increases the power production even further. The effect of sweep and cant angles is not accounted for in the present investigation and could improve the winglets even more. (au)

  13. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ding; Han, Xiaoyan [Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202 (United States); Newaz, Golam [Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202 (United States)

    2014-02-18

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  14. High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine

    Science.gov (United States)

    Sayed, M.; Lutz, Th.; Krämer, E.; Shayegan, Sh.; Ghantasala, A.; Wüchner, R.; Bletzinger, K.-U.

    2016-09-01

    The aeroelastic response of large multi-megawatt slender horizontal-axis wind turbine blades is investigated by means of a time-accurate CFD-CSD coupling approach. A loose coupling approach is implemented and used to perform the simulations. The block- structured CFD solver FLOWer is utilized to obtain the aerodynamic blade loads based on the time-accurate solution of the unsteady Reynolds-averaged Navier-Stokes equations. The CSD solver Carat++ is applied to acquire the blade elastic deformations based on non-linear beam elements. In this contribution, the presented coupling approach is utilized to study the aeroelastic response of the generic DTU 10MW wind turbine. Moreover, the effect of the coupled results on the wind turbine performance is discussed. The results are compared to the aeroelastic response predicted by FLOWer coupled to the MBS tool SIMPACK as well as the response predicted by SIMPACK coupled to a Blade Element Momentum code for aerodynamic predictions. A comparative study among the different modelling approaches for this coupled problem is discussed to quantify the coupling effects of the structural models on the aeroelastic response.

  15. Numerical Analysis of Flow in Kaplan Turbine Runner Blades Anticavitation Lip with Modified Hydro-dynamic Profile

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2011-09-01

    Full Text Available In order to increase the lifetime of runner blades of Kaplan turbines damaged by cavitation erosion, an anticavitation lip is attached to the periphery of the runner blades on the suction side. The anticavitation lip overtakes the cavitation pitting which appears between the runner blades and the runner chamber. A blade with the original anticavitation lip was modeled using CAE. The numerical simulations showed the tip vortex position and the source of the cavitation erosion. Using these data, a modified profile of the anticavitation lip was designed.

  16. Separated Pitch Control at Tip: Innovative Blade Design Explorations for Large MW Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Ranjeet Agarwala

    2015-01-01

    Full Text Available This paper focuses on the deployment and evaluation of a separated pitch control at blade tip (SePCaT control strategy for large megawatt (MW wind turbine blade and explorations of innovative blade designs as a result of such deployment. SePCaT configurations varied from five to thirty percent of the blade length in 5 percentage increments (SePCaT5, SePCaT10, SePCaT15, SePCaT20, SePCaT25, and SePCaT30 are evaluated by comparing them to aerodynamical responses of the traditional blade. For low, moderate, high, and extreme wind speed variations treated as 10, 20, 30, and 40 percent of reference wind speeds, rotor power abatement in region 3 of the wind speed power curve is realized by feathering full length blade by 6, 9, 12, and 14 degrees, respectively. Feathering SePCaT30, SePCaT25, SePCaT20, and SePCaT15 by 14, 16, 26, and 30 degrees, respectively, achieves the same power abatement results when compared to traditional blade at low wind speeds. Feathering SePCaT30, SePCaT25, and SePCaT20 by 18, 26, and 30 degrees on the other hand has the same effect at high wind speeds. SePCaT30 feathered to 26 and 30 degrees has the same abatement effects when compared to traditional blade at high and extreme wind speeds.

  17. Simulation analysis of turbine blade in 3D printing aquarium

    Directory of Open Access Journals (Sweden)

    Chen Dyi-Cheng

    2017-01-01

    Full Text Available 3D printing of the flexibility is the most admirable place, no matter when or where, as long as the machine can make the abstract design of finished products or difficult to process the finished product printed out as a sample. And in the product design, through the 3D print out the entity, to more specific observation of the advantages and disadvantages of finished products, which shorten the time of many creative research and development, but also relatively reduce the defective factors. As in recent years, 3D printing technology is progressing, material adhesion, precision and parts of the degree of cooperation has increased, coupled with many parts taking into account the cost, production and other issues, and then let a lot of light load small parts or special parts choose to use 3D to print the finished product to replace. This study focuses on the plastic turbine blades that drive water in the aquarium, but the 3D printing is done by stacking. However, the general stress analysis software can set the material to analyze the deformation results of the force, nor the 3D to analyze the software. Therefore, this study first analyzes the deformation of turbine blade by software, and then verifies the situation of 3D printing turbine blade, and then compares the actual results of software analysis and 3D printing. The results can provide the future of 3D product consider the strength factor. The study found that the spiral blade design allows the force points to be dispersed to avoid hard focus.

