WorldWideScience

Sample records for model total energy

  1. Modelling total energy costs of sports centres

    Energy Technology Data Exchange (ETDEWEB)

    Boussabaine, A.H.; Kirkham, R.J.; Grew, R.J. [Liverpool Univ., School of Architecture and Building Engineering, Liverpool (United Kingdom)

    1999-12-07

    Providing and maintaining safe and comfortable conditions in sport centres raises many issues, particularly cost. The paper gives an overview of the factors associated with sport centre servicing and attempts to highlight the governing factors associated with this, particularly energy costs. A total of 19 sport centres in the City of Liverpool in the UK are investigated, using data elicited from the Liverpool Leisure Services Directorate. The energy operating costs were analysed using statistical methods. Six models were developed to predict total energy costs. Testing and validation results showed a high level of model accuracy. The models would be of use to professionals involved in feasibility studies at the design stage. (Author)

  2. Total Energy Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S

    2008-08-11

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  3. An Ant Optimization Model for Unrelated Parallel Machine Scheduling with Energy Consumption and Total Tardiness

    Directory of Open Access Journals (Sweden)

    Peng Liang

    2015-01-01

    Full Text Available This research considers an unrelated parallel machine scheduling problem with energy consumption and total tardiness. This problem is compounded by two challenges: differences of unrelated parallel machines energy consumption and interaction between job assignments and machine state operations. To begin with, we establish a mathematical model for this problem. Then an ant optimization algorithm based on ATC heuristic rule (ATC-ACO is presented. Furthermore, optimal parameters of proposed algorithm are defined via Taguchi methods for generating test data. Finally, comparative experiments indicate the proposed ATC-ACO algorithm has better performance on minimizing energy consumption as well as total tardiness and the modified ATC heuristic rule is more effectively on reducing energy consumption.

  4. Model for neutron total cross-section at low energies for nuclear grade graphite

    Energy Technology Data Exchange (ETDEWEB)

    Galván Josa, V.M. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FaMAF, Universidad Nacional de Córdoba (Argentina); Dawidowski, J., E-mail: javier@cab.cnea.gov.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión Nacional de Enegía Atómica-Universidad Nacional de Cuyo (Argentina); Santisteban, J.R.; Malamud, F. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión Nacional de Enegía Atómica-Universidad Nacional de Cuyo (Argentina); Oliveira, R.G. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Fac. Cs. Químicas, Universidad Nacional de Córdoba (Argentina)

    2015-04-21

    At subthermal neutron energies, polycrystalline graphite shows a large total cross-section due to small angle scattering processes. In this work, a new methodology to determine pore size distributions through the neutron transmission technique at subthermal energies is proposed and its sensitivity is compared with standard techniques. A simple model based on the form factor for spherical particles, normally used in the Small Angle Neutron Scattering technique, is employed to calculate the contribution of small angle effect to the total scattering cross-section, with the width and center of the radii distributions as free parameters in the model. Small Angle X-ray Scattering experiments were performed to compare results as a means to validate the method. The good agreement reached reveals that the neutron transmission technique is a useful tool to explore small angle scattering effects. This fact can be exploited in situations where large samples must be scanned and it is difficult to investigate them with conventional methods. It also opens the possibility to apply this method in energy-resolved neutron imaging. Also, since subthermal neutron transmission experiments are perfectly feasible in small neutron sources, the present findings open new possibilities to the work done in such kind of facilities.

  5. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.

  6. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.

    Science.gov (United States)

    Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  7. Analysis of Total Factor Efficiency of Water Resource and Energy in China: A Study Based on DEA-SBM Model

    Directory of Open Access Journals (Sweden)

    Weixin Yang

    2017-07-01

    Full Text Available One of the serious issues that China faces during its fast economic development is the low input–output efficiency of water and energy resources and growing water pollution. With the current economic development model of China, economic growth still requires large input of water resource and energy resource. This paper has focused on the total factor efficiency of water resource and energy resource by each province in China. We treat the undesirable outputs as outputs in the DEA-SBM Model instead of as inputs in previous studies, and design a new MATLAB programming to achieve optimization solutions of multi-variable constrained nonlinear functions to evaluate the Total Factor Efficiency of Water resource (TFEW and the Total Factor Efficiency of Energy (TFEE in China accurately. By using the method, this paper has analyzed the TFEW and TFEE in China from 2003 to 2014 by economic zones and typical provinces and provided corresponding policy recommendations.

  8. Calculation of Total Reaction Cross Sections Induced by Intermediate Energy α-Particles with the Boltzmann-Uehling-Uhlenbeck Model

    Institute of Scientific and Technical Information of China (English)

    钟晨; 蔡翔舟; 沈文庆; 张虎勇; 魏义彬; 陈金根; 马余刚; 郭威; 方德清

    2003-01-01

    The Boltzmann-Uehling-Uhlenbeck (BUU) model, which includes the Fermi motion, the mean field, individual nucleon-nucleon (N-N) interactions and the Pauli blocking effect, etc., is used to calculate the total reaction cross section σR induced by α-particles on different targets in the incident energy range from 17.4 to 48.1 MeV/u. The calculation result can well reproduce the experimental data. The nucleus-nucleus interaction radius parameterγ0 was extracted from experimental σR. It is found that γ0 becomes constant with the increasing mass number of target.

  9. Transport and diffusion using a diagnostic mesoscale model employing mass and total energy conservation constraints

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, R E; Cederwall, R T; Ohmstede, W D; aufm Kampe, W

    1976-01-01

    Several steps are described that have been taken to advance the method of ''interpolation'' associated with meteorological measurements. These newer methods incorporate some physical constraints into the interpolation. It is the intent of this paper to qualitatively describe early fruits of a joint project at Brookhaven National Laboratory and White Sands Missile Range which has as its objective the formulation of a numerical objective methodology for reconstructing the meteorological fields suitable for the exercise of meso/regional scale transport, chemical and radioactive transformation, and diffusion models.

  10. Some Environmental and Economic Aspects of Energy Saving Measures in Houses. An estimation model for total energy consumption and emissions to air from the Norwegian dwelling stock, and a life cycle assessment method for energy saving measures in houses

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, L.

    1995-12-01

    Motivated by the need to reduce the total energy consumption and the environmental load from society, this doctoral thesis discusses energy conservation measures on existing houses. Alternative additional thermal insulation measures are assessed using an interdisciplinary life cycle approach. The first task is to develop an interdisciplinary assessment method for building improvement measures, taking account of energy consumption, resource consumption, emissions to air of environmentally harmful gases, and economic costs during the entire life cycle of the building. The second task is to develop an estimation model for the total energy consumption and emissions to air of environmentally harmful gases from the dwelling stock of Norway. Finally, the third task is to assess the total energy saving potential and the total environmental benefits of energy saving measures in houses on a national level, including only life cycle analyses of additional thermal insulation measures on single houses. Chap 2 describes the dwelling stock in Norway. Chaps 3 and 4 present an estimation model for total energy consumption and emissions to air from the dwelling stock, and calculations using the model. Chaps 5 and 6 propose and use a calculation method for the assessment of additional thermal insulation measures, using a ``cradle-to-grave`` approach. Since hydroelectric power is the main energy source in this sector in Norway, estimated payback periods for emissions to air are long. But hydroelectric power saved in this sector may be used to obtain reduction in fossil fuel use in other sectors as discussed in Chap 7. Some of the topics discussed are further elaborated on in appendices. 107 refs., 39 figs, 88 tabs.

  11. Implications of Energy Return on Energy Invested on Future Total Energy Demand

    Directory of Open Access Journals (Sweden)

    Shinuo Deng

    2011-12-01

    Full Text Available Human society is now at the beginning of a transition from fossil-fuel based primary energy sources to a mixture of renewable and nuclear based energy sources which have a lower Energy Return On Energy Invested (EROEI than the older fossil based sources. This paper examines the evolution of total energy demand during this transition for a highly idealized energy economy. A simple model is introduced in which the net useful energy output required to operate an economy is assumed to remain fixed while the lower EROEI source gradually replaces the older higher EROEI primary energy source following a logistics substitution model. The results show that, for fixed net useful energy output, total energy demand increases as the ratio EROEInew/EROEIold decreases; total energy demand diverges as EROEInew approaches unity, indicating that the system must collapse in this limit.

  12. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    Science.gov (United States)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  13. Analysis of regional total factor energy efficiency in China under environmental constraints: based on undesirable-minds and DEA window model

    Science.gov (United States)

    Zhang, Shuying; Li, Deshan; Li, Shuangqiang; Jiang, Hanyu; Shen, Yuqing

    2017-06-01

    With China’s entrance into the new economy, the improvement of energy efficiency has become an important indicator to measure the quality of ecological civilization construction and economic development. According to the panel data of Chinese regions in 1996-2014, the nearest distance to the efficient frontier of Undesirable-MinDS Xeon model and DEA window model have been used to calculate the total factor energy efficiency of China’s regions. Study found that: Under environmental constraints, China’s total factor energy efficiency has increased after the first drop in the overall 1996-2014, and then increases again. And the difference between the regions is very large, showing a characteristic of “the east is the highest, the west is lower, and lowest is in the central” finally, this paper puts forward relevant policy suggestions.

  14. Total energy of the Bianchi type I universes

    CERN Document Server

    Xulu, S S

    2000-01-01

    Using the symmetric energy-momentum complexes of Landau and Lifshitz, Papapetrou, and Weinberg we obtain the energy of the universe in anisotropic Bianchi type I cosmological models . The energy (due to matter plus field) is found to be zero and this agrees with a previous result of Banerjee and Sen who investigated this problem using the Einstein energy-momentum complex. Our result supports the importance of the energy-momentum complexes and contradicts the prevailing ``folklore'' that different energy-momentum complexes could give different and hence unacceptable energy distribution in a given space-time. The result that the total energy of the universe in these models is zero supports the viewpoint of Tryon. Rosen computed the total energy of the closed homogeneous isotropic universe and found that to be zero, which agrees with the studies of Tryon.

  15. Total Cross Sections at High Energies An update

    CERN Document Server

    Fazal-e-Aleem, M; Alam, Saeed; Qadee-Afzal, M

    2002-01-01

    Current and Future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX and TOTEM have been analyzed using various models. In the light of this study an attempt has been made to focus on the behavior of total cross section at very high energies.

  16. The Total Energy Flux Leaving the Ocean's Mixed Layer

    NARCIS (Netherlands)

    Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten

    2016-01-01

    The total energy flux leaving the ocean’s spatially and seasonally varying mixed layer is estimated using a global ⅝1/10° ocean general circulation model. From the total wind-power input of 3.33 TW into near-inertial waves (0.35 TW), subinertial fluctuations (0.87 TW), and the time-mean circulation

  17. The mechanical energy equation for total flow in open channels

    Institute of Scientific and Technical Information of China (English)

    刘士和; 范敏; 薛娇

    2014-01-01

    The mechanical energy equation is a fundamental equation of a 1-D mathematical model in Hydraulics and Engineering Fluid Mechanics. This equation for the total flow used to be deduced by extending the Bernoulli’s equation for the ideal fluid in the streamline to a stream tube, and then revised by considering the viscous effect and integrated on the cross section. This derivation is not rigorous and the effect of turbulence is not considered. In this paper, the energy equation for the total flow is derived by using the Navier-Stokes equations in Fluid Mechanics, the results are as follows:(1) A new energy equation for steady channel flows of in-compressible homogeneous liquid is obtained, which includes the variation of the turbulent kinetic energy along the channel, the for-mula for the mechanical energy loss of the total flow can be determined directly in the deduction process. (2) The theoretical solution of the velocity field for laminar flows in a rectangular open channel is obtained and the mechanical energy loss in the energy equa-tion is calculated. The variations of the coefficient of the mechanical energy loss against the Reynolds number and the width-depth ratio are obtained. (3) The turbulent flow in a rectangular open channel is simulated using 3-D Reynolds averaged equations closed by the Reynolds stress model (RSM), and the variations of the coefficient of the mechanical energy loss against the Reynolds number and the width-depth ratio are discussed.

  18. Microscopic Model Analysis of the $^{6}He,^{6}Li$ + $^{28}Si$ Total Reaction Cross Sections at the Energy Range 5-50 a Mev

    CERN Document Server

    Lukyanov, K V; Lukyanov, V K; Penionzhkevich, Yu E; Sobolev, Y G; Zemlyanaya, E V; Penionzhkevich, Yu.E.; Sobolev, Yu.G.

    2007-01-01

    The existing and some preliminary experimental data on the total cross sections of the $^{4,6}$He, $^{6,7}$Li +$^{28}$Si reactions at energies E=5-50 A MeV are demonstrated. The data on $^{6}$Li,$^{6}$He+$^{28}$Si are analyzed in the framework of the microscopic optical potential with real and imaginary parts obtained with a help of the double-folding procedure and by using the current models of densities of the projectile nuclei. Besides, the microscopic double-folding Coulomb potential is calculated and its effect on cross sections is compared with that when one applies the traditional Coulomb potential of the uniform charge distribution. The semi-microscopic potentials are constructed from both the renormalized microscopic potentials and their derivatives to take into account collective motion effect and to improve an agreement with experimental data.

  19. Point-by-Point model description of average prompt neutron data as a function of total kinetic energy of fission fragments

    Science.gov (United States)

    Tudora, A.

    2013-03-01

    The experimental data of average prompt neutron multiplicity as a function of total kinetic energy of fragments (TKE) exhibit, especially in the case of 252Cf(SF), different slopes dTKE/dν and different behaviours at low TKE values. The Point-by-Point (PbP) model can describe these different behaviours. The higher slope dTKE/dν and the flattening of at low TKE exhibited by a part of experimental data sets is very well reproduced when the PbP multi-parametric matrix ν(A,TKE) is averaged over a double distribution Y(A,TKE). The lower slope and the almost linear behaviour over the entire TKE range exhibited by other data sets is well described when the same matrix ν(A,TKE) is averaged over a single distribution Y(A). In the case of average prompt neutron energy in SCM as a function of TKE, different dTKE/dɛ slopes are also obtained by averaging the same PbP matrix ɛ(A,TKE) over Y(A,TKE) and over Y(A). The results are exemplified for three fissioning systems benefiting of experimental data as a function of TKE: 252Cf(SF), 235U(nth,f) and 239Pu(nth,f). In the case of 234U(n,f) for the first time it was possible to calculate (TKE) and (TKE) at many incident energies by averaging the PbP multi-parametric matrices over the experimental Y(A,TKE) distributions recently measured at IRMM for 14 incident energies in the range 0.3-5 MeV. The results revealed that the slope dTKE/dν does not vary with the incident energy and the flattening of at low TKE values is more pronounced at low incident energies. The average model parameters dependences on TKE resulted from the PbP treatment allow the use of the most probable fragmentation approach, having the great advantage to provide results at many TKE values in a very short computing time compared to PbP and Monte Carlo treatments.

  20. Energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available The construction industry has turned to energy modelling in order to assist them in reducing the amount of energy consumed by buildings. However, while the energy loads of buildings can be accurately modelled, energy models often under...

  1. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans.

    Science.gov (United States)

    Pontzer, Herman; Durazo-Arvizu, Ramon; Dugas, Lara R; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Cooper, Richard S; Schoeller, Dale A; Luke, Amy

    2016-02-08

    Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology.

  2. Commercial applications of solar total energy systems. Volume 4. Appendices. Final report. [Solar Total Energy System Evaluation Program (STESEP) code

    Energy Technology Data Exchange (ETDEWEB)

    Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

    1978-07-01

    A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. This volume contains the appendices. Topics include deterministic insolation model computer code; building energy usage data; computer simulation programs for building energy demand analysis; model buildings for STES evaluation; Solar Total Energy System Evaluation Program (STESEP) computer code; transient simulation of STES concept; solar data tape analysis; program listings and sample output for use with TRNSYS; transient simulation, and financial parameters sensitivities. (WHK)

  3. Dwelling Buildings’ Energy Certification by Total Energy Consumption

    OpenAIRE

    Belindževa-Korkla, O; Krēsliņš, A; Borodiņecs, A

    2005-01-01

    One of the requirements of the Directive 2002/91/EC on the energy performance of buildings is introduction in the EU member countries of energy certification of buildings. It has to be implemented starting from 2006. In Latvia the energy certification scheme for dwelling buildings was developed in RTU in 2000 and successfully implemented in Ogre in 2002-2004. The existing buildings’ energy certification scheme takes into account only energy consumption of space heating and hot water supply. I...

  4. Total-factor energy efficiency in the EU countries

    Directory of Open Access Journals (Sweden)

    Nela Vlahinić-Dizdarević

    2012-12-01

    Full Text Available The purpose of this research is to examine the economy-wide energy efficiency changes in the EU countries in the period from 2000 to 2010 and to compare the results with the traditional energy efficiency indicator. The DEA CCR multiple input-oriented model is applied in order to analyze the efficiency of the use of three inputs (capital stock, labor and energy consumption in producing GDP as the output. In order to obtain the dynamics of data as to avoid the use of only a single year in calculating energy efficiency the extended DEA method - window analysis - is adopted. The empirical results confirm that the traditional one-factor energy efficiency indicator is too simplifying and could be misleading. The findings on total-factor energy efficiency scores reflect the possibility of substitution among factors in a medium run and changes in the composition of energy use. Projection values of inputs on efficiency frontier identify the amounts of relative inefficiency and, in that context, suggest improvements for all inefficient countries. The results reveal that all inefficient countries could improve their efficiency by reducing some of the inputs.

  5. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  6. TOTAL QUALITY CUSTOMER SATISFACTION MODEL

    OpenAIRE

    Jesús Cruz Álvarez; Jesús Fabián López; Carlos Monge Perry

    2014-01-01

    In today’s business environment, all organizations are required to focus on their customers in order to fully understand their needs. There is a need to drive and engage strategic actions in order to close any potentials gaps between customer´s expectations and manufacture´s deliverables. Current customer satisfaction theory appears to be excluded from a holistic model that broadly covers the extent of customer satisfaction concept.This article empathizes the need of an integrated customer sa...

  7. Total-factor energy efficiency of regions in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Satoshi [Faculty of Economics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503 (Japan); Hu, Jin-Li [Institute of Business and Management, National Chiao Tung University (China)

    2008-02-15

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan - how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan. (author)

  8. Neonatal exposure to oxidants induces later in life a metabolic response associated to a phenotype of energy deficiency in an animal model of total parenteral nutrition.

    Science.gov (United States)

    Kleiber, Niina; Chessex, Philippe; Rouleau, Thérèse; Nuyt, Anne-Monique; Perreault, Maude; Lavoie, Jean-Claude

    2010-09-01

    Failure to protect total parenteral nutrition (TPN) from ambient light exacerbates the generation of peroxides, which affects blood glucose and plasma triacylglyceride (TG) in neonates. Based on the concept that the origin of adult diseases can be traced back to perinatal life, it was hypothesized that neonatal exposure to peroxides may affect energy availability later in life. Three-day-old guinea pigs, fitted with a jugular catheter, were fed regular chow (sham) +/- i.v. 350 microM H2O2 (sham + H2O2) or nourished with light-protected TPN [TPN(-)L, 209 +/- 9 microM peroxides] or light-exposed TPN [TPN(+)L, 365 +/- 15 microM peroxides]. After 4 d, infusions were stopped and animals fed chow. Spontaneous ambulatory movements, fasting blood glucose, glucose tolerance, TG, hepatic activities of glucokinase, phosphofructokinase (key enzymes of glycolysis), and acetyl-CoA carboxylase (key enzymes of lipogenesis) were determined at 12-14 wk and compared by ANOVA (p animals from sham + H2O2, TPN(-)L and TPN(+)L groups had lower plasma TG explained for 36% by low phosphofructokinase activity; they had lower glucose tolerance, lower body weight, and lower physical activity. In conclusion, neonatal exposure to oxidant molecules such as peroxides has important consequences later in life on lipid and glucose metabolism leading to a phenotype of energy deficiency.

  9. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    Science.gov (United States)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  10. TOTAL REWARDS MODEL IN ROMANIAN COMPANIES

    Directory of Open Access Journals (Sweden)

    Elena-Sabina HODOR

    2014-04-01

    Full Text Available Total Rewards Management is a subject of major importance for companies, because, by using models for this, firms can achieve their objectives of high performance. In order to analyse a validated total rewards model in Romanian Accounting and Consulting Companies, it is used The WorldatWork Total Rewards Model, which depict what contributes to applicant attraction and employee motivation and retention. Thus, the methodology of the previous survey is adjusted to the local context. The conclusions for the methodological aspects illustrate that the present research involves three strategic steps in order to achieve the objectives presented: the analysis of organizational environment of the companies from the sample, checking if Total Rewards Model proposed in the previous research is applicable for the same romanian companies from the previous survey, the analysing of the differences between results, and, if necessary, the adaptation of the model for Romania.

  11. TOTAL REWARDS MODEL IN ROMANIAN COMPANIES

    Directory of Open Access Journals (Sweden)

    Elena-Sabina HODOR

    2014-04-01

    Full Text Available Total Rewards Management is a subject of major importance for companies, because, by using models for this, firms can achieve their objectives of high performance. In order to analyse a validated total rewards model in Romanian Accounting and Consulting Companies, it is used The WorldatWork Total Rewards Model, which depict what contributes to applicant attraction and employee motivation and retention. Thus, the methodology of the previous survey is adjusted to the local context. The conclusions for the methodological aspects illustrate that the present research involves three strategic steps in order to achieve the objectives presented: the analysis of organizational environment of the companies from the sample, checking if Total Rewards Model proposed in the previous research is applicable for the same romanian companies from the previous survey, the analysing of the differences between results, and, if necessary, the adaptation of the model for Romania.

