Modeling for transition management
Chappin, E.J.L.; Dijkema, G.P.J.
2015-01-01
A framework for the modeling and simulation of transitions is presented. A transition, “substantial change in the state of a socio-technical system”, typically unfolds over a long timespan. We therefore suggest to use simulation to inform transition managers on the effect of their decisions.
Modeling for Transition Management
Chappin, Emile J L; Dijkema, Gerard P.J.
2015-01-01
A framework for the modeling and simulation of transitions is presented. A transition, “substantial change in the state of a socio-technical system”, typically unfolds over a long timespan. We therefore suggest to use simulation to inform transition managers on the effect of their decisions.
Transitive probabilistic CLIR models.
Kraaij, W.; de Jong, Franciska M.G.
2004-01-01
Transitive translation could be a useful technique to enlarge the number of supported language pairs for a cross-language information retrieval (CLIR) system in a cost-effective manner. The paper describes several setups for transitive translation based on probabilistic translation models. The
Economic Growth Models Transition
Directory of Open Access Journals (Sweden)
Coralia Angelescu
2006-03-01
Full Text Available The transitional recession in countries of Eastern Europe has been much longer than expected. The legacy and recent policy mistakes have both contributed to the slow progress. As structural reforms and gradual institution building have taken hold, the post-socialist economics have started to recover, with some leading countries building momentum toward faster growth. There is a possibility that in wider context of globalization several of these emerging market economies will be able to catch up with the more advanced industrial economies in a matter of one or two generations. Over the past few years, most candidate countries have made progress in the transition to a competitive market economy, macroeconomic stabilization and structural reform. However their income levels have remained far below those in the Member States. Measured by per capita income in purchasing power standards, there has been a very limited amount of catching up over the past fourteen years. Prior, the distinctions between Solow-Swan model and endogenous growth model. The interdependence between transition and integration are stated in this study. Finally, some measures of macroeconomic policy for sustainable growth are proposed in correlation with real macroeconomic situation of the Romanian economy. Our study would be considered the real convergence for the Romanian economy and the recommendations for the adequate policies to achieve a fast real convergence and sustainable growth.
Economic Growth Models Transition
Directory of Open Access Journals (Sweden)
Coralia Angelescu
2006-01-01
Full Text Available The transitional recession in countries of Eastern Europe has been much longer than expected. The legacy and recent policy mistakes have both contributed to the slow progress. As structural reforms and gradual institution building have taken hold, the post-socialist economics have started to recover, with some leading countries building momentum toward faster growth. There is a possibility that in wider context of globalization several of these emerging market economies will be able to catch up with the more advanced industrial economies in a matter of one or two generations. Over the past few years, most candidate countries have made progress in the transition to a competitive market economy, macroeconomic stabilization and structural reform. However their income levels have remained far below those in the Member States. Measured by per capita income in purchasing power standards, there has been a very limited amount of catching up over the past fourteen years. Prior, the distinctions between Solow-Swan model and endogenous growth model. The interdependence between transition and integration are stated in this study. Finally, some measures of macroeconomic policy for sustainable growth are proposed in correlation with real macroeconomic situation of the Romanian economy. Our study would be considered the real convergence for the Romanian economy and the recommendations for the adequate policies to achieve a fast real convergence and sustainable growth.
Transitional region of phase transitions in nuclear models
Energy Technology Data Exchange (ETDEWEB)
Kotze, A A
1988-01-01
The phase transition in an exactly solvable nuclear model, the Lipkin model, is scrutinised, first using Hartree-Fock methods or the plain mean flield approximation, and then using projected wave functions. It turns out that the plain mean field is not reliable in the transitional region. Although the projection methods give better resutls in the transitional region, it leads to spurious singularities. While the energy of the projection before variation is slightly better than its projection after variation counterpart, the perfomance of the wave function is considerably worse in the transitional region. The model's wave function undergoes dramatic changes in the transitional region. The mechanism that brings about these changes is studied within a model Hamiltonian that can reproduce the Lipkin model mathematically. It turns out that the numerous exceptional points found in the transitional region, bring about the change of the ground state wave function. Exceptional points are associated with level crossings in the complex plane. These level crossings can be seen as level repulsions in the spectrum. Level repulsion and a sensitive dependence of the system on some external parameter are characteristics of chaotic behaviour. These two features are found in the transitional region of the Lipkin model. In order to study chaos, one has to resort to a statistical analysis. A measure of the chaotic behaviour of systems, the ..delta../sub 3/ statistic, is introduced. The results show that the Lipkin model is harmonic, even in the transitional region. For the Lipkin model the exceptional points are regularly distributed in the complex plane. In a total chaotic system the points would be randomly distributed.
The transitional region of phase transitions in nuclear models
International Nuclear Information System (INIS)
Kotze, A.A.
1988-01-01
The phase transition in an exactly solvable nuclear model, the Lipkin model, is scrutinised, first using Hartree-Fock methods or the plain mean flield approximation, and then using projected wave functions. It turns out that the plain mean field is not reliable in the transitional region. Although the projection methods give better resutls in the transitional region, it leads to spurious singularities. While the energy of the projection before variation is slightly better than its projection after variation counterpart, the perfomance of the wave function is considerably worse in the transitional region. The model's wave function undergoes dramatic changes in the transitional region. The mechanism that brings about these changes is studied within a model Hamiltonian that can reproduce the Lipkin model mathematically. It turns out that the numerous exceptional points found in the transitional region, bring about the change of the ground state wave function. Exceptional points are associated with level crossings in the complex plane. These level crossings can be seen as level repulsions in the spectrum. Level repulsion and a sensitive dependence of the system on some external parameter are characteristics of chaotic behaviour. These two features are found in the transitional region of the Lipkin model. In order to study chaos, one has to resort to a statistical analysis. A measure of the chaotic behaviour of systems, the Δ 3 statistic, is introduced. The results show that the Lipkin model is harmonic, even in the transitional region. For the Lipkin model the exceptional points are regularly distributed in the complex plane. In a total chaotic system the points would be randomly distributed
A total safety management model
International Nuclear Information System (INIS)
Obadia, I.J.; Vidal, M.C.R.; Melo, P.F.F.F.
2002-01-01
In nuclear organizations, quality and safety are inextricably linked. Therefore, the search for excellence means reaching excellence in nuclear safety. The International Atomic Energy Agency, IAEA, developed, after the Chernobyl accident, the organizational approach for improving nuclear safety based on the safety culture, which requires a framework necessary to provide modifications in personnel attitudes and behaviors in situations related to safety. This work presents a Total Safety Management Model, based on the Model of Excellence of the Brazilian Quality Award and on the safety culture approach, which represents an alternative to this framework. The Model is currently under validation at the Nuclear Engineering Institute, in Rio de Janeiro, Brazil, and the results of its initial safety culture self assessment are also presented and discussed. (author)
Modeling Metropolitan Detroit transit.
2010-10-01
"The seven-county Southeast Michigan region, that encompasses the Detroit Metropolitan Area, : ranks fifth in population among top 25 regions in the nation. It also ranks among bottom five in : the transit service provided, measured in miles or hours...
Transition Models for Engineering Calculations
Fraser, C. J.
2007-01-01
While future theoretical and conceptual developments may promote a better understanding of the physical processes involved in the latter stages of boundary layer transition, the designers of rotodynamic machinery and other fluid dynamic devices need effective transition models now. This presentation will therefore center around the development of of some transition models which have been developed as design aids to improve the prediction codes used in the performance evaluation of gas turbine blading. All models are based on Narasimba's concentrated breakdown and spot growth.
Vacuum transitions in dual models
International Nuclear Information System (INIS)
Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.
1976-01-01
The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions
Macroeconomic models and energy transition
International Nuclear Information System (INIS)
Douillard, Pierre; Le Hir, Boris; Epaulard, Anne
2016-02-01
As a new policy for energy transition has just been adopted, several questions emerge about the best way to reduce CO 2 emissions, about policies which enable this reduction, and about their costs and opportunities. This note discusses the contribution macro-economic models may have in this respect, notably in the definition of policies which trigger behaviour changes, and those which support energy transition. The authors first discuss the stakes of the assessment of energy transition, and then describe macro-economic models which can be used for such an assessment, give and comment some results of simulations performed for France by using four of these models (Mesange, Numesis, ThreeME, and Imaclim-R France). The authors finally draw lessons about the way to use these models and to interpret their results within the frame of energy transition
Panel Smooth Transition Regression Models
DEFF Research Database (Denmark)
González, Andrés; Terasvirta, Timo; Dijk, Dick van
We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...
TOTAL REWARDS MODEL IN ROMANIAN COMPANIES
Directory of Open Access Journals (Sweden)
Elena-Sabina HODOR
2014-04-01
Full Text Available Total Rewards Management is a subject of major importance for companies, because, by using models for this, firms can achieve their objectives of high performance. In order to analyse a validated total rewards model in Romanian Accounting and Consulting Companies, it is used The WorldatWork Total Rewards Model, which depict what contributes to applicant attraction and employee motivation and retention. Thus, the methodology of the previous survey is adjusted to the local context. The conclusions for the methodological aspects illustrate that the present research involves three strategic steps in order to achieve the objectives presented: the analysis of organizational environment of the companies from the sample, checking if Total Rewards Model proposed in the previous research is applicable for the same romanian companies from the previous survey, the analysing of the differences between results, and, if necessary, the adaptation of the model for Romania.
Transition sum rules in the shell model
Lu, Yi; Johnson, Calvin W.
2018-03-01
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.
The transition probabilities of the reciprocity model
Snijders, T.A.B.
1999-01-01
The reciprocity model is a continuous-time Markov chain model used for modeling longitudinal network data. A new explicit expression is derived for its transition probability matrix. This expression can be checked relatively easily. Some properties of the transition probabilities are given, as well
A formal model for total quality management
S.C. van der Made-Potuijt; H.B. Bertsch (Boudewijn); L.P.J. Groenewegen
1996-01-01
textabstractTotal Quality Management (TQM) is a systematic approach to managing a company. TQM is systematic in the sense that it is uses facts through observation, analysis and measurable goals. There are theoretical descriptions of this management concept, but there is no formal model of it. A
A Conceptual Model for Leadership Transition
Manderscheid, Steven V.; Ardichvili, Alexandre
2008-01-01
The purpose of this study was to develop a model of leadership transition based on an integrative review of literature. The article establishes a compelling case for focusing on leadership transitions as an area for study and leadership development practitioner intervention. The proposed model in this study identifies important success factors…
The simplest classical models of topological transitions
International Nuclear Information System (INIS)
Konstantinov, M.Yu.
1983-01-01
It is shown that simplest classical models of topologigal transitions possess scalar singularity of curvature with a point carrier being a source of space-time incompleteness. It is also shown that the condition of energy dominance is broken near the topological transition, asymptotic behaviour of the curvature tensor (growth of curvature at approximation to the topological transition) and energy-momentum tensor of (breaking the condition of energy dominance) being a common property of the considered models and being completely determined by the type of topological transition
Thermal margin model for transition core of KSNP
International Nuclear Information System (INIS)
Nahm, Kee Yil; Lim, Jong Seon; Park, Sung Kew; Chun, Chong Kuk; Hwang, Sun Tack
2004-01-01
The PLUS7 fuel was developed with mixing vane grids for KSNP. For the transition core partly loaded with the PLUS7 fuels, the procedure to set up the optimum thermal margin model of the transition core was suggested by introducing AOPM concept into the screening method which determines the limiting assembly. According to the procedure, the optimum thermal margin model of the first transition core was set up by using a part of nuclear data for the first transition and the homogeneous core with PLUS7 fuels. The generic thermal margin model of PLUS7 fuel was generated with the AOPM of 138%. The overpower penalties on the first transition core were calculated to be 1.0 and 0.98 on the limiting assembly and the generic thermal margin model, respectively. It is not usual case to impose the overpower penalty on reload cores. It is considered that the lack of channel flow due to the difference of pressure drop between PLUS7 and STD fuels results in the decrease of DNBR. The AOPM of the first transition core is evaluated to be about 135% by using the optimum generic thermal margin model which involves the generic thermal margin model and the total overpower penalty. The STD fuel is not included among limiting assembly candidates in the second transition core, because they have much lower pin power than PLUS7 fuels. The reduced number of STD fuels near the limiting assembly candidates the flow from the limiting assembly to increase the thermal margin for the second transition core. It is expected that cycle specific overpower penalties increase the thermal margin for the transition core. Using the procedure to set up the optimum thermal margin model makes sure that the enhanced thermal margin of PLUS7 fuel can be sufficiently applied to not only the homogeneous core but also the transition core
Mental models accurately predict emotion transitions.
Thornton, Mark A; Tamir, Diana I
2017-06-06
Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.
Mental models accurately predict emotion transitions
Thornton, Mark A.; Tamir, Diana I.
2017-01-01
Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373
Modeling Generational Transitions from Aggregate Data
Ph.H.B.F. Franses (Philip Hans); S. Stremersch (Stefan)
2002-01-01
textabstractUsing only aggregate sales data, the model we propose decomposes the diffusion processes of the respective technological generations and tests if different technological generations have different diffusion parameters. It also estimates the location of the generational transition from
Phase transition in the hadron gas model
International Nuclear Information System (INIS)
Gorenstein, M.I.; Petrov, V.K.; Zinov'ev, G.M.
1981-01-01
A class of statistical models of hadron gas allowing an analytical solution is considered. A mechanism of a possible phase transition in such a system is found and conditions for its occurence are determined [ru
[Determination of total and segmental colonic transit time in constipated children].
Zhang, Shu-cheng; Wang, Wei-lin; Bai, Yu-zuo; Yuan, Zheng-wei; Wang, Wei
2003-03-01
To determine the total and segmental colonic transit time of normal Chinese children and to explore its value in constipation in children. The subjects involved in this study were divided into 2 groups. One group was control, which had 33 healthy children (21 males and 12 females) aged 2 - 13 years (mean 5 years). The other was constipation group, which had 25 patients (15 males and 10 females) aged 3 - 14 years (mean 7 years) with constipation according to Benninga's criteria. Written informed consent was obtained from the parents of each subject. In this study the simplified method of radio opaque markers was used to determine the total gastrointestinal transit time and segmental colonic transit time of the normal and constipated children, and in part of these patients X-ray defecography was also used. The total gastrointestinal transit time (TGITT), right colonic transit time (RCTT), left colonic transit time (LCTT) and rectosigmoid colonic transit time (RSTT) of the normal children were 28.7 +/- 7.7 h, 7.5 +/- 3.2 h, 6.5 +/- 3.8 h and 13.4 +/- 5.6 h, respectively. In the constipated children, the TGITT, LCTT and RSTT were significantly longer than those in controls (92.2 +/- 55.5 h vs 28.7 +/- 7.7 h, P < 0.001; 16.9 +/- 12.6 h vs 6.5 +/- 3.8 h, P < 0.01; 61.5 +/- 29.0 h vs 13.4 +/- 5.6 h, P < 0.001), while the RCTT had no significant difference. X-ray defecography demonstrated one rectocele, one perineal descent syndrome and one puborectal muscle syndrome, respectively. The TGITT, RCTT, LCTT and RSTT of the normal children were 28.7 +/- 7.7 h, 7.5 +/- 3.2 h, 6.5 +/- 3.8 h and 13.4 +/- 5.6 h, respectively. With the segmental colonic transit time, constipation can be divided into four types: slow-transit constipation, outlet obstruction, mixed type and normal transit constipation. X-ray defecography can demonstrate the anatomical or dynamic abnormalities within the anorectal area, with which constipation can be further divided into different subtypes, and
Evolutionary modelling of transitions to sustainable development
International Nuclear Information System (INIS)
Safarzynska, K.
2010-01-01
This thesis has examined how evolutionary economics can contribute to modelling the micromechanisms that underlie transitions towards sustainable development. In general, transitions are fundamental or structural system changes. They involve, or even require, escaping lock-in of dominant, environmentally unsustainable technologies, introducing major technical or social innovations, and changing prevailing social practices and structures. Due to the complexity of socioeconomic interactions, it is not always possible to identify, and thus target with appropriate policy instruments, causes of specific unsustainable patterns of behaviour. Formal modelling exercises can help improve our understanding of the interaction of various transition mechanisms which are otherwise difficult to grasp intuitively. They allow exploring effects of policy interventions in complex systems. However, existing models of transitions focus on social phenomena and seldom address economic problems. As opposed, mainstream (neoclassical) economic models of technological change do not account for social interactions, and changing heterogeneity of users and their perspectives - even though all of these can influence the direction of innovations and patterns of socio-technological development. Evolutionary economics offers an approach that goes beyond neoclassical economics - in the sense of employing more realistic assumptions regarding the behaviour and heterogeneity of consumers, firms and investors. It can complement current transition models by providing them with a better understanding of associated economic dynamics. In this thesis, formal models were proposed to illustrate the usefulness of a range of evolutionary-economic techniques for modelling transitions. Modelling exercises aimed to explain the core properties of socio-economic systems, such as lock-in, path-dependence, coevolution, group selection and recombinant innovation. The studies collected in this dissertation illustrate that
The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations
Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary
2014-01-01
The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.
Diffraction model of a step-out transition
Energy Technology Data Exchange (ETDEWEB)
Chao, A.W.; Zimmermann, F.
1996-06-01
The diffraction model of a cavity, suggested by Lawson, Bane and Sands is generalized to a step out transition. Using this model, the high frequency impedance is calculated explicitly for the case that the transition step is small compared with the beam pipe radius. In the diffraction model for a small step out transition, the total energy is conserved, but, unlike the cavity case, the diffracted waves in the geometric shadow and the pipe region, in general, do not always carry equal energy. In the limit of small step sizes, the impedance derived from the diffraction model agrees with that found by Balakin, Novokhatsky and also Kheifets. This impedance can be used to compute the wake field of a round collimator whose half aperture is much larger than the bunch length, as existing in the SLC final focus.
Modelling the energy transition in cities
Energy Technology Data Exchange (ETDEWEB)
Huber, Felix [Wuppertal Univ. (Germany). Dept. of Civil Engineering; Schwarze, Bjoern; Spiekermann, Klaus; Wegener, Michael [Spiekermann und Wegener Urban and Regional Research, Dortmund (Germany)
2013-09-01
The history of cities is a history of energy transitions. In the medieval city heating and cooking occurred with wood and peat. The growth of the industrial city in the 19th century was built on coal and electricity. The sprawling metropolis of the 20th century was made possible by oil and gas. How will the city of the 21st century look after the next energy transition from fossil to renewable energy? This paper reports on the extension of an urban land-use transport interaction model to a model of the energy transition in the Ruhr Area, a five-million agglomeration in Germany. The paper presents the planned model extensions and how they are to be integrated into the model and shows first preliminary results.
Optimization models in a transition economy
Sergienko, Ivan V; Koshlai, Ludmilla
2014-01-01
This book opens new avenues in understanding mathematical models within the context of a transition economy. The exposition lays out the methods for combining different mathematical structures and tools to effectively build the next model that will accurately reflect real world economic processes. Mathematical modeling of weather phenomena allows us to forecast certain essential weather parameters without any possibility of changing them. By contrast, modeling of transition economies gives us the freedom to not only predict changes in important indexes of all types of economies, but also to influence them more effectively in the desired direction. Simply put: any economy, including a transitional one, can be controlled. This book is useful to anyone who wants to increase profits within their business, or improve the quality of their family life and the economic area they live in. It is beneficial for undergraduate and graduate students specializing in the fields of Economic Informatics, Economic Cybernetic...
Interval Forecast for Smooth Transition Autoregressive Model ...
African Journals Online (AJOL)
In this paper, we propose a simple method for constructing interval forecast for smooth transition autoregressive (STAR) model. This interval forecast is based on bootstrapping the residual error of the estimated STAR model for each forecast horizon and computing various Akaike information criterion (AIC) function. This new ...
Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.
Yurovsky, Vladimir A
2017-05-19
Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.
A Model of Mental State Transition Network
Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo
Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.
Collective models of transition nuclei Pt. 2
International Nuclear Information System (INIS)
Dombradi, Zs.
1982-01-01
The models describing the even-odd and odd-odd transition nuclei (nuclei of moderate ground state deformation) are reviewed. The nuclear core is described by models of even-even nuclei, and the interaction of a single particle and the core is added. Different models of particle-core coupling (phenomenological models, collective models, nuclear field theory, interacting boson-fermion model, vibration nucleon cluster model) and their results are discussed. New developments like dynamical supersymmetry and new research trends are summarized. (D.Gy.)
Culture in Transition: A learning model
DEFF Research Database (Denmark)
Baca, Susan
2010-01-01
of organizational transition, and 3) demonstrating the efficacy of the model by using it to explain empirical research findings. It is argued that learning new cultural currency involves the use of active intelligence to locate and answer relevant questions, and further that this process requires the interplay......This paper addresses the problem of resistance to attempted changes in organizational culture, particularly those involving diversity, by 1) identifying precisely what is meant by organizational as opposed to societal culture, 2) developing a theoretical model of learning useful in contexts...... is useful for both management and labor in regulating transition processes, thus making a contribution to industrial relations....
Phase Transitions in Algebraic Cluster Models
International Nuclear Information System (INIS)
Yepez-Martinez, H.; Cseh, J.; Hess, P.O.
2006-01-01
Complete text of publication follows. Phase transitions in nuclear systems are of utmost interest. An interesting class of phase transitions can be seen in algebraic models of nuclear structure. They are called shapephase transitions due to the following reason. These models have analytically solvable limiting cases, called dynamical symmetries, which are characterized by a chain of nested subgroups. They correspond to well-defined geometrical shape and behaviour, e.g. to rotation of an ellipsoid, or spherical vibration. The general case of the model, which includes interactions described by more than one groupchain, breaks the symmetry, and changing the relative strengths of these interactions, one can go from one shape to the other. In doing so a phase-transition can be seen. A phase transition is defined as a discontinuity of some quantity as a function of the control parameter, which gives the relative strength of the interactions of different symmetries. Real phase transitions can take place only in infinite systems, like in the classical limits of these algebraic models, when the particle number N is very large: N → ∞. For finite N the discontinuities are smoothed out, nevertheless, some indications of the phase-transitions can still be there. A controlled way of breaking the dynamical symmetries may reveal another very interesting phenomenon, i.e. the appearance of a quasidynamical (or effective) symmetry. This rather general symmetry-concept of quantum mechanics corresponds to a situation, in which the symmetry-breaking interactions are so strong that the energy-eigenfunctions are not symmetric, i.e. are not basis states of an irreducible representation of the symmetry group, rather they are linear combinations of these basis states. However, they are very special linear combinations in the sense that their coefficients are (approximately) identical for states with different spin values. When this is the case, then the underlying intrinsic state is the
Towards predictive models for transitionally rough surfaces
Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo
2017-11-01
We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).
A dynamical model for plasma confinement transitions
International Nuclear Information System (INIS)
Pilarczyk, Paweł; García, Luis; Carreras, Benjamin A; Llerena, Irene
2012-01-01
A three-equation model describing the evolution of the turbulence level, averaged shear flow and sheared zonal flow is analyzed using topological properties of the asymptotic solutions. An exploration in parameter space is done, identifying the attractor sets, which are fixed points and limit cycles. Then a more detailed analysis of all Morse sets is conducted using topological-combinatorial computations. This model allows the description of different types of transitions to improved plasma confinement regimes. (paper)
Deconfinement transition and flux-string models
International Nuclear Information System (INIS)
Momen, A.; Rosenzweig, C.
1997-01-01
Flux-string models can be used to study the deconfining phase transition. In this paper, we study the models proposed by Patel. We also study the large N c limits of Patel model. To discuss the validity of the mean field theory results, the one-loop Coleman-Weinberg effective potential is calculated for N c =3. We argue that the quantum corrections vanish at large N c when the energy of the so-called baryonic vertices scale with N c . copyright 1997 The American Physical Society
Phase transitions in a lattice population model
International Nuclear Information System (INIS)
Windus, Alastair; Jensen, Henrik J
2007-01-01
We introduce a model for a population on a lattice with diffusion and birth/death according to 2A→3A and A→Φ for a particle A. We find that the model displays a phase transition from an active to an absorbing state which is continuous in 1 + 1 dimensions and of first-order in higher dimensions in agreement with the mean field equation. For the (1 + 1)-dimensional case, we examine the critical exponents and a scaling function for the survival probability and show that it belongs to the universality class of directed percolation. In higher dimensions, we look at the first-order phase transition by plotting a histogram of the population density and use the presence of phase coexistence to find an accurate value for the critical point in 2 + 1 dimensions
Modeling Network Transition Constraints with Hypergraphs
DEFF Research Database (Denmark)
Harrod, Steven
2011-01-01
Discrete time dynamic graphs are frequently used to model multicommodity flows or activity paths through constrained resources, but simple graphs fail to capture the interaction effects of resource transitions. The resulting schedules are not operationally feasible, and return inflated objective...... values. A directed hypergraph formulation is derived to address railway network sequencing constraints, and an experimental problem sample solved to estimate the magnitude of objective inflation when interaction effects are ignored. The model is used to demonstrate the value of advance scheduling...... of train paths on a busy North American railway....
Mott transitions in the periodic Anderson model
International Nuclear Information System (INIS)
Logan, David E; Galpin, Martin R; Mannouch, Jonathan
2016-01-01
The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott–Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger’s theorem to the Mott insulator. (paper)
Model-independent Exoplanet Transit Spectroscopy
Aronson, Erik; Piskunov, Nikolai
2018-05-01
We propose a new data analysis method for obtaining transmission spectra of exoplanet atmospheres and brightness variation across the stellar disk from transit observations. The new method is capable of recovering exoplanet atmosphere absorption spectra and stellar specific intensities without relying on theoretical models of stars and planets. We simultaneously fit both stellar specific intensity and planetary radius directly to transit light curves. This allows stellar models to be removed from the data analysis. Furthermore, we use a data quality weighted filtering technique to achieve an optimal trade-off between spectral resolution and reconstruction fidelity homogenizing the signal-to-noise ratio across the wavelength range. Such an approach is more efficient than conventional data binning onto a low-resolution wavelength grid. We demonstrate that our analysis is capable of reproducing results achieved by using an explicit quadratic limb-darkening equation and that the filtering technique helps eliminate spurious spectral features in regions with strong telluric absorption. The method is applied to the VLT FORS2 observations of the exoplanets GJ 1214 b and WASP-49 b, and our results are in agreement with previous studies. Comparisons between obtained stellar specific intensity and numerical models indicates that the method is capable of accurately reconstructing the specific intensity. The proposed method enables more robust characterization of exoplanetary atmospheres by separating derivation of planetary transmission and stellar specific intensity spectra (that is model-independent) from chemical and physical interpretation.
Facility Will Help Transition Models Into Operations
Kumar, Mohi
2009-02-01
The U.S. National Oceanic and Atmospheric Administration's Space Weather Prediction Center (NOAA SWPC), in partnership with the U.S. Air Force Weather Agency (AFWA), is establishing a center to promote and facilitate the transition of space weather models to operations. The new facility, called the Developmental Testbed Center (DTC), will take models used by researchers and rigorously test them to see if they can withstand continued use as viable warning systems. If a model used in a space weather warning system crashes or fails to perform well, severe consequences can result. These include increased radiation risks to astronauts and people traveling on high-altitude flights, national security vulnerabilities from the loss of military satellite communications, and the cost of replacing damaged military and commercial spacecraft.
Total Strain FE Model for Reinforced Concrete Floors on Piles
Hofmeyer, H.; Bos, van den A.A.
2008-01-01
A finite element (FE) model using a total strain material model has been developed to predict the behavior of warehouse reinforced concrete floors on piles. The material model (not the FE model itself) was calibrated to material tests. The FE model for the floor structure was checked with full-scale
Total tree, merchantable stem and branch volume models for ...
African Journals Online (AJOL)
Total tree, merchantable stem and branch volume models for miombo woodlands of Malawi. Daud J Kachamba, Tron Eid. Abstract. The objective of this study was to develop general (multispecies) models for prediction of total tree, merchantable stem and branch volume including options with diameter at breast height (dbh) ...
Structural models for amorphous transition metal binary alloys
International Nuclear Information System (INIS)
Ching, W.Y.; Lin, C.C.
1976-01-01
A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe 0 . 75 P 0 . 25 , Ni 0 . 75 P 0 . 25 , Co 0 . 75 P 0 . 25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys
Modeling Transit Patterns Via Mobile App Logs.
2016-01-01
Transit planners need detailed information of the trips people take using public transit in : order to design more optimal routes, address new construction projects, and address the : constantly changing needs of a city and metro region. Better trans...
Modelling Hegemonic Power Transition in Cyberspace
Directory of Open Access Journals (Sweden)
Dmitry Brizhinev
2018-01-01
Full Text Available Cyberspace is the newest domain of conflict and cooperation between states. In cyberspace, as in all other domains, land, sea, air, and space, these interactions often lead to the emergence of hegemons which are characterised by their predominant influence over global world order and all other states. We examined the emergence and collapse of hegemons in a modelled cyberspace world through the notions of power transition and power diffusion. We used Repast Simphony to construct a simple agent-based model (ABM of a system of states interacting both competitively and cooperatively in this world. Our simple model parsimoniously captures the character of the real international system of states through simple parameters of wealth and power determining the outcome of attack or cooperation amongst pairwise interacting states. We found hegemons of global world order emerged in cyberspace as they do in the other traditional domains from models with these few parameters. And we found that hegemons, contrary to traditional understanding, are not exceptional states but merely occupy the tail of a continuous distribution of power and lifetimes. We also found that hegemony in the system depends on two perhaps unexpected parameters: the difficulty of acquiring power as wealth increases and the amount of cooperation between states. And as a consequence, we argue that cyberspace, as a power-diffuse domain where cooperation is easier than elsewhere, is less suited to the kind of hegemony we see in the traditional domains of state interaction.
Mott transition in the Hubbard model
International Nuclear Information System (INIS)
Shastry, B.S.
1992-01-01
In this article, the author discuss W. Kohn's criterion for a metal insulator transition, within the framework of a one-band Hubbard model. This and related ideas are applied to 1-dimensional Hubbard systems, and some interesting miscellaneous results discussed. The Jordan-Wigner transformation converting the two species of fermions to two species of hardcore bosons is performed in detail, and the extra phases arising from odd-even effects are explicitly derived. Bosons are shown to prefer zero flux (i.e., diamagnetism) and the corresponding happy fluxes: for the fermions identified. A curios result following from the interplay between orbital diamagnetism and spin polarization is highlighted. A spin-statistics like theorem, showing that the anticommutation relations between fermions of opposite spin are crucial to obtain the SU(2) invariance is pointed out
ISO 9000 and the total quality management models
Pacios Lozano, Ana Reyes
1997-01-01
Establishes the most outstanding differences between the ISO 9000 norms and total quality management as forms or manners of managing quality used in some information services. Compares two models of total quality: European Foundation far Quality Management and Malcolm Baldrige Awards.
Phase transition and information cascade in a voting model
Energy Technology Data Exchange (ETDEWEB)
Hisakado, M [Standard and Poor' s, Marunouchi 1-6-5, Chiyoda ku, Tokyo 100-0005 (Japan); Mori, S, E-mail: masato_hisakado@standardandpoors.co, E-mail: mori@sci.kitasato-u.ac.j [Department of Physics, School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555 (Japan)
2010-08-06
In this paper, we introduce a voting model that is similar to a Keynesian beauty contest and analyse it from a mathematical point of view. There are two types of voters-copycat and independent-and two candidates. Our voting model is a binomial distribution (independent voters) doped in a beta binomial distribution (copycat voters). We find that the phase transition in this system is at the upper limit of t, where t is the time (or the number of the votes). Our model contains three phases. If copycats constitute a majority or even half of the total voters, the voting rate converges more slowly than it would in a binomial distribution. If independents constitute the majority of voters, the voting rate converges at the same rate as it would in a binomial distribution. We also study why it is difficult to estimate the conclusion of a Keynesian beauty contest when there is an information cascade.
Phase transition and information cascade in a voting model
International Nuclear Information System (INIS)
Hisakado, M; Mori, S
2010-01-01
In this paper, we introduce a voting model that is similar to a Keynesian beauty contest and analyse it from a mathematical point of view. There are two types of voters-copycat and independent-and two candidates. Our voting model is a binomial distribution (independent voters) doped in a beta binomial distribution (copycat voters). We find that the phase transition in this system is at the upper limit of t, where t is the time (or the number of the votes). Our model contains three phases. If copycats constitute a majority or even half of the total voters, the voting rate converges more slowly than it would in a binomial distribution. If independents constitute the majority of voters, the voting rate converges at the same rate as it would in a binomial distribution. We also study why it is difficult to estimate the conclusion of a Keynesian beauty contest when there is an information cascade.
Phase transition and information cascade in a voting model
Hisakado, M.; Mori, S.
2010-08-01
In this paper, we introduce a voting model that is similar to a Keynesian beauty contest and analyse it from a mathematical point of view. There are two types of voters—copycat and independent—and two candidates. Our voting model is a binomial distribution (independent voters) doped in a beta binomial distribution (copycat voters). We find that the phase transition in this system is at the upper limit of t, where t is the time (or the number of the votes). Our model contains three phases. If copycats constitute a majority or even half of the total voters, the voting rate converges more slowly than it would in a binomial distribution. If independents constitute the majority of voters, the voting rate converges at the same rate as it would in a binomial distribution. We also study why it is difficult to estimate the conclusion of a Keynesian beauty contest when there is an information cascade.
Liquid-liquid phase transition and glass transition in a monoatomic model system.
Xu, Limei; Buldyrev, Sergey V; Giovambattista, Nicolas; Stanley, H Eugene
2010-01-01
We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.
Mone, Iris; Bulo, Anyla
2012-01-01
We aimed was to assess the association of acute coronary syndrome (ACS) with selected food groups pertinent to non-Mediterranean prototype in Albania, a transitional post-communist country in Southeast Europe. We conducted a case-control study in Tirana in 2003-2006 including 467 non-fatal consecutive ACS patients (370 men aged 59.1±8.7 years, 97 women aged 63.3±7.1 years; 88% response) and a population-based control group (469 men aged 53.1±10.4 years, 268 women aged 54.0±10.9 years; 69% response). A semi-quantitative food frequency questionnaire including 105 food items was administered to all participants based on which the daily calorie intake for selected food groups (meat products, overall oils and fats, sweets, and junk food) was calculated. General linear model was used to assess the association of food groups with ACS. Mean age-adjusted values of meat products, overall oils and fats, sweets and junk food were all considerably higher in cases than controls in both sexes. Cases had significantly higher mean "non-Mediterranean" diet scores (consisting of junk food, sweets, oils and fats except olive oil) than controls (10.3% vs. 5.9% in men and 15.2% vs. 8.3% in women, Pconsumption of processed foods was associated with considerable excess coronary risk which points to serious health implications for the Albanian adult population.
Two-Dimensional Wetting Transition Modeling with the Potts Model
Lopes, Daisiane M.; Mombach, José C. M.
2017-12-01
A droplet of a liquid deposited on a surface structured in pillars may have two states of wetting: (1) Cassie-Baxter (CB), the liquid remains on top of the pillars, also known as heterogeneous wetting, or (2) Wenzel, the liquid fills completely the cavities of the surface, also known as homogeneous wetting. Studies show that between these two states, there is an energy barrier that, when overcome, results in the transition of states. The transition can be achieved by changes in geometry parameters of the surface, by vibrations of the surface or by evaporation of the liquid. In this paper, we present a comparison of two-dimensional simulations of the Cassie-Wenzel transition on pillar-structured surfaces using the cellular Potts model (CPM) with studies performed by Shahraz et al. In our work, we determine a transition diagram by varying the surface parameters such as the interpillar distance ( G) and the pillar height ( H). Our results were compared to those obtained by Shahraz et al. obtaining good agreement.
Directory of Open Access Journals (Sweden)
Feiye Zhu
Full Text Available Using an atropine-diphenoxylate-induced slow transit constipation (STC model, this study explored the effects of the total glucosides of paeony (TGP in the treatment of STC and the possible mechanisms.A prospective experimental animal study.The constipation model was set up in rats with an oral gavage of atropine-diphenoxylate and then treated with the TGP. The volume and moisture content of the faeces were observed and the intestinal kinetic power was evaluated. Meanwhile, the colorimetric method and enzyme linked immunosorbent assay (ELISA were employed to determine the changes of nitric oxide (NO, nitric oxide synthase (NOS, vasoative intestinal peptide (VIP and the P substance (SP in the serum, respectively. The protein expressions of c-kit and stem cell factor (SCF were assessed by immunohistochemical analysis and western blot, respectively, and the mRNA level of c-kit was measured by a reverse transcription polymerase chain reaction (RT-PCR.The TGP attenuated STC responses in terms of an increase in the fecal volume and moisture content, an enhancement of intestinal transit rate and the reduction of NO, NOS and VIP in the serum. In addition, the c-kit, a labeling of interstitial cells of Cajal (ICC increased at both protein and mRNA levels. SCF, which serves as a ligand of c-kit also increased at protein level.The analysis of our data indicated that the TGP could obviously attenuate STC through improving the function of ICC and blocking the inhibitory neurotransmitters such as NO, NOS and VIP.
Zhu, Feiye; Xu, Shan; Zhang, Yongsheng; Chen, Fangming; Ji, Jinjun; Xie, Guanqun
2016-01-01
Objectives Using an atropine-diphenoxylate-induced slow transit constipation (STC) model, this study explored the effects of the total glucosides of paeony (TGP) in the treatment of STC and the possible mechanisms. Study Design A prospective experimental animal study. Methods The constipation model was set up in rats with an oral gavage of atropine-diphenoxylate and then treated with the TGP. The volume and moisture content of the faeces were observed and the intestinal kinetic power was evaluated. Meanwhile, the colorimetric method and enzyme linked immunosorbent assay (ELISA) were employed to determine the changes of nitric oxide (NO), nitric oxide synthase (NOS), vasoative intestinal peptide (VIP) and the P substance (SP) in the serum, respectively. The protein expressions of c-kit and stem cell factor (SCF) were assessed by immunohistochemical analysis and western blot, respectively, and the mRNA level of c-kit was measured by a reverse transcription polymerase chain reaction (RT-PCR). Results The TGP attenuated STC responses in terms of an increase in the fecal volume and moisture content, an enhancement of intestinal transit rate and the reduction of NO, NOS and VIP in the serum. In addition, the c-kit, a labeling of interstitial cells of Cajal (ICC) increased at both protein and mRNA levels. SCF, which serves as a ligand of c-kit also increased at protein level. Conclusion The analysis of our data indicated that the TGP could obviously attenuate STC through improving the function of ICC and blocking the inhibitory neurotransmitters such as NO, NOS and VIP. PMID:27478893
Economic analysis model for total energy and economic systems
International Nuclear Information System (INIS)
Shoji, Katsuhiko; Yasukawa, Shigeru; Sato, Osamu
1980-09-01
This report describes framing an economic analysis model developed as a tool of total energy systems. To prospect and analyze future energy systems, it is important to analyze the relation between energy system and economic structure. We prepared an economic analysis model which was suited for this purpose. Our model marks that we can analyze in more detail energy related matters than other economic ones, and can forecast long-term economic progress rather than short-term economic fluctuation. From view point of economics, our model is longterm multi-sectoral economic analysis model of open Leontief type. Our model gave us appropriate results for fitting test and forecasting estimation. (author)
Dealing with selection bias in educational transition models
DEFF Research Database (Denmark)
Holm, Anders; Jæger, Mads Meier
2011-01-01
This paper proposes the bivariate probit selection model (BPSM) as an alternative to the traditional Mare model for analyzing educational transitions. The BPSM accounts for selection on unobserved variables by allowing for unobserved variables which affect the probability of making educational tr...... account for selection on unobserved variables and high-quality data are both required in order to estimate credible educational transition models.......This paper proposes the bivariate probit selection model (BPSM) as an alternative to the traditional Mare model for analyzing educational transitions. The BPSM accounts for selection on unobserved variables by allowing for unobserved variables which affect the probability of making educational...... transitions to be correlated across transitions. We use simulated and real data to illustrate how the BPSM improves on the traditional Mare model in terms of correcting for selection bias and providing credible estimates of the effect of family background on educational success. We conclude that models which...
The Ballet Dancing Profession: A Career Transition Model
Roncaglia, Irina
2008-01-01
What type of emotional transition is experienced by professional dancers who face the end of their career? What does this journey imply? This article discusses the transition experiences of two case studies out of a total sample of fourteen (N = 14) international professional ballet dancers who left their careers between the ages of 21 and 49…
Numerical simulation of transitional flow on a wind turbine airfoil with RANS-based transition model
Zhang, Ye; Sun, Zhengzhong; van Zuijlen, Alexander; van Bussel, Gerard
2017-09-01
This paper presents a numerical investigation of transitional flow on the wind turbine airfoil DU91-W2-250 with chord-based Reynolds number Rec = 1.0 × 106. The Reynolds-averaged Navier-Stokes based transition model using laminar kinetic energy concept, namely the k - kL - ω model, is employed to resolve the boundary layer transition. Some ambiguities for this model are discussed and it is further implemented into OpenFOAM-2.1.1. The k - kL - ω model is first validated through the chosen wind turbine airfoil at the angle of attack (AoA) of 6.24° against wind tunnel measurement, where lift and drag coefficients, surface pressure distribution and transition location are compared. In order to reveal the transitional flow on the airfoil, the mean boundary layer profiles in three zones, namely the laminar, transitional and fully turbulent regimes, are investigated. Observation of flow at the transition location identifies the laminar separation bubble. The AoA effect on boundary layer transition over wind turbine airfoil is also studied. Increasing the AoA from -3° to 10°, the laminar separation bubble moves upstream and reduces in size, which is in close agreement with wind tunnel measurement.
Convergence of Transition Probability Matrix in CLVMarkov Models
Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.
2018-04-01
A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.
Life course models: improving interpretation by consideration of total effects.
Green, Michael J; Popham, Frank
2017-06-01
Life course epidemiology has used models of accumulation and critical or sensitive periods to examine the importance of exposure timing in disease aetiology. These models are usually used to describe the direct effects of exposures over the life course. In comparison with consideration of direct effects only, we show how consideration of total effects improves interpretation of these models, giving clearer notions of when it will be most effective to intervene. We show how life course variation in the total effects depends on the magnitude of the direct effects and the stability of the exposure. We discuss interpretation in terms of total, direct and indirect effects and highlight the causal assumptions required for conclusions as to the most effective timing of interventions. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.
Understanding & modeling bus transit driver availability.
2014-07-01
Bus transit agencies are required to hire extraboard (i.e. back-up) operators to account for unexpected absences. Incorrect sizing of extra driver workforce is problematic for a number of reasons. Overestimating the appropriate number of extraboard o...
Model for pairing phase transition in atomic nuclei
International Nuclear Information System (INIS)
Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.
2002-01-01
A model is developed which allows the investigation and classification of the pairing phase transition in atomic nuclei. The regions of the parameter space are discussed for which a pairing phase transition can be observed. The model parameters include number of particles, attenuation of pairing correlations with increasing seniority, single-particle level spacing, and pairing gap parameter
Accelerating transition dynamics in city regions: A qualitative modeling perspective
P.J. Valkering (Pieter); Yücel, G. (Gönenç); Gebetsroither-Geringer, E. (Ernst); Markvica, K. (Karin); Meynaerts, E. (Erika); N. Frantzeskaki (Niki)
2017-01-01
textabstractIn this article, we take stock of the findings from conceptual and empirical work on the role of transition initiatives for accelerating transitions as input for modeling acceleration dynamics. We applied the qualitative modeling approach of causal loop diagrams to capture the dynamics
Collaborative problem solving with a total quality model.