  18. Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-12-08

    mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environment by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more

  19. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    Energy Technology Data Exchange (ETDEWEB)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  20. Cooling of Gas Turbines. 6; Computed Temperature Distribution Through Cross Section of Water-Cooled Turbine Blade

    Science.gov (United States)

    Livingood, John N. B.; Sams, Eldon W.

    1947-01-01

    A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.

  1. Multi-piece wind turbine rotor blades and wind turbines incorporating same

    Science.gov (United States)

    Moroz,; Mieczyslaw, Emilian [San Diego, CA

    2008-06-03

    A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.

  2. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists...... is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics...

  3. Wind Turbine Blade Monitoring with Brillouin-Based Fiber-Optic Sensors

    Directory of Open Access Journals (Sweden)

    Agnese Coscetta

    2017-01-01

    Full Text Available Wind turbine (WT blade is one of the most important components in WTs, as it is the key component for receiving wind energy and has direct influence on WT operation stability. As the size of modern turbine blade increases, condition monitoring and maintenance of blades become more important. Strain detection is one of the most effective methods to monitor blade conditions. In this paper, a distributed fiber-optic strain sensor is used for blade monitoring. Preliminary experimental tests have been carried out over a 14 m long WT composite blade, demonstrating the possibility of performing distributed strain and vibration measurements.

  4. Mechanism study on pressure fluctuation of pump-turbine runner with large blade lean angle

    Science.gov (United States)

    Yulin, Fan; Xuhe, Wang; Baoshan, Zhu; Dongyue, Zhou; Xijun, Zhou

    2016-11-01

    Excessive pressure fluctuations in the vaneless space can cause mechanical vibration and even mechanical failures in pump-turbine operation. Mechanism studies on the pressure fluctuations and optimization design of blade geometry to reduce the pressure fluctuations have important significance in industrial production. In the present paper, two pump-turbine runners with big positive and negative blade lean angle were designed by using a multiobjective design strategy. Model test showed that the runner with negative blade lean angle not only had better power performance, but also had lower pressure fluctuation than the runner with positive blade lean angle. In order to figure out the mechanism of pressure fluctuation reduction in the vaneless;jik8space, full passage model for both runners were built and transient CFD computations were conducted to simulate the flow states inside the channel. Detailed flow field analyses indicated that the difference of low-pressure area in the trailing edge of blade pressure side were the main causes of pressure fluctuation reduction in the vaneless space.

  5. Design and performance of a double-pitch wind turbine with non-twisted blades

    Energy Technology Data Exchange (ETDEWEB)

    Lanzafame, R.; Messina, M. [DIIM, Dipartimento di Ingegneria Industriale e Meccanica, Faculty of Engineering, University of Catania, Viale A. Doria, 6, 95125 Catania (Italy)

    2009-05-15

    A new design has been proposed for inexpensive wind turbine blades with high power coefficients. The new wind turbine blade has been subdivided into two, each with a different pitch angle, to optimise aerodynamic flow, absence of twist, and carries a variable chord along the blade itself. The new blade reveals some energy loss due to the tip vortices of each blade part (which can be minimised by winglets), yet proves that it is possible to create a wind turbine with high power coefficients. To design and evaluate the performance of the new wind turbine a numerical code, developed by the authors and based on blade element momentum theory, was implemented after validation by experimental measurement found in scientific literature. The code led to better choices of layout to maximise turbine performance. (author)

  6. Small wind turbines with timber blades for developing countries: Materials choice, development, installation and experiences

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sinha, Rakesh;

    2011-01-01

    coatings and blades as well as installation and practical experience with wooden wind turbines in Nepal. The recommendations on the optimal choice of Nepali timber and coatings for low cost wind blades are summarized. The timber wood blades were designed and tested. On the basis of the recommendations......The low cost wind turbines with timber blades represent a good solution for the decentralized energy production in off-grid regions of developing countries. This paper summarizes the results of investigations on the mechanical testing and choice of timber for wind blades, testing of different......, the wind turbines with timber (lakuri) wind blades were produced, and tested. The turbines with timber wind blades were installed on several locations around Nepal, and their usability was studied. It was demonstrated that the appropriate choice of timber and coatings ensures necessary reliability...