  12. Total Energy. Sustainable cooling and heating in supermarkets; Total Energy. Duurzame koeling en verwarming supermarkten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    In 8 articles attention is paid to different aspects of cooling and heating in supermarkets: new coolants in the food retail sector, the climate plan of the Dutch Food Retail Association (CBL), he Round Table discussion with between CBL and supermarket chains about research results, approach and targets, the use of CO2 refrigeration in supermarkets, leakage of coolants from refrigerators and freezers in Dutch supermarkets, the energy efficient and environment-friendly refrigerator and freezer equipment of the distribution centre of supermarket chain C1000 in Raalte, Netherlands, changes for cooling techniques in the EIA energy list (Energy investment deduction scheme) and finally education options for the refrigeration industry in the Netherlands. [Dutch] In 8 artikelen wordt aandacht geschonken aan verschillende aspecten m.b.t. koeling en verwarming in supermarkten: nieuwe koelmiddelen in de 'food retail sector, het klimaatplan van de brancheorganisatie Centraal Bureau Levensmiddelenhandel (CBL), het Rondetafel overleg met de CBL en supermarktketens over onderzoeksresultaten, aanpak en doelen, de toepassing van CO2 koeling in supermarkten, lekkage van koelmiddelen uit koel- en vriesinstallaties in Nederlandse supermarkten, de energiezuinige en milieuvriendelijke koel-vriesinstallatie van het distributiecentrum van de supermarktketen C1000 in Raalte, wijzigingen voor koeltechniek in de EIA energielijst (Energie Investeringsaftrek subsidieregeling), en tenslotte opleidingsmogelijkheden voor de koeltechnische sector in Nederland.

  13. A new method for constructing total energy conservation algorithms

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Based on a basic rule for the research on numerical methods which requires that the properties of the original problem should be preserved as much as possible under discretization, a new method for constructing total energy conservation algorithms is presented. By this method, all kinds of implicit schemes with energy conservation laws including many classical conservation schemes can be constructed from a kind of special function. Also, the concrete criterion for judging total energy conservation schemes is given. Numerical tests show that these new schemes are effective.

  14. NEUTRON TOTAL CROSS SECTIONS OF 235U FROM TRANSMISSION MEASUREMENTS IN THE ENERGY RANGE 2 keV to 300 keV AND STATISTICAL MODEL ANALYSIS OF THE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, H.

    2000-05-22

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample. The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al. in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code was used for a statistical model analysis of the total cross section, selected fission cross sections and {alpha} data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  15. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  16. Energy-consumption modelling

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  17. Machine Learning methods in fitting first-principles total energies for substitutionally disordered solid

    Science.gov (United States)

    Gao, Qin; Yao, Sanxi; Widom, Michael

    2015-03-01

    Density functional theory (DFT) provides an accurate and first-principles description of solid structures and total energies. However, it is highly time-consuming to calculate structures with hundreds of atoms in the unit cell and almost not possible to calculate thousands of atoms. We apply and adapt machine learning algorithms, including compressive sensing, support vector regression and artificial neural networks to fit the DFT total energies of substitutionally disordered boron carbide. The nonparametric kernel method is also included in our models. Our fitted total energy model reproduces the DFT energies with prediction error of around 1 meV/atom. The assumptions of these machine learning models and applications of the fitted total energies will also be discussed. Financial support from McWilliams Fellowship and the ONR-MURI under the Grant No. N00014-11-1-0678 is gratefully acknowledged.

  18. A formal model for total quality management

    NARCIS (Netherlands)

    S.C. van der Made-Potuijt; H.B. Bertsch (Boudewijn); L.P.J. Groenewegen

    1996-01-01

    textabstractTotal Quality Management (TQM) is a systematic approach to managing a company. TQM is systematic in the sense that it is uses facts through observation, analysis and measurable goals. There are theoretical descriptions of this management concept, but there is no formal model of it. A for

  19. A formal model for total quality management

    NARCIS (Netherlands)

    S.C. van der Made-Potuijt; H.B. Bertsch (Boudewijn); L.P.J. Groenewegen

    1996-01-01

    textabstractTotal Quality Management (TQM) is a systematic approach to managing a company. TQM is systematic in the sense that it is uses facts through observation, analysis and measurable goals. There are theoretical descriptions of this management concept, but there is no formal model of it. A

  20. On the total variation dictionary model.

    Science.gov (United States)

    Zeng, Tieyong; Ng, Michael K

    2010-03-01

    The goal of this paper is to provide a theoretical study of a total variation (TV) dictionary model. Based on the properties of convex analysis and bounded variation functions, the existence of solutions of the TV dictionary model is proved. We then show that the dual form of the model can be given by the minimization of the sum of the l(1) -norm of the dual solution and the Bregman distance between the curvature of the primal solution and the subdifferential of TV norm of the dual solution. This theoretical result suggests that the dictionary must represent sparsely the curvatures of solution image in order to obtain a better denoising performance.

  1. An improved titration model reducing over estimation of total volatile fatty acids in anaerobic digestion of energy crop, animal slurry and food waste.

    Science.gov (United States)

    Purser, B J Jobling; Thai, S-M; Fritz, T; Esteves, S R; Dinsdale, R M; Guwy, A J

    2014-09-15

    Titration methodologies have been used for the many years for low cost routine monitoring of full scale anaerobic digestion plants. These methodologies have been correlated to indicate the carbonate alkalinity and the volatile fatty acids (VFA) content within digesters. Two commonly used two end-point titration methods were compared using a dataset of 154 samples from energy crop and animal slurry digestates and were shown to be inaccurate in the estimation of tVFA. Using this dataset correlated with HPLC VFA analysis, two empirical bivariate linear regression equations were derived, where the validation dataset showed an absolute tVFA mean error improvement from ±3386 and ±3324 mg kg(-1) tVFA to ±410 and ±286 mg kg(-1) tVFA, respectively. The same equation was then applied to a food waste dataset where an absolute tVFA mean error was improved from ±3828 to ±576 mg kg(-1) tVFA. The newly derived titration equations can provide greater confidence in digester performance monitoring and are tools that can improve digester management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Variational total energies from {Phi} - and {Psi}- derivable theories

    Energy Technology Data Exchange (ETDEWEB)

    Almbladh, C.O.; Von Barth, U.; Van Leeuwen, R. [Department of Theoretical Physics, Lund University, Lund (Sweden)

    1998-12-31

    Starting from many-body perturbation theory we have constructed a new variational expression for the total energy of many-electron systems. This expression is a functional of two independent variables, the one-electron Green function and the screened Coulomb interaction. The new functional as well as a much older variational expression by Luttinger and Ward (LW) are tested on the interacting electron gas. Both functionals yield extraordinary accurate total energies although the new functional requires a much cruder input and is therefore easier to apply to more realistic systems. When the self-consistent Green`s function of the GWA is used in the evaluations, both expressions give identical results close to those of elaborate Monte-Carlo calculations. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd) 14 refs.,2 fig., email addresses: coa/teorfys.lu.se; barth/teorfys.lu.se; rvl/teorfys.lu.se

  3. Thermal compression waves. 2: Mass adjustment and vertical transfer of the total energy

    Science.gov (United States)

    Nicholls, Melville E.; Pielke, Roger A.

    1994-01-01

    A fully compressible model is used to simulate the mass adjustment that occurs in response to a prescribed heat source. Results illustrate the role that thermal compression waves have in this process. The vertical mass transport associated with compression waves decreases rapidly with height. Most of the mass transport occurs in the horizontal, with the vertical structure of the disturbance similar to that of a Lamb wave. The vertical transfer of total energy in a thermally driven mixed layer is also examined. It is shown that the upward transport of total energy is accomplished by a compression effect rather than by the exchange of warm and cold air by buoyant thermals. Model results are analyzed to determine budgets of total energy, mass and entropy. It is demonstrated that buoyant thermals are predominantly responsible for a transfer of entropy, rather than total energy. In the light of these results the notion of 'heat transport' in a fluid is discussed.

  4. Total Corporate social responsibility report 2004. Sharing our energy; TOTAL rapport societal and environnemental 2004. Notre energie en partage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-15

    This document presents the social and environmental activities of the group Total for the year 2004. It provides information on the ethical aspects of the governance, the industrial security, the environmental policy, the public health and the occupational safety, the social liability and the economical and social impact of the group activities in the local development, the contribution to the climatic change fight and the development of other energy sources. (A.L.B.)

  5. Total energy evaluation in the Strutinsky shell correction method.

    Science.gov (United States)

    Zhou, Baojing; Wang, Yan Alexander

    2007-08-14

    We analyze the total energy evaluation in the Strutinsky shell correction method (SCM) of Ullmo et al. [Phys. Rev. B 63, 125339 (2001)], where a series expansion of the total energy is developed based on perturbation theory. In agreement with Yannouleas and Landman [Phys. Rev. B 48, 8376 (1993)], we also identify the first-order SCM result to be the Harris functional [Phys. Rev. B 31, 1770 (1985)]. Further, we find that the second-order correction of the SCM turns out to be the second-order error of the Harris functional, which involves the a priori unknown exact Kohn-Sham (KS) density, rho(KS)(r). Interestingly, the approximation of rho(KS)(r) by rho(out)(r), the output density of the SCM calculation, in the evaluation of the second-order correction leads to the Hohenberg-Kohn-Sham functional. By invoking an auxiliary system in the framework of orbital-free density functional theory, Ullmo et al. designed a scheme to approximate rho(KS)(r), but with several drawbacks. An alternative is designed to utilize the optimal density from a high-quality density mixing method to approximate rho(KS)(r). Our new scheme allows more accurate and complex kinetic energy density functionals and nonlocal pseudopotentials to be employed in the SCM. The efficiency of our new scheme is demonstrated in atomistic calculations on the cubic diamond Si and face-centered-cubic Ag systems.

  6. Image Denoising Using Total Variation Model Guided by Steerable Filter

    Directory of Open Access Journals (Sweden)

    Wenxue Zhang

    2014-01-01

    Full Text Available We propose an adaptive total variation (TV model by introducing the steerable filter into the TV-based diffusion process for image filtering. The local energy measured by the steerable filter can effectively characterize the object edges and ramp regions and guide the TV-based diffusion process so that the new model behaves like the TV model at edges and leads to linear diffusion in flat and ramp regions. This way, the proposed model can provide a better image processing tool which enables noise removal, edge-preserving, and staircase suppression.

  7. National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.W. (Energy Information Administration, Washington, DC (United States))

    1993-01-01

    The Energy Information Administration is developing a new National Energy Modeling System to provide annual forecasts of energy supply, demand, and prices on a regional basis in the United States and, to a limited extent, in the rest of the world. The design for the system was based on a requirements analysis, a comparison of requirements with existing modeling capabilities, and a series of widely circulated issue papers defining the choices and tradeoffs for 13 key design decisions. An initial prototpye of the new NEMS was implemented in late 1992, with a more complete, operational version in 1993. NEMS is expected to provide EIA and other users with a greatly enhanced ability to illustrate quickly and effectively the effects of a wide range of energy policy proposals.

  8. Modeling total expenditure on warranty claims

    CERN Document Server

    Mitra, Abhimanyu

    2010-01-01

    We approximate the distribution of total expenditure of a retail company over warranty claims incurred in a fixed period [0, T], say the following quarter. We consider two kinds of warranty policies, namely, the non-renewing free replacement warranty policy and the non-renewing pro-rata warranty policy. Our approximation holds under modest assumptions on the distribution of the sales process of the warranted item and the nature of arrivals of warranty claims. We propose a method of using historical data to statistically estimate the parameters of the approximate distribution. Our methodology is applied to the warranty claims data from a large car manufacturer for a single car model and model year.

  9. The total flow concept for geothermal energy conversion

    Science.gov (United States)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  10. Institutional applications of solar total energy systems. Third quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-31

    Estimates are presented of the availability of land for solar total energy (STE) systems. The investigation of the external decision processes that affect an STE system choice was continued. The STE system/utility interface was examined, presenting regional time-of-day pricing scenarios and estimates of backup rates. The possible effects that the financial community could have on STE market penetration was considered. Regional and sectoral energy-use profiles were developed. These profiles served as a basis for simulating yearly system performance on an hourly basis to estimate system costs and savings. Preliminary conceptual designs were developed for both thermal and photovoltaic STE systems. Refined system designs and detailed capital cost and performance estimates for the optimized designs are presented. (MHR)

  11. Comments on high-energy total cross sections in QCD

    Directory of Open Access Journals (Sweden)

    Matteo Giordano

    2015-05-01

    Full Text Available We discuss how hadronic total cross sections at high energy depend on the details of QCD, namely on the number of colours Nc and the quark masses. We find that while a “Froissart”-type behaviour σtot∼Blog2⁡s is rather general, relying only on the presence of higher-spin stable particles in the spectrum, the value of B depends quite strongly on the quark masses. Moreover, we argue that B is of order O(Nc0 at large Nc, and we discuss a bound for B which does not become singular in the Nf=2 chiral limit, unlike the Froissart–Łukaszuk–Martin bound.

  12. Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

    1977-05-01

    An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

  13. Total energy control system autopilot design with constrained parameter optimization

    Science.gov (United States)

    Ly, Uy-Loi; Voth, Christopher

    1990-01-01

    A description is given of the application of a multivariable control design method (SANDY) based on constrained parameter optimization to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the direct synthesis of a multiloop AFCS inner-loop feedback control system based on total energy control system (TECS) principles. The design procedure offers a structured approach for the determination of a set of stabilizing controller design gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The approach can be extended to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by proper formulation of the design objectives and constraints. Satisfactory designs are usually obtained in few iterations. Performance characteristics of the optimized TECS design have been improved, particularly in the areas of closed-loop damping and control activity in the presence of turbulence.

  14. Total energy expenditure estimated using foot-ground contact pedometry.

    Science.gov (United States)

    Hoyt, Reed W; Buller, Mark J; Santee, William R; Yokota, Miyo; Weyand, Peter G; Delany, James P

    2004-02-01

    Routine walking and running, by increasing daily total energy expenditure (TEE), can play a significant role in reducing the likelihood of obesity. The objective of this field study was to compare TEE estimated using foot-ground contact time (Tc)-pedometry (TEE(PEDO)) with that measured by the criterion doubly labeled water (DLW) method. Eight male U.S. Marine test volunteers [27 +/- 4 years of age (mean +/- SD); weight = 83.2 +/- 10.7 kg; height = 182.2 +/- 4.5 cm; body fat = 17.0 +/- 2.9%] engaged in a field training exercise were studied over 2 days. TEE(PEDO) was defined as (calculated resting energy expenditure + estimated thermic effect of food + metabolic cost of physical activity), where physical activity was estimated by Tc-pedometry. Tc-pedometry was used to differentiate inactivity, activity other than exercise (i.e., non-exercise activity thermogenesis, or NEAT), and the metabolic cost of locomotion (M(LOCO)), where M(LOCO) was derived from total weight (body weight + load weight) and accelerometric measurements of Tc. TEE(PEDO) data were compared with TEEs measured by the DLW (2H2(18)O) method (TEE(DLW)): TEE(DLW) = 15.27 +/- 1.65 MJ/day and TEE(PEDO) = 15.29 +/- 0.83 MJ/day. Mean bias (i.e., TEE(PEDO) - TEE(DLW)) was 0.02 MJ, and mean error (SD of individual differences between TEE(PEDO) and TEE(DLW)) was 1.83 MJ. The Tc-pedometry method provided a valid estimate of the average TEE of a small group of physically active subjects where walking was the dominant activity.

  15. Total Energy of Charged Black Holes in Einstein-Maxwell-Dilaton-Axion Theory

    Directory of Open Access Journals (Sweden)

    Murat Korunur

    2012-01-01

    Full Text Available We focus on the energy content (including matter and fields of the Møller energy-momentum complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA theory using teleparallel gravity. We perform the required calculations for some specific charged black hole models, and we find that total energy distributions associated with asymptotically flat black holes are proportional to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat black holes diverge in a limiting case.

  16. A Study on Total Factor Energy Efficiency of Coal-fired Power Plants Considering Environmental Protection

    Directory of Open Access Journals (Sweden)

    Xi-ping Wang

    2013-05-01

    Full Text Available In this study, we measure the total-factor energy efficiency under the constraint of environment of 13 coal-fired power plants in Hebei province over the period of 2009 to 2011 using the DEA model which based on the environmental production technology and the directional distance function. The results indicate that the total factor energy efficiency of sample power plants is still at sub-optimal level of around 0.84 and the efficiency is over estimated when without looking at environmental impacts. This indicates that undesirable outputs have a significant influence on energy efficiency of power plants. Poor performance of few power plants is due to their ability to manage the undesirable outputs need to be improved. In order to improve energy efficiency and achieve sustainable development, plants should concentrate on both energy saving and emission reduction at the same time.

  17. Institutional applications of solar total-energy systems. Draft final report. Volume 2. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The appendices present the analytical basis for the analysis of solar total energy (STE) systems. A regional-climate model and a building-load requirements model are developed, along with fuel-price scenarios. Life-cycle costs are compared for conventional-utility, total energy, and STE systems. Thermal STE system design trade-offs are performed and thermal STE system performance is determined. The sensitivity of STE competitiveness to fuel prices is examined. The selection of the photovoltaic array is briefly discussed. The institutional-sector decision processes are analyzed. Hypothetical regional back-up rates and electrical-energy costs are calculated. The algorithms and equations used in operating the market model are given, and a general methodology is developed for projecting the size of the market for STE systems and applied to each of 8 institutional subsectors. (LEW)

  18. Total Cross-sections at very high energies: from protons to photons

    CERN Document Server

    Godbole, R M; Pancheri, G; Srivastava, Y N

    2010-01-01

    A model for both proton and photon total cross-sections is presented and compared with data. The model is based on the eikonal representation, with QCD mini-jets to drive the rise and soft gluon kt-resummation into the Infrared region to tame the excessive rise due to low-x perturbative gluons. We discuss the effects of a singular but integrable expression for the Infrared gluon spectrum on the high energy behaviour of the total cross-section expected in this model.

  19. Energy Operation Model

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-27

    Energy Operation Model (EOM) simulates the operation of the electric grid at the zonal scale, including inter-zonal transmission constraints. It generates the production cost, power generation by plant and category, fuel usage, and locational marginal price (LMP) with a flexible way to constrain the power production by environmental constraints, e.g. heat waves, drought conditions). Different from commercial software such as PROMOD IV where generator capacity and heat rate efficiency can only be adjusted on a monthly basis, EOM calculates capacity impacts and plant efficiencies based on hourly ambient conditions (air temperature and humidity) and cooling water availability for thermal plants. What is missing is a hydro power dispatch.

  20. Total reaction cross sections for {sup 8}Li + {sup 90}Zr at near-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Pakou, A.; Aslanoglou, X.; Sgouros, O.; Soukeras, V. [The University of Ioannina, Department of Physics and HINP, Ioannina (Greece); Pierroutsakou, D.; Boiano, A.; Parascandolo, C. [INFN, Sezione di Napoli, Napoli (Italy); Mazzocco, M.; Soramel, F.; Strano, E.; Torresi, D. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN, Sezione di Padova, Padova (Italy); Acosta, L.; Marquinez-Duran, G.; Martel, I. [Universidad de Huelva, Departamento de Fisica Aplicada, Huelva (Spain); Boiano, C. [INFN, Sezione di Milano, Milano (Italy); Carbone, D.; Cavallaro, M. [INFN Laboratori Nazionali del Sud, Catania (Italy); Grebosz, J. [The Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN), Krakow (Poland); Keeley, N. [National Center for Nuclear Research, Otwock Warsaw (Poland); La Commara, M. [INFN, Sezione di Napoli, Napoli (Italy); Universita di Napoli ' ' Federico II' ' , Dipartimento di Scienze Fisiche, Napoli (Italy); Manea, C. [INFN, Sezione di Padova, Padova (Italy); Rusek, K.; Trzcinska, A. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Sanchez-Benitez, A.M. [Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa (Portugal); Signorini, C. [INFN, LNL, Legnaro (Italy); Stiliaris, E. [University of Athens, Institute of Accelerating Systems and Applications and Department of Physics, Athens (Greece); Watanabe, Y.X. [High Energy Accelerator Research Organization (KEK), Institute of Particle and Nuclear Studies (IPNS), Ibaraki (Japan); Yamaguchi, H. [University of Tokyo, Center for Nuclear Study (CNS), Saitama (Japan)

    2015-05-15

    Total reaction cross sections for the radioactive nucleus {sup 8}Li on {sup 90}Zr are reported at the near-barrier energies of 18.5 and 21.5MeV, derived from quasi-elastic scattering measurements. An analysis of the quasi-elastic scattering results is performed within an optical model framework using the BDM3Y1 interaction and total reaction cross sections are deduced. These quantities, appropriately reduced, are compared with previous data obtained in elastic scattering measurements with well and weakly bound projectiles on various targets and a formula for predicting total reaction cross sections with an uncertainty of ∝ 20 % is obtained. Further on, the ratios of direct to total reaction cross sections are estimated for {sup 6,8}Li on various targets and are compared with CDCC or CRC calculations. The energy dependence of the optical potential is also discussed. (orig.)

  1. Total reaction cross sections for 8Li + 90Zr at near-barrier energies

    Science.gov (United States)

    Pakou, A.; Pierroutsakou, D.; Mazzocco, M.; Acosta, L.; Aslanoglou, X.; Boiano, A.; Boiano, C.; Carbone, D.; Cavallaro, M.; Grebosz, J.; Keeley, N.; La Commara, M.; Manea, C.; Marquinez-Duran, G.; Martel, I.; Parascandolo, C.; Rusek, K.; Sánchez-Benítez, A. M.; Sgouros, O.; Signorini, C.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Strano, E.; Torresi, D.; Trzcinska, A.; Watanabe, Y. X.; Yamaguchi, H.

