Electromechanical coupling model and analysis of transient behavior for inertial vibrating machines
Institute of Scientific and Technical Information of China (English)
HU Ji-yun; YU Cui-ping; YIN Xue-gang
2004-01-01
A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the transient behavior of the machine is unveiled by analyzing the results of the computer simulation to the model, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior of the equipment.
Institute of Scientific and Technical Information of China (English)
HU Ji-yun; YIN Xue-gang; YU Cui-ping
2005-01-01
The dynamical equations for a inertial reciprocating machine excited by two rotating eccentric weights were built by the matrix methodology for establishing dynamical equations of discrete systems. A mathematical model of electromechanical coupling system for the machine was formed by combining the dynamical equations with the state equations of the two motors. The computer simulation to the model was performed for several values of the damping coefficient or the motor power, respectively. The substance of transient behavior of the machine is unveiled by analyzing the results of the computer simulation, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior and engineering design of the equipment.
Modeling of the transient behaviors of a lithium-ion battery during dynamic cycling
Yi, Jaeshin; Lee, Jeongbin; Shin, Chee Burm; Han, Taeyoung; Park, Seongyong
2015-03-01
In this paper, we report a modeling methodology on the transient behaviors of a lithium-ion battery (LIB) during dynamic cycling. To account for the short time effects of current pulses and rest periods, the nonfaradaic component of the current density transferred through the separator between the positive and negative electrodes is included based on the lumped double-layer capacitance. Two-dimensional modeling is performed to predict the transient behaviors of an LIB cell during dynamic cycling. To validate the modeling approach presented in this work, modeling results for the variations in cell voltage and two-dimensional temperature distribution of the LIB cell as a function of time are compared with the experimental data for constant-current discharge and charge cycles and the Heavy Duty Urban Dynamometer Driving Schedule cycles. The transient behaviors obtained from the modeling agree well with the experimental measurements.
A Model of the Transient Behavior of Tractive Rolling Contacts
Directory of Open Access Journals (Sweden)
Farid Al-Bender
2008-01-01
Full Text Available When an elastic body of revolution rolls tractively over another, the period from commencement of rolling until gross rolling ensues is termed the prerolling regime. The resultant tractions in this regime are characterized by rate-independent hysteresis behavior with nonlocal memory in function of the traversed displacement. This paper is dedicated to the theoretical characterization of traction during prerolling. Firstly, a theory is developed to calculate the traction field during prerolling in function of the instantaneous rolling displacement, the imposed longitudinal, lateral and spin creepages, and the elastic contact parameters. Secondly, the theory is implemented in a numerical scheme to calculate the resulting traction forces and moments on the tractive rolling of a ball. Thirdly, the basic hysteresis characteristics are systematically established by means of influence-parameters simulations using dimensionless forms of the problem parameters. The results obtained are consistent with the limiting cases available in literature and they confirm experimental prerolling hysteresis observations. Furthermore, in a second paper, this theory is validated experimentally for the case of V-grooved track.
Hall, Michael L.; Doster, Joseph M.
1986-01-01
Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented.
Patient-specific modeling of individual sickle cell behavior under transient hypoxia
Li, Xuejin; Du, E.; Dao, Ming; Suresh, Subra; Karniadakis, George Em
2017-01-01
Sickle cell disease (SCD) is a highly complex genetic blood disorder in which red blood cells (RBC) exhibit heterogeneous morphology changes and decreased deformability. We employ a kinetic model for cell morphological sickling that invokes parameters derived from patient-specific data. This model is used to investigate the dynamics of individual sickle cells in a capillary-like microenvironment in order to address various mechanisms associated with SCD. We show that all RBCs, both hypoxia-unaffected and hypoxia-affected ones, regularly pass through microgates under oxygenated state. However, the hypoxia-affected cells undergo sickling which significantly alters cell dynamics. In particular, the dense and rigid sickle RBCs are obstructed thereby clogging blood flow while the less dense and deformable ones are capable of circumnavigating dead (trapped) cells ahead of them by choosing a serpentine path. Informed by recent experiments involving microfluidics that provide in vitro quantitative information on cell dynamics under transient hypoxia conditions, we have performed detailed computational simulations of alterations to cell behavior in response to morphological changes and membrane stiffening. Our model reveals that SCD exhibits substantial heterogeneity even within a particular density-fractionated subpopulation. These findings provide unique insights into how individual sickle cells move through capillaries under transient hypoxic conditions, and offer novel possibilities for designing effective therapeutic interventions for SCD. PMID:28288152
Busy period analysis, rare events and transient behavior in fluid flow models
Directory of Open Access Journals (Sweden)
Søren Asmussen
1994-01-01
Full Text Available We consider a process {(Jt,Vt}t≥0 on E×[0,∞, such that {Jt} is a Markov process with finite state space E, and {Vt} has a linear drift ri on intervals where Jt=i and reflection at 0. Such a process arises as a fluid flow model of current interest in telecommunications engineering for the purpose of modeling ATM technology. We compute the mean of the busy period and related first passage times, show that the probability of buffer overflow within a busy cycle is approximately exponential, and give conditioned limit theorems for the busy cycle with implications for quick simulation. Further, various inequalities and approximations for transient behavior are given. Also explicit expressions for the Laplace transform of the busy period are found. Mathematically, the key tool is first passage probabilities and exponential change of measure for Markov additive processes.
Oh, Yun-Tak; Higashi, Yoichi; Chan, Ching-Kit; Han, Jung Hoon
2016-08-01
The Lang-Firsov Hamiltonian, a well-known solvable model of interacting fermion-boson system with sideband features in the fermion spectral weight, is generalized to have the time-dependent fermion-boson coupling constant. We show how to derive the two-time Green's function for the time-dependent problem in the adiabatic limit, defined as the slow temporal variation of the coupling over the characteristic oscillator period. The idea we use in deriving the Green's function is akin to the use of instantaneous basis states in solving the adiabatic evolution problem in quantum mechanics. With such "adiabatic Green's function" at hand we analyze the transient behavior of the spectral weight as the coupling is gradually tuned to zero. Time-dependent generalization of a related model, the spin-boson Hamiltonian, is analyzed in the same way. In both cases the sidebands arising from the fermion-boson coupling can be seen to gradually lose their spectral weights over time. Connections of our solution to the two-dimensional Dirac electrons coupled to quantized photons are discussed.
Modeling the dynamic behavior of turbine runner blades during transients using indirect measurements
Diagne, I.; Gagnon, M.; Tahan, A.
2016-11-01
Turbine start-up transients are induced by the wicket gates opening sequence and generate high amplitude stress cycles. These stress cycles have a detrimental effect leading to faster crack growth in the runner blades. Using a series of direct measurements taken on a prototype runner in order to find the optimal start-up parameters exposes both the runner and the instrumentation to a series of successive damaging transient events during the optimization process. To solve this, finding sensors strongly correlated to strain gauges and whose signals can be easily obtained to identify a model to predict the strain, instead of directly measuring it, would reduce the risk, cost and downtime associated with a measurement campaign. This paper shows that turbine shaft torsion measurements is highly correlated to the strain at a runner blade hotspot, and we demonstrate that the ARMAX model can be used to represent the dynamic system in order to minimize the strain on blades.
Comparison of Transient Behaviors of Wind Turbines with DFIG Considering the Shaft Flexible Models
Chen, Zhe,; Ye, Ren-jie; Hui, Li; Gao, Qiang
2008-01-01
In order to investigate the impacts of the integration of wind farms into utilities network, it is necessary to analyze the transient performances of wind power generation systems. In this paper, an assessment of the impact that the different representations of drive-train dynamics have on the electrical transient performances of doubly fed induction generator (DFIG) wind turbines with different operationally states is investigated. In order to compare the transient performances of DFIG wind ...
Directory of Open Access Journals (Sweden)
Der-Sheng Chan
2010-04-01
Full Text Available Most of the voltage losses of proton exchange membrane fuel cells (PEMFC are due to the sluggish kinetics of oxygen reduction on the cathode and the low oxygen diffusion rate inside the flooded cathode. To simulate the transient flooding in the cathode of a PEMFC, a transient model was developed. This model includes the material conservation of oxygen, vapor, water inside the gas diffusion layer (GDL and micro-porous layer (MPL, and the electrode kinetics in the cathode catalyst layer (CL. The variation of hydrophobicity of each layer generated a wicking effect that moves water from one layer to the other. Since the GDL, MPL, and CL are made of composite materials with different hydrophilic and hydrophobic properties, a linear function of saturation was used to calculate the wetting contact angle of these composite materials. The balance among capillary force, gas/liquid pressure, and velocity of water in each layer was considered. Therefore, the dynamic behavior of PEMFC, with saturation transportation taken into account, was obtained in this study. A step change of the cell voltage was used to illustrate the transient phenomena of output current, water movement, and diffusion of oxygen and water vapor across the entire cathode.
Comparison of Transient Behaviors of Wind Turbines with DFIG Considering the Shaft Flexible Models
DEFF Research Database (Denmark)
Chen, Zhe; Ye, Ren-jie; Hui, Li
2008-01-01
In order to investigate the impacts of the integration of wind farms into utilities network, it is necessary to analyze the transient performances of wind power generation systems. In this paper, an assessment of the impact that the different representations of drive-train dynamics have on the el......In order to investigate the impacts of the integration of wind farms into utilities network, it is necessary to analyze the transient performances of wind power generation systems. In this paper, an assessment of the impact that the different representations of drive-train dynamics have...
Directory of Open Access Journals (Sweden)
C. M. Bhongade
2014-09-01
Full Text Available The present paper deals with the determination of displacement and thermal transient stresses in a thick circular plate with internal heat generation. External arbitrary heat supply is applied at the upper surface of a thick circular plate, whereas the lower surface of a thick circular plate is insulated and heat is dissipated due to convection in surrounding through lateral surface. Here we compute the effects of internal heat generation of a thick circular plate in terms of stresses along radial direction. The governing heat conduction equation has been solved by using integral transform method. The results are obtained in series form in terms of Bessel’s functions and the results for temperature change and stresses have been computed numerically and illustrated graphically.
Energy Technology Data Exchange (ETDEWEB)
Rives Sanz, R.; Montesino Otero, M.E.; Gonzalez Mantecon, J.; Rojas Mazaira, L., E-mail: mmontesi@instec.cu [Higher Institute of Technology and Applied Science, La Habana (Cuba). Department of Nuclear Engineering; Lira, C.A. Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)
2014-07-01
International Reactor Innovative and Secure (IRIS) excels other Small Modular Reactor (SMR) designs due to its innovative characteristics regarding safety. IRIS integral pressurizer makes the design of larger pressurizer system than the conventional PWR, without any additional cost. The IRIS pressurizer volume of steam can provide enough margins to avoid spray requirement to mitigate in-surge transient. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial finite volume Computational Fluid Dynamic code CFX 14. A symmetric tridimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of three phases: liquid, steam, and vapor bubbles in liquid volume. Additionally, it takes into account the heat losses between the pressurizer and primary circuit. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX by using expressions in CFX Command Language (CCL) format. Moreover, several additional variables are defined for improving the convergence and allow monitoring of boron dilution sequences and condensation-evaporation rate in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences such as the in/out-surge transients and boron dilution sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)
Mueller-Stoffels, M.; Wackerbauer, R.
2010-12-01
The Arctic ocean and sea ice form a feedback system which plays an important role in the global climate. Variations of the global ice and snow distribution have a significant effect on the planetary albedo which governs the absorption of shortwave radiation. The complexity of highly parametrized GCMs makes it very difficult to assess single feedback processes in the climate system without the concurrent use of simple models where the physics are understood [1][2][3]. We introduce a complex systems model to investigate thermodynamic feedback processes in an Arctic ice-ocean layer. The ice-ocean layer is represented as a regular network of coupled cells. The state of each cell is determined by its energy content, which also defines the phase of the cell. The energy transport between cells is described with nonlinear and heterogeneous diffusion constants. And the time-evolution of the ice-ocean is driven by shortwave, longwave and lateral oceanic and atmospheric thermal forcing. This model is designed to study the stability of an ice cover under various heat intake scenarios. The network structure of the model allows to easily introduce albedo heterogeneities due to aging ice, wind blown snow cover, and ice movement to explore the time-evolution and pattern formation (melt ponds) processes in the Arctic sea ice. The solely thermodynamic model exhibits two stable states; one in the perennially ice covered domain and one in the perennially open water domain. Their existence is due to the temperature dependence of the longwave radiative budget. Transition between these states can be forced via lateral heat fluxes. During the transition from the ice covered to the open water stable state the ice albedo feedback effects are manifested as an increased warming rate of the ice cover together with enhanced seasonal energy oscillations. In the current model realization seasonal ice cover is present as a transient state only. Furthermore, the model exhibits hysteresis between
Transient thermal behavior of a cylindrical brake system
Energy Technology Data Exchange (ETDEWEB)
Naji, M.; Al-Nimr, M.; Masoud, S. [Jordan Univ. of Science and Technology, Irbid (Jordan). Dept. of Mechanical Engineering
2000-03-01
A mathematical model is presented to describe the thermal behavior of a brake system which consists of shoe and drum. The model is solved analytically using Green's function method for any type of the stopping braking action. In terms of the obtained solutions, the transient temperature distribution of the brake is described. The thermal behavior is investigated for three specified braking actions which are the impulse, unit step and trigonometric stopping actions. (orig.)
Simulation Model of a Transient
DEFF Research Database (Denmark)
Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte
2005-01-01
This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation...
Design and transient behavior of magnetic gears
Zheng, Ping; Bai, Jingang; Lin, Jia; Fu, Zhenxing; Song, Zhiyi; Lin, Fei
2014-05-01
The torque density is a key factor for magnetic gears. To obtain maximum torque density, the design principle of magnetic gears is proposed and the maximum transmitting torque is investigated under different combinations of the inner and outer permanent magnets (PM) rotor pole pairs. The research proves that the maximum transmitting torque and the minimum torque ripple can be obtained only when the ratio of the outer and inner PM pole pair numbers is fractional. Then, the optimal selection of the span ratio and thickness of magnetic blocks in the stationary modulating ring is investigated to obtain the maximum torque. Meanwhile, analyses of the losses of various parts in the magnetic gear show that the loss of the PMs is about 70% of the total losses. Therefore, the method of dividing the PM into several pieces along the circumferential direction is employed to reduce the PM loss, which makes the PM loss reduced by 73%. Additionally, the transient behavior of the magnetic gear is analyzed, indicating that the lower torsional stiffness is the main reason for oscillations during transient changes in speed and load. To suppress oscillations due to transients, damper windings are employed and the transient time and the maximum oscillation amplitude are reduced by 25% and 20%, respectively.
Simulation Model of a Transient
DEFF Research Database (Denmark)
Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte
2005-01-01
This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation...... in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed....
Transient accelerating scalar models with exponential potentials
Institute of Scientific and Technical Information of China (English)
Wen-Ping Cui; Yang Zhang; Zheng-Wen Fu
2013-01-01
We study a known class of scalar dark energy models in which the potential has an exponential term and the current accelerating era is transient.We find that,although a decelerating era will return in the future,when extrapolating the model back to earlier stages (z(≥) 4),scalar dark energy becomes dominant over matter.So these models do not have the desired tracking behavior,and the predicted transient period of acceleration cannot be adopted into the standard scenario of the Big Bang cosmology.When couplings between the scalar field and matter are introduced,the models still have the same problem; only the time when deceleration returns will be varied.To achieve re-deceleration,one has to turn to alternative models that are consistent with the standard Big Bang scenario.
Modeling Transient States in Language Change
Postma, G.J.; Truswell, Robert; Mattieu, Eric
2015-01-01
Models of language change may include, apart from an initial state and a terminal state, an intermediate transient state T. Building further on they Failed Change Model (Postma 2010) that ties the dynamics of the transient state T to the dynamics of the overall change A → B, we present an generalize
The transient behavior of electrorheological fluid in tensile flow
Tian, Yu; Zhang, Minliang; Zhu, Xuli; Jiang, Jile; Meng, Yonggang; Wen, Shizhu
2009-12-01
Transient behaviors of (ER) fluids in tensile flow and applied stepwise voltages were experimentally studied. The transient tensile stress rises exponentially with time. The characteristic rising time of tensile stress is independent of the amplitude of the applied voltage and the tensile velocity, while the amplitude of tensile yield stress is significantly affected by the two factors. The transient tension applied as a stepwise voltage is different from a stable tension pre-applied at constant voltage in different particle chain structure forming processes. Because of the chain aggregation during an intermittent voltage on-off test, the achieved tensile yield stress showed an exponent of 2.75 to the applied electric field at low separation velocities (0.2 mm s-1), higher than the square relationship predicted by traditional polarization models, and the exponent of 1.5 predicted by the conduction model. The results achieved in this study show that the mechanical properties of ER fluids are greatly affected by the method of applying the electric field, the strain rate, and the gap geometry between electrodes. These factors should be properly considered in the design and control of ER actuators.
Behavioral Modeling of Memcapacitor
D. Biolek; Z. Biolek; V. Biolkova
2011-01-01
Two behavioral models of memcapacitor are developed and implemented in SPICE-compatible simulators. Both models are related to the charge-controlled memcapacitor, the capacitance of which is controlled by the amount of electric charge conveyed through it. The first model starts from the state description of memcapacitor whereas the second one uses the memcapacitor constitutive relation as the only input data. Results of transient analyses clearly show the basic fingerprints of the memcapacitor.
Behavioral Modeling of Memcapacitor
Directory of Open Access Journals (Sweden)
D. Biolek
2011-04-01
Full Text Available Two behavioral models of memcapacitor are developed and implemented in SPICE-compatible simulators. Both models are related to the charge-controlled memcapacitor, the capacitance of which is controlled by the amount of electric charge conveyed through it. The first model starts from the state description of memcapacitor whereas the second one uses the memcapacitor constitutive relation as the only input data. Results of transient analyses clearly show the basic fingerprints of the memcapacitor.
Directory of Open Access Journals (Sweden)
C. Sayer
2002-03-01
Full Text Available Dynamic mathematical models are developed to simulate styrene emulsion polymerization reactions carried out in pulsed tubular reactors. Two different modeling approaches, the tanks-in-series model and the axial dispersion model, are compared. The models developed were validated with experimental data from the literature and used to study the dynamics during transient periods, e.g., the start-up of the reactor and the response to disturbances. The effect of the Peclet number on process variables such as conversion and particle concentration was also verified.
Local transient rheological behavior of concentrated suspensions
Blanc, Frédéric; Lemaire, Elisabeth
2011-01-01
This paper reports experiments on the shear transient response of concentrated non-Brownian suspensions. The shear viscosity of the suspensions is measured using a wide-gap Couette rheometer equipped with a Particle Image Velocimetry (PIV) device that allows measuring the velocity field. The suspensions made of PMMA particles (31$\\mu$m in diameter) suspended in a Newtonian index- and density-matched liquid are transparent enough to allow an accurate measurement of the local velocity for particle concentrations as high as 50%. In the wide-gap Couette cell, the shear induced particle migration is evidenced by the measurement of the time evolution of the flow profile. A peculiar radial zone in the gap is identified where the viscosity remains constant. At this special location, the local particle volume fraction is taken to be the mean particle concentration. The local shear transient response of the suspensions when the shear flow is reversed is measured at this point where the particle volume fraction is well ...
Transient behavior of a nuclear reactor coupled to an accelerator
Sadineni, Suresh Babu
Accelerator Driven Systems (ADS) present one of the most viable solutions for transmutation and effective utilization of nuclear fuel. Spent fuel from reactors will be partitioned to separate plutonium and other minor actinides to be transmuted in the ADS. Without the ADS, minor actinides must be stored at a geologic repository for long periods of time. One problem with ADS is understanding the control issues that arise when coupling an accelerator to a reactor. "ADSTRANS" was developed to predict the transient behavior of a nuclear reactor coupled to an accelerator. It was based on MCNPX, a radiation transport code developed at the LANL, and upon a numerical model of the neutron transport equation. MCNPX was used to generate the neutron "source" term that occurs when the accelerator is fired. ADSTRANS coupled MCNPX to a separate finite difference code that solved the transient neutron transport equation. A cylindrical axisymmetric reactor with steel shielding was considered for this analysis. Multiple neutron energy groups, neutron precursor groups and neutron poisons were considered. ENDF/B cross-section data obtained through MCNPX was also employed. The reactor was assumed to be isothermal and near zero power level. Unique features of this code are: (1) it predicts the neutron behavior of an ADS for different reactor geometry, material concentration, both electron and proton particle accelerators, and target material, (2) it develops input files for MCNPX to simulate neutron production, runs MCNPX, and retrieves information from the MCNPX output files. Neutron production predicted by MCNPX for a 20 MeV electron accelerator and lead target was compared with experimental data from the Idaho Accelerator Center and found to be in good agreement. The spatial neutron flux distribution and transient neutron flux in the reactor as predicted by the code were compared with analytical solutions and found to be in good agreement. Fuel burnup and poison buildup were also as
Minimal model for dynamic bonding in colloidal transient networks
Krinninger, Philip; Fortini, Andrea; Schmidt, Matthias
2016-04-01
We investigate a model for colloidal network formation using Brownian dynamics computer simulations. Hysteretic springs establish transient bonds between particles with repulsive cores. If a bonded pair of particles is separated by a cutoff distance, the spring vanishes and reappears only if the two particles contact each other. We present results for the bond lifetime distribution and investigate the properties of the van Hove dynamical two-body correlation function. The model displays crossover from fluidlike dynamics, via transient network formation, to arrested quasistatic network behavior.
Pressure transient modeling of a fractured geothermal reservior
Energy Technology Data Exchange (ETDEWEB)
Robinson, B.A.
1990-01-01
A fracture network model has been developed to simulate transient fluid flow behavior in a fractured rock mass. Included is a pressure-dependent aperture submodel to simulate behavior often seen in fractured systems. The model is used to simulate data from the Fenton Hill Hot Dry Rock (HDR) geothermal reservoir. Both low-pressure/low-flow-rate and high-pressure/high-flow-rate transient data are adequately simulated. The model parameters obtained suggest ways in which the model can be refined to achieve even more realistic fits to the data. The model is then used to demonstrate more efficient operating modes than the two-well circulating mode usually proposed for HDR reservoirs. 11 refs., 9 figs., 1 tab.
SBWR Model for Steady-State and Transient Analysis
Directory of Open Access Journals (Sweden)
Gilberto Espinosa-Paredes
2008-01-01
Full Text Available This paper presents a model of a simplified boiling water reactor (SBWR to analyze the steady-state and transient behavior. The SBWR model is based on approximations of lumped and distributed parameters to consider neutronics and natural circulation processes. The main components of the model are vessel dome, downcomer, lower plenum, core (channel and fuel, upper plenum, pressure, and level controls. Further consideration of the model is the natural circulation path in the internal circuit of the reactor, which governs the safety performance of the SBWR. To demonstrate the applicability of the model, the predictions were compared with plant data, manufacturer_s predictions, and RELAP5 under steady-state and transient conditions of a typical BWR. In steady-state conditions, the profiles of the main variables of the SBWR core such as superficial velocity, void fraction, temperatures, and convective heat transfer coefficient are presented and analyzed. The transient behavior of SBWR was analyzed during the closure of all main steam line isolation valves (MSIVs. Our results in this transient show that the cooling system due to natural circulation in the SBWR is around 70% of the rated core flow. According to the results shown here, one of the main conclusions of this work is that the simplified model could be very helpful in the licensing process.
Time of Flight Transients in the Dipolar Glass Model
2013-01-01
Using Monte Carlo simulation we investigated time of flight current transients predicted by the dipolar glass model for a random spatial distribution of hopping centers. Behavior of the carrier drift mobility was studied at room temperature over a broad range of electric field and sample thickness. A flat plateau followed by $j\\propto t^{-2}$ current decay is the most common feature of the simulated transients. Poole-Frenkel mobility field dependence was confirmed over 5 to 200 V/$\\mu$m as we...
Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)
Energy Technology Data Exchange (ETDEWEB)
Bradley K. Heath
2014-03-01
This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.
Asor, Eyal; Ben-Shachar, Dorit
2016-01-01
It is generally assumed that behavior results from an interaction between susceptible genes and environmental stimuli during critical life stages. The present article reviews the main theoretical and practical concepts in the research of gene environment interaction, emphasizing the need for models simulating real life complexity. We review a novel approach to study gene environment interaction in which a brief post-natal interference with the expression of multiple genes, by hindering the activity of the ubiquitous transcription factor specificity protein 1 (Sp1) is followed by later-in-life exposure of rats to stress. Finally, this review discusses the role of peripheral processes in behavioral responses, with the Sp1 model as one example demonstrating how specific behavioral patterns are linked to modulations in both peripheral and central physiological processes. We suggest that models, which take into account the tripartite reciprocal interaction between the central nervous system, peripheral systems and environmental stimuli will advance our understanding of the complexity of behavior. PMID:27679768
Energy Technology Data Exchange (ETDEWEB)
Holt, L., E-mail: lars.holt@tuev-sued.de [TÜV SÜD Energietechnik GmbH Baden-Württemberg, Gottlieb-Daimler-Str. 7, 70794 Filderstadt (Germany); Technical University München, Department of Nuclear Engineering, Boltzmannstr. 15, D-85748 Garching bei München (Germany); Rohde, U.; Kliem, S.; Baier, S. [Helmholtz-Zentrum Dresden—Rossendorf, Reactor Safety Division, PO Box 510119, D-01314 Dresden (Germany); Seidl, M. [E.ON Kernkraft GmbH, Tresckowstr. 5, D-30457 Hannover (Germany); Van Uffelen, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Macián-Juan, R. [Technical University München, Department of Nuclear Engineering, Boltzmannstr. 15, D-85748 Garching bei München (Germany)
2016-02-15
Highlights: • General coupling interface was developed for the fuel performance code TRANSURANUS. • With this new tool simplified fuel behavior models in codes can be replaced. • The reactor dynamics code DYN3D was coupled to TRANSURANUS at assembly level. • The feedback from detailed online fuel behavior modeling is analyzed for reactivity initiated accident (RIA). • The thermal hydraulics can be affected strongly even in fresh fuel assemblies. - Abstract: Recently the reactor dynamics code DYN3D (including an internal fuel behavior model) was coupled to the fuel performance code TRANSURANUS at assembly level. The coupled code system applies the new general TRANSURANUS coupling interface, hence it can be used for one-way or two-way coupling. In the coupling, DYN3D provides process time, time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, which in case of the two-way coupling approach replaces completely the internal DYN3D fuel behavior model and transfers parameters like radial fuel temperature distribution and cladding temperature back to DYN3D. For the first time results of the coupled code system are presented for a post-critical-heat-flux heat transfer. The corresponding heat transfer regime is mostly film boiling, where the cladding temperature can rise several hundreds of degrees. The simulated boron dilution transient assumed an injection of a 36 m{sup 3} slug of under-borated coolant into a German pressurized water reactor (PWR) core initiated from a sub-critical reactor state (extreme reactivity initiated accident (RIA) conditions). The feedback from detailed fuel behavior modeling was found negligible on the neutron kinetics and thermal hydraulics during the first power rise. In a later phase of the transient, the node injected energy can differ 25 J/g, even still around 20 J/g for nodes without film boiling. Furthermore, the thermal hydraulics can be affected strongly even in fresh fuel assemblies, where film boiling
Ferguson, Lachlan; Petty, Alice; Rohrscheib, Chelsie; Troup, Michael; Kirszenblat, Leonie; Eyles, Darryl W.; van Swinderen, Bruno
2017-01-01
The dopamine ontogeny hypothesis for schizophrenia proposes that transient dysregulation of the dopaminergic system during brain development increases the likelihood of this disorder in adulthood. To test this hypothesis in a high-throughput animal model, we have transiently manipulated dopamine signaling in the developing fruit fly Drosophila melanogaster and examined behavioral responsiveness in adult flies. We found that either a transient increase of dopamine neuron activity or a transient decrease of dopamine receptor expression during fly brain development permanently impairs behavioral responsiveness in adults. A screen for impaired responsiveness revealed sleep-promoting neurons in the central brain as likely postsynaptic dopamine targets modulating these behavioral effects. Transient dopamine receptor knockdown during development in a restricted set of ~20 sleep-promoting neurons recapitulated the dopamine ontogeny phenotype, by permanently reducing responsiveness in adult animals. This suggests that disorders involving impaired behavioral responsiveness might result from defective ontogeny of sleep/wake circuits. PMID:28243212
2014-01-01
The transient behaviors of natural circulation loop (NCL) are important for the system reliability under postulated accidents. The heat loss and structure thermal inertia may influence the transient behaviors of NCL greatly, so a transient analysis model with consideration of heat loss was developed based on the MATLAB/Simulink to predict the thermal-hydraulic characteristic of liquid metal NCL. The transient processes including the start-up, the loss of pump, and the shutdown of thermal-hydr...
Transient behavior of a radiative distiller/condenser system
Energy Technology Data Exchange (ETDEWEB)
Haddad, O.M.; Al-Nimr, M.A. [Jordan Univ. of Science and Technology, Dept. of Mechanical Engineering, Irbid (Jordan)
2002-04-01
In this work, a mathematical model is proposed to describe the thermal performance of a radiative distiller under transient conditions. The parameters which cause the dynamic variation in the condenser performance are the finite thermal capacity of the radiative condenser panel, effective sky-temperature, ambient temperature, humidity ratio and the condensers overall heat transfer coefficient. The presented model is solved numerically and the effects of the design and operating conditions on the condensers performance are investigated. (Author)
Quantum theory of an optical maser. VI - Transient behavior.
Wang, Y. K.; Lamb, W. E., Jr.
1973-01-01
The transient behavior of a laser is discussed using the quantum theory as did Scully and Lamb. The formal solution of the density-matrix equation is expressed in terms of exponentially decaying eigenmodes. Some of the lower decay constants are obtained numerically. The equations for the moments of the density matrix are then derived and solved by a truncation method. The equations of motion are integrated numerically for the case where the average number of photons in a laser cavity has the realistically large value 1.3 x 100,000. An alternative Fokker-Planck-equation approach is discussed.
The transient behavior of Peltier junctions pulsed with supercooling
Mao, J. N.; Chen, H. X.; Jia, H.; Qian, X. L.
2012-07-01
There exists the transient thermoelectric supercooling effect that can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the Joule heating effect and Fourier heat conduction effect arriving at the cold junction, in which a transient cold spike can be produced by superimposing an additional shaped current pulse of a large magnitude on the original steady-state optimum value. Most previous work on the transient supercooling mainly focused on the minimum supercooling temperature achievable and separately analyzed the beneficial or detrimental effects on the transient supercooling performance, which was not clarified quantitatively to what extent the interactional effects were on the enhancement of the transient supercooling performance. In this work, we systematically investigate a numerical solution involving time-dependent imposed voltage pulse and time-dependent thermal boundary conditions on the transient supercooling behavior as well as the response of characteristic time and cold-junction temperature distribution to the pulse operation parameters during the periods of pulse start-up, pulse-on time, and pulse-off time, which is served as a theoretical basis for exploiting the coupling interaction of the thermoelectric effects on the heat diffusion from or to the cold junction interrelated with the amount of the availably electrical conversion in the short time scale. Additionally, the advantage of certain pulse forms over others is described. The results indicate that Peltier supercooling capacity shows a decreasing monotonic trend in proportion to the total amount of electrical conversion, and the maximum coefficient of performance for cooling state is about 0.5 to be achieved at steady state. Taking advantage of the temporary Peltier effect focused electrical conversion as the additional cooling for a period long enough against the earlier arrival of the excessively Joule heating dominated heat accumulation is the key parameter
Study on Transient Void Behavior During Reactivity Initiated Accidents Under Low Pressure Condition
Satou, Akira; Maruyama, Yu; Asaka, Hideaki; Nakamura, Hideo
Series of out-of-pile experiments to obtain the knowledge on the transient void behavior during reactivity initiated accidents are in progress at JAEA. In the present series of experiments, the transient void behavior in a test section of 2 x 2 bundle geometry under atmospheric pressure condition was measured using an impedance technique. The measuring areas and the arrangement of electrodes for the impedance technique were defined on the basis of numerical analyses and scaled model experiments. The comparison was made between the impedance and differential pressure techniques for steady boiling experiments to estimate the accuracy of the impedance technique. The impedance technique showed a good agreement with the void fraction estimated from the differential pressure. The transient void behavior in the bundle geometry was measured using the impedance technique. The void fraction distribution in the bundle cross-section could be quantitatively obtained by the impedance technique. It could be properly confirmed that the transient void behavior depended on both the subcooling of inlet water and the heat generation rate of simulated fuel rods.
Experimental and Numerical Study on Transient Behavior of Printed Circuit Heat
Energy Technology Data Exchange (ETDEWEB)
Park, Byung Ha; Kim, Chan Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
A PCHE(printed circuit heat exchanger (PCHE) is manufactured from diffusion bonding process with multiple metal plates, which have plenty of micro channels. Micro channels on the plates were produced by mechanical machining or chemical etching. A PCHE is a very compact type and it has fine operating efficiency and effectiveness, which saves capital cost. PMR coolant is helium. The evaluation method for steady-state thermal hydraulic performance of a PCHE with helium was well developed. Kim performed a transient test. Cold inlet temperature was suddenly decreased after steady-state. Decreased temperature was about 20. The studies of transient response for counter flow configuration using both analytical and numerical method were well reviewed by Bunce and Kandiakr. Many authors considered conventional heat exchangers, such as shell and tube type. They considered interfacing wall between two fluids but outer shell of heat exchanger was not considered for transient behavior. However, heavy top cover plate and bottom cover plate are attached by diffusion bonding to endure high pressure from working fluid in PCHE. The mass of metal is very large. It is believed that a PCHE system has slow response time because of the heavy metal plates. It is needed to consider the effect of cover plate to evaluate transient behavior of PCHE. The transient behavior of PCHE was experimentally and numerically analyzed in the present study. A PCHE modeling should be performed with considerations on total PCHE metal mass and total heat transfer area. A PCHE has relatively large volume of metal compared with fluid channel due to cover plates to endure high pressure condition. The transient behavior is very sensitive to the metal mass in PCHE. The presented experimental results show start-up process for high temperature operation. Careful consideration is required to design a PCHE system with helium coolant.
MODELLING OF NON-ROAD TRANSIENT CYCLE
Directory of Open Access Journals (Sweden)
Martin Kotus
2013-12-01
Full Text Available The paper describes the modeling of NRTC (Non-Road Transient Cycle test procedure based on previously measured characteristics of fuel consumption, carbon monoxide (CO, carbon dioxide (CO2, hydrocarbons (HC, nitrogen oxides (NOx and particulates (PM production. It makes possible to compare the current technical condition of an internal combustion engine of an agricultural tractor with its previous state or other tractor’s engine. Based on measured characteristics, it is also possible to model any other cycle without further measurements (NRSC test procedure, cycle for specific conditions – mountain tractor, etc.. The result may thus contribute to improving the environment by reducing the production of harmful substances emitted into the air and save money due to reduced fuel consumption.
Analysis of Transient Behavior of a Vapor Compression Refrigeration Cycle
Fukushima, Toshihiko; Miyamoto, Seigo
A mathematical model for a vapor compression refrigeration cycle for automotive air conditioner is developed, which basically consists of compressor, condenser, receiver, expansion valve, evaporator, suction pressure control valve and piping. The main purpose of this model is to provide the designer with a tool for improving cooling capacity and investigating capacity control of the refrigeration cycle at transient conditions. A lumped parameter system is used for the mathematical model of the condenser and the evaporator, that is obtained with volume integral of the equation of continuity and energy over a bounded volume region. The compressor model and the piping models are also lumped parameter systems, and heat capacity of their walls are taken into account. The theoretical solutions of this model are in good agreement with the experimental results.
Recharge estimation for transient ground water modeling.
Jyrkama, Mikko I; Sykes, Jon F; Normani, Stefano D
2002-01-01
Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.
Transient modeling of electrochemically assisted CO2 capture and release
DEFF Research Database (Denmark)
Singh, Shobhana; Stechel, Ellen B.; Buttry, Daniel A.
2017-01-01
The present work aims to develop a model of a new electrochemical CO2 separation and release technology. We present a one-dimensional transient model of an electrochemical cell for point source CO2 capture and release, which mainly focuses on the simultaneous mass transport and complex chemical...... reactions associated with the separation process. For concreteness, we use an ionic liquid (IL) with 2 M thiolate anion (RS−) in 1 M disulfide (RSSR) as an electrolyte in the electrochemical cell to capture, transport and release CO2 under standard operating conditions. We computationally solved the model...... to analyze the time-dependent behavior of CO2 capture and electro-migration transport across the cell length. Given high nonlinearity of the system, we used a finite element method (FEM) to numerically solve the coupled mass transport equations. The model describes the concentration profiles by taking...
Institute of Scientific and Technical Information of China (English)
夏胜全; 朱志明; 孙晓明
2016-01-01
针对短路过渡CO2焊接的熔滴过渡随机性强、熔池动态行为复杂的特点，考虑熔滴与熔池短路时刻、短路时刻的熔滴半径、温度和中心位置等随机因素，提出了熔滴短路过渡行为模型。采用非对称高斯热源表征电弧热流密度沿焊接方向的非对称性，采用附加源项法处理熔池各动量源，采用VOF追踪熔池气－液界面，采用液相分数法和焓－孔隙度法处理液－固糊状区熔化金属凝固潜热及动量损失，建立了短路过渡焊接熔池的三维瞬态模型。基于FLUENT软件二次开发，模拟了熔池的动态行为，研究了熔池温度场和流场的瞬态变化。对比等速送丝和脉冲送丝情况，熔滴短路间隔时间的概率密度分布和焊缝成形的模拟与实验结果吻合良好，验证了熔滴短路过渡行为模型和熔池三维瞬态模型的有效性。%For CO2 arc welding with short⁃circuiting transfer, the droplet transfer and dynamic behavior of molten pool are complexity and have strong randomness. Considering the random factors, such as short⁃circuiting time between droplet and molten pool, radius, temperature and central position of droplet at short⁃circuiting time, the model of droplet short⁃circuiting transfer behavior is proposed and set up. The three⁃dimensional transient model of molten pool is established for arc welding with short⁃circuiting transfer, after the asymmetric Gauss heat source being adopted to characterize the asymmetry of arc heat flux density along welding direction, the additional source term method being used to deal with many momentum sources, the VOF model being adopted to realize the tracking of gas⁃liquid interface, and the liquid volume fraction method and enthalpy⁃porosity technique being used to compute the latent heat of molten metal solidification and the momentum loss in the liquid⁃solid mush zone. Based on the secondary development of FLUENT software, the
Heinrich events modeled in transient glacial simulations
Ziemen, Florian; Kapsch, Marie; Mikolajewicz, Uwe
2017-04-01
Heinrich events are among the most prominent events of climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under debate, and their climatic consequences are far from being fully understood. We address open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The framework consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. To make these long simulations feasible, the atmosphere is accelerated by a factor of 10 relative to the other model components using a periodical-synchronous coupling technique. To disentangle effects of the Heinrich events and the deglaciation, we focus on the events occurring before the deglaciation. The modeled Heinrich events show a peak ice discharge of about 0.05 Sv and raise the sea level by 2.3 m on average. The resulting surface water freshening reduces the Atlantic meridional overturning circulation and ocean heat release. The reduction in ocean heat release causes a sub-surface warming and decreases the air temperature and precipitation regionally and downstream into Eurasia. The surface elevation decrease of the ice sheet enhances moisture transport onto the ice sheet and thus increases precipitation over the Hudson Bay area, thereby accelerating the recovery after an event.
Transient fault behavior in a microprocessor: A case study
Duba, Patrick
1989-01-01
An experimental analysis is described which studies the susceptibility of a microprocessor based jet engine controller to upsets caused by current and voltage transients. A design automation environment which allows the run time injection of transients and the tracing from their impact device to the pin level is described. The resulting error data are categorized by the charge levels of the injected transients by location and by their potential to cause logic upsets, latched errors, and pin errors. The results show a 3 picoCouloumb threshold, below which the transients have little impact. An Arithmetic and Logic Unit transient is most likely to result in logic upsets and pin errors (i.e., impact the external environment). The transients in the countdown unit are potentially serious since they can result in latched errors, thus causing latent faults. Suggestions to protect the processor against these errors, by incorporating internal error detection and transient suppression techniques, are also made.
Cable system transients theory, modeling and simulation
Ametani, Akihiro; Nagaoka, Naoto
2015-01-01
A systematic and comprehensive introduction to electromagnetic transient in cable systems, written by the internationally renowned pioneer in this field Presents a systematic and comprehensive introduction to electromagnetic transient in cable systems Written by the internationally renowned pioneer in the field Thorough coverage of the state of the art on the topic, presented in a well-organized, logical style, from fundamentals and practical applications A companion website is available
Li, De-Fu; Xia, Xin-Lin; Sun, Chuang
2014-03-01
Knowledge of the thermal behavior of airships is crucial to the development of airship technology. An experiment apparatus is constructed to investigate the thermal response characteristics of airships, and the transient temperature distributions of both hull and inner gas are obtained under the irradiation of a solar simulator and various airflow conditions. In the course of the research, the transient temperature change of the experimental airship is measured for four airflow speeds of 0 m/s (natural convection), 3.26 m/s, 5.5 m/s and 7.0 m/s, and two incident solar radiation values of 842.4 W/m2 and 972.0 W/m2. The results show that solar irradiation has significant influence on the airship hull and inner gas temperatures even if the airship stays in a ground airflow environment where the heat transfer is dominated by radiation and convection. The airflow around the airship is conducive to reduce the hull temperature and temperature nonuniformity. Transient thermal response of airships rapidly varies with time under solar radiation conditions and the hull temperature remains approximately constant in ˜5-10 min. Finally, a transient thermal model of airship is developed and the model is validated through comparison with the experimental data.
An integrated transient model for simulating the operation of natural gas transport systems
Pambour, Kwabena Addo; Bolado-Lavin, Ricardo; Dijkema, Gerard P. J.
This paper presents an integrated transient hydraulic model that describes the dynamic behavior of natural gas transport systems (GTS). The model includes sub models of the most important facilities comprising a GTS, such as pipelines, compressor stations, pressure reduction stations, underground
An integrated transient model for simulating the operation of natural gas transport systems
Pambour, Kwabena Addo; Bolado-Lavin, Ricardo; Dijkema, Gerard P. J.
2016-01-01
This paper presents an integrated transient hydraulic model that describes the dynamic behavior of natural gas transport systems (GTS). The model includes sub models of the most important facilities comprising a GTS, such as pipelines, compressor stations, pressure reduction stations, underground ga
An integrated transient model for simulating the operation of natural gas transport systems
Pambour, Kwabena Addo; Bolado-Lavin, Ricardo; Dijkema, Gerard P. J.
2016-01-01
This paper presents an integrated transient hydraulic model that describes the dynamic behavior of natural gas transport systems (GTS). The model includes sub models of the most important facilities comprising a GTS, such as pipelines, compressor stations, pressure reduction stations, underground ga
Energy Technology Data Exchange (ETDEWEB)
Massoud, M
1987-01-01
Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.
Directory of Open Access Journals (Sweden)
Qihong Feng
2017-01-01
Full Text Available This work presents a discussion on the pressure transient response of multistage fractured horizontal well in tight oil reservoirs. Based on Green’s function, a semianalytical model is put forward to obtain the behavior. Our proposed model accounts for fluid flow in four contiguous regions of the tight formation by using pressure continuity and mass conservation. The time-dependent conductivity of hydraulic fractures, which is ignored in previous models but highlighted by recent experiments, is also taken into account in our proposed model. We also include the effect of pressure drop along a horizontal wellbore. We substantiate the validity of our model and analyze the different flow regimes, as well as the effects of initial conductivity, fracture distribution, and geometry on the pressure transient behavior. Our results suggest that the decrease of fracture conductivity has a tremendous effect on the well performance. Finally, we compare our model results with the field data from a multistage fractured horizontal well in Jimsar sag, Xinjiang oilfield, and a good agreement is obtained.
Transient behaviors of current-injection quantum-dot microdisk lasers.
Mao, Ming-Hua; Chien, Hao-Che
2012-01-30
We studied the transient behaviors of current-injection quantum-dot microdisk lasers at room temperature. Unique optical responses were observed, including the suppression of relaxation oscillations and fast turn-on. With the help of rate-equation modeling, the suppressed relaxation oscillations are attributed to the enhanced spontaneous emission factor in microdisk lasers. Short turn-on time, around 1 ns without pre-bias, results from the reduced carrier lifetime caused by the Purcell effect and increased nonradiative recombination rate due to higher surface/volume ratio. With short turn-on time, a large-signal direct modulation experiment at 1 Gbps is demonstrated. Modal transient behavior was also investigated under various temperatures from 100 to 300 K. Both of the transient lasing and steady-state lasing from side modes are suppressed at temperatures higher than 250K. Therefore, the quantum-dot microdisk lasers show the potential of single-mode operation under high-speed modulation at room temperature.
Predicting the Impact of Measures Against P2P Networks on the Transient Behaviors
Altman, Eitan; Shwartz, Adam; Xu, Yuedong
2010-01-01
The paper has two objectives. The first is to study rigorously the transient behavior of some P2P networks where information is replicated and disseminated according to an epidemic type dynamics. The second is to use the insight gained in order to predict how efficient are measures taken against peer to peer networks. We first study a model which extends a classical epidemic model to characterize the peer to peer swarms in the presence of free riding peers. We then study a second model that a peer initiates a contact with another peer chosen randomly. In both cases, the network is shown to have a phase transition: a small change in the parameters causes a large change in the behavior of the network. We show in particular how the phase transition affects measures that content provider networks may take against P2P networks that distribute non-authorized music or books, and what is the efficiency of counter-measures.
Analogue Behavioral Modeling of GTO
Directory of Open Access Journals (Sweden)
Y. Azzouz
2011-01-01
Full Text Available An analog behavioral model of high power gate turn-off thyristor (GTO is developed in this paper. The fundamental methodology for the modeling of this power electronic circuit is based on the use of the realistic diode consideration of non-linear junctions. This modeling technique enables to perform different simulations taking into account the turn-on and turn-off transient behaviors in real-time. The equivalent circuits were simulated with analog software developed in our laboratory. It was shown that the tested simple and compact model allows the generation of accurate physical characteristics of power thyristors under dynamic conditions. The model understudy was validated with analog simulations based on operational amplifier devices.
Perturbation analysis of transient population dynamics using matrix projection models
DEFF Research Database (Denmark)
Stott, Iain
2016-01-01
Non-stable populations exhibit short-term transient dynamics: size, growth and structure that are unlike predicted long-term asymptotic stable, stationary or equilibrium dynamics. Understanding transient dynamics of non-stable populations is important for designing effective population management...... strategies, predicting the responses of populations to environmental change or disturbance, and understanding population processes and life-history evolution in variable environments. Transient perturbation analyses are vital tools for achieving these aims. They assess how transient dynamics are affected...... of model being analysed, the perturbation structure, the population response of interest, nonlinear response to perturbation, standardization for asymptotic dynamics, the initial population structure, and the time frame of interest. I discuss these with reference to the application of transient...
Coupling capacitor voltage transformer: A model for electromagnetic transient studies
Energy Technology Data Exchange (ETDEWEB)
Fernandes, D.; Neves, W.L.A. [Department of Electrical Engineering, Federal University of Campina Grande, Av. Aprigio Veloso, 882 Bodocongo, 58.109-970 Campina Grande, PB (Brazil); Vasconcelos, J.C.A. [Companhia Hidro Eletrica do Sao Francisco, Rua Delmiro Gouveia, 333 Bongi, 50.761-901 Recife, PE (Brazil)
2007-02-15
In this work, an accurate coupling capacitor voltage transformer (CCVT) model for electromagnetic transient studies is presented. The model takes into account linear and nonlinear elements. A support routine was developed to compute the linear 230kV CCVT parameters (resistances, inductances and capacitances) from frequency response data. The magnetic core and surge arrester nonlinear characteristics were estimated from laboratory measurements as well. The model is used in connection with the electromagnetic transients program (EMTP) to predict the CCVT performance when it is submitted to transient overvoltages, as are the cases of voltages due to the ferroresonance phenomenon and circuit breaker switching. The difference between simulated and measured results is fairly small. Simulations had shown that transient overvoltages produced inside the CCVT, when a short circuit is cleared at the CCVT secondary side, are effectively damped out by the ferroresonance suppression circuit and the protection circuit. (author)
Homogenization of intergranular fracture towards a transient gradient damage model
Sun, G.; Poh, L. H.
2016-10-01
This paper focuses on the intergranular fracture of polycrystalline materials, where a detailed model at the meso-scale is translated onto the macro-level through a proposed homogenization theory. The bottom-up strategy involves the introduction of an additional macro-kinematic field to characterize the average displacement jump within the unit cell. Together with the standard macro-strain field, the underlying processes are propagated onto the macro-scale by imposing the equivalence of power and energy at the two scales. The set of macro-governing equations and constitutive relations are next extracted naturally as per standard thermodynamics procedure. The resulting homogenized microforce balance recovers the so-called 'implicit' gradient expression with a transient nonlocal interaction. The homogenized gradient damage model is shown to fully regularize the softening behavior, i.e. the structural response is made mesh-independent, with the damage strain correctly localizing into a macroscopic crack, hence resolving the spurious damage growth observed in many conventional gradient damage models. Furthermore, the predictive capability of the homogenized model is demonstrated by benchmarking its solutions against reference meso-solutions, where a good match is obtained with minimal calibrations, for two different grain sizes.
Capture-recapture survival models taking account of transients
Pradel, R.; Hines, J.E.; Lebreton, J.D.; Nichols, J.D.
1997-01-01
The presence of transient animals, common enough in natural populations, invalidates the estimation of survival by traditional capture- recapture (CR) models designed for the study of residents only. Also, the study of transit is interesting in itself. We thus develop here a class of CR models to describe the presence of transients. In order to assess the merits of this approach we examme the bias of the traditional survival estimators in the presence of transients in relation to the power of different tests for detecting transients. We also compare the relative efficiency of an ad hoc approach to dealing with transients that leaves out the first observation of each animal. We then study a real example using lazuli bunting (Passerina amoena) and, in conclusion, discuss the design of an experiment aiming at the estimation of transience. In practice, the presence of transients is easily detected whenever the risk of bias is high. The ad hoc approach, which yields unbiased estimates for residents only, is satisfactory in a time-dependent context but poorly efficient when parameters are constant. The example shows that intermediate situations between strict 'residence' and strict 'transience' may exist in certain studies. Yet, most of the time, if the study design takes into account the expected length of stay of a transient, it should be possible to efficiently separate the two categories of animals.
A transient model to simulate HTPEM fuel cell impedance spectra
DEFF Research Database (Denmark)
Vang, Jakob Rabjerg; Andreasen, Søren Juhl; Kær, Søren Knudsen
2012-01-01
This paper presents a spatially resolved transient fuel cell model applied to the simulation of high temperature PEM fuel cell impedance spectra. The model is developed using a 2D finite volume method approach. The model is resolved along the channel and across the membrane. The model considers...