  7. Effects of Blade Geometry on Performance of Wells Turbine for Wave Power Conversion

    Institute of Scientific and Technical Information of China (English)

    Taeho Kim; Toshiaki Setoguchi; Yoichi Kinoue; Kenji Kaneko

    2001-01-01

    An optimum design of the turbine would need a clear understanding of the influence of blade geometry on a Wells turbine performance. Practically, it is difficult to suggest the optimum geometry for the Wells turbine due to the complex interrelation among important parameters, the solidity, hub-to-tip ratio, aspect ratio, blade sweep of rotor, and so on.In the present study, the effect of blade geometry with the hub-to-tip and aspect ratios of rotor on the turbine performance was investigated with a numerical technique. As a result, the optimum blade geometry is as follows: the hub-to-tip ratio is about 0.7, and the aspect ratio about 0.5 under other constant important parameters, NACA0020 blade with blade sweep ratio of 0.35, and solidity of about 0.67. Furthermore, the detailed flow patterns for blade geometry were also shown and discussed in this paper.

  8. Constraint Handling within a Multi-blade Coordinate Framework of a Wind Turbine

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2011-01-01

    In this paper the control of a horizontal axis pitch controlled wind turbine using Model Predictive Control is presented. The multi-blade coordinate transformation is utilized to turn the rotating frame time-varying system description into a time-invariant fixed frame system description. Constrai....... Constraints in the rotating frame of reference are not easily described in the fixed frame and a Model Predictive Control formulation accommodating this problem is presented. The presented method is tested with satisfactory results in a numerical simulation.......In this paper the control of a horizontal axis pitch controlled wind turbine using Model Predictive Control is presented. The multi-blade coordinate transformation is utilized to turn the rotating frame time-varying system description into a time-invariant fixed frame system description...

  9. Rotor anisotropy as a blade damage indicator for wind turbine structural health monitoring systems

    Science.gov (United States)

    Tcherniak, Dmitri

    2016-06-01

    Structural damage of a rotor blade causes structural anisotropy of the rotor. In rotor dynamic, the anisotropy affects the symmetry of the rotor mode shapes, and the latter can be utilized to detect the blade damage. The mode shape symmetry can be characterized by relative blades' magnitude and phase. The study examines the potential use of these parameters as rotor damage indicators. Firstly the indicators are studied analytically using a simple 6 degrees-of-freedom model of a rotating rotor. Floquet analysis is used due to the time periodic nature of the considered system. Floquet analysis allows one to perform analytical modal decomposition of the system and study the sensitivity of the damage indicators to the amount of damage. Secondly, operational modal analysis (OMA) is involved to extract the same damage indicators from simulated experimental data, which was synthesized via numerical simulations. Finally, the same procedure was applied to operating Vestas V27 wind turbine, first using the simulated experimental data obtained by using aeroelastic simulation code HAWC2 and then using the data acquired during the measurement campaign on a real wind turbine. The study demonstrates that the proposed damage indicators are significantly more sensitive than the commonly used changes in natural frequency, and in contrast to the latter, can also pinpoint the faulty blade. It is also demonstrated that these indicators can be derived from blades vibration data obtained from real life experiment.

  10. Calculation and characteristics analysis of blade pitch loads for large scale wind turbines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the electric pitch system of large scale horizontal-axis wind turbines,the blade pitch loads coming mainly from centrifugal force,aerodynamic force and gravity are analyzed,and the calculation models for them are established in this paper.For illustration,a 1.2 MW wind turbine is introduced as a practical sample,and its blade pitch loads from centrifugal force,aerodynamic force and gravity are calculated and analyzed separately and synthetically.The research results showed that in the process of rotor rotating 360o,the fluctuation of blade pitch loads is similar to cosine curve when the rotor rotational speed,in-flow wind speed and pitch angle are constant.Furthermore,the amplitude of blade pitch load presents quite a difference at a different pitch angle.The ways of calculation for blade pitch loads are of the universality,and are helpful for further research of the individual pitch control system.

  11. Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade

    Science.gov (United States)

    Azad, Gm S.; Han, Je-Chin; Boyle, Robert J.

    2000-01-01

    Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modem first stage gas turbine rotor blade with a blade tip profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1 x 10(exp 6). A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. 'Me heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1 % case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.

  12. Construction of low-cost, Mod-OA wood composite wind turbine blades

    Science.gov (United States)

    Lark, R. F.