    2015-05-01

    Total reaction cross sections for the radioactive nucleus 8Li on 90Zr are reported at the near-barrier energies of 18.5 and 21.5MeV, derived from quasi-elastic scattering measurements. An analysis of the quasi-elastic scattering results is performed within an optical model framework using the BDM3Y1 interaction and total reaction cross sections are deduced. These quantities, appropriately reduced, are compared with previous data obtained in elastic scattering measurements with well and weakly bound projectiles on various targets and a formula for predicting total reaction cross sections with an uncertainty of % is obtained. Further on, the ratios of direct to total reaction cross sections are estimated for 6,8Li on various targets and are compared with CDCC or CRC calculations. The energy dependence of the optical potential is also discussed.

  2. National Energy Outlook Modelling System

    Energy Technology Data Exchange (ETDEWEB)

    Volkers, C.M. [ECN Policy Studies, Petten (Netherlands)

    2013-12-15

    For over 20 years, the Energy research Centre of the Netherlands (ECN) has been developing the National Energy Outlook Modelling System (NEOMS) for Energy projections and policy evaluations. NEOMS enables 12 energy models of ECN to exchange data and produce consistent and detailed results.

  3. Energy System Modeling with REopt

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, Travis; Anderson, Kate; Cutler, Dylan; Olis, Dan; Elgqvist, Emma; DiOrio, Nick; Walker, Andy

    2016-07-15

    This poster details how REopt - NREL's software modeling platform for energy systems integration and optimization - can help to model energy systems. Some benefits of modeling with REopt include optimizing behind the meter storage for cost and resiliency, optimizing lab testing, optimizing dispatch of utility scale storage, and quantifying renewable energy impact on outage survivability.

  4. Determination of total mechanical energy of the universe within the framework of Newtonian mechanics

    CERN Document Server

    Valev, Dimitar

    2009-01-01

    The recent astronomical observations indicate that the expanding universe having a finite event horizon is homogeneous, isotropic and asymptotically flat. The Euclidean geometry of the universe enables to determine the total kinetic and gravitational energies of the universe within the framework of the Newtonian mechanics. It has been shown that almost the entire kinetic energy of the universe ensues from the cosmological expansion. Both, the total kinetic and gravitational energies of the universe have been determined in relation to an observer at arbitrary location. It is amazing that the modulus of the total gravitational energy differs from the total kinetic energy with a multiplier close to a unit. Thus, the total mechanical energy of the universe has been found close to zero. Both, the total kinetic energy and the modulus of total gravitational energy of the universe are estimated to 3/10 of its total rest energy M*c^2.

  5. The Z dependence of the total energy, energy components, orbital energy, and MO coefficients for mononuclear, isoelectronic species

    Science.gov (United States)

    Murdoch, Joseph R.; Magnoli, Douglas E.

    1982-11-01

    Previous workers have shown that in the limit Z→∞, the total energies, Vne, T, and total orbital energies (E0) of a series of isoelectronic, mononuclear structures are quadratic functions of Z, while Vee is a linear function of Z. In the present paper, a new perturbational treatment is presented which is based on a zero-order solution corresponding to Z=Z0, where Z0 is arbitrary. For first-order corrections to Hartree-Fock wave functions, the same limiting behavior (E,Vne, T, E0≡quadratic functions of Z; Vee≡linear function of Z) is seen as for the high-Z limit (Z→∞). For higher-order corrections, a completely different pattern of behavior emerges. For the ten-electron series (Z=9,18), E and T remain highly quadratic with respect to Z (to within 7 kcal), but Vne, Vee, E 0 exhibit large oscillations (˜60 kcal) around a quadratic function. This behavior is analyzed by applying the virial and Hellmann-Feynman theorems to the total energy, the Hellmann-Feynman theorem to Hartree-Fock orbital energies, and by expressing perturbation expansions for Vne and E in terms of Cheybshev polynomials. The results provide a demonstration of the fact that the total energy and orbital energy may show a different pattern of behavior with respect to substituent effects. The present work has important implications for perturbational treatments, such as Walsh's rules, frontier orbital theory and orbital symmetry correlations, which are based on the behavior of the orbital energy rather than the total energy.

  6. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    Science.gov (United States)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  7. Total energy global optimizations using non orthogonal localized orbitals

    CERN Document Server

    Kim, J; Galli, G; Kim, Jeongnim; Mauri, Francesco; Galli, Giulia

    1994-01-01

    An energy functional for orbital based $O(N)$ calculations is proposed, which depends on a number of non orthogonal, localized orbitals larger than the number of occupied states in the system, and on a parameter, the electronic chemical potential, determining the number of electrons. We show that the minimization of the functional with respect to overlapping localized orbitals can be performed so as to attain directly the ground state energy, without being trapped at local minima. The present approach overcomes the multiple minima problem present within the original formulation of orbital based $O(N)$ methods; it therefore makes it possible to perform $O(N)$ calculations for an arbitrary system, without including any information about the system bonding properties in the construction of the input wavefunctions. Furthermore, while retaining the same computational cost as the original approach, our formulation allows one to improve the variational estimate of the ground state energy, and the energy conservation...

  8. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  9. 75 FR 5314 - Medical Area Total Energy Plant, Inc., New MATEP, Inc.; Notice of Filing

    Science.gov (United States)

    2010-02-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Medical Area Total Energy Plant, Inc., New MATEP, Inc.; Notice of Filing January 26, 2010. Take notice that on January 15, 2010, Medical Area Total Energy Plant, Inc. and...

  10. Energy dependence of the 4He(π+,π-) total cross section

    Science.gov (United States)

    Gräter, J.; Bilger, R.; Clement, H.; Meier, R.; Wagner, G. J.; Friedman, E.; Schepkin, M.; Amaudruz, P. A.; Felawka, L.; Ottewell, D.; Smith, G. R.; Ambardar, A.; Hofman, G. J.; Kermani, M.; Tagliente, G.; Bonutti, F.; Camerini, P.; Grion, N.; Rui, R.; Hong, P.; Mathie, E. L.; Tacik, R.; Clark, J.; Sevior, M. E.; Patarakin, O.

    1998-09-01

    The total cross section of the 4He(π+,π-) reaction was measured for π+ kinetic energies ranging from 70 to 130 MeV using the CHAOS spectrometer at TRIUMF and a liquid 4He target. Around Tπ=90 MeV, total cross sections exceed conventional model predictions by a factor of 3, whereas at Tπ=70 MeV and for Tπ>130 MeV the data are consistent with these calculations. An attempt is made to understand this behavior by assuming the production of the hypothetical d' dibaryon.

  11. Evaluation of bio-energy potential using world energy models; Sekai energy model ni yoru bio energy no potential hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Fujino, J.; Yamaji, K. [The University of Tokyo, Tokyo (Japan); Yamamoto, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-01-30

    Bio-energy potential is evaluated using world energy models. The world energy model is a dynamic model by which the total cost of energy systems between 1995 and 2055 can be minimized on the basis of the optimization type world energy demand and supply model. For the given utilization costs of transportation, recovery and planting, the utilization of bio-energy is promoted even under the cost minimization condition. However, the utilization amount varies in a wide range by changing the utilization costs. Among conversion technologies of bio-energy, it is biomass liquefaction that provides the largest utilization amount. Thermal demand, direct combustion for power generation, and biomass gasification follow to the above. Biomass-integrated gasifier/gas turbine (BIG/GT) is to be used up to 2020. It is not to be used after 2030, due to the complete shift to the biomass liquefaction. For a model including the utilization of fast breeder after 2030, the utilization amount of bio-energy is not to change. Competition with food and land utilization is to be investigated. 11 refs., 19 figs., 4 tabs.

  12. Evaluation of bio-energy potential using world energy models; Sekai energy model ni yoru bio energy no potential hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Fujino, J.; Yamaji, K. [The University of Tokyo, Tokyo (Japan); Yamamoto, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-01-30

    Bio-energy potential is evaluated using world energy models. The world energy model is a dynamic model by which the total cost of energy systems between 1995 and 2055 can be minimized on the basis of the optimization type world energy demand and supply model. For the given utilization costs of transportation, recovery and planting, the utilization of bio-energy is promoted even under the cost minimization condition. However, the utilization amount varies in a wide range by changing the utilization costs. Among conversion technologies of bio-energy, it is biomass liquefaction that provides the largest utilization amount. Thermal demand, direct combustion for power generation, and biomass gasification follow to the above. Biomass-integrated gasifier/gas turbine (BIG/GT) is to be used up to 2020. It is not to be used after 2030, due to the complete shift to the biomass liquefaction. For a model including the utilization of fast breeder after 2030, the utilization amount of bio-energy is not to change. Competition with food and land utilization is to be investigated. 11 refs., 19 figs., 4 tabs.

  13. World energy projection system: Model documentation

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) (Figure 1). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES) provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  14. Impact of dietary fiber energy on the calculation of food total energy value in the Brazilian Food Composition Database.

    Science.gov (United States)

    Menezes, Elizabete Wenzel de; Grande, Fernanda; Giuntini, Eliana Bistriche; Lopes, Tássia do Vale Cardoso; Dan, Milana Cara Tanasov; Prado, Samira Bernardino Ramos do; Franco, Bernadette Dora Gombossy de Melo; Charrondière, U Ruth; Lajolo, Franco Maria

    2016-02-15

    Dietary fiber (DF) contributes to the energy value of foods and including it in the calculation of total food energy has been recommended for food composition databases. The present study aimed to investigate the impact of including energy provided by the DF fermentation in the calculation of food energy. Total energy values of 1753 foods from the Brazilian Food Composition Database were calculated with or without the inclusion of DF energy. The energy values were compared, through the use of percentage difference (D%), in individual foods and in daily menus. Appreciable energy D% (⩾10) was observed in 321 foods, mainly in the group of vegetables, legumes and fruits. However, in the Brazilian typical menus containing foods from all groups, only D%energy may cause slight variations in total energy; on the other hand, there is appreciable energy D% for certain foods, when individually considered.

  15. Inventory of state energy models

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, A.G.; Gist, R.L.; Underwood, R.G.; Weber, J.C.

    1980-03-31

    These models address a variety of purposes, such as supply or demand of energy or of certain types of energy, emergency management of energy, conservation in end uses of energy, and economic factors. Fifty-one models are briefly described as to: purpose; energy system; applications;status; validation; outputs by sector, energy type, economic and physical units, geographic area, and time frame; structure and modeling techniques; submodels; working assumptions; inputs; data sources; related models; costs; references; and contacts. Discussions in the report include: project purposes and methods of research, state energy modeling in general, model types and terminology, and Federal legislation to which state modeling is relevant. Also, a state-by-state listing of modeling efforts is provided and other model inventories are identified. The report includes a brief encylopedia of terms used in energy models. It is assumed that many readers of the report will not be experienced in the technical aspects of modeling. The project was accomplished by telephone conversations and document review by a team from the Colorado School of Mines Research Institute and the faculty of the Colorado School of Mines. A Technical Committee (listed in the report) provided advice during the course of the project.

  16. FACTORS RELATED TO TOTAL ENERGY EXPENDITURE IN OLDER ADULTS (CHILE).

    Science.gov (United States)

    Pakozdi, Tamara; Leiva, Laura; Bunout, Daniel; Barrera, Gladys; de la Maza, María Pía; Henriquez, Sandra; Hirsch, Sandra

    2015-10-01

    Objetivo: evaluar el Gasto Energético Total (GET) en ancianos sanos que viven institucionalizados o independientes en Chile. Método: se evaluaron veintisiete jovenes (27-30 años), 27 adultos mayores institucionalizados (> 65 años ) y 27 ancianos independientes (> 65 años). Se midió la composición corporal utilizando absorciometría bifotónica de rayos X. Se calculó el gasto energético por actividad física (GEAF) y el gasto energético total (GET) utilizando acelerómetros Actiheart; se aplicó Mini Nutritional Assessment (MNA) y se midió el Timed Up and Go (TUG). Resultados: el GEAF fue 171, 320 y 497 kcal/día en ancianos institucionalizados, independientes y jóvenes, respectivamente (p.

  17. Performance optimization of total momentum filtering double-resonance energy selective electron heat pump

    Science.gov (United States)

    Ding, Ze-Min; Chen, Lin-Gen; Ge, Yan-Lin; Sun, Feng-Rui

    2016-04-01

    A theoretical model for energy selective electron (ESE) heat pumps operating with two-dimensional electron reservoirs is established in this study. In this model, a double-resonance energy filter operating with a total momentum filtering mechanism is considered for the transmission of electrons. The optimal thermodynamic performance of the ESE heat pump devices is also investigated. Numerical calculations show that the heating load of the device with two resonances is larger, whereas the coefficient of performance (COP) is lower than the ESE heat pump when considering a single-resonance filter. The performance characteristics of the ESE heat pumps in the total momentum filtering condition are generally superior to those with a conventional filtering mechanism. In particular, the performance characteristics of the ESE heat pumps considering a conventional filtering mechanism are vastly different from those of a device with total momentum filtering, which is induced by extra electron momentum in addition to the horizontal direction. Parameters such as resonance width and energy spacing are found to be associated with the performance of the electron system.

  18. Objective information about energy models

    Energy Technology Data Exchange (ETDEWEB)

    Hale, D.R. (Energy Information Administration, Washington, DC (United States))

    1993-01-01

    This article describes the Energy Information Administration's program to develop objective information about its modeling systems without hindering model development and applications, and within budget and human resource constraints. 16 refs., 1 fig., 2 tabs.

  19. Investigation of Energy Management during Approach: Evaluating the Total Energy-Based Perspective Flight-Path Display

    NARCIS (Netherlands)

    Van den Hoven, M.C.L.; De Jong, P.M.A.; Borst, C.; Mulder, M.; Van Paassen, M.M.

    2010-01-01

    This paper covers an analysis of the energy management task during the approach phase as well as the design of an experiment supporting this analysis. The energy management task is analyzed using the concept of energy rate demand, which expresses the amount of total energy to be lost in comparison t

  20. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    Science.gov (United States)

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-08-01

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (∼ 50 MeV to ∼ 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used in the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are available now. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results. Our current results indicate this is, in fact, the case.

  1. Total Reaction Cross Sections in CEM and MCNP6 at Intermediate Energies

    CERN Document Server

    Kerby, Leslie M

    2015-01-01

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region ($\\sim$50 MeV to $\\sim$5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used in the preequilibrium and evaporation stages of CEM are based on the Dostrovsky {\\it et al.} model, published in 1959. Better cross section models are available now. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results. Our current...

  2. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  3. Ensemble-Type Kalman Filter Algorithm conserving mass, total energy and enstrophy

    Science.gov (United States)

    Zeng, Yuefei; Janjic, Tijana; Ruckstuhl, Yvonne; Verlaan, Martin

    2017-04-01

    In a recent study (Zeng and Janjic 2016), we explored the effect on conservation properties of data assimilation using perfect model experiments with a 2D shallow water model preserving important properties of the true nonlinear flow. It was found that during the assimilation with the ensemble Kalman filter algorithm, the total energy of the analysis ensemble mean converges towards the nature run value with time. However, the enstrophy, divergence and energy spectra were strongly affected by the data assimilation settings. We tested the effects on the prediction depending on the type of error in the initial condition and showed that the accumulated noise during assimilation and the error of analysis are good indicators of the quality of the prediction. Having in mind that the conservation of both the kinetic energy and enstrophy by momentum advection schemes in the case of non-divergent flow prevents a systematic and unrealistic energy cascade towards the high wave numbers, we constructed the ensemble data assimilation algorithm that conserves both energy and enstrophy. This is done by extending QPEns (Janjic et al. 2014) to allow for nonlinear constraints using, instead of quadratic programming, the sequential quadratic programming algorithm. Experiments with the 2D shallow water model show similar RMSEs of the algorithm without constraints and the algorithm with only the total energy constrained. The algorithm which constraints enstrophy as well as energy and enstrophy during data assimilation showed smaller RMSE to the one without the constraint on enstrophy. Similar behavior can be seen in the energy spectrum where algorithms which include the constraint on enstrophy are closer to the true spectrum, in particular for wavelengths between 200 km and 1000 km. The enstrophy constraint resulted in a reduction of noise during data assimilation. Finally, the algorithm, with both energy and enstrophy constraint showed the smallest error growth during the two weeks

  4. Suggestion of a Management Model: Total Entropy Management

    Directory of Open Access Journals (Sweden)

    Goksel Alpan,

    2011-01-01

    Full Text Available “Entropy” can be defined as the measure of disorder, uncertainty and consumed energy in a system or in the Universe. In the study, entropy concept is used as metaphor and it is aimed to construct the conceptual basis of a new management model which can be utilized to manage all entropy sources effectively. The study is conveyed with a multidisciplinary and holistic approach and by the use of qualitative research techniques. In the study, it is examined the relations of the entropy concept with different disciplines like civilization history, sociology, economy, political sciences, ecology, environmental ethics, classical physics, quantum physics, nanotechnology, genetic science, information theory, network science, system theory, business management etc. and after the evaluation of the findings, it is constructed the conceptual basis of a new management model. At the beginning of the study, entropy concept is defined in detail and related concepts like social entropy, information entropy, negative entropy, heat death, matter chaos, entropic efficiency etc. are explained. Afterwards, important global entropy sources are examined and relations of the concept with actual political, economical, ecological, social and managerial problems and concepts are explained. The main aim of the study is to construct the conceptual basis of a new management model called “Total Entropy Management” which can be applied to governmental organizations, non profit organizations and business enterprises to be able to manage all entropy sources effectively.

  5. Statistical properties of kinetic and total energy densities in reverberant spaces

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2010-01-01

    . With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically......Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete...... positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high...

  6. DISAGGREGATE ENERGY CONSUMPTION AND TOTAL FACTOR PRODUCTIVITY: A COINTEGRATION AND CAUSALITY ANALYSIS FOR THE TURKISH ECONOMY.

    Directory of Open Access Journals (Sweden)

    Can Tansel Tugcu

    2013-01-01

    Full Text Available The aim of this study is to investigate the long and the short-run relationships between disaggregate energy consumption (i.e. alternative and nuclear, fossil and renewable and total factor productivity growth in the Turkish economy for the period 1970-2011. To this end, ARDL bounds testing approach to cointegration and the Dolado and Lütkepohl’s Granger causality analyses were employed. Results showed that disaggregate energy consumption is cointegrated to total factor productivity growth and there exists bi-directional causal relationships among the variables in consideration. Besides, findings revealed that the share of renewable energy consumption in total energy consumption is the only energy type which positively affects total factor productivity growth in the Turkish economy. This result implies that an improvement in the share of renewable energy consumption in total energy consumption is crucial for economic efficiency.

  7. Total energy expenditure as measured by doubly-labeled water in outpatients with bulimia nervosa.

    Science.gov (United States)

    Kotler, L A; Devlin, M J; Matthews, D E; Walsh, B T

    2001-05-01

    This study measured total energy expenditure (TEE) in symptomatic outpatient women with bulimia nervosa and normal controls. The study aimed to test the conceptual model of bulimia nervosa as an illness characterized by a physiological state of starvation, despite normal weight. Total fat and fat-free mass were measured using hydrodensitometry and total energy expenditure was assessed via the doubly-labeled water method, in nine normal weight outpatient females with DSM-III-R bulimia nervosa and ten healthy female controls. Patients and controls were similar in age, body mass index, weight, lean body mass, and levels of exercise and general activity. Patients had an average baseline binge frequency of 14.7 episodes per week and purge frequency of 16.8 times per week, and had been ill for an average of 11.9 years. Group mean TEE did not differ between patients and controls (patients 2380 +/- 482 kcal/day, controls 2368 +/- 515 kcal day). Observed TEE in the bulimic subjects did not differ significantly from TEE predicted on the basis of data from the controls. This finding of normal TEE in symptomatic outpatients with bulimia nervosa is consistent with a previous study that found no difference in TEE in a sample of symptomatic inpatients with bulimia nervosa. These data suggest that the energy conserving metabolic adaptations characteristic of semi-starvation do not occur in patients with bulimia nervosa. Copyright 2001 by John Wiley & Sons, Inc.

  8. Association between Plain Water and Sugar-Sweetened Beverages and Total Energy Intake among Mexican School-Age Children

    Directory of Open Access Journals (Sweden)

    Teresa Shamah-Levy

    2016-12-01

    Full Text Available Water consumption promotes a decrease in total diet energy intake, and one explanation for this fact is the replacement of sugar-sweetened beverages (SSBs by plain water (PW. The objective of this study was to analyze the association between SSB and PW consumption as a part of the total energy intake. Dietary information was obtained by one 24 h recall of 2536 school-age children who participated in the National Nutrition Survey in Mexico. PW and SSB consumption was measured in mL and servings (240 mL, and consumption was stratified into two levels (<2 and ≥2 servings/day. Linear regression models were used to evaluate the association between PW and SSB consumption in relation to total energy intake. Models were adjusted for age, sex, the proportion of energy obtained from non-beverage food, area of residence, and socioeconomic status (based on information regarding housing conditions and ownership of home appliances. PW consumption at the national level was two servings/day, and was not associated with total energy intake. However, the combination of the high consumption of PW and the low consumption of SSB was associated with less total energy intake (p < 0.05. Promoting higher PW and lower SSB consumption provides a useful public health strategy for reducing total energy intake and preventing overconsumption among Mexican school-age children.

  9. Energy demand modeling for Uzbekistan

    Directory of Open Access Journals (Sweden)

    Bobur Khodjaev

    2012-05-01

    Full Text Available The paper is devoted to energy demand forecasting in Uzbekistan. Studies show that in spite of the abundant reserves of hydrocarbons, low energy efficiency can have an adverse impact on energy security in Uzbekistan in the future. Oil and gas are the main primary energy source and they ensure energy security of Uzbekistan. Energy demand forecasting is essential in order to develop an effective energy policy. Such forecast can be useful to plan oil and gas production volumes, to identify priorities for the industrial modernization and to create favorable conditions for sustainable economic development in the future. Author proposes model based on translog function for developing medium-and long-term development programs in energy sector and the modernization and technological re-equipment of industry.