Directory of Open Access Journals (Sweden)
Yanli Xin
2016-12-01
Full Text Available This paper presents a comprehensive investigation on high frequency (HF switching transients due to energization of vacuum circuit breakers (VCBs in offshore wind farms (OWFs. This research not only concerns the modeling of main components in collector grids of an OWF for transient analysis (including VCBs, wind turbine transformers (WTTs, submarine cables, but also compares the effectiveness between several mainstream switching overvoltage (SOV protection methods and a new mitigation method called smart choke. In order to accurately reproduce such HF switching transients considering the current chopping, dielectric strength (DS recovery capability and HF quenching capability of VCBs, three models are developed, i.e., a user–defined VCB model, a HF transformer terminal model and a three-core (TC frequency dependent model of submarine cables, which are validated through simulations and compared with measurements. Based on the above models and a real OWF configuration, a simulation model is built and several typical switching transient cases are investigated to analyze the switching transient process and phenomena. Subsequently, according to the characteristics of overvoltages, appropriate parameters of SOV mitigation methods are determined to improve their effectiveness. Simulation results indicate that the user–defined VCB model can satisfactorily simulate prestrikes and the proposed component models display HF characteristics, which are consistent with onsite measurement behaviors. Moreover, the employed protection methods can suppress induced SOVs, which have a steep front, a high oscillation frequency and a high amplitude, among which the smart choke presents a preferable HF damping effect.
Marković, D Z; Kalauzi, A; Radenović, C N
2001-09-01
The paper deals with mathematical modelling of the transients obtained by fitting of delayed fluorescence (DF) induction trace. The transients are in certain, doubtless connection with electrochemical gradient (ECG) formed across thylakoid membranes upon illumination. The fitting of the C and D transients by using consecutive model for first-order reactions (A --> B --> C) showed that they might play a role of the intermediate (B), according to scheme down bellow: ("A1 state")ECG (k1(C transient))--> C transient (k2(C transient))--> products, ("A2 state")ECG (k1(D transient))--> D transient (k2(D transient))--> products. The two ECG controlled "states" (A1 & A2) are not the same, which does not exclude some sort of proportionality. On the other hand, the E band, contributing mainly to the stationary level of DF induction trace, may be fitted by parallel model of at least two first-order reactions.
Novel Approach for Electromagnetic Actuators Analysis in Transient Behavior
Directory of Open Access Journals (Sweden)
SIRBU, I. G.
2012-02-01
Full Text Available A new model of the actuator is proposed in this paper. It considers the nonlinear electromagnetic phenomena in the ferromagnetic core, as well as the influence of the mechanical load during the plunger movement. According to our approach, the entire system that includes the magnetic circuit, the electric circuit and the mechanical parts is mathematically modeled through a differential algebraic equation system (DAE. Therefore, a corresponding analog nonlinear electric circuit described by a similar mathematical model is conceived and implemented in an electric circuit simulation program capable to analyze its behavior in steady state or dynamic regimes. The SPICE simulator has been chosen as implementation platform and a case study has been performed to prove the feasibility and efficiency of our approach. The simulation result contains electromagnetic and mechanical quantities that were represented as time-domain functions. The method is remarkable through an extremely short computation time when compared with the classical methods based on the discretization of the domain.
Compositional Abstraction of PEPA Models for Transient Analysis
DEFF Research Database (Denmark)
Smith, Michael James Andrew
2010-01-01
- or interval - Markov chains allow us to aggregate states in such a way as to safely bound transient probabilities of the original Markov chain. Whilst we can apply this technique directly to a PEPA model, it requires us to obtain the CTMC of the model, whose state space may be too large to construct...
Modelling vaporous cavitation on fluid transients
Shu, Jian-Jun
2014-01-01
A comprehensive study of the problem of modelling vaporous cavitation in transmission lines is presented. The two-phase homogeneous equilibrium vaporous cavitation model which has been developed is compared with the conventional column separation model. The latter predicts unrealistically high pressure spikes because of a conflict arising from the prediction of negative cavity sizes if the pressure is not permitted to fall below the vapour pressure, or the prediction of negative absolute pressures if the cavity size remains positive. This is verified by a comparison of predictions with previously published experimental results on upstream, midstream and downstream cavitation. The new model has been extended to include frequency-dependent friction. The characteristics predicted by the frequency-dependent friction model show close correspondence with experimental data.
Transient fuel behavior of preirradiated PWR fuels under reactivity initiated accident conditions
Fujishiro, Toshio; Yanagisawa, Kazuaki; Ishijima, Kiyomi; Shiba, Koreyuki
1992-06-01
Since 1975, extensive studies on transient fuel behavior under reactivity initiated accident (RIA) conditions have been continued in the Nuclear Safety Research Reactor (NSRR) of Japan Atomic Energy Research Institute. A new experimental program with preirradiated LWR fuel rods as test samples has recently been started. In this program, transient behavior and failure initiation have been studied with 14 × 14 type PWR fuel rods preirradiated to a burnup of 20 to 42 MWd/kgU. The test fuel rods contained in a capsule filled with the coolant water were subjected to a pulse irradiation in the NSRR to simulate a prompt power surge in an RIA. The effects of preirradiation on the transient fission gas release, pellet-cladding mechanical interaction and fuel failure were clearly observed through the transient in-core measurements and postirradiation examination.
Behavioral performance of rats following transient forebrain ischemia.
Volpe, B T; Pulsinelli, W A; Tribuna, J; Davis, H P
1984-01-01
Rats subjected to transient forebrain ischemic injury by the method of four vessel occlusion (4-VO) develop irreversible injury to select populations of vulnerable neurons which include pyramidal cells in the CA-1 region of the hippocampus. This brain area is thought to be crucial for learning and memory. Rats subjected to 30 minutes of 4-VO, and then cerebral reperfusion were tested on a radial 8-arm maze task after they had recovered. The data shows that both 4-VO and control animals improve their performance over trials, but that 4-VO rats are impaired on "working" and "reference" tasks. The data suggest that 4-VO rats' impaired "working" performance is permanent, compared to their transient "reference" impairment. Alterations in sensorimotor activity could not account for these performance deficits since control and 4-VO rats demonstrated equivalent choice time per maze arm. Performance deficits in rats following forebrain ischemic injury may be similar to some of the cognitive deficits found in humans survivors of cerebral hypoxia-ischemia.
TRANSFORM - TRANsient Simulation Framework of Reconfigurable Models
Energy Technology Data Exchange (ETDEWEB)
2017-09-01
Existing development tools for early stage design and scoping of energy systems are often time consuming to use, proprietary, and do not contain the necessary function to model complete systems (i.e., controls, primary, and secondary systems) in a common platform. The Modelica programming language based TRANSFORM tool (1) provides a standardized, common simulation environment for early design of energy systems (i.e., power plants), (2) provides a library of baseline component modules to be assembled into full plant models using available geometry, design, and thermal-hydraulic data, (3) defines modeling conventions for interconnecting component models, and (4) establishes user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.
Carrasco, Juan A.
2004-01-01
Rewarded homogeneous continuous-time Markov chain (CTMC) models can be used to analyze performance, dependability and performability attributes of computer and telecommunication systems. In this paper, we consider rewarded CTMC models with a reward structure including reward rates associated with states and two measures summarizing the behavior in time of the resulting reward rate random variable: the expected transient reward rate at time t and the expected averaged reward rate in the tim...
Goldmeer, Jeffrey S.; Urban, David L.; Tien, James
1999-01-01
Current fire suppression plans for the International Space Station include the use of venting (depressurization) as a method for extinguishing a fire. Until recently this process had only been examined as part of a material flammability experiment performed on Skylab in the early 1970's. Due to the low initial pressure (0.35 Atm) and high oxygen concentration (65%), the Skylab experimental results are not applicable for understanding the effects of venting on a fire in a space station environment (21%O2, 1 Atm). Recent research examined the extinction behavior of a diffusion flame over a polymethyl methacrylate (PMMA) cylinder during a transient depressurization in low-gravity. The numerical model was used to examine extinction limits as a function of depressurization rate, forced flow velocity, and initial solid phase temperature. The experimental and numerically predicted extinction data indicated that as the solid phase temperature increased the pressure required to extinguish the flame decreased. The numerical model was also used to examine conditions not obtainable in the low-gravity experiments. From these simulations, a series of extinction boundaries were generated that showed a region of increased flammability existed at a forced flow of 10 cm/s. Analysis of these extinction boundaries indicated that they were quasi-steady in nature, and that the final extinction conditions were independent of the transient process. The velocity range in the previous study was limited and thus the results did not examine the effects of velocities less than 1 cm/s or greater than 20 cm/s. This study utilized low-gravity experiments performed on NASA's Reduced-gravity Research Aircraft Laboratory and numerical simulations to examine conditions applicable to the Space Station environment. This paper extends the analysis of the previous study to a comprehensive examination of the effect of increased velocity on extinction behavior and extinction limits during a transient
Transient behavior of heat pipe with thermal energy storage under pulse heat loads
Chang, Ming-, Jr.
1991-02-01
cylinder in relaxing the heat pipe temperature increase under pulse heat loads. Also, the small PCM cylinders can handle periodic, pulse heat loads better because the small PCM cylinders can solidify faster after each periodic, pulse heat load is terminated. A simple lumped-heat-capacity model was also used to predict the transient behavior of the heat pipe without PCM. Compared with the results from the finite-difference solution, it was found that the lumped model can predict the average heat pipe temperature and the heat input/output as the evaporator and condenser for the heat pipe without PCM quite well.
Simulation of transient dynamic behavior in laterally coupled VCSEL arrays
Riyopoulos, Spilios
2002-06-01
A novel, fast simulation tool for transient response is developed to study jitter and noise caused by lateral cavity interactions in VCSEL arrays. The cavity mode profiles, obtained from a paraxial eigenmode analysis, are used to derive fast 1-D rate equations that implement gain confinement, edge clipping, wide angle scattering and diffraction (self-interference) losses. These equations are augmented by lateral coupling terms describing the interactions among nearest neighbor cavities. Slow time scale coupling describes interactions of phase-shifted cavities via mutually induced electric polarization, cross-hole burning and cross-cavity gain due to optical fringe-field interactions. The tool is used to study cavity cross-talk, lateral bit pattern error effects, and the possibility of excitation of long range modulations over the array. Conclusions relating VCSEL packing density to BER, bit suppression by neighboring cavities, and array phase locking are given.
Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation
Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred
2015-01-01
To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.
Transient Response Model of Standing Wave Piezoelectric Linear Ultrasonic Motor
Institute of Scientific and Technical Information of China (English)
SHI Yunlai; CHEN Chao; ZHAO Chunsheng
2012-01-01
A transient response model for describing the starting and stopping characteristics of the standing wave piezoelectric linear ultrasonic motor was presented.Based on the contact dynamic model,the kinetic equation of the motor was derived.The starting and stopping characteristics of the standing wave piezoelectric linear ultrasonic motor according to different loads,contact stiffness and inertia mass were described and analyzed,respectively.To validate the transient response model,a standing wave piezoelectric linear ultrasonic motor based on in-plane modes was used to carry out the simulation and experimental study.The corresponding results showed that the simulation of the motor performances based on the proposed model agreed well with the experimental results.This model will helpful to improve the stepping characteristics and the control flexibility of the standing wave piezoelectric linear ultrasonic motor.
Automatic control systems satisfying certain general criterions on transient behavior
Boksenbom, Aaron S; Hood, Richard
1952-01-01
An analytic method for the design of automatic controls is developed that starts from certain arbitrary criterions on the behavior of the controlled system and gives those physically realizable equations that the control system can follow in order to realize this behavior. The criterions used are developed in the form of certain time integrals. General results are shown for systems of second order and of any number of degrees of freedom. Detailed examples for several cases in the control of a turbojet engine are presented.
Transient Behavior of Light-Emitting Electrochemical Cells
2011-06-01
dependence of the rate of change of capacitance suggests Arrhenius-type behavior associated with ion motion with an activation energy of ~1.27 eV. The...initial rate of change of capacitance is faster than the rate of change of light and current, suggesting that modification of the field near the
A transient single particle model under FCI conditions
Institute of Scientific and Technical Information of China (English)
LI Xiao-Yan; SHANG Zhi; XU Ji-Jun
2005-01-01
The paper is focused on the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Based on the continuity, momentum and energy equations of the vapor film, a transient two-dimensional single particle model has been established. This paper contains a detailed description of HPMC (High-temperature Particle Moving in Coolant) model for studying some aspects of the premixing stage of fuel-coolant interactions (FCIs). The transient process of high-temperature particles moving in coolant can be simulated. Comparisons between the experiment results and the calculations using HPMC model demonstrate that HPMC model achieves a good agreement in predicting the time-varying characteristic of high-temperature spheres moving in coolant.
Fission product transport and behavior during two postulated loss of flow transients in the air
Energy Technology Data Exchange (ETDEWEB)
Adams, J.P.; Carboneau, M.L.
1991-01-01
This document discusses fission product behavior during two postulated loss-of-flow accidents (leading to high- and low-pressure core degradation, respectively) in the Advanced Test Reactor (ATR). These transients are designated ATR Transient LCPI5 (high-pressure) and LPP9 (low-pressure). Normally, transients of this nature would be easily mitigated using existing safety systems and procedures. In these analyses, failure of these safety systems was assumed so that core degradation and fission product release could be analyzed. A probabilistic risk assessment indicated that the probability of occurrence for these two transients is of the order of 10{sup {minus}5 }and 10{sup {minus}7} per reactor year for LCP15 and LPP9, respectively.
Fission product transport and behavior during two postulated loss of flow transients in the air
Energy Technology Data Exchange (ETDEWEB)
Adams, J.P.; Carboneau, M.L.
1991-12-31
This document discusses fission product behavior during two postulated loss-of-flow accidents (leading to high- and low-pressure core degradation, respectively) in the Advanced Test Reactor (ATR). These transients are designated ATR Transient LCPI5 (high-pressure) and LPP9 (low-pressure). Normally, transients of this nature would be easily mitigated using existing safety systems and procedures. In these analyses, failure of these safety systems was assumed so that core degradation and fission product release could be analyzed. A probabilistic risk assessment indicated that the probability of occurrence for these two transients is of the order of 10{sup {minus}5 }and 10{sup {minus}7} per reactor year for LCP15 and LPP9, respectively.
Modeling chlorophyll a fluorescence transient: relation to photosynthesis.
Stirbet, A; Riznichenko, G Yu; Rubin, A B; Govindjee
2014-04-01
To honor Academician Alexander Abramovitch Krasnovsky, we present here an educational review on the relation of chlorophyll a fluorescence transient to various processes in photosynthesis. The initial event in oxygenic photosynthesis is light absorption by chlorophylls (Chls), carotenoids, and, in some cases, phycobilins; these pigments form the antenna. Most of the energy is transferred to reaction centers where it is used for charge separation. The small part of energy that is not used in photochemistry is dissipated as heat or re-emitted as fluorescence. When a photosynthetic sample is transferred from dark to light, Chl a fluorescence (ChlF) intensity shows characteristic changes in time called fluorescence transient, the OJIPSMT transient, where O (the origin) is for the first measured minimum fluorescence level; J and I for intermediate inflections; P for peak; S for semi-steady state level; M for maximum; and T for terminal steady state level. This transient is a real signature of photosynthesis, since diverse events can be related to it, such as: changes in redox states of components of the linear electron transport flow, involvement of alternative electron routes, the build-up of a transmembrane pH gradient and membrane potential, activation of different nonphotochemical quenching processes, activation of the Calvin-Benson cycle, and other processes. In this review, we present our views on how different segments of the OJIPSMT transient are influenced by various photosynthetic processes, and discuss a number of studies involving mathematical modeling and simulation of the ChlF transient. A special emphasis is given to the slower PSMT phase, for which many studies have been recently published, but they are less known than on the faster OJIP phase.
FDTD Modeling of Transient Scattering by Subsurface Targets
Institute of Scientific and Technical Information of China (English)
Gong Zhu-qian; Zhu Guo-qiang
2004-01-01
In this paper, a two-dimensional (2-D) finitedifference time-domain method (FDTD) scheme is used to simulate the transient scattering characteristics of buried objects, which are modeled by columns of arbitrary permittivities, conductivities, and sizes. The FDTD soil is modeled by isotropic, homogeneous and lossy media. The standing-trave-ling wave boundary condition (STWBC) that can simplify calculation and save CPU storage is used for modeling physical absorbers inside the FDTD computational domain. Reflection of electromagnetic pulses incident on a layered medium and transient scattering by the ground and an underground air square cylinder are computed. These results verify the validity of the FDTD scheme by comparisons with those shown in some references. Numerical results presented in the final part of this paper are desirable and meaningful, explicitly distinguishing echo waves stemming from the ground and the buried objects.
Accelerating transient simulation of linear reduced order models.
Energy Technology Data Exchange (ETDEWEB)
Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad
2011-10-01
Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.
Modeling the effect of transient populations on epidemics in Washington DC
Parikh, Nidhi; Youssef, Mina; Swarup, Samarth; Eubank, Stephen
2013-11-01
Large numbers of transients visit big cities, where they come into contact with many people at crowded areas. However, epidemiological studies have not paid much attention to the role of this subpopulation in disease spread. We evaluate the effect of transients on epidemics by extending a synthetic population model for the Washington DC metro area to include leisure and business travelers. A synthetic population is obtained by combining multiple data sources to build a detailed minute-by-minute simulation of population interaction resulting in a contact network. We simulate an influenza-like illness over the contact network to evaluate the effects of transients on the number of infected residents. We find that there are significantly more infections when transients are considered. Since much population mixing happens at major tourism locations, we evaluate two targeted interventions: closing museums and promoting healthy behavior (such as the use of hand sanitizers, covering coughs, etc.) at museums. Surprisingly, closing museums has no beneficial effect. However, promoting healthy behavior at the museums can both reduce and delay the epidemic peak. We analytically derive the reproductive number and perform stability analysis using an ODE-based model.
Transient Behavior of Ethanol Fermentation in Immobilized Cell Bioreactors*
Tohru, KANNO; Yoshinori, FUJISHIGE; Hiroyuki, Ito; koichi, yamazaki; Masayoshi, KOBAYASHI
1990-01-01
The dynamic behavior of ethanol fermentation catalysed by an immobilized cell has been studied in batch and continuous stirred tank bioreactors, changing the operating conditions in a stepwise fashion. The rate of ethanol fermentation in the flow reactor reaches a new steady state within 60 min for the stepwise change in temperature or flow rate at 15〜30℃ and the residence time t_R=40 hr. The rate of fermentation obeys the Lineweaven-Burk plot and the Michaelis constant is calculated
DEFF Research Database (Denmark)
Mohammadi, Soma; Bojesen, Carsten
2015-01-01
finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...
Hu, Guilin; Fan, Jianren
The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm 2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.
Thermal boundary resistance from transient nanocalorimetry: A multiscale modeling approach
Caddeo, Claudia; Melis, Claudio; Ronchi, Andrea; Giannetti, Claudio; Ferrini, Gabriele; Rurali, Riccardo; Colombo, Luciano; Banfi, Francesco
2017-02-01
The thermal boundary resistance at the interface between a nanosized Al film and an Al2O3 substrate is investigated at an atomistic level. The thermal dynamics occurring in time-resolved thermoreflectance experiments is then modeled via macrophysics equations upon insertion of the materials parameters obtained from atomistic simulations. Electrons and phonons nonequilibrium and spatiotemporal temperatures inhomogeneities are found to persist up to the nanosecond time scale. These results question the validity of the commonly adopted lumped thermal capacitance model in interpreting transient nanocalorimetry experiments. The strategy adopted in the literature to extract the thermal boundary resistance from transient reflectivity traces is revised in the light of the present findings. The results are of relevance beyond the specific system, the physical picture being general and readily extendable to other heterojunctions.
Energy Technology Data Exchange (ETDEWEB)
Zang, Shun-lai, E-mail: shawn@mail.xjtu.edu.cn [School of Mechanical Engineering, Xi' an Jiaotong University, No. 28, Xianning Road, Xi' an, Shaanxi (China); Sun, Li [Manufacturing Process Research, General Motors China Science Lab, No. 56, Jinwan Road, Shanghai (China); Niu, Chao [School of Mechanical Engineering, Xi' an Jiaotong University, No. 28, Xianning Road, Xi' an, Shaanxi (China)
2013-12-01
In recent decades, the needs for new advanced high strength steels (AHSS) with high ductility and strength have rapidly increased to achieve the targets of more fuel-efficient and safer vehicles in automotive industry. However, several undesirable phenomena are experimentally observed during the forming of such materials, particularly with complex loading and large plastic deformation. Springback is one of the most important problems that should be compensated in sheet metal forming process. In this paper, we investigated the hardening behavior of a Q and P (quench and partitioning) steel designated by QP980CR, which is a new third generation advance high strength steel, from the Baosteel Group Corp. in Shanghai, China. The uni-axial tensile and cyclic simple shear tests were conducted. The uni-axial tensile tests were performed on the specimens at 0°, 45° and 90° to rolling direction (RD). The flow stress and transverse strain evolution were obtained in view of the digital image correlation (DIC) measurement. The plastic anisotropy was optimized from the uni-axial tensile tests and thereafter incorporated into the simulations of cyclic simple shear tests. The cyclic simple shear tests were conducted with three prestrains to measure the Bauschinger effect, transient behavior and permanent softening, and to determine the material parameters of the combined isotropic-kinematic hardening model.
Transient Modeling of the NETL Hybrid Fuel Cell/Gas Turbine Facility and Experimental Validation
Energy Technology Data Exchange (ETDEWEB)
Ferrari, M.L. (Università di Genova, Genova, Italy); Liese, E.A.; Tucker, D.A.; Lawson, L.O.; Traverso, A. (Università di Genova, Genova, Italy); Massardo, A.F. (Università di Genova, Genova, Italy)
2007-10-01
This paper describes the experimental validation of two different transient models of the hybrid fuel cell/gas turbine facility of the U.S. DOE-NETL at Morgantown. The first part of this work is devoted to the description of the facility, designed to experimentally investigate these plants with real components, except the fuel cell. The behavior of the SOFC is obtained with apt volumes (for the stack and the off-gas burner) and using a combustor to generate similar thermal effects. The second part of this paper shows the facility real-time transient model developed at the U.S. DOE-NETL and the detailed transient modeling activity using the TRANSEO program developed at TPG. The results obtained with both models are successfully compared with the experimental data of two different load step decreases. The more detailed model agrees more closely with the experimental data, which, of course, is more time consuming than the real-time model (the detailed model operates with a calculation over calculated time ratio around 6). Finally, the TPG model has been used to discuss the importance of performance map precision for both compressor and turbine. This is an important analysis to better understand the steady-state difference between the two models
Transient Modeling of the NETL Hybrid Fuel Cell/Gas Turbine Facility and Experimental Validation
Energy Technology Data Exchange (ETDEWEB)
Mario L. Ferrari; Eric Liese; David Tucker; Larry Lawson; Alberto Traverso; Aristide F. Massardo
2007-10-01
This paper describes the experimental validation of two different transient models of the hybrid fuel cell/gas turbine facility of the U.S. DOE-NETL at Morgantown. The first part of this work is devoted to the description of the facility, designed to experimentally investigate these plants with real components, except the fuel cell. The behavior of the SOFC is obtained with apt volumes (for the stack and the off-gas burner) and using a combustor to generate similar thermal effects. The second part of this paper shows the facility real-time transient model developed at the U.S. DOE-NETL and the detailed transient modeling activity using the TRANSEO program developed at TPG. The results obtained with both models are successfully compared with the experimental data of two different load step decreases. The more detailed model agrees more closely with the experimental data, which, of course, is more time consuming than the real-time model (the detailed model operates with a calculation over calculated time ratio around 6). Finally, the TPG model has been used to discuss the importance of performance map precision for both compressor and turbine. This is an important analysis to better understand the steady-state difference between the two models.
Investigation on spectral behavior of Solar Transients and their Interrelationship
Tripathi, Sharad C; M, Aslam A; Gwal, A K; Purohit, P K; Jain, Rajmal
2013-01-01
We probe the spectral hardening of solar flares emission in view of associated solar proton events (SEPs) at earth and coronal mass ejection (CME) acceleration as a consequence. In this investigation we undertake 60 SEPs of the Solar Cycle 23 alongwith associated Solar Flares and CMEs. We employ the X-ray emission in Solar flares observed by Reuven Ramaty Higly Energy Solar Spectroscopic Imager (RHESSI) in order to estimate flare plasma parameters. Further, we employ the observations from Geo-stationary Operational Environmental Satellites (GOES) and Large Angle and Spectrometric Coronagraph (LASCO), for SEPs and CMEs parameter estimation respectively. We report a good association of soft-hard-harder (SHH) spectral behavior of Flares with occurrence of Solar Proton Events for 16 Events (observed by RHESSI associated with protons). In addition, we have found a good correlation (R=0.71) in SEPs spectral hardening and CME velocity. We conclude that the Protons as well as CMEs gets accelerated at the Flare site a...
Transient modelling of loss and thermal dynamics in power semiconductor devices
DEFF Research Database (Denmark)
Ma, Ke; Yang, Yongheng; Blaabjerg, Frede
2014-01-01
on the proposed models, the bandwidths of the loss or thermal response to major disturbances in the converter system can be analytically mapped, enabling more advanced tools to investigate the transient characteristics of loss and thermal dynamics in the power electronics devices.......The dynamical behavior of temperature is becoming a critical design consideration for the power electronics, because they are referred as “thermal cycling” which is the root cause of fatigues in the power electronics devices, and thus is closely related to the reliability of the converter....... It is well understood that the loading of power devices are disturbed by many factors of the converter system like grid, control, environment, etc., which emerge at various time-constants. However, the corresponding thermal response to these disturbances is still unclear, especially the transient behaviors...
Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing
Jenkins, Andrew
magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the
Computer Models for IRIS Control System Transient Analysis
Energy Technology Data Exchange (ETDEWEB)
Gary D. Storrick; Bojan Petrovic; Luca Oriani
2007-01-31
This report presents results of the Westinghouse work performed under Task 3 of this Financial Assistance Award and it satisfies a Level 2 Milestone for the project. Task 3 of the collaborative effort between ORNL, Brazil and Westinghouse for the International Nuclear Energy Research Initiative entitled “Development of Advanced Instrumentation and Control for an Integrated Primary System Reactor” focuses on developing computer models for transient analysis. This report summarizes the work performed under Task 3 on developing control system models. The present state of the IRIS plant design – such as the lack of a detailed secondary system or I&C system designs – makes finalizing models impossible at this time. However, this did not prevent making considerable progress. Westinghouse has several working models in use to further the IRIS design. We expect to continue modifying the models to incorporate the latest design information until the final IRIS unit becomes operational. Section 1.2 outlines the scope of this report. Section 2 describes the approaches we are using for non-safety transient models. It describes the need for non-safety transient analysis and the model characteristics needed to support those analyses. Section 3 presents the RELAP5 model. This is the highest-fidelity model used for benchmark evaluations. However, it is prohibitively slow for routine evaluations and additional lower-fidelity models have been developed. Section 4 discusses the current Matlab/Simulink model. This is a low-fidelity, high-speed model used to quickly evaluate and compare competing control and protection concepts. Section 5 describes the Modelica models developed by POLIMI and Westinghouse. The object-oriented Modelica language provides convenient mechanisms for developing models at several levels of detail. We have used this to develop a high-fidelity model for detailed analyses and a faster-running simplified model to help speed the I&C development process
Transient thermal hydraulic modeling and analysis of ITER divertor plate system
Energy Technology Data Exchange (ETDEWEB)
El-Morshedy, Salah El-Din [Argonne National Laboratory, Argonne, IL (United States); Atomic Energy Authority, Cairo (Egypt)], E-mail: selmorshedy@etrr2-aea.org.eg; Hassanein, Ahmed [Purdue University, West Lafayette, IN (United States)], E-mail: hassanein@purdue.edu
2009-12-15
A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m{sup 2} plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.
Investigation of drain current transient behavior in SLS TFTs with the DLTS technique
Energy Technology Data Exchange (ETDEWEB)
Exarchos, M A [National and Kapodistrian University of Athens, Physics Department, Solid State Physics Section, Athens 15784 (Greece); Papaioannou, G J [National and Kapodistrian University of Athens, Physics Department, Solid State Physics Section, Athens 15784 (Greece); Kouvatsos, D N [N.C.S.R. Demokritos, Institute of Microelecronics, Athens 15310 (Greece); Voutsas, A T [L.C.D. Process Technology Laboratory, SHARP Labs of America, Inc., Washington 98607 (United States)
2005-01-01
In this work, the study of drain current overshoot transients of thin film transistors (TFTs) fabricated by excimer laser sequential lateral solidification (ELA SLS) process is presented. Drain current transient behavior, is ascribed to carrier capture/emission processes within the transistors' Si body, and represents complex mechanisms differently responding at dark and under illumination conditions. Additionally, the thickness of the Si body film, which is an important parameter for the material structure evaluation, ranged from 30 nm to 100 nm. The results were stemmed by deep level transient spectroscopy (DLTS) technique and measurements were conducted within the temperature interval of 200 K to 400 K. The impact of illumination, contributes mainly at lower temperatures through electron-hole generation processes, compensating though carrier freeze-out phenomena.
Investigation of drain current transient behavior in SLS TFTs with the DLTS technique
Exarchos, M. A.; Papaioannou, G. J.; Kouvatsos, D. N.; Voutsas, A. T.
2005-01-01
In this work, the study of drain current overshoot transients of thin film transistors (TFTs) fabricated by excimer laser sequential lateral solidification (ELA SLS) process is presented. Drain current transient behavior, is ascribed to carrier capture/emission processes within the transistors' Si body, and represents complex mechanisms differently responding at dark and under illumination conditions. Additionally, the thickness of the Si body film, which is an important parameter for the material structure evaluation, ranged from 30 nm to 100 nm. The results were stemmed by deep level transient spectroscopy (DLTS) technique and measurements were conducted within the temperature interval of 200 K to 400 K. The impact of illumination, contributes mainly at lower temperatures through electron-hole generation processes, compensating though carrier freeze-out phenomena.
A PARADOX OF TRANSIENT EKMAN DRIFT MODEL AND ITS EXPLAINATION
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In view of the fact that the simple analytic model is important both in acquiring the dynamic rule of Ocean and in understanding its mechanical essence, a unified solution of transient Ekman drift model encompassing the Fredholm’s solution with constant wind and the hidaka, Nomitsu, and Defant’s solution with unsteady wind is provided, and the paradox that it is uncertain if the solution satisfies the boundary condition is pointed out and explained. The present study shows that a simply mathematical treatment is able to remove this paradox, hoping to call for the mathematicians’ notice.
Fabrication, characterization, and modeling of a biodegradable battery for transient electronics
Edupuganti, Vineet; Solanki, Raj
2016-12-01
Traditionally, emphasis has been placed on durable, long-lasting electronics. However, electronics that are meant to intentionally degrade over time can actually have significant practical applications. Biodegradable, or transient, electronics would open up opportunities in the field of medical implants, where the need for surgical removal of devices could be eliminated. Environmental sensors and, eventually, consumer electronics would also greatly benefit from this technology. An essential component of transient electronics is the battery, which serves as a biodegradable power source. This work involves the fabrication, characterization, and modeling of a magnesium-based biodegradable battery. Galvanostatic discharge tests show that an anode material of magnesium alloy AZ31 extends battery lifetime by over six times, as compared to pure magnesium. With AZ31, the maximum power and capacity of the fabricated device are 67 μW and 5.2 mAh, respectively, though the anode area is just 0.8 cm2. The development of an equivalent circuit model provided insight into the battery's behavior by extracting fitting parameters from experimental data. The model can accurately simulate device behavior, taking into account its intentional degradation. The size of the device and the power it produces are in accordance with typical levels for low-power transient systems.
Nogueira, M.; Barros, A. P.
2014-12-01
Multifractal behavior holds to a remarkable approximation over wide ranges of spatial scales in orographic rainfall and cloud fields. The scaling exponents characterizing this behavior are shown to be fundamentally transient with nonlinear dependencies on the particular atmospheric state and terrain forcing. In particular, a robust transition is found in the scaling parameters between non-convective (stable) and convective (unstable) regimes, with clear physical correspondence to the transition from stratiform to organized convective orographic precipitation. These results can explain two often reported scaling regimes for atmospheric wind, temperature and water observations. On the one hand, spectral slopes around 2-2.3 arise under non-convective or very weak convective conditions when the spatial patterns are dominated by large-scale gradients and landform. On the other hand, under convective conditions the scaling exponents generally fluctuate around 5/3, in agreement with the Kolmogorov turbulent regime accounting for the intermittency correction. High-resolution numerical weather prediction (NWP) models are able to reproduce the ubiquitous scaling behavior of observed atmospheric fields down to their effective resolution length-scale, below which the variability is misrepresented by the model. The effective resolution is shown to be a transient property dependent on the particular simulated conditions and NWP formulation, implying that a blunt decrease in grid spacing without adjusting numerical techniques may not lead to the improvements desired.Finally, the application of transient spatial scaling behavior for stochastic downscaling and sub-grid scale parameterization of cloud and rainfall fields is investigated. The proposed fractal methods are able to rapidly generate large ensembles of high-resolution statistically robust fields from the coarse resolution information alone, which can provide significant improvements for stochastic hydrological prediction
Directory of Open Access Journals (Sweden)
Daogang Lu
2014-01-01
Full Text Available The transient behaviors of natural circulation loop (NCL are important for the system reliability under postulated accidents. The heat loss and structure thermal inertia may influence the transient behaviors of NCL greatly, so a transient analysis model with consideration of heat loss was developed based on the MATLAB/Simulink to predict the thermal-hydraulic characteristic of liquid metal NCL. The transient processes including the start-up, the loss of pump, and the shutdown of thermal-hydraulic ADS lead bismuth loop (TALL experimental facility were simulated by using the model. A good agreement is obtained to validate the transient model. The appended structure would provide significant thermal inertia and flatten the temperature distribution in the transients. The oscillations of temperature and flow rate are also weakened. The temperature difference between hot leg and cold leg would increase with the decrease of heat loss, so the flow rate increases as well. However, a significant increase of hot section temperature may cause a failure of facility integrity due to the decrease of heat loss. Hence, the full power of the core tank may also be limited.
Akiba, M.; Tsujino, K.
2016-08-01
This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and its temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p-n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.
Energy Technology Data Exchange (ETDEWEB)
Akiba, M., E-mail: akiba@nict.go.jp [National Institute of Information and Communications Technology, 4-2-1, Nukuikitamachi, Koganei-City, Tokyo 184-8795 (Japan); Tsujino, K. [Department of Physics, School of Medicine, Tokyo Women' s Medical University, 8-1, Kawadacho, Shinjuku-ku, Tokyo 162-8666 (Japan)
2016-08-08
This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and its temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p–n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.
Impact of Load Behavior on Transient Stability and Power Transfer Limitations
DEFF Research Database (Denmark)
Gordon, Mark
2009-01-01
This paper presents utility based load modeling practices and explores the interaction between loads and the power system and the effect of the interaction on transient stability and power transfer limitations. The effect of load composition is investigated at major load centers together with the......This paper presents utility based load modeling practices and explores the interaction between loads and the power system and the effect of the interaction on transient stability and power transfer limitations. The effect of load composition is investigated at major load centers together...
A transient model of a cesium-barium diode
Energy Technology Data Exchange (ETDEWEB)
Luke, J.R.; El-Genk, M.S.
1995-01-01
In this work a transient model of a Cs-Ba diode is developed, and a series of experiments is performed using a diode equipped with Langmuir probes. The Langmuir probe data show that the electron energy distribution is non-Maxwellian at low discharge currents, indicating the presence of an electron beam from the emitter. Experimental results also showed that the plasma properties are non-homogeneous across the 1 mm diode gap; the electron temperature and plasma potential were higher near the emitter and the plasma density was higher near the collector. Experimental evidence is presented to show that the discharge contracts to a filament below the maximum thermal emission current.
Transient state model of actin-based motility
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
We developed a transient model for actin-based motility.Diffusion of actin monomers was included in the formulation and its influence on the speed of actin-driven cargos was examined in detail.Our results clearly demonstrated how actin polymerization accelerates cargos that are initially stationary,as well as how steady-state is eventually reached.We also found that,due to polymerization and diffusion,actin monomer concentration near the load surface can be significantly lower than that in the rest of th...
Transient thermohydraulic modeling of two-phase fluid systems
Blet, N.; Delalandre, N.; Ayel, V.; Bertin, Y.; Romestant, C.; Platel, V.
2012-11-01
This paper presents a transient thermohydraulic modeling, initially developed for a capillary pumped loop in gravitational applications, but also possibly suitable for all kinds of two-phase fluid systems. Using finite volumes method, it is based on Navier-Stokes equations for transcribing fluid mechanical aspects. The main feature of this 1D-model is based on a network representation by analogy with electrical. This paper also proposes a parametric study of a counterflow condenser following the sensitivity to inlet mass flow rate and cold source temperature. The comparison between modeling results and experimental data highlights a good numerical evaluation of temperatures. Furthermore, the model is able to represent a pretty good dynamic evolution of hydraulic variables.
A new transient network model for associative polymer networks
Wientjes, R.H.W.; Jongschaap, R.J.J.; Duits, M.H.G.; Mellema, J.
1999-01-01
A new model for the linear viscoelastic behavior of polymer networks is developed. In this model the polymer system is described as a network of spring segments connected via sticky points (as in the Lodge model). [Lodge, A. S., “A network theory of flow birefringence and stress in concentrated poly
BEHAVIORAL MODELS OF PSYCHOSISA
Directory of Open Access Journals (Sweden)
Parle Milind
2013-07-01
Full Text Available Existing research into schizophrenia has remained highly fragmented, much like the clinical presentation of the disease itself. Differing theories as to the cause and progression of schizophrenia, as well as the heterogeneity of clinical symptoms, have made it difficult to develop a coherent framework suitable for animal modeling. However, a few animal models have been developed to explore various causative theories and to test specific mechanistic hypotheses. Historically, these models have been based on the manipulation of neurotransmitter systems believed to be involved in schizophrenia. In recent years, the emphasis has shifted to targeting relevant brain regions in an attempt to explore potential etiologic hypotheses. In the present review article, we have described in detail various behavioral models available in literature for screening of antipsychotic agents. In the next article, we propose to focus on chemical induced psychosis (Pharmacological models. We have highlighted the principle, end point, brief procedures, merits and demerit of all the behavioral models in the foregoing pages Emphasis is placed on the critical evaluation of currently available models because these models help to shape the direction of future research.
Anomalous transient leaching behavior of metals solidified/stabilized by pozzolanic fly ash
Energy Technology Data Exchange (ETDEWEB)
Camacho, Lucy Mar [Department of Chemical Engineering, New Mexico State University, Las Cruces, NM 88003 (United States)]. E-mail: lcamacho@nmsu.edu; Munson-McGee, Stuart H. [Department of Chemical Engineering, New Mexico State University, Las Cruces, NM 88003 (United States)
2006-09-01
This study presents observations on the transient leaching behavior of chromium, cadmium, and aluminum that were solidified/stabilized by pozzolanic fly ash. These three metals were selected since they were present in a simulated waste stream generated by an evaporator during plutonium purification and also because the minimum solubility of these metals occurs at significantly different pHs. The transient pH behavior of the toxicity characteristic leaching procedure (TCLP) leachate showed a monotonic increase for all cases, but the equilibrium value was affected by process conditions. The transient leachate concentration behavior showed curves with one or two local maxima for some cases and curves with a monotonic increase for other cases. Data from the leaching experiments was compared to the solubility curves for the hydroxides of each metal since it was assumed that the highly alkaline conditions inside the fly ash waste would cause the metals to precipitate as hydroxides after initially dissolving in the acidic leaching solution. It was found that of the three metals, only cadmium followed the solubility curve for pure hydroxide solutions or for fly ash systems currently reported in the literature.
FINITE VOLUME METHOD OF MODELLING TRANSIENT GROUNDWATER FLOW
Directory of Open Access Journals (Sweden)
N. Muyinda
2014-01-01
Full Text Available In the field of computational fluid dynamics, the finite volume method is dominant over other numerical techniques like the finite difference and finite element methods because the underlying physical quantities are conserved at the discrete level. In the present study, the finite volume method is used to solve an isotropic transient groundwater flow model to obtain hydraulic heads and flow through an aquifer. The objective is to discuss the theory of finite volume method and its applications in groundwater flow modelling. To achieve this, an orthogonal grid with quadrilateral control volumes has been used to simulate the model using mixed boundary conditions from Bwaise III, a Kampala Surburb. Results show that flow occurs from regions of high hydraulic head to regions of low hydraulic head until a steady head value is achieved.
FDTD modelling of induced polarization phenomena in transient electromagnetics
Commer, Michael; Petrov, Peter V.; Newman, Gregory A.
2017-04-01
The finite-difference time-domain scheme is augmented in order to treat the modelling of transient electromagnetic signals containing induced polarization effects from 3-D distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.
FDTD modeling of induced polarization phenomena in transient electromagnetics
Commer, Michael; Petrov, Petr V.; Newman, Gregory A.
2017-01-01
The finite-difference time-domain scheme is augmented in order to treat the modeling of transient electromagnetic signals containing induced polarization effects from three-dimensional distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.
Modeling transient streaming potentials in falling-head permeameter tests.
Malama, Bwalya; Revil, André
2014-01-01
We present transient streaming potential data collected during falling-head permeameter tests performed on samples of two sands with different physical and chemical properties. The objective of the work is to estimate hydraulic conductivity (K) and the electrokinetic coupling coefficient (Cl ) of the sand samples. A semi-empirical model based on the falling-head permeameter flow model and electrokinetic coupling is used to analyze the streaming potential data and to estimate K and Cl . The values of K estimated from head data are used to validate the streaming potential method. Estimates of K from streaming potential data closely match those obtained from the associated head data, with less than 10% deviation. The electrokinetic coupling coefficient was estimated from streaming potential vs. (1) time and (2) head data for both sands. The results indicate that, within limits of experimental error, the values of Cl estimated by the two methods are essentially the same. The results of this work demonstrate that a temporal record of the streaming potential response in falling-head permeameter tests can be used to estimate both K and Cl . They further indicate the potential for using transient streaming potential data as a proxy for hydraulic head in hydrogeology applications.
Modeling of the transient responses of the vocal fold lamina propria
Zhang, Kai; Siegmund, Thomas; Chan, Roger W.
2008-01-01
The human voice is produced by flow-induced self-sustained oscillation of the vocal fold lamina propria. The mechanical properties of vocal fold tissues are important for understanding phonation, including the time-dependent and transient changes in fundamental frequency (F0). Cyclic uniaxial tensile tests were conducted on a group of specimens of the vocal fold lamina propria, including the superficial layer (vocal fold cover) (5 male, 5 female) and the deeper layers (vocal ligament) (6 male, 6 female). Results showed that the vocal fold lamina propria, like many other soft tissues, exhibits both elastic and viscous behavior. Specifically, the transient mechanical responses of cyclic stress relaxation and creep were observed. A three-network constitutive model composed of a hyperelastic equilibrium network in parallel with two viscoplastic time-dependent networks proves effective in characterizing the cyclic stress relaxation and creep behavior. For male vocal folds at a stretch of 1.4, significantly higher peak stress was found in the vocal ligament than in the vocal fold cover. Also, the male vocal ligament was significantly stiffer than the female vocal ligament. Our findings may help explain the mechanisms of some widely observed transient phenomena in F0 regulation during phonation, such as the global declination in F0 during the production of declarative sentences, and local F0 changes such as overshoot and undershoot. PMID:19122858
Transient behavior of Cu/ZnO-based methanol synthesis catalysts
DEFF Research Database (Denmark)
Vesborg, Peter Christian Kjærgaard; Chorkendorff, Ib; Knudsen, Ida;
2009-01-01
Time-resolved measurements of the methanol synthesis reaction over a Cu/ZnO-based catalyst reveal a transient methanol production that depends on the pretreatment gas. Specifically, the methanol production initially peaks after a pretreatment with an intermediate mixture of H2 and CO (20–80% H2...... for a gas mixture of H2:CO = 1:1. The gas-dependent morphology of the Cu nanoparticles provides a consistent explanation of the observed coupling between the transient methanol production and pretreatment conditions within the framework of the dynamic microkinetic model by Ovesen et al. [J. Catal. 168 (1997...
Numerical modeling of transient two-dimensional viscoelastic waves
Lombard, Bruno
2010-01-01
This paper deals with the numerical modeling of transient mechanical waves in linear viscoelastic solids. Dissipation mechanisms are described using the Zener model. No time convolutions are required thanks to the introduction of memory variables that satisfy local-in-time differential equations. By appropriately choosing the Zener parameters, it is possible to accurately describe a large range of materials, such as solids with constant quality factors. The evolution equations satisfied by the velocity, the stress, and the memory variables are written in the form of a first-order system of PDEs with a source term. This system is solved by splitting it into two parts: the propagative part is discretized explicitly, using a fourth-order ADER scheme on a Cartesian grid, and the diffusive part is then solved exactly. Jump conditions along the interfaces are discretized by applying an immersed interface method. Numerical experiments of wave propagation in viscoelastic and fluid media show the efficiency of this nu...
Mathematical modeling of an industrial firm in transient economy
Directory of Open Access Journals (Sweden)
I. G. Pospelov
2001-01-01
Full Text Available A behavior model of an industrial firm with a possibility of merchandising and purchasing of production on two channels, traditional and commercial, is given. The former is stable, but less profitable due to non-payments. The latter is profitable, but risky. The model describes different modes of firm operation depending on economic parameters. In such a model, firms have incentives to integrate in financial and industrial groups.
A framework for studying transient dynamics of population projection matrix models
DEFF Research Database (Denmark)
Stott, Iain; Townley, Stuart; Hodgson, David James
2011-01-01
arise even from simple models following ecological disturbances or perturbations. Recent interest in such transient dynamics has led to diverse methodologies for their quantification in density-independent, time-invariant population projection matrix (PPM) models, but the fragmented nature...... of this literature has stifled the widespread analysis of transients. We review the literature on transient analyses of linear PPM models and synthesise a coherent framework. We promote the use of standardised indices, and categorise indices according to their focus on either convergence times or transient...... population density, and on either transient bounds or case-specific transient dynamics. We use a large database of empirical PPM models to explore relationships between indices of transient dynamics. This analysis promotes the use of population inertia as a simple, versatile and informative predictor...
Elnashaie, S S; Elrifaie, M A; Ibrahim, G; Badra, G
1983-12-01
In this paper we concentrate our attention on the stability and transient behavior of the isothermal system (CSTR) with a substrate-inhibited enzyme reaction producing hydrogen ions. Our investigation covers the region of multiple steady states uncovered previously (1) (ordinary hysteresis and isola). We investigate the local stability characteristics of the different steady states, the effect of the initial condition on the transient behavior and the response of the system to feed disturbances of various magnitudes and durations.
Steam separator modeling for various nuclear reactor transients
Energy Technology Data Exchange (ETDEWEB)
Paik, C Y; Mullen, G; Knoess, C; Griffith, P
1987-06-01
In a pressurized water reactor steam generator, a moisture separator is used to separate steam and liquid and to insure that essentially dry steam is supplied to the turbine. During a steam line break or combined steam line break plus tube rupture, a number of phenomena can occur in the separator which have no counterparts during steady-state operation. How the separator will perform under these circumstances is important for two reasons, it affects the carry-over of radioactive iodine and the water inventory in the secondary side. This study has as its goal the development of a simple separator model which can be applied to a variety of steam generator for off-design conditions. Experiments were performed using air and water on three different types of centrifugal separators: a cyclone as a generic separator, a Combustion Engineering type stationary swirl vane separator, and a Westinghouse type separator. The cyclone separator system has three stages of separation: first the cyclone, then a gravity separator, and finally a chevron plate separator. The other systems have only a centrifugal separator to isolate the effect of the primary separator. Experiments were also done in MIT blowdown rig, with and without a separator, using steam and water. The separators appear to perform well at flow rates well above the design values as long as the downcomer water level is not high. High downcomer water level rather than high flow rates appear to be the primary cause of degraded performance. Appreciable carry-over from the separator section of a steam generator occurs when the drain lines from three stages of separation are unable to carry off the liquid flow. Failure scenarios of the separator for extreme range of conditions from the quasi-steady state transient to the fast transients are presented. A general model structure and simple separator models are provided.
An Effective Distributed Model for Power System Transient Stability Analysis
Directory of Open Access Journals (Sweden)
MUTHU, B. M.
2011-08-01
Full Text Available The modern power systems consist of many interconnected synchronous generators having different inertia constants, connected with large transmission network and ever increasing demand for power exchange. The size of the power system grows exponentially due to increase in power demand. The data required for various power system applications have been stored in different formats in a heterogeneous environment. The power system applications themselves have been developed and deployed in different platforms and language paradigms. Interoperability between power system applications becomes a major issue because of the heterogeneous nature. The main aim of the paper is to develop a generalized distributed model for carrying out power system stability analysis. The more flexible and loosely coupled JAX-RPC model has been developed for representing transient stability analysis in large interconnected power systems. The proposed model includes Pre-Fault, During-Fault, Post-Fault and Swing Curve services which are accessible to the remote power system clients when the system is subjected to large disturbances. A generalized XML based model for data representation has also been proposed for exchanging data in order to enhance the interoperability between legacy power system applications. The performance measure, Round Trip Time (RTT is estimated for different power systems using the proposed JAX-RPC model and compared with the results obtained using traditional client-server and Java RMI models.
Transient heat conduction in a pebble fuel applying fractional model
Energy Technology Data Exchange (ETDEWEB)
Gomez A, R.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: gepe@xanum.uam.mx
2009-10-15
In this paper we presents the equation of thermal diffusion of temporary-fractional order in the one-dimensional space in spherical coordinates, with the objective to analyze the heat transference between the fuel and coolant in a fuel element of a Pebble Bed Modular Reactor. The pebble fuel is the heterogeneous system made by microsphere constitutes by U O, pyrolytic carbon and silicon carbide mixed with graphite. To describe the heat transfer phenomena in the pebble fuel we applied a constitutive law fractional (Non-Fourier) in order to analyze the behaviour transient of the temperature distribution in the pebble fuel with anomalous thermal diffusion effects a numerical model is developed. (Author)
Extreme Supernova Models for the Superluminous Transient ASASSN-15lh
Chatzopoulos, E; Vinko, J; Nagy, A P; Wiggins, B K; Even, W P
2016-01-01
The recent discovery of the unprecedentedly superluminous transient ASASSN-15lh (or SN 2015L) challenges all the power-input models that have been proposed for superluminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the lightcurve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss about the lack of interaction features in the observed spectra. We find that ASASSN-15lh can be best modeled by the energetic core-collapse of a ~40 Msun supernova interacting with a hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the fin...
Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Maeda, Mizuo
2014-10-01
We found that the transient freezing behavior in photophobic responses of Euglena gracilis is a good indicator of the metabolic status of the cells. The transient blue light photophobic responses of E. gracilis cells were investigated on-chip using a new measurement, 'trace momentum' (TM), to evaluate their swimming activity quantitatively in real time. When blue light of intensity >30 mW cm(-2) was repeatedly switched on and off, a large negative spike in the TM was observed at the onset of the 'blue-light-off' phase. Single-cell trace analysis at a blue light intensity of 40 mW cm(-2) showed that 48% (on average, n = 15) of tumbling Euglena cells ceased activity ('freezing') for 2-30 s at the onset of blue-light-off before commencing forward motion in a straight line (termed 'straightforward swimming'), while 45% smoothly commenced straightforward swimming without delay. The proportion of freezing Euglena cells depended on the blue light intensity (only 20% at 20 mW cm(-2)). When the cells were stimulated by four blue light pulses at the higher intensity, without pre-exposure, the transient freezing behavior was more prominent but, on repeating the stimuli after an 80 min interval in red light, the same cells did not freeze. This shows that the metabolism of the cells had changed to anti-freezing during the interval. The relationship between the interval time with/without light irradiation and the blue light adaptation was elucidated experimentally. The origin of the freezing behavior is considered to be a shortage of a metabolic substance that promotes smooth switching of flagellum movement from in situ rotation mode to a straightforward swimming mode.