    1983-01-01

    Two sixty-foot, low-cost, wood composite blades for service on 200 kW Mod-OA wind turbines were constructed. The blades were constructed of epoxy resin-bonded Douglas fir veneers for the leading edge sections, and paper honeycombcored, birch plywood faced panels for the afterbody sections. The blades were joined to the wind turbine hub by epoxy resin-bonded steel load take-off studs embedded into the root end of the blades. The blades were installed on the 200 kW Mod-OA wind turbine facility at Kahuku, Hawaii, The blades completed nearly 8,000 hours of operation over an 18 month period at an average power of 150 kW prior to replacement with another set of wood composite blades. The blades were replaced because of a corrosion failure of the steel shank on one stud. Inspections showed that the wood composite structure remained in excellent condition.

  13. Fundamentals for remote structural health monitoring of wind turbine blades - a pre-project

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B.F.; Lading, L.; Sendrup, P. (and others)

    2002-05-01

    This summary-report describes the results of a pre-project that has the aim of establishing the basic technical knowledge to evaluate whether remote surveillance of the rotor blades of large off-shore wind turbines has technical and economical potential. A cost-benefit analysis was developed, showing that it is economically attractive to use sensors embedded in the blade. Specific technical requirements were defined for the sensors capability to detect the most important damage types in wind turbine blades. Three different sensor types were selected for use in laboratory experiments and full-scale tests of a wind turbine blade developing damage: 1) detection of stress wave emission by acoustic emission, 2) measurement of modal shape changes by accelerometers and 3) measurement of crack opening of adhesive joint by a fibre optics micro-bend displacement transducer that was developed in the project. All types of sensor approaches were found to work satisfactory. The techniques were found to complement each other: Acoustic emission has the capability of detecting very small damages and can be used for locating the spatial position and size of evolving damages. The fibre optics displacement transducer was found to work well for detecting adhesive failure. Modelling work shows that damage in a wind turbine blade causes a significant change in the modal shape when the damage is in the order of 0.5-1 m. Rough estimates of the prices of complete sensor systems were made. The system based on acoustic emission was the most expensive and the one based on accelerometers was the cheapest. NDT methods (ultrasound scanning and X-ray inspection) were found to be useful for verification of hidden damage. Details of the work are described in annexes. (au)

  14. Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2011-01-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. Wind energy is becoming particularly important. Although considerable progress have already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a classical Savonius turbine. In previous works, the efficiency of the classical Savonius turbine has been increased by placing in an optimal manner an obstacle plate shielding the returning blade. The present study now aims at improving further the output power of the Savonius turbine as well as the static torque, which measures the self-starting capability of the turbine. In order to achieve both objectives, the geometry of the blade shape (skeleton line) is now optimized in presence of the obstacle plate. Six free parameters are considered in this optimization process, realized by coupling an in-house optimization library (OPAL, relying in the present case on Evolutionary Algorithms) with an industrial flow simulation code (ANSYS-Fluent). The target function is the output power coefficient. Compared to a standard Savonius turbine, a relative increase of the power output coefficient by almost 40% is finally obtained at {lambda} = 0.7. The performance increase exceeds 30% throughout the useful operating range. Finally, the static torque is investigated and found to be positive at any angle, high enough to obtain self-starting conditions. (author)

  15. Three dimensional inviscid compressible calculations around axial flow turbine blades

    Science.gov (United States)

    Fourmaux, Antoine; Petot, Bertrand

    1991-12-01

    The application of a three dimensional (3D) method to the prediction of steady inviscid compressible flows in highly loaded stator bladings is presented. The complete set of Euler equations is solved by a finite difference method using a time marching two step Lax-Wendorff algorithm. The treatment of the boundary conditions is based on the use of the characteristic relations. This technique offers a great versatility and allows to prescribe conditions close to the physics of flows encountered in turbomachines. The code was adapted in order to build a 3D design tool able to run in different types of turbine blade geometries. Two types of multidomain structured meshes were tested (H+0+H and H+C). The H+C type of grid was finally choosen for industrial applications. Two applications to turbine nozzles are presented. The first is a low pressure turbine vane with evolutive flow path outer diameter. The results demonstrate the ability to predict flow features that cannot be computed via the classical two dimensional approach. The second is a high pressure inlet guide vane at transonic conditions. The strong radial evolution of pressure distribution and the trailing edge flow pattern are correctly predicted.