  10. Assessment and Decomposition of Total Factor Energy Efficiency: An Evidence Based on Energy Shadow Price in China

    Directory of Open Access Journals (Sweden)

    Peihao Lai

    2016-04-01

    Full Text Available By adopting an energy-input based directional distance function, we calculated the shadow price of four types of energy (i.e., coal, oil, gas and electricity among 30 areas in China from 1998 to 2012. Moreover, a macro-energy efficiency index in China was estimated and divided into intra-provincial technical efficiency, allocation efficiency of energy input structure and inter-provincial energy allocation efficiency. It shows that total energy efficiency has decreased in recent years, where intra-provincial energy technical efficiency drops markedly and extensive mode of energy consumption rises. However, energy structure and allocation improves slowly. Meanwhile, lacking an integrated energy market leads to the loss of energy efficiency. Further improvement of market allocation and structure adjustment play a pivotal role in the increase of energy efficiency.

  11. Total Variation Based Perceptual Image Quality Assessment Modeling

    Directory of Open Access Journals (Sweden)

    Yadong Wu

    2014-01-01

    Full Text Available Visual quality measure is one of the fundamental and important issues to numerous applications of image and video processing. In this paper, based on the assumption that human visual system is sensitive to image structures (edges and image local luminance (light stimulation, we propose a new perceptual image quality assessment (PIQA measure based on total variation (TV model (TVPIQA in spatial domain. The proposed measure compares TVs between a distorted image and its reference image to represent the loss of image structural information. Because of the good performance of TV model in describing edges, the proposed TVPIQA measure can illustrate image structure information very well. In addition, the energy of enclosed regions in a difference image between the reference image and its distorted image is used to measure the missing luminance information which is sensitive to human visual system. Finally, we validate the performance of TVPIQA measure with Cornell-A57, IVC, TID2008, and CSIQ databases and show that TVPIQA measure outperforms recent state-of-the-art image quality assessment measures.

  12. Regions in Energy Market Models

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.

    2007-02-01

    This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  13. Regions in Energy Market Models

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-18

    This report explores the different options for spatial resolution of an energy market model and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  14. A global energy model with fusion

    Energy Technology Data Exchange (ETDEWEB)

    Lechon, Yolanda [CIEMAT, Avda Complutense 22, 28040 Madrid (Spain)]. E-mail: yolanda.lechon@ciemat.es; Cabal, H. [CIEMAT, Avda Complutense 22, 28040 Madrid (Spain); Varela, M. [CIEMAT, Avda Complutense 22, 28040 Madrid (Spain); Saez, R. [CIEMAT, Avda Complutense 22, 28040 Madrid (Spain); Eherer, C. [TUG/ITP, Petersgasse 16, 8010 Graz (Austria); Baumann, M. [TUG/ITP, Petersgasse 16, 8010 Graz (Austria); Dueweke, J. [IPP, Boltzmannstr. 2, D-85748 Garching (Germany); Hamacher, T. [IPP, Boltzmannstr. 2, D-85748 Garching (Germany); Tosato, G.C. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany)

    2005-11-15

    Some analysts expect a complete shift of the global energy system in the 21st century, away from fossil fuels to either renewable sources or new nuclear technologies [L. Schrattenholzer, A roadmap to a sustainable global energy system, in: Proceedings of the International Energy Workshop, Paris, June, 2004]. Fusion might become a corner stone of the future energy system. The construction and successful operation of ITER is a necessary condition to reach this goal. Within the Socio Economic Research on Fusion (SERF) programme guided by EFDA, a consortium between CIEMAT, TU Graz (TUG), ENEA and IPP open to other European energy and fusion research laboratories has been formed to analyse the possible role of fusion in the future energy system. Using TIMES, a single region global model has been constructed including fusion as an energy option. Background of the model is a detailed bottom-up description of the complete energy system starting from mining process up to the various demand sectors. The model dynamics is determined by an optimisation process, in which total surplus is maximized. The paper will present the first attempts to set-up a single region global model and the first results.

  15. World Energy Projection System model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  16. Rapid Energy Modeling Workflow Demonstration

    Science.gov (United States)

    2013-10-31

    sustainable building . Models produced through the REM process can be updated and accessed continually, thus allowing energy managers to continuously explore...time and cost of audits 4. Review the energy analysis findings under the High Performance and Sustainable Building Guiding Principles Compliance

  17. Small-scale heating events in the solar atmosphere. II. Lifetime, total energy, and magnetic properties

    Science.gov (United States)

    Guerreiro, N.; Haberreiter, M.; Hansteen, V.; Schmutz, W.

    2017-07-01

    Context. Small-scale heating events (SSHEs) are believed to play a fundamental role in understanding the process responsible for heating of the solar corona, the pervading redshifts in the transition region, and the acceleration of spicules. Aims: We determine the properties of the SSHEs and the atmospheric response to them in 3D magnetohydrodynamics (3D-MHD) simulations of the solar atmosphere. Methods: We developed a method for identifying and following SSHEs over their lifetime, and applied it to two simulation models. We identified the locations where the energy dissipation is greatest inside the SSHEs volume, and we traced the SSHEs by following the spatial and temporal evolution of the maximum energy dissipation inside the SSHEs volume. Results: The method is effective in following the SSHEs. We can determine their lifetime, total energy, and properties of the plasma, as well as the magnetic field orientation in the vicinity of the SSHEs. Conclusions: We determine that the SSHEs that have the potential to heat the corona live less than 4 min, and typically the energy they release ranges from 1020 to 1024 erg. In addition, the directional change of the field lines on the two sides of the current sheet constituting the SSHEs ranges from 5° to 15° at the moment of the absolute maximum energy dissipation.

  18. Improving the Energy Performance in Existing Non-residential Buildings in Denmark Using the Total Concept Method

    DEFF Research Database (Denmark)

    Krawczyk, Pawel; Afshari, Alireza; Simonsen, Graves K.

    2016-01-01

    This project is a part of a joint European research project, “Total Concept”, which is a method for improving the energy performance in existing non-Residential buildings. The method focuses on achieving maximum energy savings in a Building within the profitability frames set by a building owner......, who plans to invest. The method differentiates from other refurbishment approaches by using a comprehensive energy audit plan, advanced energy simulation methods, a complex economic model and analysis of measures that may have a reasonable energysaving potential. The aim of the demonstration project...... was to form a package of measures for an energy performance improvement in the building based on the Total Concept method. This paper presents results from recently analyzed data on two renovated Danish buildings according to the rules of “Total Concept” method. According to the estimation done based...

  19. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain

    OpenAIRE

    Markwald, Rachel R.; Edward L. Melanson; Smith, Mark R.; Higgins, Janine; Perreault, Leigh; Eckel, Robert H.; Wright, Kenneth P.

    2013-01-01

    Insufficient sleep is associated with obesity, yet little is known about how repeated nights of insufficient sleep influence energy expenditure and balance. We studied 16 adults in a 14- to 15-d-long inpatient study and quantified effects of 5 d of insufficient sleep, equivalent to a work week, on energy expenditure and energy intake compared with adequate sleep. We found that insufficient sleep increased total daily energy expenditure by ∼5%; however, energy intake—especially at night after ...

  20. Elastic scattering and total reaction cross sections with low-energy light radioactive ion beams.

    Directory of Open Access Journals (Sweden)

    Guimarães Valdir

    2011-10-01

    Full Text Available Elastic scattering experiments have being performed with low-energy radioactive ion beams produced by the RIBRAS facility in Sao Paulo, Brazil. Here I present the results for elastic scattering of 6He on several targets and light beams on 12C target. Special emphasis is given to the analysis of experiments were angular distributions for the elastic scattering of beryllium isotopes projectiles, 7Be, 9Be and 10Be, on a light target 12C were obtained. These elastic scattering angular distributions have been analysed in terms of optical model using the double-folding Sao Paulo potential. From this analysis, the total reaction cross section were also deduced and compared to the total reaction cross sections for many other light projectiles on 12C target. The comparison was made in terms of Universal Function reduction method.

  1. 100% DD Energy Model Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-06-30

    The Miami Science Museum energy model has been used during DD to test the building's potential for energy savings as measured by ASHRAE 90.1-2007 Appendix G. This standard compares the designed building's yearly energy cost with that of a code-compliant building. The building is currently on track show 20% or better improvement over the ASHRAE 90.1-2007 Appendix G baseline; this performance would ensure minimum compliance with both LEED 2.2 and current Florida Energy Code, which both reference a less strict version of ASHRAE 90.1. In addition to being an exercise in energy code compliance, the energy model has been used as a design tool to show the relative performance benefit of individual energy conservation measures (ECMs). These ECMs are areas where the design team has improved upon code-minimum design paths to improve the energy performance of the building. By adding ECMs one a time to a code-compliant baseline building, the current analysis identifies which ECMs are most effective in helping the building meet its energy performance goals.

  2. Electromagnetic vacuum of complex media II: the Lamb, the bulk and the total vacuum energy

    CERN Document Server

    Donaire, M

    2011-01-01

    We study the physical content of the electromagnetic vacuum energy of a random medium made of atomic electric dipoles. We show that the Lamb energy is only a part of it and, consequently, that the Lamb-shift derives from a partial variation of the total vacuum energy. While at leading order in the molecular density the total vacuum energy is that of the optical bulk modes and equals the free-space Lamb energy, the Lamb, the bulk and the total vacuum energies differ at second order. In contrast to the bulk energy, local field factors (LFFs) are present both in the total vacuum energy and in the Lamb energy. They yield natural cutoffs for both spectra at a wavelength of the order of the typical correlation length. Functionally, the difference between the total vacuum and the Lamb energies is due to the presence of higher order LFFs in the former. Physically, the difference is attributed to a shift in the binding energies which structure the spatial configuration of the dipoles. For a Maxwell-Garnett dielectric,...

  3. Total energy management for nursing homes and other long-term care institutions

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The purpose of this publication is to provide the basic instruction needed to implement the most effective form of energy conservation--Total Energy Management, or TEM--in your long-term care facility. The effort required is worthwhile for many different reasons: TEM is self-paying; TEM promotes energy conservation without negative impact on health care services; and energy costs will continue to escalate. Following the introductory chapter, chapters are titled: Understanding Energy Consumption; Initiating a Total Energy Management Program; Developing Energy Consumption Data; Conducting the Facility Survey; Developing and Implementing the Basic Plan; Communication and Motivation; Monitoring Your Program and Keeping It Effective; and Guidelines for Energy Conservation. Two appendices furnish information on building information for TEM and sources of information for energy management. (MCW)

  4. Photoproduction models for total cross section and shower development

    Science.gov (United States)

    Cornet, Fernando; Garcia Canal, Carlos; Grau, Agnes; Pancheri, Giulia; Sciutto, Sergio

    2015-08-01

    A model for the total photoproduction cross section, based on the ansatz that resummation of infrared gluons limits the rise induced by QCD minijets in all the total cross-sections, is used to simulate extended air showers initiated by cosmic rays with the AIRES simulation program. The impact on common shower observables, especially those related with muon production, is analysed and compared with the corresponding results obtained with previous photoproduction models.

  5. Photoproduction models for total cross section and shower development

    CERN Document Server

    Cornet, Fernando; Grau, Agnes; Pancheri, Giulia; Sciutto, Sergio

    2014-01-01

    A model for the total photoproduction cross section based on the ansatz that resummation of infrared gluons limits the rise induced by QCD minijets in all the total cross-sections, is used to simulate extended air showers initiated by cosmic rays with the AIRES simulation program. The impact on common shower observables, especially those related with muon production, is analysed and compared with the corresponding results obtained with previous photoproduction models.

  6. Photoproduction models for total cross section and shower development

    Directory of Open Access Journals (Sweden)

    Cornet Fernando

    2015-01-01

    Full Text Available A model for the total photoproduction cross section, based on the ansatz that resummation of infrared gluons limits the rise induced by QCD minijets in all the total cross-sections, is used to simulate extended air showers initiated by cosmic rays with the AIRES simulation program. The impact on common shower observables, especially those related with muon production, is analysed and compared with the corresponding results obtained with previous photoproduction models.

  7. Case study of total energy system, Sher-Den Mall, Sherman, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Myrtetus, G.B.; Levey, M.D.

    1980-12-01

    The Sher-Den Mall shopping center receives all of its electricity and heating and cooling energy from a total energy plant located within the shopping center proper. Four engine-generator units are fueled primarily by natural gas, with some fuel oil use. The following are presented: initial corporate planning, investigation, and feasibility studies; a description of the total energy system; capital costs; plant operations, and revenue structure. Tables, figures, exhibits, and equipment specification lists are presented. (MHR)

  8. Cosmological constraints on superconducting dark energy models

    CERN Document Server

    Keresztes, Zoltán; Harko, Tiberiu; Liang, Shi-Dong

    2015-01-01

    We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential $V$ is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In another words dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively are confronted with Type IA Supernovae and Hubble parameter data. In the electric case good fit is obtained along a narrow inclined stripe in the $\\Omega _{m}-\\Omega _{V}$ parameter plane, which includes the $\\Lambda $CDM limit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution...

  9. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  10. Total kinetic energy release in the fast neutron-induced fission of $^{235}$U

    CERN Document Server

    Yanez, R; King, J; Barrett, J S; Fotiades, N; Lee, H Y

    2015-01-01

    We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. (To calibrate the apparatus, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the OSU TRIGA reactor). The TKE decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. The standard deviation of the TKE distribution is constant from $E_{n}$=20-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II modes for a given mass is independent of neutron energy.

  11. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  12. A Meta Model for Domestic Energy Consumption

    Directory of Open Access Journals (Sweden)

    K.,J SREEKANTH

    2011-01-01

    Full Text Available Prediction of energy consumption particularly in micro level is of vital importance in terms of energy planning and also implementation of any Clean Development Mechanism (CDM activities that has become the order of the world today. It may be difficult to model household energy consumption using conventional methods such as time series forecasting due to many influencing factors. This paper presents a step wise regression model for forecasting domestic energy consumption based on micro level household survey data collected from Kerala, a state in southern part of India. The analysis of the data reveals significant influence of socio-economic, demographic, geographic, and family attributes upon total household energy requirements. While a wide variation in the pattern of energy requirements across the domestic sector belonging to different expenditure classes, per capita income level can be identified as the most important explanatory variable influencing variation in energy requirements. The models developed also demonstrates the influence of per capita land area, residential area among the higher income group while average age and literacy forms significant variables among the lower income group.

  13. Statistical properties of kinetic and total energy densities in reverberant spaces.

    Science.gov (United States)

    Jacobsen, Finn; Molares, Alfonso Rodríguez

    2010-04-01

    Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high modal overlap, and this analysis has never been published. Moreover, until fairly recently, measurement of the total sound energy density required an elaborate experimental arrangement based on finite-difference approximations using at least four amplitude and phase matched pressure microphones. With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically, experimentally, and numerically.

  14. The Efficacy of the Total Giftedness Development Model

    Science.gov (United States)

    Batterjee, Adel A.

    2010-01-01

    The study objective was to apply the Total Giftedness Development Model (TGDM) among a Saudi Arabian sample and study its effectiveness. The descriptive and case study research methods were applied on a sample of 807 male students, age 5 to 18 to test the efficacy of the model. Several instruments, including The Saudi Mental Abilities Test,…

  15. Brookhaven buildings energy conservation optimization model

    Energy Technology Data Exchange (ETDEWEB)

    Carhart, S C; Mulherkar, S S; Sanborn, Y

    1978-01-01

    The Brookhaven Buildings Energy Conservation Optimization Model is a linear programming representation of energy use in buildings. Starting with engineering and economic data on cost and performance of energy technologies used in buildings, including both conversion devices (such as heat pumps) and structural improvements, the model constructs alternative flows for energy through the technologies to meet demands for space heating, air conditioning, thermal applications, and electric lighting and appliances. Alternative paths have different costs and efficiencies. Within constraints such as total demand for energy services, retirement of existing buildings, seasonal operation of certain devices, and others, the model calculates an optimal configuration of energy technologies in buildings. The penetration of the various basic technologies within this configuration is specified in considerable detail, covering new and retrofit markets for nine building types in four regions. Each market may choose from several appropriate conversion devices and four levels each of new and retrofit structural improvement. The principal applications for which the model was designed described briefly.

  16. Fatigue damage accumulation of details in cars according to criterion of specific energy of total strain

    Directory of Open Access Journals (Sweden)

    L.I. Vakulenko

    2013-08-01

    Full Text Available Purpose. Modern ideas about the accumulation of fatigue damages in the details of railway vehicles are based on models that estimate the durability of metal systems and depend on the number of cycles and the magnitude of deformations or stresses. These models allow one to assess with a sufficient degree of adequacy the weakening of metal systems in polycyclic fatigue and at the presence of the elastic strain only in the details of rolling stock. However, the possibility of plastic deformation appearing during operation of rail transport structures is not taken into account. The aim of this work is a construction of a mathematical model that allows estimating the durability of metal systems with regard to the appearing of the plastic component in the process of deformation of parts of railway vehicles. Methodology. With the use of modern methods of solid mechanics the influence of the parameters of plastic deformation on the durability of highly loaded structural elements was analyzed. Findings. The effect of elastic and plastic deformation on the energy dissipation under cyclic loading was studied. Originality. It was shown analytically that the softening parameters of metal systems are related to the total energy of deformation, which characterizes features of the degradation processes in the metal structures under external loads. Practical value. Ratios were proposed, they allow estimating residual life of details in a sequential multilevel cyclic loading.

  17. Improving the Energy Performance in Existing Non-residential Buildings in Denmark Using the Total Concept Method

    DEFF Research Database (Denmark)

    Krawczyk, Pawel; Afshari, Alireza; Simonsen, Graves K.

    2016-01-01

    This project is a part of a joint European research project, “Total Concept”, which is a method for improving the energy performance in existing non-Residential buildings. The method focuses on achieving maximum energy savings in a Building within the profitability frames set by a building owner...... on available information the identified measures in total lead to at least 22% and 37% energy saving, respectively for the building 1 and Building 2......., who plans to invest. The method differentiates from other refurbishment approaches by using a comprehensive energy audit plan, advanced energy simulation methods, a complex economic model and analysis of measures that may have a reasonable energysaving potential. The aim of the demonstration project...

  18. Measurement of the Total Cross Section and Energy - Correlations for Electron-Positron Annihilation Into Hadrons at 29 GEV.

    Science.gov (United States)

    Heltsley, Brian Keith

    This work describes measurements of the total cross section and the energy-energy correlation cross section for hadronic events produced in electron-positron annihilation at a center-of-mass energy of 29 GeV. The performance of the MAC detector at PEP, featuring total absorption calorimetry and charged particle tracking over nearly the full solid angle, is examined and found to meet the original design requirements. The unique and optimal features of MAC are fully exploited to reduce the systematics involved in both measurements, resulting in significant quantitative tests of the theory of quantum chromodynamics. Special attention is focussed on radiative corrections to the total cross section, which constitute a critical component of the acceptance determination, and for the first time the effects of higher order than (alpha)('3) QED processes are included. The total cross section measurement yields R = 3.91 with a total error of (+OR-)2.7%, an accuracy not previously attained by other experiments. For the energy-energy correlation cross section, the consequences of combining pure quantum chromodynamics with contrasting fragmentation models are explored and compared with the data, and result in different values for the strong coupling constant, (alpha)(,s) (TURNEQ) 0.13 (+OR-) 0.02 for incoherent jet formation and 0.24 (+OR-) 0.04 in the string model.

  19. How fast is the growth of Total Cross Section at High Energies?

    CERN Document Server

    Fazal-e-Aleem, M; Sohail-Afzal, Tahir; Ayub-Faridi, M; Qadee-Afzal, M

    2003-01-01

    Relativistic Heavy Ion Collider and Large Hadron Colliders have special agenda for the measurements of the total cross sections at high energies giving us an opportunity to touch cosmic ray energies. Recent analyses of the cosmic ray data together with earlier experimental measurements at ISR and SPS gives us an insight about the behaviour of this important parameter at asymptotic energies. We will study the growth of total cross section at high energies in the light of various theoretical approaches with special reference to measurements at RHIC and LHC.

  20. How Fast Is the Growth of Total Cross Section at High Energies?

    Science.gov (United States)

    Aleem, F.; Rashid, Haris; Tahir, Sohail Afzal; Faridi, M. Ayub; Afzal, Qadeer, M.

    2003-07-01

    Relativistic Heavy Ion Collider and Large Hadron Colliders have special agenda for the measurements of the total cross sections at high energies giving us an opportunity to touch cosmic ray energies. Recent analyses of the cosmic ray data together with earlier experimental measurements at ISR and SPS gives us an insight about the behaviour of this important parameter at asymptotic energies. We will study the growth of total cross section at high energies in the light of various theoretical approaches with special reference to measurements at RHIC and LHC.

  1. Models of Labour Services and Estimates of Total Factor Productivity

    OpenAIRE

    Robert Dixon; David Shepherd

    2007-01-01

    This paper examines the manner in which labour services are modelled in the aggregate production function, concentrating on the relationship between numbers employed and average hours worked. It argues that numbers employed and hours worked are not perfect substitutes and that conventional estimates of total factor productivity which, by using total hours worked as the measure of labour services, assume they are perfect substitutes, will be biased when there are marked changes in average hour...