Volden, C M; Monnig, R
1993-01-01
A collaborative problem-solving system committed to the interests of those involved complies with the teachings of the total quality management movement in health care. Deming espoused that any quality system must become an integral part of routine activities. A process that is used consistently in dealing with problems, issues, or conflicts provides a mechanism for accomplishing total quality improvement. The collaborative problem-solving process described here results in quality decision-making. This model incorporates Ishikawa's cause-and-effect (fishbone) diagram, Moore's key causes of conflict, and the steps of the University of North Dakota Conflict Resolution Center's collaborative problem solving model.
Transition and Turbulence Modeling for Blunt-Body Wake Flows
Nance, Robert P.; Horvath, Thomas J.; Hassan, H. A.
1997-01-01
This study attempts t o improve the modeling and computational prediction of high- speed transitional wake flows. The recently developed kappa - zeta (Enstrophy) turbulence model is coupled with a newly developed transition prediction method and implemented in an implicit flow solver well-suited to hypersonic flows. In this model, transition onset is determined as part of the solution. Results obtained using the new model for a 70- deg blunted cone/sting geometry demonstrate better agreement with experimental heat- transfer measurements when compared to laminar calculations as well as solutions using the kappa - omega model. Results are also presented for the situation where transition onset is preselected. It is shown that, in this case, results are quite sensitive to location of the transition point.
Assessment of Tandem Measurements of pH and Total Gut Transit Time in Healthy Volunteers
Mikolajczyk, Adam E; Watson, Sydeaka; Surma, Bonnie L; Rubin, David T
2015-01-01
Objectives: The variation of luminal pH and transit time in an individual is unknown, yet is necessary to interpret single measurements. This study aimed to assess the intrasubject variability of gut pH and transit time in healthy volunteers using SmartPill devices (Covidien, Minneapolis, MN). Methods: Each subject (n=10) ingested two SmartPill devices separated by 24?h. Mean pH values were calculated for 30?min after gastric emptying (AGE), before the ileocecal (BIC) valve, after the ileocec...
Vattimo, A; Burroni, L; Bertelli, P; Messina, M; Meucci, D; Tota, G
1993-12-01
Serial colon scintigraphy using 111In-DTPA (2 MBq) given orally was performed in 39 children referred for constipation, and the total and segmental colon transit times were measured. The bowel movements during the study were recorded and the intervals between defecations (ID) were calculated. This method proved able to identify children with normal colon morphology (no. = 32) and those with dolichocolon (no. = 7). Normal children were not included for ethical reasons and we used the normal range determined by others using x-ray methods (29 +/- 4 hours). Total and segmental colon transit times were found to be prolonged in all children with dolichocolon (TC: 113.55 +/- 41.20 hours; RC: 39.85 +/- 26.39 hours; LC: 43.05 +/- 18.30 hours; RS: 30.66 +/- 26.89 hours). In the group of children with a normal colon shape, 13 presented total and segmental colon transit times within the referred normal value (TC: 27.79 +/- 4.10 hours; RC: 9.11 +/- 2.53 hours; LC: 9.80 +/- 3.50 hours; RS: 8.88 +/- 4.09 hours) and normal bowel function (ID: 23.37 +/- 5.93 hours). In the remaining children, 5 presented prolonged retention in the rectum (RS: 53.36 +/- 29.66 hours), and 14 a prolonged transit time in all segments. A good correlation was found between the transit time and bowel function. From the point of view of radiation dosimetry, the most heavily irradiated organs were the lower large intestine and the ovaries, and the level of radiation burden depended on the colon transit time. We can conclude that the described method results safe, accurate and fully diagnostic.
Two kinds of Phase transitions in a Voting model
Hisakado, Masato; Mori, Shintaro
2012-01-01
In this paper, we discuss a voting model with two candidates, C_0 and C_1. We consider two types of voters--herders and independents. The voting of independents is based on their fundamental values; on the other hand, the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in Ising model. The other is a transition of super and normal diffusions. These phase trans...
Total conversion coefficient of the 185 keV (10--7+) transition in sup(182m)Ta
International Nuclear Information System (INIS)
Suryanarayana, Ch.; Venkateswara Rao, N.; Raghavaiah, C.V.; Bhuloka Reddy, S.; Satyanarayana, G.; Sastry, D.L.
1988-01-01
The total conversion coefficient of the 185 keV (E3) isomeric transition in 182 Ta was measured for the first time using gamma intensity balance method. The experimental αsub(T) was obtained as 3.4 ± 0.2 consistent with the theoretical value (3.272) due to Rosel et al. The E3 transition probability was found to be hindered by a factor of 5.07x10 4 when compared to the single particle estimate. (author). 13 refs
Total, Direct, and Indirect Effects in Logit Models
DEFF Research Database (Denmark)
Karlson, Kristian Bernt; Holm, Anders; Breen, Richard
It has long been believed that the decomposition of the total effect of one variable on another into direct and indirect effects, while feasible in linear models, is not possible in non-linear probability models such as the logit and probit. In this paper we present a new and simple method...... average partial effects, as defined by Wooldridge (2002). We present the method graphically and illustrate it using the National Educational Longitudinal Study of 1988...
Total Quality Management, a New Culture Model of the Enterprise
Directory of Open Access Journals (Sweden)
Constantin Dumitrescu
2006-10-01
Full Text Available The paper brings bags of clarifications about concept definition and bases principles of TQM, presenting the critical factors during the implementation of those fundamentals. Also, it has been proposed a lot of models to present the Total Quality Management, being also presented its evolution.
Two kinds of phase transitions in a voting model
Hisakado, M.; Mori, S.
2012-08-01
In this paper, we discuss a voting model with two candidates, C0 and C1. We consider two types of voters—herders and independents. The voting of independents is based on their fundamental values, while the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in the Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist. We compared our results to the conclusions of experiments and identified the phase transitions in the upper limit of the time t by using the analysis of human behavior obtained from experiments.
Dynamics of the oil transition: Modeling capacity, depletion, and emissions
International Nuclear Information System (INIS)
Brandt, Adam R.; Plevin, Richard J.; Farrell, Alexander E.
2010-01-01
The global petroleum system is undergoing a shift to substitutes for conventional petroleum (SCPs). The Regional Optimization Model for Emissions from Oil Substitutes, or ROMEO, models this oil transition and its greenhouse gas impacts. ROMEO models the global liquid fuel market in an economic optimization framework, but in contrast to other models it solves each model year sequentially, with investment and production optimized under uncertainty about future prevailing prices or resource quantities. ROMEO includes more hydrocarbon resource types than integrated assessment models of climate change. ROMEO also includes the carbon intensities and costs of production of these resources. We use ROMEO to explore the uncertainty of future costs, emissions, and total fuel production under a number of scenarios. We perform sensitivity analysis on the endowment of conventional petroleum and future carbon taxes. Results show incremental emissions from production of oil substitutes of ∼ 0-30 gigatonnes (Gt) of carbon over the next 50 years (depending on the carbon tax). Also, demand reductions due to the higher cost of SCPs could reduce or eliminate these increases. Calculated emissions are highly sensitive to the endowment of conventional oil and less sensitive to a carbon tax.
Multiple phase transitions in the generalized Curie-Weiss model
International Nuclear Information System (INIS)
Eisele, T.; Ellis, R.S.
1988-01-01
The generalized Curie-Weiss model is an extension of the classical Curie-Weiss model in which the quadratic interaction function of the mean spin value is replaced by a more general interaction function. It is shown that the generalized Curie-Weiss model can have a sequence of phase transitions at different critical temperatures. Both first-order and second-order phase transitions can occur, and explicit criteria for the two types are given. Three examples of generalized Curie-Weiss models are worked out in detail, including one example with infinitely many phase transitions. A number of results are derived using large-deviation techniques
Dynamic shape transitions in the sdg boson model
International Nuclear Information System (INIS)
Kuyucak, S.
1992-01-01
The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192 Os. 13 refs., 3 figs
Dynamic shape transitions in the sdg boson model
Kuyucak, S.
The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192Os.
Dynamic shape transitions in the sdg boson model
Energy Technology Data Exchange (ETDEWEB)
Kuyucak, S. (Melbourne Univ., Parkville (Australia). School of Physics)
1992-01-01
The dynamic evolution of shapes in the sdg interacting bosun model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, {sup 192}Os. (author).
Chiral phase transition in a covariant nonlocal NJL model
International Nuclear Information System (INIS)
General, I.; Scoccola, N.N.
2001-01-01
The properties of the chiral phase transition at finite temperature and chemical potential are investigated within a nonlocal covariant extension of the NJL model based on a separable quark-quark interaction. We find that for low values of T the chiral transition is always of first order and, for finite quark masses, at certain end point the transition turns into a smooth crossover. Our predictions for the position of this point is similar, although somewhat smaller, than previous estimates. (author)
Phases and phase transitions in the algebraic microscopic shell model
Directory of Open Access Journals (Sweden)
Georgieva A. I.
2016-01-01
Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.
Correlation-based Transition Modeling for External Aerodynamic Flows
Medida, Shivaji
Conventional turbulence models calibrated for fully turbulent boundary layers often over-predict drag and heat transfer on aerodynamic surfaces with partially laminar boundary layers. A robust correlation-based model is developed for use in Reynolds-Averaged Navier-Stokes simulations to predict laminar-to-turbulent transition onset of boundary layers on external aerodynamic surfaces. The new model is derived from an existing transition model for the two-equation k-omega Shear Stress Transport (SST) turbulence model, and is coupled with the one-equation Spalart-Allmaras (SA) turbulence model. The transition model solves two transport equations for intermittency and transition momentum thickness Reynolds number. Experimental correlations and local mean flow quantities are used in the model to account for effects of freestream turbulence level and pressure gradients on transition onset location. Transition onset is triggered by activating intermittency production using a vorticity Reynolds number criterion. In the new model, production and destruction terms of the intermittency equation are modified to improve consistency in the fully turbulent boundary layer post-transition onset, as well as ensure insensitivity to freestream eddy viscosity value specified in the SA model. In the original model, intermittency was used to control production and destruction of turbulent kinetic energy. Whereas, in the new model, only the production of eddy viscosity in SA model is controlled, and the destruction term is not altered. Unlike the original model, the new model does not use an additional correction to intermittency for separation-induced transition. Accuracy of drag predictions are improved significantly with the use of the transition model for several two-dimensional single- and multi-element airfoil cases over a wide range of Reynolds numbers. The new model is able to predict the formation of stable and long laminar separation bubbles on low-Reynolds number airfoils that
Thresholds and Smooth Transitions in Vector Autoregressive Models
DEFF Research Database (Denmark)
Hubrich, Kirstin; Teräsvirta, Timo
This survey focuses on two families of nonlinear vector time series models, the family of Vector Threshold Regression models and that of Vector Smooth Transition Regression models. These two model classes contain incomplete models in the sense that strongly exogeneous variables are allowed in the...
Curriculum Outline for Tennessee Transition Model.
Esch, B. J.
This curriculum outline for the Sevier County, Tennessee, transition program for special needs students provides goals and objectives for the following domains: domestic, vocational, community functioning, and recreation/leisure. The domestic domain covers personal hygiene/grooming, first aid, home nursing, birth control/pregnancy, parenting, drug…
Modelling Transition Towards Sustainable Transportation Sector
DEFF Research Database (Denmark)
Dominkovic, Dominik Franjo; Bačeković, I.; Mýrdal, Jón Steinar Garðarsson
2016-01-01
In a transition towards 100% renewable energy system, transportation sector is rarely dealt withusing the holistic approach and measuring its impact on the whole energy system. Furthermore, assolutions for power and heat sectors are clearer, it is a tendency of the researchers to focus on thelatt...
Model of transition between causes of death.
Damiani, P; Aubenque, M
1975-06-01
This paper describes an attempt to estimate the probabilities of transition between various major causes of death during the period 1954-1962. The regression coefficients have been estimated from French département death rates for ten main or typical causes of death, assessed by sex for the age group 45-64 years.
In-transit charging lane model
Verkerk, A.; Nijmeijer, H.; Khajepour, A.
2012-01-01
The current electric vehicles still have a problem with a short range and long charging time compared to the internal combustion vehicles. A possible solution for this problem is to charge the batteries while driving on the highway. For this, a special traffic lane is needed with an in-transit
Linking Complexity and Sustainability Theories: Implications for Modeling Sustainability Transitions
Directory of Open Access Journals (Sweden)
Camaren Peter
2014-03-01
Full Text Available In this paper, we deploy a complexity theory as the foundation for integration of different theoretical approaches to sustainability and develop a rationale for a complexity-based framework for modeling transitions to sustainability. We propose a framework based on a comparison of complex systems’ properties that characterize the different theories that deal with transitions to sustainability. We argue that adopting a complexity theory based approach for modeling transitions requires going beyond deterministic frameworks; by adopting a probabilistic, integrative, inclusive and adaptive approach that can support transitions. We also illustrate how this complexity-based modeling framework can be implemented; i.e., how it can be used to select modeling techniques that address particular properties of complex systems that we need to understand in order to model transitions to sustainability. In doing so, we establish a complexity-based approach towards modeling sustainability transitions that caters for the broad range of complex systems’ properties that are required to model transitions to sustainability.
On the phase transition nature in compressible Ising models
International Nuclear Information System (INIS)
Ota, A.T.
1985-01-01
The phase transition phenomenon is analysed in a compressible ferromagnetic Ising model at null field, through the mean-field approximation. The model studied is d-dimensional under the magnetic point of view and one-dimensional under the elastic point of view. This is achieved keeping the compressive interactions among the ions and rejecting annealing forces completely. The exchange parameter J is linear and the elastic potential quadratic in relation to the microscopic shifts of the lattice. In the one-dimensional case, this model shows no phase transition. In the two-dimensional case, the role of the S i spin of the i-the ion is crucial: a) for spin 1/2 the transitions are of second order; b) for spin 1, desides the second order transitions there is a three-critical point and a first-order transitions line. (L.C.) [pt
Reservoir theory, groundwater transit time distributions, and lumped parameter models
International Nuclear Information System (INIS)
Etcheverry, D.; Perrochet, P.
1999-01-01
The relation between groundwater residence times and transit times is given by the reservoir theory. It allows to calculate theoretical transit time distributions in a deterministic way, analytically, or on numerical models. Two analytical solutions validates the piston flow and the exponential model for simple conceptual flow systems. A numerical solution of a hypothetical regional groundwater flow shows that lumped parameter models could be applied in some cases to large-scale, heterogeneous aquifers. (author)
Predictive models for monitoring and analysis of the total zooplankton
Directory of Open Access Journals (Sweden)
Obradović Milica
2014-01-01
Full Text Available In recent years, modeling and prediction of total zooplankton abundance have been performed by various tools and techniques, among which data mining tools have been less frequent. The purpose of this paper is to automatically determine the dependency degree and the influence of physical, chemical and biological parameters on the total zooplankton abundance, through design of the specific data mining models. For this purpose, the analysis of key influencers was used. The analysis is based on the data obtained from the SeLaR information system - specifically, the data from the two reservoirs (Gruža and Grošnica with different morphometric characteristics and trophic state. The data is transformed into optimal structure for data analysis, upon which, data mining model based on the Naïve Bayes algorithm is constructed. The results of the analysis imply that in both reservoirs, parameters of groups and species of zooplankton have the greatest influence on the total zooplankton abundance. If these inputs (group and zooplankton species are left out, differences in the impact of physical, chemical and other biological parameters in dependences of reservoirs can be noted. In the Grošnica reservoir, analysis showed that the temporal dimension (months, nitrates, water temperature, chemical oxygen demand, chlorophyll and chlorides, had the key influence with strong relative impact. In the Gruža reservoir, key influence parameters for total zooplankton are: spatial dimension (location, water temperature and physiological groups of bacteria. The results show that the presented data mining model is usable on any kind of aquatic ecosystem and can also serve for the detection of inputs which could be the basis for the future analysis and modeling.
Description of transitional nuclei in the sdg boson model
International Nuclear Information System (INIS)
Lac, V.S.; Kuyucak, S.
1992-01-01
The study of the transitional nuclei in the framework of the sdg boson model was necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. It is shown how γ-unstable and triaxial shapes arise from special choices of sdg model Hamiltonians. Ways of limiting the number of free parameters through consistency and coherence conditions are also discussed. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei. 36 refs., 10 tabs., 12 figs
Description of transitional nuclei in the sdg boson model
International Nuclear Information System (INIS)
Lac, V.S.; Kuyucak, S.
1992-01-01
We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how γ-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei. (orig.)
Description of transitional nuclei in the sdg boson model
Lac, V.-S.; Kuyucak, S.
1992-03-01
We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how γ-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei.
Description of transitional nuclei in the sdg boson model
Energy Technology Data Exchange (ETDEWEB)
Lac, V.S.; Kuyucak, S. (School of Physics, Univ. Melbourne, Victoria (Australia))
1992-03-30
We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how {gamma}-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei. (orig.).
An intermittency model for predicting roughness induced transition
Ge, Xuan; Durbin, Paul
2014-11-01
An extended model for roughness-induced transition is proposed based on an intermittency transport equation for RANS modeling formulated in local variables. To predict roughness effects in the fully turbulent boundary layer, published boundary conditions for k and ω are used, which depend on the equivalent sand grain roughness height, and account for the effective displacement of wall distance origin. Similarly in our approach, wall distance in the transition model for smooth surfaces is modified by an effective origin, which depends on roughness. Flat plate test cases are computed to show that the proposed model is able to predict the transition onset in agreement with a data correlation of transition location versus roughness height, Reynolds number, and inlet turbulence intensity. Experimental data for a turbine cascade are compared with the predicted results to validate the applicability of the proposed model. Supported by NSF Award Number 1228195.
Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System
Directory of Open Access Journals (Sweden)
Nicolas Giovambattista
2010-12-01
Full Text Available We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.
Nursing Students' Perceptions of the Transition to Shift Work: A Total Worker Health Perspective.
Postma, Julie; Tuell, Erica; James, Lois; Graves, Janessa M; Butterfield, Patricia
2017-11-01
Nursing students make an abrupt transition from traditional classes to clinical rotations and shift work. Little is known about students' sleep, sleep disturbances, and safe practice behaviors during this critical phase of professional development. The purpose of this study was to identify nursing students' perceptions of problems and potential solutions related to shift work and long work hours. This qualitative, descriptive study used two nursing student focus groups which engaged in a two-round participatory process aimed at framing future interventions. Participants identified problems and solutions related to personal and workplace well-being. Findings will inform undergraduate curricular revisions, and hospital hiring and managerial practices.
Modeling dynamic beta-gamma polymorphic transition in Tin
Chauvin, Camille; Montheillet, Frank; Petit, Jacques; CEA Gramat Collaboration; EMSE Collaboration
2015-06-01
Solid-solid phase transitions in metals have been studied by shock waves techniques for many decades. Recent experiments have investigated the transition during isentropic compression experiments and shock-wave compression and have highlighted the strong influence of the loading rate on the transition. Complementary data obtained with velocity and temperature measurements around the polymorphic transition beta-gamma of Tin on gas gun experiments have displayed the importance of the kinetics of the transition. But, even though this phenomenon is known, modeling the kinetic remains complex and based on empirical formulations. A multiphase EOS is available in our 1D Lagrangian code Unidim. We propose to present the influence of various kinetic laws (either empirical or involving nucleation and growth mechanisms) and their parameters (Gibbs free energy, temperature, pressure) on the transformation rate. We compare experimental and calculated velocities and temperature profiles and we underline the effects of the empirical parameters of these models.
Radiative transitions in mesons within a non relativistic quark model
International Nuclear Information System (INIS)
Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.
2002-01-01
An exhaustive study of radiative transitions in mesons is performed in a non relativistic quark model. Three different types of mesons wave functions are tested. The effect of some usual approximations is commented. Overall agreement with experimental data is obtained
Quantum catalysis : the modelling of catalytic transition states
Hall, M.B.; Margl, P.; Naray-Szabo, G.; Schramm, Vern; Truhlar, D.G.; Santen, van R.A.; Warshel, A.; Whitten, J.L.; Truhlar, D.G.; Morokuma, K.
1999-01-01
A review with 101 refs.; we present an introduction to the computational modeling of transition states for catalytic reactions. We consider both homogeneous catalysis and heterogeneous catalysis, including organometallic catalysts, enzymes, zeolites and metal oxides, and metal surfaces. We summarize
Annular flow transition model in channels of various shapes
International Nuclear Information System (INIS)
Osakabe, Masahiro; Tasaka, Kanji; Kawasaki, Yuji.
1988-01-01
The annular transition in the rod bundle is interesting because the small gaps between rods exist in the flow area. This is a very important phenomenon in the boiloff accident of nuclear reactor core. As a first attempt, the effect of small gaps in the flow area was studied by using the vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and the transition model was proposed. The model gives a good prediction of the wide range of previous experiments including the data taken in the channels with small gaps. (author)
On the chiral phase transition in the linear sigma model
International Nuclear Information System (INIS)
Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa
2003-01-01
The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)
Annular flow transition model in channels of various shapes
International Nuclear Information System (INIS)
Osakabe, M.; Tasaka, K.; Kawasaki, Y.
1989-01-01
Annular transition in a rod bundle is interesting because small gaps exist between rods in the flow area. This is a very important phenomenon in a boiloff accident of a nuclear reactor core. This paper reports, as a first attempt, the effect of small gaps in the flow area was studied by using vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and a transition model is proposed. The model gives a good prediction for a wide range of previous experiments including the data taken in channels with small gaps
An Arduino-Based Experiment Designed to Clarify the Transition to Total Internal Reflection
Atkin, Keith
2018-01-01
The topic of refraction and reflection of light at the boundary of transparent media is a fundamentally important one. The special case of total internal reflection is however commonly misrepresented in elementary textbooks. This paper addresses the problem and describes an experimental procedure for measuring and displaying reflected and…
Naumis, Gerardo G
2012-06-01
When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.
Totally Asymmetric Limit for Models of Heat Conduction
De Carlo, Leonardo; Gabrielli, Davide
2017-08-01
We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.
Total energy calculations from self-energy models
International Nuclear Information System (INIS)
Sanchez-Friera, P.
2001-06-01
Density-functional theory is a powerful method to calculate total energies of large systems of interacting electrons. The usefulness of this method, however, is limited by the fact that an approximation is required for the exchange-correlation energy. Currently used approximations (LDA and GGA) are not sufficiently accurate in many physical problems, as for instance the study of chemical reactions. It has been shown that exchange-correlation effects can be accurately described via the self-energy operator in the context of many-body perturbation theory. This is, however, a computationally very demanding approach. In this thesis a new scheme for calculating total energies is proposed, which combines elements from many-body perturbation theory and density-functional theory. The exchange-correlation energy functional is built from a simplified model of the self-energy, that nevertheless retains the main features of the exact operator. The model is built in such way that the computational effort is not significantly increased with respect to that required in a typical density-functional theory calculation. (author)
Epidemic models for phase transitions: application to a physical gel
Bilge, A. H.; Pekcan, O.; Kara, S.; Ogrenci, A. S.
2017-09-01
Carrageenan gels are characterized by reversible sol-gel and gel-sol transitions under cooling and heating processes and these transitions are approximated by generalized logistic growth curves. We express the transitions of carrageenan-water system, as a representative of reversible physical gels, in terms of a modified Susceptible-Infected-Susceptible epidemic model, as opposed to the Susceptible-Infected-Removed model used to represent the (irreversible) chemical gel formation in the previous work. We locate the gel point Tc of sol-gel and gel-sol transitions and we find that, for the sol-gel transition (cooling), Tc > Tsg (transition temperature), i.e. Tc is earlier in time for all carrageenan contents and moves forward in time and gets closer to Tsg as the carrageenan content increases. For the gel-sol transition (heating), Tc is relatively closer to Tgs; it is greater than Tgs, i.e. later in time for low carrageenan contents and moves backward as carrageenan content increases.
Allosteric transition: a comparison of two models
DEFF Research Database (Denmark)
Bindslev, Niels
2013-01-01
Introduction Two recent models are in use for analysis of allosteric drug action at receptor sites remote from orthosteric binding sites. One is an allosteric two-state mechanical model derived in 2000 by David Hall. The other is an extended operational model developed in 2007 by Arthur...... of model both for simulation and analysis of allosteric concentration-responses at equilibrium or steady-state. Conclusions As detailed knowledge of receptors systems becomes available, systems with several pathways and states and/ or more than two binding sites should be analysed by extended forms...
Free association transitions in models of cortical latching dynamics
International Nuclear Information System (INIS)
Russo, Eleonora; Treves, Alessandro; Kropff, Emilio; Namboodiri, Vijay M K
2008-01-01
Potts networks, in certain conditions, hop spontaneously from one discrete attractor state to another, a process we have called latching dynamics. When continuing indefinitely, latching can serve as a model of infinite recursion, which is nontrivial if the matrix of transition probabilities presents a structure, i.e. a rudimentary grammar. We show here, with computer simulations, that latching transitions cluster in a number of distinct classes: effectively random transitions between weakly correlated attractors; structured, history-dependent transitions between attractors with intermediate correlations; and oscillations between pairs of closely overlapping attractors. Each type can be described by a reduced set of equations of motion, which, once numerically integrated, matches simulations results. We propose that the analysis of such equations may offer clues on how to embed meaningful grammatical structures into more realistic models of specific recursive processes
Free association transitions in models of cortical latching dynamics
Energy Technology Data Exchange (ETDEWEB)
Russo, Eleonora; Treves, Alessandro; Kropff, Emilio [SISSA, Cognitive Neuroscience, via Beirut 4, 34014 Trieste (Italy); Namboodiri, Vijay M K [Department of Physics, IIT Bombay, Powai, Mumbai, India 400076 (India)], E-mail: russo@sissa.it, E-mail: vijay_mkn@iitb.ac.in, E-mail: ale@sissa.it, E-mail: kropff@sissa.it
2008-01-15
Potts networks, in certain conditions, hop spontaneously from one discrete attractor state to another, a process we have called latching dynamics. When continuing indefinitely, latching can serve as a model of infinite recursion, which is nontrivial if the matrix of transition probabilities presents a structure, i.e. a rudimentary grammar. We show here, with computer simulations, that latching transitions cluster in a number of distinct classes: effectively random transitions between weakly correlated attractors; structured, history-dependent transitions between attractors with intermediate correlations; and oscillations between pairs of closely overlapping attractors. Each type can be described by a reduced set of equations of motion, which, once numerically integrated, matches simulations results. We propose that the analysis of such equations may offer clues on how to embed meaningful grammatical structures into more realistic models of specific recursive processes.
Uncertainty Model for Total Solar Irradiance Estimation on Australian Rooftops
Al-Saadi, Hassan; Zivanovic, Rastko; Al-Sarawi, Said
2017-11-01
The installations of solar panels on Australian rooftops have been in rise for the last few years, especially in the urban areas. This motivates academic researchers, distribution network operators and engineers to accurately address the level of uncertainty resulting from grid-connected solar panels. The main source of uncertainty is the intermittent nature of radiation, therefore, this paper presents a new model to estimate the total radiation incident on a tilted solar panel. Where a probability distribution factorizes clearness index, the model is driven upon clearness index with special attention being paid for Australia with the utilization of best-fit-correlation for diffuse fraction. The assessment of the model validity is achieved with the adoption of four goodness-of-fit techniques. In addition, the Quasi Monte Carlo and sparse grid methods are used as sampling and uncertainty computation tools, respectively. High resolution data resolution of solar irradiations for Adelaide city were used for this assessment, with an outcome indicating a satisfactory agreement between actual data variation and model.
MODELING THE TRANSITION CURVE ON A LIMITED TERAIN
Directory of Open Access Journals (Sweden)
V. D. Borisenko
2017-04-01
Full Text Available Purpose. Further development of the method of geometric modelling of transition curves, which are placed between rectilinear and circular sections of railway tracks and are created in localities, the relief of which causes certain restrictions on the size of the transition curves of the railway track. Methodology. The equation of the transition curve is taken in parametric form, in which the length of the arc of the modelled curve is used as a parameter. As initial data in the modelling of the transition curve, the coordinates of its initial point and the angle of inclination in it are tangent, the radius of the circumference of the circular section and the parameter that is used as a constraint when placing a section of the railway track. The transition curve is modelled under the condition that the distribution of its curvature from the length of the arc - the natural parameter - is described by a cubic dependence. This dependence contains four unknown coefficients; the unknown is also the length of the arc. The coefficients of the cubic dependence and the length of the arc of the transition curve, the coordinates of its end point, the angle of inclination in it of the tangent are determined during the simulation of the transition curve. The application of boundary conditions and methods of differential geometry with respect to the distribution of the slope angle of the tangent to the simulated curve from the initial to the end points of the transition curve and the calculation of the coordinates of the end point of the curve allows us to reduce the problem of modelling the transition curve to determine the arc length of this curve. Directly the length of the transition curve is in the process of minimizing the deviation of the circumference of the circular path from its current value obtained when searching for the arc length. Findings. As a result of the computational experiment, the possibility of modelling a transition curve between a
Energy Technology Data Exchange (ETDEWEB)
Korhonen, Marko [Department of Mathematics and Statistics, University of Helsinki, FIN-00014 (Finland); Lee, Eunghyun [Centre de Recherches Mathématiques (CRM), Université de Montréal, Quebec H3C 3J7 (Canada)
2014-01-15
We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.
GENESIS - The GENEric SImulation System for Modelling State Transitions.
Gillman, Matthew S
2017-09-20
This software implements a discrete time Markov chain model, used to model transitions between states when the transition probabilities are known a priori . It is highly configurable; the user supplies two text files, a "state transition table" and a "config file", to the Perl script genesis.pl. Given the content of these files, the script generates a set of C++ classes based on the State design pattern, and a main program, which can then be compiled and run. The C++ code generated is based on the specification in the text files. Both multiple branching and bi-directional transitions are allowed. The software has been used to model the natural histories of colorectal cancer in Mexico. Although written primarily to model such disease processes, it can be used in any process which depends on discrete states with known transition probabilities between those states. One suitable area may be in environmental modelling. A test suite is supplied with the distribution. Due to its high degree of configurability and flexibility, this software has good re-use potential. It is stored on the Figshare repository.
Spin delocalization phase transition in a correlated electrons model
International Nuclear Information System (INIS)
Huerta, L.
1990-11-01
In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs
M1 transitions in the (sdg) boson model
International Nuclear Information System (INIS)
Kuyucak, S.; Tuebingen Univ.; Morrison, I.
1988-01-01
Using the 1/N expansion technique we derive expressions for β → g, γ → g and γ → γ M1 transitions in a general boson model. The M1 matrix elements in the sdg-boson model are similar in form to those in the neutron-proton IBM. Comparisons are made to some selected M1 data exhibiting collective character. (orig.)
M1 transitions in the (sdg) boson model
Energy Technology Data Exchange (ETDEWEB)
Kuyucak, S.; Morrison, I.
1988-03-03
Using the 1/N expansion technique we derive expressions for ..beta.. -> g, ..gamma.. -> g and ..gamma.. -> ..gamma.. M1 transitions in a general boson model. The M1 matrix elements in the sdg-boson model are similar in form to those in the neutron-proton IBM. Comparisons are made to some selected M1 data exhibiting collective character.
A collective model for transitional nuclei
International Nuclear Information System (INIS)
Bernus, L. von; Kappatsch, A.; Rezwani, V.; Scheid, W.; Schneider, U.; Sedlmayr, M.; Sedlmayr, R.
1975-01-01
The paper consists of the following sections: 1. Introduction; 2. The model (The quadrupole co-ordinates, the potential energy surface, the Hamilton operator, quadrupole moments, B(E2)-values and rms-radii); 3. The diagonalization of the collective Hamilton operator (The eigen-states of the five-dimensional oscillator, classification of the basis: R(5) is contained in R(3) and R(5) is contained in R(4) = SU(2) x SU(2), calculation of the matrix elements of H, convergence of the numerical procedure); 4. Application of the model (General remarks, typical spectra, selected spectra, conclusions); 5. The coupling of the giant-resonance states with the low-energy spectrum (The Hamilton operator, hydrodynamical model for the GR, the interaction Hamilton operator Hsub(DQ), the basis states for diagonalization, the dipole operator and the γ-absorption cross-section, results); 6. Summary. (author)
Models of agglomeration and glass transition
Kerner, Richard
2007-01-01
This book is for any physicist interested in new vistas in the domain of non-crystalline condensed matter, aperiodic and quasi-crystalline networks and especially glass physics and chemistry. Students with an elementary background in thermodynamics and statistical physics will find the book accessible. The physics of glasses is extensively covered, focusing on their thermal and mechanical properties, as well as various models leading to the formation of the glassy states of matter from overcooled liquids. The models of agglomeration and growth are also applied to describe the formation of quasicrystals, fullerenes and, in biology, to describe virus assembly pathways.
Improved transition models for cepstral trajectories
CSIR Research Space (South Africa)
Badenhorst, J
2012-11-01
Full Text Available We improve on a piece-wise linear model of the trajectories of Mel Frequency Cepstral Coefficients, which are commonly used as features in Automatic Speech Recognition. For this purpose, we have created a very clean single-speaker corpus, which...
Transitions amongst synchronous solutions in the stochastic Kuramoto model
DeVille, Lee
2012-05-01
We consider the Kuramoto model of coupled oscillators with nearest-neighbour coupling and additive white noise. We show that synchronous solutions which are stable without the addition of noise become metastable and that we have transitions amongst synchronous solutions on long timescales. We compute these timescales and, moreover, compute the most likely path in phase space that transitions will follow. We show that these transition timescales do not increase as the number of oscillators in the system increases, and are roughly constant in the system size. Finally, we show that the transitions correspond to a splitting of one synchronous solution into two communities which move independently for some time and which rejoin to form a different synchronous solution.
Structural transition models for a class or irreversible aggregates
International Nuclear Information System (INIS)
Canessa, E.
1995-02-01
A progress report on two recent theoretical approaches proposed to understand the physics of irreversible fractal aggregates showing up a structural transition from a rather dense to a more multibranched growth is presented. In the first approach the transition is understood by solving the Poisson equation on a squared lattice. The second approach is based on the discretization of the Biharmonic equation. Within these models the transition appears when the growth velocity at the fractal surface presents a minimum. The effects of the surrounding medium and geometrical constraints for the seed particles are considered. By using the optical diffraction method, the structural transition is further characterized by a decrease in the fractal dimension for this peculiar class of aggregates. (author). 17 refs, 4 figs
From bedside to classroom: the nurse educator transition model.
Schoening, Anne M
2013-01-01
The purpose of this qualitative study was to generate a theoretical model that describes the social process that occurs during the role transition from nurse to nurse educator. Recruitment and retention of qualified nurse educators is essential in order to remedy the current staff nurse and faculty shortage in the United States, yet nursing schools face many challenges in this area. This grounded theory study utilized purposive, theoretical sampling to identify 20 nurse educators teaching in baccalaureate nursing programs in the Midwest. The Nurse Educator Transition (NET) model was created from these data.This model identifies four phases in the role transition from nurse to nurse educator: a) the Anticipatory/Expectation Phase, b) the Disorientation Phase, c) the Information-Seeking Phase, and d) the Identity Formation Phase. Recommendations include integrating formal pedagogical education into nursing graduate programs and creating evidence-based orientation and mentoring programs for novice nurse faculty.
Generalized transport model for phase transition with memory
International Nuclear Information System (INIS)
Chen, Chi; Ciucci, Francesco
2013-01-01
A general model for phenomenological transport in phase transition is derived, which extends Jäckle and Frisch model of phase transition with memory and the Cahn–Hilliard model. In addition to including interfacial energy to account for the presence of interfaces, we introduce viscosity and relaxation contributions, which result from incorporating memory effect into the driving potential. Our simulation results show that even without interfacial energy term, the viscous term can lead to transient diffuse interfaces. From the phase transition induced hysteresis, we discover different energy dissipation mechanism for the interfacial energy and the viscosity effect. In addition, by combining viscosity and interfacial energy, we find that if the former dominates, then the concentration difference across the phase boundary is reduced; conversely, if the interfacial energy is greater then this difference is enlarged.
Advances in transitional flow modeling applications to helicopter rotors
Sheng, Chunhua
2017-01-01
This book provides a comprehensive description of numerical methods and validation processes for predicting transitional flows based on the Langtry–Menter local correlation-based transition model, integrated with both one-equation Spalart–Allmaras (S–A) and two-equation Shear Stress Transport (SST) turbulence models. A comparative study is presented to combine the respective merits of the two coupling methods in the context of predicting the boundary-layer transition phenomenon from fundamental benchmark flows to realistic helicopter rotors. The book will of interest to industrial practitioners working in aerodynamic design and the analysis of fixed-wing or rotary wing aircraft, while also offering advanced reading material for graduate students in the research areas of Computational Fluid Dynamics (CFD), turbulence modeling and related fields.
A mechanistic compartmental model for total antibody uptake in tumors.
Thurber, Greg M; Dane Wittrup, K
2012-12-07
Antibodies are under development to treat a variety of cancers, such as lymphomas, colon, and breast cancer. A major limitation to greater efficacy for this class of drugs is poor distribution in vivo. Localization of antibodies occurs slowly, often in insufficient therapeutic amounts, and distributes heterogeneously throughout the tumor. While the microdistribution around individual vessels is important for many therapies, the total amount of antibody localized in the tumor is paramount for many applications such as imaging, determining the therapeutic index with antibody drug conjugates, and dosing in radioimmunotherapy. With imaging and pretargeted therapeutic strategies, the time course of uptake is critical in determining when to take an image or deliver a secondary reagent. We present here a simple mechanistic model of antibody uptake and retention that captures the major rates that determine the time course of antibody concentration within a tumor including dose, affinity, plasma clearance, target expression, internalization, permeability, and vascularization. Since many of the parameters are known or can be estimated in vitro, this model can approximate the time course of antibody concentration in tumors to aid in experimental design, data interpretation, and strategies to improve localization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ordering phase transition in the one-dimensional Axelrod model
Vilone, D.; Vespignani, A.; Castellano, C.
2002-12-01
We study the one-dimensional behavior of a cellular automaton aimed at the description of the formation and evolution of cultural domains. The model exhibits a non-equilibrium transition between a phase with all the system sharing the same culture and a disordered phase of coexisting regions with different cultural features. Depending on the initial distribution of the disorder the transition occurs at different values of the model parameters. This phenomenology is qualitatively captured by a mean-field approach, which maps the dynamics into a multi-species reaction-diffusion problem.
Total life cycle cost model for electric power stations
International Nuclear Information System (INIS)
Cardullo, M.W.
1995-01-01
The Total Life Cycle Cost (TLCC) model for electric power stations was developed to provide a technology screening model. The TLCC analysis involves normalizing cost estimates with respect to performance standards and financial assumptions and preparing a profile of all costs over the service life of the power station. These costs when levelized present a value in terms of a utility electricity rate. Comparison of cost and the pricing of the electricity for a utility shows if a valid project exists. Cost components include both internal and external costs. Internal costs are direct costs associated with the purchase, and operation of the power station and include initial capital costs, operating and maintenance costs. External costs result from societal and/or environmental impacts that are external to the marketplace and can include air quality impacts due to emissions, infrastructure costs, and other impacts. The cost stream is summed (current dollars) or discounted (constant dollars) to some base year to yield a overall TLCC of each power station technology on a common basis. While minimizing life cycle cost is an important consideration, it may not always be a preferred method for some utilities who may prefer minimizing capital costs. Such consideration does not always result in technology penetration in a marketplace such as the utility sector. Under various regulatory climates, the utility is likely to heavily weigh initial capital costs while giving limited consideration to other costs such as societal costs. Policy makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. The TLCC analysis model for power stations was developed to facilitate consideration of all perspectives
Individualized Risk Model for Venous Thromboembolism After Total Joint Arthroplasty.
Parvizi, Javad; Huang, Ronald; Rezapoor, Maryam; Bagheri, Behrad; Maltenfort, Mitchell G
2016-09-01
Venous thromboembolism (VTE) after total joint arthroplasty (TJA) is a potentially fatal complication. Currently, a standard protocol for postoperative VTE prophylaxis is used that makes little distinction between patients at varying risks of VTE. We sought to develop a simple scoring system identifying patients at higher risk for VTE in whom more potent anticoagulation may need to be administered. Utilizing the National Inpatient Sample data, 1,721,806 patients undergoing TJA were identified, among whom 15,775 (0.9%) developed VTE after index arthroplasty. Among the cohort, all known potential risk factors for VTE were assessed. An initial logistic regression model using potential predictors for VTE was performed. Predictors with little contribution or poor predictive power were pruned from the data, and the model was refit. After pruning of variables that had little to no contribution to VTE risk, using the logistic regression, all independent predictors of VTE after TJA were identified in the data. Relative weights for each factor were determined. Hypercoagulability, metastatic cancer, stroke, sepsis, and chronic obstructive pulmonary disease had some of the highest points. Patients with any of these conditions had risk for postoperative VTE that exceeded the 3% rate. Based on the model, an iOS (iPhone operating system) application was developed (VTEstimator) that could be used to assign patients into low or high risk for VTE after TJA. We believe individualization of VTE prophylaxis after TJA can improve the efficacy of preventing VTE while minimizing untoward risks associated with the administration of anticoagulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Characterizing Phase Transitions in a Model of Neutral Evolutionary Dynamics
Scott, Adam; King, Dawn; Bahar, Sonya
2013-03-01
An evolutionary model was recently introduced for sympatric, phenotypic evolution over a variable fitness landscape with assortative mating (Dees & Bahar 2010). Organisms in the model are described by coordinates in a two-dimensional phenotype space, born at random coordinates with limited variation from their parents as determined by a mutation parameter, mutability. The model has been extended to include both neutral evolution and asexual reproduction in Scott et al (submitted). It has been demonstrated that a second order, non-equilibrium phase transition occurs for the temporal dynamics as the mutability is varied, for both the original model and for neutral conditions. This transition likely belongs to the directed percolation universality class. In contrast, the spatial dynamics of the model shows characteristics of an ordinary percolation phase transition. Here, we characterize the phase transitions exhibited by this model by determining critical exponents for the relaxation times, characteristic lengths, and cluster (species) mass distributions. Missouri Research Board; J.S. McDonnell Foundation
Transitions in a probabilistic interface growth model
International Nuclear Information System (INIS)
Alves, S G; Moreira, J G
2011-01-01
We study a generalization of the Wolf–Villain (WV) interface growth model based on a probabilistic growth rule. In the WV model, particles are randomly deposited onto a substrate and subsequently move to a position nearby where the binding is strongest. We introduce a growth probability which is proportional to a power of the number n i of bindings of the site i: p i ∝n i ν . Through extensive simulations, in (1 + 1) dimensions, we find three behaviors depending on the ν value: (i) if ν is small, a crossover from the Mullins–Herring to the Edwards–Wilkinson (EW) universality class; (ii) for intermediate values of ν, a crossover from the EW to the Kardar–Parisi–Zhang (KPZ) universality class; and, finally, (iii) for large ν values, the system is always in the KPZ class. In (2 + 1) dimensions, we obtain three different behaviors: (i) a crossover from the Villain–Lai–Das Sarma to the EW universality class for small ν values; (ii) the EW class is always present for intermediate ν values; and (iii) a deviation from the EW class is observed for large ν values
Dislocation dynamics modelling of the ductile-brittle-transition
International Nuclear Information System (INIS)
Hennecke, Thomas; Haehner, Peter
2009-01-01
Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.