  16. Study on finite deformation finite element analysis algorithm of turbine blade based on CPU+GPU heterogeneous parallel computation

    Directory of Open Access Journals (Sweden)

    Liu Tian-Yuan

    2016-01-01

    Full Text Available Blade is one of the core components of turbine machinery. The reliability of blade is directly related to the normal operation of plant unit. However, with the increase of blade length and flow rate, non-linear effects such as finite deformation must be considered in strength computation to guarantee enough accuracy. Parallel computation is adopted to improve the efficiency of classical nonlinear finite element method and shorten the blade design period. So it is of extraordinary importance for engineering practice. In this paper, the dynamic partial differential equations and the finite element method forms for turbine blades under centrifugal load and flow load are given firstly. Then, according to the characteristics of turbine blade model, the classical method is optimized based on central processing unit + graphics processing unit heterogeneous parallel computation. Finally, the numerical experiment validations are performed. The computation speed of the algorithm proposed in this paper is compared with the speed of ANSYS. For the rectangle plate model with mesh number of 10 k to 4000 k, a maximum speed-up of 4.31 can be obtained. For the real blade-rim model with mesh number of 500 k, the speed-up of 4.54 times can be obtained.

  17. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Supersonic Turbine Bladed Disks

    Science.gov (United States)

    Brown, Andrew M.; Schmauch, Preston

    2012-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engine turbines is to decompose a computational fluid dynamics (CFD).generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies using cyclically symmetric structural dynamic models. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non ]harmonic excitation sources that become present in complex flows. This complex content can only be captured by a CFD flow field encompassing at least an entire revolution. A substantial development effort to create a series of software programs to enable application of the 360 degree forcing function in a frequency response analysis on cyclic symmetric models has been completed (to be described in a future paper), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements and the disk modeled with plates (using the finite element code MSC/NASTRAN). The focus of this model is to be representative of response of realistic bladed disks, and so the dimensions are roughly equivalent to the new J2X rocket engine 1st stage fuel pump turbine. The simplicity of the model allows

  18. User's Guide to MBC3: Multi-Blade Coordinate Transformation Code for 3-Bladed Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Bir, G. S.

    2010-09-01

    This guide explains how to use MBC3, a MATLAB-based script NREL developed to perform multi-blade coordinate transformation of system matrices for three-bladed wind turbines. In its current form, MBC3 can be applied to system matrices generated by FAST.2.

  19. Numerical study of Wavy Blade Section for Wind Turbines

    Science.gov (United States)

    Kobæk, C. M.; Hansen, M. O. L.

    2016-09-01

    The Wavy Blade concept is inspired by the unique flipper of a humpback whale, characterized by the tubercles located at the leading edge. It has been suggested that this shape may have been a result of a natural selection process, since this flipper under some circumstances can produce higher lift than a flipper having a smooth trailing edge and thus could be potentially beneficial when catching food. A thorough literature study of the Wavy Blade concept is made and followed by CFD computations of two wavy blade geometries and a comparison with their baseline S809 airfoil at conditions more relevant for modern wind turbines. The findings in the literature from geometries similar to the hump back whale flipper indicate that the aerodynamic performance can be improved at high angles of attack, but sometimes at the expense of a lower lift slope and increased drag before stall. The numerical results for a blade section based on the S809 airfoil are, however, not as promising as some of the findings reported in the literature for the whale flipper at high angles of attack. These first CFD computations using a thicker airfoil and a higher Reynolds number than the whale flipper indicate that the results may very well depend on the actual airfoil geometry and perhaps also the Reynolds number, and future studies are necessary in order to illuminate this further.

  20. Convective heat transfer and experimental icing aerodynamics of wind turbine blades

    Science.gov (United States)

    Wang, Xin

    The total worldwide base of installed wind energy peak capacity reached 94 GW by the end of 2007, including 1846 MW in Canada. Wind turbine systems are being installed throughout Canada and often in mountains and cold weather regions, due to their high wind energy potential. Harsh cold weather climates, involving turbulence, gusts, icing and lightning strikes in these regions, affect wind turbine performance. Ice accretion and irregular shedding during turbine operation lead to load imbalances, often causing the turbine to shut off. They create excessive turbine vibration and may change the natural frequency of blades as well as promote higher fatigue loads and increase the bending moment of blades. Icing also affects the tower structure by increasing stresses, due to increased loads from ice accretion. This can lead to structural failures, especially when coupled to strong wind loads. Icing also affects the reliability of anemometers, thereby leading to inaccurate wind speed measurements and resulting in resource estimation errors. Icing issues can directly impact personnel safety, due to falling and projected ice. It is therefore important to expand research on wind turbines operating in cold climate areas. This study presents an experimental investigation including three important fundamental aspects: (1) heat transfer characteristics of the airfoil with and without liquid water content (LWC) at varying angles of attack; (2) energy losses of wind energy while a wind turbine is operating under icing conditions; and (3) aerodynamic characteristics of an airfoil during a simulated icing event. A turbine scale model with curved 3-D blades and a DC generator is tested in a large refrigerated wind tunnel, where ice formation is simulated by spraying water droplets. A NACA 63421 airfoil is used to study the characteristics of aerodynamics and convective heat transfer. The current, voltage, rotation of the DC generator and temperature distribution along the airfoil