  2. Holographic dark-energy models

    Science.gov (United States)

    Del Campo, Sergio; Fabris, Júlio. C.; Herrera, Ramón; Zimdahl, Winfried

    2011-06-01

    Different holographic dark-energy models are studied from a unifying point of view. We compare models for which the Hubble scale, the future event horizon or a quantity proportional to the Ricci scale are taken as the infrared cutoff length. We demonstrate that the mere definition of the holographic dark-energy density generally implies an interaction with the dark-matter component. We discuss the relation between the equation-of-state parameter and the energy density ratio of both components for each of the choices, as well as the possibility of noninteracting and scaling solutions. Parameter estimations for all three cutoff options are performed with the help of a Bayesian statistical analysis, using data from supernovae type Ia and the history of the Hubble parameter. The ΛCDM model is the clear winner of the analysis. According to the Bayesian information criterion (BIC), all holographic models should be considered as ruled out, since the difference ΔBIC to the corresponding ΛCDM value is >10. According to the Akaike information criterion (AIC), however, we find ΔAIC<2 for models with Hubble-scale and Ricci-scale cutoffs, indicating, that they may still be competitive. As we show for the example of the Ricci-scale case, also the use of certain priors, reducing the number of free parameters to that of the ΛCDM model, may result in a competitive holographic model.

  3. Association between Plain Water and Sugar-Sweetened Beverages and Total Energy Intake among Mexican School-Age Children.

    Science.gov (United States)

    Shamah-Levy, Teresa; García-Chávez, Claudia Gabriela; Rodríguez-Ramírez, Sonia

    2016-12-18

    Water consumption promotes a decrease in total diet energy intake, and one explanation for this fact is the replacement of sugar-sweetened beverages (SSBs) by plain water (PW). The objective of this study was to analyze the association between SSB and PW consumption as a part of the total energy intake. Dietary information was obtained by one 24 h recall of 2536 school-age children who participated in the National Nutrition Survey in Mexico. PW and SSB consumption was measured in mL and servings (240 mL), and consumption was stratified into two levels (energy intake. Models were adjusted for age, sex, the proportion of energy obtained from non-beverage food, area of residence, and socioeconomic status (based on information regarding housing conditions and ownership of home appliances). PW consumption at the national level was two servings/day, and was not associated with total energy intake. However, the combination of the high consumption of PW and the low consumption of SSB was associated with less total energy intake (p energy intake and preventing overconsumption among Mexican school-age children.

  4. Life course models: improving interpretation by consideration of total effects.

    Science.gov (United States)

    Green, Michael J; Popham, Frank

    2016-12-28

    Life course epidemiology has used models of accumulation and critical or sensitive periods to examine the importance of exposure timing in disease aetiology. These models are usually used to describe the direct effects of exposures over the life course. In comparison with consideration of direct effects only, we show how consideration of total effects improves interpretation of these models, giving clearer notions of when it will be most effective to intervene. We show how life course variation in the total effects depends on the magnitude of the direct effects and the stability of the exposure. We discuss interpretation in terms of total, direct and indirect effects and highlight the causal assumptions required for conclusions as to the most effective timing of interventions.

  5. Total kinetic energy release in the fast neutron-induced fission of $^{235}$U

    CERN Document Server

    Yanez, R; King, J; Barrett, J S; Fotiades, N; Lee, H Y

    2016-01-01

    We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. To benchmark the TKE measurement, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the Oregon State University TRIGA reactor, giving pre-neutron emission $E^*_{TKE}=170.7\\pm0.4$ MeV in good agreement with known values. Our measurements are thus absolute measurements. The TKE in $^{235}$U(n,f) decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II ...

  6. Total energy requirements of shopping for food. [Supermarkets, Grocery Stores, Dairies, Butcheries, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, M.G.; Earle, M.D.

    1982-12-01

    This survey investigated the total energy requirements of shopping for food in New Zealand. It is part of the Food Technology Research Centre's ongoing research into total energy use in the New Zealand food system. A sample survey of over 700 customers of 7 selected shops in Palmerston North was undertaken. An examination of the sample parameters and other factors indicate that the Palmerston North sample is probably representative of the national situation. However, there may be some need to verify this with other surveys particularly of large supermarkets. The primary objective of this survey was to determine representative energy intensities (MJ of energy per kilogram of food purchased) for the shopping step of the food chain. However, in the process much data were generated which may be of use and interest to a wider audience. These data include analysis of round trip distance, trip purpose, energy use per trip, characteristics of the shopping population, total transport cost of shopping, and purchase details. The mean energy intensity was found to be 13.21 MJ/kg (+- 7.7%). This energy intensity varied according to the shop type: Supermarkets (12.79 MJ/kg), Groceries (12.87 MJ/kg), Dairies (16.36 MJ/kg), Butcheries (16.35 MJ/kg) and Green groceries (7.17 MJ/kg). These energy intensities were found to very significantly according to the customer's sex and the shopping day. The total energy requirements of shopping for food in New Zealand were estimated to be 11.58 PJ/yr. Indirect energy requirements (energy embodied in the vehicles and transport infrastructures) were found to account for 63% of this total. The direct energy requirements (fuel) were estimated to be 4.3 PJ/yr ($70 million on 15 November 1981 costings).

  7. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model.......This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological...... development are one of the main causes for the very diverging results which have been obtained using bottom-up and top-down models for analysing the costs of greenhouse gas mitigation. One of the objectives for studies comparing model results have been to create comparable model assumptions regarding...

  8. Recent CMB observations enable to find the total gravitational energy of a mass

    CERN Document Server

    Valev, Dimitar

    2009-01-01

    The astronomical observations indicate that the universe expands with acceleration and it has a finite event horizon. The recent CMB observations confirm the universe is homogeneous, isotropic and asymptotically flat. The total gravitational energy of a body having mass m is the gravitational potential energy originating from the gravitational interaction of the body with all masses of the universe, within the event horizon. The flat geometry of the universe enables to determine the total gravitational energy of the mass m within the framework of the Newtonian gravity in Euclidean space. By this approach, it has been found the modulus of the total gravitational energy of a body is close to its rest energy E = m*c^2, which is a remarkable result. Besides, the smoothed gravitational potential in an arbitrary point of the observable universe appears close to -c^2, where c is the speed of the light.

  9. Collaborative problem solving with a total quality model.

    Science.gov (United States)

    Volden, C M; Monnig, R

    1993-01-01

    A collaborative problem-solving system committed to the interests of those involved complies with the teachings of the total quality management movement in health care. Deming espoused that any quality system must become an integral part of routine activities. A process that is used consistently in dealing with problems, issues, or conflicts provides a mechanism for accomplishing total quality improvement. The collaborative problem-solving process described here results in quality decision-making. This model incorporates Ishikawa's cause-and-effect (fishbone) diagram, Moore's key causes of conflict, and the steps of the University of North Dakota Conflict Resolution Center's collaborative problem solving model.

  10. On the integration of wind and solar energy to provide a total energy supply in the USA

    Science.gov (United States)

    Archer, Cristina; Mills, David; Cheng, Weili; Sloggy, Matthew; Liebig, Edwin; Rhoades, Alan

    2010-05-01

    This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary source of energy in the USA, under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar or wind alone can power the present U.S. grid on average. Other studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the U.S. national load on a monthly basis. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from the year 2006 are used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental U.S. using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all suitable locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra's model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat processing, and future electrified transportation loads were calculated from monthly and yearly energy consumption data from the Energy Information

  11. Priority listing of industrial processes by total energy consumption and potential for savings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Streb, A.J.

    1977-01-01

    A survey of eight of the most energy-intensive segments of the U.S. industry is made to quantify the energy consumed in the principal process units, to identify areas in which significant improvement appear possible, and to rank the process units in terms of total energy consumption and the potential for improvement. Data on the steel, paper, aluminum, textile, cement, and glass industries, petroleum refineries, and olefins and derivative products industries were compiled to help plan the development of new energy sources and to provide targets for energy conservation activities. (MCW)

  12. Measurement of the energy dependence of the total photon-proton cross section at HERA

    NARCIS (Netherlands)

    Abramowicz, H.; Abt, I.; Adamczykm, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bold, T.; Boos, E. G.; Borras, K.; Boscherini, D.; Boutle, S. K.; Brock, I.; Brownson, E.; Brugnera, R.; Bruemmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Butterworth, J. M.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Fourletov, S.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Goettlicher, P.; Grabowska-Bold, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Huettmann, A.; Iacobucci, G.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H. -P.; Januschek, F.; Jimenez, M.; Jones, T. W.; Juengst, M.; Kadenko, I.; Kahle, B.; Kamauddin, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaurg, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Koetz, U.; Kowalski, H.; Kulinski, P.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Loehr, B.; Lohrmann, E.; Loizides, J. H.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Luniak, P.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Idris, F. Mohamad; Monaco, V.; Montanari, A.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nicholass, D.; Nigro, A.; Ning, Y.; Noor, U.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. C.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Ron, E.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Salii, A.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schoenberg, V.; Schoerner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terron, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomalak, O.; Tomaszewska, J.; Tsurugai, T.; Turcatov, M.; Tymieniecka, T.; Uribe-Estrada, C.; Vazquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Volynets, O.; Walczak, R.; Abdullah, W. A. T. Wan; Whitmore, J. J.; Whyte, J.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yaguees-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolko, M.; Zotkin, D. S.; Zulkapli, Z.

    2011-01-01

    The energy dependence of the photon-proton total cross section, sigma(gamma p)(tot), was determined from e(+) p scattering data collected with the ZEUS detector at HERA at three values of the center-of-mass energy, W, of the gamma p system in the range 194

  13. A Total Generalized Optimal Velocity Model and Its Numerical Tests

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen-xing; LIU Yun-cai

    2008-01-01

    A car-following model named total generalized optimal velocity model (TGOVM) was developed with a consideration of an arbitrary number of preceding vehicles before current one based on analyzing the previous models such as optimal velocity model (OVM), generalized OVM (GOVM) and improved GOVM (IGOVM). This model describes the physical phenomena of traffic flow more exactly and realistically than previous models. Also the performance of this model was checked out by simulating the acceleration and de- celeration process for a small delay time. On a single circular lane, the evolution of the traffic congestion was studied for a different number of headways and relative velocities of the preceding vehicles being taken into account. The simulation results show that TGOVM is reasonable and correct.

  14. First principles total energy study of NbCr{sub 2} + V Laves phase ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Ormeci, A. [Koc Univ., Istanbul (Turkey); Chen, S.P.; Wills, J.M.; Albers, R.C. [Los Alamos National Lab., NM (United States)

    1999-04-01

    The C15 NbCr{sub 2} + V Laves phase ternary system is studied by using a first-principles, self-consistent, full-potential total energy method. Equilibrium lattice parameters, cohesive energies, density of states and formation energies of substitutional defects are calculated. Results of all these calculations show that in the C15 NbCr{sub 2} + V compounds, V atoms substitute Cr atoms only.

  15. Daily total global solar radiation modeling from several meteorological data

    Science.gov (United States)

    Bilgili, Mehmet; Ozgoren, Muammer

    2011-05-01

    This paper investigates the modeling of the daily total global solar radiation in Adana city of Turkey using multi-linear regression (MLR), multi-nonlinear regression (MNLR) and feed-forward artificial neural network (ANN) methods. Several daily meteorological data, i.e., measured sunshine duration, air temperature and wind speed and date of the year, i.e., monthly and daily, were used as independent variables to the MLR, MNLR and ANN models. In order to determine the relationship between the total global solar radiation and other meteorological data, and also to obtain the best independent variables, the MLR and MNLR analyses were performed with the "Stepwise" method in the Statistical Packages for the Social Sciences (SPSS) program. Thus, various models consisting of the combination of the independent variables were constructed and the best input structure was investigated. The performances of all models in the training and testing data sets were compared with the measured daily global solar radiation values. The obtained results indicated that the ANN method was better than the other methods in modeling daily total global solar radiation. For the ANN model, mean absolute error (MAE), mean absolute percentage error (MAPE), correlation coefficient ( R) and coefficient of determination ( R 2) for the training/testing data set were found to be 0.89/1.00 MJ/m2 day, 7.88/9.23%, 0.9824/0.9751, and 0.9651/0.9508, respectively.

  16. Total Quality Management, a New Culture Model of the Enterprise

    Directory of Open Access Journals (Sweden)

    Constantin Dumitrescu

    2006-10-01

    Full Text Available The paper brings bags of clarifications about concept definition and bases principles of TQM, presenting the critical factors during the implementation of those fundamentals. Also, it has been proposed a lot of models to present the Total Quality Management, being also presented its evolution.

  17. Hadron-hadron total cross sections and soft high-energy scattering on the lattice

    CERN Document Server

    Giordano, M

    2011-01-01

    The nonperturbative approach to soft high-energy hadron-hadron scattering, based on the analytic continuation of Euclidean Wilson-loop correlation functions, makes possible the investigation of the problem of the asymptotic energy dependence of hadron-hadron total cross sections by means of lattice calculations. In this contribution we compare the lattice numerical results to analytic results obtained with various nonperturbative techniques. We also discuss the possibility to obtain indications of the rise of hadron-hadron total cross sections with energy directly from the lattice data.

  18. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 3: appendix E to technical report, comprehensive EVTECA results tables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume III presents the results of the total energy cycle model runs, which are summarized in Volume I.

  19. CFD modeling of pulsatile hemodynamics in the total cavopulmonary connection

    Science.gov (United States)

    Zobaer, S. M. Tareq; Hasan, A. B. M. Toufique

    2016-07-01

    Total cavopulmonary connection is a blood flow pathway which is created surgically by an operation known as Fontan procedure, performed on children with single ventricle heart defects. Recent studies have shown that the hemodynamics in the connection can be strongly influenced by the presence of pulsatile flow. The aim of this paper is model the pulsatile flow patterns, and to calculate the vorticity field and power losses in an idealized 1.5D offset model of Total Cavopulmonary Connection. A three-dimensional polyhedral mesh was constructed for the numerical simulation. The rheological properties of blood were considered as Newtonian, and flow in the connection was assumed to be laminar. The results demonstrated complex flow patterns in the connection. The outcomes of the simulation showed reasonable agreement with the results available in the literature for a similar model.

  20. “金砖国家”全要素能源效率的比较研究——基于DEA-Tobit模型%Comparative Research of Total-Factor Energy Efficiency in BRICS Based on DEA and Tobit Models

    Institute of Scientific and Technical Information of China (English)

    胡根华; 秦嗣毅

    2012-01-01

    Energy and technology are regarded as two important factors for the development of economy. Under the background of low-carbon economy, growth of energy consumption has become a serious problem and the friction caused by contest over energy resources has also grown in intensity and frequency. Therefore, improvement of energy efficiency has become an urgent task for a nation which is willing to develop its economy. Take the BRICS ( Brazil, Russia, India, China and South Africa) for example, they have become a group with rapid economic development and significant role in economy field. At the same time, the demand of energy has also been increasing rapidly with economic development. Therefore, it is meaningful to do some researches on how to improve the energy efficiency of BRICS. With consumption of primary energy, capital stock, total employees and technology as input indices and GDP as output index, this paper has selected the BRICS’panel data from 2003 to 2010 to evaluate the total-factor energy efficiency in the five countries by using input-oriented super-efficiency DEA model and compare the differences among their energy efficiencies. Then, it has analyzed the influences of technical progress, industrial structure and structure of energy consumption to the total-factor energy efficiency of BRICS from the viewpoints of technology, economic structure and energy factor based on Tobit model. The empirical results show that: 1) The BRICS’total-factor energy efficiency exhibits a low level on the whole but there are significant differences among them, i.e. Brazil’s total-factor energy efficiency is the highest among the five nations, followed by South Africa and India, China and Russia are positioned in the third, the fourth and the last respectively; 2) There exists significant negative correlations between energy efficiency and industrial structure and structure of energy consumption, i.e. the higher the ratios of the secondary industry and raw

  1. Energy conservation projects implementation at Jordan's industrial sector: a total quality management approach

    Energy Technology Data Exchange (ETDEWEB)

    Kablan, M.M. [Mutah University, Alkarak (Jordan). Engineering College

    2003-12-01

    This paper presents insights into the energy problem in Jordan and specifically into the energy conservation status in the industrial sector in Jordan. The results of a recent survey of the energy consumption of the industrial sector were used to draw deductions about the energy conservation situation. The country of Jordan imports oil from its neighbouring countries to cover about 94% of its total energy demand. In the year 2000, the annual share of the industrial sector of the final energy consumption of the country is around 23%. Energy conservation in the industrial sector is a crucial area for energy saving. Many representatives of industrial firms are reluctant to participate in energy conservation projects because they think that the investment in energy-saving equipment may result in higher prices for their products, which may lead to reducing their competitiveness in the local market. Some managers are resistant to change because they do not know how to implement an energy conservation project. This research proposes a methodology for the effective implementation of energy conservation projects for Jordanian industries. The proposed methodology is useful for other countries. (author)

  2. Modeling a radiotherapy clinical procedure: total body irradiation.

    Science.gov (United States)

    Esteban, Ernesto P; García, Camille; De La Rosa, Verónica

    2010-09-01

    Leukemia, non-Hodgkin's lymphoma, and neuroblastoma patients prior to bone marrow transplants may be subject to a clinical radiotherapy procedure called total body irradiation (TBI). To mimic a TBI procedure, we modified the Jones model of bone marrow radiation cell kinetics by adding mutant and cancerous cell compartments. The modified Jones model is mathematically described by a set of n + 4 differential equations, where n is the number of mutations before a normal cell becomes a cancerous cell. Assuming a standard TBI radiotherapy treatment with a total dose of 1320 cGy fractionated over four days, two cases were considered. In the first, repopulation and sub-lethal repair in the different cell populations were not taken into account (model I). In this case, the proposed modified Jones model could be solved in a closed form. In the second, repopulation and sub-lethal repair were considered, and thus, we found that the modified Jones model could only be solved numerically (model II). After a numerical and graphical analysis, we concluded that the expected results of TBI treatment can be mimicked using model I. Model II can also be used, provided the cancer repopulation factor is less than the normal cell repopulation factor. However, model I has fewer free parameters compared to model II. In either case, our results are in agreement that the standard dose fractionated over four days, with two irradiations each day, provides the needed conditioning treatment prior to bone marrow transplant. Partial support for this research was supplied by the NIH-RISE program, the LSAMP-Puerto Rico program, and the University of Puerto Rico-Humacao.

  3. Evaluating energy efficiency policies with energy-economy models

    NARCIS (Netherlands)

    Mundaca, L.; Neij, L.; Worrell, E.; McNeil, M.

    2010-01-01

    The growing complexities of energy systems, environmental problems, and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyz

  4. Energy transfers in shell models for magnetohydrodynamics turbulence.

    Science.gov (United States)

    Lessinnes, Thomas; Carati, Daniele; Verma, Mahendra K

    2009-06-01

    A systematic procedure to derive shell models for magnetohydrodynamic turbulence is proposed. It takes into account the conservation of ideal quadratic invariants such as the total energy, the cross helicity, and the magnetic helicity, as well as the conservation of the magnetic energy by the advection term in the induction equation. This approach also leads to simple expressions for the energy exchanges as well as to unambiguous definitions for the energy fluxes. When applied to the existing shell models with nonlinear interactions limited to the nearest-neighbor shells, this procedure reproduces well-known models but suggests a reinterpretation of the energy fluxes.

  5. Total Variability Modeling using Source-specific Priors

    DEFF Research Database (Denmark)

    Shepstone, Sven Ewan; Lee, Kong Aik; Li, Haizhou

    2016-01-01

    In total variability modeling, variable length speech utterances are mapped to fixed low-dimensional i-vectors. Central to computing the total variability matrix and i-vector extraction, is the computation of the posterior distribution for a latent variable conditioned on an observed feature...... sequence of an utterance. In both cases the prior for the latent variable is assumed to be non-informative, since for homogeneous datasets there is no gain in generality in using an informative prior. This work shows in the heterogeneous case, that using informative priors for com- puting the posterior......, can lead to favorable results. We focus on modeling the priors using minimum divergence criterion or fac- tor analysis techniques. Tests on the NIST 2008 and 2010 Speaker Recognition Evaluation (SRE) dataset show that our proposed method beats four baselines: For i-vector extraction using an already...

  6. Application analysis of solar total energy systems to the residential sector. Volume II, energy requirements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This project analyzed the application of solar total energy systems to appropriate segments of the residential sector and determined their market penetration potential. This volume covers the work done on energy requirements definition and includes the following: (1) identification of the single-family and multi-family market segments; (2) regionalization of the United States; (3) electrical and thermal load requirements, including time-dependent profiles; (4) effect of conservation measures on energy requirements; and (5) verification of simulated load data with real data.

  7. Modeling Malaysia's Energy System: Some Preliminary Results

    OpenAIRE

    Ahmad M. Yusof

    2011-01-01

    Problem statement: The current dynamic and fragile world energy environment necessitates the development of new energy model that solely caters to analyze Malaysias energy scenarios. Approach: The model is a network flow model that traces the flow of energy carriers from its sources (import and mining) through some conversion and transformation processes for the production of energy products to final destinations (energy demand sectors). The integration to the economic sectors is done exogene...