A spatial kinetic model for simulating VVER-1000 start-up transient
Energy Technology Data Exchange (ETDEWEB)
Kashi, Samira [Department of Nuclear Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Moghaddam, Nader Maleki, E-mail: nader.moghaddam@gmail.com [Department of Nuclear Engineering and Physics, Amir Kabir University of Technology, Tehran (Iran, Islamic Republic of); Shahriari, Majid [Department of Nuclear Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)
2011-06-15
Research highlights: > A spatial kinetic model of a VVER-1000 reactor core is presented. > The reactor power is tracked using the point kinetic equations from 100 W to 612 kW. > The lamped parameter approximation is used for solving the energy balance equations. > The value of reactivity related to feedback effects of core elements is calculated. > The main neutronic parameters during the transient are calculated. - Abstract: An accurate prediction of reactor core behavior in transients depends on how much it could be possible to exactly determine the thermal feedbacks of the core elements such as fuel, clad and coolant. In short time transients, results of these feedbacks directly affect the reactor power and determine the reactor response. Such transients are commonly happened during the start-up process which makes it necessary to carefully evaluate the detail of process. Hence this research evaluates a short time transient occurring during the start up of VVER-1000 reactor. The reactor power was tracked using the point kinetic equations from HZP state (100 W) to 612 kW. Final power (612 kW) was achieved by withdrawing control rods and resultant excess reactivity was set into dynamic equations to calculate the reactor power. Since reactivity is the most important part in the point kinetic equations, using a Lumped Parameter (LP) approximation, energy balance equations were solved in different zones of the core. After determining temperature and total reactivity related to feedbacks in each time step, the exact value of reactivity is obtained and is inserted into point kinetic equations. In reactor core each zone has a specific temperature and its corresponding thermal feedback. To decrease the effects of point kinetic approximations, these partial feedbacks in different zones are superposed to show an accurate model of reactor core dynamics. In this manner the reactor point kinetic can be extended to the whole reactor core which means 'Reactor spatial
Centrifugal Modelling of Transient Water Flow in Earth Embankments.
1980-05-07
Redshaw [10] in their recent book and the transient flow net technique described by Cedergren Approximate Solutions The solution of the transient flow...and Foundation Engineering, Paris, Vol. II, pp. 551-554. 3. Cedergren , H.R., Seepage, Drainage, and Flow Nets, 2nd Ed., New York, John Wiley & Sons
Model for nonlinear transient burning of hydrazinium nitroformate
Louwers, J.; Gadiot, G.M.H.J.L.
1999-01-01
Transient burning of solid propellants is a topic that still contains a large number of questions. The transient burning of neat hydrazinium nitroformate is calculated within the quasi-steady gas-phase, homogeneous one-dimensional condensed phase approach. We focus on the effect of the condensed pha
Simulation of a channel blockage transient in the Angra 2 Nuclear Reactor using a RELAP5-3D model
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Mantecon, Javier; Costa, Antonella L.; Veloso, Maria Auxiliadora F.; Pereira, Claubia; Reis, Patricia A.L.; Scari, Maria E., E-mail: mantecon1987@gmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: patricialire@yahoo.com.br, E-mail: melizabethscari@yahoo.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear
2015-07-01
The Angra 2 Nuclear Power Plant (NPP) is a Pressurized Water Reactor (PWR) type with electrical output of about 1350 MW. The RELAP5-3D code was used to develop a detailed thermal hydraulic model of such reactor using reference data from the Angra 2 Final Safety Analysis Report (FSAR). In this work, a blockage transient has been investigated at full power operation. The transient herein considered is related to total obstruction of a core cooling channel of one fuel assembly. The calculations were performed using a point kinetic model. The reactor behavior after this transient was analyzed and the time evolution of cladding and coolant temperatures mass flow and void fraction are presented. (author)
Transient electro-thermal modeling of bipolar power semiconductor devices
Gachovska, Tanya Kirilova; Du, Bin
2013-01-01
This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusio
Investigating Different ZnO Arresters Models against Transient Waves
Directory of Open Access Journals (Sweden)
A. Babaee
2011-12-01
Full Text Available Metal oxide surge arresters have dynamic characteristics that are significant for over voltage coordination studies involving fast front surges. Several models with acceptable accuracy have been proposed to simulate this frequency-dependent behavior. In this paper, various electrical models are presented for surge arrester performance simulation against lightning impulse. The desirable model is obtained by using simulation results of the existing models and experimental tests. The IEEE proposed model is a proportional model can give satisfactory results for discharge currents within a range of time to crest for 0.5 to 45 :s but due to no existing residual voltage resulting switching current on the manufacture's datasheets decrease its performance generally. In this study the maximum residual voltage due to current impulse is analyzed too. In additional, the amount of discharged energy by surge arrester is focused.
Transient behavior of a flare-associated solar wind. I - Gas dynamics in a radial open field region
Nagai, F.
1984-01-01
A numerical investigation is conducted into the way in which a solar wind model initially satisfying both steady state and energy balance conditions is disturbed and deformed, under the assumption of heating that correspoonds to the energy release of solar flares of an importance value of approximately 1 which occur in radial open field regions. Flare-associated solar wind transient behavior is modeled for 1-8 solar radii. The coronal temperature around the heat source region rises, and a large thermal conductive flux flows inward to the chromosphere and outward to interplanetary space along field lines. The speed of the front of expanding chromospheric material generated by the impingement of the conduction front on the upper chromosphere exceeds the local sound velocity in a few minutes and eventually exceeds 100 million cm/sec.
Unexpected behavior of transient current in thin PZT films caused by grain-boundary conduction
Delimova, L. A.; Guschina, E. V.; Seregin, D. S.; Vorotilov, K. A.; Sigov, A. S.
2017-06-01
The behavior of the transient current at different preliminary polarizations has been studied in Pb(ZrTi)O3 (PZT) films with various grain structures. To affect the grain structure, PZT films were prepared by chemical solution deposition with a two-step crystallization process using combination of seed layers with a low Pb excess and the main layers with a 30 wt. % Pb excess. Some films were prepared with a fixed Pb excess in all the deposited layers. We found that the lead excess and the seed layer crystalline structure can affect the grain-boundary conduction which, in turn, influences the polarization dependence of the transient current and the appearance of current peaks which look like the so-called negative differential resistance region in the current-voltage curves. We show that the emergence of the current peaks in the PZT films depends on (i) whether the current flows inside the ferroelectric phase (grains) or outside, along grain boundaries and (ii) whether the applied bias direction is parallel or opposite to the polarization vector. A correlation between the grain-boundary conduction and current-polarization dependences is confirmed by the local current distribution measured by conductive atomic force microscopy. Possible mechanisms responsible for specific features of the transient current and appearance of the current peaks are discussed. The effect of grain-boundary conduction on the behavior of the current may be significant and should be taken into account in ferroelectric random access memory whose readout operation assumes registration of the magnitude of the polarization switching current under positive bias.
Li, Huanhuan; Chen, Diyi; Zhang, Hao; Wang, Feifei; Ba, Duoduo
2016-12-01
In order to study the nonlinear dynamic behaviors of a hydro-turbine governing system in the process of sudden load increase transient, we establish a novel nonlinear dynamic model of the hydro-turbine governing system which considers the elastic water-hammer model of the penstock and the second-order model of the generator. The six nonlinear dynamic transfer coefficients of the hydro-turbine are innovatively proposed by utilizing internal characteristics and analyzing the change laws of the characteristic parameters of the hydro-turbine governing system. Moreover, from the point of view of engineering, the nonlinear dynamic behaviors of the above system are exhaustively investigated based on bifurcation diagrams and time waveforms. More importantly, all of the above analyses supply theoretical basis for allowing a hydropower station to maintain a stable operation in the process of sudden load increase transient.
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.
Transient ejection phase modeling of a Plasma Synthetic Jet actuator
Laurendeau, F.; Chedevergne, F.; Casalis, G.
2014-12-01
For several years, a promising Plasma Synthetic Jet actuator for high-speed flow control has been under development at ONERA. So far, its confined geometry and small space-time scales at play have prevented its full experimental characterization. Complementary accurate numerical simulations are then considered in this study in order to provide a complete aerothermodynamic description of the actuator. Two major obstacles have to be overcome with this approach: the modeling of the energy deposited by the electric arc and the accurate computation of the transient response of the cavity generating the pulsed jet. To solve the first problem, an Euler solver coupled with an electric circuit model was used to evaluate the energy deposition in the cavity. Such a coupling is performed by considering the electric field between the two electrodes. The second issue was then addressed by injecting these source terms in large Eddy simulations of the entire actuator. Aerodynamic results were finally compared with Schlieren visualizations. Using the proposed methodology, the temporal evolution of the jet front is remarkably well predicted.
MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB
Directory of Open Access Journals (Sweden)
MD AZREE OTHUMAN MYDIN
2013-06-01
Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.
Modelling the transient emission from a twin conductor cable
Directory of Open Access Journals (Sweden)
Ian Brook Darney
2016-03-01
Full Text Available Using the equations of transmission line theory, a programme is developed to simulate the response of an open-circuit line to a step pulse. This is compared with the observed response of a twin-conductor cable. It is deduced that not all of the current delivered to the send conductor arrives back via the return conductor. Some of it departs in the form of radiated emission. A virtual capacitor is used to simulate this, with limited success. However, by adding a second virtual capacitor to simulate transient current being delivered from the return conductor back to the send conductor, a fair correlation is achieved between theoretical and actual results. This analysis demonstrates that the return conductor plays an active role in propagating any signal along the cable. This study also demonstrates that a circuit model can be created to simulate the mechanisms involved in the radiation of interference from power supply cables. This is but one example of the use of circuit models to analyse electromagnetic interference (EMI. The key relationship between electromagnetic theory and circuit theory which enables this technique to be used to analyse any EMI problem is identified. A dramatic simplification in the mathematics can be achieved.
Transient,spatially-varied recharge for groundwater modeling
Assefa, Kibreab; Woodbury, Allan
2013-04-01
This study is aimed at producing spatially and temporally varying groundwater recharge for transient groundwater modeling in a pilot watershed in the North Okanagan, Canada. The recharge modeling is undertaken by using a Richard's equation based finite element code (HYDRUS-1D) [Simunek et al., 2002], ArcGISTM [ESRI, 2011], ROSETTA [Schaap et al., 2001], in situ observations of soil temperature and soil moisture and a long term gridded climate data [Nielsen et al., 2010]. The public version of HYDUS-1D [Simunek et al., 2002] and another beta version with a detailed freezing and thawing module [Hansson et al., 2004] are first used to simulate soil temperature, snow pack and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. Correlation coefficients for soil temperature simulation were estimated at 0.9 and 0.8, at depths of 10 cm and 50 cm respectively; and for soil moisture, 0.8 and 0.6 at 10 cm and 50 cm respectively. This and other standard measures of model performance (root mean square error and average error) showed a promising performance of the HYDRUS-1D code in our pilot watershed. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGISTM to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8mm /year. This significant variation over the years, caused by antecedent soil moisture condition and climatic condition, illustrates the common flaw of assigning a constant percentage of precipitation throughout the simulation period. Groundwater recharge modeling has previously been attempted in the Okanagan Basin
Methane variations on orbital timescales: a transient modeling experiment
Directory of Open Access Journals (Sweden)
T. Y. M. Konijnendijk
2011-06-01
Full Text Available Methane (CH_{4} variations on orbital timescales are often associated with variations in wetland coverage, most notably in the summer monsoon areas of the Northern Hemisphere. Here we test this assumption by simulating orbitally forced variations in global wetland emissions, using a simple wetland distribution and CH_{4} emissions model that has been run on the output of a climate model (CLIMBER-2 containing atmosphere, ocean and vegetation components. The transient climate modeling simulation extends over the last 650 000 yr and includes variations in land-ice distribution and greenhouse gases. Tropical temperature and global vegetation are found to be the dominant controls for global CH_{4} emissions and therefore atmospheric concentrations. The relative importance of wetland coverage, vegetation coverage, and emission temperatures depends on the specific climatic zone (boreal, tropics and Indian/Asian monsoon area and timescale (precession, obliquity and glacial-interglacial timescales. Despite the low spatial resolution of the climate model and crude parameterizations for methane production and release, simulated variations in CH_{4} emissions agree well with those in measured concentrations, both in their time series and spectra. The simulated lags between emissions and orbital forcing also show close agreement with those found in measured data, both on the precession and obliquity timescale. We find causal links between atmospheric CH_{4} concentrations and tropical temperatures and global vegetation, but only covariance between monsoon precipitation and CH_{4} concentrations. The primary importance of the first two factors explains the lags found in the CH_{4} record from ice cores. Simulation of the dynamical vegetation response to climate variation on orbital timescales would be needed to reduce the uncertainty in these preliminary attributions.
Transient thermal modeling of permafrost conditions in Southern Norway
Directory of Open Access Journals (Sweden)
S. Westermann
2013-04-01
Full Text Available Thermal modeling is a powerful tool to infer the temperature regime of the ground in permafrost areas. We present a transient permafrost model, CryoGrid 2, that calculates ground temperatures according to conductive heat transfer in the soil and in the snowpack. CryoGrid 2 is forced by operational air temperature and snow-depth products for potential permafrost areas in Southern Norway for the period 1958 to 2009 at 1 km2 spatial resolution. In total, an area of about 80 000 km2 is covered. The model results are validated against borehole temperatures, permafrost probability maps from "bottom temperature of snow" measurements and inventories of landforms indicative of permafrost occurrence. The validation demonstrates that CryoGrid 2 can reproduce the observed lower permafrost limit to within 100 m at all validation sites, while the agreement between simulated and measured borehole temperatures is within 1 K for most sites. The number of grid cells with simulated permafrost does not change significantly between the 1960s and 1990s. In the 2000s, a significant reduction of about 40% of the area with average 2 m ground temperatures below 0 °C is found, which mostly corresponds to degrading permafrost with still negative temperatures in deeper ground layers. The thermal conductivity of the snow is the largest source of uncertainty in CryoGrid 2, strongly affecting the simulated permafrost area. Finally, the prospects of employing CryoGrid 2 as an operational soil-temperature product for Norway are discussed.
National Research Council Canada - National Science Library
Ishizuka, Masaru; Hatakeyama, Tomoyuki; Funawatashi, Yuichi; Koizumi, katsuhiro
2011-01-01
.... This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.
Mechanical modelling of transient- to- failure SFR fuel cladding
Energy Technology Data Exchange (ETDEWEB)
Feria, F.; Herranz, L. E.
2014-07-01
The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)
A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers
Energy Technology Data Exchange (ETDEWEB)
Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)
A multiscale physical model for the transient analysis of PEM water electrolyzer anodes.
Oliveira, Luiz Fernando L; Laref, Slimane; Mayousse, Eric; Jallut, Christian; Franco, Alejandro A
2012-08-07
Polymer electrolyte membrane water electrolyzers (PEMWEs) are electrochemical devices that can be used for the production of hydrogen. In a PEMWE the anode is the most complex electrode to study due to the high overpotential of the oxygen evolution reaction (OER), not widely understood. A physical bottom-up multi-scale transient model describing the operation of a PEMWE anode is proposed here. This model includes a detailed description of the elementary OER kinetics in the anode, a description of the non-equilibrium behavior of the nanoscale catalyst-electrolyte interface, and a microstructural-resolved description of the transport of charges and O(2) at the micro and mesoscales along the whole anode. The impact of different catalyst materials on the performance of the PEMWE anode, and a study of sensitivity to the operation conditions are evaluated from numerical simulations and the results are discussed in comparison with experimental data.
Modeling auditory evoked brainstem responses to transient stimuli
DEFF Research Database (Denmark)
Rønne, Filip Munch; Dau, Torsten; Harte, James
2012-01-01
A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory...... of tone-pulse evoked wave-V latency with frequency but underestimates the level dependency of the tone-pulse as well as click-evoked latency values. Furthermore, the model correctly predicts the nonlinear wave-V amplitude behavior in response to the chirp stimulation both as a function of chirp sweeping...... rate and level. Overall, the results support the hypothesis that the pattern of ABR generation is strongly affected by the nonlinear and dispersive processes in the cochlea....
Gao, Z J; Merlitz, H; Pagni, P J; Chen, Z
2014-01-01
Transient processes generally constitute part of energy-system cycles. If skillfully manipulated, they actually are capable of assisting systems to behave beneficially to suit designers' needs. In the present study, behaviors related to both thermal conductivities ($\\kappa$) and heat capacities ($c_{v}$) are analyzed. Along with solutions of the temperature and the flow velocity obtained by means of theories and simulations, three findings are reported herein: $(1)$ effective $\\kappa$ and effective $c_{v}$ can be controlled to vary from their intrinsic material-property values to a few orders of magnitude larger; $(2)$ a parameter, tentatively named as "nonlinear thermal bias", is identified and can be used as a criterion in estimating energies transferred into the system during heating processes and effective operating ranges of system temperatures; $(3)$ When a body of water, such as the immense ocean, is subject to the boundary condition of cold bottom and hot top, it may be feasible to manipulate transien...
Plutonium rock-like fuel LWR nuclear characteristics and transient behavior in accidents
Energy Technology Data Exchange (ETDEWEB)
Akie, Hiroshi; Anoda, Yoshinari; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamaguchi, Chouichi; Sugo, Yukihiro
1998-03-01
For the disposition of excess plutonium, rock-like oxide (ROX) fuel systems based on zirconia (ZrO{sub 2}) or thoria (ThO{sub 2}) have been studied. Safety analysis of ROX fueled PWR showed it is necessary to increase Doppler reactivity coefficient and to reduce power peaking factor of zirconia type ROX (Zr-ROX) fueled core. For these improvements, Zr-ROX fuel composition was modified by considering additives of ThO{sub 2}, UO{sub 2} or Er{sub 2}O{sub 3}, and reducing Gd{sub 2}O{sub 3} content. As a result of the modification, comparable, transient behavior to UO{sub 2} fuel PWR was obtained with UO{sub 2}-Er{sub 2}O{sub 3} added Zr-ROX fuel, while the plutonium transmutation capability is slightly reduced. (author)
Transient Analysis of Hysteresis Queueing Model Using Matrix Geometric Method
Directory of Open Access Journals (Sweden)
Wajiha Shah
2011-10-01
Full Text Available Various analytical methods have been proposed for the transient analysis of a queueing system in the scalar domain. In this paper, a vector domain based transient analysis is proposed for the hysteresis queueing system with internal thresholds for the efficient and numerically stable analysis. In this system arrival rate of customer is controlled through the internal thresholds and the system is analyzed as a quasi-birth and death process through matrix geometric method with the combination of vector form Runge-Kutta numerical procedure which utilizes the special matrices. An arrival and service process of the system follows a Markovian distribution. We analyze the mean number of customers in the system when the system is in transient state against varying time for a Markovian distribution. The results show that the effect of oscillation/hysteresis depends on the difference between the two internal threshold values.
Chaotic Simulated Annealing by A Neural Network Model with Transient Chaos
Chen, L; Chen, Luonan; Aihara, Kazuyuki
1997-01-01
We propose a neural network model with transient chaos, or a transiently chaotic neural network (TCNN) as an approximation method for combinatorial optimization problem, by introducing transiently chaotic dynamics into neural networks. Unlike conventional neural networks only with point attractors, the proposed neural network has richer and more flexible dynamics, so that it can be expected to have higher ability of searching for globally optimal or near-optimal solutions. A significant property of this model is that the chaotic neurodynamics is temporarily generated for searching and self-organizing, and eventually vanishes with autonomous decreasing of a bifurcation parameter corresponding to the "temperature" in usual annealing process. Therefore, the neural network gradually approaches, through the transient chaos, to dynamical structure similar to such conventional models as the Hopfield neural network which converges to a stable equilibrium point. Since the optimization process of the transiently chaoti...
Directory of Open Access Journals (Sweden)
A. Barzegar
2009-01-01
Full Text Available Transient thermal behavior of a vertical storage tank of a domestic solar heating system with a mantle heat exchanger has been investigated numerically in the charging mode. It is assumed that the tank is initially filled with uniform cold water. At an instant of time, the hot fluid from collector outlet is uniformly injected in the upper section of the mantle heat exchanger and after heat transfer with the fluid inside the tank, withdrawn from the bottom part of the heat exchanger. The conservation equations in the cylindrical coordinate and in axis-symmetric condition have been used according to the geometry under investigation. Governing equations have been discretized by employing the finite volume method and the SIMPLER algorithm has been used for coupling between momentum and pressure equations. The Low Reynolds Number (LRN k −ω model is utilized for treating turbulence in the fluid. First, the transient thermal behavior of heat storage tank and the process of formation of thermal stratification in the heat storage tank were investigated. Then, the influence of Rayleigh number in the heat storage tank, Reynolds number in the mantle heat exchanger and vertical positioning of mantle on the flow and thermal fields and the formation of the thermal stratification was investigated. It is found that for higher values of Rayleigh number, a more suitable thermal stratification is established inside the tank. Also it is noticed that increasing the incoming fluid velocity through the mantle heat exchanger causes a faster formation of the thermal stratification. A superior thermal performance was achieved when the mantle heat exchanger is positioned at the middle height of the storage tank.
AN ANALYTIC MODEL FOR TRANSIENT COLLISIONAL X-RAY LASERS
Institute of Scientific and Technical Information of China (English)
LI YING-JUN; ZHANG JIE; TENG Al-PING
2001-01-01
A set of similarity equations is derived to describe the hydrodynamics of transient X-ray lasers from slab plasmas generated by combined irradiation of nanosecond and picosecond laser pulses. By separating nanosecond and picosecond laser heating processes into different periods, analytical solutions are obtained for the similarity equations. The calculated results are in agreement with numerical simulations and experimental data.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
BACKGROUND: Restraint stress is a typical psychophysiological stressor. Simulating the early passion and difficulty in walking of patients after attack of stroke meets onset features.OBJECTIVE: To evaluate the effect of restraint stress on depression-like behaviors in rats after transient focal cerebral ischemic injury, and to investigate the feasibility for its being as modeling method of depression model after stroke.DESIGN: A randomized controlled animal experiment.SETTING: Department of Clinical Medicine, Faculty of Aerospace Medicine of the Fourth Military Medical University of Chinese PLA.MATERIALS: Forty-eight male Sprague-Dawley rats, weighing 240 - 270 g, provided by the Experimental Animal Center of the Fourth Military Medical University of Chinese PLA were used in the current study.METHODS: The experiments were carried out in the Faculty of Aerospace Medicine of the Fourth Military Medical University of Chinese PLA between August 2005 and August 2006. ①Experiment intervention: The rats were randomized into middle cerebral artery occlusion-reperfusion (MCAO) +stress group, simple MCAO group, sham-operation + stress group and simple sham-operation group, with 12 rats in each group.Rats in the first two groups were developed into cerebral ischemia/reperfusion models by suture-occluded method. Rats in the MCAO+stress group were modeled and restraint stress scheme was performed. At week 5 after modeling, the rats were placed in self-made restraining tubes, 2 hours/time, once a day, for 2 successive weeks. The common carotid artery, external and internal carotid arteries of rats in the latter two groups were exposed. The stress way of sham-operation+ stress group was the same as that of MCAO+ stress group. ②The neurological status grading and motor performance evaluation (screen test, rota-rod test and balance beam test) were conducted in rats with simple sham-operation group and MCAO group before, 1st and 28th days after modeling. Depression-like behavior
Jazebi, Saeed
This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the
Energy Technology Data Exchange (ETDEWEB)
Magalhaes, Mardson Alencar de Sa; Lira, Carlos Alberto Brayner de Oliveira; Silva, Mario Augusto Bezerra da, E-mail: cabol@ufpe.b [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)
2011-07-01
The IRIS project has significantly advanced in the last few years in response to a demand for a new generation reactor, that could fulfill the essential requirements for a future nuclear power plant: better economics, safety-by-design, low proliferation risk and environmental sustainability. IRIS reactor is a integral type PWR in which all primary components are arranged inside the pressure vessel. This configuration involves important changes in relation to a conventional PWR. These changes require several studies to comply with the safe operational limits for the reactor. In this paper, a study has been conducted to develop a dynamic model (named MODIRIS) for transient analysis, implemented in the MATLAB'S software SIMULINK, allowing the analysis of IRIS behavior by considering the neutron point kinetics for power production. The methodology is based on generating a set of differential equations of neutronic and thermal-hydraulic balances which describes the dynamics of the primary circuit, as well as a set of differential equations describing the dynamics of secondary circuit. The equations and initialization parameters at full power were into the SIMULINK and the code was validated by the confrontation with RELAP simulations for a transient of feedwater reduction in the steam generators. (author)
Sai, Toru; Sugimoto, Shoko; Sugimoto, Yasuhiro
We propose a fast and precise transient response and frequency characteristics simulation method for switching converters. This method uses a behavioral simulation tool without using a SPICE-like analog simulator. The nonlinear operation of the circuit is considered, and the nonlinear function is realized by defining the nonlinear formula based on the circuit operation and by applying feedback. To assess the accuracy and simulation time of the proposed simulation method, we designed current-mode buck and boost converters and fabricated them using a 0.18-µm high-voltage CMOS process. The comparison in the transient response and frequency characteristics among SPICE, the proposed program on a behavioral simulation tool which we named NSTVR (New Simulation Tool for Voltage Regulators) and experiments of fabricated IC chips showed good agreement, while NSTVR was more than 22 times faster in transient response and 85 times faster in frequency characteristics than SPICE in CPU time in a boost converter simulation.
CHF Phenomena by Photographic Study of Boiling Behavior due to Transient Heat Inputs
Directory of Open Access Journals (Sweden)
Jongdoc Park
2012-01-01
Full Text Available The transient boiling heat transfer characteristics in a pool of water and highly wetting liquids such as ethanol and FC-72 due to an exponentially increasing heat input of various rates were investigated using the 1.0 mm diameter experimental heater shaped in a horizontal cylinder for wide ranges of pressure and subcooling. The trend of critical heat flux (CHF values in relation to the periods was divided into three groups. The CHF belonging to the 1st group with a longer period occurs with a fully developed nucleate boiling (FDNB heat transfer process. For the 2nd group with shorter periods, the direct transition to film boiling from non boiling occurs as an explosive boiling. The direct boiling transition at the CHF from non-boiling regime to film boiling occurred without a heat flux increase. It was confirmed that the initial boiling behavior is significantly affected by the property and the wettability of the liquid. The photographic observations on the vapor bubble behavior during transitions to film boiling were performed using a high-speed video camera system.
Mathematical models of human behavior
DEFF Research Database (Denmark)
Møllgaard, Anders Edsberg
data set, along with work on other behavioral data. The overall goal is to contribute to a quantitative understanding of human behavior using big data and mathematical models. Central to the thesis is the determination of the predictability of different human activities. Upper limits are derived......, thereby implying that interactions between spreading processes are driving forces of attention dynamics. Overall, the thesis contributes to a quantitative understanding of a wide range of different human behaviors by applying mathematical modeling to behavioral data. There can be no doubt......During the last 15 years there has been an explosion in human behavioral data caused by the emergence of cheap electronics and online platforms. This has spawned a whole new research field called computational social science, which has a quantitative approach to the study of human behavior. Most...
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
Baudron, Anne-Marie A -M; Maday, Yvon; Riahi, Mohamed Kamel; Salomon, Julien
2014-01-01
We present a parareal in time algorithm for the simulation of neutron diffusion transient model. The method is made efficient by means of a coarse solver defined with large time steps and steady control rods model. Using finite element for the space discretization, our implementation provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch-Maurer-Werner (LMW) benchmark [1].
Model Fidelity Study of Dynamic Transient Loads in a Wind Turbine Gearbox: Preprint
Energy Technology Data Exchange (ETDEWEB)
Guo, Y.; Keller, J.; Moan, T.; Xing, Y.
2013-04-01
Transient events cause high loads in the drivetrain components so measuring and calculating these loads can improve confidence in drivetrain design. This paper studies the Gearbox Reliability Collaborative 750kW wind turbine gearbox response during transient events using a combined experimental and modeling approach. The transient events include emergency shut-downs and start-ups measured during a field testing period in 2009. The drivetrain model is established in the multibody simulation tool Simpack. A detailed study of modeling fidelity required for accurate load prediction is performed and results are compared against measured loads. A high fidelity model that includes shaft and housing flexibility and accurate bearing stiffnesses is important for the higher-speed stage bearing loads. Each of the transient events has different modeling requirements.
Risk-Averse Control of Undiscounted Transient Markov Models
Cavus, Ozlem
2012-01-01
We use Markov risk measures to formulate a risk-averse version of the undiscounted total cost problem for a transient controlled Markov process. We derive risk-averse dynamic programming equations and we show that a randomized policy may be strictly better than deterministic policies, when risk measures are employed. We illustrate the results on an optimal stopping problem and an organ transplant problem.
Gas Turbine Engine Behavioral Modeling
Meyer, Richard T; DeCarlo, Raymond A.; Pekarek, Steve; Doktorcik, Chris
2014-01-01
This paper develops and validates a power flow behavioral model of a gas tur- bine engine with a gas generator and free power turbine. “Simple” mathematical expressions to describe the engine’s power flow are derived from an understand- ing of basic thermodynamic and mechanical interactions taking place within the engine. The engine behavioral model presented is suitable for developing a supervisory level controller of an electrical power system that contains the en- gine connected to a gener...
Behavior models for software architecture
Auguston, Mikhail
2014-01-01
Approved for public release; distribution is unlimited. Approved for public release; distribution is unlimited Monterey Phoenix (MP) is an approach to formal software system architecture specification based on behavior models. Architecture modeling focuses not only on the activities and interactions within the system, but also on the interactions between the system and its environment, providing an abstraction for interaction specification. The behavior of the system is defined as a set...
Transient air cooling thermal modeling of a PEM fuel cell
Energy Technology Data Exchange (ETDEWEB)
Adzakpa, K.P.; Ramousse, J.; Dube, Y.; Akremi, H.; Agbossou, K. [Hydrogen Research Institute and Departement de genie electrique, Universite du Quebec a Trois-Rivieres, CP 500, Trois-Rivieres (QC) (Canada); Dostie, M.; Poulin, A.; Fournier, M. [LTE-Hydro-Quebec, 600 av. de la Montagne, Shawinigan (QC) (Canada)
2008-04-15
Fuel cell utilization for automobile and residential applications is a promising option in order to help reduce environmental concerns such as pollution. However, fuel cell development requires addressing their dynamic behavior to improve their performances and their life cycle. Since the temperature distribution in the cell is known to be an important factor to the fuel cell's efficiency, a cooling device is often added to homogenize the temperature in the cell and to ensure temperature control. A 3D dynamic thermal model of a single fuel cell is presented in this work in order to study the temperature distribution in a fuel cell cooled from the bottom to the top with air. The model is governed by the thermal energy balance, taking into account the inlet gas humidity. The model is developed with the finite difference method and is implemented in the Matlab/Simulink environment. The validation is based on the performances of the ''NEXA'' fuel cell produced by Ballard Power Systems. The efficiency analysis of that air cooling device reveals that the cell temperature is directly linked to the current density and to the gas humidity - varying from 30 C at 5A to 80 C at 35A at low humidity. Moreover, the temperature non-uniformity in the stack is shown to be very high. As a result, temperatures are higher at the top part of the cell than at the bottom part, with a difference of up to a 5 C. Moreover the non-uniformity of the air cooling between the cells of the stack leads to large temperature variations, up to 8 C, from one cell to another. These temperature variations result in large voltage disparities between the cells, which reduce the total electrical power of the entire stack. (author)
Mathematical models of human behavior
DEFF Research Database (Denmark)
Møllgaard, Anders Edsberg
During the last 15 years there has been an explosion in human behavioral data caused by the emergence of cheap electronics and online platforms. This has spawned a whole new research field called computational social science, which has a quantitative approach to the study of human behavior. Most...... studies have considered data sets with just one behavioral variable such as email communication. The Social Fabric interdisciplinary research project is an attempt to collect a more complete data set on human behavior by providing 1000 smartphones with pre-installed data collection software to students...... data set, along with work on other behavioral data. The overall goal is to contribute to a quantitative understanding of human behavior using big data and mathematical models. Central to the thesis is the determination of the predictability of different human activities. Upper limits are derived...
Two-fluid model for transient analysis of slug flow in oil wells
Energy Technology Data Exchange (ETDEWEB)
Cazarez-Candia, O., E-mail: ocazarez@imp.mx [Instituto Mexicano del Petroleo, Eje central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico); Instituto Tecnologico de Zacatepec, Depto. de Metal-Mecanica, Calzada Tecnologico, No. 27, Zacatepec, Morelos 62780 (Mexico); Benitez-Centeno, O.C. [Centro Nacional de Investigacion y Desarrollo Tecnologico, Depto. de Mecanica, Interior Internado Palmira s/n, Col. Palmira, Cuernavaca, Morelos 62490 (Mexico); Espinosa-Paredes, G. [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av San Rafael Atlixco No 186, Col. Vicentina 55-534, Mexico D.F. 09340 (Mexico)
2011-06-15
In this work it is presented a transient, one-dimensional, adiabatic model for slug flow simulation, which appears when liquid (mixture of oil and water) and gas flow simultaneously through pipes. The model is formed by space and time averaged conservation equations for mass, momentum and energy for each phase, the numerical solution is based on the finite difference technique in the implicit scheme. Velocity, pressure, volumetric fraction and temperature profiles for both phases were predicted for inclination angles from the horizontal to the vertical position (unified model) and ascendant flow. Predictions from the model were validated using field data and ten correlations commonly used in the oil industry. The effects of gas heating or cooling, due to compression and expansion processes, on the predictions and numerical stability, were studied. It was found that when these effects are taken into account, a good behavior of temperature predictions and numerical stability are obtained. The model presents deviations lower than 14% regarding field data and it presents better predictions than most of the correlations.
Comparison of the Accuracy and Speed of Transient Mobile A/C System Simulation Models: Preprint
Energy Technology Data Exchange (ETDEWEB)
Kiss, T.; Lustbader, J.
2014-03-01
The operation of air conditioning (A/C) systems is a significant contributor to the total amount of fuel used by light- and heavy-duty vehicles. Therefore, continued improvement of the efficiency of these mobile A/C systems is important. Numerical simulation has been used to reduce the system development time and to improve the electronic controls, but numerical models that include highly detailed physics run slower than desired for carrying out vehicle-focused drive cycle-based system optimization. Therefore, faster models are needed even if some accuracy is sacrificed. In this study, a validated model with highly detailed physics, the 'Fully-Detailed' model, and two models with different levels of simplification, the 'Quasi-Transient' and the 'Mapped- Component' models, are compared. The Quasi-Transient model applies some simplifications compared to the Fully-Detailed model to allow faster model execution speeds. The Mapped-Component model is similar to the Quasi-Transient model except instead of detailed flow and heat transfer calculations in the heat exchangers, it uses lookup tables created with the Quasi-Transient model. All three models are set up to represent the same physical A/C system and the same electronic controls. Speed and results of the three model versions are compared for steady state and transient operation. Steady state simulated data are also compared to measured data. The results show that the Quasi-Transient and Mapped-Component models ran much faster than the Fully-Detailed model, on the order of 10- and 100-fold, respectively. They also adequately approach the results of the Fully-Detailed model for steady-state operation, and for drive cycle-based efficiency predictions
Energy Technology Data Exchange (ETDEWEB)
Poumerouly, S.; Schmitt, D.; Massara, S.; Maliverney, B. [EDF R and D, 1 avenue du general de Gaulle, 92140 Clamart (France)
2012-07-01
Innovative Sodium-cooled Fast Reactors (SFRs) are currently being investigated by CEA, AREVA and EDF in the framework of a joint French collaboration, and the construction of a GEN IV prototype, ASTRID (Advanced Sodium Technical Reactor for Industrial Demonstration), is scheduled in the years 2020. Significant improvements are expected so as to improve the reactor safety: the goal is to achieve a robust safety demonstration of the mastering of the consequences of a Core Disruptive Accident (CDA), whether by means of prevention or mitigation features. In this framework, an innovative design was proposed by CEA in 2010. It aims at strongly reducing the sodium void effect, thereby improving the core behavior during unprotected loss of coolant transients. This design is strongly heterogeneous and includes, amongst others, a fertile plate, a sodium plenum associated with a B{sub 4}C upper blanket and a stepwise modulation of the fissile height of the core (onwards referred to as the 'diabolo shape'). In this paper, studies which were entirely carried out at EDF are presented: the full potential of this heterogeneous concept is thoroughly investigated using the SDDS methodology. (authors)
[Effect of ionic liquid [bmim][PF6] on the transient photolysis behavior of xanthone].
Fu, Hai-Ying; Cao, Xi-Yan; Xing, Zhao-Guo; Wu, Guo-Zhong
2013-07-01
The transient photochemical behavior of xanthone (XAN) in 1-butyl-3-methyl imidazolium hexafluoride phosphate ionic liquid ([bmim][PF6]) or binary mixed solution with acetonitrile (MeCN) was investigated by nano-second laser photolysis techniques. The spectral blue shift of 3XAN* was observed in the neat [bmim][PF6] or IL/MeCN mixture solution compared to MeCN solution. And the yield was also increased. Moreover, the energy transfer rate constant of XAN and naphthalene (NAP) was affected by the concentrations of ionic liquid. The values decreased rapidly with increasing VIL. For example, the values were 1.2 x 10(10) mol x L(-1) x s(-1) in MeCN, and 1.1 x 10(8) mol x L(-1) x s(-1) in [bmim][PF6], respectively. The photo-induced electron transfer between XAN and N,N-dimethylaniline was also investigated by changing the concentrations of [bmim][PF6] in binary solution.
Analyzing and modeling heterogeneous behavior
Lin, Zhiting; Wu, Xiaoqing; He, Dongyue; Zhu, Qiang; Ni, Jixiang
2016-05-01
Recently, it was pointed out that the non-Poisson statistics with heavy tail existed in many scenarios of human behaviors. But most of these studies claimed that power-law characterized diverse aspects of human mobility patterns. In this paper, we suggest that human behavior may not be driven by identical mechanisms and can be modeled as a Semi-Markov Modulated Process. To verify our suggestion and model, we analyzed a total of 1,619,934 records of library visitations (including undergraduate and graduate students). It is found that the distribution of visitation intervals is well fitted with three sections of lines instead of the traditional power law distribution in log-log scale. The results confirm that some human behaviors cannot be simply expressed as power law or any other simple functions. At the same time, we divided the data into groups and extracted period bursty events. Through careful analysis in different groups, we drew a conclusion that aggregate behavior might be composed of heterogeneous behaviors, and even the behaviors of the same type tended to be different in different period. The aggregate behavior is supposed to be formed by "heterogeneous groups". We performed a series of experiments. Simulation results showed that we just needed to set up two states Semi-Markov Modulated Process to construct proper representation of heterogeneous behavior.
An Uneasy Look at Behavior Modeling.
Parry, Scott B.; Reich, Leah R.
1984-01-01
Key points in a typical behavior modeling instructional sequence are given. Some problems of behavior modeling are analyzed and solutions are offered. Article is ended with a discussion of some design limitations built into behavior modeling. (JB)
A transient fuel cell model to simulate HTPEM fuel cell impedance spectra
DEFF Research Database (Denmark)
Vang, Jakob Rabjerg; Andreasen, Søren Juhl; Kær, Søren Knudsen
2011-01-01
This paper presents a spatially resolved transient fuel cell model applied to the simulation of high temperature PEM fuel cell impedance spectra. The model is developed using a 2D finite volume method approach. The model is resolved along the channel and across the membrane. The model considers d...
Lee, Dong-Jin; Shim, Gyu-Yeop; Choi, Jun-Chan; Park, Ji-Sub; Lee, Joun-Ho; Baek, Ji-Ho; Choi, Hyun Chul; Ha, Yong Min; Ranjkesh, Amid; Kim, Hak-Rin
2015-12-28
We analyzed a transient blinking phenomenon in a fringe-field switching liquid crystal (LC) mode that occurred at the moment of frame change even in the optimized DC offset condition for minimum image flicker. Based on the positional dynamic behaviors of LCs by using a high-speed camera, we found that the transient blink is highly related to the asymmetric responses of the splay-bend transitions caused by the flexoelectric (FE) effect. To remove the transient blink, the elastic property adjustment of LCs was an effective solution because the FE switching dynamics between the splay-enhanced and bend-enhanced deformations are highly dependent on the elastic constants of LCs, which is the cause of momentary brightness drop.
Kratzsch, C.; Asad, A.; Schwarze, R.
2016-07-01
Modeling of the processes in the continuous casting mold engaged many scientists once the computer-technology was able to accomplish that task. Despite that, CFD modeling of the fluid flow is still challenging. The methods allow deeper and deeper inside views into transient flow processes. Mostly two kinds of methods are applied for this purpose. URANS simulations are used for a coarse overview of the transient behavior on scales determined by the big rollers inside the mold. Besides, LES were done to study the processes on smaller scales. Unfortunately, the effort to set up a LES is orders of magnitude higher in time and space compared to URANS. Often, the flow determining processes take place in small areas inside the flow domain. Hence, scale resolving methods (SRS) came up, which resolve the turbulence in some amount in these regions, whereas they go back to URANS in the regions of less importance. It becomes more complex when dealing with magnetic fields in terms of EMBr devices. The impact of electro magnetically forces changes the flow structure remarkably. Many important effects occur, e.g. MHD turbulence, which are attributable to processes on large turbulent scales. To understand the underlying phenomena in detail, SRS allows a good inside view by resolving these processes partially. This study compares two of these methods, namely the Scale Adaptive Simulation (SAS) and the Delayed Detached Eddy Simulation (DDES), with respect to rendition of the results known from experiments and URANS simulation. The results show, that the SAS as well as the DDES are able to deliver good results with higher mesh resolutions in important regions in the flow domain
A transient energy function for power systems including the induction motor model
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A construction method for power system transient energy function is studied in the paper, which is simple and universal, and can unify the forms of some current energy functions. A transient energy function including the induction motor model is derived using the method. The unintegrable term is dealt with to get an approximate energy function. Simulations in a 3-bus system and in the WSCC 4-generator system verify the validity of the proposed energy function. The function can be applied to direct transient stability analysis of multi-machine large power systems and provides a tool for analysis of the interaction between the generator angle stability and the load voltage stability.
Analysis of transients in advanced heavy water reactor using lumped parameter models
Energy Technology Data Exchange (ETDEWEB)
Manmohan Pandey; Venkata Ramana Eaga; Sankar Sastry, P. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati (India); Gupta, S.K.; Lele, H.G.; Chatterjee, B. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)
2005-07-01
Full text of publication follows: Analysis of transients occurring in nuclear power plants, arising from the complex interplay between core neutronics and thermal-hydraulics, is important for their operation and safety. Numerical simulations of such transients can be carried out extensively at very low computational cost by using lumped parameter mathematical models. The Advanced Heavy Water Reactor (AHWR), being developed in India, is a vertical pressure tube type reactor cooled by boiling light water under natural circulation, using thorium as fuel and heavy water as moderator. In the present work, nonlinear and linear lumped parameter dynamic models for AHWR have been developed and validated with a distributed parameter model. The nonlinear lumped model is based on point reactor kinetics equations and one-dimensional homogeneous equilibrium model of two-phase flow. The distributed model is built with RELAP5/MOD3.2 code. Various types of transients have been simulated numerically, using the lumped model as well as RELAP5. The results have been compared and parameters tuned to make the lumped model match the distributed model (RELAP5) in terms of steady state as well as dynamic behaviour. The linear model has been derived by linearizing the nonlinear model for small perturbations about the steady state. Numerical simulations of transients using the linear model have been compared with results obtained from the nonlinear model. Thus, the range of validity of the linear model has been determined. Stability characteristics of AHWR have been investigated using the lumped parameter models. (authors)
DEFF Research Database (Denmark)
Gong, M.; Zhang, Y.; Weschler, Charles J.
2014-01-01
A transient model is developed to predict dermal absorption of gas-phase chemicals via direct air-to-skin-to-blood transport under non-steady-state conditions. It differs from published models in that it considers convective mass-transfer resistance in the boundary layer of air adjacent to the skin....... Results calculated with this transient model are in good agreement with the limited experimental results that are available for comparison. The sensitivity of the modeled estimates to key parameters is examined. The model is then used to estimate air-to-skin-to-blood absorption of six phthalate esters...
Liu, Cong; Shahidehpour, Mohammad; Wang, Jianhui
2011-06-01
This paper focuses on transient characteristics of natural gas flow in the coordinated scheduling of security-constrained electricity and natural gas infrastructures. The paper takes into account the slow transient process in the natural gas transmission systems. Considering their transient characteristics, natural gas transmission systems are modeled as a set of partial differential equations (PDEs) and algebraic equations. An implicit finite difference method is applied to approximate PDEs by difference equations. The coordinated scheduling of electricity and natural gas systems is described as a bi-level programming formulation from the independent system operator's viewpoint. The objective of the upper-level problem is to minimize the operating cost of electric power systems while the natural gas scheduling optimization problem is nested within the lower-level problem. Numerical examples are presented to verify the effectiveness of the proposed solution and to compare the solutions for steady-state and transient models of natural gas transmission systems.
ANIMAL BEHAVIORAL MODELS OF TINNITUS
Institute of Scientific and Technical Information of China (English)
ZHANG Chao; WANG Qiuju; SUN Wei
2014-01-01
The pathophysiology of tinnitus is poorly understood and treatments are often unsuccessful. A number of animal models have been developed in order to gain a better understanding of tinnitus. A great deal has been learned from these models re-garding the electrophysiological and neuroanatomical correlates of tinnitus following exposure to noise or ototoxic drugs. Re-liable behavioral data is important for determining whether such electrophysiological or neuroanatomical changes are indeed related to tinnitus. Of the many documented tinnitus animal behavioral paradigms, the acoustic startle reflex had been pro-posed as a simple method to identify the presence or absence of tinnitus. Several behavioral models based on conditioned re-sponse suppression paradigms have also been developed. In addition to determining the presence or absence of tinnitus, some of the behavioral paradigms have provided signs of the onset, frequency, and intensity of tinnitus in animals. Although none of these behavioral models have been proved to be a perfect model, these studies provide useful information on understanding the neural mechanisms underlying tinnitus.
A New Simplified Model of Post Stall Transients in Axial Compression Systems
Institute of Scientific and Technical Information of China (English)
JunHu; LeonhardFottner
1999-01-01
Based on the theory developed by Moore and Greitzer,a new simplifying approximation,which takes into account the influence of higher harmonics of rotating waves,is proposed in this paper of get a simplified model of post stall transients in axial compression systems.This approximation leads to a set of three simultaneous nonlinear first order partial differential equations.The further investigation of post stall behavior for different response modes of instabilities(rotating stall and /or surge) recoverability,prestall period during stall inception,and the effect of compression system parameters on them can be carried out by this model and has been discussed in detail in the present paper,It has been found that stall inception exhibits a large prestall period in the region with small slope of compressor characteristic,and in this region,final throttle stting,compressor characteristic and time-lag parameters have a strong influence on the period.The inertia parameters of blade rows have a strong influence on the recoverability of compression systems and the blockage of stall cell at recovery point Some qualitative comparisons with available experimental results and experience are made ,and it shows that the proposed model is very simple and reliable.
Transient dynamics and food-web complexity in the Lotka-Volterra cascade model.
Chen, X.; Cohen, J. E.
2001-01-01
How does the long-term behaviour near equilibrium of model food webs correlate with their short-term transient dynamics? Here, simulations of the Lotka -Volterra cascade model of food webs provide the first evidence to answer this question. Transient behaviour is measured by resilience, reactivity, the maximum amplification of a perturbation and the time at which the maximum amplification occurs. Model food webs with a higher probability of local asymptotic stability may be less resilient and may have a larger transient growth of perturbations. Given a fixed connectance, the sizes and durations of transient responses to perturbations increase with the number of species. Given a fixed number of species, as connectance increases, the sizes and durations of transient responses to perturbations may increase or decrease depending on the type of link that is varied. Reactivity is more sensitive to changes in the number of donor-controlled links than to changes in the number of recipient-controlled links, while resilience is more sensitive to changes in the number of recipient-controlled links than to changes in the number of donor-controlled links. Transient behaviour is likely to be one of the important factors affecting the persistence of ecological communities. PMID:11345334
Transient dynamics and food-web complexity in the Lotka-Volterra cascade model.
Chen, X; Cohen, J E
2001-04-22
How does the long-term behaviour near equilibrium of model food webs correlate with their short-term transient dynamics? Here, simulations of the Lotka -Volterra cascade model of food webs provide the first evidence to answer this question. Transient behaviour is measured by resilience, reactivity, the maximum amplification of a perturbation and the time at which the maximum amplification occurs. Model food webs with a higher probability of local asymptotic stability may be less resilient and may have a larger transient growth of perturbations. Given a fixed connectance, the sizes and durations of transient responses to perturbations increase with the number of species. Given a fixed number of species, as connectance increases, the sizes and durations of transient responses to perturbations may increase or decrease depending on the type of link that is varied. Reactivity is more sensitive to changes in the number of donor-controlled links than to changes in the number of recipient-controlled links, while resilience is more sensitive to changes in the number of recipient-controlled links than to changes in the number of donor-controlled links. Transient behaviour is likely to be one of the important factors affecting the persistence of ecological communities.
Simplified drive system models for power system transient studies in industrial plants
DEFF Research Database (Denmark)
Chen, Peiyuan; Sannino, Ambra
2007-01-01
In order to simulate industrial plants for different power system transient studies, simplified adjustable speed drive (ASD) models are needed. For power system transient studies such as assessing the voltage dip ride-through capability of ASDs, detailed representation of semiconductor valve...... switching can be avoided, thereby making possible to increase the time step of the simulation. In this paper, simplified ASD models are developed and compared with corresponding detailed models. The performance of the simplified models is assessed when increasing the simulation step as much as possible...... while still maintaining the error within acceptable limits....
DEFF Research Database (Denmark)
Irnawan, Roni; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2017-01-01
is described. This RMS model is then simplified by neglecting the inner/current controller. Both detailed and simplified RMS models are then validated against an accurate electromagnetic (EMT) transient model in a point-to-point (PtP) transmission system with different AC network strength, power directions...
Impact of Model Detail of Synchronous Machines on Real-time Transient Stability Assessment
DEFF Research Database (Denmark)
Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Østergaard, Jacob
2013-01-01
to identify the transient stability mechanism, a simulation with a high-order model was used as reference. The Western System Coordinating Council System (WSCC) and the New England & New York system are considered and simulations of an unstable and a stable scenario are carried out, where the detail......In this paper, it is investigated how detailed the model of a synchronous machine needs to be in order to assess transient stability using a Single Machine Equivalent (SIME). The results will show how the stability mechanism and the stability assessment are affected by the model detail. In order...... of the machine models is varied. Analyses of the results suggest that a 4th-order model may be sufficient to represent synchronous machines in transient stability studies....
Sun, HongGuang; Zhang, Yong; Chen, Wen; Reeves, Donald M.