Directory of Open Access Journals (Sweden)
Dmitry N. Bolotov
2013-01-01
Full Text Available The article deals with the main form of international payment - bank transfer and features when it is charging by banks correspondent fees for transit funds in their correspondent accounts. In order to optimize the cost of expenses for international money transfers there is a need to develop models and toolkit of automatic generation of the total amount of commissions in international interbank settlements. Accordingly, based on graph theory, approach to the construction of the model was developed.
Dynamical phase transitions in spin models and automata
International Nuclear Information System (INIS)
Derrida, B.
1989-01-01
Some of the models and methods developed in the study of the dynamics of spin models and automata are described. Special attention is given to the distance method which consists of comparing the time evolution of two configurations. The method is used to obtain the phase boundary between a frozen and a chaotic phase in the case of deterministic models. For stochastic systems the method is used to obtain dynamical phase transitions
Recent developments in the super transition array model for spectral simulation of LTE plasmas
International Nuclear Information System (INIS)
Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.
1992-01-01
Recently developed sub-picosecond pulse lasers have been used to create hot, near solid density plasmas. Since these plasmas are nearly in local thermodynamic equilibrium (LTE), their emission spectra involve a huge number of populated configurations. A typical spectrum is a combination of many unresolved clusters of emission, each containing an immense number of overlapping, unresolvable bound-bound and bound-free transitions. Under LTE, or near LTE conditions, traditional detailed configuration or detailed term spectroscopic models are not capable of handling the vast number of transitions involved. The average atom (AA) model, on the other hand, accounts for all relevant transitions, but in an oversimplified fashion that ignores all spectral structure. The Super Transition Array (STA) model, which has been developed in recent years, combines the simplicity and comprehensiveness of the AA model with the accuracy of detailed term accounting. The resolvable structure of spectral clusters is revealed by successively increasing the number of distinct STA's, until convergence is attained. The limit of this procedure is a detailed unresolved transition array (UTA) spectrum, with a term-broadened line for each accessible configuration-to-configuration transition, weighted by the relevant Boltzman population. In practice, this UTA spectrum is actually obtained using only a few thousand to tens of thousands of STA's (as opposed, typically, to billions of UTAs). The central result of STA theory is a set of formulas for the moments (total intensity, average transition energy, variance) of an STA. In calculating the moments, detailed relativistic first order quantum transition energies and probabilities are used. The energy appearing in the Boltzman factor associated with each level in a superconfiguration is the zero order result corrected by a superconfiguration averaged first order correction. Examples and application to recent measurements are presented
Modeling Enzymatic Transition States by Force Field Methods
DEFF Research Database (Denmark)
Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank
2009-01-01
The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... of the TS geometry on the flexibility of the system has been probed by fixing layers of atoms around the active site and using increasingly larger nonbonded cutoffs. The variability over the 20 structures is found to decrease as the system is made more flexible. Relative energies have been calculated...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...
Camera-Model Identification Using Markovian Transition Probability Matrix
Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei
Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.
Analytical expressions for transition edge sensor excess noise models
International Nuclear Information System (INIS)
Brandt, Daniel; Fraser, George W.
2010-01-01
Transition edge sensors (TESs) are high-sensitivity thermometers used in cryogenic microcalorimeters which exploit the steep gradient in resistivity with temperature during the superconducting phase transition. Practical TES devices tend to exhibit a white noise of uncertain origin, arising inside the device. We discuss two candidate models for this excess noise, phase slip shot noise (PSSN) and percolation noise. We extend the existing PSSN model to include a magnetic field dependence and derive a basic analytical model for percolation noise. We compare the predicted functional forms of the noise current vs. resistivity curves of both models with experimental data and provide a set of equations for both models to facilitate future experimental efforts to clearly identify the source of excess noise.
Analytical models for total dose ionization effects in MOS devices.
Energy Technology Data Exchange (ETDEWEB)
Campbell, Phillip Montgomery; Bogdan, Carolyn W.
2008-08-01
MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.
Statistical modeling of total crash frequency at highway intersections
Directory of Open Access Journals (Sweden)
Arash M. Roshandeh
2016-04-01
Full Text Available Intersection-related crashes are associated with high proportion of accidents involving drivers, occupants, pedestrians, and cyclists. In general, the purpose of intersection safety analysis is to determine the impact of safety-related variables on pedestrians, cyclists and vehicles, so as to facilitate the design of effective and efficient countermeasure strategies to improve safety at intersections. This study investigates the effects of traffic, environmental, intersection geometric and pavement-related characteristics on total crash frequencies at intersections. A random-parameter Poisson model was used with crash data from 357 signalized intersections in Chicago from 2004 to 2010. The results indicate that out of the identified factors, evening peak period traffic volume, pavement condition, and unlighted intersections have the greatest effects on crash frequencies. Overall, the results seek to suggest that, in order to improve effective highway-related safety countermeasures at intersections, significant attention must be focused on ensuring that pavements are adequately maintained and intersections should be well lighted. It needs to be mentioned that, projects could be implemented at and around the study intersections during the study period (7 years, which could affect the crash frequency over the time. This is an important variable which could be a part of the future studies to investigate the impacts of safety-related works at intersections and their marginal effects on crash frequency at signalized intersections.
An Ordered Regression Model to Predict Transit Passengers’ Behavioural Intentions
Energy Technology Data Exchange (ETDEWEB)
Oña, J. de; Oña, R. de; Eboli, L.; Forciniti, C.; Mazzulla, G.
2016-07-01
Passengers’ behavioural intentions after experiencing transit services can be viewed as signals that show if a customer continues to utilise a company’s service. Users’ behavioural intentions can depend on a series of aspects that are difficult to measure directly. More recently, transit passengers’ behavioural intentions have been just considered together with the concepts of service quality and customer satisfaction. Due to the characteristics of the ways for evaluating passengers’ behavioural intentions, service quality and customer satisfaction, we retain that this kind of issue could be analysed also by applying ordered regression models. This work aims to propose just an ordered probit model for analysing service quality factors that can influence passengers’ behavioural intentions towards the use of transit services. The case study is the LRT of Seville (Spain), where a survey was conducted in order to collect the opinions of the passengers about the existing transit service, and to have a measure of the aspects that can influence the intentions of the users to continue using the transit service in the future. (Author)
Employment, Production and Consumption model: Patterns of phase transitions
Czech Academy of Sciences Publication Activity Database
Lavička, H.; Lin, L.; Novotný, Jan
2010-01-01
Roč. 389, č. 8 (2010), s. 1708-1720 ISSN 0378-4371 Institutional research plan: CEZ:AV0Z10480505 Keywords : EPC * Agent based model * Phase transition Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.521, year: 2010
Linearity and Misspecification Tests for Vector Smooth Transition Regression Models
DEFF Research Database (Denmark)
Teräsvirta, Timo; Yang, Yukai
The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...
Ab initio modelling of transition metals in diamond
International Nuclear Information System (INIS)
Watkins, M; Mainwood, A
2003-01-01
Transition metals (TM) from the first transition series are commonly used as solvent catalysts in the synthesis of diamond by high pressure, high temperature processes. Ab initio calculations on these metals, in finite clusters of tetrahedrally coordinated carbon, enable us to investigate trends in their stability and properties. By carrying out systematic studies of interstitial, substitutional and semi-vacancy TM defects, we show that the electronic structure of the TMs is complicated by the presence of 'dangling bonds' when the TM disrupts the crystal lattice: interstitial defects conform to the Ludwig-Woodbury (LW) model, whilst substitutional and semi-vacancy defects move from approximating the LW model early in the transition series to approaching the vacancy model for the heavier metals. Multi-configurational self-consistent field methods allow genuine many-electron states to be modelled; for neutral interstitial, and all substitutional TMs, the crystal fields are found to exceed the exchange energies in strength. Consequently, low spin states are found for these defects. We find substitutional defects to be the most stable, but that semi-vacancy TMs are very similar in energy to the substitutional defects late in the transition series; interstitial defects are only metastable in diamond. Given appropriate charge compensators neutral and positively charged interstitial TM defects were stable, while negatively charged species appeared to be strongly disfavoured
The electroweak phase transition in models with gauge singlets
International Nuclear Information System (INIS)
Ahriche, A.
2007-01-01
A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition Ω(T c )/T c >or similar 1, where Ω = (v 2 + (x - x 0 ) 2 ) ( 1)/(2) and x(x 0 ) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v c /T c >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)
On the logical specification of probabilistic transition models
CSIR Research Space (South Africa)
Rens, G
2013-05-01
Full Text Available We investigate the requirements for specifying the behaviors of actions in a stochastic domain. That is, we propose how to write sentences in a logical language to capture a model of probabilistic transitions due to the execution of actions of some...
Modeling of Unidirectional-Overloaded Transition in Catalytic Tubular Microjets
Klingner, Anke; Khalil, Islam S. M.; Magdanz, Veronika; Fomin, Vladimir M.; Schmidt, Oliver G.; Misra, Sarthak
2017-01-01
A numerical time-resolved model is presented for predicting the transition between unidirectional and overloaded motion of catalytic tubular microjets (Ti/Fe/Pt rolled-up microtubes) in an aqueous solution of hydrogen peroxide. Unidirectional movement is achieved by periodic ejection of gas bubbles
The electroweak phase transition in models with gauge singlets
Energy Technology Data Exchange (ETDEWEB)
Ahriche, A.
2007-04-18
A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)
M1-transitions in the MIT bag model
International Nuclear Information System (INIS)
Hackman, R.H.; Deshpande, N.G.; Dicus, D.A.; Teplitz, V.L.
1977-03-01
In the MIT bag model, the M1-transitions of low lying hadrons are investigated. The following calculations are performed: 32 hadron masses are recomputed with a choice of bag parameters designed to give the correct values for the proton magnetic moment, μ/sub p/, and several masses, M/sub rho/ M/sub ω/ M/sub Δ/ M/sub Ω/, and M/sub D/; (2) eta, eta', eta/sub c/ mixing is computed in an untrustworthy approximation; and the widths for 38 M1-transitions are computed
Arafat, Md Nayeem
Distributed generation systems (DGs) have been penetrating into our energy networks with the advancement in the renewable energy sources and energy storage elements. These systems can operate in synchronism with the utility grid referred to as the grid connected (GC) mode of operation, or work independently, referred to as the standalone (SA) mode of operation. There is a need to ensure continuous power flow during transition between GC and SA modes, referred to as the transition mode, in operating DGs. In this dissertation, efficient and effective transition control algorithms are developed for DGs operating either independently or collectively with other units. Three techniques are proposed in this dissertation to manage the proper transition operations. In the first technique, a new control algorithm is proposed for an independent DG which can operate in SA and GC modes. The proposed transition control algorithm ensures low total harmonic distortion (THD) and less voltage fluctuation during mode transitions compared to the other techniques. In the second technique, a transition control is suggested for a collective of DGs operating in a microgrid system architecture to improve the reliability of the system, reduce the cost, and provide better performance. In this technique, one of the DGs in a microgrid system, referred to as a dispatch unit , takes the additional responsibility of mode transitioning to ensure smooth transition and supply/demand balance in the microgrid. In the third technique, an alternative transition technique is proposed through hybridizing the current and droop controllers. The proposed hybrid transition control technique has higher reliability compared to the dispatch unit concept. During the GC mode, the proposed hybrid controller uses current control. During the SA mode, the hybrid controller uses droop control. During the transition mode, both of the controllers participate in formulating the inverter output voltage but with different
Yuan, Zhiguo; Liu, Shuyun; Hao, Chunxiang; Guo, Weimin; Gao, Shuang; Wang, Mingjie; Chen, Mingxue; Sun, Zhen; Xu, Yichi; Wang, Yu; Peng, Jiang; Yuan, Mei; Guo, Quan-Yi
2016-12-01
Tissue-engineered meniscus regeneration is a very promising treatment strategy for meniscus lesions. However, generating the scaffold presents a huge challenge for meniscus engineering as this has to meet particular biomechanical and biocompatibility requirements. In this study, we utilized acellular meniscus extracellular matrix (AMECM) and demineralized cancellous bone (DCB) to construct three different types of three-dimensional porous meniscus scaffold: AMECM, DCB, and AMECM/DCB, respectively. We tested the scaffolds' physicochemical characteristics and observed their interactions with meniscus fibrochondrocytes to evaluate their cytocompatibility. We implanted the three different types of scaffold into the medial knee menisci of New Zealand rabbits that had undergone total meniscectomy; negative control rabbits received no implants. The reconstructed menisci and corresponding femoral condyle and tibial plateau cartilage were all evaluated at 3 and 6 months (n = 8). The in vitro study demonstrated that the AMECM/DCB scaffold had the most suitable biomechanical properties, as this produced the greatest compressive and tensile strength scores. The AMECM/DCB and AMECM scaffolds facilitated fibrochondrocyte proliferation and the secretion of collagen and glycosaminoglycans (GAGs) more effectively than did the DCB scaffold. The in vivo experiments demonstrated that both the AMECM/DCB and DCB groups had generated neomeniscus at both 3 and 6 months post-implantation, but there was no obvious meniscus regeneration in the AMECM or control groups, so the neomeniscus analysis could not perform on AMECM and control group. At both 3 and 6 months, histological scores were better for regenerated menisci in the AMECM/DCB than in the DCB group, and significantly better for articular cartilage in the AMECM/DCB group compared with the other three groups. Knee MRI scores (Whole-Organ Magnetic Resonance Imaging Scores (WORMS)) were better in the AMECM/DCB group than in the
M1 transitions in the (sdg) boson model
Kuyucak, S.; Morrison, I.
1988-03-01
Using the {1}/{N} expansion technique we derive expressions for β→g, γ→g and γ→γ M1 transitions in a general boson model. The M1 matrix elements in the sdg-boson model are similar in form to those in the neutron-proton IBM. Comparisons are made to some selected M1 data exhibiting collective character.
Phase Transition Behavior in a Neutral Evolution Model
King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya
2014-03-01
The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.
batman: BAsic Transit Model cAlculatioN in Python
Kreidberg, Laura
2015-11-01
I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman .
Absorbing phase transitions in deterministic fixed-energy sandpile models
Park, Su-Chan
2018-03-01
We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010), 10.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.
Numerical modeling of the deflagration-to-detonation transition
International Nuclear Information System (INIS)
Forest, C.A.
1978-01-01
The effect of a confined porous bed of burning explosive in contact with a solid explosive is studied by computer simulation. The burning is modeled using a bulk burn model that is a function of the surface area and the pressure. Once pressure excursions occur from the confined burning the transition to detonation is modeled using a pressure-dependent heterogeneous explosive shock decomposition model called Forest Fire. The occurrence of detonation in the solid explosive is shown to be dependent upon the surface-to-volume ratio, the confinement of the porous bed, and the geometry of the system
DEFF Research Database (Denmark)
Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan
This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...
Dicke-model simulation via cavity-assisted Raman transitions
Zhang, Zhiqiang; Lee, Chern Hui; Kumar, Ravi; Arnold, K. J.; Masson, Stuart J.; Grimsmo, A. L.; Parkins, A. S.; Barrett, M. D.
2018-04-01
The Dicke model is of fundamental importance in quantum mechanics for understanding the collective behavior of atoms coupled to a single electromagnetic mode. Here, we demonstrate a Dicke-model simulation via cavity-assisted Raman transitions in a configuration using counterpropagating laser beams. The observations indicate that motional effects should be included to fully account for the results. These results are contrary to experiments using single-beam and copropagating configurations. We give a theoretical description that accounts for the beam geometries used in the experiments and indicates the potential role of motional effects. In particular, a model is given that highlights the influence of Doppler broadening on the observed phase-transition thresholds.
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...
Majorana neutrino transition magnetic moment in a variant of Zee model with horizontal symmetry
International Nuclear Information System (INIS)
Dhar, Jyoti; Dev, S.
1992-01-01
A SU(2) H symmetric variant of Zee model of lepton flavour violation is presented and is shown to lead to neutrino transition magnetic moment of the order required to explain the solar neutrino deficit and the possible anticorrelation of solar neutrino flux with sunspot activity via VVO mechanism. The use of horizontal symmetry leads to totally degenerate neutrino states which may be combined to form a ZKM Dirac neutrino with naturally small mass. (author). 22 refs., 1 fig
Models for Photon-photon Total Cross-sections
Godbole, RM; Grau, A; Pancheri, G
1999-01-01
We present here a brief overview of recent models describing the photon-photon cross-section into hadrons. We shall show in detail results from the eikonal minijet model, with and without soft gluon summation.
Quantum–classical transition in the Caldeira–Leggett model
Energy Technology Data Exchange (ETDEWEB)
Kovács, J. [Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen (Hungary); Institute of Nuclear Research, P.O. Box 51, H-4001 Debrecen (Hungary); Fazekas, B. [Institute of Mathematics, University of Debrecen, P.O. Box 12, H-4010 Debrecen (Hungary); Nagy, S., E-mail: nagys@phys.unideb.hu [Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen (Hungary); Sailer, K. [Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen (Hungary)
2017-01-15
The quantum–classical transition in the Caldeira–Leggett model is investigated in the framework of the functional renormalization group method. It is shown that a divergent quadratic term arises in the action due to the heat bath in the model. By removing the divergence with a frequency cutoff we considered the critical behavior of the model. The critical exponents belonging to the susceptibility and the correlation length are determined and their independence of the frequency cutoff and the renormalization scheme is shown.
Model for the resistive critical current transition in composite superconductors
International Nuclear Information System (INIS)
Warnes, W.H.
1988-01-01
Much of the research investigating technological type-II superconducting composites relies on the measurement of the resistive critical current transition. We have developed a model for the resistive transition which improves on older models by allowing for the very different nature of monofilamentary and multifilamentary composite structures. The monofilamentary model allows for axial current flow around critical current weak links in the superconducting filament. The multifilamentary model incorporates an additional radial current transfer between neighboring filaments. The development of both models is presented. It is shown that the models are useful for extracting more information from the experimental data than was formerly possible. Specific information obtainable from the experimental voltage-current characteristic includes the distribution of critical currents in the composite, the average critical current of the distribution, the range of critical currents in the composite, the field and temperature dependence of the distribution, and the fraction of the composite dissipating energy in flux flow at any current. This additional information about the distribution of critical currents may be helpful in leading toward a better understanding of flux pinning in technological superconductors. Comparison of the models with several experiments is given and shown to be in reasonable agreement. Implications of the models for the measurement of critical currents in technological composites is presented and discussed with reference to basic flux pinning studies in such composites
Miao, Ming-San; Peng, Meng-Fan; Ma, Rui-Juan; Bai, Ming; Liu, Bao-Song
2018-03-01
Objective: To study the effects of the different components of the total flavonoids and total saponins from Mao Dongqing's active site on the rats of TIA model, determine the optimal reactive components ratio of Mao Dongqing on the rats of TIA. Methods: TIA rat model was induced by tail vein injection of tert butyl alcohol, the blank group was injected with the same amount of physiological saline, then behavioral score wasevaluated. Determination the level of glutamic acid in serum, the activity of Na+-K+-ATP enzyme, CA ++ -ATP enzyme and Mg ++ -ATP enzyme in Brain tissue, observe the changes of hippocampus in brain tissue, the comprehensive weight method was used to evaluate the efficacy of each component finally. Results: The contents of total flavonoids and total saponins in the active part of Mao Dongqing can significantly improve the pathological changes of brain tissue in rats, improve the activity of Na + -K + -ATP enzyme, Ca ++ -ATP enzyme and Mg ++ -ATP enzyme in the brain of rats, and reduce the level of glutamic acid in serum. The most significant of the contents was the ratio of 10:6. The different proportions of total flavonoids and total saponins in the active part of Mao Dongqing all has a better effect on the rats with TIA, and the ratio of 10:6 is the best active component for preventing and controlling TIA.
Digital herders and phase transition in a voting model
Hisakado, M.; Mori, S.
2011-07-01
In this paper, we discuss a voting model with two candidates, C1 and C2. We set two types of voters—herders and independents. The voting of independent voters is based on their fundamental values; on the other hand, the voting of herders is based on the number of votes. Herders always select the majority of the previous r votes, which are visible to them. We call them digital herders. We can accurately calculate the distribution of votes for special cases. When r >= 3, we find that a phase transition occurs at the upper limit of t, where t is the discrete time (or number of votes). As the fraction of herders increases, the model features a phase transition beyond which a state where most voters make the correct choice coexists with one where most of them are wrong. On the other hand, when r independent voters. Finally, we recognize the behavior of human beings by conducting simple experiments.
Modelling conditional correlations of asset returns: A smooth transition approach
DEFF Research Database (Denmark)
Silvennoinen, Annastiina; Teräsvirta, Timo
In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM-test is d......In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM......-test is derived to test the constancy of correlations and LM- and Wald tests to test the hypothesis of partially constant correlations. Analytical expressions for the test statistics and the required derivatives are provided to make computations feasible. An empirical example based on daily return series of ve...
Phase Transitions in a Social Impact Model for Opinion Formation
Bordogna, Clelia M.; Albano, Ezequiel V.
A model for opinion formation in a social group, based on the Theory of Social Impact developed by Latané, is studied by means of numerical simulations. Interactions among the members of the group, as well as with a strong leader competing with the mass media, are considered. The model exhibits first-order transitions between two different states of opinion, which are supported by the leader and the mass media, respectively. The social inertia of the group becomes evident when the opinion of the leader changes periodically. In this case two dynamic states are identified: for long periods of time, the group follows the changes of the leader but, decreasing the period, the opinion of the group remains unchanged. This scenery is suitable for the ocurrence of dynamic phase transitions.
Phase transitions in the sdg interacting boson model
International Nuclear Information System (INIS)
Van Isacker, P.; Bouldjedri, A.; Zerguine, S.
2010-01-01
A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole (β 2 ), axial hexadecapole (β 4 ) and triaxial (γ 2 ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU ± (3) and the γ 2 -soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.
Phase transitions in the sdg interacting boson model
Energy Technology Data Exchange (ETDEWEB)
Van Isacker, P. [Grand Accelerateur National d' Ions Lourds, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)], E-mail: isacker@ganil.fr; Bouldjedri, A.; Zerguine, S. [Department of Physics, PRIMALAB Laboratory, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)
2010-05-15
A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ({beta}{sub 2}), axial hexadecapole ({beta}{sub 4}) and triaxial ({gamma}{sub 2}). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU{sub {+-}}(3) and the {gamma}{sub 2}-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.
A relativized quark model for radiative baryon transitions
International Nuclear Information System (INIS)
Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.
1989-03-01
In this paper we investigate the electromagnetic form factors of baryons and their resonances using the framework of a relativized constituent quark model. Beyond the usual single-quark transition ansatz, we incorporate relativistic corrections which are well-determined by the intrinsic strong interaction and confinement forces between the quarks. Furthermore we separate off for the compound three-quark system the relativistic center-of-mass motion by an approximately Lorentz-invariant approach. In this way for the first time recoil effects could be explicitly studied. Using the harmonic oscillator wavefunctions with the configuration mixing as derived in the Isgur-Karl model, after restoring gauge invariance our relativized interaction hamiltonian can be used to calculate the transversely and longitudinally polarized photon transition form factors of the baryons. (orig.)
Phase transitions in the sdg interacting boson model
Van Isacker, P.; Bouldjedri, A.; Zerguine, S.
2010-05-01
A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ( β), axial hexadecapole ( β) and triaxial ( γ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)⊗U(9), the (prolate and oblate) deformed SU(3) and the γ-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.
Comparison of approximations to the transition rate in the DDHMS preequilibrium model
International Nuclear Information System (INIS)
Brito, L.; Carlson, B.V.
2014-01-01
The double differential hybrid Monte Carlo simulation model (DDHMS) originally used exciton model densities and transition densities with approximate angular distributions obtained using linear momentum conservation. Because the model uses only the simplest transition rates, calculations using more complex approximations to these are still viable. We compare calculations using the original approximation to one using a nonrelativistic Fermi gas transition densities with the approximate angular distributions and with exact nonrelativistic and relativistic transition transition densities. (author)
Phase transitions in the $sdg$ interacting boson model
Van Isacker, P.; Bouldjedri, A.; Zerguine, S.
2009-01-01
19 pages, 5 figures, submitted to Nuclear Physics A; A geometric analysis of the $sdg$ interacting boson model is performed. A coherent-state is used in terms of three types of deformation: axial quadrupole ($\\beta_2$), axial hexadecapole ($\\beta_4$) and triaxial ($\\gamma_2$). The phase-transitional structure is established for a schematic $sdg$ hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical ${\\rm U}(5)\\otimes{\\rm U}(9)$, the (prolate and ob...
Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces
DEFF Research Database (Denmark)
Tritsaris, G. A.; Rossmeisl, J.
2012-01-01
Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....
Phase transitions in community detection: A solvable toy model
Ver Steeg, Greg; Moore, Cristopher; Galstyan, Aram; Allahverdyan, Armen
2014-05-01
Recently, it was shown that there is a phase transition in the community detection problem. This transition was first computed using the cavity method, and has been proved rigorously in the case of q = 2 groups. However, analytic calculations using the cavity method are challenging since they require us to understand probability distributions of messages. We study analogous transitions in the so-called “zero-temperature inference” model, where this distribution is supported only on the most likely messages. Furthermore, whenever several messages are equally likely, we break the tie by choosing among them with equal probability, corresponding to an infinitesimal random external field. While the resulting analysis overestimates the thresholds, it reproduces some of the qualitative features of the system. It predicts a first-order detectability transition whenever q > 2 (as opposed to q > 4 according to the finite-temperature cavity method). It also has a regime analogous to the “hard but detectable” phase, where the community structure can be recovered, but only when the initial messages are sufficiently accurate. Finally, we study a semisupervised setting where we are given the correct labels for a fraction ρ of the nodes. For q > 2, we find a regime where the accuracy jumps discontinuously at a critical value of ρ.
Two dimensional kicked quantum Ising model: dynamical phase transitions
International Nuclear Information System (INIS)
Pineda, C; Prosen, T; Villaseñor, E
2014-01-01
Using an efficient one and two qubit gate simulator operating on graphical processing units, we investigate ergodic properties of a quantum Ising spin 1/2 model on a two-dimensional lattice, which is periodically driven by a δ-pulsed transverse magnetic field. We consider three different dynamical properties: (i) level density, (ii) level spacing distribution of the Floquet quasienergy spectrum, and (iii) time-averaged autocorrelation function of magnetization components. Varying the parameters of the model, we found transitions between ordered (non-ergodic) and quantum chaotic (ergodic) phases, but the transitions between flat and non-flat spectral density do not correspond to transitions between ergodic and non-ergodic local observables. Even more surprisingly, we found good agreement of level spacing distribution with the Wigner surmise of random matrix theory for almost all values of parameters except where the model is essentially non-interacting, even in regions where local observables are not ergodic or where spectral density is non-flat. These findings question the versatility of the interpretation of level spacing distribution in many-body systems and stress the importance of the concept of locality. (paper)
Employment, Production and Consumption model: Patterns of phase transitions
Lavička, H.; Lin, L.; Novotný, J.
2010-04-01
We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.
Enhancement of neutral tc transitions in the model of dynamical breaking of electroweak symmetry
International Nuclear Information System (INIS)
Arbuzov, B.A.; Osipov, M.Yu.
1999-01-01
The problem of possible deviations from the standard model is considered in the framework of a variant of dynamical electroweak symmetry breaking. It comes clear, that the parameters of the theory, being obtained earlier and describing deviations from standard model in Z → b-barb decay, are also consistent with the existence of a nontrivial solution for vertex t-bar (Z, γ)c. The occurrence of this solution leads to a significant enhancement in neutral flavor changing transition t → c. The intensity of this transition is connected with the c-quark mass, that leads to estimates of probabilities of exotic decays t → c(Z, γ) and of the cross section of a single t-quark production in process e + e - → tc-bar, which threshold is already overcome at LEP2. The model is shown to be consistent with the totality of the existing data, the predictions allow its unambiguous check [ru
Despeckling Polsar Images Based on Relative Total Variation Model
Jiang, C.; He, X. F.; Yang, L. J.; Jiang, J.; Wang, D. Y.; Yuan, Y.
2018-04-01
Relatively total variation (RTV) algorithm, which can effectively decompose structure information and texture in image, is employed in extracting main structures of the image. However, applying the RTV directly to polarimetric SAR (PolSAR) image filtering will not preserve polarimetric information. A new RTV approach based on the complex Wishart distribution is proposed considering the polarimetric properties of PolSAR. The proposed polarization RTV (PolRTV) algorithm can be used for PolSAR image filtering. The L-band Airborne SAR (AIRSAR) San Francisco data is used to demonstrate the effectiveness of the proposed algorithm in speckle suppression, structural information preservation, and polarimetric property preservation.
Center for modeling of turbulence and transition: Research briefs, 1995
1995-10-01
This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from July 1993 to July 1995. It also constitutes a progress report to the Institute of Computational Mechanics in Propulsion located at the Ohio Aerospace Institute and the Lewis Research Center. CMOTT has been in existence for about four years. In the first three years, its main activities were to develop and validate turbulence and combustion models for propulsion systems, in an effort to remove the deficiencies of existing models. Three workshops on computational turbulence modeling were held at LeRC (1991, 1993, 1994). At present, CMOTT is integrating the CMOTT developed/improved models into CFD tools which can be used by the propulsion systems community. This activity has resulted in an increased collaboration with the Lewis CFD researchers.
Digital herders and phase transition in a voting model
Energy Technology Data Exchange (ETDEWEB)
Hisakado, M [Standard and Poor' s, Marunouchi 1-6-5, Chiyoda ku, Tokyo 100-0005 (Japan); Mori, S, E-mail: masato_hisakado@standardandpoors.com, E-mail: mori@sci.kitasato-u.ac.jp [Department of Physics, School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555 (Japan)
2011-07-08
In this paper, we discuss a voting model with two candidates, C{sub 1} and C{sub 2}. We set two types of voters-herders and independents. The voting of independent voters is based on their fundamental values; on the other hand, the voting of herders is based on the number of votes. Herders always select the majority of the previous r votes, which are visible to them. We call them digital herders. We can accurately calculate the distribution of votes for special cases. When r {>=} 3, we find that a phase transition occurs at the upper limit of t, where t is the discrete time (or number of votes). As the fraction of herders increases, the model features a phase transition beyond which a state where most voters make the correct choice coexists with one where most of them are wrong. On the other hand, when r < 3, there is no phase transition. In this case, the herders' performance is the same as that of the independent voters. Finally, we recognize the behavior of human beings by conducting simple experiments.
Digital herders and phase transition in a voting model
International Nuclear Information System (INIS)
Hisakado, M; Mori, S
2011-01-01
In this paper, we discuss a voting model with two candidates, C 1 and C 2 . We set two types of voters-herders and independents. The voting of independent voters is based on their fundamental values; on the other hand, the voting of herders is based on the number of votes. Herders always select the majority of the previous r votes, which are visible to them. We call them digital herders. We can accurately calculate the distribution of votes for special cases. When r ≥ 3, we find that a phase transition occurs at the upper limit of t, where t is the discrete time (or number of votes). As the fraction of herders increases, the model features a phase transition beyond which a state where most voters make the correct choice coexists with one where most of them are wrong. On the other hand, when r < 3, there is no phase transition. In this case, the herders' performance is the same as that of the independent voters. Finally, we recognize the behavior of human beings by conducting simple experiments.
TRANSIT MODEL OF PLANETS WITH MOON AND RING SYSTEMS
International Nuclear Information System (INIS)
Tusnski, Luis Ricardo M.; Valio, Adriana
2011-01-01
Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability. However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them, then these moons may be habitable. In this work, we present a model for planetary transit simulation considering the presence of moons and planetary rings around a planet. The moon's orbit is considered to be circular and coplanar with the planetary orbit. The other physical and orbital parameters of the star, planet, moon, and rings can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our model also allows for the inclusion of starspots. The result of the simulation is a light curve with a planetary transit. White noise may also be added to the light curves to produce curves similar to those obtained by the CoRoT and Kepler space telescopes. The goal is to determine the criteria for detectability of moons and/or ring systems using photometry. The results show that it is possible to detect moons with radii as little as 1.3 R ⊕ with CoRoT and 0.3 R ⊕ with Kepler.
Biochemical and hematological indicators in model of total body irradiation
International Nuclear Information System (INIS)
Dubner, D; Gisone, P.; Perez, M.R.; Barboza, M.; Luchetta, P.; Longoni, H.; Sorrentino, M.; Robison, A.
1998-01-01
With the purpose of evaluating the applicability of several biological indicators in accidental overexposures a study was carried out in 20 patients undergoing therapeutical total body irradiation (TBI). The following parameters were evaluated: a) Oxidative stress indicators: erythrocyte superoxide dismutase (SOD) and catalase activity (CAT), lipo peroxyde levels (TBARS) and total plasma antioxidant activity (TAA). b) Haematological indicators: reticulocyte maturity index (RMI) and charges in lymphocyte subpopulations. Non significant changes in SOD and CAT activity were observed. Significant higher TBARS levels were found in patients with unfavorable post-BTM course without any significant correlation with TAA. RMI decreased early and dropped to zero in most of the patients and rose several days prior to reticulocyte, neutrophils and platelets counts. A significant decrease in absolute counts of all lymphocyte subpopulations was observed during TBI, particularly for B lymphocytes. A subpopulation of natural killer (NK) cells (CD16+/ CD 56 +) showed a relative higher radioresistance. Cytotoxic activity was significantly decreased after TBI. These data suggest that TBARS could provide an useful evolutive indicator in accidental over exposure d patients and RMI is an early indicator of bone marrow recovery after radioinduced aplasia. The implications of the different radiosensitivities within the NK subsets remains unanswered. (author) [es
Modeling Intracellular Oscillations and Polarity Transition in Fission Yeast
Drake, Tyler; Das, Maitreyi; Verde, Fulvia; Vavylonis, Dimitrios
2011-03-01
Fission yeast, a pill-shaped model organism, restricts growth to its tips. These cells maintain an asymmetric growth state, growing at only one tip, until they meet length and cell-cycle requirements. With these met, they grow at both. The mechanism of this transition, new-end take-off (NETO), remains unclear. We find that NETO occurs due to long-range competition for fast-diffusing signaling protein Cdc42 between the old and new tips. From experimental results, we suppose that symmetric tips compete for Cdc42, which triggers growth. We describe a symmetric growth model based on competition between tips. This model restricts short cells to monopolar states while allowing longer cells to be bipolar. Autocatalytic Cdc42 recruiting at both cells tips leads to broken symmetry, and the recruiting cuts off as tip Cdc42 levels saturate. Non-linear differential equations describe the model, with stable attractors indicating valid distributions. Linear stability analysis and numerical methods identify stable fixed points over a twofold increase in cell length. The model reproduces qualitative behavior of the organism. We show that observed pole-to-pole Cdc42 oscillations may facilitate the polarity transition and discuss their relationship to the Min system in E. Coli.
Modeling texture transitions in cholesteric liquid crystal droplets
Selinger, Robin; Gimenez-Pinto, Vianney; Lu, Shin-Ying; Selinger, Jonathan; Konya, Andrew
2012-02-01
Cholesteric liquid crystals can be switched reversibly between planar and focal-conic textures, a property enabling their application in bistable displays, liquid crystal writing tablets, e-books, and color switching ``e-skins.'' To explore voltage-pulse induced switching in cholesteric droplets, we perform simulation studies of director dynamics in three dimensions. Electrostatics calculations are solved at each time step using an iterative relaxation method. We demonstrate that as expected, a low amplitude pulse drives the transition from planar to focal conic, while a high amplitude pulse drives the transition from focal conic back to the planar state. We use the model to explore the effects of droplet shape, aspect ratio, and anchoring conditions, with the goal of minimizing both response time and energy consumption.
Topological phase transitions in the gauged BPS baby Skyrme model
International Nuclear Information System (INIS)
Adam, C.; Naya, C.; Romanczukiewicz, T.; Sanchez-Guillen, J.; Wereszczynski, A.
2015-01-01
We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.
Human Inferences about Sequences: A Minimal Transition Probability Model.
Directory of Open Access Journals (Sweden)
Florent Meyniel
2016-12-01
Full Text Available The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge.
The electroweak phase transition in minimal supergravity models
Nanopoulos, Dimitri V
1994-01-01
We have explored the electroweak phase transition in minimal supergravity models by extending previous analysis of the one-loop Higgs potential to include finite temperature effects. Minimal supergravity is characterized by two higgs doublets at the electroweak scale, gauge coupling unification, and universal soft-SUSY breaking at the unification scale. We have searched for the allowed parameter space that avoids washout of baryon number via unsuppressed anomalous Electroweak sphaleron processes after the phase transition. This requirement imposes strong constraints on the Higgs sector. With respect to weak scale baryogenesis, we find that the generic MSSM is {\\it not} phenomenologically acceptable, and show that the additional experimental and consistency constraints of minimal supergravity restricts the mass of the lightest CP-even Higgs even further to $m_h\\lsim 32\\GeV$ (at one loop), also in conflict with experiment. Thus, if supergravity is to allow for baryogenesis via any other mechanism above the weak...
Topological phase transitions in the gauged BPS baby Skyrme model
Energy Technology Data Exchange (ETDEWEB)
Adam, C.; Naya, C. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Romanczukiewicz, T. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland); Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland)
2015-05-29
We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.
Energy Technology Data Exchange (ETDEWEB)
Soerensen, Niels N.
2009-07-15
The report describes the application of the correlation based transition model of Menter et. al. [1, 2] to the cylinder drag crisis and the stalled flow over an DU-96-W-351 airfoil using the DES methodology. When predicting the flow over airfoils and rotors, the laminar-turbulent transition process can be important for the aerodynamic performance. Today, the most widespread approach is to use fully turbulent computations, where the transitional process is ignored and the entire boundary layer on the wings or airfoils is handled by the turbulence model. The correlation based transition model has lately shown promising results, and the present paper describes the application of the model to predict the drag and shedding frequency for flow around a cylinder from sub to super-critical Reynolds numbers. Additionally, the model is applied to the flow around the DU-96 airfoil, at high angles of attack. (au)
Super-transition-arrays: A model for the spectral analysis of hot, dense plasma
International Nuclear Information System (INIS)
Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.; Shvarts, D.; Zigler, A.
1989-01-01
A method is presented for calculating the bound-bound emission from a local thermodynamic equilibrium plasma. The total transition array of a specific single-electron transition, including all possible contributing configurations, is described by only a small number of super-transition-arrays (STA's). Exact analytic expressions are given for the first few moments of an STA. The method is shown to interpolate smoothly between the average-atom (AA) results and the detailed configuration accounting that underlies the unresolved transition array (UTA) method. Each STA is calculated in its own, optimized potential, and the model achieves rapid convergence in the number of STA's included. Comparisons of predicted STA spectra with the results of the AA and UTA methods are presented. It is shown that under certain plasma conditions the contributions of low-probability transitions can accumulate into an important component of the emission. In these cases, detailed configuration accounting is impractical. On the other hand, the detailed structure of the spectrum under such conditions is not described by the AA method. The application of the STA method to laser-produced plasma experiments is discussed
Mathematical properties and parameter estimation for transit compartment pharmacodynamic models.
Yates, James W T
2008-07-03
One feature of recent research in pharmacodynamic modelling has been the move towards more mechanistically based model structures. However, in all of these models there are common sub-systems, such as feedback loops and time-delays, whose properties and contribution to the model behaviour merit some mathematical analysis. In this paper a common pharmacodynamic model sub-structure is considered: the linear transit compartment. These models have a number of interesting properties as the length of the cascade chain is increased. In the limiting case a pure time-delay is achieved [Milsum, J.H., 1966. Biological Control Systems Analysis. McGraw-Hill Book Company, New York] and the initial behaviour becoming increasingly sensitive to parameter value perturbation. It is also shown that the modelled drug effect is attenuated, though the duration of action is longer. Through this analysis the range of behaviours that such models are capable of reproducing are characterised. The properties of these models and the experimental requirements are discussed in order to highlight how mathematical analysis prior to experimentation can enhance the utility of mathematical modelling.
Sheng, Qin Song; Lin, Jian Jiang; Chen, Wen Bin; Liu, Fan Long; Xu, Xiang Ming; Hua, Han Ju; Lin, Cai Zhao; Wang, Jin Hai
2014-08-01
To compare the efficacy and safety of hand-assisted laparoscopic colectomy (HALC) and open colectomy (OC) for patients with slow transit constipation (STC). Data of patients with STC who underwent total colectomy from January 2008 to December 2012 were retrospectively reviewed after clinical evaluation and an exclusion of secondary causes. These patients were further divided into the HALC and OC groups. Patients' outcomes, including intraoperative and postoperative data on their recovery and complications were compared between the two groups. A total of 68 patients with STC were finally enrolled in the study, including 32 in the HALC group and 36 in the OC group. The baseline characteristics did not significantly differ between the two groups. Compared with the OC group, patients in the HALC group had a shorter length of incision, a longer operative time and less blood loss volume. There was no conversion to OC for patients undergoing HALC and no intraoperative complications in both groups. Furthermore, after operation, patients in HALC group experienced less pain (3.4 ± 0.7 vs 4.8 ± 1.0), earlier first passage of flatus (58.3 ± 6.3 h vs 73.4 ± 13.0 h), shorter length of postoperative hospital stay (8.8 ± 1.2 days vs 11.3 ± 1.7 days) but higher medical cost (RMB 33 979 ± 3 135 vs RMB 29 828 ± 3 216). The overall postoperative complications and the satisfaction in defecation were comparable in the two groups. HALC is a safe, minimally invasive and effective surgical alternative for treating STC, which is comparable to OC. © 2014 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Suggestion of a Management Model: Total Entropy Management
Goksel Alpan,; Ismail Efil
2011-01-01
“Entropy” can be defined as the measure of disorder, uncertainty and consumed energy in a system or in the Universe. In the study, entropy concept is used as metaphor and it is aimed to construct the conceptual basis of a new management model which can be utilized to manage all entropy sources effectively. The study is conveyed with a multidisciplinary and holistic approach and by the use of qualitative research techniques. In the study, it is examined the relations of the entropy concept wit...
Exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model
International Nuclear Information System (INIS)
Divari, P.C.; Vergados, J.D.; Kosmas, T.S.; Skouras, L.D.