  8. Evaluating Energy Efficiency Policies with Energy-Economy Models

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  9. Total cloud cover from satellite observations and climate models

    Directory of Open Access Journals (Sweden)

    P. Probst

    2010-09-01

    Full Text Available Global and zonal monthly means of cloud cover fraction for total cloudiness (CF from the ISCCP D2 dataset are compared to same quantity produced by the 20th century simulations of 21 climate models from the World Climate Research Programme's (WCRP's Coupled Model Intercomparison Project phase 3 (CMIP3 multi-model dataset archived by the Program for Climate Model Diagnosis and Intercomparison (PCMDI. The comparison spans the time frame from January 1984 to December 1999 and the global and zonal average of CF are studied. The restriction to total cloudiness depends on the output of some models that does not include the 3D cloud structure. It is shown that the global mean of CF for the PCMDI/CMIP3 models, averaged over the whole period, exhibits a considerable variance and generally underestimates the ISCCP value. Very large discrepancies among models, and between models and observations, are found in the polar areas, where both models and satellite observations are less reliable, and especially near Antarctica. For this reason the zonal analysis is focused over the 60° S–60° N latitudinal belt, which includes the tropical area and mid latitudes. The two hemispheres are analyzed separately to show the variation of the amplitude of the seasonal cycle. Most models overestimate the yearly averaged values of CF over all of the analysed areas, while differences emerge in their ability to capture the amplitude of the seasonal cycle. The models represent, in a qualitatively correct way, the magnitude and the weak sign of the seasonal cycle over the whole geographical domain, but overestimate the strength of the signal in the tropical areas and at mid-latitudes, when taken separately. The interannual variability of the two yearly averages and of the amplitude of the seasonal cycle is greatly underestimated by all models in each area analysed. This work shows that the climate models have an heterogeneous behaviour in simulating the CF over

  10. THREE-PHASE ENERGY SUPPLY SYSTEMS SIMULATION FOR THE TOTAL POWER LOSSES COMPONENTS ASSESSMENT

    Directory of Open Access Journals (Sweden)

    D.V. Tugay

    2016-09-01

    Full Text Available Purpose. The goal is to optimize a structure of Matlab-model of the three-phase energy supply system with power active filter. The mathematical model that describes the energy supply system modes of operation which contains additional losses is proposed. Methodology. We have applied concepts of the electrical circuits theory, mathematical modeling elements based on linear algebra and vector calculus, mathematical simulation in Matlab package. Results. We have developed two models of three-phase energy supply system. The first one is based on a vector representation, and the second one on the matrix representation of energy processes. Using these models we have solved the problem of maintaining unchanged the average useful power for 279 cases of energy supply system modes of operation. Originality. We have developed methods of mathematical analysis of a three-phase energy supply systems with polyharmonic voltages and currents in the symmetric and asymmetric modes. Practical value. We have created Matlab-model of a three-phase energy supply system with automated calculation of a correction factor. It allows reducing more than one order the time for energy processes elucidation in multiphase systems.

  11. Elastic and total cross sections for simple biomolecules in the intermediate energy range

    Directory of Open Access Journals (Sweden)

    Dhanoj Gupta

    2015-09-01

    Full Text Available The elastic and total cross sections for formaldehyde, acetaldehyde, acetone, 2-butanone and formamide are calculated using the spherical complex optical potential formalism in the intermediate energy range from 50 eV to 10 keV. These cross sections find application to various fields like radiation damage and biological sciences. The present results are compared with the available experimental and theoretical data and are found to give excellent agreement. The elastic cross sections reported for most of the targets in the present energy range are done for the first time. The energy dependence of the contribution of ionization and elastic cross section with respect to the total cross section and the correlation of total cross section with polarizability of the molecules are also studied.

  12. Elastic and total cross sections for simple biomolecules in the intermediate energy range

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dhanoj; Naghma, Rahla; Antony, Bobby, E-mail: bka.ism@gmail.com [Atomic and Molecular Physics Lab, Department of Applied Physics, Indian School of Mines, Dhanbad 826004, JH (India)

    2015-09-15

    The elastic and total cross sections for formaldehyde, acetaldehyde, acetone, 2-butanone and formamide are calculated using the spherical complex optical potential formalism in the intermediate energy range from 50 eV to 10 keV. These cross sections find application to various fields like radiation damage and biological sciences. The present results are compared with the available experimental and theoretical data and are found to give excellent agreement. The elastic cross sections reported for most of the targets in the present energy range are done for the first time. The energy dependence of the contribution of ionization and elastic cross section with respect to the total cross section and the correlation of total cross section with polarizability of the molecules are also studied.

  13. Modelling distributed energy resources in energy service networks

    CERN Document Server

    Acha, Salvador

    2013-01-01

    Focuses on modelling two key infrastructures (natural gas and electrical) in urban energy systems with embedded technologies (cogeneration and electric vehicles) to optimise the operation of natural gas and electrical infrastructures under the presence of distributed energy resources

  14. Total cross sections of positron-sodium scattering at low energies

    Institute of Scientific and Technical Information of China (English)

    Cheng Yong-Jun; Zhou Ya-Jun; Jiao Li-Guang

    2012-01-01

    A new calculation for the total cross section of positron-sodium scattering is performed in an energy range down to a few tenths of one electron volt using the coupled-channel optical method. The ionization continuum and the positronium formation channels are included via an equivalent-local complex potential.The role played by the break-up and rearrangement processes in the low energy positron-sodium scattering is also investigated.The total scattering cross section is reported and compared with the available theoretical and experimental data.

  15. Abandoning nuclear energy, a total industrial absurdity; Sortir du nucleaire, un non-sens industriel

    Energy Technology Data Exchange (ETDEWEB)

    Sorin, F.

    2011-09-15

    The abandoning of nuclear energy can not be considered without economic and social damages, it would amplify the des-industrialization process of France and would spoil its energy independence and would mean a step backwards in terms of world strategy. In France the nuclear sector gives work to a total of 410.000 people and generates a total added value of 33 billions euros each year. It would make no sense to stop an activity whose perspective is promising: a lot of reactors in the world will need soon maintenance, upgrading or replacement. (A.C.)

  16. Estimation on the Total Quantity of Biomass Energy and Its Environmental Benefit Analysis in Shandong Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to estimate the total quantity of biomass energy and analyze its environmental benefit in Shandong Province.[Method] Based on the data from the statistics yearbook of Shandong Province in 2010,the total quantity of biomass resources and biomass energy in Shandong Province in 2009 was estimated,and its environmental benefit was analyzed.[Result] Biomass resources in Shandong Province mainly refer to crop residues,forest residues,grassland changed from degraded land.If degraded land be...

  17. Modeling energy transport in nanostructures

    Science.gov (United States)

    Pattamatta, Arvind

    Heat transfer in nanostructures differ significantly from that in the bulk materials since the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of the nanostructures. Nanostructure materials hold the promise of novel phenomena, properties, and functions in the areas of thermal management and energy conversion. Example of thermal management in micro/nano electronic devices is the use of efficient nanostructured materials to alleviate 'hot spots' in integrated circuits. Examples in the manipulation of heat flow and energy conversion include nanostructures for thermoelectric energy conversion, thermophotovoltaic power generation, and data storage. One of the major challenges in Metal-Oxide Field Effect Transistor (MOSFET) devices is to study the 'hot spot' generation by accurately modeling the carrier-optical phonon-acoustic phonon interactions. Prediction of hotspot temperature and position in MOSFET devices is necessary for improving thermal design and reliability of micro/nano electronic devices. Thermoelectric properties are among the properties that may drastically change at nanoscale. The efficiency of thermoelectric energy conversion in a material is measured by a non-dimensional figure of merit (ZT) defined as, ZT = sigmaS2T/k where sigma is the electrical conductivity, S is the Seebeck coefficient, T is the temperature, and k is the thermal conductivity. During the last decade, advances have been made in increasing ZT using nanostructures. Three important topics are studied with respect to energy transport in nanostructure materials for micro/nano electronic and thermoelectric applications; (1) the role of nanocomposites in improving the thermal efficiency of thermoelectric devices, (2) the interfacial thermal resistance for the semiconductor/metal contacts in thermoelectric devices and for metallic interconnects in micro/nano electronic devices, (3) the

  18. A Romanian energy system model and a nuclear reduction strategy

    DEFF Research Database (Denmark)

    Gota, Dan-Ioan; Lund, Henrik; Miclea, Liviu

    2011-01-01

    This paper presents a model of the Romanian energy system with the purpose of providing a tool for the analysis of future sustainable energy strategies. The model represents the total national energy system and is detailed to the level of hourly demand and production in order to be able to analyse...... the consequences of adding fluctuating renewable energy sources to the system. The model has been implemented into the EnergyPLAN tool and has been validated in order to determine if it can be used as a reference model for other simulations. In EnergyPLAN, two different future strategy scenarios for the Romanian...... energy system are compared to the actual data of Romania of year 2008. First, a comparison is made between the 2008 model and the 2013 strategy scenario corresponding to the grid of the Romanian transmission system operator (TSO) Transelectrica. Then, a comparison is made to a second strategy scenario...

  19. Neutrino Energy Reconstruction and the Shape of the CCQE-like Total Cross Section

    CERN Document Server

    Nieves, J; Simo, I Ruiz; Vacas, M J Vicente

    2012-01-01

    We show that because of the multinucleon mechanism effects, the algorithm used to reconstruct the neutrino energy is not adequate when dealing with quasielastic-like events, and a distortion of the total flux unfolded cross section shape is produced. This amounts to a redistribution of strength from high to low energies, which gives rise to a sizable excess (deficit) of low (high) energy neutrinos. This distortion of the shape leads to a good description of the MiniBooNE unfolded CCQE-like cross sections published in Phys.Rev. D81 (2010) 092005. However, these changes in the shape are artifacts of the unfolding process that ignores multinucleon mechanisms.

  20. Energy flux and Goos-Hänchen shift in frustrated total internal reflection.

    Science.gov (United States)

    Chen, Xi; Lu, Xiao-Jing; Zhao, Pei-Liang; Zhu, Qi-Biao

    2012-05-01

    Using Yasumoto and Õishi's energy flux method, a generalized analytical formulation for analyzing the Goos-Hänchen (GH) shift in frustrated total internal reflection is provided, from which the GH shift given by Artman's stationary phase method is shown to equal the GH calculated by Renard's conventional energy flux method plus a self-interference shift. The self-interference shift, originating from the interference between the incident and reflected beams, sheds light on the asymptotic behavior of the GH shift in such optical tunneling process in term of energy flux.

  1. Activities Contributing to Total Energy Expenditure in the United States: Results from the NHAPS Study

    Directory of Open Access Journals (Sweden)

    Block Gladys

    2004-02-01

    Full Text Available Abstract Background Physical activity is increasingly recognized as an important factor influencing health and disease status. Total energy expenditure, both low-intensity and high-intensity, contributes to maintenance of healthy body weight. This paper presents the results of a quantitative approach to determining the activities that contribute to total energy expenditure in the United States. Methods Data from the National Human Activity Pattern Survey (NHAPS were used. In 1992–1994 the NHAPS sampled 4,185 females and 3,330 males, aged 18 years and over, weighted to be representative of the 48 contiguous United States. A detailed report of each activity performed in the previous 24 hours was obtained. A score was created for each activity, by multiplying duration and intensity for each individual and summing across individuals. This score was then used to rank each activity according to its contribution to total population energy expenditure, for the total sample and separately for each gender, race, age, region, and season. Results This analysis reveals our society to be primarily sedentary; leisure time physical activity contributed only approximately 5% of the population's total energy expenditure. Not counting sleeping, the largest contributor to energy expenditure was "Driving a car", followed by "Office work" and "Watching TV". Household activities accounted for 20.1% and 33.3% of energy expenditure for males and females respectively. Conclusion The information presented in this paper may be useful in identifying common activities that could be appropriate targets for behavioral interventions to increase physical activity.

  2. Changes in Energy Cost and Total External Work of Muscles in Elite Race Walkers Walking at Different Speeds

    Directory of Open Access Journals (Sweden)

    Chwała Wiesław

    2014-12-01

    Full Text Available The aim of the study was to assess energy cost and total external work (total energy depending on the speed of race walking. Another objective was to determine the contribution of external work to total energy cost of walking at technical, threshold and racing speed in elite competitive race walkers.

  3. Generalizing the McClelland bounds for total {pi}-electron energy

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, I. [Univ. of Kragujevac (Czechoslovakia). Faculty of Science; Indulal, G. [St. Aloysius Coll., Edathua, Alappuzha (India). Dept. of Mathematics; Todeschini, R. [Univ. of Milano (Italy). Dept. of Environmental Science

    2008-05-15

    In 1971 McClelland obtained lower and upper bounds for the total {pi}-electron energy. We now formulate the generalized version of these bounds, applicable to the energy-like expression E{sub X}={sigma}{sub i=1}{sup n} vertical stroke x{sub i}-x vertical stroke, where x{sub 1},x{sub 2},.., x{sub n} are any real numbers, and x is their arithmetic mean. In particular, if x{sub 1},x{sub 2},..,x{sub n} are the eigenvalues of the adjacency, Laplacian, or distance matrix of some graph G, then E{sub X} is the graph energy, Laplacian energy, or distance energy, respectively, of G. (orig.)

  4. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  5. Energy Blocks — A Physical Model for Teaching Energy Concepts

    Science.gov (United States)

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams. Activities and analogies like Energy Theater and Richard Feynman's blocks, as well as the popular money (or wealth) analogy, can also be very effective. The goal of this paper is to describe a physical model of Feynman's blocks that can be employed by instructors to help students learn the following energy-related concepts: 1. The factors affecting each individual mechanical energy storage mode (this refers to what has been traditionally called a form of energy, and while the Modeling Method of instruction is not the focus of this paper, much of the energy related language used is specific to the Modeling Method). For example, how mass or height affects gravitational energy; 2. Energy conservation; and 3. The graphical relationships between the energy storage mode and a factor affecting it. For example, the graphical relationship between elastic energy and the change in length of a spring.

  6. Fort Hood Solar Total Energy Project. Volume III. Engineering drawings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    Engineering drawings are presented for the Solar Total Energy System at Fort Hood, Texas. Drawings are given for the solar collector subsystem, power conversion subsystem, instrumentation and control subsystem, thermal storage subsystem, site preparation, thermal storage area piping and equipment layout, heating/cooling and domestic hot water subsystem, STES building and facility, and electrical distribution. (WHK)

  7. Mechanical properties of carbynes investigated by ab initio total-energy calculations

    DEFF Research Database (Denmark)

    Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola

    2012-01-01

    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...

  8. Measurement of the total solar energy transmittance (g-value) for conventional glazings

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    Three different glazings have been investigated in the Danish experimental setup METSET. (A device for calorimetric measurement of total solar energy transmittance - g-value).The purpose of the measurements is to increase the confidence in the calorimetric measurements. This is done by comparison...

  9. A New Way to Conserve Total Energy for Eulerian Hydrodynamic Simulations with Self-Gravity

    CERN Document Server

    Jiang, Yan-Fei; Goodman, Jeremy; Stone, James M

    2012-01-01

    We propose a new method to conserve the total energy to round-off error in grid-based codes for hydrodynamic simulations with self-gravity. A formula for the energy flux due to the work done by the the self-gravitational force is given, so the change in total energy can be written in conservative form. Numerical experiments with the code Athena show that the total energy is indeed conserved with our new algorithm and the new algorithm is second order accurate. We have performed a set of tests that show the numerical errors in the traditional, non-conservative algorithm can affect the dynamics of the system. The new algorithm only requires one extra solution of the Poisson equation, as compared to the traditional algorithm which includes self-gravity as a source term. If the Poisson solver takes a negligible fraction of the total simulation time, such as when FFTs are used, the new algorithm is almost as efficient as the original method. This new algorithm is useful in Eulerian hydrodynamic simulations with se...

  10. The Health Impacts of Energy Policy Pathways in Ulaanbaatar, Mongolia: A Total Exposure Assessment

    Science.gov (United States)

    Hill, L. A.; Damdinsuren, Y.; Olkhanud, P. B.; Smith, K. R.; Turner, J. R.; Edwards, R.; Odsuren, M.; Ochir, C.

    2015-12-01

    Ulaanbaatar is home to nearly half of Mongolia's 2.8 million residents. The city's rapid growth, frigid winters, valley topography, and reliance on coal-fired stoves have led to some of the worst winter pollution levels in the world. To better understand this issue, we modeled integrated PM2.5exposures and related health impacts for various city-wide heating policies through 2024. This assessment is one of the first to employ a total exposure approach and results of the 2014 Comparative Risk Assessments of the Global Burden of Disease Project (CRA/GBD) in a policy-relevant energy study. Emissions related to heating, traffic, and power generation were considered under Business as Usual, Moderate Improvement, and Max Improvement scenarios. Calibrated outdoor models were combined with indoor models, local infiltration and time activity estimates, and demographic projections to estimate PM2.5exposures in 2014 and 2024. Indoor exposures were assigned by heating type, home type, and smoking status; outdoor exposures were assigned through geocoding. Population average annual exposures were calculated and applied to local disease rates and integrated exposure-response curves (2014 CRA/GBD) to arrive at annual projections of premature deaths and DALYs. We estimate 2014 annual average exposures at 68 μg/m3, dictated almost exclusively by indoor winter exposures. Under current trends, annual exposures increase 10% to 75 μg/m3 in 2024. This is in stark contrast to the moderate and max improvement scenarios, which lead to 2024 annual exposures that are 31%, and 68% lower, respectively. Under the Moderate scenario, 2024 per capita annual DALY and death burdens drop 26% and 22%, respectively, from 2014 levels. Under the Max scenario, 2024 per capita annual DALY and death burdens drop 71% and 66%, respectively, from 2014. SHS becomes a major contributor as emissions from other sectors decrease. Reductions are dominated by cardiovascular and lower respiratory diseases in children.

  11. Totally Asymmetric Limit for Models of Heat Conduction

    Science.gov (United States)

    De Carlo, Leonardo; Gabrielli, Davide

    2017-08-01

    We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.

  12. Two sustainable energy system analysis models

    DEFF Research Database (Denmark)

    Lund, Henrik; Goran Krajacic, Neven Duic; da Graca Carvalho, Maria

    2005-01-01

    This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy.......This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy....

  13. Complex Evaluation Model of Corporate Energy Management

    OpenAIRE

    Ágnes Kádár Horváth

    2014-01-01

    With the ever increasing energy problems at the doorstep alongside with political, economic, social and environmental challenges, conscious energy management has become of increasing importance in corporate resource management. Rising energy costs, stricter environmental and climate regulations as well as considerable changes in the energy market require companies to rationalise their energy consumption and cut energy costs. This study presents a complex evaluation model of corporate energy m...

  14. Energy: modelization and econometrics. Proceedings of colloquium

    Energy Technology Data Exchange (ETDEWEB)

    Fericelli, J.; Lesourd, J.B.

    1985-01-01

    The document presents the communications of the ''applied econometric association'' symposium and introduces the description of various French and foreigner models: analysis of the energy demand and production functions with energy input. A detailed evaluation of the Translog function applied to energy is described. Other energy economic aspects are approched: energy prices and costs, energetic balances, energy management in enterprises, impact evaluation of alternative energy policies.

  15. Energy-independent total quantum transmission of electrons through nanodevices with correlated disorder

    Science.gov (United States)

    Novotny, M. A.

    2014-10-01

    In nanostructures with no appreciable scattering, electrons propagate ballistically, and hence have energy-independent total quantum transmission. For an incoming electron of energy E, the probability T (E) of transmission is obtained from the solution of the time-independent Schrödinger equation. Ballistic transport hence corresponds to T (E)=1. We show that there is a wide class of nanostructures with correlated disorder that have T (E)=1 for all propagating modes, even though they can have strong scattering. We call these nanostructures quantum dragons. An exact mathematical mapping for quantum transmission valid for a large class of atomic arrangements is presented within the single-band tight-binding model. Quantum transmission through a nanostructure is exactly mapped onto quantum transmission through a one-dimensional chain. The mapping is applied to carbon nanotubes in the armchair and zigzag configurations, Bethe lattices, conjoined Bethe lattices, Bethe lattices with hopping within each ring, and tubes formed from rectangular and orthorhombic lattices. The mapping shows that tuning tight-binding parameters to particular correlated values gives T (E)=1 for all the systems studied. A quantum dragon has the same electrical conductivity as a ballistic nanodevice, namely, in a four-terminal measurement the electrical resistance is zero, while in a two-terminal measurement for the single-channel case, the electrical conductivity is equal to the conductance quantum G0=2e2/h, where h is Planck's constant and e the electron charge. We find T (E)=1 is ubiquitous but occurs only on particular surfaces in the tight-binding parameter space.

  16. Observing and Modeling Earth's Energy Flows

    Science.gov (United States)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute

  17. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  18. Total laparoscopic gastrocystoplasty: experimental technique in a porcine model

    Directory of Open Access Journals (Sweden)

    Frederico R. Romero

    2007-02-01

    Full Text Available OBJECTIVE: Describe a unique simplified experimental technique for total laparoscopic gastrocystoplasty in a porcine model. MATERIAL AND METHODS: We performed laparoscopic gastrocystoplasty on 10 animals. The gastroepiploic arch was identified and carefully mobilized from its origin at the pylorus to the beginning of the previously demarcated gastric wedge. The gastric segment was resected with sharp dissection. Both gastric suturing and gastrovesical anastomosis were performed with absorbable running sutures. The complete procedure and stages of gastric dissection, gastric closure, and gastrovesical anastomosis were separately timed for each laparoscopic gastrocystoplasty. The end-result of the gastric suturing and the bladder augmentation were evaluated by fluoroscopy or endoscopy. RESULTS: Mean total operative time was 5.2 (range 3.5 - 8 hours: 84.5 (range 62 - 110 minutes for the gastric dissection, 56 (range 28 - 80 minutes for the gastric suturing, and 170.6 (range 70 to 200 minutes for the gastrovesical anastomosis. A cystogram showed a small leakage from the vesical anastomosis in the first two cases. No extravasation from gastric closure was observed in the postoperative gastrogram. CONCLUSIONS: Total laparoscopic gastrocystoplasty is a feasible but complex procedure that currently has limited clinical application. With the increasing use of laparoscopy in reconstructive surgery of the lower urinary tract, gastrocystoplasty may become an attractive option because of its potential advantages over techniques using small and large bowel segments.