2014-02-01
Field and numerical experiments of solute transport through heterogeneous porous and fractured media show that the growth of contaminant plumes may not exhibit constant scaling, and may instead transition between diffusive states (i.e., superdiffusion, subdiffusion, and Fickian diffusion) at various transport scales. These transitions are likely attributed to physical properties of the medium, such as spatial variations in medium heterogeneity. We refer to this transitory dispersive behavior as "transient dispersion", and propose a variable-index fractional-derivative model (FDM) to describe the underlying transport dynamics. The new model generalizes the standard constant-index FDM which is limited to stationary heterogeneous media. Numerical methods including an implicit Eulerian method (for spatiotemporal transient dispersion) and a Lagrangian solver (for multiscaling dispersion) are utilized to produce variable-index FDM solutions. The variable-index FDM is then applied to describe transient dispersion observed at two field tracer tests and a set of numerical experiments. Results show that 1) uranine transport at the small-scale Grimsel test site transitions from strong subdispersion to Fickian dispersion, 2) transport of tritium at the regional-scale Macrodispersion Experimental (MADE) site transitions from near-Fickian dispersion to strong superdispersion, and 3) the conservative particle transport through regional-scale discrete fracture network transitions from superdispersion to Fickian dispersion. The variable-index model can efficiently quantify these transitions, with the scale index varying linearly in time or space.
Sun, Hongguang; Zhang, Yong; Chen, Wen; Reeves, Donald M
2014-02-01
Field and numerical experiments of solute transport through heterogeneous porous and fractured media show that the growth of contaminant plumes may not exhibit constant scaling, and may instead transition between diffusive states (i.e., superdiffusion, subdiffusion, and Fickian diffusion) at various transport scales. These transitions are likely attributed to physical properties of the medium, such as spatial variations in medium heterogeneity. We refer to this transitory dispersive behavior as "transient dispersion", and propose a variable-index fractional-derivative model (FDM) to describe the underlying transport dynamics. The new model generalizes the standard constant-index FDM which is limited to stationary heterogeneous media. Numerical methods including an implicit Eulerian method (for spatiotemporal transient dispersion) and a Lagrangian solver (for multiscaling dispersion) are utilized to produce variable-index FDM solutions. The variable-index FDM is then applied to describe transient dispersion observed at two field tracer tests and a set of numerical experiments. Results show that 1) uranine transport at the small-scale Grimsel test site transitions from strong subdispersion to Fickian dispersion, 2) transport of tritium at the regional-scale Macrodispersion Experimental (MADE) site transitions from near-Fickian dispersion to strong superdispersion, and 3) the conservative particle transport through regional-scale discrete fracture network transitions from superdispersion to Fickian dispersion. The variable-index model can efficiently quantify these transitions, with the scale index varying linearly in time or space.
Nagai, F.
1984-01-01
Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.
Modeling synchronized calling behavior of Japanese tree frogs
Aihara, Ikkyu
2009-07-01
We experimentally observed synchronized calling behavior of male Japanese tree frogs Hyla japonica; namely, while isolated single frogs called nearly periodically, a pair of interacting frogs called synchronously almost in antiphase or inphase. In this study, we propose two types of phase-oscillator models on different degrees of approximations, which can quantitatively explain the phase and frequency properties in the experiment. Moreover, it should be noted that, although the second model is obtained by fitting to the experimental data of the two synchronized states, the model can also explain the transitory dynamics in the interactive calling behavior, namely, the shift from a transient inphase state to a stable antiphase state. We also discuss the biological relevance of the estimated parameter values to calling behavior of Japanese tree frogs and the possible biological meanings of the synchronized calling behavior.
Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong
2017-04-01
The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.
Smull, E. M.; Wlostowski, A. N.; Gooseff, M. N.; Bowden, W. B.; Wollheim, W. M.
2013-12-01
Solute transport in natural channels describes the transport of water and dissolved matter through a river reach of interest. Conservative tracers allow us to label a parcel of stream water, such that we can track its movement downstream through space and time. A transient storage model (TSM) can be fit to the breakthrough curve (BTC) following a stream tracer experiment, as a way to quantify advection, dispersion, and transient storage processes. Arctic streams and rivers, in particular, are continuously underlain by permafrost, which provides for a simplified surface water-groundwater exchange. Sodium chloride (NaCl) and Rhodamine-WT (RWT) are widely used tracers, and differences between the two in conservative behavior and detection limits have been noted in small-scale field and laboratory studies. This study seeks to further this understanding by applying the OTIS model to NaCl and RWT BTC data from a field study on the Kuparuk River, Alaska, at varying flow rates. There are two main questions to be answered: 1) Do differences in NaCl and RWT manifest in OTIS parameter values? 2) Are the OTIS model results reliable for NaCl, RWT, or both? Fieldwork was performed in the summer of 2012 on the Kuparuk River, and modeling was performed using a modified OTIS framework, which provided for parameter optimization and further global sensitivity analyses. The results of this study will contribute to the greater body of literature surrounding Arctic stream hydrology, and it will assist in methodology for future tracer field studies. Additionally, the modeling work will provide an analysis for OTIS parameter identifiability, and assess stream tracer integrity (i.e. how well the BTC data represents the system) and its relation to TSM performance (i.e. how well the TSM can find a unique fit to the BTC data). The quantitative tools used can be applied to other solute transport studies, to better understand potential deviations in model outcome due to stream tracer choice and
Energy Technology Data Exchange (ETDEWEB)
Lee, Youho, E-mail: euo@kaist.ac.kr; Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr
2016-03-15
Highlights: • Use of constant heat transfer coefficient for fracture analysis is not sound. • On-time heat transfer coefficient should be used for thermal fracture prediction. • ∼90% of the actual fracture stresses were predicted with the on-time transient h. • Thermal-hydraulic codes can be used to better predict brittle cladding fracture. • Effects of surface oxides on thermal shock fracture should be accounted by h. - Abstract: This study presents the importance of coherency in modeling thermal-hydraulics and mechanical behavior of a solid for an advanced prediction of cladding thermal shock fracture. In water quenching, a solid experiences dynamic heat transfer rate evolutions with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates has been overlooked in the analysis of thermal shock fracture. In this study, we are presenting quantitative evidence against the prevailing use of a constant heat transfer coefficient for thermal shock fracture analysis in water. We conclude that no single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials. The presented results show a remarkable stress prediction improvement up to 80–90% of the actual stress with the use of the surface temperature dependent heat transfer coefficient. For thermal shock fracture analysis of brittle fuel cladding such as oxidized zirconium-based alloy or silicon carbide during LWR reflood, transient subchannel heat transfer coefficients obtained from a thermal-hydraulics code should be used as input for stress analysis. Such efforts will lead to a fundamental improvement in thermal shock fracture predictability over the current experimental empiricism for cladding fracture analysis during reflood.
Energy Technology Data Exchange (ETDEWEB)
Razik, H. [Universite Henri Poincare, GREEN, CNRS-UMR 7037, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex (France); Henao, H. [University of Picardie, CREA, 33 rue Saint Leu, F-80039 Amiens Cedex 1 (France); Carlson, R. [GRUCAD/CTC/UFSC, Campus Universitario, C.P. 436, Florianopolis - SC, 88040-900 (Brazil)
2009-01-15
This paper presents a mathematical model of a three-phase induction motor taking into consideration the interbar contacts. Several models have been available in the references. However, they consider the rotor of the induction motor as being constituted either a three-phase or a squirrel cage even if it operates under stator and/or rotor faults condition. Nonetheless, the contact between a bar and the iron core for the machine has to be considered, especially when a rotor fault occurs. It is obvious that rotor currents are under the influence of rotor constitution materials. So, the paper aim's concerns a transient model of the induction motors which can consider the rotor broken bars defect. Despite its increasing complexity, it could be able to provide with useful indications for diagnostic purposes. This model is advocated for the simulation of motors behavior under rotor defect which takes into account the interbar currents. The proposed technique is based on the mesh model analysis of the squirrel cage. As low power induction motors are prevalent in industrial plants, we pay a special attention on them. Notwithstanding, additional currents are due to the contact between the non-insulated bar constituting the squirrel cage to the rotor iron core. The monitoring of induction motors is predominantly made through the stator current analysis of the motor when it operates at nominal condition. Moreover, this one is observed in steady state operating system, knowing that the motor is generally fed by a sinusoidal supply. Consequently, simulation results showed in this paper prove the effectiveness of the proposed approach, and the impact of interbar resistance both on the model and the line current spectrum for the diagnostic. An experimental test proves the effectiveness of this model. (author)
Institute of Scientific and Technical Information of China (English)
陈蔚
2003-01-01
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density.The electric potential equation is discretized by a mixed finite element method.The electron and hole density equations are treated by implicit-explicit multistep finite element methods.The schemes are very efficient.The optimal order error estimates both in time and space are derived.
Meirellesfilho, C.; Liang, Edison P.
1994-01-01
There has been, recently, a revival of the stability problem of accretion disks. Much of this renewed interest is due to recent observational data on transient soft X-ray novae, which are low-mass X-ray binaries. It is widely believed that nonsteady mass transfer from the secondary onto the compact primary, through an accretion disk, is the reason for the observed spectacular events in the form of often repetitive outbursts, with recurrence times ranging from 1 to 60 yr and duration time on the scale of months. Though not having reached yet a consensus about the nature of the mechanism that regulates the mass transfer, the disk thermal instability model seems to be favored by the fact that the rise in the hard X-ray luminosity is prior to the rise in the soft X-ray luminosity, while the mass transfer instability model seems to be hindered by the fact that the luminosity during quiescence is unable to trigger the thermal instability. However, it should be stressed that, remarkably, the X-ray light curves of these X-ray novae all show overall exponential decays, a feature quite difficult to reproduce in the framework of the viscous disk model, which yields powerlike luminosity decay. Taking into account this observational constraint, we have studied the temporal evolution of perturbations in the accretion rate, under the assumption that alpha is radial and parameter dependent. The chosen dependence is such that the model can reproduce limit cycle behavior (the system is locally unstable but globally stable). However, the kind of dependence we are looking for in alpha does not allow us to use the usual Shakura and Sunyaev procedure in the sense that we no longer can obtain a linearized continuity equation without explicit dependence on the accretion rate. This is so because now we cannot eliminate the accretion rate by using the angular momentum conservation equation.
Adaptive neuro-fuzzy modeling of transient heat transfer in circular duct air flow
Energy Technology Data Exchange (ETDEWEB)
Hasiloglu, Abdulsamet [Department of Electronics and Telecommunications Engineering, Engineering Faculty, Ataturk University, Erzurum (Turkey); Yilmaz, Mehmet; Comakli, Omer [Department of Mechanical Engineering, Engineering Faculty, Ataturk University, Erzurum (Turkey); Ekmekci, Ismail [Department of Mechanical Engineering, Engineering Faculty, Sakarya University, Sakarya (Turkey)
2004-11-01
The aim of this study is to demonstrate the usefulness of an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of transient heat transfer. An ANFIS has been applied for the transient heat transfer in thermally and simultaneously developing circular duct flow, subjected to a sinusoidally varying inlet temperature. The experiments covered Reynolds numbers in the 2528{<=}Re{<=}4265 range and inlet heat input in the 0.01{<=}{beta}{<=}0.96 Hz frequency range. The accuracy of predictions and the adaptability of the ANFIS were examined, and good predictions were achieved for the temperature amplitudes of the transient heat transfer in thermally and simultaneously developing circular duct flow. The results show that the neuro-fuzzy can be used for modeling transient heat transfer in ducts. The results obtained with the ANFIS are also compared to those of a multiple linear regression and a neural network with a multi-layered feed-forward back-propagation algorithm. (authors)
Modeling of Agent Behavior Using Behavioral Specifications
Sharpanskykh, A.; Treur, J.
2006-01-01
The behavioral dynamics of a cognitive agent can be considered both from an external and an internal perspective. From the external perspective, behavior is described by specifying (temporal) correlations between input and output states of the agent. From the internal perspective the agent’s dynamic
An opinion-driven behavioral dynamics model for addictive behaviors
Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.
2015-04-01
We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual's behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. This has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.
Three-dimensional transient mathematical model to predict the heat transfer rate of a heat pipe
Directory of Open Access Journals (Sweden)
S Boothaisong
2015-02-01
Full Text Available A three-dimensional model was developed to simulate the heat transfer rate on a heat pipe in a transient condition. This article presents the details of a calculation domain consisting of a wall, a wick, and a vapor core. The governing equation based on the shape of the pipe was numerically simulated using the finite element method. The developed three-dimensional model attempted to predict the transient temperature, the velocity, and the heat transfer rate profiles at any domain. The values obtained from the model calculation were then compared with the actual results from the experiments. The experiment showed that the time required to attain a steady state (where transient temperature is constant was reasonably consistent with the model. The working fluid r134a (tetrafluoroethane was the quickest to reach the steady state and transferred the greatest amount of heat.
Behavior Modeling -- Foundations and Applications
DEFF Research Database (Denmark)
This book constitutes revised selected papers from the six International Workshops on Behavior Modelling - Foundations and Applications, BM-FA, which took place annually between 2009 and 2014. The 9 papers presented in this volume were carefully reviewed and selected from a total of 58 papers...
Energy Technology Data Exchange (ETDEWEB)
Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu; Basu, Nandita; Li, Hongyi; Wang, Shaowen
2012-06-30
In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods is less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on the
Hattiangadi, Ashwin A.
A numerical framework to study multi-physics problem involving coupled thermomechanical analyses for cracks is outlined. Using a thermomechanical cohesive zone model (TM-CZM), load transfer behavior is coupled to heat conduction across a crack. Non-linear effects due to coupling between the mechanical and thermal problem occur through the conductance-separation response between crack faces as well as through the temperature dependence of material constants of the CZM. The TM-CZM is implemented in a convenient framework within the finite element method and applied in the study of: (i) interface crack growth; (ii) crack bridging; and (iii) photo-thermal imaging. Interface fracture in a thermal protection system (TPS) under transient monotonic and cyclic thermal loading is studied using the new TM-CZM and an analytical model. TPS includes an oxidation protection coating (OPC) on a carbon-carbon (C-C) composite substrate. The description of the load transfer behavior uses a traction-separation law with an internal residual property variable that determines the extent of damage caused by mechanical separation. Temperature dependence is incorporated, such that the interfacial strength and therefore the tractions decrease with temperature. The description of thermal transport includes an accurate representation of breakdown of interface conductance with increase in separation. The current state of interface failure, the presence of gas entrapped in the crack as well as radiative heat transfer determines the crack conductance. Coupling between thermal-mechanical analyses affects the interface crack initiation and growth behavior. An analytical model is presented for the uncoupled thermal-mechanical problem to calculate temperature fields and energy release rates. The TM-CZM is also applied in the study of bridged delamination cracks in composite laminates loaded under a temperature gradient. A micromechanism based bridging law is used for load transfer coupled to heat
Energy Technology Data Exchange (ETDEWEB)
Elizondo, Marcelo A.; Tuffner, Francis K.; Schneider, Kevin P.
2016-01-01
Unlike transmission systems, distribution feeders in North America operate under unbalanced conditions at all times, and generally have a single strong voltage source. When a distribution feeder is connected to a strong substation source, the system is dynamically very stable, even for large transients. However if a distribution feeder, or part of the feeder, is separated from the substation and begins to operate as an islanded microgrid, transient dynamics become more of an issue. To assess the impact of transient dynamics at the distribution level, it is not appropriate to use traditional transmission solvers, which generally assume transposed lines and balanced loads. Full electromagnetic solvers capture a high level of detail, but it is difficult to model large systems because of the required detail. This paper proposes an electromechanical transient model of synchronous machine for distribution-level modeling and microgrids. This approach includes not only the machine model, but also its interface with an unbalanced network solver, and a powerflow method to solve unbalanced conditions without a strong reference bus. The presented method is validated against a full electromagnetic transient simulation.
Analog modeling of transient moisture flow in unsaturated soil
Wind, G.P.
1979-01-01
Hydraulic and electronic analog models are developed for the simulation of moisture flow and accumulation in unsaturated soil. The analog models are compared with numerical models and checked with field observations. Application of soil physical knowledge on a soil technological problem by means of
Cognitive Modeling of Social Behaviors
Clancey, William J.; Sierhuis, Maarten; Damer. Bruce; Brodsky, Boris
2004-01-01
The driving theme of cognitive modeling for many decades has been that knowledge affects how and which goals are accomplished by an intelligent being (Newell 1991). But when one examines groups of people living and working together, one is forced to recognize that whose knowledge is called into play, at a particular time and location, directly affects what the group accomplishes. Indeed, constraints on participation, including roles, procedures, and norms, affect whether an individual is able to act at all (Lave & Wenger 1991; Jordan 1992; Scribner & Sachs 1991). To understand both individual cognition and collective activity, perhaps the greatest opportunity today is to integrate the cognitive modeling approach (which stresses how beliefs are formed and drive behavior) with social studies (which stress how relationships and informal practices drive behavior). The crucial insight is that norms are conceptualized in the individual &nd as ways of carrying out activities (Clancey 1997a, 2002b). This requires for the psychologist a shift from only modeling goals and tasks - why people do what they do - to modeling behavioral patterns-what people do-as they are engaged in purposeful activities. Instead of a model that exclusively deduces actions from goals, behaviors are also, if not primarily, driven by broader patterns of chronological and located activities (akin to scripts). This analysis is particular inspired by activity theory (Leont ev 1979). While acknowledging that knowledge (relating goals and operations) is fundamental for intelligent behavior, activity theory claims that a broader driver is the person s motives and conceptualization of activities. Such understanding of human interaction is normative (i.e., viewed with respect to social standards), affecting how knowledge is called into play and applied in practice. Put another way, how problems are discovered and framed, what methods are chosen, and indeed who even cares or has the authority to act, are all
Analytical study of the liquid phase transient behavior of a high temperature heat pipe
Roche, Gregory Lawrence
1988-09-01
The transient operation of the liquid phase of a high temperature heat pipe is studied. The study was conducted in support of advanced heat pipe applications that require reliable transport of high temperature drops and significant distances under a broad spectrum of operating conditions. The heat pipe configuration studied consists of a sealed cylindrical enclosure containing a capillary wick structure and sodium working fluid. The wick is an annular flow channel configuration formed between the enclosure interior wall and a concentric cylindrical tube of fine pore screen. The study approach is analytical through the solution of the governing equations. The energy equation is solved over the pipe wall and liquid region using the finite difference Peaceman-Rachford alternating direction implicit numerical method. The continuity and momentum equations are solved over the liquid region by the integral method. The energy equation and liquid dynamics equation are tightly coupled due to the phase change process at the liquid-vapor interface. A kinetic theory model is used to define the phase change process in terms of the temperature jump between the liquid-vapor surface and the bulk vapor. Extensive auxiliary relations, including sodium properties as functions of temperature, are used to close the analytical system. The solution procedure is implemented in a FORTRAN algorithm with some optimization features to take advantage of the IBM System/370 Model 3090 vectorization facility. The code was intended for coupling to a vapor phase algorithm so that the entire heat pipe problem could be solved. As a test of code capabilities, the vapor phase was approximated in a simple manner.
Singh, Dhirendra Pratap; Chopra, Kanwaljit
2013-11-15
Various potential molecules with putative positive role in stroke pathology have failed to confer neuro-protection in animal models due to their insufficient bioavailability in brain. Efflux of these molecules by P-glycoprotein (P-gp), on blood brain barrier (BBB) is one of the reasons of their poor bioavailability. Berberine, have anti-inflammatory, antioxidant, anti-apoptotic properties, but also having low oral bioavailabilty. Verapamil, which increased the central nervous system uptake of few drugs, when concomitantly administered with berberine was evaluated in this animal model. Wistar rats were subjected to bilateral common carotid artery occlusion to induce acute cerebral ischemia for 15 min followed by reperfusion resulting in transient global cerebral ischemia. For 19 days berberine (5, 10, 20mg/kg, p.o.) alone and in similar doses concomitantly with verapamil (2mg/kg, p.o.) was evaluated employing various neuro-behavioral test, biochemical parameters and molecular estimations. The adjunction of berberine with verapamil improved the neurological outcome in a battery of behavioral paradigms, improved spatial memory in Morris water maze task, ameliorated the oxidative-nitrosative stress, increased acetylcholinesterase (AChE) activity, as well as improved mitochondrial complex (I, II, and IV) activity, reducing tumor necrosis factor-alpha, interleukin-1 beta and caspase-3 levels in brain tissues as compared to berberine alone group in ischemic rats. There is a strong possibility of improved brain bioavailabity of berberine when combined with verapamil. The findings suggested that the combination of berberine with verapamil, which could enhance its brain uptake, will surely provide a greater impact in neroprotection drug discovery for search of such combination.
Modeling the release of E. coli D21g with transients in water content
Transients in water content are well known to mobilize colloids that are retained in the vadose zone. However, there is no consensus on the proper model formulation to simulate colloid release during drainage and imbibition. We present a model that relates colloid release to changes in the air-water...
Transient combustion modeling of an oscillating lean premixed methane/air flam
Withag, J.A.M.; Kok, Jacobus B.W.; Syed, Khawar
2009-01-01
The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions
Modeling the transient flow of undercooled glass-forming liquids
Demetriou, Marios D.; Johnson, Wiliam L.
2004-01-01
n a recent experimental study on flow behavior of Vitreloy-1 (Zr41.25Ti13.75Cu12.5Ni10Be22.5), three distinct modes of flow are suggested: Newtonian, non-Newtonian, and localized flow. In a subsequent study, the experimental flow data is utilized in a self-consistent manner to develop a rate equation to govern local free volume production. In the present study the production-rate equation is transformed into a transport equation that can be coupled with momentum and energy transport via visco...
Models for simulation of transient events in a wind farm
DEFF Research Database (Denmark)
Sørensen, P.; Hansen, A. D.; Bindner, H.
2002-01-01
with different tools with each other and with measurements. This present paper limits to describe the models including our reflections on which effects we expect to be essential for obtaining useful simulation results. The models comprise the substation, where the wind farm is connected, the power collection...
DEFF Research Database (Denmark)
Bak, Claus Leth; Borghetti, Alberto; Glasdam, Jakob Bærholm
2017-01-01
for both VCB sizing and insulation coordination studies of the components nearby the switching device. In this respect, their accurate modelling, which is the object of the paper, becomes crucial. In particular, the paper presents (the concept of) a VCB model and two relevant applications showing the model......-known electromagnetic transient simulation environments, namely, EMTP-RV and PSCAD/EMTDC. The procedure adopted for the identification of the VCB model parameters is described....
Energy Technology Data Exchange (ETDEWEB)
Moura, Fabricio A.M.; Camacho, Jose R. [Universidade Federal de Uberlandia, School of Electrical Engineering, Rural Electricity and Alternative Sources Lab, PO Box 593, 38400.902 Uberlandia, MG (Brazil); Chaves, Marcelo L.R.; Guimaraes, Geraldo C. [Universidade Federal de Uberlandia, School of Electrical Engineering, Power Systems Dynamics Group, PO Box: 593, 38400.902 Uberlandia, MG (Brazil)
2010-02-15
The main task in this paper is to present a performance analysis of a distribution network in the presence of an independent power producer (IP) synchronous generator with its speed governor and voltage regulator modeled using TACS -Transient Analysis of Control Systems, for distributed generation studies. Regulators were implemented through their transfer functions in the S domain. However, since ATP-EMTP (Electromagnetic Transient Program) works in the time domain, a discretization is necessary to return the TACS output to time domain. It must be highlighted that this generator is driven by a steam turbine, and the whole system with regulators and the equivalent of the power authority system at the common coupling point (CCP) are modeled in the ''ATP-EMTP -Alternative Transients Program''. (author)
The transient behavior of solar-heated radiation receivers for small gas turbines
Bammert, Karl; Johanning, Joachim; Lange, Hans
1987-03-01
Model-simulation techniques for estimating the dynamic behavior of hollow radiation receivers for use in hybrid solar/fossil-fuel gas-turbine systems are described and demonstrated. The reference configuration is characterized; the receiver model, the system of differential equations, and the computation procedures used in the simulations are explained in detail; and typical results are presented graphically. A receiver with internal ceramic cladding in addition to glass-wool insulation is found to be less sensitive to intermittent insolation decreases (simulating clouds passing overhead) than a receiver with glass wool only; it is predicted that the lower stress loading of the receiver tubing in the ceramic-clad design will increase the service life of the system.
Modelling and transient stability of large wind farms
DEFF Research Database (Denmark)
Akhmatov, Vladislav; Knudsen, Hans; Nielsen, Arne Hejde
2003-01-01
The paper is dealing-with modelling and short-term Voltage stability considerations of large wind farms. A physical model of a large offshore wind farm consisting of a large number of windmills is implemented in the dynamic simulation tool PSS/E. Each windmill in the wind farm is represented...... by a physical model of grid-connected windmills. The windmill generators ate conventional induction generators and the wind farm is ac-connected to the power system. Improvements-of short-term voltage stability in case of failure events in the external power system are treated with use of conventional generator...... of dynamic reactive compensation demands. In case of blade angle control applied at failure events, dynamic reactive compensation is not necessary for maintaining the voltage stability....
Cheyette, Samuel J; Plaut, David C
2016-11-18
The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012; Laszlo & Armstrong, 2014) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on "implicit semantic prediction error" (Rabovsky & McRae, 2014) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics.
The Numerical Modeling of Transient Regimes of Diesel Generator Sets
Directory of Open Access Journals (Sweden)
Cristian Roman
2010-07-01
Full Text Available This paper deals with the numerical modeling of a diesel generator set used as amain energy source in isolated areas and as a back-up energy source in the case ofrenewable energy systems. The numerical models are developed using a Matlab/Simulinksoftware package and they prove to be a powerful tool for the computer aided design ofcomplex hybrid power systems. Several operation regimes of the equipment are studied.The numerical study is completed with experimental measurements on a Kipor type dieselelectricgenerator set.
Minimal model for transient swimming in a liquid crystal
Krieger, Madison S; Powers, Thomas R
2015-01-01
When a microorganism begins swimming from rest in a Newtonian fluid such as water, it rapidly attains its steady-state swimming speed since changes in the velocity field spread quickly when the Reynolds number is small. However, swimming microorganisms are commonly found or studied in complex fluids. Because these fluids have long relaxation times, the time to attain the steady- state swimming speed can also be long. In this article we study the swimming startup problem in the simplest liquid crystalline fluid: a two-dimensional hexatic liquid crystal film. We study the dependence of startup time on anchoring strength and Ericksen number, which is the ratio of viscous to elastic stresses. For strong anchoring, the fluid flow starts up immediately but the liquid crystal field and swimming velocity attain their sinusoidal steady-state values after a time proportional to the relaxation time of the liquid crystal. When the Ericksen number is high, the behavior is the same as in the strong anchoring case for any a...
1994-01-01
recover at least 50% of baseline most rats, performance degradation was characterized by a com- values was caiculated. Quarter-life measures were...histological changes induced by transient global ce- 34:190-194; 1991. rebral ischemia in rats: Effects of cinnarizine and flunarizine. J. 17. Hall, E. D
Calibration of transient groundwater models using time series analysis and moment matching
Bakker, M.; Maas, K.; Von Asmuth, J.R.
2008-01-01
A comprehensive and efficient approach is presented for the calibration of transient groundwater models. The approach starts with the time series analysis of the measured heads in observation wells using all active stresses as input series, which may include rainfall, evaporation, surface water leve
Investigation of transient models and performances for a doubly fed wind turbine under a grid fault
DEFF Research Database (Denmark)
Wang, M.; Zhao, B.; Li, H.
2011-01-01
fed induction generator (DFIG), the assessments of the impact on the electrical transient performances were investigated for the doubly fed wind turbine with different representations of wind turbine drive-train dynamics models, different initial operational conditions and different active crowbar...
DEFF Research Database (Denmark)
Zhu, Huayang; Ricote, Sandrine; Coors, W. Grover;
2014-01-01
A model-based approach is used to interpret equilibrium and transient conductivity measurements for 10% gadolinium-doped ceria: Ce0.9Gd0.1O1.95 − δ (GDC10). The measurements were carried out by AC impedance spectroscopy on slender extruded GDC10 rods. Although equilibrium conductivity measurements...
Soares, Lígia Mendes; De Vry, Jochen; Steinbusch, Harry W M; Milani, Humberto; Prickaerts, Jos; Weffort de Oliveira, Rúbia M
2016-06-21
Cognitive impairment, anxiety- and depressive-like symptoms are well recognized outcome of cerebral ischemia in clinical and preclinical settings. Rolipram, a phosphodiesterase-4 (PDE-4) inhibitor, improves cognition and produces anxiolytic- and antidepressant-like effects in rodents. Rolipram also exerts anti-inflammatory effects and enhances survival of newborn hippocampal neurons in mice subjected to transient global cerebral ischemia. Here, we evaluated the effects of chronic rolipram treatment in mice subjected to transient global brain ischemia. C56B6/7 mice were subjected to bilateral common carotid artery occlusion (BCCAO) and were then tested in a multi-tiered behavioral battery including the elevated zero maze (EZM), open field (OF), object location test (OLT), and forced swim test (FST). We also investigated the effects of rolipram on hippocampal neurodegeneration and the expression of the neuronal plasticity markers doublecortin (DCX) and microtubule-associated protein (MAP-2). Ischemic mice exhibited memory deficits OLT, higher levels of anxiety EZM and behavioral despair FST. BCCAO caused neuronal loss in the CA3 hippocampal subfield and basolateral amygdala (BLA). In the hippocampus of BCCAO mice, a disrupted neuronal plasticity was evidenced by decreased DCX expression. Chronic treatment with rolipram attenuated the behavioral effects of BCCAO. Rolipram also decreased neurodegeneration in the CA3 while it increased dendritic arborization of DCX-immunoreactive (DCX-IR) neurons and microtubule associate MAP-2 expression in the hippocampus of BCCAO mice. These data suggest that chronic inhibition of PDE-4 can be a useful therapeutic strategy to improve the emotional and cognitive outcomes of transient global cerebral ischemia.
Models for Gamma-Ray Bursts and Diverse Transients
Woosley, S E; 10.1098/rsta.2006.1997
2008-01-01
The observational diversity of ``gamma-ray bursts'' (GRBs) has been increasing, and the natural inclination is a proliferation of models. We explore the possibility that at least part of this diversity is a consequence of a single basic model for the central engine operating in a massive star of variable mass, differential rotation rate, and mass loss rate. Whatever that central engine may be - and here the collapsar is used as a reference point - it must be capable of generating both a narrowly collimated, highly relativistic jet to make the GRB, and a wide angle, sub-relativistic outflow responsible for exploding the star and making the supernova bright. To some extent, the two components may vary independently, so it is possible to produce a variety of jet energies and supernova luminosities. We explore, in particular, the production of low energy bursts and find a lower limit, $\\sim10^{48}$ erg s$^{-1}$ to the power required for a jet to escape a massive star before that star either explodes or is accrete...
Models for Gamma-Ray Bursts and Diverse Transients
Energy Technology Data Exchange (ETDEWEB)
Woosley, S.E.; /UC, Santa Cruz; Zhang, Weiqun; /KIPAC, Menlo Park
2007-01-17
The observational diversity of ''gamma-ray bursts'' (GRBs) has been increasing, and the natural inclination is a proliferation of models. We explore the possibility that at least part of this diversity is a consequence of a single basic model for the central engine operating in a massive star of variable mass, differential rotation rate, and mass loss rate. Whatever that central engine may be--and here the collapsar is used as a reference point--it must be capable of generating both a narrowly collimated, highly relativistic jet to make the GRB, and a wide angle, sub-relativistic outflow responsible for exploding the star and making the supernova bright. To some extent, the two components may vary independently, so it is possible to produce a variety of jet energies and supernova luminosities. We explore, in particular, the production of low energy bursts and find a lower limit, {approx} 10{sup 48} erg s{sup -1} to the power required for a jet to escape a massive star before that star either explodes or is accreted. Lower energy bursts and ''suffocated'' bursts may be particularly prevalent when the metallicity is high, i.e., in the modern universe at low redshift.
TRACE/PARCS modelling of rips trip transients for Lungmen ABWR
Energy Technology Data Exchange (ETDEWEB)
Chang, C. Y. [Inst. of Nuclear Engineering and Science, National Tsing-Hua Univ., No.101, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Lin, H. T.; Wang, J. R. [Inst. of Nuclear Energy Research, No. 1000, Wenhua Rd., Longtan Township, Taoyuan County 32546, Taiwan (China); Shih, C. [Inst. of Nuclear Engineering and Science, Dept. of Engineering and System Science, National Tsing-Hua Univ., No.101, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)
2012-07-01
The objectives of this study are to examine the performances of the steady-state results calculated by the Lungmen TRACE/PARCS model compared to SIMULATE-3 code, as well as to use the analytical results of the final safety analysis report (FSAR) to benchmark the Lungmen TRACE/PARCS model. In this study, three power generation methods in TRACE were utilized to analyze the three reactor internal pumps (RIPs) trip transient for the purpose of validating the TRACE/PARCS model. In general, the comparisons show that the transient responses of key system parameters agree well with the FSAR results, including core power, core inlet flow, reactivity, etc. Further studies will be performed in the future using Lungmen TRACE/PARCS model. After the commercial operation of Lungmen nuclear power plant, TRACE/PARCS model will be verified. (authors)
On our best behavior: optimality models in human behavioral ecology.
Driscoll, Catherine
2009-06-01
This paper discusses problems associated with the use of optimality models in human behavioral ecology. Optimality models are used in both human and non-human animal behavioral ecology to test hypotheses about the conditions generating and maintaining behavioral strategies in populations via natural selection. The way optimality models are currently used in behavioral ecology faces significant problems, which are exacerbated by employing the so-called 'phenotypic gambit': that is, the bet that the psychological and inheritance mechanisms responsible for behavioral strategies will be straightforward. I argue that each of several different possible ways we might interpret how optimality models are being used for humans face similar and additional problems. I suggest some ways in which human behavioral ecologists might adjust how they employ optimality models; in particular, I urge the abandonment of the phenotypic gambit in the human case.
Directory of Open Access Journals (Sweden)
Sicuranza Giovanni L
2007-01-01
Full Text Available The paper provides an analysis of the transient and the steady-state behavior of a filtered-x partial-error affine projection algorithm suitable for multichannel active noise control. The analysis relies on energy conservation arguments, it does not apply the independence theory nor does it impose any restriction to the signal distributions. The paper shows that the partial-error filtered-x affine projection algorithm in presence of stationary input signals converges to a cyclostationary process, that is, the mean value of the coefficient vector, the mean-square error and the mean-square deviation tend to periodic functions of the sample time.
Institute of Scientific and Technical Information of China (English)
Licheng Guo; Linzhi Wu; Yuguo Sun; Li Ma
2005-01-01
The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally graded interlayer with a crack perpendicular to the boundaries. The impact load is applied on the face of the crack. Fourier transform and Laplace transform methods are used to formulate the present problem in terms of a singular integral equation in Laplace transform domain. Considering variations of parameters such as the nonhomogeneity constant, the thickness ratio and the crack length, the dynamic stress intensity factors (DSIFs) in time domain are studied and some meaningful conclusions are obtained.
Transient Changes in Molecular Geometries and How to Model Them
DEFF Research Database (Denmark)
Dohn, Asmus Ougaard
changes in molecular structure, vibrations and solvation. In this thesis, we employ our recently developed Quantum-/Molecular -Mechanical Direct Dynamics method to do simulations of transition metal complexes in solution, to uncover their energy dissipation channels, and how they are affected...... quantum mechanic descriptions, to ascertain the accuracy of the quantum model in the Direct Dynamics simulations. We then test - and improve - the framework for calculating the experimental X-ray Diffuse Scattering Difference signal from (any kind of) Molecular Dynamics (MD) simulations. Comparisons......Light-induced chemical processes are accompanied by molecular motion on the femtosecond time scale. Uncovering this dynamical motion is central to understanding the chemical reaction on a fundamental level. This thesis focuses on the aspects of excess excitation energy dissipation via dynamic...
Gedeon, M.; Mallants, D.
2012-04-01
Radionuclide concentration predictions in aquifers play an important role in estimating impact of planned surface disposal of radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF), who also coordinates and leads the corresponding research. Long-term concentration predictions are based on a steady-state flow solution obtained by a cascade of multi-scale models from the catchment to the detailed (site) scale performed in MODFLOW. To test the concept and accuracy of the groundwater flow solution and conservativeness of the concentration predictions obtained therewith, a transient model, considered more realistic, was set up in a sub-domain of the intermediate scale steady-state model. Besides the modelling domain reduction, the transient model was and exact copy of the steady-state model, having the infiltration as the only time-varying parameter. The transient model was run for a twenty-year period, whereas the results were compared to the steady-state results based on infiltration value and observations averaged over the same period. The comparison of the steady-state and transient flow solutions includes the analyses of the goodness of fit, the parameter sensitivities, relative importance of the individual observations and one-percent sensitivity maps. The steady-state and transient flow solutions were subsequently translated into a site-scale transport model, used to predict the radionuclide concentrations in a hypothetical well in the aquifers. The translation of the flow solutions between the models of distinct scales was performed using the Local grid refinement method available in MODFLOW. In the site-scale models, MT3DMS transport simulations were performed to obtain respective concentration predictions in a hypothetical well, situated at 70 meters from the disposal tumuli. The equilibrium concentrations based on a constant source flux achieved using a steady-state solution were then
ITER transient consequences for material damage: modelling versus experiments
Energy Technology Data Exchange (ETDEWEB)
Bazylev, B [Forschungszentrum Karlsruhe, IHM, P O Box 3640, 76021 Karlsruhe (Germany); Janeschitz, G [Forschungszentrum Karlsruhe, Fusion, P O Box 3640, 76021 Karlsruhe (Germany); Landman, I [Forschungszentrum Karlsruhe, IHM, P O Box 3640, 76021 Karlsruhe (Germany); Pestchanyi, S [Forschungszentrum Karlsruhe, IHM, P O Box 3640, 76021 Karlsruhe (Germany); Loarte, A [EFDA Close Support Unit Garching, Boltmannstr 2, D-85748 Garching (Germany); Federici, G [ITER International Team, Garching Working Site, Boltmannstr 2, D-85748 Garching (Germany); Merola, M [ITER International Team, Garching Working Site, Boltmannstr 2, D-85748 Garching (Germany); Linke, J [Forschungszentrum Juelich, EURATOM-Association, D-52425 Juelich (Germany); Zhitlukhin, A [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Podkovyrov, V [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Klimov, N [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Safronov, V [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation)
2007-03-15
Carbon-fibre composite (CFC) and tungsten macrobrush armours are foreseen as PFC for the ITER divertor. In ITER the main mechanisms of metallic armour damage remain surface melting and melt motion erosion. In the case of CFC armour, due to rather different heat conductivities of CFC fibres a noticeable erosion of the PAN bundles may occur at rather small heat loads. Experiments carried out in the plasma gun facilities QSPA-T for the ITER like edge localized mode (ELM) heat load also demonstrated significant erosion of the frontal and lateral brush edges. Numerical simulations of the CFC and tungsten (W) macrobrush target damage accounting for the heat loads at the face and lateral brush edges were carried out for QSPA-T conditions using the three-dimensional (3D) code PHEMOBRID. The modelling results of CFC damage are in a good qualitative and quantitative agreement with the experiments. Estimation of the droplet splashing caused by the Kelvin-Helmholtz (KH) instability was performed.
Institute of Scientific and Technical Information of China (English)
H.M.Wang; C.B.Liu; H.J.Ding
2009-01-01
Exact solutions are obtained for transient torsional responses of a finitely long, functionally graded hollow cylinder under three different end conditions, I.e. Free--free, free-fixed and fixed-fixed. The cylinder with its external surface fixed is subjected to a dynamic shearing stress at the internal surface. The material properties are assumed to vary in the radial direction in a power law form, while keep invariant in the axial direction. With expansion in the axial direction in terms of trigonometric series, the governing equations for the unknown functions about the radial coordinate r and time t are deduced. By applying the variable substitution technique, the superposition method and the separation of variables consecutively, series-form solutions of the equations are obtained. Natural frequencies and the transient torsional responses are finally discussed for a functionally graded finite hollow cylinder.
Numerical Investigation of the Transient Behavior of a Hot Gas Duct under Rapid Depressurization
Directory of Open Access Journals (Sweden)
JingBao Liu
2016-01-01
Full Text Available A hot gas duct is an indispensable component for the nuclear-process heat applications of the Very-High-Temperature Reactor (VHTR, which has to fulfill three requirements: to withstand high temperature, high pressure, and large pressure transient. In this paper, numerical investigation of pressure transient is performed for a hot gas duct under rapid depressurization. System depressurization imposes an imploding pressure differential on the internal structural elements of a hot gas duct, the structural integrity of which is susceptible to being damaged. Pressure differential and its imposed duration, which are two key factors to evaluate the damage severity of a hot gas duct under depressurization, are examined in regard to depressurization rate and insulation packing tightness. It is revealed that depressurization rate is a decisive parameter for controlling the pressure differential and its duration, whereas insulating-packing tightness has little effect on them.
A Transient Thermal Model for Friction Stir Weld. Part I: The Model
Zhang, X. X.; Xiao, B. L.; Ma, Z. Y.
2011-10-01
Current analytical thermal models for friction stir welding (FSW) are mainly focused on the steady-state condition. To better understand the FSW process, we propose a transient thermal model for FSW, which considers all the periods of FSW. A temperature-dependent apparent friction coefficient solved by the inverse solution method (ISM) is used to estimate the heat generation rate. The physical reasonableness, self-consistency, and relative achievements of this model are discussed, and the relationships between the heat generation, friction coefficient, and temperature are established. The negative feedback mechanism and positive feedback mechanism are proposed for the first time and found to be the dominant factors in controlling the friction coefficient, heat generation, and in turn the temperature. Furthermore, the negative feedback mechanism is found to be the controller of the steady-state level of FSW. The validity of the proposed model is proved by applying it to FSW of the 6061-T651 and 6063-T5 aluminum alloys.
Analysis and modeling of parking behavior
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Analyzes the spatial structure of parking behavior and establishes a basic parking behavior model to represent the parking problem in downtown, and establishes a parking pricing model to analyze the parking equilibrium with a positive parking fee and uses a paired combinatorial logit model to analyze the effect of trip integrative cost on parking behavior and concludes from empirical results that the parking behavior model performs well.
STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY
Energy Technology Data Exchange (ETDEWEB)
Anthony L. Alberti; Todd S. Palmer; Javier Ortensi; Mark D. DeHart
2016-05-01
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.
Chang, Jiang-Hao; Yu, Jing-Cun; Liu, Zhi-Xin
2016-09-01
The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the fullspace 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goaf water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.
Development of a Transient Model of a Stirling-Based CHP System
Directory of Open Access Journals (Sweden)
Antón Cacabelos
2013-06-01
Full Text Available Although the Stirling engine was invented in 1816, this heat engine still continues to be investigated due to the variety of energy sources that can be used to power it (e.g., solar energy, fossil fuels, biomass, and geothermal energy. To study the performance of these machines, it is necessary to develop and simulate models under different operating conditions. In this paper, we present a one-dimensional dynamic model based on components from Trnsys: principally, a lumped mass and a heat exchanger. The resulting model is calibrated using GenOpt. Furthermore, the obtained model can be used to simulate the machine both under steady-state operation and during a transient response. The results provided by the simulations are compared with data measured in a Stirling engine that has been subjected to different operating conditions. This comparison shows good agreement, indicating that the model is an appropriate method for transient thermal simulations. This new proposed model requires few configuration parameters and is therefore easily adaptable to a wide range of commercial models of Stirling engines. A detailed analysis of the system results reveals that the power is directly related to the difference of temperatures between the hot and cold sources during the transient and steady-state processes.
A Coupled Phase-Temperature Model for Dynamics of Transient Neuronal Signal in Mammals Cold Receptor
Kirana, Firman Ahmad; Husein, Irzaman Sulaiman
2016-01-01
We propose a theoretical model consisting of coupled differential equation of membrane potential phase and temperature for describing the neuronal signal in mammals cold receptor. Based on the results from previous work by Roper et al., we modified a nonstochastic phase model for cold receptor neuronal signaling dynamics in mammals. We introduce a new set of temperature adjusted functional parameters which allow saturation characteristic at high and low steady temperatures. The modified model also accommodates the transient neuronal signaling process from high to low temperature by introducing a nonlinear differential equation for the “effective temperature” changes which is coupled to the phase differential equation. This simple model can be considered as a candidate for describing qualitatively the physical mechanism of the corresponding transient process. PMID:27774102
A Coupled Phase-Temperature Model for Dynamics of Transient Neuronal Signal in Mammals Cold Receptor
Directory of Open Access Journals (Sweden)
Firman Ahmad Kirana
2016-01-01
Full Text Available We propose a theoretical model consisting of coupled differential equation of membrane potential phase and temperature for describing the neuronal signal in mammals cold receptor. Based on the results from previous work by Roper et al., we modified a nonstochastic phase model for cold receptor neuronal signaling dynamics in mammals. We introduce a new set of temperature adjusted functional parameters which allow saturation characteristic at high and low steady temperatures. The modified model also accommodates the transient neuronal signaling process from high to low temperature by introducing a nonlinear differential equation for the “effective temperature” changes which is coupled to the phase differential equation. This simple model can be considered as a candidate for describing qualitatively the physical mechanism of the corresponding transient process.
Pulse Localization and Fourier Analysis in the Mathematical Model of Acoustic Transient Field
Directory of Open Access Journals (Sweden)
Lukas Koudela
2016-01-01
Full Text Available The numerical model of a semi-cylindrical acoustic diffuser in planar transient acoustic field is discussed. The finite element method was used for the solution of the model. From the computed waveforms the straight and the reflected pulses were automatically extracted using cross-correlation. The harmonic decomposition was performed on the obtained pulses and the results were plotted in the polar pattern.
Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System
Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.
2011-01-01
Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.
Behavioral animal models of depression.
Yan, Hua-Cheng; Cao, Xiong; Das, Manas; Zhu, Xin-Hong; Gao, Tian-Ming
2010-08-01
Depression is a chronic, recurring and potentially life-threatening illness that affects up to 20% of the population across the world. Despite its prevalence and considerable impact on human, little is known about its pathogenesis. One of the major reasons is the restricted availability of validated animal models due to the absence of consensus on the pathology and etiology of depression. Besides, some core symptoms such as depressed mood, feeling of worthlessness, and recurring thoughts of death or suicide, are impossible to be modeled on laboratory animals. Currently, the criteria for identifying animal models of depression rely on either of the 2 principles: actions of known antidepressants and responses to stress. This review mainly focuses on the most widely used animal models of depression, including learned helplessness, chronic mild stress, and social defeat paradigms. Also, the behavioral tests for screening antidepressants, such as forced swimming test and tail suspension test, are also discussed. The advantages and major drawbacks of each model are evaluated. In prospective, new techniques that will be beneficial for developing novel animal models or detecting depression are discussed.
Modeling software behavior a craftsman's approach
Jorgensen, Paul C
2009-01-01
A common problem with most texts on requirements specifications is that they emphasize structural models to the near exclusion of behavioral models-focusing on what the software is, rather than what it does. If they do cover behavioral models, the coverage is brief and usually focused on a single model. Modeling Software Behavior: A Craftsman's Approach provides detailed treatment of various models of software behavior that support early analysis, comprehension, and model-based testing. Based on the popular and continually evolving course on requirements specification models taught by the auth
Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates
Energy Technology Data Exchange (ETDEWEB)
FJELDLY,T.A.; DENG,Y.; SHUR,M.S.; HJALMARSON,HAROLD P.; MUYSHONDT,ARNOLDO
2000-04-25
To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p
Teixeira, Catia M; Masachs, Nuria; Muhaisen, Ashraf; Bosch, Carles; Pérez-Martínez, Javier; Howell, Brian; Soriano, Eduardo
2014-01-01
Psychiatric disorders have been hypothesized to originate during development, with genetic and environmental factors interacting in the etiology of disease. Therefore, developmentally regulated genes have received attention as risk modulators in psychiatric diseases. Reelin is an extracellular protein essential for neuronal migration and maturation during development, and its expression levels are reduced in psychiatric disorders. Interestingly, several perinatal insults that increase the risk of behavioral deficits alter Reelin signaling. However, it is not known whether a dysfunction in Reelin signaling during perinatal stages increases the risk of psychiatric disorders. Here we used a floxed dab1 allele to study whether a transient decrease in Dab1, a key component of the Reelin pathway, is sufficient to induce behavioral deficits related to psychiatric disorders. We found that transient Dab1 downregulation during perinatal stages leads to permanent abnormalities of structural layering in the neocortex and hippocampus. In contrast, conditional inactivation of the dab1 gene in the adult brain does not result in additional layering abnormalities. Furthermore, perinatal Dab1 downregulation causes behavior impairments in adult mice, such as deficits in memory, maternal care, pre-pulse inhibition, and response to cocaine. Some of these deficits were also found to be present in adolescence. We also show that D-cycloserine rescues the cognitive deficits observed in floxed dab1 mice with layering alterations in the hippocampus and neocortex. Our results indicate a causal relation between the downregulation of Dab1 protein levels during development and the structural and behavioral deficits associated with psychiatric diseases in the adult. PMID:24030361
Energy Technology Data Exchange (ETDEWEB)
Chen, Yen-Shu; Pei, Bau-Shei [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, (Taiwan); Chien, Kuo-Hsiang; Wang, Chi-Chuan [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, (Taiwan); Hung, Tzu-Chen [Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung County 840, (Taiwan)
2006-12-15
The vapor chambers (flat plate heat pipes) have been applied on the electronic cooling recently. To satisfy the quick-response requirement of the industries, a simplified transient three-dimensional linear model has been developed and tested in this study. In the proposed model, the vapor is assumed as a single interface between the evaporator and condenser wicks, and this assumption enables the vapor chamber to be analyzed by being split into small control volumes. Comparing with the previous available results, the calculated transient responses have shown good agreements with the existing results. For further validation of the proposed model, a water-cooling experiment was conducted. In addition to the vapor chamber, the heating block is also taken into account in the simulation. It is found that the inclusion of the capacitance of heating block shows a better agreement with the measurements. (author)
Directory of Open Access Journals (Sweden)
Masaru Ishizuka
2011-01-01
Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.
Thermophysics modeling of an infrared detector cryochamber for transient operational scenario
Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan
2016-05-01
An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using
Oxide segregation and melting behavior of transient heat load exposed beryllium
Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.
2016-10-01
In the experimental fusion reactor ITER, beryllium will be applied as first wall armor material. However, the ITER-like wall project at JET already experienced that the relatively low melting temperature of beryllium can easily be exceeded during plasma operation. Therefore, a detailed study was carried out on S-65 beryllium under various transient, ITER-relevant heat loads that were simulated in the electron beam facility JUDITH 1. Hereby, the absorbed power densities were in the range of 0.15-1.0 GW m-2 in combination with pulse durations of 1-10 ms and pulse numbers of 1-1000. In metallographic cross sections, the emergence of a transition region in a depth of ~70-120 µm was revealed. This transition region was characterized by a strong segregation of oxygen at the grain boundaries, determined with energy dispersive x-ray spectroscopy element mappings. The oxide segregation strongly depended on the maximum temperature reached at the end of the transient heat pulse in combination with the pulse duration. A threshold for this process was found at 936 °C for a pulse duration of 10 ms. Further transient heat pulses applied to specimens that had already formed this transition region resulted in the overheating and melting of the material. The latter occurred between the surface and the transition region and was associated with a strong decrease of the thermal conductivity due to the weakly bound grains across the transition region. Additionally, the transition region caused a partial separation of the melt layer from the bulk material, which could ultimately result in a full detachment of the solidified beryllium layers from the bulk armor. Furthermore, solidified beryllium filaments evolved in several locations of the loaded area and are related to the thermally induced crack formation. However, these filaments are not expected to account for an increase of the beryllium net erosion.