2001-01-01
A comprehensive study of the exotic (μ - ,e + ) conversion in 27 Al, 27 Al(μ - ,e + ) 27 Na is presented. The relevant operators are deduced assuming one-pion and two-pion modes in the framework of intermediate neutrino mixing models, paying special attention to the light neutrino case. The total rate is calculated by summing over partial transition strengths for all kinematically accessible final states derived with s-d shell model calculations employing the well-known Wildenthal realistic interaction
The deconfinement phase transition, hadronization and the NJL model
International Nuclear Information System (INIS)
Raha, Sibaji
2000-01-01
One of the confident predictions of QCD is that at sufficiently high temperature and/or density, hadronic matter should undergo a thermodynamic phase transition to a color deconfined state of matter-popularly called the Quark-Gluon Plasma (QGP). In low energy effective theories of Quantum Chromodynamics (QCD), one usually talks of the chiral transition for which a well defined order parameter exists. We investigate the dissociation of pions and kaons in a medium of hot quark matter described by the Nambu-Jona Lasinio (NJL) model. The decay widths of pion and kaon are found to be large but finite at temperature much higher than the critical temperature for the chiral (or deconfinement) transition, the kaon decay width being much larger. Thus pions and even kaons (with a lower density compared to pions) may coexist with quarks and gluons at such high temperatures. On the basis of such premises, we investigate the process of hadronization in quark-gluon plasma with special emphasis on whether such processes shed any light on acceptable low energy effective theories of QCD
Phase transition in a spatial Lotka-Volterra model
International Nuclear Information System (INIS)
Szabo, Gyorgy; Czaran, Tamas
2001-01-01
Spatial evolution is investigated in a simulated system of nine competing and mutating bacterium strains, which mimics the biochemical war among bacteria capable of producing two different bacteriocins (toxins) at most. Random sequential dynamics on a square lattice is governed by very symmetrical transition rules for neighborhood invasions of sensitive strains by killers, killers by resistants, and resistants by sensitives. The community of the nine possible toxicity/resistance types undergoes a critical phase transition as the uniform transmutation rates between the types decreases below a critical value P c above that all the nine types of strains coexist with equal frequencies. Passing the critical mutation rate from above, the system collapses into one of three topologically identical (degenerated) states, each consisting of three strain types. Of the three possible final states each accrues with equal probability and all three maintain themselves in a self-organizing polydomain structure via cyclic invasions. Our Monte Carlo simulations support that this symmetry-breaking transition belongs to the universality class of the three-state Potts model
A new thermodynamic model for shaftwork targeting on total sites
Energy Technology Data Exchange (ETDEWEB)
Sorin, M.; Hammache, A. [CANMET Energy Technology Centre-Varennes, Quebec (Canada)
2005-05-01
The purpose of the paper is to introduce a targeting model based on a new thermodynamic insight on cogeneration in general and Rankine cycle in particular. The insight permits to express the ideal shaftwork of a cogeneration unit through the outlet heat load and the difference in Carnot factors between the heat source and heat sink for the given inlet temperature of the heat source. The deviation from the ideal shaftwork to the real one is assessed by using the traditionally turbine isentropic efficiency. Finally the new model allows targeting fuel consumption, cooling requirement and shaftwork production with high accuracy and visualizing then directly as special segments on the T-H diagram. A modified Site Utility Grand Composite Curve (SUGCC) diagram is proposed and compared to the original SUGCC. The shape of the right hand side of the diagram above site pinch is the same, however, below site pinch it is shifted to the left by an amount equal to shaftwork production below site pinch. Above site pinch VHP consumption is also corrected to account for shaftwork production above site pinch that is represented by segments rather than areas on the left hand side of the T-H diagram. (author)
Unified Dark Matter scalar field models with fast transition
Energy Technology Data Exchange (ETDEWEB)
Bertacca, Daniele [Dipartimento di Fisica Galileo Galilei, Università di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Bruni, Marco [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Piattella, Oliver F. [Department of Physics, Universidade Federal do Espírito Santo, avenida Ferrari 514, 29075-910, Vitória, ES (Brazil); Pietrobon, Davide, E-mail: daniele.bertacca@pd.infn.it, E-mail: marco.bruni@port.ac.uk, E-mail: oliver.piattella@gmail.com, E-mail: davide.pietrobon@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 91109 Pasadena CA U.S.A. (United States)
2011-02-01
We investigate the general properties of Unified Dark Matter (UDM) scalar field models with Lagrangians with a non-canonical kinetic term, looking specifically for models that can produce a fast transition between an early Einstein-de Sitter CDM-like era and a later Dark Energy like phase, similarly to the barotropic fluid UDM models in JCAP01(2010)014. However, while the background evolution can be very similar in the two cases, the perturbations are naturally adiabatic in fluid models, while in the scalar field case they are necessarily non-adiabatic. The new approach to building UDM Lagrangians proposed here allows to escape the common problem of the fine-tuning of the parameters which plague many UDM models. We analyse the properties of perturbations in our model, focusing on the the evolution of the effective speed of sound and that of the Jeans length. With this insight, we can set theoretical constraints on the parameters of the model, predicting sufficient conditions for the model to be viable. An interesting feature of our models is that what can be interpreted as w{sub DE} can be < −1 without violating the null energy conditions.
Hysteretic transitions in the Kuramoto model with inertia.
Olmi, Simona; Navas, Adrian; Boccaletti, Stefano; Torcini, Alessandro
2014-10-01
We report finite-size numerical investigations and mean-field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine, for a gaussian distribution of the frequencies, the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic, and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean-field theory developed by Tanaka, Lichtenberg, and Oishi [Physica D 100, 279 (1997)] allows us to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size, and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of whirling oscillators. The presence of these groups of coherently drifting oscillators induces oscillations in the order parameter. We have shown that the transition remains hysteretic even for randomly diluted networks up to a level of connectivity corresponding to a few links per oscillator. Finally, an application to the Italian high-voltage power grid is reported, which reveals the emergence of quasiperiodic oscillations in the order parameter due to the simultaneous presence of many competing whirling clusters.
Sildenafil normalizes bowel transit in preclinical models of constipation.
Directory of Open Access Journals (Sweden)
Sarah K Sharman
Full Text Available Guanylyl cyclase-C (GC-C agonists increase cGMP levels in the intestinal epithelium to promote secretion. This process underlies the utility of exogenous GC-C agonists such as linaclotide for the treatment of chronic idiopathic constipation (CIC and irritable bowel syndrome with constipation (IBS-C. Because GC-C agonists have limited use in pediatric patients, there is a need for alternative cGMP-elevating agents that are effective in the intestine. The present study aimed to determine whether the PDE-5 inhibitor sildenafil has similar effects as linaclotide on preclinical models of constipation. Oral administration of sildenafil caused increased cGMP levels in mouse intestinal epithelium demonstrating that blocking cGMP-breakdown is an alternative approach to increase cGMP in the gut. Both linaclotide and sildenafil reduced proliferation and increased differentiation in colon mucosa, indicating common target pathways. The homeostatic effects of cGMP required gut turnover since maximal effects were observed after 3 days of treatment. Neither linaclotide nor sildenafil treatment affected intestinal transit or water content of fecal pellets in healthy mice. To test the effectiveness of cGMP elevation in a functional motility disorder model, mice were treated with dextran sulfate sodium (DSS to induce colitis and were allowed to recover for several weeks. The recovered animals exhibited slower transit, but increased fecal water content. An acute dose of sildenafil was able to normalize transit and fecal water content in the DSS-recovery animal model, and also in loperamide-induced constipation. The higher fecal water content in the recovered animals was due to a compromised epithelial barrier, which was normalized by sildenafil treatment. Taken together our results show that sildenafil can have similar effects as linaclotide on the intestine, and may have therapeutic benefit to patients with CIC, IBS-C, and post-infectious IBS.
Total Variability Modeling using Source-specific Priors
DEFF Research Database (Denmark)
Shepstone, Sven Ewan; Lee, Kong Aik; Li, Haizhou
2016-01-01
sequence of an utterance. In both cases the prior for the latent variable is assumed to be non-informative, since for homogeneous datasets there is no gain in generality in using an informative prior. This work shows in the heterogeneous case, that using informative priors for com- puting the posterior......, can lead to favorable results. We focus on modeling the priors using minimum divergence criterion or fac- tor analysis techniques. Tests on the NIST 2008 and 2010 Speaker Recognition Evaluation (SRE) dataset show that our proposed method beats four baselines: For i-vector extraction using an already...... trained matrix, for the short2-short3 task in SRE’08, five out of eight female and four out of eight male common conditions, were improved. For the core-extended task in SRE’10, four out of nine female and six out of nine male common conditions were improved. When incorporating prior information...
E1 transitions in the Harari quark model
International Nuclear Information System (INIS)
Kamath, S.G.
1976-10-01
The radiative decays psi(3.684)→γchi(sup(3)P sub(J)) and chi(sup(3)Psub(J)→chipsi(3.1) have been analyzed within the framework of the Harari quark model. The spatial matrix elements describing these L=1 to L=0 transitions have been estimated from the A 2 (1310)→ chirho(770) mode by applying U(6) symmetry at the quark level. The resulting decay widths, which compare very well with experimental data, have subsequently been used to determine the SU(3)sub(H) assignments for the chi states
Modelling and numerical simulation of liquid-vapor phase transitions
International Nuclear Information System (INIS)
Caro, F.
2004-11-01
This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)
A model of interacting strings and the Hagedorn phase transition
International Nuclear Information System (INIS)
Lizzi, F.; Senda, I.
1990-03-01
In this letter we introduce a model of interacting string in which the usual ideal gas approximations are not made. The model is constructed in analogy with nucleation models, the formation of droplets in a supersaturate gas. We consider the strings to be interacting and their number not fixed. The equilibrium configuration is the one for which the time derivatives of the number of strings in the various energies vanishes. We evaluate numerically the equilibrium configurations for various values of the energy density. We find that a density of order one in planck units there is a sharp transition, from a 'gas' phase in which there are many strings, all in the massless or first few excited states, to a 'liquid' phase in which all strings have coalesced into one (or few) highly excited string. (author). 14 refs, 4 figs
Transitional paleointensities from Kauai, Hawaii, and geomagnetic reversal models
Bogue, Scott W.; Coe, Robert S.
1984-01-01
Previously presented paleointensity results from an R-N transition zone in Kauai, Hawaii, show that field intensity dropped from 0. 431 Oe to 0. 101 Oe while the field remained within 30 degree of the reversed axial dipole direction. A recovery in intensity and the main directional change followed this presumably short period of low field strength. As the reversal neared completion, the field has an intensity of 0. 217 Oe while still 40 degree from the final direction. The relationship of paleointensity to field direction during the early part of the reversal thus differs from that toward the end, a feature that only some reversal models are consistent with. For example, a model in which a standing nondipole component persists through the dipole reversal predicts only symmetric intensity patterns. In contrast, zonal flooding models generate suitably complex field behavior if multiple flooding schemes operate during a single reversal or if the flooding process is itself asymmetric.
Dynamical quantum phase transitions in extended transverse Ising models
Bhattacharjee, Sourav; Dutta, Amit
2018-04-01
We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.
Ecodriving for Reduction of Bus Transit Emission with Vehicle’s Hybrid Dynamic Model
Directory of Open Access Journals (Sweden)
Xiuzheng Zheng
2015-01-01
Full Text Available This paper formulates a global ecodriving optimal control to advise the green driving speed for bus transit to minimize the exhaust emission using Vehicle-to-Infrastructure (V2I communication. Assuming communication between vehicles and infrastructure (V2I and knowledge of traffic signal timings and waiting passengers at stations are known, an optimal driving speed is proposed to minimize the total vehicle emissions of the bus route. The dwell time of the bus transit at each station which includes two parts is proposed. A traffic lights timing model is employed as constraints to control the formation of the green wave band. Vehicle specific power (VSP model is further applied to evaluate the exhaust emission level linked with the speed and acceleration of the bus transit. An approximate sixteen-kilometer traffic network including fourteen intersections and fifteen stations of Beijing bus transit line 1 in Chaoyang District, Beijing, is chosen to investigate the performance of the developed ecodriving approach.
DEFF Research Database (Denmark)
Silvennoinen, Annastiina; Teräsvirta, Timo
In this paper we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new Double Smooth Transition Conditional Correlation GARCH model extends the Smooth Transition Conditional Correlation GARCH model of Silvennoinen and Ter¨asvirta (2005) by including...... another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition......, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. The model is applied to a selection of world stock indices, and it is found that time is an important factor affecting...
Rozell, Joshua C; Courtney, Paul M; Dattilo, Jonathan R; Wu, Chia H; Lee, Gwo-Chin
2016-09-01
Alternative payment models in total joint replacement incentivize cost effective health care delivery and reward reductions in length of stay (LOS), complications, and readmissions. If not adjusted for patient comorbidities, they may encourage restrictive access to health care. We prospectively evaluated 802 consecutive primary total hip arthroplasty and total knee arthroplasty patients evaluating comorbidities associated with increased LOS and readmissions. During this 9-month period, 115 patients (14.3%) required hospitalization >3 days and 16 (1.99%) were readmitted within 90 days. Univariate analysis demonstrated that preoperative narcotic use, heart failure, stroke, chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), and liver disease were more likely to require hospitalization >3 days. In multivariate analysis, CKD and COPD were independent risk factors for LOS >3 days. A Charlson comorbidity index >5 points was associated with increased LOS and readmissions. Patients with CKD, COPD, and Charlson comorbidity index >5 points should not be included in alternative payment model for THA and TKA. Copyright © 2016 Elsevier Inc. All rights reserved.
Schilling, Peter L; Bozic, Kevin J
2016-01-06
Comparing outcomes across providers requires risk-adjustment models that account for differences in case mix. The burden of data collection from the clinical record can make risk-adjusted outcomes difficult to measure. The purpose of this study was to develop risk-adjustment models for hip fracture repair (HFR), total hip arthroplasty (THA), and total knee arthroplasty (TKA) that weigh adequacy of risk adjustment against data-collection burden. We used data from the American College of Surgeons National Surgical Quality Improvement Program to create derivation cohorts for HFR (n = 7000), THA (n = 17,336), and TKA (n = 28,661). We developed logistic regression models for each procedure using age, sex, American Society of Anesthesiologists (ASA) physical status classification, comorbidities, laboratory values, and vital signs-based comorbidities as covariates, and validated the models with use of data from 2012. The derivation models' C-statistics for mortality were 80%, 81%, 75%, and 92% and for adverse events were 68%, 68%, 60%, and 70% for HFR, THA, TKA, and combined procedure cohorts. Age, sex, and ASA classification accounted for a large share of the explained variation in mortality (50%, 58%, 70%, and 67%) and adverse events (43%, 45%, 46%, and 68%). For THA and TKA, these three variables were nearly as predictive as models utilizing all covariates. HFR model discrimination improved with the addition of comorbidities and laboratory values; among the important covariates were functional status, low albumin, high creatinine, disseminated cancer, dyspnea, and body mass index. Model performance was similar in validation cohorts. Risk-adjustment models using data from health records demonstrated good discrimination and calibration for HFR, THA, and TKA. It is possible to provide adequate risk adjustment using only the most predictive variables commonly available within the clinical record. This finding helps to inform the trade-off between model performance and data
Czocher, Jennifer A.
2016-01-01
This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…
A Smooth Transition Logit Model of the Effects of Deregulation in the Electricity Market
DEFF Research Database (Denmark)
Hurn, A.S.; Silvennoinen, Annastiina; Teräsvirta, Timo
We consider a nonlinear vector model called the logistic vector smooth transition autoregressive model. The bivariate single-transition vector smooth transition regression model of Camacho (2004) is generalised to a multivariate and multitransition one. A modelling strategy consisting of specific......We consider a nonlinear vector model called the logistic vector smooth transition autoregressive model. The bivariate single-transition vector smooth transition regression model of Camacho (2004) is generalised to a multivariate and multitransition one. A modelling strategy consisting...... of specification, including testing linearity, estimation and evaluation of these models is constructed. Nonlinear least squares estimation of the parameters of the model is discussed. Evaluation by misspecification tests is carried out using tests derived in a companion paper. The use of the modelling strategy...
Modeling the hepatitis A epidemiological transition in Brazil and Mexico.
Van Effelterre, Thierry; Guignard, Adrienne; Marano, Cinzia; Rojas, Rosalba; Jacobsen, Kathryn H
2017-08-03
Many low- to middle-income countries have completed or are in the process of transitioning from high or intermediate to low endemicity for hepatitis A virus (HAV). Because the risk of severe hepatitis A disease increases with age at infection, decreased incidence that leaves older children and adults susceptible to HAV infection may actually increase the population-level burden of disease from HAV. Mathematical models can be helpful for projecting future epidemiological profiles for HAV. An age-specific deterministic, dynamic compartmental transmission model with stratification by setting (rural versus urban) was calibrated with country-specific data on demography, urbanization, and seroprevalence of anti-HAV antibodies. HAV transmission was modeled as a function of setting-specific access to safe water. The model was then used to project various HAV-related epidemiological outcomes in Brazil and in Mexico from 1950 to 2050. The projected epidemiological outcomes were qualitatively similar in the 2 countries. The age at the midpoint of population immunity (AMPI) increased considerably and the mean age of symptomatic HAV cases shifted from childhood to early adulthood. The projected overall incidence rate of HAV infections decreased by about two thirds as safe water access improved. However, the incidence rate of symptomatic HAV infections remained roughly the same over the projection period. The incidence rates of HAV infections (all and symptomatic alone) were projected to become similar in rural and urban settings in the next decades. This model featuring population age structure, urbanization and access to safe water as key contributors to the epidemiological transition for HAV was previously validated with data from Thailand and fits equally well with data from Latin American countries. Assuming no introduction of a vaccination program over the projection period, both Brazil and Mexico were projected to experience a continued decrease in HAV incidence rates
Electroweak phase transition in two Higgs doublet models
International Nuclear Information System (INIS)
Cline, J.M.; Lemieux, P.
1997-01-01
We reexamine the strength of the first-order phase transition in the electroweak theory supplemented by an extra Higgs doublet. The finite-temperature effective potential V eff is computed to one-loop order, including the summation of ring diagrams, to study the ratio φ c /T c of the Higgs field VEV to the critical temperature. We make a number of improvements over previous treatments, including a consistent treatment of Goldstone bosons in V eff , an accurate analytic approximation to V eff valid for any mass-to-temperature ratios, and use of the experimentally measured top quark mass. For two-Higgs-doublet models, we identify a significant region of parameter space where φ c /T c is large enough for electroweak baryogenesis, and we argue that this identification should persist even at higher orders in perturbation theory. In the case of the minimal supersymmetric standard model, our results indicate that the extra Higgs bosons have little effect on the strength of the phase transition. copyright 1997 The American Physical Society
Demographic model of the Neolithic transition in Central Europe
Directory of Open Access Journals (Sweden)
Patrik Galeta
2009-12-01
Full Text Available Several recent lines of evidence indicate more intensive contact between LBK farmers and indigenous foragers in Central Europe (5600–5400 calBC. Strong continuity has been identified between Mesolithic and Neolithic material cultures; faunal assemblages, and isotopic analyses of diet have revealed a greater role of hunting in LBK communities; genetic analyses have suggested that the modern Central European gene pool is mainly of Palaeolithic origin. Surprisingly little attention has been paid to demographic aspects of the Neolithic transition. In our study, demographic simulations were performed to assess the demographic conditions that would allow LBK farmers to spread across central Europe without any admixture with Mesolithic foragers. We constructed a stochastic demographic model of changes in farming population size. Model parameters were constrained by data from human demography, archaeology, and human ecology. Our results indicate that the establishment of farming communities in Central Europe without an admixture with foragers was highly improbable. The demographic conditions necessary for colonization were beyond the potential of the Neolithic population. Our study supports the integrationists’ view of the Neolithic transition in Central Europe.
An Anderson-like model of the QCD chiral transition
International Nuclear Information System (INIS)
Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc
2016-01-01
We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian (“Dirac-Anderson Hamiltonian”) carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.
Energy Technology Data Exchange (ETDEWEB)
Cherpak, Amanda; Chytyk-Praznik, Krista; Yewondwossen, Mammo; Schella, Jason; Davis, Carol-Anne; Day, Allan; DeGiobbi, Jennifer; McAloney, Dave; Mulroy, Liam [Nova Scotia Cancer Centre, Halifax, NS (Canada)
2016-08-15
Purpose: TMI targets only the bone marrow, with the intent of sparing normal tissues. The NSCC has recently implemented a TMI protocol which includes VMAT fields to treat the bone marrow from head to mid-thigh and extended SSD POP fields to treat the lower legs. This work describes the commissioning and initial clinical results of the first reported VMAT TMI treatments in Canada. Methods: Detailed CT simulation, imaging, planning and treatment procedures were developed by a multi-disciplinary team. Patients have 1 cm of bolus over the lower legs and 0.5 cm of bolus around the lower arms. The PTV includes all bone, except mandible, facial bones and hands, with the objective of V(12 Gy) > 90%. Detailed analysis of the influence of field overlap was performed to determine optimal field placement and image-guidance tolerances. Results: PTV coverage was achieved for all cases as V(12 Gy) ranged from 90.4–96.3%. The minimum dose to the PTV, D(99%), ranged from 91.4–97.87% and V(90%Rx=10.8 Gy) ranged from 99.1–100.0%. The lungs, liver and heart had an average D{sub mean} of (7.8±0.3)Gy/(65±2)%, (7.6±0.7)Gy/(63±5)%, and (6.8±0.4)Gy/(56±4)% respectively. Conclusions: Commissioning required input and collaboration from all team members. Transitioning from TBI to TMI requires additional time for contouring, treatment planning, QA, and treatment. Patient benefit can however be seen in the quality of OAR sparing.
International Nuclear Information System (INIS)
Cherpak, Amanda; Chytyk-Praznik, Krista; Yewondwossen, Mammo; Schella, Jason; Davis, Carol-Anne; Day, Allan; DeGiobbi, Jennifer; McAloney, Dave; Mulroy, Liam
2016-01-01
Purpose: TMI targets only the bone marrow, with the intent of sparing normal tissues. The NSCC has recently implemented a TMI protocol which includes VMAT fields to treat the bone marrow from head to mid-thigh and extended SSD POP fields to treat the lower legs. This work describes the commissioning and initial clinical results of the first reported VMAT TMI treatments in Canada. Methods: Detailed CT simulation, imaging, planning and treatment procedures were developed by a multi-disciplinary team. Patients have 1 cm of bolus over the lower legs and 0.5 cm of bolus around the lower arms. The PTV includes all bone, except mandible, facial bones and hands, with the objective of V(12 Gy) > 90%. Detailed analysis of the influence of field overlap was performed to determine optimal field placement and image-guidance tolerances. Results: PTV coverage was achieved for all cases as V(12 Gy) ranged from 90.4–96.3%. The minimum dose to the PTV, D(99%), ranged from 91.4–97.87% and V(90%Rx=10.8 Gy) ranged from 99.1–100.0%. The lungs, liver and heart had an average D mean of (7.8±0.3)Gy/(65±2)%, (7.6±0.7)Gy/(63±5)%, and (6.8±0.4)Gy/(56±4)% respectively. Conclusions: Commissioning required input and collaboration from all team members. Transitioning from TBI to TMI requires additional time for contouring, treatment planning, QA, and treatment. Patient benefit can however be seen in the quality of OAR sparing.
Census Model Transition: Contributions to its Implementation in Portugal
Directory of Open Access Journals (Sweden)
Dias Carlos A.
2016-03-01
Full Text Available Given the high cost and complexity of traditional censuses, some countries have started to change the census process. Following this trend, Portugal is also evaluating a new census model as an alternative to an exhaustive collection of all statistical units. The main motivations for the implementation of this census model transition in Portugal are related to the decrease in statistical burden on citizens, improvements in the frequency of outputs, and the reduction of collection costs associated with census operations. This article seeks to systematise and critically review all alternatives to the traditional census methodologies, presenting their advantages and disadvantages and the countries that use them. As a result of the comparison, we conclude that the methods that best meet these objectives are those that use administrative data, either in whole or in part. We also present and discuss the results of an inventory and evaluation of administrative registers in Portugal with the potential to produce statistical census information.
Molecular modeling of polycarbonate materials: Glass transition and mechanical properties
Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim
2017-09-01
Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.
Directory of Open Access Journals (Sweden)
Andrea Chester
2013-08-01
Full Text Available Peer mentoring, presented as an inclusive teaching approach, embedded in the curriculum, has been successfully implemented to support first year student learning. Developing sustainable and scalable models for large first year cohorts, however, provides a challenge. The Transition in, Transition out model is a sustainable peer mentoring model supporting the transition of both first and final year students. The model has been implemented in two Australian psychology programs, one face-to-face and one delivered online. The focus in this Practice Report will be on the outcome data for on-campus first year student at one university. Participants were 231 first year students (166 females and 65 males. Results suggest positive changes in academic performance and learning approaches as well as positive endorsement of the model.
Energy Technology Data Exchange (ETDEWEB)
2017-05-22
The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.
Dong, Yao-Jun; Belabbes, Abderrezak; Manchon, Aurelien
2017-01-01
Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.
Dong, Yao-Jun
2017-10-29
Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.
Mixed-order phase transition in a one-dimensional model.
Bar, Amir; Mukamel, David
2014-01-10
We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions that exhibits a mixed-order transition, namely a phase transition in which the order parameter is discontinuous as in first order transitions while the correlation length diverges as in second order transitions. Such transitions are known to appear in a diverse classes of models that are seemingly unrelated. The model we present serves as a link between two classes of models that exhibit a mixed-order transition in one dimension, namely, spin models with a coupling constant that decays as the inverse distance squared and models of depinning transitions, thus making a step towards a unifying framework.
Phase Transition Couplings in the Higgsed Monopole Model
Laperashvili, L V
1999-01-01
Using a one-loop approximation for the effective potential in the Higgs model of electrodynamics for a charged scalar field, we argue for the existence of a triple point for the renormalized (running) values of the selfinteraction beta-function as a typical quantity we estimate that the one-loop approximation is valid with accuracy of deviations not more than 30% in the region of the parameters: $0.2 \\stackrel{<}{\\sim}{\\large \\alpha, \\tilde{\\alpha}} corresponds to the above-mentioned region of $\\alpha, \\tilde \\alpha$. Under the point of view that the Higgs particle is a monopole with a magnetic charge g, the obtained electric fine structure constant turns out to be to the $\\alpha_{crit}^{lat}\\approx{0.20}$ which in a U(1) lattice gauge theory corresponds to the phase transition between the "Coulomb" and confinement phases. Such a result is very encouraging for the idea of an approximate "universality" (regularization independence) of gauge couplings at the phase transition point. This idea was suggested by...
Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares
Orr, Jeb S.
2012-01-01
A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed
Thermodynamically consistent mesoscopic model of the ferro/paramagnetic transition
Czech Academy of Sciences Publication Activity Database
Benešová, Barbora; Kružík, Martin; Roubíček, Tomáš
2013-01-01
Roč. 64, Č. 1 (2013), s. 1-28 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GA106/09/1573; GA ČR GAP201/10/0357 Grant - others:GA ČR(CZ) GA106/08/1397; GA MŠk(CZ) LC06052 Program:GA; LC Institutional support: RVO:67985556 Keywords : ferro-para-magnetism * evolution * thermodynamics Subject RIV: BA - General Mathematics; BA - General Mathematics (UT-L) Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-thermodynamically consistent mesoscopic model of the ferro-paramagnetic transition.pdf
DEFF Research Database (Denmark)
von Essen, C.; Cellone, S.; Mallonn, M.
2016-01-01
introduced a perturbation in the mid-transit times of the hot Jupiter, caused by an Earth-sized planet in a 3:2 mean motion resonance. Analyzing the synthetic light curves produced after certain epochs, we attempt to recover the synthetically added TTV signal by means of usual primary transit fitting...... we attempt to reproduce, by means of physically and empirically motivated relationships, the effects caused by the Earth's atmosphere and the instrumental setup on the synthetic light curves. Therefore, the synthetic data present different photometric quality and transit coverage. In addition, we...
The Current Landscape of Transitions of Care Practice Models: A Scoping Review.
Rochester-Eyeguokan, Charmaine D; Pincus, Kathleen J; Patel, Roshni S; Reitz, Shirley J
2016-01-01
Transitions of care (TOC) are a set of actions to ensure patient coordination and continuity of care as patients transfer between different locations or levels. During transitions associated with chronic or acute illness, vulnerable patients may be placed at risk with fragmented systems compromising their health and safety. In addition, poor care transitions also have an enormous impact on health care spending. The primary objective of this scoping review is to summarize the current landscape of practice models that deliver TOC services in the United States. The secondary objective is to use the information to characterize the current state of best practice models. A search of the PubMed, Embase, Cumulative Index to Nursing and Allied Health Literature, Web of Science, International Pharmaceutical Abstracts, National Center for Biotechnology Information at the U.S. National Library of Medicine, and Cochrane Library databases (January 1, 2000-April 13, 2015) for articles pertaining to TOC models, limited to U.S. studies published in the English language with human subjects, gleaned 1362 articles. An additional 26 articles were added from the gray literature. Articles meeting inclusion criteria underwent a second review and were categorized into four groups: background information, original TOC research articles not evaluating practice model interventions, original TOC research articles describing practice models, and systematic or Cochrane reviews. The reviewers met weekly to discuss the challenges and resolve disagreements regarding literature reviews with consensus before progressing. A total of 188 articles describing TOC practice models met the inclusion criteria. Despite the strengths of several quality TOC models, none satisfied all the components recommended by leading experts. Multimodal interventions by multidisciplinary teams appear to represent a best practice model for TOC to improve patient outcomes and reduce readmissions, but one size does not fit all
Ameri, Ali A.
2012-01-01
The purpose of this report is to summarize and document the work done to enable a NASA CFD code to model laminar-turbulent transition process on an isolated turbine blade. The ultimate purpose of the present work is to down-select a transition model that would allow the flow simulation of a variable speed power turbine to be accurately performed. The flow modeling in its final form will account for the blade row interactions and their effects on transition which would lead to accurate accounting for losses. The present work only concerns itself with steady flows of variable inlet turbulence. The low Reynolds number k- model of Wilcox and a modified version of the same model will be used for modeling of transition on experimentally measured blade pressure and heat transfer. It will be shown that the k- model and its modified variant fail to simulate the transition with any degree of accuracy. A case is thus made for the adoption of more accurate transition models. Three-equation models based on the work of Mayle on Laminar Kinetic Energy were explored. The three-equation model of Walters and Leylek was thought to be in a relatively mature state of development and was implemented in the Glenn-HT code. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Surface heat transfer rate serves as sensitive indicator of transition. With the newly implemented model, it was shown that the simulation of transition process is much improved over the baseline k- model for the single Reynolds number and pressure ratio attempted; while agreement with heat transfer data became more satisfactory. Armed with the new transition model, total-pressure losses of computed three-dimensional flow of E3 tip section cascade were compared to the experimental data for a range of incidence angles. The results obtained, form a partial loss bucket for the chosen blade
Modelling transition states of a small once-through boiler
Energy Technology Data Exchange (ETDEWEB)
Talonpoika, T [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology
1998-12-31
This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that
Modelling transition states of a small once-through boiler
Energy Technology Data Exchange (ETDEWEB)
Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology
1997-12-31
This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that
Modeling the transition to a new economy: lessons from two technological revolutions
Andrew Atkeson; Patrick J. Kehoe
2006-01-01
Many view the period after the Second Industrial Revolution as a paradigmatic example of a transition to a new economy following a technological revolution and conjecture that this historical experience is useful for understanding other transitions, including that after the Information Technology Revolution. We build a model of diffusion and growth to study transitions. We quantify the learning process in our model using data on the life cycle of U.S. manufacturing plants. This model accounts...
MHD modeling of coronal loops: the transition region throat
Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.
2014-04-01
Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims: The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods: We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. Results: We find that the area can change substantially with the quasi-steady heating rate, e.g., by ~40% at 0.5 MK as the loop temperature varies between 1 MK and 4 MK, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves. The movie associated to Fig. 4 is available in electronic form at http://www.aanda.org
Transition Heat Transfer Modeling Based on the Characteristics of Turbulent Spots
Simon, Fred; Boyle, Robert
1998-01-01
While turbulence models are being developed which show promise for simulating the transition region on a turbine blade or vane, it is believed that the best approach with the greatest potential for practical use is the use of models which incorporate the physics of turbulent spots present in the transition region. This type of modeling results in the prediction of transition region intermittency which when incorporated in turbulence models give a good to excellent prediction of the transition region heat transfer. Some models are presented which show how turbulent spot characteristics and behavior can be employed to predict the effect of pressure gradient and Mach number on the transition region. The models predict the spot formation rate which is needed, in addition to the transition onset location, in the Narasimha concentrated breakdown intermittency equation. A simplified approach is taken for modeling turbulent spot growth and interaction in the transition region which utilizes the turbulent spot variables governing transition length and spot generation rate. The models are expressed in terms of spot spreading angle, dimensionless spot velocity, dimensionless spot area, disturbance frequency and Mach number. The models are used in conjunction with a computer code to predict the effects of pressure gradient and Mach number on the transition region and compared with VKI experimental turbine data.
Optimisation of timetable-based, stochastic transit assignment models based on MSA
DEFF Research Database (Denmark)
Nielsen, Otto Anker; Frederiksen, Rasmus Dyhr
2006-01-01
(CRM), such a large-scale transit assignment model was developed and estimated. The Stochastic User Equilibrium problem was solved by the Method of Successive Averages (MSA). However, the model suffered from very large calculation times. The paper focuses on how to optimise transit assignment models...
Estimation and asymptotic theory for transition probabilities in Markov Renewal Multi–state models
Spitoni, C.; Verduijn, M.; Putter, H.
2012-01-01
In this paper we discuss estimation of transition probabilities for semi–Markov multi–state models. Non–parametric and semi–parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional
DEFF Research Database (Denmark)
Azarang, Leyla; Scheike, Thomas; de Uña-Álvarez, Jacobo
2017-01-01
In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov progressive illness–death model. The method is based on binomial regression, where the response is the indicator of the occupancy for the given state along time. Randomly weighted score...
Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses
Energy Technology Data Exchange (ETDEWEB)
Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2017-09-01
This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.
Modelling of spark to ignition transition in gas mixtures
Energy Technology Data Exchange (ETDEWEB)
Akram, M.
1996-10-01
This thesis pertains to the models for studying sparking in chemically inert gases. The processes taking place in a spark to flame transition can be segregated into physical and chemical processes, and this study is focused on physical processes. The plasma is regarded as a single-substance material. One and two-dimensional models are developed. The transfer of electrical energy into thermal energy of the gas and its redistribution in space and time along with the evolution of a plasma kernel is studied in the time domain ranging from 10 ns to 40 micros. In the case of ultra-fast sparks, the propagation of the shock and its reflection from a rigid wall is presented. The influence of electrode shape and the gap size on the flow structure development is found to be a dominating factor. It is observed that the flow structure that has developed in the early stage more or less prevails at later stages and strongly influences the shape and evolution of the hot kernel. The electrode geometry and configuration are responsible for the development of the flow structure. The strength of the vortices generated in the flow field is influenced by the power input to the gap and their location of emergence is dictated by the electrode shape and configuration. The heat transfer after 2 micros in the case of ultra-fast sparks is dominated by convection and diffusion. The strong mixing produced by hydrodynamic effects and the electrode geometry give the indication that the magnetic pinch effect might be negligible. Finally, a model for a multicomponent gas mixture is presented. The chemical kinetics mechanism for dissociation and ionization is introduced. 56 refs
A stress-induced phase transition model for semi-crystallize shape memory polymer
Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2014-03-01
The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.
On the non-equilibrium phase transition in evaporation–deposition models
International Nuclear Information System (INIS)
Connaughton, Colm; Zaboronski, Oleg; Rajesh, R
2010-01-01
We study a system of diffusing–aggregating particles with deposition and evaporation of monomers. By combining theoretical and numerical methods, we establish a clearer understanding of the non-equilibrium phase transition known to occur in such systems. The transition is between a growing phase in which the total mass increases for all time and a non-growing phase in which the total mass is bounded. In addition to deriving rigorous bounds on the position of the transition point, we show that the growing phase is in the same universality class as diffusion–aggregation models with deposition but no evaporation. In this regime, the flux of mass in mass space becomes asymptotically constant (as a function of mass) at large times. The magnitude of this flux depends on the evaporation rate but the fact that it is asymptotically constant does not. The associated constant flux relation exactly determines the scaling of the two-point mass correlation function with mass in all dimensions while higher order mass correlation functions exhibit nonlinear multi-scaling in dimension less than two. If the deposition rate is below some critical value, a different stationary state is reached at large times characterized by a global balance between evaporation and deposition with a scale-by-scale balance between the mass fluxes due to aggregation and evaporation. Both the mass distribution and the flux decay exponentially in this regime. Finally, we develop a scaling theory of the model near the critical point, which yields non-trivial scaling laws for the critical two-point mass correlation function with mass. These results are well supported by numerical measurements
Dynamic investigation of mode transition in inductively coupled plasma with a hybrid model
International Nuclear Information System (INIS)
Zhao Shuxia; Gao Fei; Wang Younian
2009-01-01
Industrial inductively coupled plasma (ICP) sources are always operated in low gas pressure 10-100 mTorr, therefore in order to accurately investigate the mode transition of ICP, we developed our pure fluid model (2009 J. Appl. Phys. 105 083306) into a hybrid fluid/Monte Carlo (MC) model, where the MC part is exploited to take in more dynamic characteristics of electrons and self-consistently calculate the rate coefficients and electron temperature used in the fluid module, and more crucially to study the electron energy distribution function (EEDF) evolution with mode transition. Due to the introduction of the nonlocal property of the electrons at relatively low pressures, the dependences of the plasma density on the coil current, including the mode transitions, are distinctly different at low and high pressures when simulated by this improved hybrid model (HM), while the trends for different pressures obtained from the original pure fluid model (PFM) are the same in all cases. Furthermore, the computed peaks of the electron density profile by the HM shift from the discharge centre in the E mode to the intense inductive field heating area (about half of the radius of the reaction chamber under the dielectric window) in H mode. In addition, the electron temperature profiles of two modes under different pressures simulated by HM are totally higher than the results of PFM. When the pressure is low, there is a minimum exhibited in the bulk plasma of the electron temperature profiles of the E mode, and along with the mode transition the distribution area of low temperature is substantially reduced. Moreover, this phenomenon disappears when the gas pressure is increased. Accompanied by this, the calculated EEDF of the E mode in the low pressure also demonstrates an absolutely dominant low energy electron fraction (about ≤5 eV); while transforming to the H discharge most of the electrons carry an energy of 1-10 eV. The tendencies of the calculated EEDF evolution with
Influence of privatization model to society in transition
Directory of Open Access Journals (Sweden)
Cvijetićanin Danijel M.
2004-01-01
Full Text Available The goal of the paper is to explain the influence of privatization to the transition in Serbia. At the same time, it will be shown that the absence of the results of development of small and medium enterprises influenced the continuous pointing out the results of privatization. The influence of privatization to performance of enterprises will be especially discussed. The process of privatization of the public sector in the countries of developed market economy will be compared with the privatization in the former socialist countries. The specificity of the latter consists, above all, in huge offer of capital for sale in relatively short time. Inevitable consequence is the low price of this capital, which is very interesting for analysis. Specificities of privatization with not only state, but also social property in the economies of the former SFRY will be also discussed. The paradox of enlarging state property in Serbia and Montenegro will be also pointed out. The results of privatization will be discussed, as well as possible modifications of the model (and the law in the near future.
Model for cryogenic particle detectors with superconducting phase transition thermometers
International Nuclear Information System (INIS)
Proebst, F.; Frank, M.; Cooper, S.; Colling, P.; Dummer, D.; Ferger, P.; Nucciotti, A.; Seidel, W.; Stodolsky, L.
1994-09-01
We present data on a detector composed of an 18 g Si crystal and a superconducting phase transition thermometer which could be operated over a wide temperature range. An energy resolution of 1 keV (FWHM) has been obtained for 60 keV photons. The signals consist of two components: A fast one and a slow one, with decay times of 1.5 ms and 30-60 ms, respectively. In this paper we present a simple model which takes thermal and non-thermal phonon processes into account and provides a description of the observed temperature dependence of the pulse shape. The fast component, which completely dominates the signal at low temperatures, is due to high-frequency non-thermal phonons being absorbed in the thermometer. Thermalization of these phonons then leads to a temperature rise of the absorber, which causes the slow thermal component. At the highest operating temperatures (T∼80 mK) the amplitude of the slow component is roughly as expected from the heat capacity of the absorber. The strong suppression of the slow component at low temperatures is explained mostly as a consequence of the weak thermal coupling between electrons and phonons in the thermometer at low temperatures. (orig.)
Calibration of a γ- Re θ transition model and its application in low-speed flows
Wang, YunTao; Zhang, YuLun; Meng, DeHong; Wang, GunXue; Li, Song
2014-12-01
The prediction of laminar-turbulent transition in boundary layer is very important for obtaining accurate aerodynamic characteristics with computational fluid dynamic (CFD) tools, because laminar-turbulent transition is directly related to complex flow phenomena in boundary layer and separated flow in space. Unfortunately, the transition effect isn't included in today's major CFD tools because of non-local calculations in transition modeling. In this paper, Menter's γ- Re θ transition model is calibrated and incorporated into a Reynolds-Averaged Navier-Stokes (RANS) code — Trisonic Platform (TRIP) developed in China Aerodynamic Research and Development Center (CARDC). Based on the experimental data of flat plate from the literature, the empirical correlations involved in the transition model are modified and calibrated numerically. Numerical simulation for low-speed flow of Trapezoidal Wing (Trap Wing) is performed and compared with the corresponding experimental data. It is indicated that the γ- Re θ transition model can accurately predict the location of separation-induced transition and natural transition in the flow region with moderate pressure gradient. The transition model effectively imporves the simulation accuracy of the boundary layer and aerodynamic characteristics.
A rigidity transition and glassy dynamics in a model for confluent 3D tissues
Merkel, Matthias; Manning, M. Lisa
The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Recently, a new type of rigidity transition was discovered in a family of models for 2D biological tissues, but the mechanisms responsible for rigidity remain unclear. This is not just a statistical physics problem, but also relevant for embryonic development, cancer growth, and wound healing. To gain insight into this rigidity transition and make new predictions about biological bulk tissues, we have developed a fully 3D self-propelled Voronoi (SPV) model. The model takes into account shape, elasticity, and self-propelled motion of the individual cells. We find that in the absence of self-propulsion, this model exhibits a rigidity transition that is controlled by a dimensionless model parameter describing the preferred cell shape, with an accompanying structural order parameter. In the presence of self-propulsion, the rigidity transition appears as a glass-like transition featuring caging and aging effects. Given the similarities between this transition and jamming in particulate solids, it is natural to ask if the two transitions are related. By comparing statistics of Voronoi geometries, we show the transitions are surprisingly close but demonstrably distinct. Furthermore, an index theorem used to identify topologically protected mechanical modes in jammed systems can be extended to these vertex-type models. In our model, residual stresses govern the transition and enter the index theorem in a different way compared to jammed particles, suggesting the origin of rigidity may be different between the two.
International Nuclear Information System (INIS)
Dubey, J.; Pandey, P.; Yadav, A.; Limaye, S.N.
1998-01-01
Full text: Electronic spectral studies of Pr(III), Nd(III), Sm(III) Dy(III), Eu(III) and Tm(III) complexes with some aliphatic and aromatic O-O donor ligands viz., Glycolic (gly), Malonic (main) Succinic (suc), Glutaric (glut), Salicylic (sal), Phthalic acids and Catechol (cat) having varied chelate ring sizes and different substitutions as side chains have been carried out with a view to study the effect of chelate ring sizes on the intensities of hypersensitive and pseudo-hypersensitive transitions in lanthanoids. The intensities of these HST transitions have also been correlated with the total quantum number (J) of the lanthanoid metal ions in order to seek a probable mechanism for the phenomenon hypersensitivity. A comparison of the spectral and nephelauxetic parameters for Pr(III), Nd(III), Sm(III) with Dy(III) Er(III) and Tm(III) exhibit a variation in the bonding pattern from electrostatic to covalo-electrostatic from pre-Gd elements to post-Gd elements. The J-(total) quantum number profiles of the oscillator strength values for the specific HST transitions have also been examined
The democracy ochlocracy dictatorship transition in the Sznajd model and in the Ising model
Schneider, Johannes J.; Hirtreiter, Christian
2005-08-01
Since its introduction in 2000, the Sznajd model has been assumed to simulate a democratic community with two parties. The main flaw in this model is that a Sznajd system freezes in the long term in a non-democratic state, which can be either a dictatorship or a stalemate configuration. Here we show that the Sznajd model has better to be considered as a transition model, transferring a democratic system already at the beginning of a simulation via an ochlocratic scenario, i.e., a regime in which several mobs rule, to a dictatorship, thus reproducing the corresponding Aristotelian theory.