  1. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2014-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed...... momentum (BEM) technique proves the reliability of the integrated design method. © 2014 Elsevier Ltd....... with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number...

  2. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2013-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and tip speed ratio, the optimal airfoils are designed based on the local speed ratios. To achieve high power performance at low cost, the airfoils are designed...... with an objective of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on the previous in-house airfoil family which were optimized at a Reynolds number of 3...... million. A novel shape perturbation function is introduced to optimize the geometry on the existing airfoils and thus simplify the design procedure. The viscos/inviscid code Xfoil is used as the aerodynamic tool for airfoil optimization where the Reynolds number is set at 16 million with a free...

  3. Slotted Blades Savonius Wind Turbine Analysis by CFD

    Directory of Open Access Journals (Sweden)

    Andrea Alaimo

    2013-12-01

    Full Text Available In this paper a new bucket configuration for a Savonius wind generator is proposed. Numerical analyses are performed to estimate the performances of the proposed configuration by means of the commercial code COMSOL Multiphysics® with respect to Savonius wind turbine with overlap only. Parametric analyses are performed, for a fixed overlap ratio, by varying the slot position; the results show that for slot positioned near the blade root, the Savonius rotor improves performances at low tip speed ratio, evidencing a better starting torque. This circumstance is confirmed by static analyses performed on the slotted blades in order to investigate the starting characteristic of the proposed Savonius wind generator configuration.

  4. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex A. Cost-benefit for embedded sensors in large wind turbine blades

    DEFF Research Database (Denmark)

    Hansen, L.G.; Lading, Lars

    2002-01-01

    This report contains the results of a cost-benefit analysis for the use of embed-ded sensors for damage detection in large wind turbine blades - structural health monitoring - (in connection with remote surveillance) of large wind turbine placedoff-shore. The total operating costs of a three......-bladed 2MW turbine placed offshore either without sensors or with sensors are compared. The price of a structural health monitoring system of a price of 100 000 DKK (per tur-bine) results in a break-eventime of about 3 years. For a price of 300 000 DKK the break-even time is about 8 years. However...

  5. Damage localization in a residential-sized wind turbine blade by use of the SDDLV method

    Science.gov (United States)

    Johansen, R. J.; Hansen, L. M.; Ulriksen, M. D.; Tcherniak, D.; Damkilde, L.

    2015-07-01

    The stochastic dynamic damage location vector (SDDLV) method has previously proved to facilitate effective damage localization in truss- and plate-like structures. The method is based on interrogating damage-induced changes in transfer function matrices in cases where these matrices cannot be derived explicitly due to unknown input. Instead, vectors from the kernel of the transfer function matrix change are utilized; vectors which are derived on the basis of the system and state-to-output mapping matrices from output-only state-space realizations. The idea is then to convert the kernel vectors associated with the lowest singular values into static pseudo-loads and apply these alternately to an undamaged reference model with known stiffness matrix. By doing so, the stresses in the potentially damaged elements will, theoretically, approach zero. The present paper demonstrates an application of the SDDLV method for localization of structural damages in a cantilevered residential-sized wind turbine blade. The blade was excited by an unmeasured multi-impulse load and the resulting dynamic response was captured through accelerometers mounted along the blade. The static pseudo-loads were applied to a finite element (FE) blade model, which was tuned against the modal parameters of the actual blade. In the experiments, an undamaged blade configuration was analysed along with different damage scenarios, hereby testing the applicability of the SDDLV method.

  6. An Experimental Investigation Studying the Influence of Dimples on a Film Cooled Turbine Blade Leading Edge

    Science.gov (United States)

    2009-03-01

    Room Temperature Vulcanizing (RTV) silicone sealant was used to attach the heat flux plate to the surface of the model while carefully aligning...was negligible. 4.2 RECOMMENDATIONS FOR FUTURE RESEARCH This scientific investigation was able to demonstrate that dimples placed upstream of a film...Education Limited. Harlow, England, 2001. 3. Han, J.-C. “Turbine Blade Cooling Studies at Texas A&M University: 1980-2004,” Journal of

  7. Development of a Bamboo-Based Composite as a Sustainable Green Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Holmes, John W.; Brøndsted, Povl; Sørensen, Bent F.