Greskowiak, J.; Hay, M.B.; Prommer, H.; Liu, C.; Post, V.E.A.; Ma, R.; Davis, J.A.; Zheng, C.; Zachara, J.M.
2011-01-01
Coupled intragrain diffusional mass transfer and nonlinear surface complexation processes play an important role in the transport behavior of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes were analyzed and compared: (1) the physical nonequilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intragrain regions and approximates the diffusive mass exchange between the immobile intragrain pore water and the advective pore water as multirate first-order mass transfer and (2) the chemical nonequilibrium approach that approximates the diffusion-limited intragrain surface complexation reactions by a set of multiple first-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intragrain pore water. A model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of U(VI) mass transfer behavior to hydrogeochemically induced changes in U(VI) adsorption strength was more pronounced in the physical than in the chemical nonequilibrium model. The magnitude of the differences in model behavior depended particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behavior between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of frequent groundwater flow reversals. Copyright 2011 by the American Geophysical Union.
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
Energy Technology Data Exchange (ETDEWEB)
Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Maday, Yvon, E-mail: maday@ann.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions and Institut Universitaire de France, F-75005, Paris (France); Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); Brown Univ, Division of Applied Maths, Providence, RI (United States); Riahi, Mohamed Kamel, E-mail: riahi@cmap.polytechnique.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CMAP, Inria-Saclay and X-Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Salomon, Julien, E-mail: salomon@ceremade.dauphine.fr [CEREMADE, Univ Paris-Dauphine, Pl. du Mal. de Lattre de Tassigny, F-75016, Paris (France)
2014-12-15
In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.
CHF Phenomena by Photographic Study of Boiling Behavior due to Transient Heat Inputs
Jongdoc Park; Katsuya Fukuda; Qiusheng Liu
2012-01-01
The transient boiling heat transfer characteristics in a pool of water and highly wetting liquids such as ethanol and FC-72 due to an exponentially increasing heat input of various rates were investigated using the 1.0 mm diameter experimental heater shaped in a horizontal cylinder for wide ranges of pressure and subcooling. The trend of critical heat flux (CHF) values in relation to the periods was divided into three groups. The CHF belonging to the 1st group with a longer period occurs with...
Nonlinear System Identification and Behavioral Modeling
Huq, Kazi Mohammed Saidul; Kabir, A F M Sultanul
2010-01-01
The problem of determining a mathematical model for an unknown system by observing its input-output data pair is generally referred to as system identification. A behavioral model reproduces the required behavior of the original analyzed system, such as there is a one-to-one correspondence between the behavior of the original system and the simulated system. This paper presents nonlinear system identification and behavioral modeling using a work assignment.
Humphreys, A. P.; Paulson, J. W., Jr.; Kemmerly, G. T.
1988-01-01
Previous wind tunnel tests of fighter configurations have shown that thrust reverser jets can induce large, unsteady aerodynamic forces and moments during operation in ground proximity. This is a concern for STOL configurations using partial reversing to spoil the thrust while keeping the engine output near military (MIL) power during landing approach. A novel test technique to simulate approach and landing was developed under a cooperative Northrop/NASA/USAF program. The NASA LaRC Vortex Research Facility was used for the experiments in which a 7-percent F-18 model was moved horizontally at speeds of up to 100 feet per second over a ramp simulating an aircraft to ground rate of closure similar to a no-flare STOL approach and landing. This paper presents an analysis of data showing the effect of reverser jet orientation and jet dynamic pressure ratio on the transient forces for different angles of attack, and flap and horizontal tail deflection. It was found, for reverser jets acting parallel to the plane of symmetry, that the jets interacted strongly with the ground, starting approximately half a span above the ground board. Unsteady rolling moment transients, large enough to cause the probable upset of an aircraft, and strong normal force and pitching moment transients were measured. For jets directed 40 degrees outboard, the transients were similar to the jet-off case, implying only minor interaction.
Transient beam-loading model and compensation in Compact Linear Collider main linac
Kononenko, O
2011-01-01
A new model to compensate for the transient beam loading in the CLIC main linac is developed. It takes into account the CLIC specific power generation scheme and the exact 3D geometry of the accelerating structure including couplers. A new method of calculating unloaded and loaded voltages during the transient is proposed and a dedicated optimization scheme of the rf pulse to compensate the transient beam-loading effect is presented. It is demonstrated that the 0.03% limit on the rms relative bunch-to-bunch energy spread in the main beam after acceleration can be reached. The optimization technique has been used to increase the rf to beam efficiency while preserving the CLIC requirements and to compensate for the energy spread caused by the Balakin-Novokhatski-Smirnov damping and transient process in the subharmonic buncher. Effects of charge jitters in the drive and main beams are studied. It is shown that within the 0.1% CLIC specification limit on the rms spread in beams charge the energy spread is not sig...
Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage
Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.
2008-01-01
A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.
Transient Model Validation of Fixed-Speed Induction Generator Using Wind Farm Measurements
DEFF Research Database (Denmark)
Rogdakis, Georgios; Garcia-Valle, Rodrigo; Arana Aristi, Iván
2012-01-01
In this paper, an electromagnetic transient model for fixed-speed wind turbines equipped with induction generators is developed and implemented in PSCAD/EMTDC. The model is comprised by: an induction generator, aerodynamic rotor, and a two-mass representation of the shaft system. Model validation...... is conducted by measurement comparison using recordings obtained from switching operations performed at the Nysted OffshoreWind Farm in Denmark. A sensitivity analysis is performed to determine the impact of different model parameters on the simulated response as compared with measurements. This validated...
An experimentally validated transient thermal model for cylindrical Li-ion cells
Shah, K.; Drake, S. J.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.
2014-12-01
Measurement and modeling of thermal phenomena in Li-ion cells is a critical research challenge that directly affects both performance and safety. Even though the operation of a Li-ion cell is in most cases a transient phenomenon, most available thermal models for Li-ion cells predict only steady-state temperature fields. This paper presents the derivation, experimental validation and application of an analytical model to predict the transient temperature field in a cylindrical Li-ion cell in response to time-varying heat generation within the cell. The derivation is based on Laplace transformation of governing energy equations, and accounts for anisotropic thermal conduction within the cell. Model predictions are in excellent agreement with experimental measurements on a thermal test cell. The effects of various thermophysical properties and parameters on transient thermal characteristics of the cell are analyzed. The effect of pulse width and cooling time for pulsed operation is quantified. The thermal response to multiple cycles of discharge and charge is computed, and cell-level trade-offs for this process are identified. The results presented in this paper may help understand thermal phenomena in Li-ion cells, and may contribute towards thermal design and optimization tools for energy conversion and storage systems based on Li-ion cells.
Coupling a Transient Solvent Extraction Module with the Separations and Safeguards Performance Model
Energy Technology Data Exchange (ETDEWEB)
de Almeida, Valmor F [ORNL; Birdwell Jr, Joseph F [ORNL; DePaoli, David W [ORNL; Gauld, Ian C [ORNL
2009-10-01
A past difficulty in safeguards design for reprocessing plants is that no code existed for analysis and evaluation of the design. A number of codes have been developed in the past, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the SSPM Separations and Safeguards Performance Model, developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a much more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and the initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.
Energy Technology Data Exchange (ETDEWEB)
DePaoli, David W. (Oak Ridge National Laboratory, Oak Ridge, TN); Birdwell, Joseph F. (Oak Ridge National Laboratory, Oak Ridge, TN); Gauld, Ian C. (Oak Ridge National Laboratory, Oak Ridge, TN); Cipiti, Benjamin B.; de Almeida, Valmor F. (Oak Ridge National Laboratory, Oak Ridge, TN)
2009-10-01
A number of codes have been developed in the past for safeguards analysis, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM), developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.
Modeling lahar behavior and hazards
Manville, Vernon; Major, Jon J.; Fagents, Sarah A.
2013-01-01
Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.
Modeling of the Feed-Motor Transient Current in End Milling by Using Varying-Coefficient Model
Directory of Open Access Journals (Sweden)
Mi Xiao
2015-01-01
Full Text Available In order to ensure the stability of the machining process, it is vital to control the machining condition during the milling process. While the feed-motor current is related to many physical variables, such as the cutting force and tool wear, we can indicate it as the key variables to monitoring the conditions of the milling process. A predictive model of the feed-motor current amplitude is established in this paper. The change regulation of the transient current amplitude during the milling process is investigated, and the effect of the spindle speed on the transient current amplitude is studied as well. Since the transient current amplitude is time-varying, the predictive model is a typical panel data type. In this case, the varying-coefficient model (VCM, a potential soft computing method, is applied to solve this predictive model. Then several experiments are conducted to evaluate the performance of VCM method. Results show that the predicted values match the experimental value well, and the correctness of the predictive model for transient current amplitude is also validated.
Modeling and analysis of single-event transients in charge pumps
Institute of Scientific and Technical Information of China (English)
Zhao Zhenyu; Li Junfeng; Zhang Minxuan; Li Shaoqing
2009-01-01
It has been shown that charge pumps (CPs) dominate single-event transient (SET) responses of phaselocked loops (PLLs). Using a pulse to represent a single event hit on CPs, the SET analysis model is established and the characteristics of SET generation and propagation in PLLs are revealed. An analysis of single event transients in PLLs demonstrates that the settling time of the voltage-controlled oscillators (VCOs) control voltage after a single event strike is strongly dependent on the peak control voltage deviation, the SET pulse width, and the settling time constant. And the peak control voltage disturbance decreases with the SET strength or the filter resistance. Furthermore, the analysis in the proposed PLL model is confirmed by simulation results using MATLAB and HSPICE,respectively.
Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model.
Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I
2008-12-01
Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.
Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wei-Jiang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [College of Mechanical Engineering, Tongji University, 4800 Cao An Highway, Shanghai 201804 (China)
2011-01-15
Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed. (author)
Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units
Energy Technology Data Exchange (ETDEWEB)
Zhang Weijiang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang Chunlu, E-mail: chunlu.zhang@carrier.utc.co [College of Mechanical Engineering, Tongji University, 4800 Cao An Highway, Shanghai 201804 (China)
2011-01-15
Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed.
Development of the MFPR model for fission gas release in irradiated UO2 under transient conditions
Directory of Open Access Journals (Sweden)
Veshchunov Michael S.
2017-01-01
Full Text Available The fission gas release microscopic model of the mechanistic code MFPR is further developed for modelling of enhanced release from irradiated UO2 fuel under transient conditions of the power ramp tests, along with the microstructure evolution characterised by the formation of a new population of large intragranular bubbles with a rather wide size distribution (from 30 to 500 nm, observed in transient-tested UO2 fuel samples. Implementation of the additional microscopic mechanisms results in a notable improvement of the code predictions (in comparison with the previous code version for the fractional gas release in the Risø ramp tests with three different hold times of 3, 40 and 62 h at the terminal linear power of ≈40 kW/m.
Directory of Open Access Journals (Sweden)
Yoshio Iguchi
Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.
DEFF Research Database (Denmark)
Li, H.; Zhao, B.; Yang, C.
2011-01-01
Increasing levels of wind energy in modern electrical power system is initiating a need for accurate analysis and estimation of transient stability of wind turbine generation systems. This paper investigates the transient behaviors and possible direct methods for transient stability evaluation...... electromagnetic transient models of a SCIG, the transient behaviors of the wind turbine generation system during a three-phase fault are simulated and compared with the traditional models. Secondly, in order to quickly estimate the transient stability limit of the wind turbine generation system, a direct method...... based on normal form theory is proposed. The transient models of the wind turbine generation system including the flexible drive train model are derived based on the direct transient stability estimation method. A method of critical clearing time (CCT) calculation is developed for the transient...
Choopanya, Pattarapong
2016-01-01
A polymer electrolyte membrane (PEM) fuel cell is probably the most promising technology that will replace conventional internal combustion engines in the near future. As a primary power source for an automobile, the transient performance of a PEM fuel cell is of prime importance. In this thesis, a comprehensive, three-dimensional, two-phase, multi-species computational fuel cell dynamics model is developed in order to investigate the effect of flow-field design on the magnitude of current ov...
Numerical Modeling of Fluid Transient in Cryogenic Fluid Network of Rocket Propulsion System
Majumdar, Alok; Flachbart, Robin
2003-01-01
Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicles propulsion systems. These transients often occur at system activation and shut down. For ground safety reasons, many spacecrafts are launched with the propellant lines dry. These lines are often evacuated by the time the spacecraft reaches orbit. When the propellant isolation valve opens during propulsion system activation, propellant rushes into lines creating a pressure surge. During propellant system shutdown, a pressure surge is created due to sudden closure of a valve. During both activation and shutdown, pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. The method of characteristics is the most widely used method of calculating fluid transients in pipeline [ 1,2]. The method of characteristics, however, has limited applications in calculating flow distribution in complex flow circuits with phase change, heat transfer and rotational effects. A robust cryogenic propulsion system analyzer must have the capability to handle phase change, heat transfer, chemical reaction, rotational effects and fluid transients in conjunction with subsystem flow model for pumps, valves and various pipe fittings. In recent years, such a task has been undertaken at Marshall Space Flight Center with the development of the Generalized Fluid System Simulation Program (GFSSP), which is based on finite volume method in fluid network [3]. GFSSP has been extensively verified and validated by comparing its predictions with test data and other numerical methods for various applications such as internal flow of turbo-pump [4], propellant tank pressurization [5,6], chilldown of cryogenic transfer line [7] and squeeze film damper rotordynamics [8]. The purpose of the present paper is to investigate the applicability of the finite volume method to predict fluid transient in cryogenic flow
A Comprehensive Model of Customers’ Complaint Behavior
Directory of Open Access Journals (Sweden)
Masoud Mousavi
2013-05-01
Full Text Available The purpose of this article is to determine the factors influencing the complaint behavior of service customers and suggested a model that gives a dynamic view of customer’s complaint behavior. The conceptual model supported by study and research done in the context of complaint behavior analysis. In addition, numerous science researches in different industries (services and products supported the model. Research findings show that the complaint behavior of customers is a very complex behavior of customer dissatisfaction. Many factors determine the type and severity of complaints and these factors can be classified into four factors such as personal (individual factors, service factors, situational factors and macro element. Different Kinds of people’s coping strategies is an effective factor in the selection of complaint behavior type. Analyzing and identifying different factors that cause the complaint behavior is important for different types of services. This model is a comprehensive one in complaint behavior that identifies important factors.
Ortensi, Javier
This investigation is divided into two general topics: (1) a new method for analyzing the safe shutdown earthquake event in a pebble bed reactor core, and (2) the development of an explicit tristructural-isotropic fuel model for high temperature reactors. The safe shutdown earthquake event is one of the design basis accidents for the pebble bed reactor. The new method captures the dynamic geometric compaction of the pebble bed core. The neutronic and thermal-fluids grids are dynamically re-meshed to simulate the re-arrangement of the pebbles in the reactor during the earthquake. Results are shown for the PBMR-400 assuming it is subjected to the Idaho National Laboratory's design basis earthquake. The study concludes that the PBMR-400 can safely withstand the reactivity insertions induced by the slumping of the core and the resulting relative withdrawal of the control rods. This characteristic stems from the large negative Doppler feedback of the fuel. This Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated, high-temperature reactors that use fuel based on TRISO particles. The correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. An explicit TRISO fuel temperature model named THETRIS has been developed in this work and incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes. The new model yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume. The performance of the code during fast and moderately-slow transients is verified. These analyses show how explicit TRISO models improve the predictions of the fuel temperature, and consequently, of the power escalation. In addition, a brief study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap inside the TRISO particles is included
Modeling of transient dust events in fusion edge plasmas with DUSTT-UEDGE code
Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.
2016-10-01
It is well known that dust can be produced in fusion devices due to various processes involving structural damage of plasma exposed materials. Recent computational and experimental studies have demonstrated that dust production and associated with it plasma contamination can present serious challenges in achieving sustained fusion reaction in future fusion devices, such as ITER. To analyze the impact, which dust can have on performance of fusion plasmas, modeling of coupled dust and plasma transport with DUSTT-UEDGE code is used by the authors. In past, only steady-state computational studies, presuming continuous source of dust influx, were performed due to iterative nature of DUSTT-UEDGE code coupling. However, experimental observations demonstrate that intermittent injection of large quantities of dust, often associated with transient plasma events, may severely impact fusion plasma conditions and even lead to discharge termination. In this work we report on progress in coupling of DUSTT-UEDGE codes in time-dependent regime, which allows modeling of transient dust-plasma transport processes. The methodology and details of the time-dependent code coupling, as well as examples of simulations of transient dust-plasma transport phenomena will be presented. These include time-dependent modeling of impact of short out-bursts of different quantities of tungsten dust in ITER divertor on the edge plasma parameters. The plasma response to the out-bursts with various duration, location, and ejected dust sizes will be analyzed.
Directory of Open Access Journals (Sweden)
Yan-jie Ni
2016-04-01
Full Text Available A 30 mm electrothermal-chemical (ETC gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates (EGGR of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient (dp/dt is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW−1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient (dp/dt and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.
Institute of Scientific and Technical Information of China (English)
Yan-jie NI; Yong JIN; Gang WAN; Chun-xia YANG; Hai-yuan LI; Bao-ming LI
2016-01-01
A 30 mm electrothermal-chemical (ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates (EGGR) of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient (dp/dt) is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW−1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley’s modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient (dp/dt) and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.
Transient behavior of devolatilization and char reaction during steam gasification of biomass.
Moon, Jihong; Lee, Jeungwoo; Lee, Uendo; Hwang, Jungho
2013-04-01
Steam gasification of biomass is a promising method for producing high quality syngas for polygeneration. During the steam gasification, devolatilization and char reaction are key steps of syngas production and the contributions of the two reactions are highly related to gasification conditions. In this study, the transient characteristics of devolatilization and char reaction in biomass steam gasification were investigated by monitoring cumulative gas production and composition changes in terms of reaction temperature and S/B ratio. Contribution of each reaction stage on the product gas yield was studied in detail. The results provide important insight for understanding the complex nature of biomass gasification and will guide future improvements to the biomass gasification process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor
Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.
2006-06-01
Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.
Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations
Woronowicz, Michael
2011-01-01
We have learned it is conceivable that the Neutral Mass Spectrometer on board the Lunarr Atmosphere Dust Environment Explorer (LADEE) could measure gases from surface-reflected Attitude Control System (ACS) thruster plume. At minimum altitude, the measurement would be maximized, and gravitational influence minimized ("short" time-of-flight (TOF) situation) Could use to verify aspects of thruster plume modeling Model the transient disturbance to NMS measurements due to ACS gases reflected from lunar surface Observe evolution of various model characteristics as measured by NMS Species magnitudes, TOF measurements, angular distribution, species separation effects
Extension of Lithium Ion Cell Model to Include Transient and Low-Temperature Behaviour
Dudley, G.
2014-08-01
Current-interruption resistance measurements have been analysed in detail allowing the ESTEC lithium ion cell electrical/thermal model to be extended to allow modelling of cell voltage in response to imposed current changes at low temperatures and short time scales where activation polarisation becomes important. Whilst an unnecessary complication in most cases, this extension is needed under certain circumstances such as the simulation of Mars rover batteries forced to operate at low temperature and possible effects of battery voltage transients on battery-bus power subsystems. Comparison with test data show that the model is capable of giving a good fit in these circumstances.
Bifurcation structures and transient chaos in a four-dimensional Chua model
Energy Technology Data Exchange (ETDEWEB)
Hoff, Anderson, E-mail: hoffande@gmail.com; Silva, Denilson T. da; Manchein, Cesar, E-mail: cesar.manchein@udesc.br; Albuquerque, Holokx A., E-mail: holokx.albuquerque@udesc.br
2014-01-10
A four-dimensional four-parameter Chua model with cubic nonlinearity is studied applying numerical continuation and numerical solutions methods. Regarding numerical solution methods, its dynamics is characterized on Lyapunov and isoperiodic diagrams and regarding numerical continuation method, the bifurcation curves are obtained. Combining both methods the bifurcation structures of the model were obtained with the possibility to describe the shrimp-shaped domains and their endoskeletons. We study the effect of a parameter that controls the dimension of the system leading the model to present transient chaos with its corresponding basin of attraction being riddled.
Dubkov, Alexander A.; Kharcheva, Anna A.
2014-05-01
Two generalized Verhulst equations with non-Gaussian fluctuations of the reproduction rate and the volume of resources are under analytical investigation. For the first model, using the central limit theorem, we find the asymptotic behavior of the probability distribution of population density for an arbitrary non-Gaussian colored noise with nonzero power spectral density at zero frequency. Specifically, we confirm this result in the case of Markovian dichotomous noise and examine the evolution of mean population density. For fluctuating resources with one-sided stable distribution the transient dynamics of probability density function and statistical characteristics in the steady state are obtained. As shown, the scenario of the population's evolution depends on the parameter of nonlinearity in the original stochastic equation.
Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain
2011-12-01
Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.
Directory of Open Access Journals (Sweden)
Jun Liu
2015-01-01
Full Text Available As using the classical quasi-steady state (QSS model could not be able to accurately simulate the dynamic characteristics of DC transmission and its controlling systems in electromechanical transient stability simulation, when asymmetric fault occurs in AC system, a modified quasi-steady state model (MQSS is proposed. The model firstly analyzes the calculation error induced by classical QSS model under asymmetric commutation voltage, which is mainly caused by the commutation voltage zero offset thus making inaccurate calculation of the average DC voltage and the inverter extinction advance angle. The new MQSS model calculates the average DC voltage according to the actual half-cycle voltage waveform on the DC terminal after fault occurrence, and the extinction advance angle is also derived accordingly, so as to avoid the negative effect of the asymmetric commutation voltage. Simulation experiments show that the new MQSS model proposed in this paper has higher simulation precision than the classical QSS model when asymmetric fault occurs in the AC system, by comparing both of them with the results of detailed electromagnetic transient (EMT model of the DC transmission and its controlling system.
Liu, Xiang; Lian, Youyun; Chen, Lei; Chen, Zhenkui; Chen, Jiming; Duan, Xuru; Fan, Jinlian; Song, Jiupeng
2015-08-01
Transient heat loads, such as plasma disruptions and ELMs, could induce plastic deformations, cracking, melting, even fatigue cracks and creep of tungsten (W) surface. A high purity W, CVD-W coating, TiC dispersion strengthened and K doped tungsten alloys were tested in a 60 kW electron-beam facility by simulating the transient load events under different base temperatures. It was found that CVD-W, W-TiC and W-K alloys have higher crack thresholds than high purity W, meanwhile CVD-W is more sensitive to the crack disappearing at elevated base temperatures. On the other hand, repetitive pulse loading like ELMs can induce serious network cracks even the power density was quite lower than the crack threshold determined by a single shot. The ABAQUS code was used to simulate the crack behaviors of ITER grade pure W by a single shot and a FE-SAFE code was adopted to estimate the fatigue life under ELMs-like loads. A good agreement with experiment results was found.
Kalibrering av en transient GT-Power modell av en SI PFI turbo motor
Bodin-Ek, Erik
2008-01-01
I detta arbete behandlas transient simulering i ett 1D-simuleringsprogram, i detta fall Gamma technologies GT-Power. Vad som behöver ändras i en modell för att den skall kunna simulera en motor under transienta driftsfall med god noggrannhet har undersökts. När detta är gjort, skall det undersökas hur väl den transient kalibrerade modellen kan simulera en motor med förändrad rörgeometri på insugs- eller avgassidan, och vad som måste omkalibreras om detta inte är fallet. Den viktigaste slutsat...
TRANSIENT SOLUTION FOR QUEUE-LENGTH DISTRIBUTION OF Geometry/G/1 QUEUEING MODEL
Institute of Scientific and Technical Information of China (English)
Luo Chuanyi; Tang Yinghui; Liu Renbin
2007-01-01
In this paper, the Geometry/G/1 queueing model with inter-arrival times generated by a geometric(parameter p) distribution according to a late arrival system with delayed access and service times independently distributed with distribution {gj}, j ≥ 1 is studied. By a simple method (techniques of probability decomposition, renewal process theory) that is different from the techniques used by Hunter(1983), the transient property of the queue with initial state i(i ≥ 0) is discussed. The recursion expression for u -transform of transient queue-length distribution at any time point n+ is obtained, and the recursion expression of the limiting queue length distribution is also obtained.
Transient Automatic Writing Behavior following a Left Inferior Capsular Genu Infarction
Directory of Open Access Journals (Sweden)
Keisuke Suzuki
2009-05-01
Full Text Available A 79-year-old, right-handed woman was admitted to the hospital with decreased spontaneity. Brain magnetic resonance imaging showed a left inferior capsular genu infarction. 99mTC-ECD single-photon emission computed tomography revealed a left-dominant diffuse hypoperfusionin the basal ganglia and frontal lobe. The patient showed abulia and increased writing activity without motor or sensory deficit. The writing was mainly perseverative, and words written along lines were legible and without spatial distortions. This augmented writing behavior disappeared on day 21. The writing characteristic was more similar to automatic writing behavior than hypergraphia. Dissociation between speech and writing behavior was present in our patient. We suggest that a disconnection within the frontal-subcortical circuit contributed to the development of motor perseveration in writing.
Transient Automatic Writing Behavior following a Left Inferior Capsular Genu Infarction.
Suzuki, Keisuke; Miyamoto, Tomoyuki; Miyamoto, Masayuki; Hirata, Koichi
2009-05-09
A 79-year-old, right-handed woman was admitted to the hospital with decreased spontaneity. Brain magnetic resonance imaging showed a left inferior capsular genu infarction. (99m) TC-ECD single-photon emission computed tomography revealed a left-dominant diffuse hypoperfusionin the basal ganglia and frontal lobe. The patient showed abulia and increased writing activity without motor or sensory deficit. The writing was mainly perseverative, and words written along lines were legible and without spatial distortions. This augmented writing behavior disappeared on day 21. The writing characteristic was more similar to automatic writing behavior than hypergraphia. Dissociation between speech and writing behavior was present in our patient. We suggest that a disconnection within the frontal-subcortical circuit contributed to the development of motor perseveration in writing.
Application of fractional calculus to modeling transient combustion of solid propellants
Kulish, Vladimir; Horák, Vladimír; Duc, Linh Do; Lukáč, Tomáš
2017-01-01
It was Zel'dovich, who first considered the transient combustion problem of solid propellants. Some more detailed models of that process have been developed afterwards. However, until today, numerical methods remain the prevailing tool for modeling unsteady combustion processes. In this work, it has been demonstrated that at least one of the problems of the unsteady combustion theory, which previously investigated numerically, can be treated analytically by means of fractional calculus. The solution for the unsteady speed of combustion thus derived is then compared with the solution obtained by numerical means in previous studies. The comparison shows a good agreement between those results, especially for small values of time.
A transient thermal model of a neutral buoyancy cryogenic fluid delivery system
Bue, Grant C.; Conger, Bruce S.
A thermal-performance model is presently used to evaluate a preliminary Neutral Buoyancy Cryogenic fluid-delivery system for underwater EVA training. Attention is given to the modeling of positional transients generated from the moving of internal components, including the control of cycling artifacts, as well as to the convection and boiling characteristics of the cryofluid, 250-psi N2/O2 gas, and water contained in the tank. Two piston designs are considered according to performance criteria; temperature and heat-transfer rate profiles are presented.
Ward, Adam S.; Kelleher, Christa A.; Mason, Seth J. K.; Wagener, Thorsten; McIntyre, Neil; McGlynn, Brian L.; Runkel, Robert L.; Payn, Robert A.
2017-01-01
Researchers and practitioners alike often need to understand and characterize how water and solutes move through a stream in terms of the relative importance of in-stream and near-stream storage and transport processes. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure. Storage estimates are commonly obtained using transient-storage models (TSMs) of the experimentally obtained solute-tracer test data. The TSM equations represent key transport and storage processes with a suite of numerical parameters. Parameter values are estimated via inverse modeling, in which parameter values are iteratively changed until model simulations closely match observed solute-tracer data. Several investigators have shown that TSM parameter estimates can be highly uncertain. When this is the case, parameter values cannot be used reliably to interpret stream-reach functioning. However, authors of most TSM studies do not evaluate or report parameter certainty. Here, we present a software tool linked to the One-dimensional Transport with Inflow and Storage (OTIS) model that enables researchers to conduct uncertainty analyses via Monte-Carlo parameter sampling and to visualize uncertainty and sensitivity results. We demonstrate application of our tool to 2 case studies and compare our results to output obtained from more traditional implementation of the OTIS model. We conclude by suggesting best practices for transient-storage modeling and recommend that future applications of TSMs include assessments of parameter certainty to support comparisons and more reliable interpretations of transport processes.
Wang, Weicheng
2013-11-01
A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.
Research Models in Developmental Behavioral Toxicology.
Dietrich, Kim N.; Pearson, Douglas T.
Developmental models currently used by child behavioral toxicologists and teratologists are inadequate to address current issues in these fields. Both child behavioral teratology and toxicology scientifically study the impact of exposure to toxic agents on behavior development: teratology focuses on prenatal exposure and postnatal behavior…
Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition
Siegel, Stefan G.; Seidel, J.?Rgen; Fagley, Casey; Luchtenburg, D. M.; Cohen, Kelly; McLaughlin, Thomas
For the systematic development of feedback flow controllers, a numerical model that captures the dynamic behaviour of the flow field to be controlled is required. This poses a particular challenge for flow fields where the dynamic behaviour is nonlinear, and the governing equations cannot easily be solved in closed form. This has led to many versions of low-dimensional modelling techniques, which we extend in this work to represent better the impact of actuation on the flow. For the benchmark problem of a circular cylinder wake in the laminar regime, we introduce a novel extension to the proper orthogonal decomposition (POD) procedure that facilitates mode construction from transient data sets. We demonstrate the performance of this new decomposition by applying it to a data set from the development of the limit cycle oscillation of a circular cylinder wake simulation as well as an ensemble of transient forced simulation results. The modes obtained from this decomposition, which we refer to as the double POD (DPOD) method, correctly track the changes of the spatial modes both during the evolution of the limit cycle and when forcing is applied by transverse translation of the cylinder. The mode amplitudes, which are obtained by projecting the original data sets onto the truncated DPOD modes, can be used to construct a dynamic mathematical model of the wake that accurately predicts the wake flow dynamics within the lock-in region at low forcing amplitudes. This low-dimensional model, derived using nonlinear artificial neural network based system identification methods, is robust and accurate and can be used to simulate the dynamic behaviour of the wake flow. We demonstrate this ability not just for unforced and open-loop forced data, but also for a feedback-controlled simulation that leads to a 90% reduction in lift fluctuations. This indicates the possibility of constructing accurate dynamic low-dimensional models for feedback control by using unforced and transient
Transient LOFA computations for a VHTR using one-twelfth core flow models
Energy Technology Data Exchange (ETDEWEB)
Tung, Yu-Hsin, E-mail: touushin@gmail.com [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan (China); Ferng, Yuh-Ming, E-mail: ymferng@ess.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan (China); Johnson, Richard W., E-mail: rwjohnson@cableone.net [Idaho National Laboratory, Idaho Falls, ID (United States); Chieng, Ching-Chang, E-mail: ccchieng@cityu.edu.hk [Dept of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon (Hong Kong)
2016-05-15
Highlights: • Investigation of flow and heat transfer for a 1/12 VHTR core model using CFD. • The high performance computing using ∼531 M sufficient refined mesh. • LOFA transient calculations employ both laminar and turbulence models to characterize natural convection. • The comparisons with small models suggest the need of large flow model. - Abstract: A prismatic gas-cooled very high temperature reactor (VHTR) is being developed under the next generation nuclear program. One of the concerns for the reactor design is the effects of a loss of flow accident (LOFA) where the coolant circulators are lost for some reason, causing a loss of forced coolant flow through the core. In the previous studies, the natural circulation in the whole reactor vessel (RV) was obtained by segmentation strategies if the computational fluid dynamic (CFD) analysis with a sufficiently refined mesh was conducted, due to the limits of computer capability. The computational domains in the previous studies were segmented sections which were small flow region models, such as 1/12 sectors, or a combination of a few number of the 1/12 sector (ranging from 2 to 15) using geometric symmetry, for a full dome region. The present paper investigates the flow and heat transfer for a much larger flow region model, a 1/12 core model, using high performance computing. The computation meshes for 1/12 sector and 1/12 reactor core are of 7.8 M and ∼531 M, respectively. Over 85,000 and 35,000 iterations for steady and transient (100 s) calculations are required to achieve convergence, respectively. ∼0.1 min CPU time was required using 192 computer cores for the 1/12 sector model and ∼1.3 min CPU time using 768 cores in parallel for the 1/12 core model, for every iteration, using ALPS, Advanced Large-scale Parallel Superclusters. For the LOFA transient condition, this study employs both laminar flow and different turbulence models to characterize the phenomenon of natural convection. The
Classification of Transient Events of Nuclear Reactor Using Hidden Markov Model
Directory of Open Access Journals (Sweden)
P. Bečvář
2000-01-01
Full Text Available This article describes a part of on-line system for a residual life of a pressure vessel shell. In this system there appears a need for determining of a real history of a pressure vessel described as a sequence of so called transient events. Each event (there are 23 events now is given by its template. It is theoretically necessary to compare data measured in a real history with all possible sequences of transient events. This solution in intractable and that is why a more sophisticated solution had to be used. Because this task is very similar to task of an automatic speech recognition, models and algorithms used to solve speech recognition tasks can be efficiently used to solve our task. Of course there are some different circumstances caused by the fact that the transient events take much longer than words and their number is much smaller than the number of words in speech recognition system's vocabulary. But the inspiration from speech recognition was very useful and the known algorithms rapidly decreased the design time.
Pohlman, Nicholas; Si, Yun
2014-11-01
The typical granular motion in circular tumblers is considered steady-state since there are no features to disrupt the top surface layer dimension. In polygon tumblers, however, the flowing layer is perpetually changing length, which creates unsteady conditions with corresponding change in the flow behavior. Prior work showed the minimization of free surface energy is independent of tumbler dimension, particle size, and rotation rate. This subsequent research reports on experiments where dimensional symmetry of the free surface in triangular and square tumblers with varying fill fractions do not necessarily produce the symmetric flow behaviors. Results of the quasi-2D tumbler experiment show that other dimensions aligned with gravity and the instantaneous free surface influence the phase when extrema for angle of repose and other flow features occur. The conclusion is that 50% fill fraction may produce geometric symmetry of dimensions, but the symmetry point of flow likely occurs at a lower fill fraction.
Are Infant-Toddler Social-Emotional and Behavioral Problems Transient?
Briggs-Gowan, Margaret J.; Carter, Alice S.; Bosson-Heenan, Joan; Guyer, Amanda E.; Horwitz, Sarah M.
2006-01-01
Objective: To examine the persistence of parent-reported social-emotional and behavioral problems in infants and toddlers. Method: The sample comprised 1,082 children ascertained from birth records. Children were 12 to 40 months old in year 1 (1998-1999) and 23 to 48 months old in year 2 (1999-2000). Eighty percent participated in year 1 and 91%…
Cleavage Fracture Modeling of Pressure Vessels under Transient Thermo-Mechanical Loading
Energy Technology Data Exchange (ETDEWEB)
Qian, Xudong [National University of Singapore; Dodds, Robert [University of Illinois; Yin, Shengjun [ORNL; Bass, Bennett Richard [ORNL
2008-02-01
The next generation of fracture assessment procedures for nuclear reactor pressure vessels (RPVs) will combine nonlinear analyses of crack-front response with stochastic treatments of crack size, shape, orientation, location, material properties and thermal-pressure transients. The projected computational demands needed to support stochastic approaches with detailed 3-D, nonlinear stress analyses of vessels containing defects appear well beyond current and near-term capabilities. In the interim, 2-D models become appealing to approximate certain classes of critical flaws in RPVs, and have computational demands within reach for stochastic frameworks. The present work focuses on the capability of 2-D models to provide values for the Weibull stress fracture parameter with accuracy comparable to those from very detailed 3-D models. Weibull stress approaches provide one route to connect nonlinear vessel response with fracture toughness values measured using small laboratory specimens. The embedded axial flaw located in the RPV wall near the cladding-vessel interface emerges from current linear-elastic, stochastic investigations as a critical contributor to the conditional probability of initiation. Three different types of 2-D models reflecting this configuration are subjected to a thermal-pressure transient characteristic of a critical pressurized thermal shock event. The plane-strain, 2-D models include: the modified boundary layer (MBL) model, the middle tension (M(T)) model, and the 2-D RPV model. The 2-D MBL model provides a high quality estimate for the Weibull stress but only in crack-front regions with a positive T-stress. For crack-front locations with low constraint (T-stress < 0), the M(T) specimen provides very accurate Weibull stress values but only for pressure load acting alone on the RPV. For RPVs under a combined thermal-pressure transient, Weibull stresses computed from the 2-D RPV model demonstrate close agreement with those computed from the
Cleavage Fracture Modeling of Pressure Vessels Under Transient Thermo-Mechanical Loading
Energy Technology Data Exchange (ETDEWEB)
Qian, Xudong [National University of Singapore; Dodds, Robert [University of Illinois; Yin, Shengjun [ORNL; Bass, Bennett Richard [ORNL
2008-01-01
Abstract The next generation of fracture assessment procedures for nuclear reactor pressure vessels (RPVs) will combine nonlinear analyses of crack-front response with stochastic treatments of crack size, shape, orientation, location, material properties and thermal-pressure transients. The projected computational demands needed to support stochastic approaches with detailed 3-D, nonlinear stress analyses of vessels containing defects appear well beyond current and near-term capabilities. In the interim, 2-D models be-come appealing to approximate certain classes of critical flaws in RPVs, and have computational demands within reach for stochastic frameworks. The present work focuses on the capability of 2-D models to provide values for the Weibull stress fracture parameter with accuracy comparable to those from very detailed 3-D models. Weibull stress approaches provide one route to connect nonlinear vessel response with fracture toughness values measured using small laboratory specimens. The embedded axial flaw located in the RPV wall near the cladding-vessel interface emerges from current linear-elastic, stochastic investigations as a critical contributor to the conditional probability of initiation. Three different types of 2-D models reflecting this configuration are subjected to a thermal-pressure transient characteristic of a critical pressurized thermal shock event. The plane-strain, 2-D models include: the modified boundary layer (MBL) model, the middle tension (M(T)) model, and the 2-D RPV model. The 2-D MBL model provides a high quality estimate for the Weibull stress but only in crack-front regions with a positive T-stress. For crack-front locations with low constraint (T-stress < 0), the M(T) specimen provides very accurate Weibull stress values but only for pressure load acting alone on the RPV. For RPVs under a combined thermal-pressure transient, Weibull stresses computed from the 2-D RPV model demonstrate close agreement with those computed from
Modeling structural dynamic behavior of SSME components
Kiefling, Larry A.; Saxon, J. B.; Prickett, T. L.
1991-01-01
FEM studies are presented of the nozzle and the low-pressure fuel-pump inducer designs for the Space Shuttle Main Engine (SSME) to analyze the effects of structural vibrations. FEM preprocessing software based on a CAD system is employed to develop a model of the component's sophisticated geometry. The nozzle geometry is also defined by means of the preprocessing technique and subsequently analyzed with respect to time-transient loading. The analysis is conducted with a Cray supercomputer using the SPAR/EAL FEM program. The investigation of the nozzle demonstrates the advantageous use of symmetry in the determination of nozzle response to SSME start-up transients. Plots of time vs strain are developed for gages on the nozzle wall and steerhorn tubing. The results of the inducer modeling are found to be adequate for investigating the component's principle modes, and the nozzle results indicate the suitability of the FEM techniques for optimizing the design of engine components.
Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu; Basu, Nandita B.; Li, Hong-Yi; Wang, Shao-Wen
2012-06-01
We have used a dynamic hydrologic network model, coupled with a transient storage zone solute transport model, to simulate dissolved nutrient retention processes during transient flow events at the channel network scale. We explored several scenarios with a combination of rainfall variability, and biological and geomorphic characteristics of the catchment, to understand the dominant factors that control the transport of dissolved nutrients (e.g., nitrate) along channel networks. While much experimental work has focused on studying nutrient retention during base flow periods in headwater streams, our model-based theoretical analyses, for the given parameter combinations used, suggest that high-flow periods can contribute substantially to overall nutrient retention, and that bulk nutrient retention is greater in larger rivers compared to headwaters. The relative efficiencies of nutrient retention during high- and low-flow periods vary due to changes in the relative sizes of the main channel and transient storage zones, as well as due to differences in the relative strengths of the various nutrient retention mechanisms operating in both zones. Our results also indicate that nutrient retention efficiency at all spatial scales of observation has strong dependence on within-year variability of streamflow (e.g., frequency and duration of high and low flows), as well as on the relative magnitudes of the coefficients that govern biogeochemical uptake processes: the more variable the streamflow, the greater the export of nutrients. Despite limitations of the model parameterizations, our results suggest that increased attention must be paid to field observations of the interactions between process hydrology and nutrient transport and reaction processes at a range of scales to assist with extrapolation of understandings and estimates gained from site-specific studies to ungauged basins across gradients in climate, human impacts, and landscape characteristics.
A multi-node model for transient heat transfer analysis of stratospheric airships
Alam, Mohammad Irfan; Pant, Rajkumar S.
2017-06-01
This paper describes a seven-node thermal model for transient heat transfer analysis of a solar powered stratospheric airship in floating condition. The solar array is modeled as a three node system, viz., outer layer, solar cell and substrate. The envelope is also modeled in three nodes, and the contained gas is considered as the seventh node. The heat transfer equations involving radiative, infra-red and conductive heat are solved simultaneously using a fourth order Runge-Kutta Method. The model can be used to study the effect of solar radiation, ambient wind, altitude and location of deployment of the airship on the temperature of the solar array. The model has been validated against some experimental data and numerical results quoted in literature. The effect of change in the value of some operational parameters on temperature of the solar array, and hence on its power output is also discussed.
Transient earth system model simulations as age-scale generators for paleo proxy data?
Timmermann, A.; Stockhecke, M.; Friedrich, T.; Menviel, L.
2015-12-01
Generating age models for paleo proxy data can be extremely difficult. Oftentimes assumptions are made which are based on hypothetical relationships between climate and orbital forcings. Whether these relationships (expressed in terms of correlation models) are physically justified and whether they are stationary is testable using transient climate model simulations. Several standard methods to generate age models for paleo-proxy data are scrutinized here, such as orbital tuning and synchronization to benthic stacks. To overcome some of the fundamental weaknesses of these methods we propose to use transient paleo climate model simulations to derive dynamically and physically consistent age models for paleo-proxy data. We illustrate this suggestion using 1) millennial-scale climate variations during MIS 2) orbital-scale climate variability during the past ~800 ka Ad 1) A physically forced MIS3 global hindcast model simulation with an earth system model, designed to match the reconstructed North Atlantic SST variability, can be used to determine the relative timing of different climate and biogeochemical variables at various locations with respect to an initial absolute reference timescale (GICC05 in our case). Corresponding leads and lags are a result of the physical equations of the climate system - not of oversimplisitic statistical assumptions (such as wiggle matching). The key assumption for this approach is that global patterns of Dansgaard-Oeschger variability are caused by centennial to millennial-scale AMOC variability. Ad 2) A transient earth system model simulation of the past ~800 ka is forced with observed greenhouse gas variations (on EDC3), orbital and estimated ice-sheet forcing. Simulated rainfall variations over the Eastern Mediterranean are compared with hydroclimate reconstructions from Lake Van. The simulated rainfall agrees well with the hydroclimate reconstruction (on the MoSto27 timescale) for the first 200 ka. Following this we demonstrate
Modeling the reversible sink effect in response to transient contaminant sources
Energy Technology Data Exchange (ETDEWEB)
Zhao, Dongye; Little, John C.; Hodgson, Alfred T.
2001-02-01
A physically based diffusion model is used to evaluate the sink effect of diffusion-controlled indoor materials and to predict the transient contaminant concentration in indoor air in response to several time-varying contaminant sources. For simplicity, it is assumed the predominant indoor material is a homogeneous slab, initially free of contaminant, and the air within the room is well mixed. The model enables transient volatile organic compound (VOC) concentrations to be predicted based on the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) of the sink. Model predictions are made for three scenarios, each mimicking a realistic situation in a building. Styrene, phenol, and naphthalene are used as representative VOCs. A styrene butadiene rubber (SBR) backed carpet, vinyl flooring (VF), and a polyurethane foam (PUF) carpet cushion are considered as typical indoor sinks. In scenarios involving a sinusoidal VOC input and a double exponential decaying input, the model predicts the sink has a modest impact for SBR/styrene, but the effect increases for VF/phenol and PUF/naphthalene. In contrast, for an episodic chemical spill, SBR is predicted to reduce the peak styrene concentration considerably. A parametric study reveals for systems involving a large equilibrium constant (K), the kinetic constant (D) will govern the shape of the resulting gas-phase concentration profile. On the other hand, for systems with a relaxed mass transfer resistance, K will dominate the profile.
Modeling and Experimental Validation of a Transient Direct Expansion Heat Pump
Directory of Open Access Journals (Sweden)
Clément Rousseau
2017-06-01
Full Text Available Geothermal heat pump technology is currently one of the most interesting technologies used to heat buildings. There are two designs used in the industry: geothermal heat pump using a secondary ground loop and Direct Expansion (DX ground source heat pump. The latter is less used, possibly because less research has been carried out for the design of this kind of heat pump. In this paper, a transient model using the Comsol Multiphysic of a DX ground heat pump is presented in heating mode with R22, and a comparison with experimental results is presented with a 24-hour test. It is shown that the model was adequately validated by our experiment with only a maximum difference of 15%. Following this validation, a parametric analysis was realised on the geometry of the borehole. This study concluded that to have the best heat extraction of the ground, the pipes shank spacing need to be important without increasing the borehole diameter. Keywords: Direct Expansion geothermal heat pump, Modeling, R22 Article History: Received January 16th 2017; Received in revised form May 28th 2017; Accepted June 6th 2017; Available online How to Cite This Article: Rousseau, C., Fannou, J.L.C., Lamarche, L. and Kajl, S. (2017 Modeling and Experimental Validation of a Transient Direct Expansion Heat Pump. International Journal of Renewable Energy Develeopment, 6(2, 145-155. https://doi.org/10.14710/ijred.6.2.145-155
Directory of Open Access Journals (Sweden)
Ming Zeng
2014-01-01
Full Text Available As the significant connection between the external and internal of the railway container terminal, the operation performance of the gate system plays an important role in the entire system. So the gate congestion will bring many losses to the railway container terminal, even the entire railway container freight system. In this paper, the queue length and the average waiting time of the railway container terminal gate system, as well as the optimal number of service channels during the different time period, are investigated. An M/Ek/n transient queuing model is developed based on the distribution of the arrival time interval and the service time; besides the transient solutions are acquired by the equally likely combinations (ELC heuristic method. Then the model is integrated into an optimization framework to obtain the optimal operation schemes. Finally, some computational experiments are conducted for model validation, sensitivity testing, and system optimization. Experimental results indicate that the model can provide the accurate reflection to the operation situation of the railway container terminal gate system, and the approach can yield the optimal number of service channels within the reasonable computation time.
Functional Behavioral Assessment: A School Based Model.
Asmus, Jennifer M.; Vollmer, Timothy R.; Borrero, John C.
2002-01-01
This article begins by discussing requirements for functional behavioral assessment under the Individuals with Disabilities Education Act and then describes a comprehensive model for the application of behavior analysis in the schools. The model includes descriptive assessment, functional analysis, and intervention and involves the participation…
Modeling Architectural Patterns' Behavior Using Architectural Primitives
Kamal, Ahmad Waqas; Avgeriou, Paris; Morrison, R; Balasubramaniam, D; Falkner, K
2008-01-01
Architectural patterns have an impact on both the structure and the behavior of a system at the architecture design level. However, it is challenging to model patterns' behavior in a systematic way because modeling languages do not provide the appropriate abstractions and because each pattern
Modeling Architectural Patterns’ Behavior Using Architectural Primitives
Waqas Kamal, Ahmad; Avgeriou, Paris
2008-01-01
Architectural patterns have an impact on both the structure and the behavior of a system at the architecture design level. However, it is challenging to model patterns’ behavior in a systematic way because modeling languages do not provide the appropriate abstractions and because each pattern
Directory of Open Access Journals (Sweden)
Oramus Piotr
2015-09-01
Full Text Available Electric arc is a complex phenomenon occurring during the current interruption process in the power system. Therefore performing digital simulations is often necessary to analyse transient conditions in power system during switching operations. This paper deals with the electric arc modelling and its implementation in simulation software for transient analyses during switching conditions in power system. Cassie, Cassie-Mayr as well as Schwarz-Avdonin equations describing the behaviour of the electric arc during the current interruption process have been implemented in EMTP-ATP simulation software and presented in this paper. The models developed have been used for transient simulations to analyse impact of the particular model and its parameters on Transient Recovery Voltage in different switching scenarios: during shunt reactor switching-off as well as during capacitor bank current switching-off. The selected simulation cases represent typical practical scenarios for inductive and capacitive currents breaking, respectively.
Transient behavior of a scaled RCCS test facility under postulated fault and accident scenarios
Energy Technology Data Exchange (ETDEWEB)
Lisowski, Darius D.; Hu, Rui; Bucknor, Matthew D.; Gerardi, Craig D.; Farmer, Mitch T.
2016-01-01
Tests were performed on the Natural convection Shutdown heat removal Test Facility (NSTF) to simulate design basis accident and postulated fault scenarios. Residing at Argonne National Laboratory, the NSTF stands nearly 26-m in total height and reflects a ½ scale reactor cavity cooling system (RCCS) for high temperature gas cooled reactors. The following manuscript details three test conditions performed on the experimental test facility. The first simulated the reactor pressure vessel (RPV) boundary condition during depressurized conduction cool down accident with small primary leak, and was repeated during both winter and summer seasons. The second examined a short-circuit break between the inlet and outlet flow paths, and was performed in three incremental stages of nominal flow area break size. The third and final test case studied system behavior with varying amounts of cooling channel blockages, up to and including 50% flow areas. Nominal component temperatures, heat removal performance, and system stability will be presented to characterize the behavior at these conditions.
Modeling startup and shutdown transient of the microlinear piezo drive via ANSYS
Azin, A. V.; Bogdanov, E. P.; Rikkonen, S. V.; Ponomarev, S. V.; Khramtsov, A. M.
2017-02-01
The article describes the construction-design of the micro linear piezo drive intended for a peripheral cord tensioner in the reflecting surface shape regulator system for large-sized transformable spacecraft antenna reflectors. The research target -the development method of modeling startup and shutdown transient of the micro linear piezo drive. This method is based on application software package ANSYS. The method embraces a detailed description of the calculation stages to determine the operating characteristics of the designed piezo drive. Based on the numerical solutions, the time characteristics of the designed piezo drive are determined.
Influence of main variables modifications on accident transient based on AP1000-like MELCOR model
Malicki, M.; Pieńkowski, L.