Bohr model description of the critical point for the first order shape phase transition
Budaca, R.; Buganu, P.; Budaca, A. I.
2018-01-01
The critical point of the shape phase transition between spherical and axially deformed nuclei is described by a collective Bohr Hamiltonian with a sextic potential having simultaneous spherical and deformed minima of the same depth. The particular choice of the potential as well as the scaled and decoupled nature of the total Hamiltonian leads to a model with a single free parameter connected to the height of the barrier which separates the two minima. The solutions are found through the diagonalization in a basis of Bessel functions. The basis is optimized for each value of the free parameter by means of a boundary deformation which assures the convergence of the solutions for a fixed basis dimension. Analyzing the spectral properties of the model, as a function of the barrier height, revealed instances with shape coexisting features which are considered for detailed numerical applications.
Bohr model description of the critical point for the first order shape phase transition
Directory of Open Access Journals (Sweden)
R. Budaca
2018-01-01
Full Text Available The critical point of the shape phase transition between spherical and axially deformed nuclei is described by a collective Bohr Hamiltonian with a sextic potential having simultaneous spherical and deformed minima of the same depth. The particular choice of the potential as well as the scaled and decoupled nature of the total Hamiltonian leads to a model with a single free parameter connected to the height of the barrier which separates the two minima. The solutions are found through the diagonalization in a basis of Bessel functions. The basis is optimized for each value of the free parameter by means of a boundary deformation which assures the convergence of the solutions for a fixed basis dimension. Analyzing the spectral properties of the model, as a function of the barrier height, revealed instances with shape coexisting features which are considered for detailed numerical applications.
Energy Demand Modeling Methodology of Key State Transitions of Turning Processes
Directory of Open Access Journals (Sweden)
Shun Jia
2017-04-01
Full Text Available Energy demand modeling of machining processes is the foundation of energy optimization. Energy demand of machining state transition is integral to the energy requirements of the machining process. However, research focus on energy modeling of state transition is scarce. To fill this gap, an energy demand modeling methodology of key state transitions of the turning process is proposed. The establishment of an energy demand model of state transition could improve the accuracy of the energy model of the machining process, which also provides an accurate model and reliable data for energy optimization of the machining process. Finally, case studies were conducted on a CK6153i CNC lathe, the results demonstrating that predictive accuracy with the proposed method is generally above 90% for the state transition cases.
Validation of a RANS transition model using a high-order weighted compact nonlinear scheme
Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang
2013-04-01
A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.
Image Restoration Based on the Hybrid Total-Variation-Type Model
Shi, Baoli; Pang, Zhi-Feng; Yang, Yu-Fei
2012-01-01
We propose a hybrid total-variation-type model for the image restoration problem based on combining advantages of the ROF model with the LLT model. Since two ${L}^{1}$ -norm terms in the proposed model make it difficultly solved by using some classically numerical methods directly, we first employ the alternating direction method of multipliers (ADMM) to solve a general form of the proposed model. Then, based on the ADMM and the Moreau-Yosida decomposition theory, a more efficient method call...
Total conversion coefficient of the 263 keV (21/sup 2//2->13/sup +//2) transition in sup(93m)Mo
Energy Technology Data Exchange (ETDEWEB)
Suryanaryana, C.; Venkateswara Rao, M.; Narayana, D.G.S.; Bhuloka Reddy, S.; Satyanarayana, G.; Sastry, D.L.; Chintalapudi, S.N.
1985-01-01
The total conversion coefficient of the 263 keV gamma transition in the decay scheme of sup(93m)Mo is measured by intensity balance method using a HP Ge spectrometer system. The experimental value of ..cap alpha..sub(T)(263 keV) is found to be 0.696 +- 0.05 which is in agreement with the theoretical values 0.72 and 0.7. The transition probability T(E4) is calculated using the present value of ..cap alpha..sub(T) and compared with the single-particle estimate. A good agreement is noted between the theory and the experiment for the value of T(E4).
Energy Technology Data Exchange (ETDEWEB)
Venkateswara Rao, N.; Suryanarayana, C.; Narayana, D.G.S.; Bhuloka Reddy, S.; Satynarayana, G.; Sastry, D.L.; Chintalapudi, S.N.
1986-02-21
The 1.87 hours 543.7 keV (7/sup +/) isomeric state in /sup 198/Tl is produced via /sup 197/Au(..cap alpha.., 3n)sup(198m)Tl (Esub(..cap alpha..) = 35 MeV) reaction. The total conversion coefficient of 260.9 keV (7/sup +/ -> 3/sup -/) is determined for the first time by the intensity balance method. The value of ..cap alpha..sub(T)(260.9 keV) is found to be 40.1 +- 8.6 which is in good agreement with the theoretical value of Hager and Seltzer for pure M4 transition. The gamma transition probability of the 260.9 keV (M4) is calculated using the present value of ..cap alpha..sub(T) and compared with the single-particle estimate.
Selection Bias in Educational Transition Models: Theory and Empirical Evidence
DEFF Research Database (Denmark)
Holm, Anders; Jæger, Mads
variables. This paper, first, explains theoretically how selection on unobserved variables leads to waning coefficients and, second, illustrates empirically how selection leads to biased estimates of the effect of family background on educational transitions. Our empirical analysis using data from...
Chaos Theory as a Model for Life Transitions Counseling: Nonlinear Dynamics and Life's Changes
Bussolari, Cori J.; Goodell, Judith A.
2009-01-01
Chaos theory is presented for counselors working with clients experiencing life transitions. It is proposed as a model that considers disorder, unpredictability, and lack of control as normal parts of transition processes. Nonlinear constructs from physics are adapted for use in counseling. The model provides a method clients can use to…
Predicting landscape vegetation dynamics using state-and-transition simulation models
Colin J. Daniel; Leonardo. Frid
2012-01-01
This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...
Exactly solvable model of phase transition between hadron and quark-gluon-matter
International Nuclear Information System (INIS)
Gorenstein, M.I.; Petrov, V.K.; Shelest, V.P.; Zinovjev, G.M.
1982-01-01
An exactly solvable model of phase transition between hadron and quark-gluon matter is proposed. The hadron phase of this model is considered as a gas of bags filled by point massless constituents. The mass and volume spectrum of the bag is found. The thermodynamical characteristics of a bag gas in the neighbourhood of a phase transition point are ascertained in analytical form
Neurodynamics of up and down Transitions in Network Model
Directory of Open Access Journals (Sweden)
Xuying Xu
2013-01-01
Full Text Available This paper focuses on the neurodynamical research of a small neural network that consists of 25 neurons. We study the periodic spontaneous activity and transitions between up and down states without synaptic input. The results demonstrate that these transitions are bidirectional or unidirectional with the parameters changing, which not only reveals the function of the cortex, but also cohere with the experiment results.
Model-based estimation of finite population total in stratified sampling
African Journals Online (AJOL)
The work presented in this paper concerns the estimation of finite population total under model – based framework. Nonparametric regression approach as a method of estimating finite population total is explored. The asymptotic properties of the estimators based on nonparametric regression are also developed under ...
The Total Cross Section at the LHC: Models and Experimental Consequences
Cudell, J R
2010-01-01
I review the predictions of the total cross section for many models, and point out that some of them lead to the conclusion that the standard experimental analysis may lead to systematic errors much larger than expected.
The Role of Electron Transport and Trapping in MOS Total-Dose Modeling
International Nuclear Information System (INIS)
Flament, O.; Fleetwood, D.M.; Leray, J.L.; Paillet, P.; Riewe, L.C.; Winokur, P.S.
1999-01-01
Deep and shallow electron traps form in irradiated thermal SiO 2 as a natural response to hole transport and trapping. The density and stability of these defects are discussed, as are their implications for total-dose modeling
Finland: a model of energy transition to be followed?
International Nuclear Information System (INIS)
Lorot, Pascal
2014-09-01
Published before the debate of the French Parliament on the law on energy transition, i.e. on a new energy model, or on the construction of a low carbon and less energy consuming society to comply with France's international commitments, this report first discusses the French situation, the evolution of its energy policy, the challenge of a search for a balance between a cheap electricity and energy independence, and the plurality of factors and objectives (economic, budgetary, environmental, industrial, societal, political and social) which are sometime contradictory. The second part presents and comments the case of Germany which seems to be a good example regarding energy policy, however it faces some difficulties and pitfalls: a quick evolution of the energy mix in favour of renewable energies, but an always higher cost supported almost only by individuals, a disturbed electricity market, an environmental impact due to the wider use of coal (less expensive than gas). The third part addresses the case of Finland which could be a more inspiring example: no decision to phase out nuclear, no decision of a quick and forced development of renewable energies, modification of the energy mix by the development of local forest resources, an electric system of good quality, a high energetic competitiveness. The report outlines the consistency of the Finnish policy: search for a balance between international commitments of reduction of greenhouse gas emissions, competitive tariffs, and strengthening of energetic independence. The associated choices are discussed, and it appears that the cost-efficiency criterion is prevailing
Stochastic resonance induced by novel random transitions of motion of FitzHugh-Nagumo neuron model
International Nuclear Information System (INIS)
Zhang Guangjun; Xu Jianxue
2005-01-01
In contrast to the previous studies which have dealt with stochastic resonance induced by random transitions of system motion between two coexisting limit cycle attractors in the FitzHugh-Nagumo (FHN) neuron model after Hopf bifurcation and which have dealt with the phenomenon of stochastic resonance induced by external noise when the model with periodic input has only one attractor before Hopf bifurcation, in this paper we have focused our attention on stochastic resonance (SR) induced by a novel transition behavior, the transitions of motion of the model among one attractor on the left side of bifurcation point and two attractors on the right side of bifurcation point under the perturbation of noise. The results of research show: since one bifurcation of transition from one to two limit cycle attractors and the other bifurcation of transition from two to one limit cycle attractors occur in turn besides Hopf bifurcation, the novel transitions of motion of the model occur when bifurcation parameter is perturbed by weak internal noise; the bifurcation point of the model may stochastically slightly shift to the left or right when FHN neuron model is perturbed by external Gaussian distributed white noise, and then the novel transitions of system motion also occur under the perturbation of external noise; the novel transitions could induce SR alone, and when the novel transitions of motion of the model and the traditional transitions between two coexisting limit cycle attractors after bifurcation occur in the same process the SR also may occur with complicated behaviors types; the mechanism of SR induced by external noise when FHN neuron model with periodic input has only one attractor before Hopf bifurcation is related to this kind of novel transition mentioned above
Total cross sections of hadron interactions at high energies in low constituents number model
International Nuclear Information System (INIS)
Abramovskij, V.A.; Radchenko, N.V.
2009-01-01
We consider QCD hadrons interaction model in which gluons density is low in initial state wave function in rapidity space and real hadrons are produced from color strings decay. In this model behavior of total cross sections of pp, pp bar, π ± p, K ± p, γp, and γγ interactions is well described. The value of proton-proton total cross section at LHC energy is predicted
International Nuclear Information System (INIS)
Gridneva, S.A.; Rus'kin, V.I.
1980-01-01
Basic features of the statistical model of multiple hadron production based on microcanonical distribution and taking into account the laws of conservation of total angular momentum, isotopic spin, p-, G-, C-eveness and Bose-Einstein statistics requirements are given. The model predictions are compared with experimental data on anti NN annihilation at rest and e + e - annihilation in hadrons at annihilation total energy from 2 to 3 GeV [ru
National Research Council Canada - National Science Library
Yokota, M
2001-01-01
...). This report proposed a model that represents Ca(2+) in a muscle cell controlled by the SR using a state transition probability model in which one state means that protein in the SR is binding ligands, and the other...
Jobs within a 30-minute transit ride - Service
U.S. Environmental Protection Agency — This mapping service summarizes the total number of jobs that can be reached within 30 minutes by transit. EPA modeled accessibility via transit by calculating total...
Directory of Open Access Journals (Sweden)
O. Duteil
2012-05-01
Full Text Available Phosphate distributions simulated by seven state-of-the-art biogeochemical ocean circulation models are evaluated against observations of global ocean nutrient distributions. The biogeochemical models exhibit different structural complexities, ranging from simple nutrient-restoring to multi-nutrient NPZD type models. We evaluate the simulations using the observed volume distribution of phosphate. The errors in these simulated volume class distributions are significantly larger when preformed phosphate (or regenerated phosphate rather than total phosphate is considered. Our analysis reveals that models can achieve similarly good fits to observed total phosphate distributions for a~very different partitioning into preformed and regenerated nutrient components. This has implications for the strength and potential climate sensitivity of the simulated biological carbon pump. We suggest complementing the use of total nutrient distributions for assessing model skill by an evaluation of the respective preformed and regenerated nutrient components.
Bifurcation analysis and dimension reduction of a predator-prey model for the L-H transition
DEFF Research Database (Denmark)
Dam, Magnus; Brøns, Morten; Juul Rasmussen, Jens
2013-01-01
The L-H transition denotes a shift to an improved confinement state of a toroidal plasma in a fusion reactor. A model of the L-H transition is required to simulate the time dependence of tokamak discharges that include the L-H transition. A 3-ODE predator-prey type model of the L-H transition...
Directory of Open Access Journals (Sweden)
Buddhi Arachchige
2017-11-01
Full Text Available This paper focuses on predicting the End of Life and End of Discharge of Lithium ion batteries using a battery capacity fade model and a battery discharge model. The proposed framework will be able to estimate the Remaining Useful Life (RUL and the Remaining charge through capacity fade and discharge models. A particle filter is implemented that estimates the battery’s State of Charge (SOC and State of Life (SOL by utilizing the battery’s physical data such as voltage, temperature, and current measurements. The accuracy of the prognostic framework has been improved by enhancing the particle filter state transition model to incorporate different environmental and loading conditions without retuning the model parameters. The effect of capacity fade in the reduction of the EOD (End of Discharge time with cycling has also been included, integrating both EOL (End of Life and EOD prediction models in order to get more accuracy in the estimations.
Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions
de Souza, S. M.; Rojas, Onofre
2018-01-01
There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.
Micoulaut, Matthieu
2010-07-21
A low temperature Monte Carlo dynamics of a Keating-like oscillator model is used to study the relationship between the nature of network glasses from the viewpoint of rigidity, the thermal reversibility during the glass transition and the strong-fragile behaviour of glass-forming liquids. The model shows that a Phillips optimal glass formation with minimal enthalpic changes is obtained under a cooling/annealing cycle when the system is optimally constrained by the harmonic interactions, i.e. when it is isostatically rigid. For these peculiar systems with a nearly reversible glass transition, the computed activation energy for relaxation time shows also a minimum, which demonstrates that isostatically rigid glasses are strong (Arrhenius-like) glass-forming liquids. Experiments on chalcogenide and oxide glass-forming liquids are discussed under this new perspective and confirm the theoretical prediction for chalcogenide network glasses whereas limitations of the approach appear for weakly interacting (non-covalent, ionic) systems.
New Higgs transitions between dual N=2 string models
International Nuclear Information System (INIS)
Berglund, P.; Katz, S.; Klemm, A.; Mayr, P.
1997-01-01
We describe a new kind of transition between topologically distinct N=2 type II Calabi-Yau vacua through points with enhanced non-abelian gauge symmetries together with fundamental charged matter hyper multiplets. We connect the appearance of matter to the local geometry of the singularity and discuss the relation between the instanton numbers of the Calabi-Yau manifolds taking part in the transition. In a dual heterotic string theory on K3 x T 2 the process corresponds to Higgsing a semi-classical gauge group or equivalently to a variation of the gauge bundle. In special cases the situation reduces to simple conifold transitions in the Coulomb phase of the non-abelian gauge symmetries. (orig.)
Comparison of L-H transition measurements with physics models
International Nuclear Information System (INIS)
Carlstrom, T.N.; Burrell, K.H.; Carreras, B.A.
1999-01-01
Sawteeth and neutrals are found to have a significant influence on the H-mode power threshold scaling. The ion ∇B drift direction has only a small effect on the edge plasma conditions measured near the plasma midplane but a large effect on the divertor plasma. Since the power threshold changes dramatically with the direction of the ion ∇B drift, this implies that phenomena in the divertor region are critical for the L-H transition. Local conditions at the plasma edge are consistent with several theories of the L-H transition that use edge gradients in their formulation of a critical threshold parameter. However, scatter in the database is too large to distinguish between conditions that lead to an L-H transition and those that remain in L-mode. (author)
Comparison of L-H transition measurements with physics models
International Nuclear Information System (INIS)
Carlstrom, T.N.; Burrell, K.H.; Groebner, R.J.
2001-01-01
Sawteeth and neutrals are found to have a significant influence on the H-mode power threshold scaling. The ion ∇B drift direction has only a small effect on the edge plasma conditions measured near the plasma midplane but a large effect on the divertor plasma. Since the power threshold changes dramatically with the direction of the ion ∇B drift, this implies that phenomena in the divertor region are critical for the L-H transition. Local conditions at the plasma edge are consistent with several theories of the L-H transition that use edge gradients in their formulation of a critical threshold parameter. However, scatter in the database is too large to distinguish between conditions that lead to an L-H transition and those that remain in L-mode. (author)
A Solvable Model for Nuclear Shape Phase Transitions
International Nuclear Information System (INIS)
Levai, G.; Arias, J. M.
2009-01-01
There has been considerable interest recently in phase transitions that occur between some well-defined nuclear shapes, e.g. the spherical vibrator, the axially deformed rotor and the γ-unstable rotor, which are assigned to the U(5), SU(3) and 0(6) symmetries. These shape phase transitions occur through critical points of the IBM phase diagram and correspond to rapid structural changes. The first transition of this type describes transition form the spherical to the γ-unstable phase and has been associated with an E(5) symmetry. Later further critical point symmetries e.g. X(5) and Y(5) have also been proposed for transitions between other nuclear shape phases. In another application the chain of even Ru isotopes was considered from A 98 to 112 [2]. The parameters were extracted from a fit to the low-lying energy spectrum of each nucleus and were used to plot the corresponding potential. It was found that up to A =102 the potential is essentially an harmonic oscillator, while at A =104 a rather flat potential was seen, in accordance with the expected phase transition and E(5) symmetry there. With increasing A then the minimum got increasingly deeper and moved away from β = 0. We discuss the possibility of generalizing the formalism in two ways: first by including dependence on the 7 variable allowing for the approximate description of nuclei close to the X(5) symmetry, and second, including higher-lying energy levels in the quasi-exactly solvable formalism
Comparison of L-H transition measurements with physics models
International Nuclear Information System (INIS)
Carlstrom, T.N.; Burrell, K.H.; Groebner, R.J.; Leonard, A.W.; Osborne, T.H.; Thomas, D.M.
1998-12-01
A technique of fitting a modified hyperbolic tangent to the edge profiles has improved the localization of plasma edge parameters. Non-dimensional edge parameters are broadly consistent with several theories of the L-H transition that use edge gradients in their formulation of a critical threshold parameter. The ion ∇B drift direction has only a small effect on the edge plasma conditions measured near the plasma midplane but a large effect on the divertor plasma. The dramatic change of power threshold with the direction of the ion ∇B drift implies that phenomena in the divertor region may be critical for the L-H transition
Mahajan, Ritika; Agrawal, Rajat; Sharma, Vinay; Nangia, Vinay
2016-01-01
Purpose: The purpose of this paper is to identify challenges for management education in India and explain their nature, significance and interrelations using total interpretive structural modelling (TISM), an innovative version of Warfield's interpretive structural modelling (ISM). Design/methodology/approach: The challenges have been drawn from…
The Total Quality Management Model Department of Personnel State of Colorado,
A panel of three members will present the Total Quality Management model recently designed for the Department of Personnel, State of Colorado. This model was selected to increase work quality and productivity of the Department and to exemplify Governor Romer’s commitment to quality work within state government.
Datta-Barua, S.; Gachancipa, J. N.; Deshpande, K.; Herrera, J. A.; Lehmacher, G. A.; Su, Y.; Gyuk, G.; Bust, G. S.; Hampton, D. L.
2017-12-01
High concentration of free electrons in the ionosphere can cause fluctuations in incoming electromagnetic waves, such as those from the different Global Navigation Satellite Systems (GNSS). The behavior of the ionosphere depends on time and location, and it is highly influenced by solar activity. The purpose of this study is to determine the impact of a total solar eclipse on the local ionosphere in terms of ionospheric scintillations, and on the global ionosphere in terms of TEC (Total Electron Content). The studied eclipse occurred on 21 August 2017 across the continental United States. During the eclipse, we expected to see a decrease in the scintillation strength, as well as in the TEC values. As a broader impact part of our recently funded NSF proposal, we temporarily deployed two GNSS receivers on the eclipse's totality path. One GNSS receiver was placed in Clemson, SC. This is a multi-frequency GNSS receiver (NovAtel GPStation-6) capable of measuring high and low rate scintillation data as well as TEC values from four different GNSS systems. We had the receiver operating before, during, and after the solar eclipse to enable the comparison between eclipse and non-eclipse periods. A twin receiver collected data at Daytona Beach, FL during the same time, where an 85% partial solar eclipse was observed. Additionally, we set up a ground receiver onsite in the path of totality in Perryville, Missouri, from which the Adler Planetarium of Chicago launched a high-altitude balloon to capture a 360-degree video of the eclipse from the stratosphere. By analyzing the collected data, this study looks at the effects of partial and total solar eclipse periods on high rate GNSS scintillation data at mid-latitudes, which had not been explored in detail. This study also explores the impact of solar eclipses on signals from different satellite constellations (GPS, GLONASS, and Galileo). Throughout the eclipse, the scintillation values did not appear to have dramatic changes
Time-dependent Hartree-Fock dynamics and phase transition in Lipkin-Meshkov-Glick model
International Nuclear Information System (INIS)
Kan, K.; Lichtner, P.C.; Dworzecka, M.; Griffin, J.J.
1980-01-01
The time-dependent Hartree-Fock solutions of the two-level Lipkin-Meshkov-Glick model are studied by transforming the time-dependent Hartree-Fock equations into Hamilton's canonical form and analyzing the qualitative structure of the Hartree-Fock energy surface in the phase space. It is shown that as the interaction strength increases these time-dependent Hartree-Fock solutions undergo a qualitative change associated with the ground state phase transition previously studied in terms of coherent states. For two-body interactions stronger than the critical value, two types of time-dependent Hartree-Fock solutions (the ''librations'' and ''rotations'' in Hamilton's mechanics) exist simultaneously, while for weaker interactions only the rotations persist. It is also shown that the coherent states with the maximum total pseudospin value are determinants, so that time-dependent Hartree-Fock analysis is equivalent to the coherent state method
Directory of Open Access Journals (Sweden)
Katie J. Moerlein
2012-03-01
Full Text Available Arctic ecosystems are undergoing rapid changes as a result of global climate change, with significant implications for the livelihoods of Arctic peoples. In this paper, based on ethnographic research conducted with the Iñupiaq communities of Noatak and Selawik in northwestern Alaska, we detail prominent environmental changes observed over the past twenty to thirty years and their impacts on subsistence-based lifestyles. However, we suggest that it is ultimately insufficient to try to understand how Arctic communities are experiencing and responding to climate change in isolation from other stressors. During interviews and participant observation documenting local observations of climatic and related environmental shifts and impacts to subsistence fishing practices, we find the inseparability of environmental, social, economic, cultural, and political realms for community residents. Many of our informants, who live in a mixed economy based on various forms of income and widespread subsistence harvesting of fish and game, perceive and experience climate change as embedded among numerous other factors affecting subsistence patterns and practices. Changing lifestyles, decreasing interest by younger generations in pursuing subsistence livelihoods, and economic challenges are greatly affecting contemporary subsistence patterns and practices in rural Alaska. Observations of climate change are perceived, experienced, and articulated to researchers through a broader lens of these linked lifestyle and cultural shifts. Therefore, we argue that to properly assess and understand the impacts of climate change on the subsistence practices in Arctic communities, we must also consider the total environment of change that is dramatically shaping the relationship between people, communities, and their surrounding environments.
Description of radiative transitions in the relativistic string model
International Nuclear Information System (INIS)
Berdnikov, E.B.; Nanobashvili, G.G.; Pron'ko, G.P.
1991-01-01
The transition operator for a straight-line string in the electromagnetic field has been built. It's matrix elements between the states of arbitrary spin are calculated in lowest order of perturbation theory. The consistensy conditions for the operator of interaction arising due to quantum constraints are also discussed. 12 refs
Flexibility and security : National social models in transitional labour markets
Muffels, R.J.A.; Crouch, Colin; Wilthagen, A.C.J.M.
2014-01-01
Aggregate and individual data are used to test the association between employment performance and different ways of reconciling flexibility and security in European labour markets. Particular use is made of statistics on individuals’ labour market transitions as revealed by national labour force
Energy Technology Data Exchange (ETDEWEB)
Covey, Curt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trenberth, Kevin E. [National Center for Atmospheric Research, Boulder, CO (United States)
2016-03-02
This document presents the large scale water budget statistics of a perturbed input-parameter ensemble of atmospheric model runs. The model is Version 5.1.02 of the Community Atmosphere Model (CAM). These runs are the “C-Ensemble” described by Qian et al., “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5” (Journal of Advances in Modeling the Earth System, 2015). As noted by Qian et al., the simulations are “AMIP type” with temperature and sea ice boundary conditions chosen to match surface observations for the five year period 2000-2004. There are 1100 ensemble members in addition to one run with default inputparameter values.
Calibration of the 7—Equation Transition Model for High Reynolds Flows at Low Mach
Colonia, S.; Leble, V.; Steijl, R.; Barakos, G.
2016-09-01
The numerical simulation of flows over large-scale wind turbine blades without considering the transition from laminar to fully turbulent flow may result in incorrect estimates of the blade loads and performance. Thanks to its relative simplicity and promising results, the Local-Correlation based Transition Modelling concept represents a valid way to include transitional effects into practical CFD simulations. However, the model involves coefficients that need tuning. In this paper, the γ—equation transition model is assessed and calibrated, for a wide range of Reynolds numbers at low Mach, as needed for wind turbine applications. An aerofoil is used to evaluate the original model and calibrate it; while a large scale wind turbine blade is employed to show that the calibrated model can lead to reliable solutions for complex three-dimensional flows. The calibrated model shows promising results for both two-dimensional and three-dimensional flows, even if cross-flow instabilities are neglected.
An adaptive wavelet-network model for forecasting daily total solar-radiation
International Nuclear Information System (INIS)
Mellit, A.; Benghanem, M.; Kalogirou, S.A.
2006-01-01
The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet-networks are feed-forward networks using wavelets as activation functions. Wavelet-networks have been used successfully in various engineering applications such as classification, identification and control problems. In this paper, the use of adaptive wavelet-network architecture in finding a suitable forecasting model for predicting the daily total solar-radiation is investigated. Total solar-radiation is considered as the most important parameter in the performance prediction of renewable energy systems, particularly in sizing photovoltaic (PV) power systems. For this purpose, daily total solar-radiation data have been recorded during the period extending from 1981 to 2001, by a meteorological station in Algeria. The wavelet-network model has been trained by using either the 19 years of data or one year of the data. In both cases the total solar radiation data corresponding to year 2001 was used for testing the model. The network was trained to accept and handle a number of unusual cases. Results indicate that the model predicts daily total solar-radiation values with a good accuracy of approximately 97% and the mean absolute percentage error is not more than 6%. In addition, the performance of the model was compared with different neural network structures and classical models. Training algorithms for wavelet-networks require smaller numbers of iterations when compared with other neural networks. The model can be used to fill missing data in weather databases. Additionally, the proposed model can be generalized and used in different locations and for other weather data, such as sunshine duration and ambient temperature. Finally, an application using the model for sizing a PV-power system is presented in order to confirm the validity of this model
Hierarchical Colored Petri Nets for Modeling and Analysis of Transit Signal Priority Control Systems
Directory of Open Access Journals (Sweden)
Yisheng An
2018-01-01
Full Text Available In this paper, we consider the problem of developing a model for traffic signal control with transit priority using Hierarchical Colored Petri nets (HCPN. Petri nets (PN are useful for state analysis of discrete event systems due to their powerful modeling capability and mathematical formalism. This paper focuses on their use to formalize the transit signal priority (TSP control model. In a four-phase traffic signal control model, the transit detection and two kinds of transit priority strategies are integrated to obtain the HCPN-based TSP control models. One of the advantages to use these models is the clear presentation of traffic light behaviors in terms of conditions and events that cause the detection of a priority request by a transit vehicle. Another advantage of the resulting models is that the correctness and reliability of the proposed strategies are easily analyzed. After their full reachable states are generated, the boundness, liveness, and fairness of the proposed models are verified. Experimental results show that the proposed control model provides transit vehicles with better effectiveness at intersections. This work helps advance the state of the art in the design of signal control models related to the intersection of roadways.
A new stochastic cellular automaton model on traffic flow and its jamming phase transition
International Nuclear Information System (INIS)
Sakai, Satoshi; Nishinari, Katsuhiro; Iida, Shinji
2006-01-01
A general stochastic traffic cellular automaton (CA) model, which includes the slow-to-start effect and driver's perspective, is proposed in this paper. It is shown that this model includes well-known traffic CA models such as the Nagel-Schreckenberg model, the quick-start model and the slow-to-start model as specific cases. Fundamental diagrams of this new model clearly show metastable states around the critical density even when the stochastic effect is present. We also obtain analytic expressions of the phase transition curve in phase diagrams by using approximate flow-density relations at boundaries. These phase transition curves are in excellent agreement with numerical results
A Feeder-Bus Dispatch Planning Model for Emergency Evacuation in Urban Rail Transit Corridors
Wang, Yun; Yan, Xuedong; Zhou, Yu; Zhang, Wenyi
2016-01-01
The mobility of modern metropolises strongly relies on urban rail transit (URT) systems, and such a heavy dependence causes that even minor service interruptions would make the URT systems unsustainable. This study aims at optimally dispatching the ground feeder-bus to coordinate with the urban rails’ operation for eliminating the effect of unexpected service interruptions in URT corridors. A feeder-bus dispatch planning model was proposed for the collaborative optimization of URT and feeder-bus cooperation under emergency situations and minimizing the total evacuation cost of the feeder-buses. To solve the model, a concept of dummy feeder-bus system is proposed to transform the non-linear model into traditional linear programming (ILP) model, i.e., traditional transportation problem. The case study of Line #2 of Nanjing URT in China was adopted to illustrate the model application and sensitivity analyses of the key variables. The modeling results show that as the evacuation time window increases, the total evacuation cost as well as the number of dispatched feeder-buses decrease, and the dispatched feeder-buses need operate for more times along the feeder-bus line. The number of dispatched feeder-buses does not show an obvious change with the increase of parking spot capacity and time window, indicating that simply increasing the parking spot capacity would cause huge waste for the emergent bus utilization. When the unbalanced evacuation demand exists between stations, the more feeder-buses are needed. The method of this study will contribute to improving transportation emergency management and resource allocation for URT systems. PMID:27676179
A latent transition model of the effects of a teen dating violence prevention initiative.
Williams, Jason; Miller, Shari; Cutbush, Stacey; Gibbs, Deborah; Clinton-Sherrod, Monique; Jones, Sarah
2015-02-01
Patterns of physical and psychological teen dating violence (TDV) perpetration, victimization, and related behaviors were examined with data from the evaluation of the Start Strong: Building Healthy Teen Relationships initiative, a dating violence primary prevention program targeting middle school students. Latent class and latent transition models were used to estimate distinct patterns of TDV and related behaviors of bullying and sexual harassment in seventh grade students at baseline and to estimate transition probabilities from one pattern of behavior to another at the 1-year follow-up. Intervention effects were estimated by conditioning transitions on exposure to Start Strong. Latent class analyses suggested four classes best captured patterns of these interrelated behaviors. Classes were characterized by elevated perpetration and victimization on most behaviors (the multiproblem class), bullying perpetration/victimization and sexual harassment victimization (the bully-harassment victimization class), bullying perpetration/victimization and psychological TDV victimization (bully-psychological victimization), and experience of bully victimization (bully victimization). Latent transition models indicated greater stability of class membership in the comparison group. Intervention students were less likely to transition to the most problematic pattern and more likely to transition to the least problem class. Although Start Strong has not been found to significantly change TDV, alternative evaluation models may find important differences. Latent transition analysis models suggest positive intervention impact, especially for the transitions at the most and the least positive end of the spectrum. Copyright © 2015. Published by Elsevier Inc.
Population model for nickel-like gold which transitions to discard
International Nuclear Information System (INIS)
Busquet, M.; Bruneau, J.
1986-04-01
We have started studies of an extensive population model for gold ionized 49 to 52 times. We shall present in this paper a discussion on the effects of discarding low-rate transitions such as cascades, dielectronic transitions,... Their accounting for, even in a crude way, allow some understanding of typical features of gold spectra
Digital soil mapping as a tool for quantifying state-and-transition models
Ecological sites and associated state-and-transition models (STMs) are rapidly becoming important land management tools in rangeland systems in the US and around the world. Descriptions of states and transitions are largely developed from expert knowledge and generally accepted species and community...
van Oort, N.; Brands, Ties; de Romph, E.; Aceves Flores, J.
2014-01-01
Nowadays, transport demand models do not explicitly evaluate the impacts of service reliability of transit. Service reliability of transit systems is adversely experienced by users, as it causes additional travel time and unsecure arrival times. Because of this, travelers are likely to perceive a
Integral definition of transition time in the Landau-Zener model
International Nuclear Information System (INIS)
Yan Yue; Wu Biao
2010-01-01
We give a general definition for the transition time in the Landau-Zener model. This definition allows us to compute numerically the Landau-Zener transition time at any sweeping rate without ambiguity in both diabatic and adiabatic bases. With this new definition, analytical results are obtained in both the adiabatic limit and the sudden limit.
R. Kemp (René); D.A. Loorbach (Derk); J. Rotmans (Jan)
2007-01-01
textabstractSustainable development requires changes in socio-technical systems and wider societal change - in beliefs, values and governance that co-evolve with technology changes. In this article we present a practical model for managing processes of co-evolution: transition management. Transition
Total dose and dose rate models for bipolar transistors in circuit simulation.
Energy Technology Data Exchange (ETDEWEB)
Campbell, Phillip Montgomery; Wix, Steven D.
2013-05-01
The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.
Mixed-order phase transition in a minimal, diffusion-based spin model.
Fronczak, Agata; Fronczak, Piotr
2016-07-01
In this paper we exactly solve, within the grand canonical ensemble, a minimal spin model with the hybrid phase transition. We call the model diffusion based because its Hamiltonian can be recovered from a simple dynamic procedure, which can be seen as an equilibrium statistical mechanics representation of a biased random walk. We outline the derivation of the phase diagram of the model, in which the triple point has the hallmarks of the hybrid transition: discontinuity in the average magnetization and algebraically diverging susceptibilities. At this point, two second-order transition curves meet in equilibrium with the first-order curve, resulting in a prototypical mixed-order behavior.
Phase transitions in the random field Ising model in the presence of a transverse field
Energy Technology Data Exchange (ETDEWEB)
Dutta, A.; Chakrabarti, B.K. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Stinchcombe, R.B. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Department of Physics, Oxford (United Kingdom)
1996-09-07
We have studied the phase transition behaviour of the random field Ising model in the presence of a transverse (or tunnelling) field. The mean field phase diagram has been studied in detail, and in particular the nature of the transition induced by the tunnelling (transverse) field at zero temperature. Modified hyper-scaling relation for the zero-temperature transition has been derived using the Suzuki-Trotter formalism and a modified 'Harris criterion'. Mapping of the model to a randomly diluted antiferromagnetic Ising model in uniform longitudinal and transverse field is also given. (author)
Directory of Open Access Journals (Sweden)
M. C. Roa-García
2010-08-01
Full Text Available We present a new modeling approach analyzing and predicting the Transit Time Distribution (TTD and the Response Time Distribution (RTD from hourly to annual time scales as two distinct hydrological processes. The model integrates Isotope Hydrograph Separation (IHS and the Instantaneous Unit Hydrograph (IUH approach as a tool to provide a more realistic description of transit and response time of water in catchments. Individual event simulations and parameterizations were combined with long-term baseflow simulation and parameterizations; this provides a comprehensive picture of the catchment response for a long time span for the hydraulic and isotopic processes. The proposed method was tested in three Andean headwater catchments to compare the effects of land use on hydrological response and solute transport. Results show that the characteristics of events and antecedent conditions have a significant influence on TTD and RTD, but in general the RTD of the grassland dominated catchment is concentrated in the shorter time spans and has a higher cumulative TTD, while the forest dominated catchment has a relatively higher response distribution and lower cumulative TTD. The catchment where wetlands concentrate shows a flashier response, but wetlands also appear to prolong transit time.
Boundary-layer transition prediction using a simplified correlation-based model
Directory of Open Access Journals (Sweden)
Xia Chenchao
2016-02-01
Full Text Available This paper describes a simplified transition model based on the recently developed correlation-based γ-Reθt transition model. The transport equation of transition momentum thickness Reynolds number is eliminated for simplicity, and new transition length function and critical Reynolds number correlation are proposed. The new model is implemented into an in-house computational fluid dynamics (CFD code and validated for low and high-speed flow cases, including the zero pressure flat plate, airfoils, hypersonic flat plate and double wedge. Comparisons between the simulation results and experimental data show that the boundary-layer transition phenomena can be reasonably illustrated by the new model, which gives rise to significant improvements over the fully laminar and fully turbulent results. Moreover, the new model has comparable features of accuracy and applicability when compared with the original γ-Reθt model. In the meantime, the newly proposed model takes only one transport equation of intermittency factor and requires fewer correlations, which simplifies the original model greatly. Further studies, especially on separation-induced transition flows, are required for the improvement of the new model.
Balmer, Dorene F; Richards, Boyd F; Varpio, Lara
2015-10-01
Using Bourdieu's theoretical model as a lens for analysis, we sought to understand how students experience the undergraduate medical education (UME) milieu, focusing on how they navigate transitions from the preclinical phase, to the major clinical year (MCY), and to the preparation for residency phase. Twenty-two medical students participated in this longitudinal case study. Students had similar preclinical and post-MCY experiences but different MCY experiences (rotational vs. longitudinal tracks). We interviewed students every 6 months in the preclinical phase, mid-way through MCY, and 7-8 months before graduation (101 total interviews). We inductively created codes, iteratively revised codes to best-fit the data, and thematically clustered codes into Bourdieu-informed categories: field (social structures), capital (resources) and habitus (dispositions). We found that students acclimated to shifts in the UME field as they moved through medical school: from medical school itself to the health system and back. To successfully navigate transitions, students learned to secure capital as medical knowledge and social connections in the preclinical and preparation for residency phases, and as reputable patient care and being noticed in the clinical phase. To obtain capital, and be well-positioned for the next phase of training, students consistently relied on dispositions of initiative and flexibility. In summary, students experience the complex context of medical school through a series of transitions. Efforts to improve UME would be well-served by greater awareness of the social structures (field) that students encounter, the resources to which they afford value (capital), and the dispositions which aid acquisition of these resources (habitus).
SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size
International Nuclear Information System (INIS)
Dong Suyalatu; Deng Yan-Bin; Huang Yong-Chang
2017-01-01
Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network . (paper)
SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size
Dong, Suyalatu; Deng, Yan-Bin; Huang, Yong-Chang
2017-10-01
Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network. Supported by National Natural Science Foundation of China under Grant Nos. 11275017 and 11173028
Building and Running the Yucca Mountain Total System Performance Model in a Quality Environment
International Nuclear Information System (INIS)
D.A. Kalinich; K.P. Lee; J.A. McNeish
2005-01-01
A Total System Performance Assessment (TSPA) model has been developed to support the Safety Analysis Report (SAR) for the Yucca Mountain High-Level Waste Repository. The TSPA model forecasts repository performance over a 20,000-year simulation period. It has a high degree of complexity due to the complexity of its underlying process and abstraction models. This is reflected in the size of the model (a 27,000 element GoldSim file), its use of dynamic-linked libraries (14 DLLs), the number and size of its input files (659 files totaling 4.7 GB), and the number of model input parameters (2541 input database entries). TSPA model development and subsequent simulations with the final version of the model were performed to a set of Quality Assurance (QA) procedures. Due to the complexity of the model, comments on previous TSPAs, and the number of analysts involved (22 analysts in seven cities across four time zones), additional controls for the entire life-cycle of the TSPA model, including management, physical, model change, and input controls were developed and documented. These controls did not replace the QA. procedures, rather they provided guidance for implementing the requirements of the QA procedures with the specific intent of ensuring that the model development process and the simulations performed with the final version of the model had sufficient checking, traceability, and transparency. Management controls were developed to ensure that only management-approved changes were implemented into the TSPA model and that only management-approved model runs were performed. Physical controls were developed to track the use of prototype software and preliminary input files, and to ensure that only qualified software and inputs were used in the final version of the TSPA model. In addition, a system was developed to name, file, and track development versions of the TSPA model as well as simulations performed with the final version of the model
Chen, Pei; Liu, Rui; Li, Yongjun; Chen, Luonan
2016-07-15
Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e. before-transition state, pre-transition state and after-transition state, which can be considered as three different Markov processes. By exploring the rich dynamical information provided by high-throughput data, we present a novel computational method, i.e. hidden Markov model (HMM) based approach, to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e. the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin and HCV-induced dysplasia and hepatocellular carcinoma. Both functional and pathway enrichment analyses validate the computational results. The source code and some supporting files are available at https://github.com/rabbitpei/HMM_based-method lnchen@sibs.ac.cn or liyj@scut.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Suluksna, Keerati; Juntasaro, Ekachai
2008-01-01
The γ-Re θ transition model of Menter et al. [Menter, F.R., Langtry, R.B., Volker, S., Huang, P.G., 2005. Transition modelling for general purpose CFD codes. ERCOFTAC International Symposium Engineering Turbulence Modelling and Measurements] is a highly generalized transport equation model in which it has been developed based on the concept of local variables compatible with modern CFD methods where the unstructured grid and the parallel computing technique are usually integrated in. To perform the prediction with this model, two essential parameters, F length which is used to control the length of the transition region and Re θc which is used to control the onset of the transition location, must be specified to close the model. At present, both parameters are proprietary and their formulations are unpublished. For the first time here, the relations for both parameters are formulated by means of numerical experiments and analysis under the assumption of Re θc = Re θt corresponding with the bypass transition behavior. Based on this analysis, the optimized values of the parameters are found and their relations can be constructed as follows: Re θc = 803.73(Tu ∞ , le + 0.6067) -1.027 and F length = 163 ln(Tu ∞ , le ) + 3.625. The performance of this transition model is assessed by testing with the experimental cases of T3AM, T3A, and T3B. Detailed comparisons with the predicted results by the transition models of Suzen and Huang [Suzen, Y.B., Huang, P.G., 2000. Modeling of flow transition using an intermittency transport equation. J. Fluids Eng. 122, 273-284] and Lodefier et al. [Lodefier, K., Merci, B., De Langhe, C., Dick, E., 2003. Transition modelling with the SST turbulence model and intermittency transport equation. ASME Turbo Expo, Atlanta, GA, USA, June 16-19], and also with the predicted results by the k-ε model of Launder and Sharma [Launder, B.E., Sharma, B., 1974. Application of the energy dissipation model of turbulence to the calculation of
Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing
2017-05-01
Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.