    2009-01-01

    Bamboo has many engineering and environmental attributes that make it an attractive material for utilization in wind turbine blades. This paper examines the mechanical properties of a novel bamboo-poplar epoxy laminate which is being developed for wind turbine blades. Information provided in this...

  8. The Effect of Mounting Vortex Generators on the DTU 10MW Reference Wind Turbine Blade

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Bak, Christian

    2014-01-01

    The aim of the current work is to analyze possible advantages of mounting Vortex Generators (VG's) on a wind turbine blade. Specifically, the project aims at investigating at which radial sections of the DTU 10 MW Reference Wind Turbine blade it is most beneficial to mount the VG's in order...

  9. Effect of blade flutter and electrical loading on small wind turbine noise

    Science.gov (United States)

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  10. Reliability-Based Calibration of Partial Safety Factors for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Branner, Kim; Sørensen, John Dalsgaard

    2011-01-01

    The reliability of a wind turbine blade can be estimated using a response surface technique, the First Order Reliability Method (FORM) and Monte Carlo simulation. The response surface is here estimated based on nonlinear finite element analysis by which nonlinear failure modes due to e.g. buckling...... of the unidirectional laminas. For this failure mode the reliability is estimated along the centreline of the main spar cap. The results show significant variations in the reliability along the blade length....... can be taken into account. Stochastic models for the material properties and the load-effect are formulated in order to take physical, model and statistical uncertainties into account. The blade fails due to buckling of the main spar cap which results in high stresses in the transverse direction...

  11. Reliability-Based Calibration of Partial Safety Factors for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Branner, Kim; Sørensen, John Dalsgaard

    2011-01-01

    The reliability of a wind turbine blade can be estimated using a response surface technique, the First Order Reliability Method (FORM) and Monte Carlo simulation. The response surface is here estimated based on nonlinear finite element analysis by which nonlinear failure modes due to e.g. buckling...... can be taken into account. Stochastic models for the material properties and the load-effect are formulated in order to take physical, model and statistical uncertainties into account. The blade fails due to buckling of the main spar cap which results in high stresses in the transverse direction...... of the unidirectional laminas. For this failure mode the reliability is estimated along the centreline of the main spar cap. The results show significant variations in the reliability along the blade length....

  12. Reliability-Based Calibration of Partial Safety Factors for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Branner, Kim; Sørensen, John Dalsgaard;

    2011-01-01

    The reliability of a wind turbine blade can be estimated using a response surface technique, the First Order Reliability Method (FORM) and Monte Carlo simulation. The response surface is here estimated based on nonlinear finite element analysis by which nonlinear failure modes due to e.g. buckling...... of the unidirectional laminas. For this failure mode the reliability is estimated along the centreline of the main spar cap. The results show significant variations in the reliability along the blade length....... can be taken into account. Stochastic models for the material properties and the load-effect are formulated in order to take physical, model and statistical uncertainties into account. The blade fails due to buckling of the main spar cap which results in high stresses in the transverse direction...

  13. Uncertainty assessment using uncalibrated objects: calibration of a Turbine Blade

    DEFF Research Database (Denmark)

    Savio, Enrico; Costacurta, A.; De Chiffre, Leonardo

    This report is made as a part of the project Easytrac, an EU project under the programme: Competitive and Sustainable Growth: Contract No: G6RD-CT-2000-00188, coordinated by UNIMETRIK S.A. (Spain). The project is concerned with low uncertainty calibrations on coordinate measuring machines....... The Centre for Geometrical Metrology (CGM) at the Technical University of Denmark takes care of free form measurements, in collaboration with DIMEG, University of Padova, Italy. The present report describes the calibration of a turbine blade using the method described in the draft ISO/TS 15530-6....

  14. Online Estimation of wind turbine blade deflection with UWB signals

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Jakobsen, Morten Lomholt; Østergaard, Jan;

    2015-01-01

    In this paper we use ultra-wideband (UWB) signals for the localization of blade tips on wind turbines. Our approach is to acquire two separate distances to each tip via time-delay estimation, and each tip is then localized by triangulation. We derive an approximate maximum a posteriori (MAP) delay...... estimator exploiting i) contextual prior information and ii) a direct-path approximation. The resulting deflection estimation algorithm is computationally feasible for online usage. Simulation studies are conducted to assess the overall triangulation uncertainty and it is observed that negative correlation...