  19. Sensitivity of the total heat loss coefficient determined by the energy signature approach to different time periods and gained energy

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, J.-U.; Andersson, S.; Olofsson, T. [Department of Applied Physics and Electronics, Umeaa University, SE-901 87 Umeaa (Sweden)

    2009-07-15

    In order to identify buildings that have energy saving potential there is a need for further development of robust methods for evaluation of energy performance as well as reliable key energy indicators. To be able to evaluate a large database of buildings, the evaluation has to be founded on available data, since an in-depth analysis of each building would require large measurement efforts in terms of both parameters and time. In practice, data are usually available for consumed energy, water, and so on, namely consumption that the tenants or property holder has to pay for. In order to evaluate the energy saving potential and energy management, interesting key energy indicators are the total heat loss coefficient K{sub tot} (W/K), the indoor temperature (T{sub i}), and the utilisation of the available heat (solar radiation and electricity primarily used for purposes other than heating). The total heat loss coefficient, K{sub tot}, is a measure of the heat lost through the building's envelope, whereas T{sub i} and the gained energy reflect the user's behaviour and efficiency of the control system. In this study, a linear regression approach (energy signature) has been used to analyse data for 2003-2006 for nine fairly new multifamily buildings located in the Stockholm area, Sweden. The buildings are heated by district heating and the electricity used is for household equipment and the buildings' technical systems. The data consist of monthly energy used for heating and outdoor temperature together with annual water use, and for some buildings data for household electricity are also available. For domestic hot water and electricity, monthly distributions have been assumed based on data from previous studies and energy companies. The impact on K{sub tot} and T{sub i} of the time period and assumed values for the utilised energy are investigated. The results show that the obtained value of K{sub tot} is rather insensitive to the time period and utilised

  20. Cosmological degeneracy versus cosmography: a cosmographic dark energy model

    CERN Document Server

    Luongo, Orlando; Troisi, Antonio

    2015-01-01

    In this work we use cosmography to alleviate the degeneracy among cosmological models, proposing a way to parameterize matter and dark energy in terms of cosmokinematics quantities. The recipe of using cosmography allows to expand observable quantities in Taylor series and to directly compare those expansions with data. We adopt this strategy and we propose a fully self-consistent parametrization of the total energy density driving the late time universe speed up. Afterwards, we describe a feasible \\emph{cosmographic dark energy model}, in which matter is fixed whereas dark energy evolves by means of the cosmographic series. Our technique provides robust constraints on cosmokinematic parameters, permitting one to separately bound matter from dark energy densities. Our cosmographic dark energy model turns out to be one parameter only, but differently from the $\\Lambda$CDM paradigm, it does not contain ansatz on the dark energy form. In addition, we even determine the free parameter of our model in suitable $1\\...

  1. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  2. Dual absorptive model and np elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem

    1980-06-01

    The most recent measurements of the angular distribution and total cross-sections in np elastic scattering at high energies from 70 to 400 GeV/c have been fitted by using the dual absorptive model. Comparison has also been made with the Kane-Siedl model and the simple Regge pole model.

  3. Assessment of vectorial total variation penalties on realistic dual-energy CT data.

    Science.gov (United States)

    Rigie, David S; Sanchez, Adrian A; La Rivière, Patrick J

    2017-04-21

    Vectorial extensions of total variation have recently been developed for regularizing the reconstruction and denoising of multi-channel images, such as those arising in spectral computed tomography. Early studies have focused mainly on simulated, piecewise-constant images whose structure may favor total-variation penalties. In the current manuscript, we apply vectorial total variation to real dual-energy CT data of a whole turkey in order to determine if the same benefits can be observed in more complex images with anatomically realistic textures. We consider the total nuclear variation ([Formula: see text]) as well as another vectorial total variation based on the Frobenius norm ([Formula: see text]) and standard channel-by-channel total variation ([Formula: see text]). We performed a series of 3D TV denoising experiments comparing the three TV variants across a wide range of smoothness parameter settings, optimizing each regularizer according to a very-high-dose 'ground truth' image. Consistent with the simulation studies, we find that both vectorial TV variants achieve a lower error than the channel-by-channel TV and are better able to suppress noise while preserving actual image features. In this real data study, the advantages are subtler than in the previous simulation study, although the [Formula: see text] penalty is found to have clear advantages over either [Formula: see text] or [Formula: see text] when comparing material images formed from linear combinations of the denoised energy images.

  4. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  5. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain

    Science.gov (United States)

    Markwald, Rachel R.; Melanson, Edward L.; Smith, Mark R.; Higgins, Janine; Perreault, Leigh; Eckel, Robert H.; Wright, Kenneth P.

    2013-01-01

    Insufficient sleep is associated with obesity, yet little is known about how repeated nights of insufficient sleep influence energy expenditure and balance. We studied 16 adults in a 14- to 15-d-long inpatient study and quantified effects of 5 d of insufficient sleep, equivalent to a work week, on energy expenditure and energy intake compared with adequate sleep. We found that insufficient sleep increased total daily energy expenditure by ∼5%; however, energy intake—especially at night after dinner—was in excess of energy needed to maintain energy balance. Insufficient sleep led to 0.82 ± 0.47 kg (±SD) weight gain despite changes in hunger and satiety hormones ghrelin and leptin, and peptide YY, which signaled excess energy stores. Insufficient sleep delayed circadian melatonin phase and also led to an earlier circadian phase of wake time. Sex differences showed women, not men, maintained weight during adequate sleep, whereas insufficient sleep reduced dietary restraint and led to weight gain in women. Our findings suggest that increased food intake during insufficient sleep is a physiological adaptation to provide energy needed to sustain additional wakefulness; yet when food is easily accessible, intake surpasses that needed. We also found that transitioning from an insufficient to adequate/recovery sleep schedule decreased energy intake, especially of fats and carbohydrates, and led to −0.03 ± 0.50 kg weight loss. These findings provide evidence that sleep plays a key role in energy metabolism. Importantly, they demonstrate physiological and behavioral mechanisms by which insufficient sleep may contribute to overweight and obesity. PMID:23479616

  6. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain.

    Science.gov (United States)

    Markwald, Rachel R; Melanson, Edward L; Smith, Mark R; Higgins, Janine; Perreault, Leigh; Eckel, Robert H; Wright, Kenneth P

    2013-04-02

    Insufficient sleep is associated with obesity, yet little is known about how repeated nights of insufficient sleep influence energy expenditure and balance. We studied 16 adults in a 14- to 15-d-long inpatient study and quantified effects of 5 d of insufficient sleep, equivalent to a work week, on energy expenditure and energy intake compared with adequate sleep. We found that insufficient sleep increased total daily energy expenditure by ∼5%; however, energy intake--especially at night after dinner--was in excess of energy needed to maintain energy balance. Insufficient sleep led to 0.82 ± 0.47 kg (±SD) weight gain despite changes in hunger and satiety hormones ghrelin and leptin, and peptide YY, which signaled excess energy stores. Insufficient sleep delayed circadian melatonin phase and also led to an earlier circadian phase of wake time. Sex differences showed women, not men, maintained weight during adequate sleep, whereas insufficient sleep reduced dietary restraint and led to weight gain in women. Our findings suggest that increased food intake during insufficient sleep is a physiological adaptation to provide energy needed to sustain additional wakefulness; yet when food is easily accessible, intake surpasses that needed. We also found that transitioning from an insufficient to adequate/recovery sleep schedule decreased energy intake, especially of fats and carbohydrates, and led to -0.03 ± 0.50 kg weight loss. These findings provide evidence that sleep plays a key role in energy metabolism. Importantly, they demonstrate physiological and behavioral mechanisms by which insufficient sleep may contribute to overweight and obesity.

  7. Generic phase coexistence in the totally asymmetric kinetic Ising model

    Science.gov (United States)

    Godrèche, Claude; Luck, Jean-Marc

    2017-07-01

    The physical analysis of generic phase coexistence in the North-East-Center Toom model was originally given by Bennett and Grinstein. The gist of their argument relies on the dynamics of interfaces and droplets. We revisit the same question for a specific totally asymmetric kinetic Ising model on the square lattice. This nonequilibrium model possesses the remarkable property that its stationary-state measure in the absence of a magnetic field coincides with that of the usual ferromagnetic Ising model. We use both analytical arguments and numerical simulations in order to make progress in the quantitative understanding of the phenomenon of generic phase coexistence. At zero temperature a mapping onto the TASEP allows an exact determination of the time-dependent shape of the ballistic interface sweeping a large square minority droplet of up or down spins. At finite temperature, measuring the mean lifetime of such a droplet allows an accurate measurement of its shrinking velocity v, which depends on temperature T and magnetic field h. In the absence of a magnetic field, v vanishes with an exponent Δ_v≈2.5+/-0.2 as the critical temperature T c is approached. At fixed temperature in the ordered phase, v vanishes at the phase-boundary fields +/- h_b(T) which mark the limits of the coexistence region. The latter fields vanish with an exponent Δ_h≈3.2+/-0.3 as T c is approached.

  8. COMPONENTS OF TOTAL ELECTRIC ENERGY LOSSES POWER IN PQR SPATIAL COORDINATES

    Directory of Open Access Journals (Sweden)

    G.G. Zhemerov

    2016-05-01

    Full Text Available Purpose. To obtain relations determining the components of the total losses power with p-q-r power theory for three-phase four-wire energy supply systems, uniquely linking four components: the lowest possible losses power, losses power caused by the reactive power, losses power caused by the instantaneous active power pulsations, losses power caused by current flowing in the neutral wire. Methodology. We have applied concepts of p-q-r power theory, the theory of electrical circuits and mathematical simulation in Matlab package. Results. We have obtained the exact relation, which allows to calculate the total losses power in the three-phase four-wire energy supply system using three components corresponding to the projections of the generalized vectors of voltage and current along the pqr axis coordinates. Originality. For the first time, we have established a mathematical relationship between spatial representation of instantaneous values of the vector components and the total losses power in the three-phase four-wire energy supply systems. Practical value. We have elucidated an issue that using the proposed methodology would create a measuring device for determining the current value of the components of total losses power in three-phase systems. The device operates with measuring information about instantaneous values of currents and voltages.

  9. Simultaneous association of total energy consumption and activity-related energy expenditure with risks of cardiovascular disease, cancer, and diabetes among postmenopausal women.

    Science.gov (United States)

    Zheng, Cheng; Beresford, Shirley A; Van Horn, Linda; Tinker, Lesley F; Thomson, Cynthia A; Neuhouser, Marian L; Di, Chongzhi; Manson, JoAnn E; Mossavar-Rahmani, Yasmin; Seguin, Rebecca; Manini, Todd; LaCroix, Andrea Z; Prentice, Ross L

    2014-09-01

    Total energy consumption and activity-related energy expenditure (AREE) estimates that have been calibrated using biomarkers to correct for measurement error were simultaneously associated with the risks of cardiovascular disease, cancer, and diabetes among postmenopausal women who were enrolled in the Women's Health Initiative at 40 US clinical centers and followed from 1994 to the present. Calibrated energy consumption was found to be positively related, and AREE inversely related, to the risks of various cardiovascular diseases, cancers, and diabetes. These associations were not evident in most corresponding analyses that did not correct for measurement error. However, an important analytical caveat relates to the role of body mass index (BMI) (weight (kg)/height (m)(2)). In the calibrated variable analyses, BMI was regarded, along with self-reported data, as a source of information on energy consumption and physical activity, and BMI was otherwise excluded from the disease risk models. This approach cannot be fully justified with available data, and the analyses herein imply a need for improved dietary and physical activity assessment methods and for longitudinal self-reported and biomarker data to test and relax modeling assumptions. Estimated hazard ratios for 20% increases in total energy consumption and AREE, respectively, were as follows: 1.49 (95% confidence interval: 1.18, 1.88) and 0.80 (95% confidence interval: 0.69, 0.92) for total cardiovascular disease; 1.43 (95% confidence interval: 1.17, 1.73) and 0.84 (95% confidence interval: 0.73, 0.96) for total invasive cancer; and 4.17 (95% confidence interval: 2.68, 6.49) and 0.60 (95% confidence interval: 0.44, 0.83) for diabetes. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Models of Energy Saving Systems

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    1999-01-01

    The paper first describes the concepts and methods around energy saving, such as energy chain, energy services, end-use technologies, secondary energy, etc. Next are discussed the problems of defining and adding energy services and hence end-use energy efficiency or intensity. A section is devote...... service level and technology are demonstrated as the main determinants of future energy consumption. In the concluding remarks, the main flaws of present energy policy and some visions of the future are discussed.......The paper first describes the concepts and methods around energy saving, such as energy chain, energy services, end-use technologies, secondary energy, etc. Next are discussed the problems of defining and adding energy services and hence end-use energy efficiency or intensity. A section is devoted...... to what is termed lifestyle efficiency, including the cultural values and the ability of the economy to provide the services wanted. As explained, integrated resource planning with its optimizing the whole energy chain cannot be combined with sub-optimizing part of it, for instance the supply technology...

  11. Models of Energy Saving Systems

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    1999-01-01

    The paper first describes the concepts and methods around energy saving, such as energy chain, energy services, end-use technologies, secondary energy, etc. Next are discussed the problems of defining and adding energy services and hence end-use energy efficiency or intensity. A section is devote...... service level and technology are demonstrated as the main determinants of future energy consumption. In the concluding remarks, the main flaws of present energy policy and some visions of the future are discussed.......The paper first describes the concepts and methods around energy saving, such as energy chain, energy services, end-use technologies, secondary energy, etc. Next are discussed the problems of defining and adding energy services and hence end-use energy efficiency or intensity. A section is devoted...... to what is termed lifestyle efficiency, including the cultural values and the ability of the economy to provide the services wanted. As explained, integrated resource planning with its optimizing the whole energy chain cannot be combined with sub-optimizing part of it, for instance the supply technology...

  12. Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy

    Science.gov (United States)

    Rykaczewski, Krzysztof

    2015-10-01

    Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.

  13. Energy Flux and Density of Nonuniform Electromagnetic Waves with Total Reflection

    Science.gov (United States)

    Petrov, N. S.

    2014-07-01

    Analytic expressions are obtained for the energy flux and density of refracted nonuniform waves produced during total reflection at the boundary between two isotropic media for the general case of elliptically polarized incident light. The average values are determined as functions of the parameters of the adjoining media and the angle of incidence. The cases of linearly and circularly polarized incident waves are examined in detail. An explicit general expression relating the energy fl ux and density of these waves for arbitrarily polarized incident light is obtained.

  14. Superluminal Energy Transmission in the Goos-Hanchen Shift of Total Reflection

    CERN Document Server

    Wang, Z Y

    2011-01-01

    This paper is to give a counter example for the theory of relativity. Firstly, the dispersion relation of surface electromagnetic waves is corresponding to that of a tachyon where the coefficient of proportionality is the squared Planck constant. Then we prove the energy flow velocity S/w of the Goos-Hanchen shift in vacuum is cn.sinI>c as well according to electrodynamics. These two different ways lead to a same conclusion that energy transport in the Goos-Hanchen effect of total reflection is faster than light. It is also helpful to study the tachyon of particle physics and superluminal motion observed in astronomy,etc.

  15. Superluminal energy transmission in the Goos-Hanchen shift of total reflection

    Science.gov (United States)

    Wang, Zhong-Yue

    2011-04-01

    The dispersion relation ω2 = β2c2 - τ2c2 of surface electromagnetic waves is corresponding to that E2 = p2c2 - m02c4 of a tachyon where the coefficient of proportionality is the squared Planck constant ℏ2. Then we prove the energy flow velocity of the Goos-Hanchen shift in vacuum is cn sin θi > c as well according to electrodynamics. These two different ways lead to a same conclusion that energy transport in the Goos-Hanchen effect of total reflection is faster than light.

  16. Mid-South solar total energy: institutional analysis. Final report, May 1, 1978-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Powe, R.E.; Carley, C.T.; Forbes, R.E.; Johnson, L.R.; Stiffler, A.K.; Hodge, B.K.; Bouchillon, C.W.

    1979-01-01

    A comprehensive survey was undertaken to determine the current usage of energy by the Mississippi State University, considering electricity and fuel separately. A variety of individual components likely to be employed in total energy systems are then considered in detail, including: solar assisted space heating system, space cooling system design, solar electric system, flat plate solar collector system, central solar receiver, and geothermal heat pump system. Also, algorithms have been developed for the approximate prediction of building heating and cooling loads based on gross parameters such as floor area, type of wall construction, etc. System considerations and evaluation are then presented. (LEW)

  17. Utilisation of total solar radiation energy in the photosynthetic production of radish, red beet and bean

    Directory of Open Access Journals (Sweden)

    Wiesław Nowakowski

    2014-01-01

    Full Text Available Utilisation of total solar radiation energy in the photosynthetic production of radish, red beet and bean is expressed as per cent of solar radiation accumulated in the carbon of -the dry mass per 1 cm2 of the assimilation surface area. Utilisation of this energy ranges from 2.6 to 8.4 per cent in radish, from 1.7 to 7.5 per cent in beet and from 1.9 to 4.9 per cent in bean.

  18. Developing a Total Quality Management Model for Health Care Systems

    Directory of Open Access Journals (Sweden)

    AM Mosadegh Rad

    2005-10-01

    Full Text Available Background: Total quality management (TQM is a managerial practice to improve the effectiveness, efficiency, flexibility, and competitiveness of a business as a whole. However, in practice, these TQM benefits are not easy to achieve. Despite its theoretical promise and the enthusiastic response to TQM, recent evidence suggests that attempts to implement it are often unsuccessful. Many of these TQM programmes have been cancelled, or are in the process of being cancelled, as a result of the negative impact on profits. Therefore, there is a pressing need for a clinical approach to establishing TQM. Method: The aim of this article is therefore: “To identify the strengths and weakness of TQM, the logical steps towards TQM, and to develop a model so that health care organizations aiming at using TQM to achieve excellence can follow through easily”. Based on the research questions proposed in this study, the research strategies of a literature review, a questionnaire survey, semi-structured interviews, and a participatory action research were adopted in this study. For determining the success and barriers of TQM in health care organizations, a questionnaire survey has done in 90 health acre organizations in Isfahan Province, which implement TQM. The results of this survey were used for introducing a new model of TQM. This model will be developed via a semi-structured interview with at minimum 10 health care and quality managers. Then, through a participatory action research, this model will be implemented in 3 sites. At this time, the questionnaire survey has done and the model is introduced. Therefore, developing the model and its implementation will be done later. Results: In this survey, the mean score of TQM success was 3.48±0.68 (medium from 5 credits. Implementation of TQM was very low, low, medium, high and very high successful respectively in 3.6, 10.9, 21.8, 56.4 and 7.3 percent of health care organizations. TQM had the most effect on

  19. Differential and total cross sections of mutual neutralization in low-energy collisions of isotopes of H++H-

    Science.gov (United States)

    Nkambule, Sifiso M.; Elander, Nils; Larson, Åsa; Lecointre, Julien; Urbain, Xavier

    2016-03-01

    Mutual neutralization in the collisions of H+ and H- is studied both theoretically and experimentally. The quantum-mechanical ab initio model includes covalent states associated with the H (1 )+H (n ≤3 ) limits and the collision energy ranges from 1 meV to 100 eV. The reaction is theoretically studied for collisions between different isotopes of the hydrogen ions. From the partial wave scattering amplitude, the differential and total cross sections are computed. The differential cross section is analyzed in terms of forward- and backward-scattering events, showing a dominance of backward scattering which can be understood by examining the phase of the scattering amplitudes for the gerade and ungerade set of states. The isotope dependence of the total cross section is compared with the one obtained using a semiclassical multistate Landau-Zener model. The final state distribution analysis emphasizes the dominance of the n =3 channel for collisions below 10 eV, while at higher collision energies, the n =2 channel starts to become important. For collisions of ions forming a molecular system with a larger reduced mass, the n =2 channel starts to dominate at lower energies. Using a merged ion-beam apparatus, the branching ratios for mutual neutralization in H+ and H- collisions in the energy range from 11 to 185 eV are measured with position- and time-sensitive particle detectors. The measured and calculated branching ratios satisfactorily agree with respect to state contributions.

  20. Energy Wave Model of Atom

    Institute of Scientific and Technical Information of China (English)

    伍细如

    2015-01-01

    proton emits energy wave, electron could sits any position away from nucleus, but be the most stable just when it sits at the trough of energy wave, and this position accords with Bohr radius and Schr?dinger equation.

  1. No Time Machine Construction in Open 2+1 Gravity with Timelike Total Energy Momentum

    CERN Document Server

    Tiglio, M H

    1998-01-01

    It is shown that in 2+1 dimensional gravity an open spacetime with timelike total energy momentum cannot have a stable compactly generated Cauchy horizon. This constitutes a proof of a version of Kabat's conjecture and shows, in particular, that not only a Gott pair cannot be formed from the decay of a single cosmic string as has been shown by Carroll et al., but that, in a precise sense, a time machine cannot be constructed at all.

  2. Total scattering investigation of materials for clean energy applications: the importance of the local structure.

    Science.gov (United States)

    Malavasi, Lorenzo

    2011-04-21

    In this Perspective article we give an account of the application of total scattering methods and pair distribution function (PDF) analysis to the investigation of materials for clean energy applications such as materials for solid oxide fuel cells and lithium batteries, in order to show the power of this technique in providing new insights into the structure-property correlation in this class of materials.

  3. Comfort filters in a total energy demand optimization method for the passive design of a building

    OpenAIRE

    2015-01-01

    The effective design of sustainable buildings results from an accurate optimization process of all the interrelated variables. The authors developed a replicable methodology for the optimization of the building envelope design. Following a previous work, where in the pre-processing and the optimization phases the minimization of the total energy demand is performed by coupling TRNSYS® with GenOpt®, this paper is focused on the post-processing phase of the methodology, in which the results are...