Latent Transition Analysis with a Mixture Item Response Theory Measurement Model
Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian
2010-01-01
A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…
Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng
2009-07-01
Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.
A multiple-field coupled resistive transition model for superconducting Nb3Sn
Directory of Open Access Journals (Sweden)
Lin Yang
2016-12-01
Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.
Calculation model for 16N transit time in the secondary side of steam generators
International Nuclear Information System (INIS)
Liu Songyu; Xu Jijun; Xu Ming
1998-01-01
The 16 N transit time is essential to determine the leak-rate of steam generator tubes leaks with 16 N monitoring system, which is a new technique. A model was developed for calculation 16 N transit time in the secondary side of steam generators. According to the flow characters of secondary side fluid, the transit times divide into four sectors from tube sheet to the sensor on steam line. The model assumes that 16 N is moving as vapor phase in the secondary-side. So the model for vapor velocity distribution in tube bundle is presented in detail. The 16 N transit time calculation results of this model compare with these of EDF on steam generator of Qinshan NPP
Relation between quantum phase transitions and classical instability points in the pairing model
International Nuclear Information System (INIS)
Reis, Mauricio; Terra Cunha, M.O.; Oliveira, Adelcio C.; Nemes, M.C.
2005-01-01
A quantum phase transition, characterized by an accumulation of energy levels in the espectrum of the model, is associated with a qualitative change in the corresponding classical dynamic obtained upon generalized coherent states of angular momentum
A multiple-field coupled resistive transition model for superconducting Nb3Sn
Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li
2016-12-01
A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.
Directory of Open Access Journals (Sweden)
J. G. Coen van Hasselt
2014-01-01
Full Text Available This work describes a first population pharmacokinetic (PK model for free and total cefazolin during pregnancy, which can be used for dose regimen optimization. Secondly, analysis of PK studies in pregnant patients is challenging due to study design limitations. We therefore developed a semiphysiological modeling approach, which leveraged gestation-induced changes in creatinine clearance (CrCL into a population PK model. This model was then compared to the conventional empirical covariate model. First, a base two-compartmental PK model with a linear protein binding was developed. The empirical covariate model for gestational changes consisted of a linear relationship between CL and gestational age. The semiphysiological model was based on the base population PK model and a separately developed mixed-effect model for gestation-induced change in CrCL. Estimates for baseline clearance (CL were 0.119 L/min (RSE 58% and 0.142 L/min (RSE 44% for the empirical and semiphysiological models, respectively. Both models described the available PK data comparably well. However, as the semiphysiological model was based on prior knowledge of gestation-induced changes in renal function, this model may have improved predictive performance. This work demonstrates how a hybrid semiphysiological population PK approach may be of relevance in order to derive more informative inferences.
Newton-Gauss Algorithm of Robust Weighted Total Least Squares Model
Directory of Open Access Journals (Sweden)
WANG Bin
2015-06-01
Full Text Available Based on the Newton-Gauss iterative algorithm of weighted total least squares (WTLS, a robust WTLS (RWTLS model is presented. The model utilizes the standardized residuals to construct the weight factor function and the square root of the variance component estimator with robustness is obtained by introducing the median method. Therefore, the robustness in both the observation and structure spaces can be simultaneously achieved. To obtain standardized residuals, the linearly approximate cofactor propagation law is employed to derive the expression of the cofactor matrix of WTLS residuals. The iterative calculation steps for RWTLS are also described. The experiment indicates that the model proposed in this paper exhibits satisfactory robustness for gross errors handling problem of WTLS, the obtained parameters have no significant difference with the results of WTLS without gross errors. Therefore, it is superior to the robust weighted total least squares model directly constructed with residuals.
Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal
2014-06-01
This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.
Modeling on bubbly to churn flow pattern transition in narrow rectangular channel
International Nuclear Information System (INIS)
Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng
2012-01-01
A theoretical model based on some reasonable concepts was developed to predict the bubbly flow to churn flow pattern transition in vertical narrow rectangular channel under flow boiling condition. The maximum size of ideal bubble in narrow rectangular channel was calculated based on previous literature. The thermal hydraulics boundary condition of bubbly to churn flow pattern transition was exported from Helmholtz and maximum size of ideal bubble. The theoretical model was validated by existent experimental data. (authors)
International Nuclear Information System (INIS)
Suluksna, Keerati; Dechaumphai, Pramote; Juntasaro, Ekachai
2009-01-01
This paper presents mathematical expressions for two significant parameters which control the onset location and length of transition in the γ-Re θ transition model of Menter et al. [Menter, F.R., Langtry, R.B., Volker, S., Huang, P.G., 2005. Transition modelling for general purpose CFD codes. In: ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements]. The expressions are formulated and calibrated by means of numerical experiments for predicting transitional boundary layers under the influences of freestream turbulence and pressure gradient. It was also found that the correlation for transition momentum thickness Reynolds number needs only to be expressed in terms of local turbulence intensity, so that the more complex form that includes pressure gradient effects is unnecessary. Transitional boundary layers on a flat plate both with and without pressure gradients are employed to assess the performance of these two expressions for predicting the transition. The results show that the proposed expressions can work well with the model of Menter et al. (2005)
Application of the algebraic RNG model for transition simulation. [renormalization group theory
Lund, Thomas S.
1990-01-01
The algebraic form of the RNG model of Yakhot and Orszag (1986) is investigated as a transition model for the Reynolds averaged boundary layer equations. It is found that the cubic equation for the eddy viscosity contains both a jump discontinuity and one spurious root. A yet unpublished transformation to a quartic equation is shown to remove the numerical difficulties associated with the discontinuity, but only at the expense of merging both the physical and spurious root of the cubic. Jumps between the branches of the resulting multiple-valued solution are found to lead to oscillations in flat plate transition calculations. Aside from the oscillations, the transition behavior is qualitatively correct.
Charge and transition densities of samarium isotopes in the interacting Boson model
International Nuclear Information System (INIS)
Moinester, M.A.; Alster, J.; Dieperink, A.E.L.
1982-01-01
The interacting boson approximation (IBA) model has been used to interpret the ground-state charge distributions and lowest 2 + transition charge densities of the even samarium isotopes for A = 144-154. Phenomenological boson transition densities associated with the nucleons comprising the s-and d-bosons of the IBA were determined via a least squares fit analysis of charge and transition densities in the Sm isotopes. The application of these boson trasition densities to higher excited 0 + and 2 + states of Sm, and to 0 + and 2 + transitions in neighboring nuclei, such as Nd and Gd, is described. IBA predictions for the transition densities of the three lowest 2 + levels of 154 Gd are given and compared to theoretical transition densities based on Hartree-Fock calculations. The deduced quadrupole boson transition densities are in fair agreement with densities derived previously from 150 Nd data. It is also shown how certain moments of the best fit boson transition densities can simply and sucessfully describe rms radii, isomer shifts, B(E2) strengths, and transition radii for the Sm isotopes. (orig.)
Beacon satellite studies and modelling of total electron contents of the ionosphere
International Nuclear Information System (INIS)
Tyagi, T.R.
1990-01-01
An attempt is made to highlight some of the beacon satellite studies, particularly those relating to total electron content (TEC) and scintillations, with special attention to Indian subcontinent observations. The modelling of TEC is described. The scope of new experiments for specific problem is indicated. (author). 78 refs., 12 figs
Estimating total evaporation at the field scale using the SEBS model ...
African Journals Online (AJOL)
Estimating total evaporation at the field scale using the SEBS model and data infilling ... of two infilling techniques to create a daily satellite-derived ET time series. ... and produced R2 and RMSE values of 0.33 and 2.19 mm∙d-1, respectively, ...
Directory of Open Access Journals (Sweden)
Fereydoun Naghibi
2016-12-01
Full Text Available This paper presents an advanced method in urban growth modeling to discover transition rules of cellular automata (CA using the artificial bee colony (ABC optimization algorithm. Also, comparisons between the simulation results of CA models optimized by the ABC algorithm and the particle swarm optimization algorithms (PSO as intelligent approaches were performed to evaluate the potential of the proposed methods. According to previous studies, swarm intelligence algorithms for solving optimization problems such as discovering transition rules of CA in land use change/urban growth modeling can produce reasonable results. Modeling of urban growth as a dynamic process is not straightforward because of the existence of nonlinearity and heterogeneity among effective involved variables which can cause a number of challenges for traditional CA. ABC algorithm, the new powerful swarm based optimization algorithms, can be used to capture optimized transition rules of CA. This paper has proposed a methodology based on remote sensing data for modeling urban growth with CA calibrated by the ABC algorithm. The performance of ABC-CA, PSO-CA, and CA-logistic models in land use change detection is tested for the city of Urmia, Iran, between 2004 and 2014. Validations of the models based on statistical measures such as overall accuracy, figure of merit, and total operating characteristic were made. We showed that the overall accuracy of the ABC-CA model was 89%, which was 1.5% and 6.2% higher than those of the PSO-CA and CA-logistic model, respectively. Moreover, the allocation disagreement (simulation error of the simulation results for the ABC-CA, PSO-CA, and CA-logistic models are 11%, 12.5%, and 17.2%, respectively. Finally, for all evaluation indices including running time, convergence capability, flexibility, statistical measurements, and the produced spatial patterns, the ABC-CA model performance showed relative improvement and therefore its superiority was
Image Restoration Based on the Hybrid Total-Variation-Type Model
Directory of Open Access Journals (Sweden)
Baoli Shi
2012-01-01
Full Text Available We propose a hybrid total-variation-type model for the image restoration problem based on combining advantages of the ROF model with the LLT model. Since two L1-norm terms in the proposed model make it difficultly solved by using some classically numerical methods directly, we first employ the alternating direction method of multipliers (ADMM to solve a general form of the proposed model. Then, based on the ADMM and the Moreau-Yosida decomposition theory, a more efficient method called the proximal point method (PPM is proposed and the convergence of the proposed method is proved. Some numerical results demonstrate the viability and efficiency of the proposed model and methods.
Spectral properties near the Mott transition in the two-dimensional Hubbard model
Kohno, Masanori
2013-03-01
Single-particle excitations near the Mott transition in the two-dimensional (2D) Hubbard model are investigated by using cluster perturbation theory. The Mott transition is characterized by the loss of the spectral weight from the dispersing mode that leads continuously to the spin-wave excitation of the Mott insulator. The origins of the dominant modes of the 2D Hubbard model near the Mott transition can be traced back to those of the one-dimensional Hubbard model. Various anomalous spectral features observed in cuprate high-temperature superconductors, such as the pseudogap, Fermi arc, flat band, doping-induced states, hole pockets, and spinon-like and holon-like branches, as well as giant kink and waterfall in the dispersion relation, are explained in a unified manner as properties near the Mott transition in a 2D system.
An Optimal Allocation Model of Public Transit Mode Proportion for the Low-Carbon Transportation
Directory of Open Access Journals (Sweden)
Linjun Lu
2015-01-01
Full Text Available Public transit has been widely recognized as a potential way to develop low-carbon transportation. In this paper, an optimal allocation model of public transit mode proportion (MPMP has been built to achieve the low-carbon public transit. Optimal ratios of passenger traffic for rail, bus, and taxi are derived by running the model using typical data. With different values of traffic demand, construction cost, travel time, and accessibilities, MPMP can generate corresponding optimal ratios, benefiting decision impacts analysis and decision makers. Instead of considering public transit as a united system, it is separated into units in this paper. And Shanghai is used to test model validity and practicality.
Role of secondary instability theory and parabolized stability equations in transition modeling
El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.
1993-01-01
In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.
Energy Technology Data Exchange (ETDEWEB)
Anderson, J D; Bauer, R W; Dietrich, F S; Grimes, S M; Finlay, R W; Abfalterer, W P; Bateman, F B; Haight, R C; Morgan, G L; Bauge, E; Delaroche, J P; Romain, P
2001-11-01
Recently cross section differences among the isotopes{sup 182,184,186}W have been measured as part of a study of total cross sections in the 5-560 MeV energy range. These measurements show oscillations up to 150 mb between 5 and 100 MeV. Spherical and deformed phenomenological optical potentials with typical radial and isospin dependences show very small oscillations, in disagreement with the data. In a simple Ramsauer model, this discrepancy can be traced to a cancellation between radial and isospin effects. Understanding this problem requires a more detailed model that incorporates a realistic description of the neutron and proton density distributions. This has been done with results of Hartree-Fock-Bogolyubov calculations using the Gogny force, together with a microscopic folding model employing a modification of the JLM potential as an effective interaction. This treatment yields a satisfactory interpretation of the observed total cross section differences.
The Role of Electron Transport and Trapping in MOS Total-Dose Modeling
International Nuclear Information System (INIS)
Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.
1999-01-01
Radiation-induced hole and electron transport and trapping are fundamental to MOS total-dose models. Here we separate the effects of electron-hole annihilation and electron trapping on the neutralization of radiation-induced charge during switched-bias irradiation for hard and soft oxides, via combined thermally stimulated current (TSC) and capacitance-voltage measurements. We also show that present total-dose models cannot account for the thermal stability of deeply trapped electrons near the Si/SiO 2 interface, or the inability of electrons in deep or shallow traps to contribute to TSC at positive bias following (1) room-temperature, (2) high-temperature, or (3) switched-bias irradiation. These results require revisions of modeling parameters and boundary conditions for hole and electron transport in SiO 2 . The nature of deep and shallow electron traps in the near-interfacial SiO 2 is discussed
Modeling of the heat transfer in bypass transitional boundary-layer flows
Simon, Frederick F.; Stephens, Craig A.
1991-01-01
A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.
Metastable liquid-liquid transition in a molecular model of water
Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.
2014-06-01
Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in
Directory of Open Access Journals (Sweden)
Alfi Muntafiah
2017-03-01
Full Text Available Diabetes mellitus (DM is a disease characterized by elevated blood glucose levels (hyperglycemia caused by deficiency of insulin, and insulin resistance or both. This chronic disease prevalence is increasing nationally and globally. This study aimed to determine the effect of ginger extract and honey various doses on levels of total cholesterol in the Wistar diabetic rat model induced by alloxan. This research is true experimental post-test only with control group design. Subject of the study 30 male Wistar rats weight 150-200 grams, divided into 6 groups: A healthy controls (K1, B DM control (K2, C Treatment with red ginger extract 1000 mg / kg and honey 1 ml / kg (K3, D Treatment with ginger extract red 1000 mg / kg and honey 2 ml / kg (K4, E Treatment with red ginger extract 500 mg / kg and honey 1 ml / kg (K5, F Treatment with red ginger extract 500 mg / kg and honey 2 ml / kg (K6. DM induction by alloxan 160 mg / kg intraperitoneally for 5 days, and the provision of treatment for 14 days. Total cholesterol levels were measured by CHOD-PAP method. Results: The mean total cholesterol levels of healthy control group vs the diabetic control 58.20 ± 8.76 vs. 87.80 ± 5.81 mg / dL. Based on one way ANOVA test, red ginger extract and honey various doses significantly lower total cholesterol level (p <0.05. The mean total cholesterol levels between the group K3 to K4 was not statistically different, as well as K5 with K6. However, mean total cholesterol levels at K3 and K4 differ significantly from the K5 and K6. Conclusion: Combination of red ginger extract and honey can lower total cholesterol levels in diabetic rat model induced by alloxan.
First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model
DEFF Research Database (Denmark)
Sannino, Francesco; Virkajärvi, Jussi
2015-01-01
We analyse and compare the finite-temperature electroweak phase transition properties of classically (non)conformal extensions of the Standard Model. In the classically conformal scenarios the breaking of the electroweak symmetry is generated radiatively. The models feature new scalars coupled co...... the associated models are testable at the upcoming Large Hadron Collider run two experiments....
The Multi-state Latent Factor Intensity Model for Credit Rating Transitions
Koopman, S.J.; Lucas, A.; Monteiro, A.
2008-01-01
A new empirical reduced-form model for credit rating transitions is introduced. It is a parametric intensity-based duration model with multiple states and driven by exogenous covariates and latent dynamic factors. The model has a generalized semi-Markov structure designed to accommodate many of the
The Ising model and its applications to a phase transition of biological interest
International Nuclear Information System (INIS)
Cabrera, G.G.; Stein-Barana, A.M.; Zuckermann, M.J.
1984-01-01
It is investigated a gel-liquid crystal phase transition employing a two-state model equivalent to the Spin 1/2 Ising Model with applied magnetic field. The model is studied from the standpoint of the cluster variational method of Kikuchi for cooperative phenomena. (M.W.O.) [pt
Effect of the patient-to-patient communication model on dysphagia caused by total laryngectomy.
Tian, L; An, R; Zhang, J; Sun, Y; Zhao, R; Liu, M
2017-03-01
The study aimed to evaluate the effect of a patient-to-patient communication model on dysphagia in laryngeal cancer patients after total laryngectomy. Sixty-five patients who had undergone total laryngectomy were randomly divided into three groups: a routine communication group, a patient communication group (that received the patient-to-patient communication model) and a physician communication group. Questionnaires were used to compare quality of life and swallowing problems among all patient groups. The main factors causing dysphagia in total laryngectomy patients were related to fear and mental health. The patient communication group had improved visual analogue scale scores at one week after starting to eat. Quality of life in swallowing disorders questionnaire scores were significantly higher in the patient communication and physician communication groups than in the routine communication group. In addition, swallowing problems were much more severe in patients educated to high school level and above than in others. The patient-to-patient communication model can be used to resolve swallowing problems caused by psychological factors in total laryngectomy patients.
Development and validation of a weight-bearing finite element model for total knee replacement.
Woiczinski, M; Steinbrück, A; Weber, P; Müller, P E; Jansson, V; Schröder, Ch
2016-01-01
Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young's modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson's correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young's modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella.
ΔS=1 weak transitions in the Skyrme model
International Nuclear Information System (INIS)
Praszalowicz; Trampetic, J.
1985-01-01
We calculate the octet matrix elements of the operator (anti du)sub(L)(anti us)sub(L) in the Skyrme model and compare them with the quark model predictions. We find that the agreement between the two models is quite satisfactory. (orig.)
Lee, Jun-Yi; Huang, -Chuan, Jr.
2017-04-01
Mean transit time (MTT) is one of the of fundamental catchment descriptors to advance understanding on hydrological, ecological, and biogeochemical processes and improve water resources management. However, there were few documented the base flow partitioning (BFP) and mean transit time within a mountainous catchment in typhoon alley. We used a unique data set of 18O isotope and conductivity composition of rainfall (136 mm to 778 mm) and streamflow water samples collected for 14 tropical cyclone events (during 2011 to 2015) in a steep relief forested catchment (Pinglin, in northern Taiwan). A lumped hydrological model, HBV, considering dispersion model transit time distribution was used to estimate total flow, base flow, and MTT of stream base flow. Linear regression between MTT and hydrometric (precipitation intensity and antecedent precipitation index) variables were used to explore controls on MTT variation. Results revealed that both the simulation performance of total flow and base flow were satisfactory, and the Nash-Sutcliffe model efficiency coefficient of total flow and base flow was 0.848 and 0.732, respectively. The event magnitude increased with the decrease of estimated MTTs. Meanwhile, the estimated MTTs varied 4-21 days with the increase of BFP between 63-92%. The negative correlation between event magnitude and MTT and BFP showed the forcing controls the MTT and BFP. Besides, a negative relationship between MTT and the antecedent precipitation index was also found. In other words, wetter antecedent moisture content more rapidly active the fast flow paths. This approach is well suited for constraining process-based modeling in a range of high precipitation intensity and steep relief forested environments.
Mehra, Tarun; Koljonen, Virve; Seifert, Burkhardt; Volbracht, Jörk; Giovanoli, Pietro; Plock, Jan; Moos, Rudolf Maria
2015-01-01
Reimbursement systems have difficulties depicting the actual cost of burn treatment, leaving care providers with a significant financial burden. Our aim was to establish a simple and accurate reimbursement model compatible with prospective payment systems. A total of 370 966 electronic medical records of patients discharged in 2012 to 2013 from Swiss university hospitals were reviewed. A total of 828 cases of burns including 109 cases of severe burns were retained. Costs, revenues and earnings for severe and nonsevere burns were analysed and a linear regression model predicting total inpatient treatment costs was established. The median total costs per case for severe burns was tenfold higher than for nonsevere burns (179 949 CHF [167 353 EUR] vs 11 312 CHF [10 520 EUR], interquartile ranges 96 782-328 618 CHF vs 4 874-27 783 CHF, p <0.001). The median of earnings per case for nonsevere burns was 588 CHF (547 EUR) (interquartile range -6 720 - 5 354 CHF) whereas severe burns incurred a large financial loss to care providers, with median earnings of -33 178 CHF (30 856 EUR) (interquartile range -95 533 - 23 662 CHF). Differences were highly significant (p <0.001). Our linear regression model predicting total costs per case with length of stay (LOS) as independent variable had an adjusted R2 of 0.67 (p <0.001 for LOS). Severe burns are systematically underfunded within the Swiss reimbursement system. Flat-rate DRG-based refunds poorly reflect the actual treatment costs. In conclusion, we suggest a reimbursement model based on a per diem rate for treatment of severe burns.
Naughton, Robert J; Drust, Barry; O'Boyle, Andy; Abayomi, Julie; Mahon, Elizabeth; Morton, James P; Davies, Ian G
2017-05-01
It is recommended that soccer players consume a high carbohydrate diet to augment performance. However, growing evidence suggests that there is a link between high free-sugar (FS) intake (>5% total energy intake; TEI) and metabolic diseases. Furthermore, foods that are often high in sugar, such as processed foods, are typically lacking in nutrient quality. We therefore analysed total-sugar, FS, dietary fibre, and micronutrient intake of players from an English Premier League academy under (U) 18 (n = 13), U15/16 (n = 25), and U13/14 (n = 21) using a 7-day food diary. Data were compared with current United Kingdom (UK) dietary reference value (DRV) for FS via a t test. The U13/14s (10% ± 18%) and U15/16s (11% ± 30%) both consumed higher amounts of FS in comparison with the UK DRV of 5% TEI (P elite youth soccer players. We report an apparent "nutritional transition" from schoolboy to fulltime soccer player, with U18s showing a significantly lower intake of sugar in comparison with younger squads, and a similar intake of FS to the UK DRVs. Practitioners should target improving player education around sugar and fibre consumption.
Introduction to the physics of the total cross section at LHC. A review of data and models
Energy Technology Data Exchange (ETDEWEB)
Pancheri, Giulia [INFN Frascati National Laboratory, Frascati (Italy); Massachusetts Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States); Srivastava, Yogendra N. [University of Perugia, Physics Department, Perugia (Italy); Northeastern University, Physics Department, Boston, MA (United States)
2017-03-15
This review describes the development of the physics of hadronic cross sections up to recent LHC results and cosmic ray experiments. We present here a comprehensive review - written with a historical perspective - about total cross sections from medium to the highest energies explored experimentally and studied through a variety of methods and theoretical models for over 60 years. We begin by recalling the analytic properties of the elastic amplitude and the theorems about the asymptotic behavior of the total cross section. A discussion of how proton-proton cross sections are extracted from cosmic rays at higher than accelerator energies and help the study of these asymptotic limits, is presented. This is followed by a description of the advent of particle colliders, through which high energies and unmatched experimental precisions have been attained. Thus the measured hadronic elastic and total cross sections have become crucial instruments to probe the so called soft part of QCD physics, where quarks and gluons are confined, and have led to test and refine Regge behavior and a number of diffractive models. As the c.m. energy increases, the total cross section also probes the transition into hard scattering describable with perturbative QCD, the so-called mini-jet region. Further tests are provided by cross section measurements of γp, γ*p and γ*γ* for models based on vector meson dominance, scaling limits of virtual photons at high Q{sup 2} and the BFKL formalism. Models interpolating from virtual to real photons are also tested. It seems to us to be a necessary task to explore bit-by-bit the rigorous consequences of analyticity, unitarity and crossing. Who knows if someday one will not be able to reassemble the pieces of the puzzle. - A. Martin and F. Cheung, based on 1967 A.M. Lectures at Brandeis Summer School and Lectures at SUNY and Stony Brook (Martin and Cheung in Analyticity properties and bounds of the scattering amplitudes. Gordon and Breach Science
Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.
2004-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total
Proton-neutron sdg boson model and spherical-deformed phase transition
International Nuclear Information System (INIS)
Otsuka, Takaharu; Sugita, Michiaki
1988-01-01
The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing + quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects. (orig.)
Proton-neutron sdg boson model and spherical-deformed phase transition
Otsuka, Takaharu; Sugita, Michiaki
1988-12-01
The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.
Proton-neutron sdg boson model and spherical-deformed phase transition
Energy Technology Data Exchange (ETDEWEB)
Otsuka, Takaharu; Sugita, Michiaki
1988-12-15
The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing + quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.
Directory of Open Access Journals (Sweden)
Yunus Subagyo Swarinoto
2014-08-01
Full Text Available Manajemen air menjadi sangat penting khususnya di wilayah yang rentan terhadap ketersediaan air. Mengingat hujan di atas normal dapat mengakibatkan banjir, sedangkan hujan di bawah normal mengakibatkan kekeringan. Untuk itu prediksi unsur iklim hujan ini menjadi penting. Model sistem prediksi ensemble berbasis model sistem prediksi tunggal ANFIS, Wavelet-ANFIS, Wavelet ARIMA, dan ARIMA total hujan bulanan telah disimulasikan di wilayah Kabupaten Indramayu. Model sistem prediksi ensemble total hujan bulanan ini dibentuk dengan teknik pembobotan. Nilai pembobot didasarkan pada nilai koefisien korelasi Pearson (r yang diperoleh selama masa pelatihan dengan series data 1991-2000. Hasil pengolahan data 2001-2009 menunjukkan kisaran nilai r didapat 0,45-0,83 untuk ANFIS; 0,20-0,53 untuk Wavelet-ANFIS; 0,50-0,95 untuk Wavelet-ARIMA; 0,14-0,66 untuk ARIMA; dan 0,58-0,94 untuk Ensemble. Secara spasial, luaran model sistem prediksi ensemble total hujan bulanan di wilayah Kabupaten Indramayu menunjukkan hasil yang konsisten lebih baik daripada luaran model sistem prediksi tunggal pembentuknya. Water management is very important especially for region which is vulnarable to the water availability. Above normal rainfal condition causes flood, meanwhile below normal one triggers to the drought occurences. Coping with this situation, the rainfall prediction output is needed. The ensemble prediction system model (EPSM based on several single prediction system models (SPSMs such as ANFIS, Wavelet-ANFIS, Wavelet ARIMA, and ARIMA on monthly rainfall total, has been simulated within Indramayu district. The EPSM was developed and based on the weighting technique. This weighting is computed based on the value of Pearson correlation coefficient (r which has been gained during the training period of 1991-2000. Results of 2001-2009 model running show the value of r are 0,45-0,83 for ANFIS; 0,20-0,53 for Wavelet- ANFIS; 0,50-0,95 for Wavelet-ARIMA; 0,14-0,66 for
Energy Technology Data Exchange (ETDEWEB)
Nandi, Taraj; Brasseur, James; Vijayakumar, Ganesh
2016-01-04
This study is aimed at gaining insight into the nonsteady transitional boundary layer dynamics of wind turbine blades and the predictive capabilities of URANS based transition and turbulence models for similar physics through the analysis of a controlled flow with similar nonsteady parameters.
Station Model for Rail Transit System Using Cellular Automata
International Nuclear Information System (INIS)
Xun Jing; Ning Bin; Li Keping
2009-01-01
In this paper, we propose a new cellular automata model to simulate the railway traffic at station. Based on NaSch model, the proposed station model is composed of the main track and the siding track. Two different schemes for trains passing through station are considered. One is the scheme of 'pass by the main track, start and stop by the siding track'. The other is the scheme of 'two tracks play the same role'. We simulate the train movement using the proposed model and analyze the traffic flow at station. The simulation results demonstrate that the proposed cellular automata model can be successfully used for the simulations of railway traffic. Some characteristic behaviors of railway traffic flow can be reproduced. Moreover, the simulation values of the minimum headway are close to the theoretical values. This result demonstrates the dependability and availability of the proposed model. (general)
Coleman-Weinberg phase transition in extended Higgs models
International Nuclear Information System (INIS)
Sher, M.
1996-01-01
In Coleman-Weinberg symmetry breaking, all dimensionful parameters vanish and the symmetry is broken by loop corrections. Before Coleman-Weinberg symmetry breaking in the standard model was experimentally ruled out, it had already been excluded on cosmological grounds. In this Brief Report, the cosmological analysis is carried out for Coleman-Weinberg models with extended Higgs sectors, which are not experimentally ruled out, and general constraints on such models are given. copyright 1996 The American Physical Society
Research on the decomposition model for China’s National Renewable Energy total target
International Nuclear Information System (INIS)
Liu, Zhen; Shi, Yuren; Yan, Jianming; Ou, Xunmin; Lieu, Jenny
2012-01-01
It is crucial that China’s renewable energy national target in 2020 is effectively decomposed into respective period targets at the provincial level. In order to resolve problems arising from combining the national and local renewable energy development plan, a total target and period target decomposition model of renewable energy is proposed which considers the resource distribution and energy consumption of different provinces as well as the development characteristics of various renewable energy industries. In the model, the total proposed target is comprised of three shares: basic share, fixed share and floating share target. The target distributed for each province is then determined by the preference relation. That is, when total renewable energy target is distributed, the central government is more concerned about resources potential or energy consumption. Additionally, the growth models for various renewable energy industries are presented, and the period targets of renewable energy in various provinces are proposed in line with regional economic development targets. In order to verify whether the energy target can be achieved, only wind power, solar power, and hydropower are considered in this study. To convenient to assess the performance of local government, the two year period is chosen as an evaluation cycle in the paper. The renewable energy targets per two-year period for each province are calculated based on the overall national renewable energy target, energy requirements and resources distribution. Setting provincial period targets will help policy makers to better implement and supervise the overall renewable energy plan. - Highlights: It is very importance that the national target of renewable energy in 2020 can be effectively decomposed into the stages target of various province. In order to resolve the relation the plan between the national and local renewable energy development planning, a total target and phase target decomposition model
Nistor, Dan-Viorel; Caterev, Sergiu; Bolboacă, Sorana-Daniela; Cosma, Dan; Lucaciu, Dan Osvald Gheorghe; Todor, Adrian
2017-11-01
We conducted this study to establish if the transition from a lateral approach (LA) to the direct anterior approach (DAA) for a low volume hip arthroplasty surgeon during the steep learning curve can be performed maintaining the muscle sparing approach of the DAA without increasing the complication rates. In this controlled, prospective, randomized clinical study we investigated 70 patients (35 DAA, 35 LA) with similar demographics that underwent a total hip arthroplasty. Assessment of the two approaches consisted of determining the invasiveness through serum markers for muscle damage (i.e. myoglobin, creatine kinase and lactate dehydrogenase), the operative parameters such as post-operative pain and rescue medication consumption, the component positioning and complication rates. Post-operative myoglobin levels were higher (p < 0.001) in the LA group (326.42 ± 84.91 ng/mL) as compared to the DAA group (242.80 ± 71.03 ng/mL), but with no differences regarding other biomarkers for muscle damage. Pain levels were overall lower in the DAA group, with a statistical and clinical difference during surgery day (p < 0.001) associated with lower (p < 0.001) rescue medication consumption (median 1 (1; 3) mg morphine vs. 3 (2; 4) mg morphine). Most patients in the LA group reported chronic post-operative pain throughout all three evaluated months, while the majority of patients in the DAA group reported no pain after week six. Component positioning did not differ significantly between groups and neither did complication rates. The DAA can be transitioned from the LA safely, without higher complication rates while maintaining its muscle spearing advantages when performed by a low volume hip arthroplasty surgeon.
A phase transition between small- and large-field models of inflation
International Nuclear Information System (INIS)
Itzhaki, Nissan; Kovetz, Ely D
2009-01-01
We show that models of inflection point inflation exhibit a phase transition from a region in parameter space where they are of large-field type to a region where they are of small-field type. The phase transition is between a universal behavior, with respect to the initial condition, at the large-field region and non-universal behavior at the small-field region. The order parameter is the number of e-foldings. We find integer critical exponents at the transition between the two phases.
Electroweak phase transition in an extension of the standard model with scalar color octet
International Nuclear Information System (INIS)
Ham, S. W.; Shim, Seong-A; Oh, S. K.
2010-01-01
In an extension of the standard model with a scalar color octet, the possibility of the strongly first-order electroweak phase transition is studied by examining the finite-temperature effective Higgs potential at the one-loop level. It is found that there are wide regions in the parameter space that allow the strongly first-order electroweak phase transition, where the Higgs boson mass is larger than the experimental lower bound of 115 GeV, and the masses of the scalar color octet is around 200 GeV. The parameter regions may be explored at the LHC with respect to the electroweak phase transition.
Study of p-4He Total Reaction cross section using Glauber and Modified Glauber Models
International Nuclear Information System (INIS)
Tag El Din, I.M.A.; Taha, M.M.; Hassan, S.S.A.
2012-01-01
The total nuclear reaction cross-section for p - 4 He in the energy range from 25 to 1000 MeV is calculated within Glauber and modified Glauber models. The modified Glauber model is introduced via both Coulomb trajectory of the projectile and calculation of the effective radius of interaction. The effects of density dependent total cross-section and phase variation of nucleon-nucleon scattering amplitude are studied. It is pointed out that the phase variation of the nucleon-nucleon amplitude plays a significant role in describing σR at E p 2 at e = e0 = 0 and γ=2fm 2 at e = e0 = 0.17fm -3 .
(Non-) Gibbsianness and Phase Transitions in Random Lattice Spin Models
Külske, C.
1999-01-01
We consider disordered lattice spin models with finite-volume Gibbs measures µΛ[η](dσ). Here σ denotes a lattice spin variable and η a lattice random variable with product distribution P describing the quenched disorder of the model. We ask: when will the joint measures limΛ↑Zd P(dη)µΛ[η](dσ) be
Transition from Model to Proof: Example of Water Treatment Plant
Güler, Gürsel
2016-01-01
The aim of this study was to research the prospective mathematics teachers' ability to construct a mathematical model for a real life problem and to prove these models by generalizing them to use in similar situations. The study was conducted with 129 prospective teachers determined on a volunteering basis. The data were obtained with the help of…
Relieving the Impact of Transit Signal Priority on Passenger Cars through a Bilevel Model
Directory of Open Access Journals (Sweden)
Ding Wang
2017-01-01
Full Text Available Transit signal priority (TSP is an effective control strategy to improve transit operations on the urban network. However, the TSP may sacrifice the right-of-way of vehicles from side streets which have only few transit vehicles; therefore, how to minimize the negative impact of TSP strategy on the side streets is an important issue to be addressed. Concerning the typical mixed-traffic flow pattern and heavy transit volume in China, a bilevel model is proposed in this paper: the upper-level model focused on minimizing the vehicle delay in the nonpriority direction while ensuring acceptable delay variation in transit priority direction, and the lower-level model aimed at minimizing the average passenger delay in the entire intersection. The parameters which will affect the efficiency of the bilevel model have been analyzed based on a hypothetical intersection. Finally, a real-world intersection has been studied, and the average vehicle delay in the nonpriority direction decreased 11.28 s and 22.54 s (under different delay variation constraint compared to the models that only minimize average passenger delay, while the vehicle delay in the priority direction increased only 1.37 s and 2.87 s; the results proved the practical applicability and efficiency of the proposed bilevel model.
Multifractal regime transition in a modified minority game model
International Nuclear Information System (INIS)
Crepaldi, Antonio F.; Rodrigues Neto, Camilo; Ferreira, Fernando F.; Francisco, Gerson
2009-01-01
The search for more realistic modeling of financial time series reveals several stylized facts of real markets. In this work we focus on the multifractal properties found in price and index signals. Although the usual minority game (MG) models do not exhibit multifractality, we study here one of its variants that does. We show that the nonsynchronous MG models in the nonergodic phase is multifractal and in this sense, together with other stylized facts, constitute a better modeling tool. Using the structure function (SF) approach we detected the stationary and the scaling range of the time series generated by the MG model and, from the linear (non-linear) behavior of the SF we identified the fractal (multifractal) regimes. Finally, using the wavelet transform modulus maxima (WTMM) technique we obtained its multifractal spectrum width for different dynamical regimes.
Lin, W.; Ren, P.; Zheng, H.; Liu, X.; Huang, M.; Wada, R.; Qu, G.
2018-05-01
The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter, the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent (τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear multifragmention processes within the framework of the statistical multifragmentation model (SMM). The sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear liquid-gas phase transition.
The model of metal-insulator phase transition in vanadium oxide
International Nuclear Information System (INIS)
Vikhnin, V.S.; Lysenko, S.; Rua, A.; Fernandez, F.; Liu, H.
2005-01-01
Thermally induced metal-insulator phase transitions (PT) in VO 2 thin films are studied theoretically and experimentally. The hysteresis phenomena in the region of the transition for different type thin films were investigated. The phenomenological model of the PT is suggested. The charge transfer-lattice instability in VO 2 metallic phase is considered as basis of the first order metal-insulator PT in VO 2 . The charge transfer is treated as an order parameter
Analytic properties of the Ruelle ζ-function for mean field models of phase transition
International Nuclear Information System (INIS)
Hallerberg, Sarah; Just, Wolfram; Radons, Guenter
2005-01-01
We evaluate by analytical means the Ruelle ζ-function for a spin model with global coupling. The implications of the ferromagnetic phase transitions for the analytical properties of the ζ-function are discussed in detail. In the paramagnetic phase the ζ-function develops a single branch point. In the low-temperature regime two branch points appear which correspond to the ferromagnetic state and the metastable state. The results are typical for any Ginsburg-Landau-type phase transition
Simulating the electroweak phase transition in the SU(2) Higgs model
International Nuclear Information System (INIS)
Fodor, Z.; Hein, J.; Jansen, K.; Jaster, A.; Montvay, I.
1994-09-01
Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and its strength is rapidly decreasing with increasing Higgs boson mass. In order to control the systematic errors, we also perform studies of scaling violations and of finite volume effects. (orig.)
Statistical and Biophysical Models for Predicting Total and Outdoor Water Use in Los Angeles
Mini, C.; Hogue, T. S.; Pincetl, S.
2012-04-01
Modeling water demand is a complex exercise in the choice of the functional form, techniques and variables to integrate in the model. The goal of the current research is to identify the determinants that control total and outdoor residential water use in semi-arid cities and to utilize that information in the development of statistical and biophysical models that can forecast spatial and temporal urban water use. The City of Los Angeles is unique in its highly diverse socio-demographic, economic and cultural characteristics across neighborhoods, which introduces significant challenges in modeling water use. Increasing climate variability also contributes to uncertainties in water use predictions in urban areas. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Study predictors of residential water use include socio-demographic, economic, climate and landscaping variables at the zip code level collected from US Census database. Climate variables are estimated from ground-based observations and calculated at the centroid of each zip code by inverse-distance weighting method. Remotely-sensed products of vegetation biomass and landscape land cover are also utilized. Two linear regression models were developed based on the panel data and variables described: a pooled-OLS regression model and a linear mixed effects model. Both models show income per capita and the percentage of landscape areas in each zip code as being statistically significant predictors. The pooled-OLS model tends to over-estimate higher water use zip codes and both models provide similar RMSE values.Outdoor water use was estimated at the census tract level as the residual between total water use and indoor use. This residual is being compared with the output from a biophysical model including tree and grass cover areas, climate variables and estimates of evapotranspiration at very high spatial resolution. A
Stochastic modeling of total suspended solids (TSS) in urban areas during rain events.
Rossi, Luca; Krejci, Vladimir; Rauch, Wolfgang; Kreikenbaum, Simon; Fankhauser, Rolf; Gujer, Willi
2005-10-01
The load of total suspended solids (TSS) is one of the most important parameters for evaluating wet-weather pollution in urban sanitation systems. In fact, pollutants such as heavy metals, polycyclic aromatic hydrocarbons (PAHs), phosphorous and organic compounds are adsorbed onto these particles so that a high TSS load indicates the potential impact on the receiving waters. In this paper, a stochastic model is proposed to estimate the TSS load and its dynamics during rain events. Information on the various simulated processes was extracted from different studies of TSS in urban areas. The model thus predicts the probability of TSS loads arising from combined sewer overflows (CSOs) in combined sewer systems as well as from stormwater in separate sewer systems in addition to the amount of TSS retained in treatment devices in both sewer systems. The results of this TSS model illustrate the potential of the stochastic modeling approach for assessing environmental problems.
Total solution of the gibilaro and rowe model for a segregating fluidized bed
Energy Technology Data Exchange (ETDEWEB)
Leaper, M.C. [School of Chemical, Environmental and Mining Engineering, University of Nottingham (United Kingdom); King, A.C. [School of Mathematics and Statistics, University of Birmingham, Birmingham (United Kingdom); Burbidge, A.S. [Centre de Recherche, Nestle Lausanne, Lausanne (Switzerland)
2007-02-15
This study re-examines the one-dimensional equilibrium model of Gibilaro and Rowe (1974) for a segregating gas fluidized bed. The model was based on volumetric jetsam concentration and divided the bed contents into bulk and wake phases, taking account of bulk and wake flux, segregation, exchange between the bulk and wake phases, and axial mixing. Due to the complex nature of the model and its unstable solution, the lack of computing power at the time prevented the authors from doing little more than the analytical solutions to specific cases of this model. This paper provides a numerical total solution and allows the effect of the respective parameters to be compared for the first time. There is also a comparison with experimental results, which showed a reasonable agreement. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
An updated fracture-flow model for total-system performance assessment of Yucca Mountain
International Nuclear Information System (INIS)
Gauthier, J.H.
1994-01-01
Improvements have been made to the fracture-flow model being used in the total-system performance assessment of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. The ''weeps model'' now includes (1) weeps of varied sizes, (2) flow-pattern fluctuations caused by climate change, and (3) flow-pattern perturbations caused by repository heat generation. Comparison with the original weeps model indicates that allowing weeps of varied sizes substantially reduces the number of weeps and the number of containers contacted by weeps. However, flow-pattern perturbations caused by either climate change or repository heat generation greatly increases the number of containers contacted by weeps. In preliminary total-system calculations, using a phenomenological container-failure and radionuclide-release model, the weeps model predicts that radionuclide releases from a high-level radioactive waste repository at Yucca Mountain will be below the EPA standard specified in 40 CFR 191, but that the maximum radiation dose to an individual could be significant. Specific data from the site are required to determine the validity of the weep-flow mechanism and to better determine the parameters to which the dose calculation is sensitive
Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R
2016-06-09
The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.