2016-09-01
Analysis of Severe Accidents (SA) is one of the most important parts of nuclear safety researches. MELCOR is a validated system code for severe accident analysis and as such it was used to obtain presented results. Analysed AP1000 model is based on publicly available data only. Sensitivity analysis was done for the main variables of primary reactor coolant system to find their influence on accident transient. This kind of analysis helps to find weak points of reactor design and the model itself. Performed analysis is a base for creation of Small Modular Reactor (SMR) generic model which will be the next step of the investigation aiming to estimate safety level of different reactors. Results clearly help to establish a range of boundary conditions for main the variables in future SMR model.
Naghshine, Babak. B.; Kiani, Amirkianoosh
2017-02-01
Laser processing is one of the most popular small-scale patterning methods and has many applications in semiconductor device fabrication and biomedical engineering. Numerical modelling of this process can be used for better understanding of the process, optimization, and predicting the quality of the final product. An accurate 3D model is presented here for short laser pulses that can predict the ablation depth and temperature distribution on any section of the material in a minimal amount of time. In this transient model, variations of thermal properties, plasma shielding, and phase change are considered. Ablation depth was measured using a 3D optical profiler. Calculated depths are in good agreement with measured values on laser treated titanium surfaces. The proposed model can be applied to a wide range of materials and laser systems.
Mudunuru, M K; Harp, D R; Guthrie, G D; Viswanathan, H S
2016-01-01
The goal of this paper is to assess the utility of Reduced-Order Models (ROMs) developed from 3D physics-based models for predicting transient thermal power output for an enhanced geothermal reservoir while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on Latin Hypercube Sampling (LHS) of model inputs drawn from uniform probability distributions. Key sensitive parameters are identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. The inputs for ROMs are based on these key sensitive parameters. The ROMs are then used to evaluate the influence of subsurface attributes on thermal power production curves. The resulting ROMs are compared with field-data and the detailed physics-based numerical simulations. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production cu...
Directory of Open Access Journals (Sweden)
Benck Sylvie
2013-01-01
Full Text Available The evaluation of the radiation hazards on components used in space environment is based on the knowledge of the radiation level encountered on orbit. The models that are widely used to assess the near-Earth environment for a given mission are empirical trapped radiation models derived from a compilation of spacecraft measurements. However, these models are static and hence are not suited for describing the short timescale variations of geomagnetic conditions. The transient observation-based particle (TOP-model tends to break with this classical approach by introducing dynamic features based on the observation and characterization of transient particle flux events in addition to classical mapping of steady-state flux levels. In order to get a preliminary version of an operational model (actually only available for electrons at low Earth orbit, LEO, (i the steady-state flux level, (ii the flux enhancements probability distribution functions, and (iii the flux decay-time constants (at given energy and positions in space were determined, and an original dynamic model skeleton with these input parameters has been developed. The methodology is fully described and first flux predictions from the model are presented. In order to evaluate the net effects of radiation on a component, it is important to have an efficient tool that calculates the transfer of the outer radiation environment through the spacecraft material, toward the location of the component under investigation. Using the TOP-model space radiation fluxes and the transmitted radiation environment characteristics derived through GEANT4 calculations, a case study for electron flux/dose variations in a small silicon volume is performed. Potential cases are assessed where the dynamic of the spacecraft radiation environment may have an impact on the observed radiation effects.
Simulation of transient behavior of corium pool in the lower plenum of RPV using COMPASS
Energy Technology Data Exchange (ETDEWEB)
Son, Dong Gun; Bae, Jun Ho; Park, Rae Jun; Kim, Dong Ha; Kim, Hwan Yeol [KAERI, Daejeon (Korea, Republic of)
2016-05-15
Development of an integrated severe accident analysis code has been started by the collaboration of three institutes in Korea. KAERI (Korea Atomic Energy Research Institute) is responsible for developing modules related to the in-vessel phenomena, including the corium behavior in the lower plenum of RPV. We developed computational software called COMPASS (COre Meltdown Progression Accident Simulation Software). SIMPLE module was created with the mass and energy equations of particulate debris bed, metallic molten pool, oxidic molten pool. It receives thermo-hydraulic conditions of the lower plenum, then returns total heat to the coolant and surrounding structures. After relocation of the corium to the lower plenum, most of them were remain particulate debris bed. RPV wall ablation starts after the oxidic materials were relocated, and there is solidified crust where the oxidic pool contact with RPV wall.
Experimental study on transient behavior of semi-open two-phase thermosyphon
Institute of Scientific and Technical Information of China (English)
朱华; 王建新; 张巧惠; 屠传经
2004-01-01
An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, shutdown and lack of water were studied to get complete understanding of its thermal characteristics. The variation of wall temperature, heat-exchange condition and pressure fluctuations of semi-open two-phase thermosyphons showed that the startup of SOTPT needs about 60-70 min; the startup speed of SOTPT is determined by the startup speed of the condensation section; the average pressure in the heat pipe is equal to the environmental pressure usually; the shutdown of SOTPT needs about 30-50min; a semi-open two-phase thermosyphon has good response to lack of water accident.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
Transient flow model and pressure dynamic features of tree-shaped fractal re- servoirs
Institute of Scientific and Technical Information of China (English)
TAN Xiao-hua; LI Xiao-ping
2014-01-01
A transient flow model of tree-shaped fractal reservoirs is built by embedding a fracture network simulated by a tree-shaped fractal network into a matrix system. The model can be solved using the Laplace conversion method. The dimensionless bottom hole pressure can be obtained using the Stehfest numerical inversion method. The bi-logarithmic type curves for the tree-shaped fractal reservoirs are thus obtained. The pressure transient responses under different fractal factors are discussed. The factors with a primary effect on the inter-porosity flow regime include the initial branch numberN, the length ratioα, and the branch angleθ. The diameter ratioβ has a significant effect on the fracture radial flow, the inter-porosity and the total system radial flow regimes. The total branch levelM of the network mainly influences the total system radial flow regime. The model presented in this paper provides a new methodology for analyzing and predicting the pressure dynamic characteristics of naturally fractured reservoirs.
Directory of Open Access Journals (Sweden)
T. F. Yusaf
2005-01-01
Full Text Available A quasi-one dimensional engine cycle simulation program was developed to predict the transient heat flux during combustion in a spark ignition engine. A two-zone heat release model was utilized to model the combustion process inside the combustion chamber. The fuel, air and burned gas properties throughout the engine cycle were calculated using variable specific heats. The transient heat flux inside the combustion chamber due to the change in the in-cylinder gas temperature and pressure during combustion was determined using the Woschni heat transfer model. The program was written in MATLAB together with the Graphical User Interface (GUI. Numerical results were compared with the experimental measurements and good agreement was obtained. Four thermocouples were used and positioned equi-spaced at 5mm intervals along a ray from the spark plug location on the engine head. These thermocouples were able to capture the heat flux release by the burned gas to the wall during the combustion process including the cycle-to-cycle variations. Pressure sensor was installed at the engine head to capture the pressure change throughout the cycle.
Directory of Open Access Journals (Sweden)
Chen An
2017-01-01
Full Text Available In this work, we studied the transient combined convection and radiation of multilayer spherical media with volumetric heat generation, extending the previous work on the particular case of a spherical body subjected to radiative cooling. The proposed lumped models were obtained through two-point Hermite approximations for the average temperature and heat flux in each layer. For the average temperature, the plain trapezoidal rule (H0,0 approximation was employed in all layers, except for the innermost layer, where the second-order two-side corrected trapezoidal rule (H2,1 approximation was utilized. For the heat flux, the plain trapezoidal rule (H0,0 approximation was employed for all the layers. The transient heat conduction in a TRISO-coated fuel particle being composed of five layers (namely, fuel kernel, buffer of porous carbon, inner pyrocarbon, silicon carbide, and outer pyrocarbon was analyzed using the proposed lumped models, the results of which were verified by comparison with the finite difference solution of the original distributed parameter model. Parametric studies were conducted to examine the effects of the dimensionless heat generation rate, the radiation-conduction parameter, and the Biot number on the temporal variations of the average temperatures.
Transient PVT measurements and model predictions for vessel heat transfer. Part II.
Energy Technology Data Exchange (ETDEWEB)
Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.
2010-07-01
Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.
Multiaxial behavior of foams - Experiments and modeling
Maheo, Laurent; Guérard, Sandra; Rio, Gérard; Donnard, Adrien; Viot, Philippe
2015-09-01
Cellular materials are strongly related to pressure level inside the material. It is therefore important to use experiments which can highlight (i) the pressure-volume behavior, (ii) the shear-shape behavior for different pressure level. Authors propose to use hydrostatic compressive, shear and combined pressure-shear tests to determine cellular materials behavior. Finite Element Modeling must take into account these behavior specificities. Authors chose to use a behavior law with a Hyperelastic, a Viscous and a Hysteretic contributions. Specific developments has been performed on the Hyperelastic one by separating the spherical and the deviatoric part to take into account volume change and shape change characteristics of cellular materials.
Energy Technology Data Exchange (ETDEWEB)
Stoller, R.E.; Grossbeck, M.L.; Mansur, L.K.
1990-01-01
A theoretical model has been developed using the reaction rate theory of radiation effects to explain experimental results that showed higher than expected values of irradiation creep at low temperatures in the Oak Ridge Research Reactor. The customary assumption that the point defect concentrations are at steady state was not made; rather, the time dependence of the vacancy and interstitial concentrations and the creep rate were explicitly calculated. For temperatures below about 100 to 200{degree}C, the time required for the vacancy concentration to reach steady state exceeds the duration of the experiment. For example, if materials parameters typical of austenitic stainless steel are used, the calculated vacancy transient dose at 100{degree}C is about 100 dpa. At 550{degree}C this transient is over by 10{sup {minus}8} dpa. During the time that the vacancy population remains lower than its steady state value, dislocation climb is increased since defects of primarily one type are being absorbed. Using the time-dependent point defect concentrations, the dislocation climb velocity has been calculated as a function of time and a climb-enabled glide creep model had been invoked. The extended transient time for the vacancies leads to high creep rates at low temperatures. In agreement with the experimental observations, a minimum in the temperature dependence of creep is predicted at a temperature between 50 and 350{degree}C. The temperature at which the minimum occurs decreases as the irradiation dose increases. Predicted values of creep at 8 dpa are in good agreement with the results of the ORR-MFE-6J/7J experiment.
Directory of Open Access Journals (Sweden)
Itissam ABUIZIAH
2014-03-01
Full Text Available When transient conditions (water hammer exist, the life expectancy of the system can be adversely impacted, resulting in pump and valve failures and catastrophic pipe rupture. Hence, transient control has become an essential requirement for ensuring safe operation of water pipeline systems. To protect the pipeline systems from transient effects, an accurate analysis and suitable protection devices should be used. This paper presents the problem of modeling and simulation of transient phenomena in hydraulic systems based on the characteristics method. Also, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occuring in the transient. We applied this model for two main pipeline systems: Valve and pump combined with a simple surge tank connected to reservoir. The results obtained by using this model indicate that the model is an efficient tool for water hammer analysis. Moreover, using a simple surge tank reduces the unfavorable effects of transients by reducing pressure fluctuations.
Directory of Open Access Journals (Sweden)
Andrzej Rusek
2008-01-01
Full Text Available The mathematical model of cylindrical linear induction motor (C-LIM fed via frequency converter is presented in the paper. The model was developed in order to analyze numerically the transient states. Problems concerning dynamics of ac-machines especially linear induction motor are presented in [1 – 7]. Development of C-LIM mathematical model is based on circuit method and analogy to rotary induction motor. The analogy between both: (a stator and rotor windings of rotary induction motor and (b winding of primary part of C-LIM (inductor and closed current circuits in external secondary part of C-LIM (race is taken into consideration. The equations of C-LIM mathematical model are presented as matrix together with equations expressing each vector separately. A computational analysis of selected transient states of C-LIM fed via frequency converter is presented in the paper. Two typical examples of C-LIM operation are considered for the analysis: (a starting the motor at various static loads and various synchronous velocities and (b reverse of the motor at the same operation conditions. Results of simulation are presented as transient responses including transient electromagnetic force, transient linear velocity and transient phase current.
Directory of Open Access Journals (Sweden)
Clare Paterson
Full Text Available Neuregulin 3 (NRG3, a specific ligand for ErbB4 and a neuronal-enriched neurotrophin is implicated in the genetic predisposition to a broad spectrum of neurodevelopmental, neurocognitive and neuropsychiatric disorders, including Alzheimer's disease, autism and schizophrenia. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, accompanied by increased expression of prefrontal cortical NRG3. Despite our expanding knowledge of genetic involvement of NRG3 in neurological disorders, little is known about the neurodevelopmental mechanisms of risk. Here we exploited the fact that a paralog of NRG3, NRG1, readily penetrates the murine blood brain barrier (BBB. In this study we synthesized the bioactive epidermal growth factor (EGF domain of NRG3, and using previously validated in-vivo peripheral injection methodologies in neonatal mice, demonstrate that NRG3 successfully crosses the BBB, where it activates its receptor ErbB4 and downstream Akt signaling at levels of bioactivity comparable to NRG1. To determine the impact of NRG3 overexpression during one critical developmental window, C57BL/6 male mice were subcutaneously injected daily with NRG1-EGF, NRG3-EGF or vehicle from postnatal days 2-10. Mice were tested in adulthood using a comprehensive battery of behavioral tasks relevant to neurocognitive and psychiatric disorders. In agreement with previous studies, developmental overexposure to NRG1 induced multiple non-CNS mediated peripheral effects as well as severely disrupting performance of prepulse inhibition of the startle response. In contrast, NRG3 had no effect on any peripheral measures investigated or sensorimotor gating. Specifically, developmental NRG3 overexposure produced an anxiogenic-like phenotype and deficits in social behavior in adulthood. These results provide primary data to support a role for NRG3 in brain development and function, which appears to
Brunner, Clément; Isabel, Clothilde; Martin, Abraham; Dussaux, Clara; Savoye, Anne; Emmrich, Julius; Montaldo, Gabriel; Mas, Jean-Louis; Baron, Jean-Claude; Urban, Alan
2017-01-01
Following middle cerebral artery occlusion, tissue outcome ranges from normal to infarcted depending on depth and duration of hypoperfusion as well as occurrence and efficiency of reperfusion. However, the precise time course of these changes in relation to tissue and behavioral outcome remains unsettled. To address these issues, a three-dimensional wide field-of-view and real-time quantitative functional imaging technique able to map perfusion in the rodent brain would be desirable. Here, we applied functional ultrasound imaging, a novel approach to map relative cerebral blood volume without contrast agent, in a rat model of brief proximal transient middle cerebral artery occlusion to assess perfusion in penetrating arterioles and venules acutely and over six days thanks to a thinned-skull preparation. Functional ultrasound imaging efficiently mapped the acute changes in relative cerebral blood volume during occlusion and following reperfusion with high spatial resolution (100 µm), notably documenting marked focal decreases during occlusion, and was able to chart the fine dynamics of tissue reperfusion (rate: one frame/5 s) in the individual rat. No behavioral and only mild post-mortem immunofluorescence changes were observed. Our study suggests functional ultrasound is a particularly well-adapted imaging technique to study cerebral perfusion in acute experimental stroke longitudinally from the hyper-acute up to the chronic stage in the same subject.
Lee; Look; Harris; McCormick
1997-10-01
29Si-NMR, conductimetry, and photon correlation spectroscopy are used to monitor the temporal profile of intermediate concentrations in Stober synthesis (i.e., ammonia-catalyzed hydrolysis of tetraethoxysilane in a batch reactor). Extreme models of the process are assessed by examining the effect of initial composition on these transients (over a wider range of composition than attempted previously). The trends with initial composition suggest that the nucleation is rate-limited by the hydrolysis of the singly hydrolyzed monomer, the product of which probably phase separates. Moreover, the trends are consistent with the aggregation model discussed by G. H. Bogush and C. F. Zukoski (J. Colloid Interface Sci. 142, 1, 19 (1991) and by M. T. Harris (Ph.D. dissertation, Univ. of Tennessee, 1992). The trends are not consistent with a growth model without aggregation. Copyright 1997 Academic Press. Copyright 1997Academic Press
FAST: A combined NOC and transient fuel model for CANDU fuel
Energy Technology Data Exchange (ETDEWEB)
Prudil, A.; Lewis, B.J.; Chan, P.K., E-mail: Paul.Chan@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Baschuk, J.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)
2013-07-01
The Fuel And Sheath modelling Tool (FAST) is a fuel performance code that is being developed for both normal and transient operating conditions. FAST includes models for heat generation and transport, thermal-expansion, elastic strain, densification, fission product swelling, pellet relocation, contact, grain growth, fission gas release, gas and coolant pressure and sheath creep. These models have been implemented using the Comsol finite-element platform. The equations are solved on a two-dimensional (radial-axial) geometry of a fuel pellet and sheath. FAST has undergone a proof of concept validation against experimental data and comparison to the ELESTRES and ELOCA fuel performance codes. The results show excellent agreement with experimental measurements and the above stated IST- codes. (author)
Energy Technology Data Exchange (ETDEWEB)
Karaagac, U.; Saad, H.; Mahseredjian, J. [Ecole Polytechnique de Montreal, Montreal, QC (Canada); Jensen, S.; Cai, L. [REpower Systems AG, Hamburg (Germany)
2012-07-01
The large number of switching elements in the modular multilevel converter (MMC) is a challenging problem for modeling the MMC-HVDC systems in electromagnetic transient type (EMT-type) programs. The modeling complexity increases even further when MMC-HVDC systems are used to integrate offshore wind farms (OWFs) with power electronics based wind energy converters, such as doubly-fed induction generators (DFIGs). This paper compares the computational performances of various combinations of MMC-HVDC and OWF models. Practical onshore ac fault scenarios are simulated for an OWF composed of DFIG type wind turbines and connected to a practical ac grid through a point-to-point MMC-HVDC system. (orig.)
Identification of relaxation parameter of a physical model of vein from fluid transient experiment
Directory of Open Access Journals (Sweden)
Hromádka David
2014-03-01
Full Text Available This paper presents a new fluid transient inflation experiment applied on a physical model of vein (short latex tube, 5mm diameter. Aim of experiments is assessment of wall viscous behaviour from attenuated pulsation of the tested sample. Experimental data obtained from dynamic test are compared with numerical simulation and a viscoelastic parameter of Haslach constitutive model is identified. It is verified that the viscoelasticity of wall has a greater impact to the damping of pulsation than the viscosity of water filling the sample and the attached capillary. Volume of sample depends on internal pressure measured by a pressure transducer. The maximum dissipation constitutive model of viscoelastic wall sample was employed for description of viscoelastic behaviour. Frequency of natural oscillation of pressure is determined by inertia of water column within the tested sample and attached capillary and by the tested specimen stiffness. The pressure pulsations are initiated by a sudden pressure drop at water surface.
Modeling of particle layer detachment-Role of transient kinetic effects
Institute of Scientific and Technical Information of China (English)
Qian Zhang; Eberhard Schmidt
2009-01-01
Particle layers tend to build up on walls in many filtration and separation processes, calling for periodic removal in order to keep the apparatus running. Important factors are the adhesion of the layer on the substrate and the cohesion of the particles in the layer. Models describing such layer detachment generally assume constant and homogeneous conditions for the forces acting on the layer. But in reality detachment is extremely non-stationary concerning place and time, primarily due to changing conditions of the detaching forces on the one hand and changes in the particle layer morphology on the other. This paper describes a model and a simulation based on this model considering such transient kinetic effects, for which some computing results are presented and discussed.
Organization customer behavior: Elected models
Directory of Open Access Journals (Sweden)
Maričić Branko
2008-01-01
Full Text Available Paper is dealing with business-to-business marketing issues with particular attention to some of models oriented to explain differences relative to FMCG marketing. Author describe the core principles of selected models including their basic features. In this paper some of models are in focus - Window and Webster-Window model as well as Sheets model, Nielsen model and Multivariation tools.
Khan, M Nisa
2016-02-10
We expansively investigate thermal behaviors of various general-purpose light-emitting diode (LED) lamps and apply our measured results, validated by simulation, to establish lamp design rules for optimizing their optical and thermal properties. These design rules provide the means to minimize lumen depreciation over time by minimizing the periods for lamps to reach thermal steady-state while maintaining their high luminous efficacy and omnidirectional light distribution capability. While it is well known that minimizing the junction temperature of an LED leads to a longer lifetime and an increased lumen output, our study demonstrates, for the first time, to the best of our knowledge, that it is also important to minimize the time it takes to reach thermal equilibrium because doing so minimizes lumen depreciation and enhances light output and color stability during operation. Specifically, we have found that, in addition to inadequate heat-sink fin areas for a lamp configuration, LEDs mounted on multiple boards, as opposed to a single board, lead to longer periods for reaching thermal equilibrium contributing to larger lumen depreciation.
U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...
U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...
Stabilities of transients in networks with wind energy. Modelization for operation
Energy Technology Data Exchange (ETDEWEB)
Usaola, J.; Ledesma, P.; Rodriguez, J. M.; Fernandez, J. l.; Beato, D.; Iturbe, R.; Wilhelmi, J. R.
2004-07-01
Two main issues are addressed in this paper. First, models for dynamic studies will be described, justifying simplifications that cannot be performed for other studies, such as power quality studies. Variable speed wind turbines (with doubly fed induction generator), very widely used nowadays, require also an adequate modelling of the control system, according to the time constants and integration step that are used in transient stability studies. Secondly, transient stability studies involving wind energy conversion systems are presented. These studies will include fixed speed and variable speed devices, and several situations on the grid are considered. The results shall be compared and conclusions are drawn out from them. The problem of the required protections is addressed, in relation with the requirements of connection standards for wind energy conversion systems. These subjects will be applied to the Spanish situation, where a great amount of wind penetration is foreseen for the next years. Index terms: Wind power generation, power system stability, doubly fed induction generation. (Author)
Micromechanical Behavior and Modelling of Granular Soil
1989-07-01
elasticity, hypoelasticity , plasticity and viscoplasticity. Despite the large number of models , there is no consensus yet within the research community on...Classification) (U) Micromechanical Behavior and Modelling of Granular MOWo I... 12. PERSONAL AUTHOR(S) Emmanuel Petrakis and Ricardo Dobry 13a. TYPE OF...Institute (RPI) on the behavior and modelling of granular media is summarized. The final objective is to develol a constitutive law for granular soil
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.
Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri
2015-10-01
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts
Variable thickness transient ground-water flow model. Volume 3. Program listings
Energy Technology Data Exchange (ETDEWEB)
Reisenauer, A.E.
1979-12-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.
Modeling admissible behavior using event signals.
Pinzon, Luz; Jafari, Mohsen A; Hanisch, Hans-Michael; Zhao, Peng
2004-06-01
We describe here how to obtain a model for the admissible behavior of a discrete event system that is represented by a safe Petri net (PN) model. The transitions of this PN model may be controllable or uncontrollable. Also given is a sequential specification which is modeled with a special state machine. Then, using the condition and event arcs of net condition/event systems, a combined model of plant and specification is obtained. We use only the structure of this combined model to develop a method which gives the admissible behavior of the system. Thus, we avoid the complexity of a complete state enumeration.
Directory of Open Access Journals (Sweden)
Mojtaba Darabi
2016-06-01
Full Text Available Considering the fact that a large volume of iron reserve in the Sechahoon Iron Mine in Yazd Province has located under the water table, it is necessary to conduct a comprehensive study on water flow within the pit and its surroundings. The conceptual model of the aquifer was created using surface and underground geological information compared with water table data of the area of interest. In the data preparation stages, in order to create the numerical model, Logan and Lufran tests were studied to determine the hydrodynamic coefficients of the layers, precipitation and evaporation were investigated, and fractures and faults of the region, as a medium for flow channels in the hard formation, were also studied. The model was created in a transient state between 2000 and 2014. To validate its results, the water table was measured 4 times in the last 4 months of 2014. Considering the complexities in the heterogeneous fractured aquifer of the study area, numerical modeling results for the basin in a transient state present 90 percent correlation with field studies. Having investigated the water balance in the region, the boundary condition of the model was determined as the input water from the eastern south and the runoff water in the western north of the region. Since the general trend of faults in the area is north-south, variation in the water table is slight on north-south and intense on the east-west direction. On the other hand, due to the fact that the maximum flow is along the faults and fractures, the water table contour lines in different locations over the region are closed.
Energy Technology Data Exchange (ETDEWEB)
Hamidouche, T., E-mail: t.hamidouche@crna.d [Division de l' Environnement, de la Surete et des Dechets Radioactifs, Centre de Recherche Nucleaire d' Alger, 02 Boulevard Frantz Fanon, BP 399 Alger RP (Algeria); Bousbia-Salah, A. [DIMNP - University of Pisa, Via Diotisalvi 02, 56126 Pisa (Italy)
2010-03-15
The current study emphasizes an aspect related to the assessment of a model embedded in a computer code. The study concerns more particularly the point neutron kinetics model of the RELAP5/Mod3 code which is worldwide used. The model is assessed against positive reactivity insertion transient taking into account calculations involving thermal-hydraulic feedback as well as transients with no feedback effects. It was concluded that the RELAP5 point kinetics model provides unphysical power evolution trends due most probably to a bug during the programming process.
Stankiewicz, Witold; Morzyński, Marek; Kotecki, Krzysztof; Noack, Bernd R.
2017-04-01
We present a low-dimensional Galerkin model with state-dependent modes capturing linear and nonlinear dynamics. Departure point is a direct numerical simulation of the three-dimensional incompressible flow around a sphere at Reynolds numbers 400. This solution starts near the unstable steady Navier-Stokes solution and converges to a periodic limit cycle. The investigated Galerkin models are based on the dynamic mode decomposition (DMD) and derive the dynamical system from first principles, the Navier-Stokes equations. A DMD model with training data from the initial linear transient fails to predict the limit cycle. Conversely, a model from limit-cycle data underpredicts the initial growth rate roughly by a factor 5. Key enablers for uniform accuracy throughout the transient are a continuous mode interpolation between both oscillatory fluctuations and the addition of a shift mode. This interpolated model is shown to capture both the transient growth of the oscillation and the limit cycle.
TRANSIENT ELECTRONICS CATEGORIZATION
2017-08-24
definitions of what it means to be transient. The purpose of this technical report is to provide a background of the issues related to transient...In this section, we will attempt to identify these parameters and provide preliminary definitions for categories of transience behavior. Transient...programmable lifetimes. Ideally , such materials with expiration dates will deconstruct themselves into harmless and invisible remnants. The technology base
Modelling lightcurves and spectra of transient Anomalous X-ray Pulsars
Zane, S; Turolla, R; Israel, G L; Nobili, L; Stella, L
2011-01-01
We present the first detailed joint modelling of both the timing and spectral properties during the outburst decay of transient anomalous X-ray pulsars. We consider the two sources XTE J1810-197 and CXOU J164710.2-455216, and describe the source decline in the framework of a twisted magnetosphere model, using Monte Carlo simulations of magnetospheric scattering and mimicking localized heat deposition at the NS surface following the activity. Our results support a picture in which a limited portion of the star surface close to one of the magnetic poles is heated at the outburst onset. The subsequent evolution is driven both by the cooling/varying size of the heated cap and by a progressive untwisting of the magnetosphere.
Modelling lightcurves and spectra of transient Anomalous X-ray Pulsars
Zane, S.; Albano, A.; Turolla, R.; Israel, G. L.; Nobili, L.; Stella, L.
2011-09-01
We present the first detailed joint modelling of both the timing and spectral properties during the outburst decay of transient anomalous X-ray pulsars. We consider the two sources XTE J1810-197 and CXOU J164710.2-455216, and describe the source decline in the framework of a twisted magnetosphere model, using Monte Carlo simulations of magnetospheric scattering and mimicking localized heat deposition at the NS surface following the activity. Our results support a picture in which a limited portion of the star surface close to one of the magnetic poles is heated at the outburst onset. The subsequent evolution is driven both by the cooling/varying size of the heated cap and by a progressive untwisting of the magnetosphere.
Improved pump turbine transient behaviour prediction using a Thoma number-dependent hillchart model
Manderla, M.; Kiniger, K.; Koutnik, J.
2014-03-01
Water hammer phenomena are important issues for high head hydro power plants. Especially, if several reversible pump-turbines are connected to the same waterways there may be strong interactions between the hydraulic machines. The prediction and coverage of all relevant load cases is challenging and difficult using classical simulation models. On the basis of a recent pump-storage project, dynamic measurements motivate an improved modeling approach making use of the Thoma number dependency of the actual turbine behaviour. The proposed approach is validated for several transient scenarios and turns out to increase correlation between measurement and simulation results significantly. By applying a fully automated simulation procedure broad operating ranges can be covered which provides a consistent insight into critical load case scenarios. This finally allows the optimization of the closing strategy and hence the overall power plant performance.
Ocean Heat and Carbon Uptake in Transient Climate Change: Identifying Model Uncertainty
Romanou, Anastasia; Marshall, John
2015-01-01
Global warming on decadal and centennial timescales is mediated and ameliorated by the oceansequestering heat and carbon into its interior. Transient climate change is a function of the efficiency by whichanthropogenic heat and carbon are transported away from the surface into the ocean interior (Hansen et al. 1985).Gregory and Mitchell (1997) and Raper et al. (2002) were the first to identify the importance of the ocean heat uptakeefficiency in transient climate change. Observational estimates (Schwartz 2012) and inferences from coupledatmosphere-ocean general circulation models (AOGCMs; Gregory and Forster 2008; Marotzke et al. 2015), suggest thatocean heat uptake efficiency on decadal timescales lies in the range 0.5-1.5 W/sq m/K and is thus comparable to theclimate feedback parameter (Murphy et al. 2009). Moreover, the ocean not only plays a key role in setting the timing ofwarming but also its regional patterns (Marshall et al. 2014), which is crucial to our understanding of regional climate,carbon and heat uptake, and sea-level change. This short communication is based on a presentation given by A.Romanou at a recent workshop, Oceans Carbon and Heat Uptake: Uncertainties and Metrics, co-hosted by US CLIVARand OCB. As briefly reviewed below, we have incomplete but growing knowledge of how ocean models used in climatechange projections sequester heat and carbon into the interior. To understand and thence reduce errors and biases inthe ocean component of coupled models, as well as elucidate the key mechanisms at work, in the final section we outlinea proposed model intercomparison project named FAFMIP. In FAFMIP, coupled integrations would be carried out withprescribed overrides of wind stress and freshwater and heat fluxes acting at the sea surface.
Directory of Open Access Journals (Sweden)
W. Kapturkiewicz
2008-12-01
Full Text Available The, developed in this study, simple model and numerical solution of diffusion growth of the solid phase under the conditions of directional solidification allow for the effect of constituent diffusion in both liquid and solid phase and assume the process run in which (like in reality the preset parameter is the velocity of sample (pulling velocity at a preset temperature gradient. The solid/liquid interface velocity is not the process parameter (like it is in numerous other solutions proposed so far but a function of this process. The effect of convection outside the diffusion layer has been included in mass balance under the assumption that in the zone of convection the mixing is complete. The above assumptions enabled solving the kinetics of growth of the solid phase (along with the diffusion field in solid and liquid phase under the conditions of diffusion well reflecting the process run starting with the initial transient state, going through the steady state period in central part of the casting, and ending in a terminal transient state. In the numerical solution obtained by the finite difference method with variable grid dimensions, the error of the mass control balance over the whole process range was 1 - 2 %.
Directory of Open Access Journals (Sweden)
Xumei Wang
2015-01-01
Full Text Available Xueshuantong for Injection (Lyophilized (XST, a Chinese Materia Medica standardized product extracted from Panax notoginseng (Burk., is used extensively for the treatment of cerebrovascular diseases such as acutely cerebral infarction clinically in China. In the present study, we evaluated the acute and extended protective effects of XST in different rat cerebral ischemic model and explored its effect on peroxiredoxin (Prx 6-toll-like receptor (TLR 4 signaling pathway. We found that XST treatment for 3 days could significantly inhibit transient middle cerebral artery occlusion (MCAO induced infarct volume and swelling percent and regulate the mRNA expression of interleukin-1β (IL-1β, IL-17, IL-23p19, tumor necrosis factor-α (TNFα, and inducible nitric oxide synthase (iNOS in brain. Further study demonstrated that treatment with XST suppressed the protein expression of peroxiredoxin (Prx 6-toll-like receptor (TLR 4 and phosphorylation level of p38 and upregulated the phosphorylation level of STAT3. In permanent MCAO rats, XST could reduce the infarct volume and swelling percent. Moreover, our results revealed that XST treatment could increase the rats’ weight and improve a batch of functional outcomes. In conclusion, the present data suggested that XST could protect against ischemia injury in transient and permanent MCAO rats, which might be related to Prx6-TLR4 pathway.
Directory of Open Access Journals (Sweden)
C. Ian Spencer
2014-08-01
Full Text Available Long-QT syndrome mutations can cause syncope and sudden death by prolonging the cardiac action potential (AP. Ion channels affected by mutations are various, and the influences of cellular calcium cycling on LQTS cardiac events are unknown. To better understand LQTS arrhythmias, we performed current-clamp and intracellular calcium ([Ca2+]i measurements on cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPS-CM. In myocytes carrying an LQT2 mutation (HERG-A422T, APs and [Ca2+]i transients were prolonged in parallel. APs were abbreviated by nifedipine exposure and further lengthened upon releasing intracellularly stored Ca2+. Validating this model, control iPS-CM treated with HERG-blocking drugs recapitulated the LQT2 phenotype. In LQT3 iPS-CM, expressing NaV1.5-N406K, APs and [Ca2+]i transients were markedly prolonged. AP prolongation was sensitive to tetrodotoxin and to inhibiting Na+-Ca2+ exchange. These results suggest that LQTS mutations act partly on cytosolic Ca2+ cycling, potentially providing a basis for functionally targeted interventions regardless of the specific mutation site.
Energy Technology Data Exchange (ETDEWEB)
Wedekind, G.L.; Bhatt, B.L. (Oakland Univ., Rochester, MI (United States))
1989-08-01
In a tube-type condenser involving complete condensation, small changes in the inlet vapor flow rate momentarily cause very large transient surges in the outlet liquid flow rate. An equivalent single-tube model is proposed that predicts these transient flow surges for a multitube system. The model, based upon a system mean void fraction model developed earlier, includes the effects of thermal and flow distribution asymmetry associated with each individual condenser tube in the multitube system. Theoretical and experimental verification for a two-tube system is presented.
Compressor Modeling for Transient Analysis of Supercritical CO2 Brayton Cycle by using MARS code
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hyun; Park, Hyun Sun; Kim, Tae Ho; Kwon, Jin Gyu [POSTECH, Pohang (Korea, Republic of); Bae, Sung Won; Cha, Jae Eun [KAERI, Daejeon (Korea, Republic of)
2016-05-15
In this study, SCIEL (Supercritical CO{sub 2} Integral Experimental Loop) was chosen as a reference loop and the MARS code was as the transient cycle analysis code. As a result, the compressor homologous curve was developed from the SCIEL experimental data and MARS analysis was performed and presented in the paper. The advantages attract SCO{sub 2}BC as a promising next generation power cycles. The high thermal efficiency comes from the operation of compressor near the critical point where the properties of SCO{sub 2}. The approaches to those of liquid phase, leading drastically lower the compression work loss. However, the advantage requires precise and smooth operation of the cycle near the critical point. However, it is one of the key technical challenges. The experimental data was steady state at compressor rotating speed of 25,000 rpm. The time, 3133 second, was starting point of steady state. Numerical solutions were well matched with the experimental data. The mass flow rate from the MARS analysis of approximately 0.7 kg/s was close to the experimental result of 0.9 kg/s. It is expected that the difference come from the measurement error in the experiment. In this study, the compressor model was developed and implemented in MARS to study the transient analysis of SCO{sub 2}BC in SCIEL. We obtained the homologous curves for the SCIEL compressor using experimental data and performed nodalization of the compressor model using MARS code. In conclusions, it was found that numerical solutions from the MARS model were well matched with experimental data.
Crane, D. T.; Koripella, C. R.; Jovovic, V.
2012-06-01
Steady-state and transient models have been created in a MATLAB/Simulink environment for high-power-density thermoelectric generators (TEG). These numerical models, comprising simultaneously solved, nonlinear, energy balance equations, simulate novel TEG architectures, such as a cylindrical TEG with gas/liquid heat exchangers. Model validation studies, including component-level testing of thermoelectric (TE) subassemblies, interface thermal resistance tests, and full-scale TEG tests, were performed under different operating conditions and designs. Targeted finite-element analysis studies were also conducted. A full-scale cylindrical-shaped TE generator was built using high-power-density, segmented TE elements and tested on a test-bench with hot air and cold water with maximum power output of 608 W. Measured performance data from these tests were used in model validation. Process outlet temperatures, pressure drops, hot and cold shunt temperatures along the length of the TEG, TEG voltage, and TEG current are some of the performance variables included in the model validation. The validated model is now being used with more confidence to optimize new TEG designs for different applications.
Aggregated Modelling for Wind Farms for Power System Transient Stability Studies
DEFF Research Database (Denmark)
Liu, Hongzhi; Chen, Zhe
2012-01-01
Wind energy is consistently attracting great research effort and actively developed in many countries. As a result, the penetration level of wind power in the power grid is increasing as well as the size of wind farms. A large-scale wind farm may consist of hundreds of wind turbines and its total...... on a wind farm with permanent magnet synchronous generator (PMSG) wind turbines. Simulation results of the aggregated models and the detailed model are compared and analyzed respectively to prove the effectiveness of the aggregating techniques....... installed capacity could be at a level of 1000MW or even more. Consequently, the large-scale wind farm could seriously impact the operation and control of the grid. To represent a large-scale wind farm, aggregated modelling takes advantage of fast computation and simplified implementation compared...... to detailed modelling that models every wind turbines individually and the interconnections among them. In this paper, three aggregated modelling techniques, namely, multi-machine equivalent aggregation, full aggregation and semi-aggregation are presented for power system transient stability studies based...
Constitutive Modeling of the Thermomechanical Behavior of Rock Salt
Hampel, A.
2016-12-01
For the safe disposal of heat-generating high-level radioactive waste in rock salt formations, highly reliable numerical simulations of the thermomechanical and hydraulic behavior of the host rock have to be performed. Today, the huge progress in computer technology has enabled experts to calculate large and detailed computer models of underground repositories. However, the big advances in computer technology are only beneficial when the applied material models and modeling procedures also meet very high demands. They result from the fact that the evaluation of the long-term integrity of the geological barrier requires an extrapolation of a highly nonlinear deformation behavior to up to 1 million years, while the underlying experimental investigations in the laboratory or in situ have a duration of only days, weeks or at most some years. Several advanced constitutive models were developed and continuously improved to describe the dependences of various deformation phenomena in rock salt on in-situ relevant boundary conditions: transient and steady-state creep, evolution of damage and dilatancy in the DRZ, failure, post-failure behavior, residual strength, damage and dilatancy reduction, and healing. In a joint project series between 2004 and 2016, fundamental features of the advanced models were investigated and compared in detail with benchmark calculations. The study included procedures for the determination of characteristic salt-type-specific model parameter values and for the performance of numerical calculations of underground structures. Based on the results of this work and on specific laboratory investigations, the rock mechanical modeling is currently developed further in a common research project of experts from Germany and the United States. In this presentation, an overview about the work and results of the project series is given and the current joint research project WEIMOS is introduced.
Transient effects in friction fractal asperity creep
Goedecke, Andreas
2013-01-01
Transient friction effects determine the behavior of a wide class of mechatronic systems. Classic examples are squealing brakes, stiction in robotic arms, or stick-slip in linear drives. To properly design and understand mechatronic systems of this type, good quantitative models of transient friction effects are of primary interest. The theory developed in this book approaches this problem bottom-up, by deriving the behavior of macroscopic friction surfaces from the microscopic surface physics. The model is based on two assumptions: First, rough surfaces are inherently fractal, exhibiting roughness on a wide range of scales. Second, transient friction effects are caused by creep enlargement of the real area of contact between two bodies. This work demonstrates the results of extensive Finite Element analyses of the creep behavior of surface asperities, and proposes a generalized multi-scale area iteration for calculating the time-dependent real contact between two bodies. The toolset is then demonstrated both...
Westermann, Sebastian; Peter, Maria; Langer, Moritz; Schwamborn, Georg; Schirrmeister, Lutz; Etzelmüller, Bernd; Boike, Julia
2017-06-01
Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing-based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approximately 16 000 km2 in the Lena River delta (LRD) in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products and fields of meteorological variables from the ERA-Interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed, which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River delta. A comparison of the model forcing to in situ measurements on Samoylov Island in the southern part of the study area yields an acceptable agreement for the purpose of ground thermal modeling, for surface temperature, snow depth, and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in the Lena River delta, suggesting that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1-2 °C. Comparison of monthly average temperatures at depths of 2-3 m in five boreholes yielded an RMSE of 1.1 °C and a bias of -0.9 °C for the model results. The highest ground temperatures are calculated for grid cells close to the main river channels in the south as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the lowest temperatures are modeled for the eastern part, which is an
Institute of Scientific and Technical Information of China (English)
SHAO Zhi-gang; FU Rong-shan; XUE Ting-xiao; ZHA Xian-jie
2008-01-01
In this paper, we firstly use finite element method (FEM) with Burgers model to simulate the postseismic viscoe- lastic relaxation taking 1960 Chile earthquake as an example. The postseismic deformation modeled with Burgers model includes co-seismic deformation, transient postseismic deformation and long-term postseismic deformation. So if we apply Burgers model to calculate postseismic deformation of 1960 Chile earthquake, there is no discrep- ancy phenomenon due to different durations of postseismic deformations that happens in Maxwell model.
Modelling of transient two-phase heat transfer for spacecraft thermal management
Shyy, W.
1994-01-01
A computational method for predicting the two-phase transient fluid flow and heat transfer characteristics within a reservoir of the capillary-pumped-loop, intended to be used for spacecraft thermal management, has been developed. The model is based on the enthalpy formulation in an axisymmetric configuration. The reservoir operates under a constant thermodynamic pressure by allowing mass exchange between the reservoir and the outside loop. Both 1 g and 0 g environments have been considered to assess the effects of gravity on the reservoir performance. Depending on the gravity level, the power input and the reservoir orientation, three different convection modes have been identified, namely, the thermocapillary mode, the buoyancy mode, and the rapid-expansion mode (caused by interface movement). The impact of these modes on the performance of the reservoir and the associated physical phenomena have been discussed.
Hybrid graded element model for transient heat conduction in functionally graded materials
Institute of Scientific and Technical Information of China (English)
Lei-Lei Cao; Qing-Hua Qin; Ning Zhao
2012-01-01
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs).First,a Laplace transform approach is used to handle the time variable.Then,a fundamental solution in Laplace space for FGMs is constructed.Next,a hybrid graded element is formulated based on the obtained fundamental solution and a frame field.As a result,the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field.Further,Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain.Finally,the performance of the proposed method is assessed by several benchmark examples.The results demonstrate well the efficiency and accuracy of the proposed method.
A model for the optical flares from the Galactic transient SWIFT J195509+261406
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The Galactic hard X-ray transient SWIFT J195509+261406 was first observed as gamma-ray burst GRB 070610.Within 3 days after the burst,more than forty optical flares had been observed.Here,we propose that this peculiar event should be associated with a white dwarf.The hard X-ray burst itself may be triggered by a collision between two planets orbiting the white dwarf.Some cracked fragments produced in the collision then fell onto the surface of the white dwarf over several days,giving birth to the observed optical flares via cyclotron radiation.Our model can satisfactorily explain the basic features of the observations.
On the Accuracy and Efficiency of Transient Spectral Element Models for Seismic Wave Problems
Directory of Open Access Journals (Sweden)
Sanna Mönkölä
2016-01-01
Full Text Available This study concentrates on transient multiphysical wave problems for simulating seismic waves. The presented models cover the coupling between elastic wave equations in solid structures and acoustic wave equations in fluids. We focus especially on the accuracy and efficiency of the numerical solution based on higher-order discretizations. The spatial discretization is performed by the spectral element method. For time discretization we compare three different schemes. The efficiency of the higher-order time discretization schemes depends on several factors which we discuss by presenting numerical experiments with the fourth-order Runge-Kutta and the fourth-order Adams-Bashforth time-stepping. We generate a synthetic seismogram and demonstrate its function by a numerical simulation.
Modeling and Analysis of Transient Processes in Open Resonant Structures New Methods and Techniques
Sirenko, Yuriy K; Ström, Staffan
2007-01-01
The principal goal of the book is to describe new accurate and robust algorithms for open resonant structures with substantially increased efficiency. These algorithms allow the extraction of complete information with estimated accuracy concerning the scattering of transient electromagnetic waves by complex objects. The determination and visualization of the electromagnetic fields, developed for realistic models, simplify and significantly speed up the solution to a wide class of fundamental and applied problems of electromagnetic field theory. The book presents a systematic approach to the study of electromagnetic waves scattering which can be introduced in undergraduate/postgraduate education in theoretical and applied radiophysics and different advanced engineering courses on antenna and wave-guide technology. On a broader level, the book should be of interest to scientists in optics, computational physics and applied mathematics.
Memory effects, transient growth, and wave breakup in a model of paced atrium
Garzón, Alejandro; Grigoriev, Roman O.
2017-09-01
The mechanisms underlying cardiac fibrillation have been investigated for over a century, but we are still finding surprising results that change our view of this phenomenon. The present study focuses on the transition from normal rhythm to spiral wave chaos associated with a gradual increase in the pacing rate. While some of our findings are consistent with existing experimental, numerical, and theoretical studies of this problem, one result appears to contradict the accepted picture. Specifically we show that, in a two-dimensional model of paced homogeneous atrial tissue, transition from discordant alternans to conduction block, wave breakup, reentry, and spiral wave chaos is associated with the transient growth of finite amplitude disturbances rather than a conventional instability. It is mathematically very similar to subcritical, or bypass, transition from laminar fluid flow to turbulence, which allows many of the tools developed in the context of fluid turbulence to be used for improving our understanding of cardiac arrhythmias.
Lei, Y.; Zhang, B. W.; Bai, B. F.; Zhao, T. S.
2015-12-01
In a typical all-vanadium redox flow battery (VRFB), the ion exchange membrane is directly exposed in the bulk electrolyte. Consequently, the Donnan effect occurs at the membrane/electrolyte (M/E) interfaces, which is critical for modeling of ion transport through the membrane and the prediction of cell performance. However, unrealistic assumptions in previous VRFB models, such as electroneutrality and discontinuities of ionic potential and ion concentrations at the M/E interfaces, lead to simulated results inconsistent with the theoretical analysis of ion adsorption in the membrane. To address this issue, this work proposes a continuous-Donnan effect-model using the Poisson equation coupled with the Nernst-Planck equation to describe variable distributions at the M/E interfaces. A one-dimensional transient VRFB model incorporating the Donnan effect is developed. It is demonstrated that the present model enables (i) a more realistic simulation of continuous distributions of ion concentrations and ionic potential throughout the membrane and (ii) a more comprehensive estimation for the effect of the fixed charge concentration on species crossover across the membrane and cell performance.
Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
Directory of Open Access Journals (Sweden)
Stahnke T.
2015-09-01
Full Text Available Glaucoma represents a group of eye disorders partly related to raised intraocular pressure (IOP leading to progressive optic nerve damage resulting in impaired vision and possibly blindness. To assess the suitability of new IOP lowering therapeutic strategies, such as the implantation of glaucoma drainage devices, appropriate animal models have to be used. Currently, a number of rodent glaucoma models are available [1], however, especially for surgical interventions rodent eyes are too small. Rabbits are much more suitable with respect to dimension. Unfortunately, rabbit glaucoma model systems described in literature are difficult to reproduce or fail totally, associated with a high level of discomfort and pain for treated animals. Therefore, development of an in vivo rabbit glaucoma model is one of the most important goals in glaucoma research. Here, we describe the adaptation of the oculopressure tonometry, an existing method to quantify the outflow of aqueous humor in humans, to generate a transient glaucoma model in rabbits. The existing suction-cup oculopressor (SCOP is extended with newly designed suction-cups, which are adjusted to the anatomy of the rabbit eye. The modification of the oculopressure tonometry method facilitates an increase in IOP over a time frame of 9 minutes by vacuum induced deformation of the rabbit eye. This method can be used to test functionality of fistulating glaucoma surgeries or implanted drainage devices in a long term follow-up without any side effects and suffering of the animals.
TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR
Energy Technology Data Exchange (ETDEWEB)
Cheng L. Y.; Baek J.; Cuadra,A.; Aronson, A.; Diamond, D.; Yarsky, P.
2013-11-10
A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic to initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.
TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR
Energy Technology Data Exchange (ETDEWEB)
Cheng L. Y.; Baek J.; Cuadra,A.; Aronson, A.; Diamond, D.; Yarsky, P.
2013-11-10
A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic to initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.
Transient Stability of the Power System with the Exact Long Transmission Line Model
Directory of Open Access Journals (Sweden)
Prechanon Kumkratug
2012-01-01
Full Text Available Problem statement: The exact long transmission line model consists of the lump of the series resistance, reactance and shunt capacitance. With the consideration the actual long transmission line model, it causes in the difficulty of deriving the mathematical model. Approach: This study investigates the transient stability of power system with consideration the exact long transmission line model. The concept of two-port network is applied in this study. The generator, transformer and short transmission line are represented by two-port networks. With the combination principles of the series and shunt connection, the mathematical model is achieved in a much simpler way. The proposed method is tested on the sample system and compared on various cases. Results: The first swing of rotor angle curve of the faulted system without the resistance is obviously higher than that of with the resistance whereas the second swing of the faulted system without the resistance is slightly less than that of with the resistance. The critical clearing time of the system with the resistance is better than that of with resistance. Conclusion: It was found from the simulation results that the resistance of the line provides the improvement of the first swing but not for the second swing. It was found from this study that for practical long line, the resistance is very import parameters to determine the critical clearing time of the single machine infinite system whereas shunt capacitance insignificantly affects on the critical clearing time of the single machine infinite bus system.
Directory of Open Access Journals (Sweden)
Nikolić Radovan H.
2014-01-01
Full Text Available This paper is the result of research and operation modeling of the new systems for cooling of cutting tools based on thermoelectric module. A copper inlay with thermoelectric module on the back side was added to a standard turning tool for metal processing. For modeling and simulating the operation of thermoelectric module, finite element method was used as a method for successful solving the problems of inhomogeneous transient temperature field on the cutting tip of lathe knives. Developed mathematical model is implemented in the software package PAK-T through which numerical results are obtained. Experimental research was done in different conditions of thermoelectric module operation. Cooling of the hot module side was done by a heat exchanger based on fluid using automatic temperature regulator. After the calculation is done, numerical results are in good agreement with experimental. It can be concluded that developed mathematical model can be used successfully for modeling of cooling of cutting tools. [Projekat Ministarstva nauke Republike Srbije, br. TR32036
Solomon, Sean C.; Frey, H. V. (Technical Monitor)
2002-01-01
This is the Final Technical Report on research conducted between 1 June 1997 and 14 September 2001 entitled "Transients in Pacific/North American plate boundary deformation: Synthesis and modeling of GPS and borehole strain observations." As the project title implies, our effort involved a geodetic study of strain transients, i.e., temporal variations in deformation rates, that occur within plate boundary zones and their relationship to earthquakes and plate motions. Important transients occur during and following large earthquakes, and there are also strain transients not apparently associated with earthquakes. A particularly intriguing class of transients, for which there is a modest but growing list of examples, are preseismic anomalies. Such earthquake precursors, if further documented and understood, would have obvious importance for earthquake hazard mitigation. Because the timescales for these diverse transients range over at least 6 orders of magnitude (minutes to years), no single geodetic technique is optimum. We therefore undertook a systematic synthesis of Global Positioning Satellite (GPS) and borehole strainmeter data in three areas in California where there are adequate numbers of both types of instruments (or their equivalent): the San Francisco Bay region (within the Bay Area Regional Deformation network), southern California (within the Southern California Integrated GPS Network), and Parkfield (where a two-color laser system provides a proxy for continuous GPS measurements). An integral component of our study was the elucidation of the physical mechanisms by which such transients occur and propagate. We therefore initiated the development of multiple forward models, using two independent approaches. In the first, we explored the response to specified earthquake slip in viscoelastic models that incorporated failure criteria and the geometry of major faults in California. In the second approach, we examined the dynamical response of a complex
Directory of Open Access Journals (Sweden)
Changqing Shen
2013-11-01
Full Text Available The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully.