  15. Numerical study of Wavy Blade Section for Wind Turbines

    DEFF Research Database (Denmark)

    Kobæk, C. M.; Hansen, Martin Otto Laver

    2016-01-01

    relevant for modern wind turbines. The findings in the literature from geometries similar to the hump back whale flipper indicate that the aerodynamic performance can be improved at high angles of attack, but sometimes at the expense of a lower lift slope and increased drag before stall. The numerical...... results for a blade section based on the S809 airfoil are, however, not as promising as some of the findings reported in the literature for the whale flipper at high angles of attack. These first CFD computations using a thicker airfoil and a higher Reynolds number than the whale flipper indicate...

  16. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States)

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  17. A method to combine hydrodynamics and constructive design in the optimization of the runner blades of Kaplan turbines

    Science.gov (United States)

    Miclosina, C. O.; Balint, D. I.; Campian, C. V.; Frunzaverde, D.; Ion, I.

    2012-11-01

    This paper deals with the optimization of the axial hydraulic turbines of Kaplan type. The optimization of the runner blade is presented systematically from two points of view: hydrodynamic and constructive. Combining these aspects in order to gain a safer operation when unsteady effects occur in the runner of the turbine is attempted. The design and optimization of the runner blade is performed with QTurbo3D software developed at the Center for Research in Hydraulics, Automation and Thermal Processes (CCHAPT) from "Eftimie Murgu" University of Resita, Romania. QTurbo3D software offers possibilities to design the meridian channel of hydraulic turbines design the blades and optimize the runner blade. 3D modeling and motion analysis of the runner blade operating mechanism are accomplished using SolidWorks software. The purpose of motion study is to obtain forces, torques or stresses in the runner blade operating mechanism, necessary to estimate its lifetime. This paper clearly states the importance of combining the hydrodynamics with the structural design in the optimization procedure of the runner of hydraulic turbines.

  18. Materials for advanced rocket engine turbopump turbine blades

    Science.gov (United States)

    Chandler, W. T.

    1985-01-01

    A study program was conducted to identify those materials that will provide the greatest benefits as turbine blades for advanced liquid propellant rocket engine turbines and to prepare technology plans for the development of those materials for use in the 1990 through 1995 period. The candidate materials were selected from six classes of materials: single-crystal (SC) superalloys, oxide dispersion-strengthened (ODS) superalloys, rapid solidification processed (RSP) superalloys, directionally solidified eutectic (DSE) superalloys, fiber-reinforced superalloy (FRS) composites, and ceramics. Properties of materials from the six classes were compiled and evaluated and property improvements were projected approximately 5 years into the future for advanced versions of materials in each of the six classes.

  19. Analysis and design of bend-twist coupled wind turbine blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander R.

    2016-01-01

    Bend-twist coupling allows wind turbine blades to self-alleviate sudden inflow changes, as in gusty or turbulent conditions, resulting in reduced ultimate and fatigue loads. If the coupling is introduced by changing the fibre direction of the anisotropic blade material, the assumptions of classical...... beam theory are not necessarily valid. This chapter reviews the effects of anisotropic material on the structural response of beams and identifies those relevant for wind turbine blade analysis. A framework suitable for the structural analysis of wind turbine blades is proposed and guidance...

  20. AN INVESTIGATION INTO THE MECHANICS OF SINGLE CRYSTAL TURBINE BLADES WITH A VIEW TOWARDS ENHANCING GAS TURBINE EFFICIENCY

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Rajagopal; I.J. Rao

    2006-05-05

    The demand for increased efficiency of gas turbines used in power generation and aircraft applications has fueled research into advanced materials for gas turbine blades that can withstand higher temperatures in that they have excellent resistance to creep. The term ''Superalloys'' describes a group of alloys developed for applications that require high performance at elevated temperatures. Superalloys have a load bearing capacity up to 0.9 times their melting temperature. The objective of the investigation was to develop a thermodynamic model that can be used to describe the response of single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model. Having developed the model, its efficacy was to be tested by corroborating the predictions of the model with available experimental data. Such a model was developed and it is implemented in the finite element software ABAQUS/STANDARD through a user subroutine (UMAT) so that the model can be used in realistic geometries that correspond to turbine blades.