Numerical modeling of the transition from low to high confinement in magnetically confined plasma
International Nuclear Information System (INIS)
Rasmussen, J Juul; Nielsen, A H; Madsen, J; Naulin, V; Xu, G S
2016-01-01
The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak including both open and closed field lines. The results reveal different types of L–H-like transitions in response to ramping up the input power by increasing the ion temperature in the edge region. For a fast rising input power we obtain an abrupt transition, and for a slow rising power we obtain a L–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null configuration. The results hold promises for developing full predictive modeling of the L–H transition, which is an essential step in understanding and optimizing fusion devices. (paper)
Johnson, Aaron W; Duda, Kevin R; Sheridan, Thomas B; Oman, Charles M
2017-03-01
This article describes a closed-loop, integrated human-vehicle model designed to help understand the underlying cognitive processes that influenced changes in subject visual attention, mental workload, and situation awareness across control mode transitions in a simulated human-in-the-loop lunar landing experiment. Control mode transitions from autopilot to manual flight may cause total attentional demands to exceed operator capacity. Attentional resources must be reallocated and reprioritized, which can increase the average uncertainty in the operator's estimates of low-priority system states. We define this increase in uncertainty as a reduction in situation awareness. We present a model built upon the optimal control model for state estimation, the crossover model for manual control, and the SEEV (salience, effort, expectancy, value) model for visual attention. We modify the SEEV attention executive to direct visual attention based, in part, on the uncertainty in the operator's estimates of system states. The model was validated using the simulated lunar landing experimental data, demonstrating an average difference in the percentage of attention ≤3.6% for all simulator instruments. The model's predictions of mental workload and situation awareness, measured by task performance and system state uncertainty, also mimicked the experimental data. Our model supports the hypothesis that visual attention is influenced by the uncertainty in system state estimates. Conceptualizing situation awareness around the metric of system state uncertainty is a valuable way for system designers to understand and predict how reallocations in the operator's visual attention during control mode transitions can produce reallocations in situation awareness of certain states.
A toy MCT model for multiple glass transitions: Double swallow tail singularity
Energy Technology Data Exchange (ETDEWEB)
Ryzhov, V.N. [Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow region (Russian Federation); Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation); Tareyeva, E.E. [Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow region (Russian Federation)
2014-11-07
We propose a toy model to describe in the frame of Mode Coupling Theory multiple glass transitions. The model is based on the postulated simple form for static structure factor as a sum of two delta-functions. This form makes it possible to solve the MCT equations in almost analytical way. The phase diagram is governed by two swallow tails resulting from two A{sub 4} singularities and includes liquid–glass transition and multiple glasses. The diagram has much in common with those of binary and quasibinary systems. - Highlights: • A simple toy model is proposed for description of glass–glass transitions. • The static structure factor of the model has the form of a sum of delta-functions. • The phase diagram contains A{sub 4} bifurcation singularities and A{sub 3} end points. • The results can be applied for the qualitative description of quasibinary systems.
Modeling glass transition and aging processes in nanocomposites and polymer thin films
Pryamitsyn, Victor; Ganesan, Venkat
2010-03-01
We use a lattice kinetic model of glass transition to study the role of confinement and the presence of nano-inclusions. We have studied freely suspended films of glass-formers and its nanocomposites with ``plastifying'' and ``hardening'' nanoparticles. Using our model we determine the thickness and nanoparticle load dependencies of the Kauzmann temperature T0 and the fragility parameter. We found the glass transition temperature increases with the thickness of the film and the volume fraction of ``hardening'' nanoparticles , while Tg decreases with increase in the loading of ``plastifying'' nanoparticles. We found that the isothermal free volume relaxation rate of the nanocomposite thin film, usually referred as an aging, correlates with the glass transition temperature shift. We also studied the relations between our lattice model and Curro's, Kovacs and Struik's phenomenological models of free volume reduction to deduce physical insights into the mechanisms governing aging processes in thin films and nanocomposites.
Winding transitions at finite energy and temperature: An O(3) model
International Nuclear Information System (INIS)
Habib, S.; Mottola, E.; Tinyakov, P.
1996-01-01
Winding number transitions in the two-dimensional softly broken O(3) nonlinear σ model are studied at finite energy and temperature. New periodic instanton solutions which dominate the semiclassical transition amplitudes are found analytically at low energies, and numerically for all energies up to the sphaleron scale. The Euclidean period β of these finite energy instantons increases with energy, contrary to the behavior found in the Abelian Higgs model or simple one-dimensional systems. This results in a sharp crossover from instanton-dominated tunneling to sphaleron-dominated thermal activation at a certain critical temperature. Since this behavior is traceable to the soft breaking of conformal invariance by the mass term in the σ model, semiclassical winding number transition amplitudes in the electroweak theory in 3+1 dimensions should exhibit a similar sharp crossover. We argue that this is indeed the case in the standard model for M H W . copyright 1996 The American Physical Society
Ren, Anna N; Neher, Robert E; Bell, Tyler; Grimm, James
2018-06-01
Preoperative planning is important to achieve successful implantation in primary total knee arthroplasty (TKA). However, traditional TKA templating techniques are not accurate enough to predict the component size to a very close range. With the goal of developing a general predictive statistical model using patient demographic information, ordinal logistic regression was applied to build a proportional odds model to predict the tibia component size. The study retrospectively collected the data of 1992 primary Persona Knee System TKA procedures. Of them, 199 procedures were randomly selected as testing data and the rest of the data were randomly partitioned between model training data and model evaluation data with a ratio of 7:3. Different models were trained and evaluated on the training and validation data sets after data exploration. The final model had patient gender, age, weight, and height as independent variables and predicted the tibia size within 1 size difference 96% of the time on the validation data, 94% of the time on the testing data, and 92% on a prospective cadaver data set. The study results indicated the statistical model built by ordinal logistic regression can increase the accuracy of tibia sizing information for Persona Knee preoperative templating. This research shows statistical modeling may be used with radiographs to dramatically enhance the templating accuracy, efficiency, and quality. In general, this methodology can be applied to other TKA products when the data are applicable. Copyright © 2018 Elsevier Inc. All rights reserved.
Pressure induced valence transitions in the Anderson lattice model
International Nuclear Information System (INIS)
Bernhard, B.H.; Coqblin, B.
2009-01-01
We apply the equation of motion method to the Anderson lattice model, which describes the physical properties of heavy fermion compounds. In particular, we focus here on the variation of the number of f electrons with pressure, associated to the crossover from the Kondo regime to the intermediate valence regime. We treat here the non-magnetic case and introduce an improved approximation, which consists of an alloy analogy based decoupling for the Anderson lattice model. It is implemented by partial incorporation of the spatial correlations contained in higher-order Green's functions involved in the problem that have been formerly neglected. As it has been verified in the framework of the Hubbard model, the alloy analogy avoids the breakdown of sum rules and is more appropriate to explore the asymmetric case of the periodic Anderson Hamiltonian. The densities of states for a simple cubic lattice are calculated for various values of the model parameters V, t, E f , and U.
International Nuclear Information System (INIS)
Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng
2011-01-01
A theoretical model was developed to predict the bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel. The model was developed based on the imbalance theory of Helmholtz and some reasonable assumptions. The maximum ideal bubble in narrow rectangular channel and the thermal hydraulics boundary condition leading to bubbly flow to churn flow pattern transition was calculated. The model was validated by experimental data from previous researches. Comparison between predicted result and experimental result shows a reasonable good agreement. (author)
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Mouritsen, Ole G.
1990-01-01
We discuss central questions in weak, first-order structural transitions by means of a magnetic analog model. A theory including fluctuation effects is developed for the model, showing a dynamical response with softening, fading modes and a growing central peak. The model is also analyzed by a two......-dimensional Monte Carlo simulation, showing clear precursor phenomena near the first-order transition and spontaneous nucleation. The kinetics of the domain growth is studied and found to be exceedingly slow. The results are applicable for martensitic transformations and structural surface...
New bounds on the phase transition line in a non-compact abelian lattice Higgs model
International Nuclear Information System (INIS)
Nill, F.
1987-01-01
The Higgs expectation value and the 't Hooft loop are investigated as order respectively disorder parameters in a fixed-length Higgs model of Villain type with gauge group R. Based on either observable the phase transition line is shown to be monotonically decreasing and Lipschitz continuous with Lipschitz constant 4d in dimension d ≥ 3. This gives new bounds on the phase transition line in terms of its endpoints, i.e. the critical couplings of the Z-gauge model and the XY-model with Villain action, respectively. (orig.)
Application of fracture toughness scaling models to the ductile-to- brittle transition
International Nuclear Information System (INIS)
Link, R.E.; Joyce, J.A.
1996-01-01
An experimental investigation of fracture toughness in the ductile-brittle transition range was conducted. A large number of ASTM A533, Grade B steel, bend and tension specimens with varying crack lengths were tested throughout the transition region. Cleavage fracture toughness scaling models were utilized to correct the data for the loss of constraint in short crack specimens and tension geometries. The toughness scaling models were effective in reducing the scatter in the data, but tended to over-correct the results for the short crack bend specimens. A proposed ASTM Test Practice for Fracture Toughness in the Transition Range, which employs a master curve concept, was applied to the results. The proposed master curve over predicted the fracture toughness in the mid-transition and a modified master curve was developed that more accurately modeled the transition behavior of the material. Finally, the modified master curve and the fracture toughness scaling models were combined to predict the as-measured fracture toughness of the short crack bend and the tension specimens. It was shown that when the scaling models over correct the data for loss of constraint, they can also lead to non-conservative estimates of the increase in toughness for low constraint geometries
A modular RANS approach for modelling laminar–turbulent transition in turbomachinery flows
International Nuclear Information System (INIS)
Liang Wang; Song Fu; Carnarius, Angelo; Mockett, Charles; Thiele, Frank
2012-01-01
Highlights: ► We propose a laminar–turbulent transition model for turbomachinery applications. ► The model considers the effects of the various instability modes. ► The pressure–diffusion process is represented by an elliptic formulation. ► The mixed-mode transition scenario benefits from our modular prediction approach. - Abstract: In this study we propose a laminar–turbulent transition model, which considers the effects of the various instability modes that exist in turbomachinery flows. This model is based on a K–ω–γ three-equation eddy-viscosity concept with K representing the fluctuating kinetic energy, ω the specific dissipation rate and γ the intermittency factor. As usual, the local mechanics by which the freestream disturbances penetrate into the laminar boundary layer, namely convection and viscous diffusion, are described by the transport equations. However, as a novel feature, the non-local effects due to pressure diffusion are additionally represented by an elliptic formulation. Such an approach allows the present model to respond accurately to freestream turbulence intensity properly and to predict both long and short bubble lengths well. The success in its application to a 3-D cascade indicates that the mixed-mode transition scenario indeed benefits from such a modular prediction approach, which embodies current conceptual understanding of the transition process.
Wu, Changshan
Public transit service is a promising transportation mode because of its potential to address urban sustainability. Current ridership of public transit, however, is very low in most urban regions, particularly those in the United States. This woeful transit ridership can be attributed to many factors, among which poor service quality is key. Given this, there is a need for transit planning and analysis to improve service quality. Traditionally, spatially aggregate data are utilized in transit analysis and planning. Examples include data associated with the census, zip codes, states, etc. Few studies, however, address the influences of spatially aggregate data on transit planning results. In this research, previous studies in transit planning that use spatially aggregate data are reviewed. Next, problems associated with the utilization of aggregate data, the so-called modifiable areal unit problem (MAUP), are detailed and the need for fine resolution data to support public transit planning is argued. Fine resolution data is generated using intelligent interpolation techniques with the help of remote sensing imagery. In particular, impervious surface fraction, an important socio-economic indicator, is estimated through a fully constrained linear spectral mixture model using Landsat Enhanced Thematic Mapper Plus (ETM+) data within the metropolitan area of Columbus, Ohio in the United States. Four endmembers, low albedo, high albedo, vegetation, and soil are selected to model heterogeneous urban land cover. Impervious surface fraction is estimated by analyzing low and high albedo endmembers. With the derived impervious surface fraction, three spatial interpolation methods, spatial regression, dasymetric mapping, and cokriging, are developed to interpolate detailed population density. Results suggest that cokriging applied to impervious surface is a better alternative for estimating fine resolution population density. With the derived fine resolution data, a multiple
Regime transitions in near-surface temperature inversions : a conceptual model
van de Wiel, B.J.H.; Vignon, E.; Baas, P.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C.; van der Linden, Steven J.A.; van Hooft, J. Antoon; van Hooijdonk, I.G.S.
2017-01-01
A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes
CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL
A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...
Becky K. Kerns; Miles A. Hemstrom; David Conklin; Gabriel I. Yospin; Bart Johnson; Dominique Bachelet; Scott Bridgham
2012-01-01
Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes...
State-and-transition model archetypes: a global taxonomy of rangeland change
State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...
The phase transition lines in pair approximation for the basic reinfection model SIRI
International Nuclear Information System (INIS)
Stollenwerk, Nico; Martins, Jose; Pinto, Alberto
2007-01-01
For a spatial stochastic epidemic model we investigate in the pair approximation scheme the differential equations for the moments. The basic reinfection model of susceptible-infected-recovered-reinfected or SIRI type is analysed, its phase transition lines calculated analytically in this pair approximation
Urban, Frauke
2009-01-01
The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions and their effects in rapidly developing countries like China and India. The focus of this thesis is three-fold: a) to elaborate the differences
Neggers, R.A.J.; Ackerman, Andrew S.; Angevine, W. M.; Bazile, Eric; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; cheng, A; van der Dussen, J.J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H; Cheedela, S. K.; Larson, V. E.; Lefebvre, Marie Pierre; Lock, A. P.; Meyer, N. R.; de Roode, S.R.; de Rooy, WC; Sandu, I; Xiao, H; Xu, K. M.
2017-01-01
Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using
Out of equilibrium phase transitions and a toy model for disoriented chiral condensates
International Nuclear Information System (INIS)
Bedaque, P.F.; Das, A.
1993-07-01
We study the dynamics of a second order phase transition in a situation that mimics a sudden quench to a temperature below the critical temperature in a model with dynamical symmetry breaking. In particular we show that the domains of correlated values of the condensate grow as √t and that this result seems to be largely model independent. (author). 9 refs
Paudel, S.; Elmtiri, M.; Kling, W.L.; Corre, le O.; Lacarriere, B.
2014-01-01
This paper presents the building heating demand prediction model with occupancy profile and operational heating power level characteristics in short time horizon (a couple of days) using artificial neural network. In addition, novel pseudo dynamic transitional model is introduced, which consider
A comparative study on the flow over an airfoil using transitional turbulence models
DEFF Research Database (Denmark)
Lin, Mou; Sarlak Chivaee, Hamid
2016-01-01
This work addresses the simulation of the flow over NREL S826 airfoil under a relatively low Reynolds number (Re = 1 × 105 ) using the CFD solvers OpenFoam and ANSYS Fluent. The flow is simulated using two different transition models, γ − Reθ and k − kL − ω model, and the results are examined...
Metal-insulator transition and Frohlich conductivity in the Su-Schrieffer-Heeger model
Michielsen, K.F L; de Raedt, H.A.
1996-01-01
A quantum molecular dynamics technique is used to study the single-particle density of states, Drude weight, optical conductivity and flux quantization in the Su-Schrieffer-Heeger (SSH) model. Our simulation data show that the SSH model has a metal-insulator transition away from half-filling. In the
A "total parameter estimation" method in the varification of distributed hydrological models
Wang, M.; Qin, D.; Wang, H.
2011-12-01
Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in
Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling.
Edelman, Eric R; van Kuijk, Sander M J; Hamaekers, Ankie E W; de Korte, Marcel J M; van Merode, Godefridus G; Buhre, Wolfgang F F A
2017-01-01
For efficient utilization of operating rooms (ORs), accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT) per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT) and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA) physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT). We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT). TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related benefits.
Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling
Directory of Open Access Journals (Sweden)
Eric R. Edelman
2017-06-01
Full Text Available For efficient utilization of operating rooms (ORs, accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT. We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT. TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related
An updated fracture-flow model for total-system performance assessment of Yucca Mountain
International Nuclear Information System (INIS)
Gauthier, J.H.
1994-01-01
Improvements have been made to the fracture-flow model being used in the total-system performance assessment of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. The open-quotes weeps modelclose quotes now includes (1) weeps of varied sizes, (2) flow-pattern fluctuations caused by climate change, and (3) flow-pattern perturbations caused by repository heat generation. Comparison with the original weeps model indicates that allowing weeps of varied sizes substantially reduces the number of weeps and the number of containers contacted by weeps. However, flow-pattern perturbations caused by either climate change or repository heat generation greatly increases the number of containers contacted by weeps. In preliminary total-system calculations, using a phenomenological container-failure and radionuclide-release model, the weeps model predicts that radionuclide releases from a high-level radioactive waste repository at Yucca Mountain will be below the EPA standard specified in 40 CFR 191, but that the maximum radiation dose to an individual could be significant. Specific data from the site are required to determine the validity of the weep-flow mechanism and to better determine the parameters to which the dose calculation is sensitive
State-and-transition simulation models: a framework for forecasting landscape change
Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée
2016-01-01
SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of
Universal phase transition in community detectability under a stochastic block model.
Chen, Pin-Yu; Hero, Alfred O
2015-03-01
We prove the existence of an asymptotic phase-transition threshold on community detectability for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. Natl. Acad. Sci. (USA) 103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the intercommunity edge connection probability p grows. This phase transition separates a subcritical regime of small p, where modularity-based community detection successfully identifies the communities, from a supercritical regime of large p where successful community detection is impossible. We show that, as the community sizes become large, the asymptotic phase-transition threshold p* is equal to √[p1p2], where pi(i=1,2) is the within-community edge connection probability. Thus the phase-transition threshold is universal in the sense that it does not depend on the ratio of community sizes. The universal phase-transition phenomenon is validated by simulations for moderately sized communities. Using the derived expression for the phase-transition threshold, we propose an empirical method for estimating this threshold from real-world data.
A Transition Towards a Data-Driven Business Model (DDBM)
DEFF Research Database (Denmark)
Zaki, Mohamed; Bøe-Lillegraven, Tor; Neely, Andy
2016-01-01
Nettavisen is a Norwegian online start-up that experienced a boost after the financial crisis of 2009. Since then, the firm has been able to increase its market share and profitability through the use of highly disruptive business models, allowing the relatively small staff to outcompete powerhouse...... legacy-publishing companies and new media players such as Facebook and Google. These disruptive business models have been successful, as Nettavisen captured a large market share in Norway early on, and was consistently one of the top-three online news sites in Norway. Capitalising on media data explosion...... and the recent acquisition of blogger network ‘Blog.no’, Nettavisen is moving towards a data-driven business model (DDBM). In particular, the firm aims to analyse huge volumes of user Web browsing and purchasing habits....
Scott, Robert B.
2010-01-01
We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.
Directory of Open Access Journals (Sweden)
Mingsan Miao
2017-05-01
Full Text Available The effect of the Rabdosia rubescens total flavonoids on focal cerebral ischemia reperfusion model in rats was observed. The model group, nimodipine group, cerebral collateral group, and large, medium and small dose group of the Rabdosia rubescens total flavonoids were administered with corresponding drugs but sham operation group and model group were administered the same volume of 0.5%CMC, 1 times a day, continuous administration of 7 d. After 1 h at 7 d to medicine, left incision in the middle of the neck of rats after anesthesia, we can firstly expose and isolate the left common carotid artery (CCA, and then expose external carotid artery (ECA and internal carotid artery (ICA. The common carotid artery and the external carotid artery are ligated. Then internal carotid artery with arterial clamp is temporarily clipped. Besides, cut the incision of 0.2 mm from 5 cm of the bifurcation of the common carotid artery. A thread Line bolt is inserted with more than 18–20 mm from bifurcation of CCA into the internal carotid artery until there is resistance. Then the entrance of the middle cerebral artery is blocked and internal carotid artery is ligated (the blank group only exposed the left blood vessel without Plugging wire. Finally it is gently pulled out the plug line after 2 h. Results: Compared with the model mice, Rabdosia rubescens total flavonoids can significantly relieve the injury of brain in hippocampus and cortex nerve cells; experimental rat focal cerebral ischemia was to improve again perfusion model of nerve function defect score mortality; significantly reduce brain homogenate NOS activity and no content, MDA, IL-1, TNF-a, ICAM-1 content; increase in brain homogenate SOD and ATPase activity (P < 0.05, P < 0.01; and reduce the serum S-100β protein content. Each dose group of the Rabdosia rubescens total flavonoids has a better Improvement effect on focal cerebral ischemia reperfusion model in rats.
Bugenhagen, Scott M; Beard, Daniel A
2012-10-21
Biochemical reaction systems may be viewed as discrete event processes characterized by a number of states and state transitions. These systems may be modeled as state transition systems with transitions representing individual reaction events. Since they often involve a large number of interactions, it can be difficult to construct such a model for a system, and since the resulting state-level model can involve a huge number of states, model analysis can be difficult or impossible. Here, we describe methods for the high-level specification of a system using hypergraphs, for the automated generation of a state-level model from a high-level model, and for the exact reduction of a state-level model using information from the high-level model. Exact reduction is achieved through the automated application to the high-level model of the symmetry reduction technique and reduction by decomposition by independent subsystems, allowing potentially significant reductions without the need to generate a full model. The application of the method to biochemical reaction systems is illustrated by models describing a hypothetical ion-channel at several levels of complexity. The method allows for the reduction of the otherwise intractable example models to a manageable size.
How does dietary particle size affect carnivore gastrointestinal transit: A dog model.
De Cuyper, A; Hesta, M; Tibosch, S; Wanke, C; Clauss, M; Janssens, G P J
2018-04-01
The effect of dietary particle size on gastrointestinal transit in carnivores has not been studied and might offer more insight into their digestive physiology. This study evaluated the effect of two dietary particle sizes (fine = 7.8 mm vs. coarse = 13 mm) of chunked day-old chicks on transit parameters in dogs. Six beagle dogs were fed both dietary treatments in a crossover design of 7 days with transit testing on the fifth day. Transit parameters were assessed using two markers, that is a wireless motility capsule (IntelliCap ® ) and titanium oxide (TiO 2 ). Dietary particle size did not affect gastric emptying time (GRT), small bowel transit time (SBTT), colonic transit time (CTT) and total transit time (aTTT) of the capsule (p > .05). There was no effect of dietary particle size on TiO 2 mean retention time (MRT) (p > .05). The time of last TiO 2 excretion (MaxRT) differed (p = .013) between diets, being later for the coarse diet. Both MRT (R = 0.617, p = .032) and MaxRT (R = 0.814; p = .001) were positively correlated to aTTT. The ratio MRT/aTTT tended towards a difference between diets (p = .059) with the coarse diet exceeding fine diet values. Results show that the difference between capsule measurements and TiO 2 is larger for the fine than the coarse diet suggesting that the capsule becomes more accurate when dietary particle size approaches marker size. Dietary particle size might have affected transit parameters but differences are too small to claim major physiological consequences. © 2017 Blackwell Verlag GmbH.
Thermal Dynamics in Newborn and Juvenile Models Cooled by Total Liquid Ventilation.
Nadeau, Mathieu; Sage, Michael; Kohlhauer, Matthias; Vandamme, Jonathan; Mousseau, Julien; Robert, Raymond; Tissier, Renaud; Praud, Jean-Paul; Walti, Herve; Micheau, Philippe
2016-07-01
Total liquid ventilation (TLV) consists in filling the lungs with a perfluorocarbon (PFC) and using a liquid ventilator to ensure a tidal volume of oxygenated, CO 2 -free and temperature-controlled PFC. Having a much higher thermal capacity than air, liquid PFCs assume that the filled lungs become an efficient heat exchanger with pulmonary circulation. The objective of the present study was the development and validation of a parametric lumped thermal model of a subject in TLV. The lungs were modeled as one compartment in which the control volume varied as a function of the tidal volume. The heat transfer in the body was modeled as seven parallel compartments representing organs and tissues. The thermal model of the lungs and body was validated with two groups of lambs of different ages and weights (newborn and juvenile) undergoing an ultrafast mild therapeutic hypothermia induction by TLV. The model error on all animals yielded a small mean error of -0.1 ±0.4 (°)C for the femoral artery and 0.0 ±0.1 (°)C for the pulmonary artery. The resulting experimental validation attests that the model provided an accurate estimation of the systemic arterial temperature and the venous return temperature. This comprehensive thermal model of the lungs and body has the advantage of closely modeling the rapid thermal dynamics in TLV. The model can explain how the time to achieve mild hypothermia between newborn and juvenile lambs remained similar despite of highly different physiological and ventilatory parameters. The strength of the model is its strong relationship with the physiological parameters of the subjects, which suggests its suitability for projection to humans.
Forecasting models for flow and total dissolved solids in Karoun river-Iran
Salmani, Mohammad Hassan; Salmani Jajaei, Efat
2016-04-01
Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA) models to forecast TDS and water flow in this river. Then, we build up a Transfer Function (TF) model to formulate the TDS as a function of water flow volume. A performance comparison between the Seasonal ARIMA and the TF models are presented.
Dental Hygiene Curriculum Model for Transition to Future Roles.
Paarmann, Carlene S.; And Others
1990-01-01
The establishment of the baccalaureate degree as the minimum entry level for dental hygiene practice centers around three main concerns: changes in health care delivery, awarding of a degree commensurate with students' educational background, and the credibility of dental hygiene as a profession. A curriculum model is discussed. (MLW)
Future Shop: A Model Career Placement & Transition Laboratory.
Floyd, Deborah L.; And Others
During 1988-89, the Collin County Community College District (CCCCD) conducted a project to develop, implement, and evaluate a model career laboratory called a "Future Shop." The laboratory was designed to let users explore diverse career options, job placement opportunities, and transfer resources. The Future Shop lab had three major components:…
A simple model of big-crunch/big-bang transition
Energy Technology Data Exchange (ETDEWEB)
Malkiewicz, Przemyslaw; Piechocki, Wlodzimierz [Department of Theoretical Physics, Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland)
2006-05-07
We present classical and quantum dynamics of a test particle in the compactified Milne space. Background spacetime includes one compact space dimension undergoing contraction to a point followed by expansion. Quantization consists in finding a self-adjoint representation of the algebra of particle observables. Our model offers some insight into the nature of the cosmic singularity.
DEFF Research Database (Denmark)
Ford, E.B.; Ragozzine, D.; Holman, M.J.
2012-01-01
Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during...... that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We...
A two-parameter model to predict fracture in the transition
International Nuclear Information System (INIS)
DeAquino, C.T.; Landes, J.D.; McCabe, D.E.
1995-01-01
A model is proposed that uses a numerical characterization of the crack tip stress field modified by the J - Q constraint theory and a weak link assumption to predict fracture behavior in the transition for reactor vessel steels. This model predicts the toughness scatter band for a component model from a toughness scatter band measured on a test specimen geometry. The model has been applied previously to two-dimensional through cracks. Many applications to actual components structures involve three-dimensional surface flaws. These cases require a more difficult level of analysis and need additional information. In this paper, both the current model for two-dimensional cracks and an approach needed to extend the model for the prediction of transition fracture behavior in three-dimensional surface flaws are discussed. Examples are presented to show how the model can be applied and in some cases to compare with other test results. (author). 13 refs., 7 figs
Thermodynamic properties of a quasi-harmonic model for ferroelectric transitions
International Nuclear Information System (INIS)
Mkam Tchouobiap, S E; Mashiyama, H
2011-01-01
Within a framework of a quasi-harmonic model for quantum particles in a local potential of the double Morse type and within the mean-field approximation for interactions between particles, we investigate the thermodynamic properties of ferroelectric materials. A quantum thermodynamic treatment gives analytic expressions for the internal energy, the entropy, the specific heat, and the static susceptibility. The calculated thermodynamic characteristics are studied as a function of temperature and energy barrier, where it is shown that at the proper choice of the theory parameters, particularly the energy barrier, the model system exhibits characteristic features of either second-order tricritical or first-order phase transitions. Our results indicate that the barrier energy seems to be an important criterion for the character of the structural phase transition. The influence of quantum fluctuations manifested on zero-point energy on the phase transition and thermodynamic properties is analyzed and discussed. This leads to several quantum effects, including the existence of a saturation regime at low temperatures, where the order parameter saturates giving thermodynamic saturation of the calculated thermodynamic quantities. It is found that both quantum effects and energy barrier magnitude have an important influence on the thermodynamic properties of the ferroelectric materials and on driving the phase transition at low temperatures. Also, the analytical parameters' effect on the transition temperature is discussed, which seems to give a general insight into the structural phase transition and its nature.
Low temperature electroweak phase transition in the Standard Model with hidden scale invariance
Directory of Open Access Journals (Sweden)
Suntharan Arunasalam
2018-01-01
Full Text Available We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T≲132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10−8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.
Ódor, G; Odor, Geza; Menyhard, Nora
1998-01-01
The damage spreading (DS) transitions of two one-dimensional stochastic cellular automata suggested by Grassberger (A and B) and the kinetic Ising model of Menyhárd (NEKIM) have been investigated on the level of kinks and spins. On the level of spins the parity conservation is not satisfied and therefore studying these models provides a convenient tool to understand the dependence of DS properties on symmetries. For the model B the critical point and the DS transition point is well separated and directed percolation damage spreading transition universality was found for spin damage as well as for kink damage in spite of the conservation of damage variables modulo 2 in the latter case. For the A stochastic cellular automaton, and the NEKIM model the two transition points coincide with drastic effects on the damage of spin and kink variables showing different time dependent behaviours. While the kink DS transition is continuous and shows regular PC class universality, the spin damage exhibits a discontinuous p...
International Nuclear Information System (INIS)
Crivellini, Andrea; D’Alessandro, Valerio
2014-01-01
Highlights: • RANS simulation of laminar separation bubbles. • Spalart–Allamaras unexpected capability. • Straightforward implementation of our SA modifications. • Applications of a high order DG incompressible solver. - Abstract: The present paper deals with the Reynolds Averaged Navier–Stokes (RANS) simulation of Laminar Separation Bubble (LSB). This phenomenon is of large interest in several engineering fields, such as the study of wind turbines, unmanned aerial vehicles (UAV) and micro-air vehicles (MAV) characterized by a low operating Reynolds number. In such contexts a laminar boundary layer separation followed by a turbulent transition and afterwards by a turbulent reattachment may appear in the flow-field. The main novelty of this work is that an almost standard Spalart–Allmaras (SA) model, without additional equations for transition modeling, was successfully employed. The result achieved is very surprising being the model not developed for this purpose, but for fully-turbulent flows or for cases with imposed transition location. This result is of large interest, since the SA model is widely used in commercial, open-source and research codes. However, our approach cannot be advocated to predict natural transition within an attached boundary layer, indeed it is only able to deal with transitions triggered by a separated flow. The reliability and accuracy of our approach are here proved computing, by means of a high-order Discontinuous Galerkin (DG) incompressible solver, the flow-field over two airfoils at different flow regimes showing the formation of a LSB
A Spalart-Allmaras local correlation-based transition model for Thermo-fuid dynamics
D'Alessandro, V.; Garbuglia, F.; Montelpare, S.; Zoppi, A.
2017-11-01
The study of innovative energy systems often involves complex fluid flows problems and the Computational Fluid-Dynamics (CFD) is one of the main tools of analysis. It is important to put in evidence that in several energy systems the flow field experiences the laminar-to-turbulent transition. Direct Numerical Simulations (DNS) or Large Eddy Simulation (LES) are able to predict the flow transition but they are still inapplicable to the study of real problems due to the significant computational resources requirements. Differently standard Reynolds Averaged Navier Stokes (RANS) approaches are not always reliable since they assume a fully turbulent regime. In order to overcome this drawback in the recent years some locally formulated transition RANS models have been developed. In this work, we present a local correlation-based transition approach adding two equations that control the laminar-toturbulent transition process -γ and \\[\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] - to the well-known Spalart-Allmaras (SA) turbulence model. The new model was implemented within OpenFOAM code. The energy equation is also implemented in order to evaluate the model performance in thermal-fluid dynamics applications. In all the considered cases a very good agreement between numerical and experimental data was observed.
Energy Technology Data Exchange (ETDEWEB)
Rivera, M., E-mail: mrivera@fisica.unam.m [Imperial College London, Department of Chemistry, South Kensington Campus, London SW7 2AZ (United Kingdom); Rios-Reyes, C.H. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa Tamaulipas, C.P. 02200, Mexico D.F. (Mexico); Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico); Mendoza-Huizar, L.H. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico)
2011-04-15
The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: > Electrodeposition of cobalt clusters. > Mono to multidomain magnetic transition. > Magnetic phase diagram.
International Nuclear Information System (INIS)
Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.
2011-01-01
The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: → Electrodeposition of cobalt clusters. →Mono to multidomain magnetic transition. → Magnetic phase diagram.
Transition probabilities of health states for workers in Malaysia using a Markov chain model
Samsuddin, Shamshimah; Ismail, Noriszura
2017-04-01
The aim of our study is to estimate the transition probabilities of health states for workers in Malaysia who contribute to the Employment Injury Scheme under the Social Security Organization Malaysia using the Markov chain model. Our study uses four states of health (active, temporary disability, permanent disability and death) based on the data collected from the longitudinal studies of workers in Malaysia for 5 years. The transition probabilities vary by health state, age and gender. The results show that men employees are more likely to have higher transition probabilities to any health state compared to women employees. The transition probabilities can be used to predict the future health of workers in terms of a function of current age, gender and health state.
Effects of ignoring baseline on modeling transitions from intact cognition to dementia.
Yu, Lei; Tyas, Suzanne L; Snowdon, David A; Kryscio, Richard J
2009-07-01
This paper evaluates the effect of ignoring baseline when modeling transitions from intact cognition to dementia with mild cognitive impairment (MCI) and global impairment (GI) as intervening cognitive states. Transitions among states are modeled by a discrete-time Markov chain having three transient (intact cognition, MCI, and GI) and two competing absorbing states (death and dementia). Transition probabilities depend on two covariates, age and the presence/absence of an apolipoprotein E-epsilon4 allele, through a multinomial logistic model with shared random effects. Results are illustrated with an application to the Nun Study, a cohort of 678 participants 75+ years of age at baseline and followed longitudinally with up to ten cognitive assessments per nun.
Dark matter and electroweak phase transition in the mixed scalar dark matter model
Liu, Xuewen; Bian, Ligong
2018-03-01
We study the electroweak phase transition in the framework of the scalar singlet-doublet mixed dark matter model, in which the particle dark matter candidate is the lightest neutral Higgs that comprises the C P -even component of the inert doublet and a singlet scalar. The dark matter can be dominated by the inert doublet or singlet scalar depending on the mixing. We present several benchmark models to investigate the two situations after imposing several theoretical and experimental constraints. An additional singlet scalar and the inert doublet drive the electroweak phase transition to be strongly first order. A strong first-order electroweak phase transition and a viable dark matter candidate can be accomplished in two benchmark models simultaneously, for which a proper mass splitting among the neutral and charged Higgs masses is needed.
Deflagration to Detonation Transition (DDT) Simulations of HMX Powder Using the HERMES Model
White, Bradley; Reaugh, John; Tringe, Joseph
2017-06-01
We performed computer simulations of DDT experiments with Class I HMX powder using the HERMES model (High Explosive Response to MEchanical Stimulus) in ALE3D. Parameters for the model were fitted to the limited available mechanical property data of the low-density powder, and to the Shock to Detonation Transition (SDT) test results. The DDT tests were carried out in steel-capped polycarbonate tubes. This arrangement permits direct observation of the event using both flash X-ray radiography and high speed camera imaging, and provides a stringent test of the model. We found the calculated detonation transition to be qualitatively similar to experiment. Through simulation we also explored the effects of confinement strength, the HMX particle size distribution and porosity on the computed detonation transition location. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.
One-Way Deficit and Quantum Phase Transitions in XX Model
Wang, Yao-Kun; Zhang, Yu-Ran
2018-02-01
Quantum correlations including entanglement and quantum discord have drawn much attention in characterizing quantum phase transitions. Quantum deficit originates in questions regarding work extraction from quantum systems coupled to a heat bath (Oppenheim et al. Phys. Rev. Lett. 89, 180402, 2002). It links quantum thermodynamics with quantum correlations and provides a new standpoint for understanding quantum non-locality. In this paper, we evaluate the one-way deficit of two adjacent spins in the bulk for the XX model. In the thermodynamic limit, the XX model undergoes a first order transition from fully polarized to a critical phase with quasi-long-range order with decrease of quantum parameter. We find that the one-way deficit becomes nonzero after the critical point. Therefore, the one-way deficit characterizes the quantum phase transition in the XX model.
Energy Technology Data Exchange (ETDEWEB)
Marzola, Luca; Racioppi, Antonio; Vaskonen, Ville [National Institute of Chemical Physics and Biophysics, Tallinn (Estonia)
2017-07-15
Thermal corrections in classically conformal models typically induce a strong first-order electroweak phase transition, thereby resulting in a stochastic gravitational background that could be detectable at gravitational wave observatories. After reviewing the basics of classically conformal scenarios, in this paper we investigate the phase transition dynamics in a thermal environment and the related gravitational wave phenomenology within the framework of scalar conformal extensions of the Standard Model. We find that minimal extensions involving only one additional scalar field struggle to reproduce the correct phase transition dynamics once thermal corrections are accounted for. Next-to-minimal models, instead, yield the desired electroweak symmetry breaking and typically result in a very strong gravitational wave signal. (orig.)
PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS
International Nuclear Information System (INIS)
Burrows, A.; Spiegel, D. S.; Rauscher, E.; Menou, K.
2010-01-01
Using a three-dimensional general circulation model, we create dynamical model atmospheres of a representative transiting giant exoplanet, HD 209458b. We post-process these atmospheres with an opacity code to obtain transit radius spectra during the primary transit. Using a spectral atmosphere code, we integrate over the face of the planet seen by an observer at various orbital phases and calculate light curves as a function of wavelength and for different photometric bands. The products of this study are generic predictions for the phase variations of a zero-eccentricity giant planet's transit spectrum and of its light curves. We find that for these models the temporal variations in all quantities and the ingress/egress contrasts in the transit radii are small (<1.0%). Moreover, we determine that the day/night contrasts and phase shifts of the brightness peaks relative to the ephemeris are functions of photometric band. The J, H, and K bands are shifted most, while the IRAC bands are shifted least. Therefore, we verify that the magnitude of the downwind shift in the planetary 'hot spot' due to equatorial winds is strongly wavelength dependent. The phase and wavelength dependence of light curves, as well as the associated day/night contrasts, can be used to constrain the circulation regime of irradiated giant planets and to probe different pressure levels of a hot Jupiter atmosphere. We posit that though our calculations focus on models of HD 209458b, similar calculations for other transiting hot Jupiters in low-eccentricity orbits should yield transit spectra and light curves of a similar character.
A Total Variation Model Based on the Strictly Convex Modification for Image Denoising
Directory of Open Access Journals (Sweden)
Boying Wu
2014-01-01
Full Text Available We propose a strictly convex functional in which the regular term consists of the total variation term and an adaptive logarithm based convex modification term. We prove the existence and uniqueness of the minimizer for the proposed variational problem. The existence, uniqueness, and long-time behavior of the solution of the associated evolution system is also established. Finally, we present experimental results to illustrate the effectiveness of the model in noise reduction, and a comparison is made in relation to the more classical methods of the traditional total variation (TV, the Perona-Malik (PM, and the more recent D-α-PM method. Additional distinction from the other methods is that the parameters, for manual manipulation, in the proposed algorithm are reduced to basically only one.
Analysis of in vitro and in vivo function of total knee replacements using dynamic contact models
Zhao, Dong
Despite the high incidence of osteoarthritis in human knee joint, its causes remain unknown. Total knee replacement (TKR) has been shown clinically to be effective in restoring the knee function. However, wear of ultra-high molecular weight polyethylene has limited the longevity of TKRs. To address these important issues, it is necessary to investigate the in vitro and in vivo function of total knee replacements using dynamic contact models. A multibody dynamic model of an AMTI knee simulator was developed. Incorporating a wear prediction model into the contact model based on elastic foundation theory enables the contact surface to take into account creep and wear during the dynamic simulation. Comparisons of the predicted damage depth, area, and volume lost with worn retrievals from a physical machine were made to validate the model. In vivo tibial force distributions during dynamic and high flexion activities were investigated using the dynamic contact model. In vivo medial and lateral contact forces experienced by a well-aligned instrumented knee implant, as well as upper and lower bounds on contact pressures for a variety of activities were studied. For all activities, the predicted medial and lateral contact forces were insensitive to the selected material model. For this patient, the load split during the mid-stance phase of gait and during stair is more equal than anticipated. The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. In vivo data collected from a subject with an instrumented knee implant were analyzed to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe out) while instrumented implant, video motion, and ground reaction data were simultaneously collected. The high correlation coefficient
A Software Technology Transition Entropy Based Engineering Model
2002-03-01
Systems Basics, p273). (Prigogine 1997 p81). It is not the place of this research to provide a mathematical formalism with theorems and lemmas. Rather...science). The ancient philosophers, 27 Pythagoras , Protagoras, Socrates, and Plato start the first discourse (the message) that has continued...unpacking of the technology "message" from Pythagoras . This process is characterized by accumulation learning, modeled by learning curves in
Strong to fragile transition in a model of liquid silica
Barrat, Jean-Louis; Badro, James; Gillet, Philippe
1996-01-01
The transport properties of an ionic model for liquid silica at high temperatures and pressure are investigated using molecular dynamics simulations. With increasing pressure, a clear change from "strong" to "fragile" behaviour (according to Angell's classification of glass-forming liquids) is observed, albeit only on the small viscosity range that can be explored in MD simulations.. This change is related to structural changes, from an almost perfect four-fold coordination to an imperfect fi...
Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network
Yin, Haodong; Han, Baoming; Li, Dewei; Wu, Jianjun; Sun, Huijun
2016-01-01
A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1) A basic passenger behavior optimization model is mathematically constructed based on 0–1 integer programming to describe passengers’ responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2) An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1), the impact of the closure can be somewhat mitigated. PMID:27935963
Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network.
Directory of Open Access Journals (Sweden)
Haodong Yin
Full Text Available A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1 A basic passenger behavior optimization model is mathematically constructed based on 0-1 integer programming to describe passengers' responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2 An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1, the impact of the closure can be somewhat mitigated.
Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network.
Yin, Haodong; Han, Baoming; Li, Dewei; Wu, Jianjun; Sun, Huijun
2016-01-01
A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1) A basic passenger behavior optimization model is mathematically constructed based on 0-1 integer programming to describe passengers' responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2) An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1), the impact of the closure can be somewhat mitigated.
Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model
Granato, Gregory; Jones, Susan Cheung
2017-01-01
The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.
Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions
Carlsen, Robert W.
Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors
Measurements and modeling of total solar irradiance in X-class solar flares
International Nuclear Information System (INIS)
Moore, Christopher Samuel; Chamberlin, Phillip Clyde; Hock, Rachel
2014-01-01
The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.