Modeling transient groundwater age in the Middle Wairarapa Valley, New Zealand
Evison, R.; Daughney, C.; Jackson, B. M.; Toews, M. W.; Cornaton, F. J.; Gyopari, M.; McAllister, D.
2013-12-01
Age information provides insights into groundwater flow and transport processes and thus enables better groundwater management. It is accepted that groundwater is composed of a mixture of water with different ages. For example, a groundwater sample with an old mean age may still contain a fraction of young water; recent contamination is therefore a potential risk that may not be conveyed by consideration of the mean age alone. This project focuses on catchment-scale evaluation of the full distribution of groundwater age as a function of space and time in the 270 km2 Middle Wairarapa Valley, New Zealand. The Wairarapa Valley exhibits complex interactions between its rivers and shallow aquifers. Agriculture is an integral part of the region with widespread irrigation and nutrient application. This requires effective regional management due to the risk of contamination and depletion of groundwater reservoirs. The starting point was a transient finite-element groundwater flow model originally developed by Greater Wellington Regional Council (GWRC). The GWRC flow model was converted to simulate transport of the age tracer tritium using Ground Water (GW) software. There are several techniques to calibrate groundwater models and assess appropriate parameter values, all of which have the problem of non-uniqueness. In this study the Gauss-Marquardt-Levenberg method was utilized to calibrate the model (through PEST), but in order to increase robustness, a classic Monte Carlo method with uniform random sampling was also used to sample the domain's global range of flow and transport parameters. This provided an increased measure of confidence in model output, as the global range of parameter values could be explored, which is not achieved via the localized Gauss-Marquardt-Levenberg parameter estimation scheme. The calibration objective with both methods used least squares minimization between the simulated and observed hydraulic head levels and tritium concentrations. GW
U.S. Geological Survey, Department of the Interior — This digital data set defines the altitudes of the tops of 16 model layers simulated in the Death Valley regional ground-water flow system (DVRFS) transient flow...
Fraser, R.; Coulaud, M.; Aeschlimann, V.; Lemay, J.; Deschenes, C.
2016-11-01
With the growing proportion of inconstant energy source as wind and solar, hydroelectricity becomes a first class source of peak energy in order to regularize the grid. The important increase of start - stop cycles may then cause a premature ageing of runners by both a higher number of cycles in stress fluctuations and by reaching a higher stress level in absolute. Aiming to sustain good quality development on fully homologous scale model turbines, the Hydraulic Machines Laboratory (LAMH) of Laval University has developed a methodology to operate model size turbines on transient regimes such as start-up, stop or load rejection on its test stand. This methodology allows maintaining a constant head while the wicket gates are opening or closing in a representative speed on the model scale of what is made on the prototype. This paper first presents the opening speed on model based on dimensionless numbers, the methodology itself and its application. Then both its limitation and the first results using a bulb turbine are detailed.
Iváncsy, T.; Kiss, I.; Szücs, L.; Tamus, Z. Á.
2015-10-01
The lightning current generates time-varying magnetic field near the down- conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated.
Hamadeh, Abdullah; Ingalls, Brian; Sontag, Eduardo
2013-03-01
The chemotaxis pathway of the bacterium Rhodobacter sphaeroides shares many similarities with that of Escherichia coli. It exhibits robust adaptation and has several homologues of the latter's chemotaxis proteins. Recent theoretical results have correctly predicted that the E. coli output behaviour is unchanged under scaling of its ligand input signal; this property is known as fold-change detection (FCD). In the light of recent experimental results suggesting that R. sphaeroides may also show FCD, we present theoretical assumptions on the R. sphaeroides chemosensory dynamics that can be shown to yield FCD behaviour. Furthermore, it is shown that these assumptions make FCD a property of this system that is robust to structural and parametric variations in the chemotaxis pathway, in agreement with experimental results. We construct and examine models of the full chemotaxis pathway that satisfy these assumptions and reproduce experimental time-series data from earlier studies. We then propose experiments in which models satisfying our theoretical assumptions predict robust FCD behaviour where earlier models do not. In this way, we illustrate how transient dynamic phenotypes such as FCD can be used for the purposes of discriminating between models that reproduce the same experimental time-series data.
Three-Dimensional Transient Electromagnetic Modeling Based on Fictitious Wave Domain Methods
Ji, Yanju; Hu, Yanpu; Imamura, Naoto
2017-05-01
Finite-difference time domain (FDTD) methods, which have been widely employed in three-dimensional transient electromagnetic (TEM) modeling, require very small time steps to simulate the electromagnetic fields and this will be time consuming. We present an efficient numerical method for three-dimensional TEM forward modeling. Its key features are based on a correspondence principle between the diffusive and fictitious wave fields. The diffusive Maxwell's equations are transformed and solved in a so-called fictitious wave domain. This scheme allows larger time steps than conventional FDTD methods, allows including air layers, and allows simulating topography. The need for initial field calculations is avoided by including an electric current source in the governing equations. This also avoids a traditional assumption of a flat earth surface in TEM modeling. We test the accuracy of the electromagnetic fields' responses using our method with the spectral differential difference (SLDM) solutions. The results show good agreement even under the existence of air layers and topography in the model.
Simulating CRN derived erosion rates in a transient Andean catchment using the TTLEM model
Campforts, Benjamin; Vanacker, Veerle; Herman, Frédéric; Schwanghart, Wolfgang; Tenrorio Poma, Gustavo; Govers, Gerard
2017-04-01
Assessing the impact of mountain building and erosion on the earth surface is key to reconstruct and predict terrestrial landscape evolution. Landscape evolution models (LEMs) are an essential tool in this research effort as they allow to integrate our growing understanding of physical processes governing erosion and transport of mass across the surface. The recent development of several LEMs opens up new areas of research in landscape evolution. Here, we want to seize this opportunity by answering a fundamental research question: does a model designed to simulate landscape evolution over geological timescales allows to simulate spatially varying erosion rates at a millennial timescale? We selected the highly transient Paute catchment in the Southeastern Ecuadorian Andes as a study area. We found that our model (TTLEM) is capable to better explain the spatial patterns of ca. 30 Cosmogenic Radio Nuclide (CRN) derived catchment wide erosion rates in comparison to a classical, statistical approach. Thus, the use of process-based landscape evolution models may not only be of great help to understand long-term landscape evolution but also in understanding spatial and temporal variations in sediment fluxes at the millennial time scale.
Modeling cell behavior: moving beyond intuition
Directory of Open Access Journals (Sweden)
Mario Jolicoeur
2014-04-01
Full Text Available In the context of the launching of this new journal, we propose a forum to the community of researchers interested and involved in, or even simply questioning the why, what, how, and when of modeling cell or cell culture behavior. To start the discussion, we review some of the usual questions we are routinely asked on the pertinence of modeling cell behavior, and on who might benefit from conducting such work. To draw a global portrait, throughout this text we refer the reader to handbooks introducing the basics of modeling a biosystem, as well as to selected works that can help visualize the broad fields of applications.
Critical behavior of a dynamical percolation model
Institute of Scientific and Technical Information of China (English)
YU Mei-Ling; XU Ming-Mei; LIU Zheng-You; LIU Lian-Shou
2009-01-01
The critical behavior of the dynamical percolation model, which realizes the molecular-aggregation conception and describes the crossover between the hadronic phase and the partonic phase, is studied in detail. The critical percolation distance for this model is obtained by using the probability P∞ of the appearance of an infinite cluster. Utilizing the finite-size scaling method the critical exponents γ/v and T are extracted from the distribution of the average cluster size and cluster number density. The influences of two model related factors, I.e. The maximum bond number and the definition of the infinite cluster, on the critical behavior are found to be small.
Models of iodine behavior in reactor containments
Energy Technology Data Exchange (ETDEWEB)
Weber, C.F.; Beahm, E.C.; Kress, T.S.
1992-10-01
Models are developed for many phenomena of interest concerning iodine behavior in reactor containments during severe accidents. Processes include speciation in both gas and liquid phases, reactions with surfaces, airborne aerosols, and other materials, and gas-liquid interface behavior. Although some models are largely empirical formulations, every effort has been made to construct mechanistic and rigorous descriptions of relevant chemical processes. All are based on actual experimental data generated at the Oak Ridge National Laboratory (ORNL) or elsewhere, and, hence, considerable data evaluation and parameter estimation are contained in this study. No application or encoding is attempted, but each model is stated in terms of rate processes, with the intention of allowing mechanistic simulation. Taken together, this collection of models represents a best estimate iodine behavior and transport in reactor accidents.
Machine Learning Approaches for Modeling Spammer Behavior
Islam, Md Saiful; Islam, Md Rafiqul
2010-01-01
Spam is commonly known as unsolicited or unwanted email messages in the Internet causing potential threat to Internet Security. Users spend a valuable amount of time deleting spam emails. More importantly, ever increasing spam emails occupy server storage space and consume network bandwidth. Keyword-based spam email filtering strategies will eventually be less successful to model spammer behavior as the spammer constantly changes their tricks to circumvent these filters. The evasive tactics that the spammer uses are patterns and these patterns can be modeled to combat spam. This paper investigates the possibilities of modeling spammer behavioral patterns by well-known classification algorithms such as Na\\"ive Bayesian classifier (Na\\"ive Bayes), Decision Tree Induction (DTI) and Support Vector Machines (SVMs). Preliminary experimental results demonstrate a promising detection rate of around 92%, which is considerably an enhancement of performance compared to similar spammer behavior modeling research.
Modeling behavioral considerations related to information security.
Energy Technology Data Exchange (ETDEWEB)
Martinez-Moyano, I. J.; Conrad, S. H.; Andersen, D. F. (Decision and Information Sciences); (SNL); (Univ. at Albany)
2011-01-01
The authors present experimental and simulation results of an outcome-based learning model for the identification of threats to security systems. This model integrates judgment, decision-making, and learning theories to provide a unified framework for the behavioral study of upcoming threats.
Behavior genetic modeling of human fertility
DEFF Research Database (Denmark)
Rodgers, J L; Kohler, H P; Kyvik, K O;
2001-01-01
Try) and number of children (NumCh). Behavior genetic models were fitted using structural equation modeling and DF analysis. A consistent medium-level additive genetic influence was found for NumCh, equal across genders; a stronger genetic influence was identified for FirstTry, greater for females than for males...
Concept-Oriented Modeling of Dynamic Behavior
Breedveld, P.C.; Borutzky, Wolfgang
2011-01-01
This chapter introduces the reader to the concept-oriented approach to modeling that clearly separates ideal concepts from the physical components of a system when modeling its dynamic behavior for a specific problem context. This is done from a port-based point of view for which the domain-independ
Temporal profile of neuronal damage in a model of transient forebrain ischemia.
Pulsinelli, W A; Brierley, J B; Plum, F
1982-05-01
This study examined the temporal profile of ischemic neuronal damage following transient bilateral forebrain ischemia in the rat model of four-vessel occlusion. Wistar rats were subjected to transient but severe forebrain ischemia by permanently occluding the vertebral arteries and 24 hours later temporarily occluding the common carotid arteries for 10, 20, or 30 minutes. Carotid artery blood flow was restored and the rats were killed by perfusion-fixation after 3, 6, 24, and 72 hours. Rats with postischemic convulsions were discarded. Ischemic neuronal damage was graded in accordance with conventional neuropathological criteria. Ten minutes of four-vessel occlusion produced scattered ischemic cell change in the cerebral hemispheres of most rats. The time to onset of visible neuronal damage varied among brain regions and in some regions progressively worsened with time. After 30 minutes of ischemia, small to medium-sized striatal neurons were damaged early while the initiation of visible damage to hippocampal neurons in the h1 zone was delayed for 3 to 6 hours. The number of damaged neurons in neocortex (layer 3, layers 5 and 6, or both) and hippocampus (h1, h3-5, paramedian zone) increased significantly (p less than 0.01) between 24 and 72 hours. The unique delay in onset of ischemic cell change and the protracted increase in its incidence between 24 and 72 hours could reflect either delayed appearance of ischemic change in previously killed neurons or a delayed insult that continued to jeopardize compromised but otherwise viable neurons during the postischemic period.
Extreme Supernova Models for the Super-luminous Transient ASASSN-15lh
Chatzopoulos, E.; Wheeler, J. C.; Vinko, J.; Nagy, A. P.; Wiggins, B. K.; Even, W. P.
2016-09-01
The recent discovery of the unprecedentedly super-luminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for super-luminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the light curve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova, ASASSN-15lh can be best modeled by the energetic core-collapse of an ˜40 M ⊙ star interacting with a hydrogen-poor shell of ˜20 M ⊙. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with an initial period of 1-2 ms and magnetic field of 0.1-1 × 1014 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-circumstellar matter interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.
Directory of Open Access Journals (Sweden)
U. Schneider
2009-01-01
Full Text Available The paper presents the structural application of a new thermal induced strain model for concrete – the TIS-Model. An advanced transient concrete model (ATCM is applied with the material model of the TIS-Model. The non-linear model comprises thermal strain, elastic strain, plastic strain and transient temperature strains, and load history modelling of restraint concrete structures subjected to fire.The calculations by finite element analysis (FEA were done using the SAFIR structural code. The FEA software was basically new with respect to the material modelling derived to use the new TIS-Model (as a transient model considers thermal induced strain. The equations of the ATCM consider a lot of capabilities, especially for considering irreversible effects of temperature on some material properties. By considering the load history during heating up, increasing load bearing capacity may be obtained due to higher stiffness of the concrete. With this model, it is possible to apply the thermal-physical behaviour of material laws for calculation of structures under extreme temperature conditions.A tunnel cross section designed and built by the cut and cover method is calculated with a tunnel fire curve. The results are compared with the results of a calculation with the model of the Eurocode 2 (EC2-Model. The effect of load history in highly loaded structures under fire load will be investigated.A comparison of this model with the ordinary calculation system of Eurocode 2 (EC2 shows that a better evaluation of the safety level was achieved with the new model. This opens a space for optimizing concrete structure design with transient temperature conditions up to 1000 °C.
Applying incentive sensitization models to behavioral addiction
DEFF Research Database (Denmark)
Rømer Thomsen, Kristine; Fjorback, Lone; Møller, Arne
2014-01-01
The incentive sensitization theory is a promising model for understanding the mechanisms underlying drug addiction, and has received support in animal and human studies. So far the theory has not been applied to the case of behavioral addictions like Gambling Disorder, despite sharing clinical...... symptoms and underlying neurobiology. We examine the relevance of this theory for Gambling Disorder and point to predictions for future studies. The theory promises a significant contribution to the understanding of behavioral addiction and opens new avenues for treatment....
Organizational buying behavior: An integrated model
Directory of Open Access Journals (Sweden)
Rakić Beba
2002-01-01
Full Text Available Organizational buying behavior is decision making process by which formal organizations establish the need for purchased products and services, and identify, evaluate, and choose among alternative brands and suppliers. Understanding the buying decision processes is essential to developing the marketing programs of companies that sell to organizations, or to 'industrial customers'. In business (industrial marketing, exchange relationships between the organizational selling center and the organizational buying center are crucial. Integrative model of organizational buying behavior offers a systematic framework in analyzing the complementary factors and what effect they have on the behavior of those involved in making buying decisions.
Directory of Open Access Journals (Sweden)
Yong Cheng
2014-01-01
Full Text Available The transient response of the VLFS subjected to arbitrary external load is systematically investigated by a direct time domain modal expansion method, in which the BEM solutions based on time domain Kelvin sources are used for hydrodynamic forces. In the analysis, the time domain free-surface Green functions with sufficient accuracy are rapidly evaluated in finite water depth by the interpolation-tabulation method, and the boundary integral equation with a quarter VLFS model is established taking advantage of symmetry of flow field and structure. The validity of the present method is verified by comparing with the time histories of vertical displacements of the VLFS during a mass drop and airplane landing and takeoff in still water conditions, respectively. Then the developed numerical scheme is used in wave conditions to study the combined action taking into account the mass drop/airplane landing/takeoff loads as well as incident wave action. It is found that the elevation of structural waves due to mass drop load can be significantly changed near the impact region, while the vertical motion of runway in wave conditions is dominant as compared with that only generated by airplane.
Critical transient in the Barab\\'asi model of human dynamics
Gabrielli, A; Caldarelli, Guido; Gabrielli, Andrea
2007-01-01
We introduce an exact probabilistic description for L=2 of the Barab\\'asi model for the dynamics of a list of L tasks. This permits to study the problem out of stationarity, and to solve explicitly the extremal limit case where a critical behavior for the waiting time distribution is observed. This behavior deviates at any finite time from that of the stationary state. We study also the characteristic relaxation time for finite time deviations from stationarity in all cases showing that it diverges in the extremal limit confirming that this deviations are important at all time.
NON-BEHAVIORAL MODELS OF PSYCHOSIS
Directory of Open Access Journals (Sweden)
Parle Milind
2013-08-01
Full Text Available Animal models have become indispensible tools for discovering new medicines and in the analysis of multitude of causes, bio-markers and pathophysiological changes, which bring about symptoms characteristics of a specific disorder. One of the biggest challenges in discovering medicines for psychosis is to find an appropriate animal model of this illness possessing fair face validity, construct validity, and predictive validity. We had explained in detail behavioral models of psychosis in our previous article. In the present review article, the authors have described various non-behavioral models such as pharmacological models (administering specific chemicals, genetic models (through genetic manipulation, lesion models (lesion of selected brain parts and neuro-developmental models employed for screening anti-psychotic agents. All these animal models imitate schizophrenic defects in some manner. Traditionally, pharmacological models (drug/chemical-induced psychosis were the most widely used. These models involve the manipulation of dopaminergic, glutamatergic, serotonergic, or GABA-ergic systems. In Lesion models, selected area of an animal's brain is damaged, to induce psychosis-like symptoms. Genetic factors also play a prominent role in many psychiatric disorders and numerous putative candidate genes have been identified. Neurodevelopmental models are based on the fact that schizophrenia can be caused due to prenatal exposure to certain viruses. The animals usually employed for the development of these models include rats, mice, and primates. The specific animal models developed within these frameworks are described in this review article.
Explaining clinical behaviors using multiple theoretical models.
Eccles, Martin P; Grimshaw, Jeremy M; MacLennan, Graeme; Bonetti, Debbie; Glidewell, Liz; Pitts, Nigel B; Steen, Nick; Thomas, Ruth; Walker, Anne; Johnston, Marie
2012-10-17
In the field of implementation research, there is an increased interest in use of theory when designing implementation research studies involving behavior change. In 2003, we initiated a series of five studies to establish a scientific rationale for interventions to translate research findings into clinical practice by exploring the performance of a number of different, commonly used, overlapping behavioral theories and models. We reflect on the strengths and weaknesses of the methods, the performance of the theories, and consider where these methods sit alongside the range of methods for studying healthcare professional behavior change. These were five studies of the theory-based cognitions and clinical behaviors (taking dental radiographs, performing dental restorations, placing fissure sealants, managing upper respiratory tract infections without prescribing antibiotics, managing low back pain without ordering lumbar spine x-rays) of random samples of primary care dentists and physicians. Measures were derived for the explanatory theoretical constructs in the Theory of Planned Behavior (TPB), Social Cognitive Theory (SCT), and Illness Representations specified by the Common Sense Self Regulation Model (CSSRM). We constructed self-report measures of two constructs from Learning Theory (LT), a measure of Implementation Intentions (II), and the Precaution Adoption Process. We collected data on theory-based cognitions (explanatory measures) and two interim outcome measures (stated behavioral intention and simulated behavior) by postal questionnaire survey during the 12-month period to which objective measures of behavior (collected from routine administrative sources) were related. Planned analyses explored the predictive value of theories in explaining variance in intention, behavioral simulation and behavior. Response rates across the five surveys ranged from 21% to 48%; we achieved the target sample size for three of the five surveys. For the predictor variables
Explaining clinical behaviors using multiple theoretical models
Directory of Open Access Journals (Sweden)
Eccles Martin P
2012-10-01
Full Text Available Abstract Background In the field of implementation research, there is an increased interest in use of theory when designing implementation research studies involving behavior change. In 2003, we initiated a series of five studies to establish a scientific rationale for interventions to translate research findings into clinical practice by exploring the performance of a number of different, commonly used, overlapping behavioral theories and models. We reflect on the strengths and weaknesses of the methods, the performance of the theories, and consider where these methods sit alongside the range of methods for studying healthcare professional behavior change. Methods These were five studies of the theory-based cognitions and clinical behaviors (taking dental radiographs, performing dental restorations, placing fissure sealants, managing upper respiratory tract infections without prescribing antibiotics, managing low back pain without ordering lumbar spine x-rays of random samples of primary care dentists and physicians. Measures were derived for the explanatory theoretical constructs in the Theory of Planned Behavior (TPB, Social Cognitive Theory (SCT, and Illness Representations specified by the Common Sense Self Regulation Model (CSSRM. We constructed self-report measures of two constructs from Learning Theory (LT, a measure of Implementation Intentions (II, and the Precaution Adoption Process. We collected data on theory-based cognitions (explanatory measures and two interim outcome measures (stated behavioral intention and simulated behavior by postal questionnaire survey during the 12-month period to which objective measures of behavior (collected from routine administrative sources were related. Planned analyses explored the predictive value of theories in explaining variance in intention, behavioral simulation and behavior. Results Response rates across the five surveys ranged from 21% to 48%; we achieved the target sample size for three of
Transient hazard model using radar data for predicting debris flows in Madison County, Virginia
Morrissey, M.M.; Wieczorek, G.F.; Morgan, B.A.
2004-01-01
During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a 16-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, VA. We developed a distributed version of Iverson's transient response model for regional slope stability analysis for the Madison County debris flows. This version of the model evaluates pore-pressure head response and factor of safety on a regional scale in areas prone to rainfall-induced shallow (slope stability during the storm. The results demonstrate that the spatial and temporal variation of the factor of safety correlates with the movement of the storm cell. When the rainstorm was treated as two separate rainfall events and a larger hydraulic conductivity and friction angle than the laboratory values were used, the timing and location of landslides predicted by the model were in closer agreement with eyewitness observations of debris flows. Application of spatially variable initial pre-storm water table depth and soil properties may improve both the spatial and temporal prediction of instability.
Comparison of high pressure transient PVT measurements and model predictions. Part I.
Energy Technology Data Exchange (ETDEWEB)
Felver, Todd G.; Paradiso, Nicholas Joseph; Evans, Gregory Herbert; Rice, Steven F.; Winters, William Stanley, Jr.
2010-07-01
A series of experiments consisting of vessel-to-vessel transfers of pressurized gas using Transient PVT methodology have been conducted to provide a data set for optimizing heat transfer correlations in high pressure flow systems. In rapid expansions such as these, the heat transfer conditions are neither adiabatic nor isothermal. Compressible flow tools exist, such as NETFLOW that can accurately calculate the pressure and other dynamical mechanical properties of such a system as a function of time. However to properly evaluate the mass that has transferred as a function of time these computational tools rely on heat transfer correlations that must be confirmed experimentally. In this work new data sets using helium gas are used to evaluate the accuracy of these correlations for receiver vessel sizes ranging from 0.090 L to 13 L and initial supply pressures ranging from 2 MPa to 40 MPa. The comparisons show that the correlations developed in the 1980s from sparse data sets perform well for the supply vessels but are not accurate for the receivers, particularly at early time during the transfers. This report focuses on the experiments used to obtain high quality data sets that can be used to validate computational models. Part II of this report discusses how these data were used to gain insight into the physics of gas transfer and to improve vessel heat transfer correlations. Network flow modeling and CFD modeling is also discussed.
de Graaf, Inge E. M.; van Beek, Rens L. P. H.; Gleeson, Tom; Moosdorf, Nils; Schmitz, Oliver; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.
2017-04-01
Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts and evaporation in areas with shallow water tables. In this study, building on previous work, we simulate groundwater head fluctuations and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5‧) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6-20% of the total aquifer area) improves estimates of timing and amplitude of groundwater head fluctuations and changes groundwater flow paths and groundwater-surface water interaction rates. Groundwater flow paths within confining layers are shorter than paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths crossing catchment boundaries are simulated, thereby supporting water budgets of neighboring catchments or aquifer systems. The developed two-layer transient groundwater model is used to identify hot-spots of groundwater depletion. Global groundwater depletion is estimated as 7013 km3 (137 km3y-1) over 1960-2010, which is consistent with estimates of previous studies.
Energy Technology Data Exchange (ETDEWEB)
Lee, K.; McCormick, A.V. [Univ. of Minnesota, Minneapolis, MN (United States); Look, J.L. [Oak Ridge National Lab., TN (United States); Harris, M.T. [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical Engineering
1997-10-01
Monodispersely sized micrometer-scale spherical colloids of metal oxides are important for the controlled fabrication of high quality ceramic materials. Their synthesis by the hydrolysis of metal alkoxides is of particular interest. {sup 29}Si-NMR, conductimetry, and photon correlation spectroscopy are used to monitor the temporal profile of intermediate concentrations in Stoeber synthesis (i.e., ammonia-catalyzed hydrolysis of tetraethoxysilane in a batch reactor). Extreme models of the process are assessed by examining the effect of initial composition on these transients (over a wider range of composition than attempted previously). The trends with initial composition suggest that the nucleation is rate-limited by the hydrolysis of the singly hydrolyzed monomer, the product of which probably phase separates. Moreover, the trends are consistent with the aggregation model discussed by G.H. Bogush and C.F. Zukoski (J. Colloid Interface Sci. 142, 1, 19, 1991) and by M.T. Harris (Ph.D. dissertation, Univ. of Tennessee, 1992). The trends are not consistent with a growth model without aggregation.
Beatty, William; Jay, Chadwick V.; Fischbach, Anthony S.
2016-01-01
State-space models offer researchers an objective approach to modeling complex animal location data sets, and state-space model behavior classifications are often assumed to have a link to animal behavior. In this study, we evaluated the behavioral classification accuracy of a Bayesian state-space model in Pacific walruses using Argos satellite tags with sensors to detect animal behavior in real time. We fit a two-state discrete-time continuous-space Bayesian state-space model to data from 306 Pacific walruses tagged in the Chukchi Sea. We matched predicted locations and behaviors from the state-space model (resident, transient behavior) to true animal behavior (foraging, swimming, hauled out) and evaluated classification accuracy with kappa statistics (κ) and root mean square error (RMSE). In addition, we compared biased random bridge utilization distributions generated with resident behavior locations to true foraging behavior locations to evaluate differences in space use patterns. Results indicated that the two-state model fairly classified true animal behavior (0.06 ≤ κ ≤ 0.26, 0.49 ≤ RMSE ≤ 0.59). Kernel overlap metrics indicated utilization distributions generated with resident behavior locations were generally smaller than utilization distributions generated with true foraging behavior locations. Consequently, we encourage researchers to carefully examine parameters and priors associated with behaviors in state-space models, and reconcile these parameters with the study species and its expected behaviors.
Modeling aggressive driver behavior at unsignalized intersections.
Kaysi, Isam A; Abbany, Ali S
2007-07-01
The processing of vehicles at unsignalized intersections is a complex and highly interactive process, whereby each driver makes individual decisions about when, where, and how to complete the required maneuver, subject to his perceptions of distances, velocities, and own car's performance. Typically, the performance of priority-unsignalized intersections has been modeled with probabilistic approaches that consider the distribution of gaps in the major-traffic stream and their acceptance by the drivers of minor street vehicles based on the driver's "critical gap". This paper investigates the aggressive behavior of minor street vehicles at intersections that are priority-unsignalized but operate with little respect of control measures. The objective is to formulate a behavioral model that predicts the probability that a driver performs an aggressive maneuver as a function of a set of driver and traffic attributes. Parameters that were tested and modeled include driver characteristics (gender and age), car characteristics (performance and model year), and traffic attributes (number of rejected gaps, total waiting time at head of queue, and major-traffic speed). Binary probit models are developed and tested, based on a collected data set from an unsignalized intersection in the city of Beirut, to determine which of the studied variables are statistically significant in determining the aggressiveness of a specific driver. Primary conclusions reveal that age, car performance, and average speed on the major road are the major determinants of aggressive behavior. Another striking conclusion is that the total waiting time of the driver while waiting for an acceptable gap is of little significance in incurring the "forcing" behavior. The obtained model is incorporated in a simple simulation framework that reflects driver behavior and traffic stream interactions in estimating delay and conflict measures at unsignalized intersections. The simulation results were then compared
Energy Technology Data Exchange (ETDEWEB)
Park, Jae Young; Ekaputra, I. M. W.; Kim, Seon Jin [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung Seon [KAERI, Daejeong (Korea, Republic of)
2015-12-15
A correlation between the transient regime and steady state regime on the creep crack growth (CCG) for Grade 91 steel, which is used as the structural material for the Gen-IV reactor systems, was investigated. A series of CCG tests were performed using 1/2' CT specimens under a constant applied load and at a constant temperature of 600 °C. The CCG rates for the transient and steady state regimes were obtained in terms of C* parameter. The transient CCG rate had a close correlation with the steady-state CCG rate, as the slope of the transient CCG data was very similar to that of the steady state data. The transient rate was slower by 5.6 times as compared to the steady state rate. It can be inferred that the steady state CCG rate, which is required for long-time tests, can be predicted from the transient CCG rate obtained from short-time tests.
Behavioral modeling of Digitally Adjustable Current Amplifier
Josef Polak; Lukas Langhammer; Jan Jerabek
2015-01-01
This article presents the digitally adjustable current amplifier (DACA) and its analog behavioral model (ABM), which is suitable for both ideal and advanced analyses of the function block using DACA as active element. There are four levels of this model, each being suitable for simulation of a certain degree of electronic circuits design (e.g. filters, oscillators, generators). Each model is presented through a schematic wiring in the simulation program OrCAD, including a description of equat...
A surgical model of permanent and transient middle cerebral artery stroke in the sheep.
Directory of Open Access Journals (Sweden)
Adam J Wells
Full Text Available BACKGROUND: Animal models are essential to study the pathophysiological changes associated with focal occlusive stroke and to investigate novel therapies. Currently used rodent models have yielded little clinical success, however large animal models may provide a more suitable alternative to improve clinical translation. We sought to develop a model of acute proximal middle cerebral artery (MCA ischemic stroke in sheep, including both permanent occlusion and transient occlusion with reperfusion. MATERIALS AND METHODS: 18 adult male and female Merino sheep were randomly allocated to one of three groups (n = 6/gp: 1 sham surgery; 2 permanent proximal MCA occlusion (MCAO; or 3 temporary MCAO with aneurysm clip. All animals had invasive arterial blood pressure, intracranial pressure and brain tissue oxygen monitoring. At 4 h following vessel occlusion or sham surgery animals were killed by perfusion fixation. Brains were processed for histopathological examination and infarct area determination. 6 further animals were randomized to either permanent (n = 3 or temporary MCAO (n = 3 and then had magnetic resonance imaging (MRI at 4 h after MCAO. RESULTS: Evidence of ischemic injury in an MCA distribution was seen in all stroke animals. The ischemic lesion area was significantly larger after permanent (28.8% compared with temporary MCAO (14.6%. Sham animals demonstrated no evidence of ischemic injury. There was a significant reduction in brain tissue oxygen partial pressure after permanent vessel occlusion between 30 and 210 mins after MCAO. MRI at 4 h demonstrated complete proximal MCA occlusion in the permanent MCAO animals with a diffusion deficit involving the whole right MCA territory, whereas temporary MCAO animals demonstrated MRA evidence of flow within the right MCA and smaller predominantly cortical diffusion deficits. CONCLUSIONS: Proximal MCAO can be achieved in an ovine model of stroke via a surgical approach. Permanent
Behavior genetic modeling of human fertility
DEFF Research Database (Denmark)
Rodgers, J L; Kohler, H P; Kyvik, K O
2001-01-01
Try) and number of children (NumCh). Behavior genetic models were fitted using structural equation modeling and DF analysis. A consistent medium-level additive genetic influence was found for NumCh, equal across genders; a stronger genetic influence was identified for FirstTry, greater for females than for males......Behavior genetic designs and analysis can be used to address issues of central importance to demography. We use this methodology to document genetic influence on human fertility. Our data come from Danish twin pairs born from 1953 to 1959, measured on age at first attempt to get pregnant (First...
Directory of Open Access Journals (Sweden)
Diego Francisco Ledezma-Ramirez
2014-01-01
Full Text Available A theoretical control strategy for residual vibration control resulting from a shock pulse is studied. The semiactive control strategy is applied in a piecewise linear compound model and involves an on-off logic to connect and disconnect a secondary mass stiffness system from the primary isolation device, with the aim of providing high energy dissipation for lightly damped systems. The compound model is characterized by an energy dissipation mechanism due to the inelastic collision between the two masses and then viscous damping is introduced and its effects are analyzed. The objective of the simulations is to evaluate the transient vibration response in comparison to the results for a passive viscously damped single degree-of-freedom system considered as the benchmark or reference case. Similarly the decay in the compound system is associated with an equivalent decay rate or logarithmic decrement for direct comparison. It is found how the compound system provides improved isolation compared to the passive system, and the damping mechanisms are explained.
Bronuzzi, J.; Mapelli, A.; Sallese, J. M.
2016-12-01
A silicon wafer bonding technique has been recently proposed for the fabrication of monolithic silicon radiation detectors. This new process would enable direct bonding of a read-out electronic chip wafer on a highly resistive silicon substrate wafer. Therefore, monolithic silicon detectors could be fabricated in this way which would allow the free choice of electronic chips and high resistive silicon bulk, even from different providers. Moreover, a monolithic detector with a high resistive bulk would also be available. Electrical properties of the bonded interface are then critical for this application. Indeed, mobile charges generated by radiation inside the bonded bulk are expected to transit through the interface to be collected by the read-out electronics. In order to characterize this interface, the concept of Transient Current Technique (TCT) has been explored by means of numerical simulations combined with a physics based analytical model. In this work, the analytical model giving insight into the physics behind the TCT dependence upon interface traps is validated using both TCAD simulations and experimental measurements.
Maassen, Jesse; Lundstrom, Mark
2016-03-01
Understanding ballistic phonon transport effects in transient thermoreflectance experiments and explaining the observed deviations from classical theory remains a challenge. Diffusion equations are simple and computationally efficient but are widely believed to break down when the characteristic length scale is similar or less than the phonon mean-free-path. Building on our prior work, we demonstrate how well-known diffusion equations, namely, the hyperbolic heat equation and the Cattaneo equation, can be used to model ballistic phonon effects in frequency-dependent periodic steady-state thermal transport. Our analytical solutions are found to compare excellently to rigorous numerical results of the phonon Boltzmann transport equation. The correct physical boundary conditions can be different from those traditionally used and are paramount for accurately capturing ballistic effects. To illustrate the technique, we consider a simple model problem using two different, commonly used heating conditions. We demonstrate how this framework can easily handle detailed material properties, by considering the case of bulk silicon using a full phonon dispersion and mean-free-path distribution. This physically transparent approach provides clear insights into the nonequilibrium physics of quasi-ballistic phonon transport and its impact on thermal transport properties.
Vapor shielding models and the energy absorbed by divertor targets during transient events
Energy Technology Data Exchange (ETDEWEB)
Skovorodin, D. I., E-mail: dskovorodin@gmail.com; Arakcheev, A. S. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Pshenov, A. A.; Eksaeva, E. A.; Marenkov, E. D.; Krasheninnikov, S. I. [National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation)
2016-02-15
The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shielding is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level E{sub max}. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that E{sub max} depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the “strength” of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the E{sub max} is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding
Zarifakis, Marios; Coffey, William T.; Kalmykov, Yuri P.; Titov, Sergei V.
2017-06-01
An ever-increasing requirement to integrate greater amounts of electrical energy from renewable sources especially from wind turbines and solar photo-voltaic installations exists and recent experience in the island of Ireland demonstrates that this requirement influences the behaviour of conventional generating stations. One observation is the change in the electrical power output of synchronous generators following a transient disturbance especially their oscillatory behaviour accompanied by similar oscillatory behaviour of the grid frequency, both becoming more pronounced with reducing grid inertia. This behaviour cannot be reproduced with existing mathematical models indicating that an understanding of the behaviour of synchronous generators, subjected to various disturbances especially in a system with low inertia requires a new modelling technique. Thus two models of a generating station based on a double pendulum described by a system of coupled nonlinear differential equations and suitable for analysis of its stability corresponding to infinite or finite grid inertia are presented. Formal analytic solutions of the equations of motion are given and compared with numerical solutions. In particular the new finite grid model will allow one to identify limitations to the operational range of the synchronous generators used in conventional power generation and also to identify limits, such as the allowable Rate of Change of Frequency which is currently set to ± 0.5 Hz/s and is a major factor in describing the volatility of a grid as well as identifying requirements to the total inertia necessary, which is currently provided by conventional power generators only, thus allowing one to maximise the usage of grid connected non-synchronous generators, e.g., wind turbines and solar photo-voltaic installations.
Merlis, Timothy M.
2014-10-01
Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.
Modeling of Propagation and Transformation of Transient Nonlinear Waves on A Current
Institute of Scientific and Technical Information of China (English)
Wojciech Sulisz; Maciej Paprota
2013-01-01
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.
Lightning transient analysis in wind turbine blades
DEFF Research Database (Denmark)
Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find
2013-01-01
The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...
Energy Technology Data Exchange (ETDEWEB)
Inagaki, Yoshiyuki; Hada, Kazuhiko; Nishihara, Tetsuo; Takeda, Tetsuaki; Haga, Katsuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Hino, Ryutaro
1997-10-01
The hydrogen production system by steam reforming of natural gas is to be constructed to demonstrate effectiveness of high-temperature nuclear heat utilization systems with the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test system is planned to investigate the system characteristics, to develop high-temperature components such as a reformer, a high-temperature isolation valve and so on, and to verify operation and control technologies and safety technology at accidents. This paper presents outline of operation and control systems and analytical review of transient behavior of the out-of-pile hydrogen production system. Main function of the operation and control systems is made not to give disturbance to the HTTR at transient state under start-up and stop operations. The operation modes are separated into two ones, namely normal and accident operation modes, and operation sequences are made for each operation mode. The normal operation sequence includes start-up, steady operation and stop of the out-of-pile system. The accident one deals with accident conditions at which supply of feed gas is stopped and helium gas is cooled passively by the steam generator. Transient behavior of the out-of-pile system was analyzed numerically according as the operation sequences. As the results, it was confirmed that the designed operation and control systems are adequate to the out-of-pile system. (author)
Behavioral effects in room evacuation models
Dossetti, V.; Bouzat, S.; Kuperman, M. N.
2017-08-01
In this work we study a model for the evacuation of pedestrians from an enclosure considering a continuous space substrate and discrete time. We analyze the influence of behavioral features that affect the use of the empty space, that can be linked to the attitudes or characters of the pedestrians. We study how the interaction of different behavioral profiles affects the needed time to evacuate completely a room and the occurrence of clogging. We find that neither fully egotistic nor fully cooperative attitudes are optimal from the point of view of the crowd. In contrast, intermediate behaviors provide lower evacuation times. This leads us to identify some phenomena closely analogous to the faster-is-slower effect. The proposed model allows for distinguishing between the role of the attitudes in the search for empty space and the attitudes in the conflicts.
Knowledge Map: Mathematical Model and Dynamic Behaviors
Institute of Scientific and Technical Information of China (English)
Hai Zhuge; Xiang-Feng Luo
2005-01-01
Knowledge representation and reasoning is a key issue of the Knowledge Grid. This paper proposes a Knowledge Map (KM) model for representing and reasoning causal knowledge as an overlay in the Knowledge Grid. It extends Fuzzy Cognitive Maps (FCMs) to represent and reason not only simple cause-effect relations, but also time-delay causal relations, conditional probabilistic causal relations and sequential relations. The mathematical model and dynamic behaviors of KM are presented. Experiments show that, under certain conditions, the dynamic behaviors of KM can translate between different states. Knowing this condition, experts can control or modify the constructed KM while its dynamic behaviors do not accord with their expectation. Simulations and applications show that KM is more powerful and natural than FCM in emulating real world.
Error Resilient Video Compression Using Behavior Models
Directory of Open Access Journals (Sweden)
Jacco R. Taal
2004-03-01
Full Text Available Wireless and Internet video applications are inherently subjected to bit errors and packet errors, respectively. This is especially so if constraints on the end-to-end compression and transmission latencies are imposed. Therefore, it is necessary to develop methods to optimize the video compression parameters and the rate allocation of these applications that take into account residual channel bit errors. In this paper, we study the behavior of a predictive (interframe video encoder and model the encoders behavior using only the statistics of the original input data and of the underlying channel prone to bit errors. The resulting data-driven behavior models are then used to carry out group-of-pictures partitioning and to control the rate of the video encoder in such a way that the overall quality of the decoded video with compression and channel errors is optimized.
Goldberg, D. N.; Heimbach, P.; Joughin, I.; Smith, B.
2015-12-01
A glacial flow model of Smith, Pope and Kohler Glaciers is calibrated by means of control methods against time varying, annually resolved observations of ice height and velocities, covering the period 2002 to 2011. The inversion - termed "transient calibration" - produces an optimal set of time-mean, spatially varying parameters together with a time-evolving state that accounts for the transient nature of observations and the model dynamics. Serving as an optimal initial condition, the estimated state for 2011 is used, with no additional forcing, for predicting grounded ice volume loss and grounding line retreat over the ensuing 30 years. The transiently calibrated model predicts a near-steady loss of grounded ice volume of approximately 21 km3 a-1 over this period, as well as loss of 33 km2 a-1 grounded area. We contrast this prediction with one obtained following a commonly used "snapshot" or steady-state inversion, which does not consider time dependence and assumes all observations to be contemporaneous. Transient calibration is shown to achieve a better fit with observations of thinning and grounding line retreat histories, and yields a quantitatively different projection with respect to ice volume loss and ungrounding. Sensitivity studies suggest large near-future levels of unforced, i.e., committed sea level contribution from these ice streams under reasonable assumptions regarding uncertainties of the unknown parameters.
Joubert, Dirk Albert; O'Neill, Scott L
2017-01-01
Pathogen replication and transmission in Wolbachia infected insects are currently studied using three Wolbachia infection systems: naturally infected Wolbachia hosts, hosts transinfected with Wolbachia (stably maintained and inherited infections) and hosts transiently infected with Wolbachia. All three systems have been used to test the effect of Wolbachia on mosquito transmitted pathogens such as dengue virus (DENV), West Nile virus (WNV) and Plasmodium. From these studies it is becoming increasingly clear that the interaction between a particular pathogen and Wolbachia is heavily influenced by the host-Wolbachia interaction and the model of infection. In particular, there is some evidence that under very specific conditions, Wolbachia can enhance pathogen infection in some hosts. In this study, we compared the effect of Wolbachia in two infection models (stable transinfected and transiently infected) on the replication, infection- and transmission rates of two flaviviruses, DENV and WNV (Kunjin strain). Our results indicate that Wolbachia had similar blocking effects in both stable and transient models of infection, however, the magnitude of the blocking effect was significantly lower in mosquitoes transiently infected with Wolbachia. More importantly, no evidence was found for any enhancement of either DENV or WNV (Kunjin strain) infection in Ae. aegypti infected with Wolbachia, supporting a role for Wolbachia as an effective and safe means for restricting transmission of these viruses.
Joubert, Dirk Albert; O’Neill, Scott L.
2017-01-01
Pathogen replication and transmission in Wolbachia infected insects are currently studied using three Wolbachia infection systems: naturally infected Wolbachia hosts, hosts transinfected with Wolbachia (stably maintained and inherited infections) and hosts transiently infected with Wolbachia. All three systems have been used to test the effect of Wolbachia on mosquito transmitted pathogens such as dengue virus (DENV), West Nile virus (WNV) and Plasmodium. From these studies it is becoming increasingly clear that the interaction between a particular pathogen and Wolbachia is heavily influenced by the host-Wolbachia interaction and the model of infection. In particular, there is some evidence that under very specific conditions, Wolbachia can enhance pathogen infection in some hosts. In this study, we compared the effect of Wolbachia in two infection models (stable transinfected and transiently infected) on the replication, infection- and transmission rates of two flaviviruses, DENV and WNV (Kunjin strain). Our results indicate that Wolbachia had similar blocking effects in both stable and transient models of infection, however, the magnitude of the blocking effect was significantly lower in mosquitoes transiently infected with Wolbachia. More importantly, no evidence was found for any enhancement of either DENV or WNV (Kunjin strain) infection in Ae. aegypti infected with Wolbachia, supporting a role for Wolbachia as an effective and safe means for restricting transmission of these viruses. PMID:28052065
Hysteretic behavior modeling of elastoplastic materials
Directory of Open Access Journals (Sweden)
Šumarac Dragoslav
2008-01-01
Full Text Available In the present paper the Preisach model of hysteresis is applied to model cyclic behavior of elasto-plastic material. Rate of loading and viscous effects will not be considered. The problem of axial loading of rectangular cross section and cyclic bending of rectangular tube (box will be studied in details. Hysteretic stress-strain loop for prescribed history of stress change is plotted for material modeled by series connection of three unite element. Also moment-curvature hysteretic loop is obtained for a prescribed curvature change of rectangular tube (box. One chapter of the paper is devoted to results obtained by FEM using Finite Element Code ABAQUS. All obtained results clearly show advantages of the Preisach model for describing cyclic behavior of elasto-plastic material.
Modeling landowner behavior regarding forest certification
David C. Mercker; Donald G. Hodges
2008-01-01
Nonindustrial private forest owners in western Tennessee were surveyed to assess their awareness, acceptance, and perceived benefits of forest certification. More than 80 percent of the landowners indicated a willingness to consider certification for their lands. A model was created to explain landowner behavior regarding their willingness to consider certification....
Applying incentive sensitization models to behavioral addiction
DEFF Research Database (Denmark)
Rømer Thomsen, Kristine; Fjorback, Lone; Møller, Arne
2014-01-01
The incentive sensitization theory is a promising model for understanding the mechanisms underlying drug addiction, and has received support in animal and human studies. So far the theory has not been applied to the case of behavioral addictions like Gambling Disorder, despite sharing clinical...
MODELING OPERANT BEHAVIOR IN THE PARKINSONIAN RAT
Avila, Irene; Reilly, Mark P; Sanabria, Federico; Posadas-Sánchez, Diana; Chavez, Claudia L.; Banerjee, Nikhil; Killeen, Peter; Castañeda, Edward
2008-01-01
Mathematical principles of reinforcement (MPR; Killeen, 1994) is a quantitative model of operant behavior that contains 3 parameters representing motor capacity (δ), motivation (a), and short term memory (λ). The present study applied MPR to characterize the effects of bilateral infusions of 6-OHDA into the substantia nigra pars compacta in the rat, a model of Parkinson’s disease. Rats were trained to lever press under a 5-component fixed ratio (5, 15, 30, 60, and 100) schedule of food reinfo...
An intermediate-luminosity-optical-transient (ILOT) model for the young stellar object ASASSN-15qi
Kashi, Amit
2016-01-01
We construct a scenario where the outburst of the young-stellar-object ASASSN-15qi is an intermediate luminosity optical transient (ILOT). In this scenario a sub-Jupiter young planet was tidally destructed on to a young main-sequence star. The system is young, therefore the radius of the planet is larger than its final value, and consequently it has smaller density. The lower density allows the tidal destruction of the young Saturn-like planet on to the main-sequence star of mass $\\approx 2.4 ~M_\\odot$, resulting in a formation of a disc and a gravitationally-powered ILOT. Unlike the case of the more energetic ILOT V838~Mon, the mass of the destroyed planet is too low to inflate a giant envelope, and hence the merger remnant stays hot. If our suggested model holds, this ILOT possesses two interesting properties: (1) its luminosity and total energy are below those of novae, and (2) it is not as red as other ILOTs. The unusual outburst of ASASSN-15qi, if indeed is an ILOT, further increases the diversity of the...
Energy Technology Data Exchange (ETDEWEB)
Baptista, Renan Martins [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Div. de Explotacao]. E-mail: renan@cenpes.petrobras.com.br
2000-07-01
This paper describes a technical procedure to assess a software based leak detection system (LDS), by deciding between a simpler low cost, less effective product, having a fast installation and tuning, and a complex one with high cost and efficiency, which however takes a long time to be properly installed. This is a common decision among the pipeline operating companies, considering that the majority of the lines are short, with single phase liquid flow (which may include batches), basic communication system and instrumentation. Service companies offer realistic solutions for liquid flow, but usually designed to big pipeline networks, flowing multiple batches and allowing multiple fluid entrances and deliveries. Those solutions are sometimes impractical to short pipelines, due to its high cost, as well as long tuning procedures, complex instrumentation, communication and computer requirements. It is intended to approach here the best solution according to its cost. In a practical sense, it means to differentiate the various LDS techniques. Those techniques are available in a considerable number, and they are still spreading, according to the different scenarios. However, two most known and worldwide implemented techniques hold the majority of the market: the Compensated Volume Balance (CVB), which is less accurate, reliable and robust, but cheaper, simpler and faster to install, and the Real Time Transient Model (RTTM), which is very reliable, accurate and robust, but expensive and complex. This work will describe a way to define whether one can use or not a CVB in a pipeline. (author)
Simard, Patrick Tremblay; Chesnaux, Romain; Rouleau, Alain; Daigneault, Réal; Cousineau, Pierre A.; Roy, Denis W.; Lambert, Mélanie; Poirier, Brigitte; Poignant-Molina, Léo
2015-08-01
Aquifer formations along the northern shore of the Saint-Lawrence River in Quebec (Canada) mainly consist of glacial and coastal deposits of variable thickness overlying Precambrian bedrock. These deposits are important because they provide the main water supply for many communities. As part of a continuing project aimed at developing an inventory of the groundwater resources in the Charlevoix and Haute-Côte-Nord (CHCN) regions of the province of Quebec in Canada, the central loop transient electromagnetic (TEM) method was used to map the principal hydrogeological environments in these regions. One-dimensional smooth inversion models of the TEM soundings have been used to construct two-dimensional electrical resistivity sections, which provided images for hydrogeological validation. Electrical contour lines of aquifer environments were compared against available well logs and Quaternary surface maps in order to interpret TEM soundings. A calibration table was achieved to represent common deposits and basements. The calibration table was then exported throughout the CHCN region. This paper presents three case studies; one in the Forestville site, another in the Les Escoumins site and the other in the Saint-Urbain site. These sites were selected as targets for geophysical surveys because of the general lack of local direct hydrogeological data related to them.