Ono, Yosuke; Fujita, Masanori; Ono, Sachiko; Ogata, Sho; Tachibana, Shoichi; Tanaka, Yuji
2016-06-30
Myxedema coma (MC) is a life-threatening endocrine crisis caused by severe hypothyroidism. However, validated diagnostic criteria and treatment guidelines for MC have not been established owing to its rarity. Therefore, a valid animal model is required to investigate the pathologic and therapeutic aspects of MC. The aim of the present study was to establish an animal model of MC induced by total thyroidectomy. We utilized 14 male New Zealand White rabbits anesthetized via intramuscular ketamine and xylazine administration. A total of 7 rabbits were completely thyroidectomized under a surgical microscope (thyroidectomized group) and the remainder underwent sham operations (control group). The animals in both groups were monitored without thyroid hormone replacement for 15 weeks. Pulse rate, blood pressure, body temperature, and electrocardiograms (ECG) were recorded and blood samples were taken from the jugular vein immediately prior to the thyroidectomy and 2 and 4 weeks after surgery. The thyroidectomized rabbits showed a marked reduction of serum thyroxine levels at 4 weeks after the surgical procedure vs. controls (0.50±0.10 vs. 3.32±0.68 μg/dL, pmyxedema heart. In summary, we have established a rabbit model of fatal hypothyroidism mimicking MC, which may facilitate pathophysiological and molecular investigations of MC and evaluations of new therapeutic interventions.
S. Khanagha (Saeed); H.W. Volberda (Henk); I. Oshri (Ilan)
2014-01-01
textabstractThis paper presents the findings of a longitudinal study of a large corporation's transition to a new business model in the face of a major transformation in the ICT industry brought about by Cloud computing. We build theory on the process of business model innovation through a
Effect of total flavonoids of Radix Ilicis pubescentis on cerebral ischemia reperfusion model
Directory of Open Access Journals (Sweden)
Xiaoli Yan
2017-03-01
Full Text Available This paper aims to observe the effects of total flavonoids of Radix Ilicis pubescentis on mouse model of cerebral ischemia reperfusion. Mice were orally given different doses of total flavonoids of Radix Ilicis pubescentis 10 d, and were administered once daily. On the tenth day after the administration of 1 h in mice after anesthesia, we used needle to hook the bilateral common carotid artery (CCA for 10 min, with 10 min ischemia reperfusion, 10 min ischemia. Then we restored their blood supply, copy the model of cerebral ischemia reperfusion; We then had all mice reperfused for 24 h, and then took their orbital blood samples and measured blood rheology. We quickly removed the brain, with half of the brain having sagittal incision. Then we fixed the brains and sectioned them to observe the pathological changes of brain cells in the hippocampus and cortex. We also measured the other half sample which was made of brain homogenate of NO, NOS, Na+-K+-, ATP enzyme Mg2+-ATPase and Ca2+-ATPase. Acupuncture needle hook occlusion of bilateral common carotid arteries can successfully establish the model of cerebral ischemia reperfusion. After comparing with the model mice, we concluded that Ilex pubescens flavonoids not only reduce damage to the brain nerve cells in the hippocampus and cortex, but also significantly reduce the content of NO in brain homogenate, the activity of nitric oxide synthase (NOS and increases ATP enzyme activity (P < 0.05, P < 0.01. In this way, cerebral ischemia reperfusion injury is improved. Different dosages of Ilex pubescens flavonoids on mouse cerebral ischemia reperfusion model have good effects.
Nogawa, Tomoaki
2011-12-05
The evaporation-condensation transition of the Potts model on a square lattice is numerically investigated by the Wang-Landau sampling method. An intrinsically system-size-dependent discrete transition between supersaturation state and phase-separation state is observed in the microcanonical ensemble by changing constrained internal energy. We calculate the microcanonical temperature, as a derivative of microcanonical entropy, and condensation ratio, and perform a finite-size scaling of them to indicate the clear tendency of numerical data to converge to the infinite-size limit predicted by phenomenological theory for the isotherm lattice gas model. © 2011 American Physical Society.
Transition from AdS universe to DS universe in the BPP model
International Nuclear Information System (INIS)
Kim, Wontae; Yoon, Myungseok
2007-01-01
It can be shown that in the BPP model the smooth phase transition from the asymptotically decelerated AdS universe to the asymptotically accelerated DS universe is possible by solving the modified semiclassical equations of motion. This transition comes from noncommutative Poisson algebra, which gives the constant curvature scalars asymptotically. The decelerated expansion of the early universe is due to the negative energy density with the negative pressure induced by quantum back reaction, and the accelerated late-time universe comes from the positive energy and the negative pressure which behave like dark energy source in recent cosmological models
Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model
International Nuclear Information System (INIS)
Zeng Chunhua; Wang Hua
2012-01-01
Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.
Energy transition: development of the new French model
International Nuclear Information System (INIS)
Anon.
2014-01-01
Many times postponed, the 'programming bill for a new French energy model', commitment of the President of the Republic Francois Hollande, will finally be presented at the Parliament in September with the hope that it will be passed on next spring. Developed on two-pillar approach - energy savings and renewable energies -, this bill should allow France to reduce half of its energy consumption between 2012 and 2050 and to increase the share of renewable energy sources of 14% by 2012 to 32% by 2030 in the power mix. (O.M.)
Sectoral transitions - modeling the development from agrarian to service economies
Lutz, Raphael; Spies, Michael; Reusser, Dominik E.; Kropp, Jürgen P.; Rybski, Diego
2013-04-01
We consider the sectoral composition of a country's GDP, i.e the partitioning into agrarian, industrial, and service sectors. Exploring a simple system of differential equations we characterise the transfer of GDP shares between the sectors in the course of economic development. The model fits for the majority of countries providing 4 country-specific parameters. Relating the agrarian with the industrial sector, a data collapse over all countries and all years supports the applicability of our approach. Depending on the parameter ranges, country development exhibits different transfer properties. Most countries follow 3 of 8 characteristic paths. The types are not random but show distinct geographic and development patterns.
Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering
International Nuclear Information System (INIS)
Ponomarev, L.A.; Smorodinskaya, N.Ya.
1985-01-01
It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei
A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition
Directory of Open Access Journals (Sweden)
Siamak eSorooshyari
2015-02-01
Full Text Available Identifying the neuronal circuits and dynamics of sleep-to-wake transition is essential to understanding brain regulation of behavioral states, including sleep-wake cycles, arousal, and hyperarousal. Recent work by different laboratories has used optogenetics to determine the role of individual neuromodulators in state transitions. The optogenetically-driven data does not yet provide a multi-dimensional schematic of the mechanisms underlying changes in vigilance states. This work presents a modeling framework to interpret, assist, and drive research on the sleep-regulatory network. We identify feedback, redundancy, and gating hierarchy as three fundamental aspects of this model. The presented model is expected to expand as additional data on the contribution of each transmitter to a vigilance state becomes available. Incorporation of conductance-based models of neuronal ensembles into this model and existing models of cortical excitability will provide more comprehensive insight into sleep dynamics as well as sleep and arousal-related disorders.
Directory of Open Access Journals (Sweden)
Usman M. Umer
2018-06-01
Full Text Available Travel and leisure recorded a consecutive robust growth and become among the fastest economic sectors in the world. Various forecasting models are proposed by researchers that serve as an early recommendation for investors and policy makers. Numerous studies proposed distinct forecasting models to predict the dynamics of this sector and provide early recommendation for investors and policy makers. In this paper, we compare the performance of smooth transition autoregressive (STAR and linear autoregressive (AR models using monthly returns of Turkey and FTSE travel and leisure index from April 1997 to August 2016. MSCI world index used as a proxy of the overall market. The result shows that nonlinear LSTAR model cannot improve the out-of-sample forecast of linear AR model. This finding demonstrates little to be gained from using LSTAR model in the prediction of travel and leisure stock index. Keywords: Nonlinear time-series, Out-of-sample forecasting, Smooth transition autoregressive, Travel and leisure
Partial inertia induces additional phase transition in the majority vote model.
Harunari, Pedro E; de Oliveira, M M; Fiore, C E
2017-10-01
Explosive (i.e., discontinuous) transitions have aroused great interest by manifesting in distinct systems, such as synchronization in coupled oscillators, percolation regime, absorbing phase transitions, and more recently, the majority-vote model with inertia. In the latter, the model rules are slightly modified by the inclusion of a term depending on the local spin (an inertial term). In such a case, Chen et al. [Phys Rev. E 95, 042304 (2017)2470-004510.1103/PhysRevE.95.042304] have found that relevant inertia changes the nature of the phase transition in complex networks, from continuous to discontinuous. Here we give a further step by embedding inertia only in vertices with degree larger than a threshold value 〈k〉k^{*}, 〈k〉 being the mean system degree and k^{*} the fraction restriction. Our results, from mean-field analysis and extensive numerical simulations, reveal that an explosive transition is presented in both homogeneous and heterogeneous structures for small and intermediate k^{*}'s. Otherwise, a large restriction can sustain a discontinuous transition only in the heterogeneous case. This shares some similarities with recent results for the Kuramoto model [Phys. Rev. E 91, 022818 (2015)PLEEE81539-375510.1103/PhysRevE.91.022818]. Surprisingly, intermediate restriction and large inertia are responsible for the emergence of an extra phase, in which the system is partially synchronized and the classification of phase transition depends on the inertia and the lattice topology. In this case, the system exhibits two phase transitions.
Suzuki, S; Nakamura, S; Sakaguchi, T; Mitsuoka, H; Tsuchiya, Y; Kojima, Y; Konno, H; Baba, S
1998-11-01
Animal models of total hepatic ischemia (THI) and reperfusion injury are restricted by concomitant splanchnic congestion. This study was performed to determine the requirement suitable for an extracorporeal portosystemic shunt (PSS) to maintain the intestinal integrity in a rat model of THI. Using a polyethylene tube (0.86 or 1 mm i.d.), PSS was placed between the mesenteric and jugular veins. Comparison was done between THI models with or without PSS and a partial ischemia model with hepatectomy of the nonischemic lobes. Well-tolerated hepatic ischemic period, portal pressure after 10 min of hepatic ischemia, portal endotoxin levels at 1 h after reperfusion, histological features of the small bowel just before reperfusion, and local jejunal and ileal blood hemoglobin oxygen saturation index (ISO2) were compared among the models. Animals without PSS poorly tolerated 30 min of THI. Animals receiving THI with PSS or partial hepatic ischemia tolerated a longer ischemic period (60 min) with a significantly higher small bowel ISO2, lower portal pressure and endotoxin levels (P tube as well as partial hepatic ischemia were significantly lower than those after THI with PSS using a 0.86-mm i.d. tube. THI with PSS using a 1-mm i.d. tube was strikingly similar to partial hepatic ischemia in the pathophysiological profile during hepatic ischemia. PSS with a tube 1 mm or more in inner diameter offers pathophysiological advantages in experiments on THI and reperfusion. Copyright 1998 Academic Press.
International Nuclear Information System (INIS)
Goelzer, H; Huybrechts, P; Raper, S C B; Loutre, M-F; Goosse, H; Fichefet, T
2012-01-01
Sea-level is expected to rise for a long time to come, even after stabilization of human-induced climatic warming. Here we use simulations with the Earth system model of intermediate complexity LOVECLIM to project sea-level changes over the third millennium forced with atmospheric greenhouse gas concentrations that stabilize by either 2000 or 2100 AD. The model includes 3D thermomechanical models of the Greenland and Antarctic ice sheets coupled to an atmosphere and an ocean model, a global glacier melt algorithm to account for the response of mountain glaciers and ice caps, and a procedure for assessing oceanic thermal expansion from oceanic heat uptake. Four climate change scenarios are considered to determine sea-level commitments. These assume a 21st century increase in greenhouse gases according to SRES scenarios B1, A1B and A2 with a stabilization of the atmospheric composition after the year 2100. One additional scenario assumes 1000 years of constant atmospheric composition from the year 2000 onwards. For our preferred model version, we find an already committed total sea-level rise of 1.1 m by 3000 AD. In experiments with greenhouse gas concentration stabilization at 2100 AD, the total sea-level rise ranges between 2.1 m (B1), 4.1 m (A1B) and 6.8 m (A2). In all scenarios, more than half of this amount arises from the Greenland ice sheet, thermal expansion is the second largest contributor, and the contribution of glaciers and ice caps is small as it is limited by the available ice volume of maximally 25 cm of sea-level equivalent. Additionally, we analysed the sensitivity of the sea-level contributions from an ensemble of nine different model versions that cover a large range of climate sensitivity realized by model parameter variations of the atmosphere–ocean model. Selected temperature indices are found to be good predictors for sea-level contributions from the different components of land ice and oceanic thermal expansion after 1000 years. (letter)
Phase transition in a sexual age-structured model of learning foreign languages
Schwammle, Veit
2005-01-01
The understanding of language competition helps us to predict extinction and survival of languages spoken by minorities. A simple agent-based model of a sexual population, based on the Penna model, is built in order to find out under which circumstances one language dominates other ones. This model considers that only young people learn foreign languages. The simulations show a first order phase transition where the ratio between the number of speakers of different languages is the order para...
Utilizing Gaze Behavior for Inferring Task Transitions Using Abstract Hidden Markov Models
Directory of Open Access Journals (Sweden)
Daniel Fernando Tello Gamarra
2016-12-01
Full Text Available We demonstrate an improved method for utilizing observed gaze behavior and show that it is useful in inferring hand movement intent during goal directed tasks. The task dynamics and the relationship between hand and gaze behavior are learned using an Abstract Hidden Markov Model (AHMM. We show that the predicted hand movement transitions occur consistently earlier in AHMM models with gaze than those models that do not include gaze observations.
Entropy, free energy and phase transitions in the lattice Lotka-Volterra model
International Nuclear Information System (INIS)
Chichigina, O. A.; Tsekouras, G. A.; Provata, A.
2006-01-01
A thermodynamic approach is developed for reactive dynamic models restricted to substrates of arbitrary dimensions, including fractal substrates. The thermodynamic formalism is successfully applied to the lattice Lotka-Volterra (LLV) model of autocatalytic reactions on various lattice substrates. Different regimes of reactions described as phases, and phase transitions, are obtained using this approach. The predictions of thermodynamic theory confirm extensive numerical kinetic Monte Carlo simulations on square and fractal lattices. Extensions of the formalism to multispecies LLV models are also presented
Four-parametric two-layer algebraic model of transition boundary layer at a planar plate
International Nuclear Information System (INIS)
Labusov, A.N.; Lapin, Yu.V.
1996-01-01
Consideration is given to four-parametric two-layer algebraic model of transition boundary layer on a plane plate, based on generalization of one-parametric algebraic Prandtl-Loitsjansky-Klauzer-3 model. The algebraic model uses Prandtl formulas for mixing path with Loitsjansky damping multiplier in the internal region and the relation for turbulent viscosity, based on universal scales of external region and named the Klauzer-3 formula. 12 refs., 10 figs
The nucleation model of strings and the Hagedorn phase transition
International Nuclear Information System (INIS)
Lizzi, F.; Senda, Ikuo.
1990-07-01
In this paper we discuss a model of interacting strings at finite densities based on nucleation theory, the study of formation of droplets in a supersaturated gas, the analogy being between drops of various sizes and strings with various excitation number. The interaction of the strings is considered to be the usual merging and splitting. We do not assume equilibrium a priori but find equilibrium configurations of strings as a result of their dynamics. We study these configurations as we change the energy density, and find the presence of two phases. A low density 'gas' phase, in which the energy is in strings in the fundamental or the first few excited levels, and a high density 'liquid' phase in which the number of strings is low, all the energy being carried by few very excited strings. For the gas phase we also discuss the thermodynamics of the system. (author). 21 refs, 20 figs, 1 tab
Insausti, Matías; de Araújo Gomes, Adriano; Camiña, José Manuel; de Araújo, Mario Cesar Ugulino; Band, Beatriz Susana Fernández
2017-03-01
The present work proposes the use of total synchronous fluorescence spectroscopy (TSFS) as a discrimination methodology for fluorescent compounds in edible oils, which are preserved after the transesterification processes in the biodiesel production. In the same way, a similar study is presented to identify fluorophores that do not change in expired vegetal oils, to associate physicochemical parameters to fluorescent measures, as contribution to a fingerprint for increasing the chemical knowledge of these products. The fluorescent fingerprints were obtained by Tucker3 decomposition of a three-way array of the total synchronous fluorescence matrices. This chemometric method presents the ability for modeling non-bilinear data, as Total Synchronous Fluorescence Spectra data, and consists in the decomposition of the three way data arrays (samples × Δλ × λ excitation), into four new data matrices: A (scores), B (profile in Δλ mode), C (profile in spectra mode) and G (relationships between A, B and C). In this study, 50 samples of oil from soybean, corn and sunflower seeds before and after its expiration time, as well as 50 biodiesel samples obtained by transesterification of the same oils were measured by TSFS. This study represents an immediate application of chemical fingerprint for the discrimination of non-expired and expired edible oils and biodiesel. This method does not require the use of reagents or laborious procedures for the chemical characterization of samples.
Fast-neutron total and scattering cross sections of sup 58 Ni and nuclear models
Energy Technology Data Exchange (ETDEWEB)
Smith, A.B.; Guenther, P.T.; Whalen, J.F. (Argonne National Lab., IL (United States)); Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)
1991-07-01
The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white-source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 MeV intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to 4.8 MeV. The measured results, combined with relevant values available in the literature, were interpreted in terms of optical-statistical and coupled-channels model using both vibrational and rotational coupling schemes. The physical implications of the experimental results nd their interpretation are discussed in the contexts of optical-statistical, dispersive-optical, and coupled-channels models. 61 refs.
Directory of Open Access Journals (Sweden)
E Mohammadfam
2015-11-01
Full Text Available Introduction: All organizations, whether public or private, necessitate performance evaluation systems in regard with growth, stability, and development in the competitive fields. One of the existing models for performance evaluation of occupational health and safety management is Total Quality Safety Management model (TQSM. Therefore, the present study aimed to evaluate performance of safety management and occupational health utilizing TQSM model. Methods: In this descriptive-analytic study, the population consisted of 16 individuals, including managers, supervisors, and members of technical protection and work health committee. Then the participants were asked to respond to TQSM questionnaire before and after the implementation of Occupational Health & Safety Advisory Services 18001 (OHSAS18001. Ultimately, the level of each program as well as the TQSM status were determined before and after the implementation of OHSAS18001. Results: The study results showed that the scores obtained by the company before OHSAS 18001’s implementation, was 43.7 out of 312. After implementing OHSAS 18001 in the company and receiving the related certificate, the total score of safety program that company could obtain was 127.12 out of 312 demonstrating a rise of 83.42 scores (26.8%. The paired t-test revealed that mean difference of TQSM scores before and after OHSAS 18001 implementation was proved to be significant (p> 0.05. Conclusion: The study findings demonstrated that TQSM can be regarded as an appropriate model in order to monitor the performance of safety management system and occupational health, since it possesses the ability to quantitatively evaluate the system performance.
Identification of key residues for protein conformational transition using elastic network model.
Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin
2011-11-07
Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.
Chiral phase transition and Anderson localization in the instanton liquid model for QCD
International Nuclear Information System (INIS)
Garcia-Garcia, Antonio M.; Osborn, James C.
2006-01-01
We study the spectrum and eigenmodes of the QCD Dirac operator in a gauge background given by an instanton liquid model (ILM) at temperatures around the chiral phase transition. Generically we find the Dirac eigenvectors become more localized as the temperature is increased. At the chiral phase transition, both the low lying eigenmodes and the spectrum of the QCD Dirac operator undergo a transition to localization similar to the one observed in a disordered conductor. This suggests that Anderson localization is the fundamental mechanism driving the chiral phase transition. We also find an additional temperature dependent mobility edge (separating delocalized from localized eigenstates) in the bulk of the spectrum which moves toward lower eigenvalues as the temperature is increased. In both regions, the origin and the bulk, the transition to localization exhibits features of a 3D Anderson transition including multifractal eigenstates and spectral properties that are well described by critical statistics. Similar results are obtained in both the quenched and the unquenched case though the critical temperature in the unquenched case is lower. Finally we argue that our findings are not in principle restricted to the ILM approximation and may also be found in lattice simulations
DEFF Research Database (Denmark)
Møller, Jonas B.; Jusko, William J.; Gao, Wei
2011-01-01
was to build a mechanism-based population model that describes the time course of total GLP-1 and provides indices for capability of secretion in each subject. The goal was thus to model the secretion of GLP-1, and not its effect on insulin production. Single 75 g doses of glucose were administered orally......GLP-1 is an insulinotropic hormone that synergistically with glucose gives rise to an increased insulin response. Its secretion is increased following a meal and it is thus of interest to describe the secretion of this hormone following an oral glucose tolerance test (OGTT). The aim of this study....... The individual estimates of absorption rate constants were used in the model for GLP-1 secretion. Estimation of parameters was performed using the FOCE method with interaction implemented in NONMEM VI. The final transit/indirect-response model obtained for GLP-1 production following an OGTT included two...
Energy Technology Data Exchange (ETDEWEB)
Koch, S. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Aerodynamik und Stroemungstechnik
2004-08-01
Flow quality measurements were conducted in the cryogenic Ludwieg-tube (KRG) where time and spatial development of single fluctuation quantities were investigated. Here the total and static pressure, total temperature and mass flow were recorded in the test section as well as in the storage tube of the KRG. The dependence of the flow quality on the fluid temperature was of special interest, as a possible influence of the temperature was to be expected when the fluid is cooled down to 100 K for the simulation of flight Reynolds numbers in the KRG. Using hot films suitable at cryogenic temperatures it was possible to detect transition on a 2D-laminar type airfoil. This enabled the investigation of the influence of the fluid temperature on the transition on the airfoil model at constant similarity parameters (M, Re). (orig.)
Modelling study of magnetic and concentration phase transition in ultrathin antiferromagnetic films
International Nuclear Information System (INIS)
Leonid, Afremov; Aleksandr, Petrov
2014-01-01
Using the method of the ''average spin'' a modelling study of magnetic and concentration phase transition in ultrathin antiferromagnetic of different crystalline structure has been carried out. It has been shown, that relative change of Neel temperature is subject to the power law with negative index which doesn't depend on the film's crystal kind. The calculation of the dependence of phase transition critical concentration in diluted magnetic material on the film thickness has been made out. The legitimacy of the use of the method developed for modelling of magnetic and concentration phase transition in different nanostructures is certified by accordance between the results of calculations and the experimental data
International Nuclear Information System (INIS)
Basnarkov, Lasko; Urumov, Viktor
2009-01-01
We consider an analytically solvable version of the Winfree model of synchronization of phase oscillators (proposed by Ariaratnam and Strogatz 2001 Phys. Rev. Lett. 86 4278). It is obtained that the transition from incoherence to a partial death state is characterized by third-order or higher phase transitions according to the Ehrenfest classification. The order of the transition depends on the shape of the distribution function for natural frequencies of oscillators in the vicinity of their lowest frequency. The corresponding critical exponents are found analytically and verified with numerical simulations of equations of motion. We also consider the generalized Winfree model with the interaction strength proportional to a power of the Kuramoto order parameter and find the domain where the critical exponent remains unchanged by this modification
Quantum phase transition and quench dynamics in the anisotropic Rabi model
Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao
2017-01-01
We investigate the quantum phase transition (QPT) and quench dynamics in the anisotropic Rabi model when the ratio of the qubit transition frequency to the oscillator frequency approaches infinity. Based on the Schrieffer-Wolff transformation, we find an anti-Hermitian operator that maps the original Hamiltonian into a one-dimensional oscillator Hamiltonian within the spin-down subspace. We analytically derive the eigenenergy and eigenstate of the normal and superradiant phases and demonstrate that the system undergoes a second-order quantum phase transition at a critical border. The critical border is a straight line in a two-dimensional parameter space which essentially extends the dimensionality of QPT in the Rabi model. By combining the Kibble-Zurek mechanism and the adiabatic dynamics method, we find that the residual energy vanishes as the quench time tends to zero, which is a sharp contrast to the universal scaling where the residual energy diverges in the same limit.
Modification of transition's factor in the compact surface-potential-based MOSFET model
Directory of Open Access Journals (Sweden)
Kevkić Tijana
2016-01-01
Full Text Available The modification of an important transition's factor which enables continual behavior of the surface potential in entire useful range of MOSFET operation is presented. The various modifications have been made in order to obtain an accurate and computationally efficient compact MOSFET model. The best results have been achieved by introducing the generalized logistic function (GL in fitting of considered factor. The smoothness and speed of the transition of the surface potential from the depletion to the strong inversion region can be controlled in this way. The results of the explicit model with this GL functional form for transition's factor have been verified extensively with the numerical data. A great agreement was found for a wide range of substrate doping and oxide thickness. Moreover, the proposed approach can be also applied on the case where quantum mechanical effects play important role in inversion mode.
Quantum entanglement and phase transition in a two-dimensional photon-photon pair model
International Nuclear Information System (INIS)
Zhang Jianjun; Yuan Jianhui; Zhang Junpei; Cheng Ze
2013-01-01
We propose a two-dimensional model consisting of photons and photon pairs. In the model, the mixed gas of photons and photon pairs is formally equivalent to a two-dimensional system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phases. Using the variational method, we discuss the quantum phase transition of the mixed gas and obtain the critical coupling line analytically. Moreover, we also find that the phase transition of the photon gas can be interpreted as enhanced second harmonic generation. We then discuss the entanglement between photons and photon pairs. Additionally, we also illustrate how the entanglement between photons and photon pairs can be associated with the phase transition of the system.
Spectroscopy of 215Ra: the shell model and enhanced E3 transitions
International Nuclear Information System (INIS)
Stuchbery, A.E.; Dracoulis, G.D.; Kibedi, T.; Fabricius, B.; Lane, G.J.; Poletti, A.R.; Baxter, A.M.
1998-01-01
Excited states in the N=127 nucleus 215 Ra have been studied using γ-ray and electron spectroscopy following reactions of 13 C on 206 Pb targets. Levels were identified up to spins of ∝61/2 ℎ and excitation energies of ∝6 MeV. Enhanced octupole transitions are a feature of the level scheme. Lifetimes and magnetic moments were measured for several isomeric levels. The level scheme, transition rates and magnetic moments are compared with empirical shell model calculations and multiparticle octupole-coupled shell model calculations. In general, the experimental data are well described, but in comparison with its success in describing enhanced E3 transitions between related states in the radon isotopes, some limitations of the multiparticle octupole-coupling approach are revealed in 215 Ra. (orig.)
International Nuclear Information System (INIS)
Apetrei, Alin Marian; Enachescu, Cristian; Tanasa, Radu; Stoleriu, Laurentiu; Stancu, Alexandru
2010-01-01
We apply here the Monte Carlo Metropolis method to a known atom-phonon coupling model for 1D spin transition compounds (STC). These inorganic molecular systems can switch under thermal or optical excitation, between two states in thermodynamical competition, i.e. high spin (HS) and low spin (LS). In the model, the ST units (molecules) are linked by springs, whose elastic constants depend on the spin states of the neighboring atoms, and can only have three possible values. Several previous analytical papers considered a unique average value for the elastic constants (mean-field approximation) and obtained phase diagrams and thermal hysteresis loops. Recently, Monte Carlo simulation papers, taking into account all three values of the elastic constants, obtained thermal hysteresis loops, but no phase diagrams. Employing Monte Carlo simulation, in this work we obtain the phase diagram at T=0 K, which is fully consistent with earlier analytical work; however it is more complex. The main difference is the existence of two supplementary critical curves that mark a hysteresis zone in the phase diagram. This explains the pressure hysteresis curves at low temperature observed experimentally and predicts a 'chemical' hysteresis in STC at very low temperatures. The formation and the dynamics of the domains are also discussed.
Biosphere Modeling and Analyses in Support of Total System Performance Assessment
International Nuclear Information System (INIS)
Tappen, J. J.; Wasiolek, M. A.; Wu, D. W.; Schmitt, J. F.; Smith, A. J.
2002-01-01
The Nuclear Waste Policy Act of 1982 established the obligations of and the relationship between the U.S. Environmental Protection Agency (EPA), the U.S. Nuclear Regulatory Commission (NRC), and the U.S. Department of Energy (DOE) for the management and disposal of high-level radioactive wastes. In 1985, the EPA promulgated regulations that included a definition of performance assessment that did not consider potential dose to a member of the general public. This definition would influence the scope of activities conducted by DOE in support of the total system performance assessment program until 1995. The release of a National Academy of Sciences (NAS) report on the technical basis for a Yucca Mountain-specific standard provided the impetus for the DOE to initiate activities that would consider the attributes of the biosphere, i.e. that portion of the earth where living things, including man, exist and interact with the environment around them. The evolution of NRC and EPA Yucca Mountain-specific regulations, originally proposed in 1999, was critical to the development and integration of biosphere modeling and analyses into the total system performance assessment program. These proposed regulations initially differed in the conceptual representation of the receptor of interest to be considered in assessing performance. The publication in 2001 of final regulations in which the NRC adopted standard will permit the continued improvement and refinement of biosphere modeling and analyses activities in support of assessment activities
Biosphere Modeling and Analyses in Support of Total System Performance Assessment
International Nuclear Information System (INIS)
Jeff Tappen; M.A. Wasiolek; D.W. Wu; J.F. Schmitt
2001-01-01
The Nuclear Waste Policy Act of 1982 established the obligations of and the relationship between the U.S. Environmental Protection Agency (EPA), the U.S. Nuclear Regulatory Commission (NRC), and the U.S. Department of Energy (DOE) for the management and disposal of high-level radioactive wastes. In 1985, the EPA promulgated regulations that included a definition of performance assessment that did not consider potential dose to a member of the general public. This definition would influence the scope of activities conducted by DOE in support of the total system performance assessment program until 1995. The release of a National Academy of Sciences (NAS) report on the technical basis for a Yucca Mountain-specific standard provided the impetus for the DOE to initiate activities that would consider the attributes of the biosphere, i.e. that portion of the earth where living things, including man, exist and interact with the environment around them. The evolution of NRC and EPA Yucca Mountain-specific regulations, originally proposed in 1999, was critical to the development and integration of biosphere modeling and analyses into the total system performance assessment program. These proposed regulations initially differed in the conceptual representation of the receptor of interest to be considered in assessing performance. The publication in 2001 of final regulations in which the NRC adopted standard will permit the continued improvement and refinement of biosphere modeling and analyses activities in support of assessment activities
Research on compressive sensing reconstruction algorithm based on total variation model
Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin
2017-12-01
Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.
Baumgartner, Billy T; Karas, Vasili; Kildow, Beau J; Cunningham, Daniel J; Klement, Mitchell R; Green, Cindy L; Attarian, David E; Seyler, Thorsten M
2018-04-01
The Centers for Medicare and Medicaid Services (CMS) are implementing changes in hospital reimbursement models for total joint arthroplasty (TJA), moving to value-based bundled payments from the fee-for-service model. The purpose of this study is to identify consults and complications during the perioperative period that increase financial burden. We combined CMS payment data for inpatient, professional, and postoperative with retrospective review of patients undergoing primary TJA and developed profiles of patients included in the Comprehensive Care for Joint Replacement bundle undergoing TJA. Statistical comparison of episode inpatient events and payments was conducted. Multiple regression analysis was adjusted for length of stay, disposition, and Charlson-Deyo comorbidity profile. Median total payment was $21,577.36, which exceeded the median bundle target payment of $20,625.00. Adjusted analyses showed that psychiatry consults (increase of $73,123.32; P care unit admission ($14,078.37; P care unit admission, and medical/psychiatric consultation exceeded the CMS target. Although study results showed typical complication rates, acute inpatient consultation significantly increased utilization beyond the CMS target even when adjusted for length of stay, patient comorbidities, and discharge. Needed medical care should continue to be a priority for inpatients, and allowance for individual outliers should be considered in policy discussions. Copyright © 2017 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Mohd Norhasni Mohd Asaad
2014-02-01
Full Text Available Abstract. Market globalization, competitive product and services, high economic crises are the most critical factors that influence the success of the manufacturing companies in global market. Therefore it is critical to the manufacturing companies to be efficient in production and lean tool may used to achieve that. The most frequently used is the Total Preventive Maintenance (TPM, even though there are many studies have been conducted in relation to the TPM but there is limited research in investigating the effects of the TPM on operational performance. However, the result of the studies was not consistent, where TPM practice may have positive and negative impact on operational performance. Among the reason is the culture of the organization that influenced the implementation of TPM and operational performance. Due to that this study attempts to investigate the influence of organizational culture on the TPM implementation and operational performance. Rasch model is used in this study due to its ability in interpreting and analyzing the ability of respondents in performing the difficult items. The online questionnaires were distributed to 63 randomly selected automotive companies located at Northern Region of Malaysia. Results of the study revealed that the organizational culture has influenced on the successful implementation of TPM and operational performance. Therefore by the implementation of TPM in outstanding organizational culture can improve operational performance. Keyword: Total Preventive Maintenance (TPM, Lean manufacturing, Operational performance, Organizational culture, Rasch modeldoi:10.12695/ajtm.2013.6.2.2How to cite this article:Mohd Asaad, M.N and Yusoff, R.Z. (2013. Organizational Culture Influence On Total Productive Maintenance (TPM and Operational Performance Using RASCH Model Analysis . The Asian Journal of Technology Management 6 (2: 72-81. Print ISSN: 1978-6956; Online ISSN: 2089-791X. doi:10.12695/ajtm
Energy Technology Data Exchange (ETDEWEB)
Ford, Eric B. [Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32111 (United States); Ragozzine, Darin; Holman, Matthew J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rowe, Jason F.; Barclay, Thomas; Borucki, William J.; Bryson, Stephen T.; Caldwell, Douglas A.; Kinemuchi, Karen; Koch, David G.; Lissauer, Jack J.; Still, Martin; Tenenbaum, Peter [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Steffen, Jason H. [Fermilab Center for Particle Astrophysics, P.O. Box 500, MS 127, Batavia, IL 60510 (United States); Batalha, Natalie M. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192 (United States); Fabrycky, Daniel C. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Gautier, Thomas N. [Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 91109 (United States); Ibrahim, Khadeejah A.; Uddin, Kamal [Orbital Sciences Corporation/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kjeldsen, Hans, E-mail: eford@astro.ufl.edu [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); and others
2012-09-10
Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during the first sixteen months of Kepler observations. We present 39 strong TTV candidates based on long-term trends (2.8% of suitable data sets). We present another 136 weaker TTV candidates (9.8% of suitable data sets) based on the excess scatter of TTV measurements about a linear ephemeris. We anticipate that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We find that the occurrence rate of planet candidates that show TTVs is significantly increased ({approx}68%) for planet candidates transiting stars with multiple transiting planet candidates when compared to planet candidates transiting stars with a single transiting planet candidate.
Constitutive model for a stress- and thermal-induced phase transition in a shape memory polymer
International Nuclear Information System (INIS)
Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong
2014-01-01
Recently, increasing applications of shape memory polymers have pushed forward the development of appropriate constitutive models for smart materials such as the shape memory polymer. During the heating process, the phase transition, which is a continuous time-dependent process, happens in the shape memory polymer, and various individual phases will form at different configuration temperatures. In addition, these phases can generally be divided into two parts: the frozen and active phase (Liu Y et al 2006 Int. J. Plast. 22 279–313). During the heating or cooling process, the strain will be stored or released with the occurring phase transition between these two parts. Therefore, a shape memory effect emerges. In this paper, a new type of model was developed to characterize the variation of the volume fraction in a shape memory polymer during the phase transition. In addition to the temperature variation, the applied stress was also taken as a significant influence factor on the phase transition. Based on the experimental results, an exponential equation was proposed to describe the relationship between the stress and phase transition temperature. For the sake of describing the mechanical behaviors of the shape memory polymer, a three-dimensional constitutive model was established. Also, the storage strain, which was the key factor of the shape memory effect, was also discussed in detail. Similar to previous works, we first explored the effect of applied stress on storage strain. Through comparisons with the DMA and the creep experimental results, the rationality and accuracy of the new phase transition and constitutive model were finally verified. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education
1976-12-01
We present a quark-gluon-parton model in which quark-partons and gluons make clusters corresponding to two or three constituent quarks (or anti-quarks) in the meson or in the baryon, respectively. We explicitly construct the constituent quark state (cluster), by employing the Kuti-Weisskopf theory and by requiring the scaling. The quark additivity of the hadronic total cross sections and the quark counting rules on the threshold powers of various distributions are satisfied. For small x (Feynman fraction), it is shown that the constituent quarks and quark-partons have quite different probability distributions. We apply our model to hadron-hadron inclusive reactions, and clarify that the fragmentation and the diffractive processes relate to the constituent quark distributions, while the processes in or near the central region are controlled by the quark-partons. Our model gives the reasonable interpretation for the experimental data and much improves the usual ''constituent interchange model'' result near and in the central region (x asymptotically equals x sub(T) asymptotically equals 0).
Marom, Gil; Chiu, Wei-Che; Slepian, Marvin J; Bluestein, Danny
2014-01-01
The total artificial heart (TAH) is a bi-ventricular mechanical circulatory support device that replaces the heart in patients with end-stage congestive heart failure. The device acts as blood pump via pneumatic activation of diaphragms altering the volume of the ventricular chambers. Flow in and out of the ventricles is controlled by mechanical heart valves. The aim of this study is to evaluate the flow regime in the TAH and to estimate the thrombogenic potential during systole. Toward that goal, three numerical models of TAHs of differing sizes, that include the deforming diaphragm and the blood flow from the left chamber to the aorta, are introduced. A multiphase model with injection of platelet particles is employed to calculate their trajectories. The shear stress accumulation in the three models are calculated along the platelets trajectories and their probability density functions, which represent the `thrombogenic footprint' of the device are compared. The calculated flow regime successfully captures the mitral regurgitation and the flows that open and close the aortic valve during systole. Physiological velocity magnitudes are found in all three models, with higher velocities and increased stress accumulation predicted for smaller devices.
Long, Thomas B.; Looijen, Arnold; Blok, Vincent
2018-01-01
Businesses will play a key role in helping the transition towards greater sustainability. To maximise business sustainability performance, sustainability characteristics must be integrated at the business model level, creating business models for sustainability. Creating a business model for
International Nuclear Information System (INIS)
Korshunov, S.E.; Uimin, G.V.
1986-01-01
A most popular model in the family of two-dimensional uniformly-frustrated XY models is the antiferromagnetic model on a triangular lattice (AF XY(t) model). Its ground state is both continuously and twofold discretely degenerated. Different phase transitions possible in such systems are investigated. Relevant topological excitations are analyzed and a new class of such (vortices with a fractional number of circulation quanta) is discovered. Their role in determining the properties of the system proves itself essential. The characteristics of phase transitions related to breaking of discrete and continuous symmetries change. The phase diagram of the ''generalized'' AF XY(t) model is constructed. The results obtained are rederived in the representation of the Coulomb gas with half-interger charges, equivalent to the AF XY(t) model with the Berezinskii-Villain interaction
International Nuclear Information System (INIS)
Freire, J J
2008-01-01
The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches
Energy Technology Data Exchange (ETDEWEB)
Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), Senda del Rey 9, 28040 Madrid (Spain)], E-mail: jfreire@invi.uned.es
2008-07-16
The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches.
The phase transition in the SU(5) model at high temperatures
International Nuclear Information System (INIS)
Daniel, M.; Vayonakis, C.E.
1981-01-01
Within the minimum GUT model we have studied the nature of the fluctuation-induced transition between the SU(5) and the SU(3)sub(c) x SU(2) x U(1) phase which occurs at high temperatures. Our analysis is limited to the case when the phase transition occurs outside the critical (fluctuation-dominated) region. For this to happen the SU(5) model has to be in a mode analogous to the type I superconductor. This corresponds to having the scalar quartic couplings in the Higgs sector less than the squared gauge coupling. For generic values of the coupling constants the phase transition is found to be weakly first order. As we approach the boundaries for the region of the SU(3)sub(c) x SU(2) x U(1) phase, however, a strong first-order transition occurs. The SU(5) mode (analogous to the type II superconductor) when the phase transition occurs inside the fluctuation-dominated region has been recently studied by Ginsparg. His results together with ours show that there is a continuous merging of the type I mode into the type II mode. Finally our analysis elucidates some aspects of the monopole problem in grand unified theories. (orig.)
Modeling boundary-layer transition in DNS and LES using Parabolized Stability Equations
Lozano-Duran, Adrian; Hack, M. J. Philipp; Moin, Parviz
2016-11-01
The modeling of the laminar region and the prediction of the point of transition remain key challenges in the numerical simulation of boundary layers. The issue is of particular relevance for wall-modeled large eddy simulations which require 10 to 100 times higher grid resolution in the thin laminar region than in the turbulent regime. Our study examines the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate, yet computationally efficient treatment of the growth of disturbances in the pre-transitional flow regime. The PSE captures the nonlinear interactions that eventually induce breakdown to turbulence, and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the point of transition is the solution of the Navier-Stokes equations, it provides a natural inflow condition for large eddy and direct simulations by avoiding unphysical transients. We show that in a classical H-type transition scenario, a combined PSE/DNS approach can reproduce the skin-friction distribution obtained in reference direct numerical simulations. The computational cost in the laminar region is reduced by several orders of magnitude. Funded by the Air Force Office of Scientific Research.
Carpenter, Kenneth M; Jiang, Huiping; Sullivan, Maria A; Bisaga, Adam; Comer, Sandra D; Raby, Wilfrid Noel; Brooks, Adam C; Nunes, Edward V
2009-03-01
This study investigated the process of change by modeling transitions among four clinical states encountered in 64 detoxified opiate-dependent individuals treated with daily oral naltrexone: no opiate use, blocked opiate use (i.e., opiate use while adhering to oral naltrexone), unblocked opiate use (i.e., opiate use after having discontinued oral naltrexone), and treatment dropout. The effects of baseline characteristics and two psychosocial interventions of differing intensity, behavioral naltrexone therapy (BNT) and compliance enhancement (CE), on these transitions were studied. Participants using greater quantities of opiates were more likely than other participants to be retained in BNT relative to CE. Markov modeling indicated a transition from abstinence to treatment dropout was approximately 3.56 times greater among participants in CE relative to participants in BNT, indicating the more comprehensive psychosocial intervention kept participants engaged in treatment longer. Transitions to stopping treatment were more likely to occur after unblocked opiate use in both treatments. Continued opiate use while being blocked accounted for a relatively low proportion of transitions to abstinence and may have more deleterious effects later in a treatment episode. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Numerical modeling of the transition from low to high confinement in magnetically confined plasma
DEFF Research Database (Denmark)
Rasmussen, Jens Juul; Nielsen, Anders Henry; Madsen, Jens
2016-01-01
The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak......–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null...... including both open and closed field lines. The results reveal different types of L–H-like transitions in response to ramping up the input power by increasing the ion temperature in the edge region. For a fast rising input power we obtain an abrupt transition, and for a slow rising power we obtain a L...
Liechty, Derek S.; Lewis, Mark
2010-01-01
A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.
A Connectionist Model of a Continuous Developmental Transition in the Balance Scale Task
Schapiro, Anna C.; McClelland, James L.
2009-01-01
A connectionist model of the balance scale task is presented which exhibits developmental transitions between "Rule I" and "Rule II" behavior [Siegler, R. S. (1976). Three aspects of cognitive development. "Cognitive Psychology," 8, 481-520.] as well as the "catastrophe flags" seen in data from Jansen and van der Maas [Jansen, B. R. J., & van der…
DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION
Energy Technology Data Exchange (ETDEWEB)
Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A
2009-10-12
The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.
Modeling corewood-outerwood transition in loblolly pine using wood specific gravity
Christian R. Mora; H. Lee Allen; Richard F. Daniels; Alexander Clark
2007-01-01
A modified logistic function was used for modeling specific-gravity profiles obtained from X-ray densitometry analysis in 675 loblolly pine (Pinus taeda L.) trees in four regeneration trials. Trees were 21 or 22 years old at the time of the study. The function was used for demarcating corewood, transitional, and outerwood zones. Site and silvicultural effects were...