Transient mathematical model for the axial annular fluid flow caused by drillpipe motion
Energy Technology Data Exchange (ETDEWEB)
Kimura, Hudson F.; Ramalho, Vanessa A.O.; Negrao, Cezar O.R.; Junqueira, Silvio L.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Dept. Academico de Mecanica. Lab. de Ciencias Termicas]. E-mails: hudsonhfk@yahoo.com.br; vanessinha123@gmail.com; negrao@utfpr.edu.br; silvio@utfpr.edu.br; Martins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Tecnologia de Engenharia de Pocos (TEP)]. E-mail: aleibsohn@petrobras.com.br
2008-07-01
The axial movement of drill pipes is a common operation in oil well drilling. This motion displaces the drilling fluid and causes pressure changes in the borehole. The descending pipe movement increases the pressure at the bottomhole (surge) and its extraction reduces it (swab). If the bottomhole pressure overcomes the formation fracture pressure, circulation loss may take place. On the other hand, if the pressure within the well is smaller than the pore pressure, kicks can occur. In order to maintain the bottomhole pressure within the formation fracture and pore pressures, the drill pipe must be moved slowly and therefore, the task becomes quite time consuming. The current work presents a mathematical model to predict surge and swab pressures in annular spaces. The approach is based on conservation equations of mass and momentum. The fluid flow is considered laminar, one-dimensional, compressible, isothermal and transient. The fluid is regarded as Newtonian with constant compressibility. The viscous effect is lumped and the concept of friction factor is applied. The governing differential equations are non-linear and therefore, they are solved numerically by the finite volume method. A sensitivity analysis of the flow parameters is carried out. For instance, the pressure wave propagation is observed for low compressibility fluids. Pressure oscillation is observed for low aspect ratio ratios. (author)
Detailed Physical Modeling Reveals the Magnetar Nature of a Transient Anomalous X-ray Pulsar
Guever, T.; Oezel, F.; Goegues, E.; Kouveliotou, C.
2007-01-01
Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.
Forcada, J.; Royle, J. Andrew; Staniland, I.J.
2009-01-01
Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90?125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12?16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the ?escapement? due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species
Miao, Ming-San; Guo, Lin; Li, Rui-Qi; Zhang, Xiao-Lei
2016-03-01
Flavonoids are a major component in the traditional Chinese medicine Radix Ilicis Pubescentis. Previous studies have shown that the administration of Radix Ilicis Pubescentis total flavonoids is protective in cerebral ischemia. However, to our knowledge, no studies have examined whether the total flavonoids extracted from Radix Ilicis Pubescentis prevent or ameliorate neuronal damage following transient ischemic attacks. Therefore, Radix Ilicis Pubescentis total flavonoids question and the potential underlying mechanisms. Thus, beginning 3 days before the induction of a mouse model of transient ischemic attack using tert-butyl hydroperoxide injections, mice were intragastrically administered 0.3, 0.15, or 0.075 g/kg of Radix Ilicis Pubescentis total flavonoids daily for 10 days. The results of spectrophotometric analyses demonstrated that Radix Ilicis Pubescentis total flavonoids enhanced oxygen free radical scavenging and reduced pathological alterations in the brain. Hematoxylin-eosin staining results showed that Radix Ilicis Pubescentis total flavonoids reduced hippocampal neuronal damage and cerebral vascular injury in this mouse model of transient ischemic attack. These results suggest that the antioxidant effects of Radix Ilicis Pubescentis total flavonoids alleviate the damage to brain tissue caused by transient ischemic attack.
Institute of Scientific and Technical Information of China (English)
Ming-san Miao; Lin Guo; Rui-qi Li; Xiao-lei Zhang
2016-01-01
Flavonoids are a major component in the traditional Chinese medicine RadixIlicis Pubescentis. Previous studies have shown that the administration of RadixIlicis Pubescentis total lfavonoids is protective in cerebral ischemia. However, to our knowledge, no studies have examined whether the total lfavonoids extracted from RadixIlicis Pubescentis prevent or ameliorate neuronal damage following transient ischemic attacks. Therefore, RadixIlicis Pubescentis total lfavonoids question and the potential underlying mechanisms. Thus, beginning 3 days before the induction of a mouse model of transient ischemic attack using tert-butyl hydroperoxide injections, mice were intragas-trically administered 0.3, 0.15, or 0.075 g/kg of RadixIlicis Pubescentis total lfavonoids daily for 10 days. The results of spectrophotometric analyses demonstrated that RadixIlicis Pubescentis total lfavonoids enhanced oxygen free radical scavenging and reduced pathological alter-ations in the brain. Hematoxylin-eosin staining results showed that RadixIlicis Pubescentis total lfavonoids reduced hippocampal neuronal damage and cerebral vascular injury in this mouse model of transient ischemic attack. These results suggest that the antioxidant effects of RadixIlicis Pubescentis total lfavonoids alleviate the damage to brain tissue caused by transient ischemic attack.
Hyperpolarized 129Xe magnetic resonance imaging of a rat model of transient Ischemic Stroke
Walvick, Ronn P.; Bastan, Birgul; Reno, Austin; Mansour, Joey; Sun, Yanping; Zhou, Xin; Mazzani, Mary; Fisher, Marc; Sotak, Christopher H.; Albert, Mitchell S.
2009-02-01
Ischemic stroke accounts for nearly 80% of all stroke cases. Although proton diffusion and perfusion magnetic resonance imaging (MRI) are the gold standards in ischemic stroke diagnostics, the use of hyperpolarized 129Xe MRI has a potential role to contribute to the diagnostic picture. The highly lipophilic hyperpolarized 129Xe can be non-invasively delivered via inhalation into the lungs where it is dissolved into the blood and delivered to other organs such as the brain. As such, we expect hyperpolarized 129Xe to act as a perfusion tracer which will result in a signal deficit in areas of blood deprived tissue. In this work, we present imaging results from an animal model of transient ischemic stroke characterized through 129Xe MRI. In this model, a suture is used to occlude the middle cerebral artery (MCA) in the rat brain, thus causing an ischemic event. After a period of MCA occlusion, the suture can then be removed to reperfuse the ischemic area. During the ischemic phase of the stroke, a signal void was observed in the MCA territory; which was subsequently restored by normal 129Xe MRI signal once perfusion was reinstated. Further, a higher resolution one-dimensional chemical shift image shows a sharp signal drop in the area of ischemia. Validation of ischemic damage was shown through both proton diffusion-weighted MRI (DWI) and by 2,3,5-triphenyltetrazoliumchloride (TTC) staining. The results show the potential of 129Xe to act as a perfusion tracer; information that may add to the diagnostic and prognostic utility of the clinical picture of stroke.
Transient modelling of heat loading of phase change material for energy storage
Directory of Open Access Journals (Sweden)
Asyraf W.M.
2017-01-01
Full Text Available As the development of solar energy is getting advance from time to time, the concentration solar technology also get the similar attention from the researchers all around the globe. This technology concentrate a large amount of energy into main spot. To collect all the available energy harvest from the solar panel, a thermal energy storage is required to convert the heat energy to one of the purpose such as electrical energy. With the idea of energy storage application that can be narrow down to commercial application such as cooking stove. Using latent heat type energy storage seem to be appropriate with the usage of phase change material (PCM that can release and absorb heat energy at nearly constant temperature by changing its state. Sodium nitrate (NaNO3 and potassium nitrate (KNO3 was selected to use as PCM in this project. This paper focus on the heat loading process and the melting process of the PCM in the energy storage using a computer simulation. The model of the energy storage was created as solid three dimensional modelling using computer aided software and the geometry size of it depend on how much it can apply to boil 1 kg of water in cooking application. The materials used in the tank, heat exchanger and the heat transfer fluid are stainless steel, copper and XCELTHERM MK1, respectively. The analysis was performed using a commercial simulation software in a transient state. The simulation run on different value of velocity but kept controlled under laminar state only, then the relationship of velocity and heat distribution was studied and the melting process of the PCM also has been analyzed. On the effect of heat transfer fluid velocity, the higher the velocity resulted in higher the rate of heat transfer. The comparison between the melting percentages of the PCMs under test conditions show that NaNO3 melts quite faster than KNO3.
Energy Technology Data Exchange (ETDEWEB)
Rian, Kjell Erik
2003-07-01
In numerical simulations of turbulent reacting compressible flows, artificial boundaries are needed to obtain a finite computational domain when an unbounded physical domain is given. Artificial boundaries which fluids are free to cross are called open boundaries. When calculating such flows, non-physical reflections at the open boundaries may occur. These reflections can pollute the solution severely, leading to inaccurate results, and the generation of spurious fluctuations may even cause the numerical simulation to diverge. Thus, a proper treatment of the open boundaries in numerical simulations of turbulent reacting compressible flows is required to obtain a reliable solution for realistic conditions. A local quasi-one-dimensional characteristic-based open-boundary treatment for the Favre-averaged governing equations for time-dependent three-dimensional multi-component turbulent reacting compressible flow is presented. A k-{epsilon} model for turbulent compressible flow and Magnussen's EDC model for turbulent combustion is included in the analysis. The notion of physical boundary conditions is incorporated in the method, and the conservation equations themselves are applied on the boundaries to complement the set of physical boundary conditions. A two-dimensional finite-difference-based computational fluid dynamics code featuring high-order accurate numerical schemes was developed for the numerical simulations. Transient numerical simulations of the well-known, one-dimensional shock-tube problem, a two-dimensional pressure-tower problem in a decaying turbulence field, and a two-dimensional turbulent reacting compressible flow problem have been performed. Flow- and combustion-generated pressure waves seem to be well treated by the non-reflecting subsonic open-boundary conditions. Limitations of the present open-boundary treatment are demonstrated and discussed. The simple and solid physical basis of the method makes it both favourable and relatively easy to
Behavior and Design Intent Based Product Modeling
Directory of Open Access Journals (Sweden)
László Horváth
2004-11-01
Full Text Available A knowledge based modeling of mechanical products is presented for industrial CAD/CAM systems. An active model is proposed that comprise knowledge from modeling procedures, generic part models and engineers. Present day models of mechanical systems do not contain data about the background of human decisions. This situation motivated the authors at their investigations on exchange design intent information between engineers. Their concept was extending of product models to be capable of description of design intent information. Several human-computer and human-human communication issues were considered. The complex communication problem has been divided into four sub-problems, namely communication of human intent source with the computer system, representation of human intent, exchange of intent data between modeling procedures and communication of the represented intent with humans. Paper discusses the scenario of intelligent modeling based engineering. Then key concepts for the application of computational intelligence in computer model based engineering systems are detailed including knowledge driven models as well as areas of their application. Next, behavior based models with intelligent content involving specifications and knowledge for the design processes are emphasized and an active part modeling is proposed and possibilities for its application are outlined. Finally, design intent supported intelligent modeling is discussed.
Regulski, Wojciech; Szumbarski, Jacek
2016-01-01
In this paper, the performance of two lattice Boltzmann method formulations for yield-stress (i.e. viscoplastic) fluids has been investigated. The first approach is based on the popular Papanastasiou regularisation of the fluid rheology in conjunction with explicit modification of the lattice Boltzmann relaxation rate. The second approach uses a locally-implicit formulation to simultaneously solve for the fluid stress and the underlying particle distribution functions. After investigating issues related to the lattice symmetry and non-hydrodynamic Burnett stresses, the two models were compared in terms of spatial convergence and their behaviour in transient and inertial flows. The choice of lattice and the presence of Burnett stresses was found to influence the results of both models, however the latter did not significantly degrade the velocity field. Using Bingham flows in ducts and synthetic porous media, it was found that the implicitly-regularised model was superior in capturing transient and inertial fl...
Behavioral modeling of Digitally Adjustable Current Amplifier
Directory of Open Access Journals (Sweden)
Josef Polak
2015-03-01
Full Text Available This article presents the digitally adjustable current amplifier (DACA and its analog behavioral model (ABM, which is suitable for both ideal and advanced analyses of the function block using DACA as active element. There are four levels of this model, each being suitable for simulation of a certain degree of electronic circuits design (e.g. filters, oscillators, generators. Each model is presented through a schematic wiring in the simulation program OrCAD, including a description of equations representing specific functions in the given level of the simulation model. The design of individual levels is always verified using PSpice simulations. The ABM model has been developed based on practically measured values of a number of DACA amplifier samples. The simulation results for proposed levels of the ABM model are shown and compared with the results of the real easurements of the active element DACA.
Energy Technology Data Exchange (ETDEWEB)
Silva, Alice Cunha da; Su, Jian, E-mail: alicecs@poli.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)
2013-07-01
The High Temperature Gas cooled Reactor (HTGR) is a fourth generation thermal nuclear reactor, graphite-moderated and helium cooled. The HTGRs have important characteristics making essential the study of these reactors, as well as its fuel element. Examples of these are: high thermal efficiency,low operating costs and construction, passive safety attributes that allow implication of the respective plants. The Pebble Bed Modular Reactor (PBMR) is a HTGR with spherical fuel elements that named the reactor. This fuel element is composed by a particulate region with spherical inclusions, the fuel UO2 particles, dispersed in a graphite matrix and a convective heat transfer by Helium happens on the outer surface of the fuel element. In this work, the transient heat conduction in a spherical fuel element of a pebble-bed high temperature reactor was studied in a transient situation of combined convective and radiative cooling. Improved lumped parameter model was developed for the transient heat conduction in the two-layer composite sphere subjected to combined convective and radiative cooling. The improved lumped model was obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of the two-layer spherical fuel element was analyzed to illustrate the applicability of the proposed lumped model, with respect to die rent values of the Biot number, the radiation-conduction parameter, the dimensionless thermal contact resistance, the dimensionless inner diameter and coating thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the improved lumped model, with H2,1/H1,1/H0,0 approximation yielded significant improvement of average temperature prediction over the classical lumped model. (author)
Aids to determining fuel models for estimating fire behavior
Hal E. Anderson
1982-01-01
Presents photographs of wildland vegetation appropriate for the 13 fuel models used in mathematical models of fire behavior. Fuel model descriptions include fire behavior associated with each fuel and its physical characteristics. A similarity chart cross-references the 13 fire behavior fuel models to the 20 fuel models used in the National Fire Danger Rating System....
Energy Technology Data Exchange (ETDEWEB)
Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.
2017-05-15
Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.
Energy Technology Data Exchange (ETDEWEB)
Lazaro, A., E-mail: aulach@iqn.upv.es [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Schikorr, M. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K. [PSI, Paul Scherrer Institut, 5232 Villigen (Switzerland); Ammirabile, L. [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Schmitt, D. [EDF, 1 Avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St. Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, P.O. Box-9034, 6800 ES Arnhem (Netherlands)
2014-10-01
Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs.
Institute of Scientific and Technical Information of China (English)
Sobhan; Mosayebidorcheh; Mohammad; Rahimi-Gorji; D.D; Ganji; Taha; Moayebidorcheh; O; Pourmehran; M.Biglarian
2017-01-01
This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transformation(DTM) and finite difference(FDM) methods is utilized to theoretically study the present problem.DTM and FDM are applied to the time and space domains of the problem,respectively.The accuracy of this method solution is checked against the numerical solution.Then,the effects of some applicable parameters were studied comparatively.Since a broad range of governing parameters are investigated,the results could be useful in a number of industrial and engineering applications.
Institute of Scientific and Technical Information of China (English)
Sobhan Mosayebidorcheh; Mohammad Rahimi-Gorji; D. D Ganji; Taha Moayebidorcheh; O Pourmehran; M. Biglarian
2017-01-01
This work focuses on transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties. A hybrid numerical algorithm which combines differential transformation (DTM) and finite difference (FDM) methods is utilized to theoretically study the present problem. DTM and FDM are applied to the time and space domains of the problem, respectively. The accuracy of this method solution is checked against the numerical solution. Then, the effects of some applicable parameters were studied comparatively. Since a broad range of governing parameters are investigated, the results could be useful in a number of industrial and engineering applications.
Ahmed, A M; Pak, W; Burke, D L; Miller, J
1982-02-01
In this first part of a two-part report, some aspects of the volumetric behavior of bone cement during its curing process are examined as a prelude to an analysis for the transient and residual stresses and displacements in stem fixation systems. Experiments show that stress generation in the cement is associated with its temperature while curing and that during the cooling phase, the stresses are mainly due to thermal as opposed to bulk shrinkage. The appropriate coefficient of thermal expansion of bone cement has been evaluated from measurements in a simulated fixation system in conjuction with a thermoelastic analysis.
Behavioral modeling and analysis of galvanic devices
Xia, Lei
2000-10-01
A new hybrid modeling approach was developed for galvanic devices including batteries and fuel cells. The new approach reduces the complexity of the First Principles method and adds a physical basis to the empirical methods. The resulting general model includes all the processes that affect the terminal behavior of the galvanic devices. The first step of the new model development was to build a physics-based structure or framework that reflects the important physiochemical processes and mechanisms of a galvanic device. Thermodynamics, electrode kinetics, mass transport and electrode interfacial structure of an electrochemical cell were considered and included in the model. Each process of the cell is represented by a clearly-defined and familiar electrical component, resulting in an equivalent circuit model for the galvanic device. The second step was to develop a parameter identification procedure that correlates the device response data to the parameters of the components in the model. This procedure eliminates the need for hard-to-find data on the electrochemical properties of the cell and specific device design parameters. Thus, the model is chemistry and structure independent. Implementation issues of the new modeling approach were presented. The validity of the new model over a wide range of operating conditions was verified with experimental data from actual devices. The new model was used in studying the characteristics of galvanic devices. Both the steady-state and dynamic behavior of batteries and fuel cells was studied using the impedance analysis techniques. The results were used to explain some experimental results of galvanic devices such as charging and pulsed discharge. The knowledge gained from the device analysis was also used in devising new solutions to application problems such as determining the state of charge of a battery or the maximum power output of a fuel cell. With the new model, a system can be designed that utilizes a galvanic device
Energy Technology Data Exchange (ETDEWEB)
Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.
2001-05-31
This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.
Energy Technology Data Exchange (ETDEWEB)
Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.
2001-05-31
This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.
Driver Behavior Modeling: Developments and Future Directions
Directory of Open Access Journals (Sweden)
Najah AbuAli
2016-01-01
Full Text Available The advances in wireless communication schemes, mobile cloud and fog computing, and context-aware services boost a growing interest in the design, development, and deployment of driver behavior models for emerging applications. Despite the progressive advancements in various aspects of driver behavior modeling (DBM, only limited work can be found that reviews the growing body of literature, which only targets a subset of DBM processes. Thus a more general review of the diverse aspects of DBM, with an emphasis on the most recent developments, is needed. In this paper, we provide an overview of advances of in-vehicle and smartphone sensing capabilities and communication and recent applications and services of DBM and emphasize research challenges and key future directions.
Complex Behaviors of a Simple Traffic Model
Institute of Scientific and Technical Information of China (English)
GAO Xing-Ru
2006-01-01
In this paper, we propose a modified traffic model in which a single car moves through a sequence of traffic lights controlled by a step function instead of a sine function. In contrast to the previous work [Phys. Rev. E 70 (2004)016107], we have investigated in detail the dependence of the behavior on four parameters, ω, α, η, and a1, and given three kinds of bifurcation diagrams, which show three kinds of complex behaviors. We have found that in this model there are chaotic and complex periodic motions, as well as special singularities. We have also analyzed the characteristic of the complex period motion and the essential feature of the singularity.
Hypoxia transiently affects skeletal muscle hypertrophy in a functional overload model.
Chaillou, Thomas; Koulmann, Nathalie; Simler, Nadine; Meunier, Adélie; Serrurier, Bernard; Chapot, Rachel; Peinnequin, Andre; Beaudry, Michèle; Bigard, Xavier
2012-03-01
Hypoxia induces a loss of skeletal muscle mass, but the signaling pathways and molecular mechanisms involved remain poorly understood. We hypothesized that hypoxia could impair skeletal muscle hypertrophy induced by functional overload (Ov). To test this hypothesis, plantaris muscles were overloaded during 5, 12, and 56 days in female rats exposed to hypobaric hypoxia (5,500 m), and then, we examined the responses of specific signaling pathways involved in protein synthesis (Akt/mTOR) and breakdown (atrogenes). Hypoxia minimized the Ov-induced hypertrophy at days 5 and 12 but did not affect the hypertrophic response measured at day 56. Hypoxia early reduced the phosphorylation levels of mTOR and its downstream targets P70(S6K) and rpS6, but it did not affect the phosphorylation levels of Akt and 4E-BP1, in Ov muscles. The role played by specific inhibitors of mTOR, such as AMPK and hypoxia-induced factors (i.e., REDD1 and BNIP-3) was studied. REDD1 protein levels were reduced by overload and were not affected by hypoxia in Ov muscles, whereas AMPK was not activated by hypoxia. Although hypoxia significantly increased BNIP-3 mRNA levels at day 5, protein levels remained unaffected. The mRNA levels of the two atrogenes MURF1 and MAFbx were early increased by hypoxia in Ov muscles. In conclusion, hypoxia induced a transient alteration of muscle growth in this hypertrophic model, at least partly due to a specific impairment of the mTOR/P70(S6K) pathway, independently of Akt, by an undefined mechanism, and increased transcript levels for MURF1 and MAFbx that could contribute to stimulate the proteasomal proteolysis.
A transient homotypic interaction model for the influenza A virus NS1 protein effector domain.
Directory of Open Access Journals (Sweden)
Philip S Kerry
Full Text Available Influenza A virus NS1 protein is a multifunctional virulence factor consisting of an RNA binding domain (RBD, a short linker, an effector domain (ED, and a C-terminal 'tail'. Although poorly understood, NS1 multimerization may autoregulate its actions. While RBD dimerization seems functionally conserved, two possible apo ED dimers have been proposed (helix-helix and strand-strand. Here, we analyze all available RBD, ED, and full-length NS1 structures, including four novel crystal structures obtained using EDs from divergent human and avian viruses, as well as two forms of a monomeric ED mutant. The data reveal the helix-helix interface as the only strictly conserved ED homodimeric contact. Furthermore, a mutant NS1 unable to form the helix-helix dimer is compromised in its ability to bind dsRNA efficiently, implying that ED multimerization influences RBD activity. Our bioinformatical work also suggests that the helix-helix interface is variable and transient, thereby allowing two ED monomers to twist relative to one another and possibly separate. In this regard, we found a mAb that recognizes NS1 via a residue completely buried within the ED helix-helix interface, and which may help highlight potential different conformational populations of NS1 (putatively termed 'helix-closed' and 'helix-open' in virus-infected cells. 'Helix-closed' conformations appear to enhance dsRNA binding, and 'helix-open' conformations allow otherwise inaccessible interactions with host factors. Our data support a new model of NS1 regulation in which the RBD remains dimeric throughout infection, while the ED switches between several quaternary states in order to expand its functional space. Such a concept may be applicable to other small multifunctional proteins.
U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary and model domain of the area simulated by the transient ground-water flow model of the Death Valley regional...
U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary and model domain of the area simulated by the transient ground-water flow model of the Death Valley regional...
Ding, Ming; Zhu, Qianlong
2016-01-01
Hardware protection and control action are two kinds of low voltage ride-through technical proposals widely used in a permanent magnet synchronous generator (PMSG). This paper proposes an innovative clustering concept for the equivalent modeling of a PMSG-based wind power plant (WPP), in which the impacts of both the chopper protection and the coordinated control of active and reactive powers are taken into account. First, the post-fault DC link voltage is selected as a concentrated expression of unit parameters, incoming wind and electrical distance to a fault point to reflect the transient characteristics of PMSGs. Next, we provide an effective method for calculating the post-fault DC link voltage based on the pre-fault wind energy and the terminal voltage dip. Third, PMSGs are divided into groups by analyzing the calculated DC link voltages without any clustering algorithm. Finally, PMSGs of the same group are equivalent as one rescaled PMSG to realize the transient equivalent modeling of the PMSG-based WPP. Using the DIgSILENT PowerFactory simulation platform, the efficiency and accuracy of the proposed equivalent model are tested against the traditional equivalent WPP and the detailed WPP. The simulation results show the proposed equivalent model can be used to analyze the offline electromechanical transients in power systems.
Model "Big Five" personality and criminal behavior
Sánchez-Teruel, David; Profesor, Departamento de Psicología-Área de Psicología Social, Facultad de Humanidades y Ciencias de la Educación, España.; Robles-Bello, Mª Auxiliadora; Profesor, Departamento de Psicología-Área de Psicología Social, Facultad de Humanidades y Ciencias de la Educación, España.
2013-01-01
It reflect on the theoretical issues that currently versa Personality Psychology in general and antisocial or criminal behavior in particular. It discusses how the model can be used personality "Big Five" applied to the field of crime, and shows the variables that the literature presented as more predictive, through one of the most widely used assessment instruments at present. It currently advises finding, meeting points between the various existing theories, for that personality does not be...
Directory of Open Access Journals (Sweden)
E.M. Matos
2000-06-01
Full Text Available A model is presented for the description of the concentration behavior of organometallic and sulfurated compounds in hydrodemetallation and hydrodesulfurization catalytic processes, where catalyst effectiveness decreases with time. Due to the complexity of the mixture, an approach based on pseudocomponents was adopted. The system is modeled as an isothermal tubular reactor with axial dispersion, where the gas phase (hydrogen in excess flows upward concurrently with the liquid phase (heavy oil while the solid phase (catalyst stays inside the reactor in an expanded (confined bed regime. The catalyst particles are very small and are assumed to be uniformly distributed in the reactor. The heavy oil fractions contain organometallics and sulfurated compounds, from which the metals and sulfur are to be removed, the metals as deposits in the catalyst pores and the sulfur as gas products. Simulations were carried out where the concentration profile inside the reactor was calculated for several residence times.
Behavioral Reference Model for Pervasive Healthcare Systems.
Tahmasbi, Arezoo; Adabi, Sahar; Rezaee, Ali
2016-12-01
The emergence of mobile healthcare systems is an important outcome of application of pervasive computing concepts for medical care purposes. These systems provide the facilities and infrastructure required for automatic and ubiquitous sharing of medical information. Healthcare systems have a dynamic structure and configuration, therefore having an architecture is essential for future development of these systems. The need for increased response rate, problem limited storage, accelerated processing and etc. the tendency toward creating a new generation of healthcare system architecture highlight the need for further focus on cloud-based solutions for transfer data and data processing challenges. Integrity and reliability of healthcare systems are of critical importance, as even the slightest error may put the patients' lives in danger; therefore acquiring a behavioral model for these systems and developing the tools required to model their behaviors are of significant importance. The high-level designs may contain some flaws, therefor the system must be fully examined for different scenarios and conditions. This paper presents a software architecture for development of healthcare systems based on pervasive computing concepts, and then models the behavior of described system. A set of solutions are then proposed to improve the design's qualitative characteristics including, availability, interoperability and performance.
Animal Models of Compulsive Eating Behavior
Directory of Open Access Journals (Sweden)
Matteo Di Segni
2014-10-01
Full Text Available Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating “comfort foods” in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, “food addiction” has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies.
Transformer modeling for low- and mid-frequency electromagnetic transients simulation
Lambert, Mathieu
In this work, new models are developed for single-phase and three-phase shell-type transformers for the simulation of low-frequency transients, with the use of the coupled leakage model. This approach has the advantage that it avoids the use of fictitious windings to connect the leakage model to a topological core model, while giving the same response in short-circuit as the indefinite admittance matrix (BCTRAN) model. To further increase the model sophistication, it is proposed to divide windings into coils in the new models. However, short-circuit measurements between coils are never available. Therefore, a novel analytical method is elaborated for this purpose, which allows the calculation in 2-D of short-circuit inductances between coils of rectangular cross-section. The results of this new method are in agreement with the results obtained from the finite element method in 2-D. Furthermore, the assumption that the leakage field is approximately 2-D in shell-type transformers is validated with a 3-D simulation. The outcome of this method is used to calculate the self and mutual inductances between the coils of the coupled leakage model and the results are showing good correspondence with terminal short-circuit measurements. Typically, leakage inductances in transformers are calculated from short-circuit measurements and the magnetizing branch is calculated from no-load measurements, assuming that leakages are unimportant for the unloaded transformer and that magnetizing current is negligible during a short-circuit. While the core is assumed to have an infinite permeability to calculate short-circuit inductances, and it is a reasonable assumption since the core's magnetomotive force is negligible during a short-circuit, the same reasoning does not necessarily hold true for leakage fluxes in no-load conditions. This is because the core starts to saturate when the transformer is unloaded. To take this into account, a new analytical method is developed in this
Critical behavior in a stochastic model of vector mediated epidemics
Alfinito, E.; Beccaria, M.; Macorini, G.
2016-06-01
The extreme vulnerability of humans to new and old pathogens is constantly highlighted by unbound outbreaks of epidemics. This vulnerability is both direct, producing illness in humans (dengue, malaria), and also indirect, affecting its supplies (bird and swine flu, Pierce disease, and olive quick decline syndrome). In most cases, the pathogens responsible for an illness spread through vectors. In general, disease evolution may be an uncontrollable propagation or a transient outbreak with limited diffusion. This depends on the physiological parameters of hosts and vectors (susceptibility to the illness, virulence, chronicity of the disease, lifetime of the vectors, etc.). In this perspective and with these motivations, we analyzed a stochastic lattice model able to capture the critical behavior of such epidemics over a limited time horizon and with a finite amount of resources. The model exhibits a critical line of transition that separates spreading and non-spreading phases. The critical line is studied with new analytical methods and direct simulations. Critical exponents are found to be the same as those of dynamical percolation.
Mustapha Maliki; Nadia Laredj; Karim Bendani; Hanifi Missoum
2017-01-01
This paper reports on a transient heat, air and moisture transfer (HAM) model. The governing partial-differential equations are simultaneously solved for temperature and capillary pressure through multi-layered porous media, including the non-linear transfer and storage properties of materials. Using partial differential equations functions, some thermo-physical properties of porous media are converted into coefficients depending on temperature and capillary pressure. Major features of the mo...
Maness, M.; Cirillo, C.; Dugundji, E.R.
2015-01-01
Over the past two decades, transportation has begun a shift from an individual focus to a social focus. Accordingly, discrete choice models have begun to integrate social context into its framework. Social influence, the process of having one’s behavior be affected by others, has been one approach t
Behavior computing modeling, analysis, mining and decision
2012-01-01
Includes six case studies on behavior applications Presents new techniques for capturing behavior characteristics in social media First dedicated source of references for the theory and applications of behavior informatics and behavior computing
Zebra fish: an uncharted behavior genetic model.
Gerlai, Robert
2003-09-01
The zebra fish has been a preferred subject of genetic analysis. It produces a large number of offspring that can be kept in small aquaria, it can be easily mutagenized using chemical mutagens (e.g., ethyl nitrosourea [ENU]), and high-resolution genetic maps exist that aid identification of novel genes. Libraries containing large numbers of mutant fish have been generated, and the genetic mechanisms of the development of zebra fish, whose embryo is transparent, have been extensively studied. Given the extensive homology of its genome with that of other vertebrate species including our own and given the available genetic tools, zebra fish has become a popular model organism. Despite this popularity, however, surprisingly little is known about its behavior. It is argued that behavioral analysis is a powerful tool with which the function of the brain may be studied, and the zebra fish will represent an excellent subject of such analysis. The present paper is a proof of concept study that uses pharmacological manipulation (exposure to alcohol) to show that the zebra fish is amenable to the behavioral genetic analysis of aggression and thus may allow us to reveal molecular mechanisms of this behavioral phenomenon relevant to vertebrates.
Agent-based modeling of sustainable behaviors
Sánchez-Maroño, Noelia; Fontenla-Romero, Oscar; Polhill, J; Craig, Tony; Bajo, Javier; Corchado, Juan
2017-01-01
Using the O.D.D. (Overview, Design concepts, Detail) protocol, this title explores the role of agent-based modeling in predicting the feasibility of various approaches to sustainability. The chapters incorporated in this volume consist of real case studies to illustrate the utility of agent-based modeling and complexity theory in discovering a path to more efficient and sustainable lifestyles. The topics covered within include: households' attitudes toward recycling, designing decision trees for representing sustainable behaviors, negotiation-based parking allocation, auction-based traffic signal control, and others. This selection of papers will be of interest to social scientists who wish to learn more about agent-based modeling as well as experts in the field of agent-based modeling.
Mob control models of threshold collective behavior
Breer, Vladimir V; Rogatkin, Andrey D
2017-01-01
This book presents mathematical models of mob control with threshold (conformity) collective decision-making of the agents. Based on the results of analysis of the interconnection between the micro- and macromodels of active network structures, it considers the static (deterministic, stochastic and game-theoretic) and dynamic (discrete- and continuous-time) models of mob control, and highlights models of informational confrontation. Many of the results are applicable not only to mob control problems, but also to control problems arising in social groups, online social networks, etc. Aimed at researchers and practitioners, it is also a valuable resource for undergraduate and postgraduate students as well as doctoral candidates specializing in the field of collective behavior modeling.
A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels.
Feng, Zhaoyang; Li, Wei; Ward, Alex; Piggott, Beverly J; Larkspur, Erin R; Sternberg, Paul W; Xu, X Z Shawn
2006-11-03
Nicotine, the primary addictive substance in tobacco, induces profound behavioral responses in mammals, but the underlying genetic mechanisms are not well understood. Here we develop a C. elegans model of nicotine-dependent behavior. We show that worms exhibit behavioral responses to nicotine that parallel those observed in mammals, including acute response, tolerance, withdrawal, and sensitization. These nicotine responses require nicotinic acetylcholine receptor (nAChR) family genes that are known to mediate nicotine dependence in mammals, suggesting functional conservation of nAChRs in nicotine responses. Importantly, we find that mutant worms lacking TRPC (transient receptor potential canonical) channels are defective in their response to nicotine and that such a defect can be rescued by a human TRPC channel, revealing an unexpected role for TRPC channels in regulating nicotine-dependent behavior. Thus, C. elegans can be used to characterize known genes as well as to identify new genes regulating nicotine responses.
A C. elegans model of nicotine-dependent behavior: regulation by TRP family channels
Feng, Zhaoyang; Li, Wei; Ward, Alex; Piggott, Beverly J.; Larkspur, Erin R.; Sternberg, Paul W.; Shawn Xu, X. Z.
2010-01-01
Summary Nicotine, the primary addictive substance in tobacco, induces profound behavioral responses in mammals, but the underlying genetic mechanisms are not well understood. Here we develop a C. elegans model of nicotine-dependent behavior. We show that worms exhibit behavioral responses to nicotine that parallel those observed in mammals, including acute response, tolerance, withdrawal and sensitization. These nicotine responses require nicotinic acetylcholine receptor (nAChR) family genes that are known to mediate nicotine dependence in mammals, suggesting functional conservation of nAChRs in nicotine responses. Importantly, we find that mutant worms lacking TRPC (transient-receptor-potential canonical) channels are defective in response to nicotine and that such a defect can be rescued by a human TRPC channel, revealing an unexpected role for TRPC channels in regulating nicotine-dependent behavior. Thus, C. elegans can be used to characterize known genes as well as to identify new genes regulating nicotine responses. PMID:17081982
Transient drift flux modelling of severe slugging in pipeline-riser systems
Malekzadeh, R.; Belfroid, S.P.C.; Mudde, R.F.
2012-01-01
A large number of pipelines in the petroleum industry simultaneously transport gas and liquid. Transient behaviour of multiphase flow is frequently encountered in these pipelines. A common example is severe slugging that can occur in multiphase flow systems where a pipeline segment with a downward o
Transient characteristic of reciprocating compressors in household refrigerators
Energy Technology Data Exchange (ETDEWEB)
Porkhial, S.; Khastoo, B. [Amirkabir University, Tehran (Iran). Dept. of Mechanical Engineering; Modarres Razavi, M.R. [Ferdowsi University, Mashhad (Iran). Dept. of Mechanical Engineering
2002-08-01
Reduction in energy consumption associated with household appliances is a challenging subject. One of the appliances with great contribution in energy consumption is the household refrigerators [1 and 2]. Among the different components of a refrigerator, the compressor has the most effect on system energy consumption. A knowledge of the transient performance of compressors is vital for reduction of energy consumption and improving the overall performance of a refrigerator. In this paper the M7 model of 1/5 hp Nicchi compressor belonging to 12 ft{sup 3} refrigerators with refrigerant R12 is selected as a sample and different tests are carried out to determine its transient behavior. Based on the analysis of experimental results, the governing equations and the simulation program of transient behavior have been developed. Good agreement between theoretical and experimental results means that the simulation model could be an appropriate tool to study the transient behavior of reciprocating compressors in different conditions. Analysis of predicted and experimental results shows that refrigerators consume more power in the transient mode as compared to the steady mode, therefore shortening the transient period can lower the energy consumption of the system. Also an isentropic assumption for the hermetic compressor is not a correct assumption, especially for the transient mode. With appropriate design of compressor inlet which locates it near to the suction valve, the energy efficiency will be improved. (author)
Directory of Open Access Journals (Sweden)
Liansheng Liu
Full Text Available AIMS: A disturbance of the brain-gut axis is a prominent feature in functional bowel disorders (such as irritable bowel syndrome and functional dyspepsia and psychological abnormalities are often implicated in their pathogenesis. We hypothesized that psychological morbidity in these conditions may result from gastrointestinal problems, rather than causing them. METHODS: Functional dyspepsia was induced by neonatal gastric irritation in male rats. 10-day old male Sprague-Dawley rats received 0.1% iodoacetamide (IA or vehicle by oral gavage for 6 days. At 8-10 weeks of age, rats were tested with sucrose preference and forced-swimming tests to examine depression-like behavior. Elevated plus maze, open field and light-dark box tests were used to test anxiety-like behaviors. ACTH and corticosterone responses to a minor stressor, saline injection, and hypothalamic CRF expression were also measured. RESULTS: Behavioral tests revealed changes of anxiety- and depression-like behaviors in IA-treated, but not control rats. As compared with controls, hypothalamic and amygdaloid CRF immunoreactivity, basal levels of plasma corticosterone and stress-induced ACTH were significantly higher in IA-treated rats. Gastric sensory ablation with resiniferatoxin had no effect on behaviors but treatment with CRF type 1 receptor antagonist, antalarmin, reversed the depression-like behavior in IA-treated rats CONCLUSIONS: The present results suggest that transient gastric irritation in the neonatal period can induce a long lasting increase in depression- and anxiety-like behaviors, increased expression of CRF in the hypothalamus, and an increased sensitivity of HPA axis to stress. The depression-like behavior may be mediated by the CRF1 receptor. These findings have significant implications for the pathogenesis of psychological co-morbidity in patients with functional bowel disorders.
An empirical behavioral model of price formation
Mike, S
2005-01-01
Although behavioral economics has demonstrated that there are many situations where rational choice is a poor empirical model, it has so far failed to provide quantitative models of economic problems such as price formation. We make a step in this direction by developing empirical models that capture behavioral regularities in trading order placement and cancellation using data from the London Stock Exchange. For order placement we show that the probability of placing an order at a given price is well approximated by a Student distribution with less than two degrees of freedom, centered on the best quoted price. This result is surprising because it implies that trading order placement is symmetric, independent of the bid-ask spread, and the same for buying and selling. We also develop a crude but simple cancellation model that depends on the position of an order relative to the best price and the imbalance between buying and selling orders in the limit order book. These results are combined to construct a sto...
VOTERS DECIDE. CLASSICAL MODELS OF ELECTORAL BEHAVIOR.
Directory of Open Access Journals (Sweden)
Constantin SASU
2015-04-01
Full Text Available The decision to vote and choosing among the candidates is a extremely important one with repercussions on everyday life by determining, in global mode, its quality for the whole society. Therefore the whole process by which the voter decide becomes a central concern. In this paper we intend to locate the determinants of the vote decision in the electoral behavior classical theoretical models developed over time. After doing synthesis of classical schools of thought on electoral behavior we conclude that it has been made a journey through the mind, soul and cheek, as follows: the mind as reason in theory developed by Downs, soul as preferably for an actor in Campbell's theory, etc. and cheek as an expression of the impossibility of detachment from social groups to which we belong in Lazarsfeld's theory.
Energy Technology Data Exchange (ETDEWEB)
Pradhan, Santosh K., E-mail: santosh@aerb.gov.in [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Obaidurrahman, K. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Iyer, Kannan N. [Department of Mechanical Engineering, IIT Bombay, Mumbai 400076 (India); Gaikwad, Avinash J. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India)
2016-04-15
Highlights: • A multi-point kinetics model is developed for RELAP5 system thermal hydraulics code. • Model is validated against extensive 3D kinetics code. • RELAP5 multi-point kinetics formulation is used to investigate critical break for LOCA in PHWR. - Abstract: Point kinetics approach in system code RELAP5 limits its use for many of the reactivity induced transients, which involve asymmetric core behaviour. Development of fully coupled 3D core kinetics code with system thermal-hydraulics is the ultimate requirement in this regard; however coupling and validation of 3D kinetics module with system code is cumbersome and it also requires access to source code. An intermediate approach with multi-point kinetics is appropriate and relatively easy to implement for analysis of several asymmetric transients for large cores. Multi-point kinetics formulation is based on dividing the entire core into several regions and solving ODEs describing kinetics in each region. These regions are interconnected by spatial coupling coefficients which are estimated from diffusion theory approximation. This model offers an advantage that associated ordinary differential equations (ODEs) governing multi-point kinetics formulation can be solved using numerical methods to the desired level of accuracy and thus allows formulation based on user defined control variables, i.e., without disturbing the source code and hence also avoiding associated coupling issues. Euler's method has been used in the present formulation to solve several coupled ODEs internally at each time step. The results have been verified against inbuilt point-kinetics models of RELAP5 and validated against 3D kinetics code TRIKIN. The model was used to identify the critical break in RIH of a typical large PHWR core. The neutronic asymmetry produced in the core due to the system induced transient was effectively handled by the multi-point kinetics model overcoming the limitation of in-built point kinetics model
Transient three-dimensional thermal model for batteries with thin electrodes
Taheri, Peyman; Yazdanpour, Maryam; Bahrami, Majid
2013-12-01
A three-dimensional analytical model is proposed to investigate the thermal response of batteries, with a plurality of thin electrodes, to heat generation during their operation. The model is based on integral-transform technique that gives a closed-form solution for the fundamental problem of unsteady heat conduction in batteries with orthotropic thermal conductivities, where the heat generation is a function of both temperature and depth-of-discharge. The full-field solutions take the form of a rapidly converging triple infinite sum whose leading terms provide a very simple yet accurate approximation of the battery thermal behavior with modest numerical effort. The accuracy of the proposed model is tested through comparison with numerical simulations. The method is used to describe spatial and temporal temperature evolution in a sample pouch type lithium-ion polymer battery during galvanostatic discharge processes while subjected to convective-radiative cooling at its surfaces (the most practical case is considered, when surrounding medium is at a constant ambient temperature). In the simulations, emphasis is placed on the maintenance of the battery operational temperature below a critical temperature. Through definition of a surface-averaged Biot number, certain conditions are highlighted, under which a two-dimensional thermal analysis is applicable.
Models for New Corrugated and Porous Solar Air Collectors under Transient Operation
Adnan Abed, Qahtan; Badescu, Viorel; Ciocanea, Adrian; Soriga, Iuliana; Bureţea, Dorin
2017-01-01
Mathematical models have been developed to evaluate the dynamic behavior of two solar air collectors: the first one is equipped with a V-porous absorber and the second one with a U-corrugated absorber. The collectors have the same geometry, cross-section surface area and are built from the same materials, the only difference between them being the absorbers. V-corrugated absorbers have been treated in literature but the V-porous absorbers modeled here have not been very often considered. The models are based on first-order differential equations which describe the heat exchange between the main components of the two types of solar air heaters. Both collectors were exposed to the sun in the same meteorological conditions, at identical tilt angle and they operated at the same air mass flow rate. The tests were carried out in the climatic conditions of Bucharest (Romania, South Eastern Europe). There is good agreement between the theoretical results and experiments. The average bias error was about 7.75 % and 10.55 % for the solar air collector with "V"-porous absorber and with "U"-corrugated absorber, respectively. The collector based on V-porous absorber has higher efficiency than the collector with U-corrugated absorber around the noon of clear days. Around sunrise and sunset, the collector with U-corrugated absorber is more effective.
Numerical simulation of transient operation of loop heat pipes
Energy Technology Data Exchange (ETDEWEB)
Kaya, T. [Carleton University, Department of Mechanical and Aerospace Engineering, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 (Canada)], E-mail: tkaya@mae.carleton.ca; Perez, R.; Gregori, C.; Torres, A. [IberEspacio, Tecnologia Aeroespacial, Magallanes, 1, 28015 Madrid (Spain)
2008-06-15
A numerical model is developed to simulate the transient performance characteristics of loop heat pipes (LHP). The model satisfactorily simulates the overall dynamic behavior of an LHP unit tested under ambient and vacuum environments. The startup phase is also reproduced using the experimentally obtained incipient wall superheat. The accurate heat leak predictions at low powers remain problematic and experimental correlation is necessary. The model can be used to analyze the dynamic behavior of an LHP based thermal control system exposed to transient thermal loads.
Ajith, Parameswaran; Christensen, Nelson; Adhikari, Rana; Pearlman, Aaron B; Wein, Alex; Weinstein, Alan J; Yuan, Ben
2014-01-01
LIGO and Virgo recently completed searches for gravitational waves at their initial target sensitivities, and soon Advanced LIGO and Advanced Virgo will commence observations with even better capabilities. In the search for short duration signals, such as coalescing compact binary inspirals or "burst" events, noise transients can be problematic. Interferometric gravitational-wave detectors are highly complex instruments, and, based on the experience from the past, the data often contain a large number of noise transients that are not easily distinguishable from possible gravitational-wave signals. In order to perform a sensitive search for short-duration gravitational-wave signals it is important to identify these noise artifacts, and to "veto" them. Here we describe such a veto, the bilinear-coupling veto, that makes use of an empirical model of the coupling of instrumental noise to the output strain channel of the interferometric gravitational-wave detector. In this method, we check whether the data from th...
DEFF Research Database (Denmark)
Johansen, Per; Rømer, Daniel; Andersen, Torben Ole
2014-01-01
is a multibody dynamics model of a radial piston fluid power motor, which connects the rigid bodies through models of the transient hydrodynamic lubrication pressure in the joint clearance. A finite volume approach is used to model the pressure dynamics of the fluid film lubrication. The model structure......The increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for the development of high efficiency fluid power machinery. Modeling and analysis of fluid power machinery loss mechanisms are necessary in order to accommodate this demand. At present...... fully coupled thermo-elastic models has been used to simulate and study loss mechanisms in various tribological interfaces. Consequently, a reasonable focus of further development is to couple the interface models and the rigid body mechanics of fluid power machinery. The focus of the current paper...
Transient cosmic acceleration from interacting fluids
Fabris, Julio C; Pinto-Neto, Nelson; Zimdahl, Winfried
2009-01-01
Recent investigations seem to favor a cosmological dynamics according to which the accelerated expansion of the Universe may have already peaked and is now slowing down again \\cite{sastaro}. As a consequence, the cosmic acceleration may be a transient phenomenon. We investigate a toy model that reproduces such a background behavior as the result of a time-dependent coupling in the dark sector which implies a cancelation of the "bare" cosmological constant. With the help of a statistical analysis of Supernova Type Ia (SNIa) data we demonstrate that for a certain parameter combination a transient accelerating phase emerges as a pure interaction effect.
Kotopoulis, Spiros; Stigen, Endre; Popa, Mihaela; Safont, Mireia Mayoral; Healey, Andrew; Kvåle, Svein; Sontum, Per; Gjertsen, Bjørn Tore; Gilja, Odd Helge; McCormack, Emmet
2017-01-10
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers with survival averaging only 3months if untreated following diagnosis. A major limitation in effectively treating PDAC using conventional and targeted chemotherapeutic agents, is inadequate drug delivery to the target location, predominantly due to a poorly vascularised, desmoplastic tumour microenvironment. Ultrasound in combination with ultrasound contrast agents, i.e., microbubbles, that flow through the vasculature and capillaries can be used to disrupt such mechanical barriers, potentially allowing for a greater therapeutic efficacy. This phenomenon is commonly referred to as sonoporation. In an attempt to improve the efficacy of sonoporation, novel microbubble formulations are being developed to address the limitation of commercially produced clinical diagnostic ultrasound contrast agents. In our work here we evaluate the ability of a novel formulation; namely Acoustic Cluster Therapy (ACT®) to improve the therapeutic efficacy of the chemotherapeutic agent paclitaxel, longitudinally in a xenograft model of PDAC. Results indicated that ACT® bubbles alone demonstrated no observable toxic effects, whilst ACT® in combination with paclitaxel can transiently reduce tumour volumes significantly, three days posttreatment (p=0.0347-0.0458). Quantitative 3D ultrasound validated the calliper measurements. Power Doppler ultrasound imaging indicated that ACT® in combination with paclitaxel was able to transiently sustain peak vasculature percentages as observed in the initial stages of tumour development. Nevertheless, there was no significant difference in tumour vasculature percentage at the end of treatment. The high vascular percentage correlated to the transient decrease and overall inhibition of the tumour volumes. In conclusion, ACT® improves the therapeutic efficacy of paclitaxel in a PDAC xenograft model allowing for transient tumour volume reduction and sustained tumour vasculature
Molecular Modeling of Solid Fluid Phase Behavior
Energy Technology Data Exchange (ETDEWEB)
Peter A. Monson
2007-12-20
This report gives a summary of the achievements under DOE contract No. DOE/ER/14150 during the period September 1, 1990 to December 31, 2007. This project was concerned with the molecular modeling of solid-fluid equilibrium. The focus was on understanding how solid-fluid and solid-solid phase behavior are related to molecular structure, and the research program made a seminal contribution in this area. The project led to 34 journal articles, including a comprehensive review article published in Advances in Chemical Physics. The DOE funding supported the work of 5 Ph.D. students, 2 M.S. students and 5 postdoctoral researchers.
Behavioral and Statistical Models of Educational Inequality
DEFF Research Database (Denmark)
Holm, Anders; Breen, Richard
2016-01-01
This article addresses the question of how students and their families make educational decisions. We describe three types of behavioral model that might underlie decision-making, and we show that they have consequences for what decisions are made. Our study, thus, has policy implications if we...... wish to encourage students and their families to make better educational choices. We also establish the conditions under which empirical analysis can distinguish between the three sorts of decision-making, and we illustrate our arguments using data from the National Educational Longitudinal Study....
Modeling creep behavior of fiber composites
Chen, J. L.; Sun, C. T.
1988-01-01
A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.
Behavioral and Statistical Models of Educational Inequality
DEFF Research Database (Denmark)
Holm, Anders; Breen, Richard
2016-01-01
This paper addresses the question of how students and their families make educational decisions. We describe three types of behavioral model that might underlie decision-making and we show that they have consequences for what decisions are made. Our study thus has policy implications if we wish...... to encourage students and their families to make better educational choices. We also establish the conditions under which empirical analysis can distinguish between the three sorts of decision-making and we illustrate our arguments using data from the National Educational Longitudinal Study....
Raffray, A. René; Federici, Gianfranco
1997-04-01
RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.
Institute of Scientific and Technical Information of China (English)
2013-01-01
In this paper, a numerical method based on a coupling between a mathematical model of nonlinear transient ship manoeu-vring motion in the horizontal plane and Mathematical Programming (MP) techniques is proposed. The aim of the proposed proce-dure is an efficient estimation of optimal ship hydrodynamic parameters in a dynamic model at the early design stage. The proposed procedure has been validated through turning circle and zigzag manoeuvres based on experimental data of sea trials of the 190 000-dwt oil tanker. Comparisons between experimental and computed data show a good agreement of overall tendency in manoeuvring trajectories.