  4. Modelling energy systems for developing countries

    NARCIS (Netherlands)

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2007-01-01

    Developing countries' energy use is rapidly increasing, which affects global climate change and global and regional energy settings. Energy models are helpful for exploring the future of developing and industrialised countries. However, energy systems of developing countries differ from those of ind

  5. ENOR - An Energy-Model for Norway

    Directory of Open Access Journals (Sweden)

    A. Ek

    1981-01-01

    Full Text Available The Energy model for Norway, ENOR, is a dynamic, multisectoral economic stimulation model to be used for long term energy analyses. Energy sectors and energy carriers are in principle treated in the same way as other sectors and economic commodities and integrated in the same general framework. The model has a two-level structure - a central coordination module ensures economic consistency, while the behaviour of each production and consumption sector is modelled in separate sector models. The model framework is thus capable of handling both engineering and economic knowledge.

  6. Energy modeling. Volume 2: Inventory and details of state energy models

    Science.gov (United States)

    Melcher, A. G.; Underwood, R. G.; Weber, J. C.; Gist, R. L.; Holman, R. P.; Donald, D. W.

    1981-05-01

    An inventory of energy models developed by or for state governments is presented, and certain models are discussed in depth. These models address a variety of purposes such as: supply or demand of energy or of certain types of energy; emergency management of energy; and energy economics. Ten models are described. The purpose, use, and history of the model is discussed, and information is given on the outputs, inputs, and mathematical structure of the model. The models include five models dealing with energy demand, one of which is econometric and four of which are econometric-engineering end-use models.

  7. An adaptive wavelet-network model for forecasting daily total solar-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A. [University Centre of Medea (CUYFM), Institute of Engineering Sciences, Department of Electronics, Medea (Algeria). Department of Electrical Engineering, Faculty of Engineering; Benghanem, M. [University of Sciences Technology Houari Boumediene (USTHB), Algiers (Algeria). Faculty of Electrical Engineering; Kalogirou, S.A. [Higher Technical Institute, Nicosia (Cyprus). Department of Mechanical Engineering

    2006-07-15

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet-networks are feed-forward networks using wavelets as activation functions. Wavelet-networks have been used successfully in various engineering applications such as classification, identification and control problems. In this paper, the use of adaptive wavelet-network architecture in finding a suitable forecasting model for predicting the daily total solar-radiation is investigated. Total solar-radiation is considered as the most important parameter in the performance prediction of renewable energy systems, particularly in sizing photovoltaic (PV) power systems. For this purpose, daily total solar-radiation data have been recorded during the period extending from 1981 to 2001, by a meteorological station in Algeria. The wavelet-network model has been trained by using either the 19 years of data or one year of the data. In both cases the total solar radiation data corresponding to year 2001 was used for testing the model. The network was trained to accept and handle a number of unusual cases. Results indicate that the model predicts daily total solar-radiation values with a good accuracy of approximately 97% and the mean absolute percentage error is not more than 6%. In addition, the performance of the model was compared with different neural network structures and classical models. Training algorithms for wavelet-networks require smaller numbers of iterations when compared with other neural networks. The model can be used to fill missing data in weather databases. Additionally, the proposed model can be generalized and used in different locations and for other weather data, such as sunshine duration and ambient temperature. Finally, an application using the model for sizing a PV-power system is presented in order to confirm the validity of this model. (author)

  8. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  9. Capabilities and accuracy of energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-11-01

    Full Text Available Energy modelling can be used in a number of different ways to fulfill different needs, including certification within building regulations or green building rating tools. Energy modelling can also be used in order to try and predict what the energy...

  10. Independent air dehumidification with membrane-based total heat recovery: Modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, C.H.; Zhang, L.Z.; Pei, L.X. [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-03-15

    Fresh air ventilation is helpful for the control of epidemic respiratory disease like Swine flu (H1N1). Fresh air dehumidification systems with energy recovery measures are the key equipments to realize this goal. As a solution, an independent air dehumidification system with membrane-based total heat recovery is proposed. A prototype is built in laboratory. A detailed model is proposed and a cell-by-cell simulation technique is used in simulation to evaluate performances. The results indicate that the model can predict the system accurately. The effects of varying operating conditions like air-flow rates, temperature, and air relative humidity on the air dehumidification rates, cooling powers, electric power consumption, and thermal coefficient of performance are evaluated. The prototype has a COP of 6.8 under nominal operating conditions with total heat recovery. The performance is rather robust to outside weather conditions with a membrane-based total heat exchanger. (author)

  11. Probability boxes on totally preordered spaces for multivariate modelling

    CERN Document Server

    Troffaes, Matthias C M; 10.1016/j.ijar.2011.02.001

    2011-01-01

    A pair of lower and upper cumulative distribution functions, also called probability box or p-box, is among the most popular models used in imprecise probability theory. They arise naturally in expert elicitation, for instance in cases where bounds are specified on the quantiles of a random variable, or when quantiles are specified only at a finite number of points. Many practical and formal results concerning p-boxes already exist in the literature. In this paper, we provide new efficient tools to construct multivariate p-boxes and develop algorithms to draw inferences from them. For this purpose, we formalise and extend the theory of p-boxes using Walley's behavioural theory of imprecise probabilities, and heavily rely on its notion of natural extension and existing results about independence modeling. In particular, we allow p-boxes to be defined on arbitrary totally preordered spaces, hence thereby also admitting multivariate p-boxes via probability bounds over any collection of nested sets. We focus on t...

  12. Effect of the total RF voltage on heavy ions at injection energy in the LHC

    CERN Document Server

    Schaumann, Michaela; Jebramcik, Marc Andre; Jowett, John; Mertens, Tom; CERN. Geneva. ATS Department

    2017-01-01

    Emittance growth and particle losses from intra-beam scattering (IBS) are an important source of beam losses, especially at injection energy, for the heavy ions in LHC. The IBS diffusion rates are, among other factors, roughly inversely proportional to the bunch length and energy spread. Since the total RF voltage affects these parameters, it can be optimized to reduce the emittance growth and particle losses introduced by the aforementioned mechanism. During the 2016 proton-lead run, observations of the lifetime of lead-ion beams at injection energy, and at different RF voltages, were made during a dedicated fill. This note summaries these observations and compares the beam evolution with tracking simulations using the Collider Time Evolution (CTE) program.

  13. Total and elastic electron scattering cross sections from Xe at intermediate and high energies

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, G [Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, 28006 Madrid (Spain); Pablos, J L de [Departamento de Fusion y Particulas Elementales, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F [Departamento de Fisica Atomica Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain); Williart, A [Departamento de Fisica de los Materiales, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2002-11-28

    Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV.

  14. Framework for Evaluating the Total Value Proposition of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pater, J. E.

    2006-02-01

    Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

  15. Total Energy Expenditure and Body Composition in Two Free-Living Sympatric Lemurs

    Science.gov (United States)

    Simmen, Bruno; Bayart, Françoise; Rasamimanana, Hanta; Zahariev, Alexandre; Blanc, Stéphane; Pasquet, Patrick

    2010-01-01

    Background Evolutionary theories that account for the unusual socio-ecological traits and life history features of group-living prosimians, compared with other primates, predict behavioral and physiological mechanisms to conserve energy. Low energy output and possible fattening mechanisms are expected, as either an adaptive response to drastic seasonal fluctuations of food supplies in Madagascar, or persisting traits from previously nocturnal hypometabolic ancestors. Free ranging ring-tailed lemurs (Lemur catta) and brown lemurs (Eulemur sp.) of southern Madagascar have different socio-ecological characteristics which allow a test of these theories: Both gregarious primates have a phytophagous diet but different circadian activity rhythms, degree of arboreality, social systems, and slightly different body size. Methodology and Results Daily total energy expenditure and body composition were measured in the field with the doubly labeled water procedure. High body fat content was observed at the end of the rainy season, which supports the notion that individuals need to attain a sufficient physical condition prior to the long dry season. However, ring-tailed lemurs exhibited lower water flux rates and energy expenditure than brown lemurs after controlling for body mass differences. The difference was interpreted to reflect higher efficiency for coping with seasonally low quality foods and water scarcity. Daily energy expenditure of both species was much less than the field metabolic rates predicted by various scaling relationships found across mammals. Discussion We argue that low energy output in these species is mainly accounted for by low basal metabolic rate and reflects adaptation to harsh, unpredictable environments. The absence of observed sex differences in body weight, fat content, and daily energy expenditure converge with earlier investigations of physical activity levels in ring-tailed lemurs to suggest the absence of a relationship between energy

  16. Total energy expenditure and body composition in two free-living sympatric lemurs.

    Directory of Open Access Journals (Sweden)

    Bruno Simmen

    Full Text Available BACKGROUND: Evolutionary theories that account for the unusual socio-ecological traits and life history features of group-living prosimians, compared with other primates, predict behavioral and physiological mechanisms to conserve energy. Low energy output and possible fattening mechanisms are expected, as either an adaptive response to drastic seasonal fluctuations of food supplies in Madagascar, or persisting traits from previously nocturnal hypometabolic ancestors. Free ranging ring-tailed lemurs (Lemur catta and brown lemurs (Eulemur sp. of southern Madagascar have different socio-ecological characteristics which allow a test of these theories: Both gregarious primates have a phytophagous diet but different circadian activity rhythms, degree of arboreality, social systems, and slightly different body size. METHODOLOGY AND RESULTS: Daily total energy expenditure and body composition were measured in the field with the doubly labeled water procedure. High body fat content was observed at the end of the rainy season, which supports the notion that individuals need to attain a sufficient physical condition prior to the long dry season. However, ring-tailed lemurs exhibited lower water flux rates and energy expenditure than brown lemurs after controlling for body mass differences. The difference was interpreted to reflect higher efficiency for coping with seasonally low quality foods and water scarcity. Daily energy expenditure of both species was much less than the field metabolic rates predicted by various scaling relationships found across mammals. DISCUSSION: We argue that low energy output in these species is mainly accounted for by low basal metabolic rate and reflects adaptation to harsh, unpredictable environments. The absence of observed sex differences in body weight, fat content, and daily energy expenditure converge with earlier investigations of physical activity levels in ring-tailed lemurs to suggest the absence of a relationship

  17. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  18. Total Energy Management: A Practical Handbook on Energy Conservation and Management. For Use of Owners and Managers of Office Buildings and Small Retail Stores. 2nd Edition.

    Science.gov (United States)

    National Electrical Contractors Association, Washington, DC.

    Described in this guide for owners and managers of office buildings and small retail stores, is a program entitled Total Energy Management (TEM). The TEM program approach rests on the premise that buildings should be examined in terms of total energy consumption, rather than prescribing energy budgets for a building's separate systems. The…

  19. Measurements of pion-helium total cross sections at energies from 51 to 105 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.F.

    1976-10-01

    Measurements of ..pi../sup + -/-/sup 4/He total cross sections have been made at energies from 51 to 105 MeV using a superfluid /sup 4/He target at the Low Energy Pion channel of the LAMPF accelerator in Los Alamos. Pions were selected with either a DISC counter or a time-of-flight system. The scattered pions were detected by a series of circular plastic scintillation counters using standard transmission techniques. The resulting partial removal cross sections were extrapolated to zero solid angle after being corrected for Coulomb effects, pion decay, accidental counts, counter absorption and efficiencies, and statistical correlations. The resulting statistical errors were generally approximately 3-5 percent. The measured total cross sections were found to be in good statistical agreement with previous measurements and in poor agreement with the predictions of several optical potentials in current use. Through an optical theorem the imaginary part of the forward scattering amplitude was found. The total cross sections have been used with previously-measured angular distributions through a phenomenological model to obtain the real part of the forward scattering amplitude at four energies between 50 and 75 MeV. These results were found to be in good agreement with forward dispersion relation calculations.

  20. On the Integration of Wind and Solar Energy to Provide a Total Energy Supply in the U.S

    Science.gov (United States)

    Liebig, E. C.; Rhoades, A.; Sloggy, M.; Mills, D.; Archer, C. L.

    2009-12-01

    This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary sources of energy in the U.S., under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the US national load on a monthly basis. Other studies have shown that solar or wind alone can power the present US grid on average. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from a particular year will be used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hydro and geothermal generation can provide additional controllable output, when needed, to fulfill the hourly electricity and/or energy needs. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental US using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra’s model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat

  1. Total energy expenditure of healthy Swedish women during pregnancy and lactation.

    Science.gov (United States)

    Forsum, E; Kabir, N; Sadurskis, A; Westerterp, K

    1992-08-01

    Total energy expenditure (TEE) was estimated in healthy Swedish women by the doubly labeled water method in a longitudinal study during pregnancy and lactation. Measurements were made before pregnancy (A); in gestational weeks 16-18 (B), 30 (C), and 36 (D); as well as 2 (F) and 6 (G) mo after delivery. When the results were interpreted, earlier published data regarding resting metabolic rate (RMR), energy intake, and energy in breast milk were also considered. TEE (MJ/d) and TEE/RMR were 10.5 +/- 2.2 (mean +/- SD) and 1.87 +/- 0.42 (n = 28), 9.6 +/- 2.8 and 1.65 +/- 0.67 (n = 22), 12.5 +/- 3.4 and 1.82 +/- 0.45 (n = 22), 12.2 +/- 4.1 and 1.66 +/- 0.52 (n = 19), 10.6 +/- 2.0 and 1.82 +/- 0.41 (n = 23), and 10.8 +/- 2.7 and 1.79 +/- 0.42 (n = 23) at A, B, C, D, F, and G, respectively. The results indicated that physical activity tended to be decreased during early pregnancy. Taking changes in body energy stores into consideration, it was estimated that subjects recorded 86% and 77% of their energy intakes at A and F respectively.

  2. Total reflection coefficients of low-energy photons presented as universal functions

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan

    2010-01-01

    Full Text Available The possibility of expressing the total particle and energy reflection coefficients of low-energy photons in the form of universal functions valid for different shielding materials is investigated in this paper. The analysis is based on the results of Monte Carlo simulations of photon reflection by using MCNP, FOTELP, and PENELOPE codes. The normal incidence of the narrow monoenergetic photon beam of the unit intensity and of initial energies from 20 keV up to 100 keV is considered, and particle and energy reflection coefficients from the plane homogenous targets of water, aluminum, and iron are determined and compared. The representations of albedo coefficients on the initial photon energy, on the probability of large-angle photon scattering, and on the mean number of photon scatterings are examined. It is found out that only the rescaled albedo coefficients dependent on the mean number of photon scatterings have the form of universal functions and these functions are determined by applying the least square method.

  3. Energy Systems Modelling Research and Analysis

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Alberg Østergaard, Poul

    2015-01-01

    This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out...... by 11 university and industry partners has improved the basis for decision-making within energy planning and energy scenario making by providing new and improved tools and methods for energy systems analyses....

  4. Survey and screening of intermediate-size photovoltaic total energy and electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Rattin, E.J.

    1978-08-01

    One of the principal objectives of this photovoltaic mission analysis effort has been to identify and evaluate applications for photovoltaic solar energy conversion that could lead to significant contributions to the national energy supply and that would provide attractive opportunities for application experiments aimed at stimulating the adoption of photovoltaic technology. The scope of the study has included applications both for electric-only photovoltaic (PV) systems and for photovoltaic total energy systems (PTES), i.e., systems that provide both photovoltaic electricity and solar thermal energy to meet all or part of the energy demand at a single load point or a group of related load points. In either case, both flat-plate and concentrating systems have been considered and it has been assumed that the thermal energy is collected in and transported by the fluid used in an active cooling system for the photovoltaic cells. Because the efficiency of photovoltaic devices decreases rapidly with increasing temperature and because the operational lifetime of such devices is reduced by prolonged operation at elevated temperatures, a practical upper limit of about 200/sup 0/C (400/sup 0/F) was assumed for the temperature at which arrays can be allowed to be operated. This limitation, in turn, places an upper bound on the temperature at which solar thermal energy is available in PTES applications. An initial screening aimed at identifying the most promising applications has therefore been required, with the expectation that detailed evaluation will be made of only the higher-ranking candidates. A description of the screening procedure that was adopted and a discussion of the results are presented.

  5. Total Energy Expenditure of 16 Chinese Young Men Measured by the Doubly Labeled Water Method

    Institute of Scientific and Technical Information of China (English)

    ZHUO Qin; SUN Rui; GOU Ling Yan; PIAO Jian Hua; LIU Jian Min; TIAN Yuan; ZHANG Yu Hui; YANG Xiao Guang

    2013-01-01

    Objective Doubly labeled water (DLW) method is the gold standard for measuring total energy expenditure (TEE). We used this method to measure TEE in Chinese young men. Methods Sixteen healthy young men age 23±1 years with body mass index 22.0±1.4 kg/m2 were recruited. TEE was measured by the DLW method, and basal energy expenditure (BEE) was determined by indirect calorimetry. We also conducted 24-h activity, energy balance and factorial approach to estimate energy requirements of the subjects. Results TEE of subjects by DLW method was 9.45±0.57 MJ/day (2258±180 kcal/day). The 24-h activity was 10.80±0.33 MJ/day (2582±136 kcal/day). The energy requirement, derived from energy balance observations, was 9.93±1.32 MJ/day (2373±315 kcal/day). The BEE of 6.65±0.28 MJ/day (1589±67 kcal/day), calculated by the adjusted Schofield equation, was significantly higher (P<0.001) than that measured by indirect calorimetry, 5.99±0.66 MJ/day (1433±158 kcal/day). The TEE derived from the factorial approach was 10.31±0.43 MJ/day (2463±104 kcal/day). Conclusion The TEE of Chinese young men measured by the DLW method was about 10%lower than the current recommended nutrient intake (RNI), suggesting that the RNI for Chinese men maybe overestimated. Further studies are warranted to determine the value of the estimated energy requirement.

  6. Developing energy forecasting model using hybrid artificial intelligence method

    Institute of Scientific and Technical Information of China (English)

    Shahram Mollaiy-Berneti

    2015-01-01

    An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation (BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand (gross domestic product (GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand (population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.

  7. Modeling washoff of total suspended solids in the tropics.

    Science.gov (United States)

    Le, S H; Chua, L H C; Irvine, K N; Eikaas, H S

    2017-09-15

    Washoff behavior in the tropics is expected to behave differently from temperate areas due to differences in rainfall characteristics. In this study, rainfall, runoff and total suspended solids (TSS) were monitored from 9 catchments distinguished by different types of land use, in Singapore. The catchments ranged in size from 5.7ha to 85.2ha. Over 120 rain events were studied and more than 1000 storm samples were collected and analyzed. Monte Carlo analysis was applied to obtain the best fit values of the washoff model parameters consisting the washoff coefficient c3, washoff exponent c4 and initial mass on surface Bini. The exponent c4 was found to be approximately unity for all the events monitored, in agreement with other studies. The values of c3 and Bini were found to vary between events. Among all the rainfall and runoff characteristics studied, rainfall depth of the current event (d) was found to be the single parameter that significantly influenced the values of c3 and Bini. Contrary to expectations, Bini did not correlate well with antecedent dry period or with rainfall depth of the prior storm event. The results show that the common modeling practice where Bini is assumed to vary with antecedent dry period and previous rainfall depth should be reassessed when applied to catchments in the tropics. ANCOVA analysis showed that land use was not significant, but rather the variation of c3 and Bini with d was found to correlate well with the catchment area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...

  9. Application of Total Productivity Model within Croatia Airlines

    Directory of Open Access Journals (Sweden)

    Željko Radačić

    2005-09-01

    Full Text Available By defining and selecting adequate factors of the total productivitymodel and by assigning specific relevance of each factor,the initial preconditions for the analysis and monitoring ofthe model application efficiency within the Croatia Airlinesbusiness policy have been established. Since the majority of theanalyzed factors have realized a more intensive growth thanplanned, the business year 2004 can be assessed as the mostsuccessful one in the Croatia Airlines history. Consequently,the difference related to the productivity indicators of the Associationof European Airlines has been reduced, particularly theaircraft productivity with remnant of 5 to 10 percent, and theproductivity of the employees with a remnant of 15 to 20 percent,and the productivity of fuel expressed as quantity at AEAlevel, and expressed as value below that level. Finally, althoughthere is no expressed correlation between the quantitative productivityindicators and business profitability, the highest realizednet profit since the foundation of Croatia Airlines fullysupplements the solid level of the comparison indicators, confirmingits complete readiness and maturity to join the Star Alliance.

  10. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  11. Statistical modeling of total crash frequency at highway intersections

    Directory of Open Access Journals (Sweden)

    Arash M. Roshandeh

    2016-04-01

    Full Text Available Intersection-related crashes are associated with high proportion of accidents involving drivers, occupants, pedestrians, and cyclists. In general, the purpose of intersection safety analysis is to determine the impact of safety-related variables on pedestrians, cyclists and vehicles, so as to facilitate the design of effective and efficient countermeasure strategies to improve safety at intersections. This study investigates the effects of traffic, environmental, intersection geometric and pavement-related characteristics on total crash frequencies at intersections. A random-parameter Poisson model was used with crash data from 357 signalized intersections in Chicago from 2004 to 2010. The results indicate that out of the identified factors, evening peak period traffic volume, pavement condition, and unlighted intersections have the greatest effects on crash frequencies. Overall, the results seek to suggest that, in order to improve effective highway-related safety countermeasures at intersections, significant attention must be focused on ensuring that pavements are adequately maintained and intersections should be well lighted. It needs to be mentioned that, projects could be implemented at and around the study intersections during the study period (7 years, which could affect the crash frequency over the time. This is an important variable which could be a part of the future studies to investigate the impacts of safety-related works at intersections and their marginal effects on crash frequency at signalized intersections.

  12. Measurement of the total neutron cross-section of selenium at neutron energies below 2 eV

    Energy Technology Data Exchange (ETDEWEB)

    Salama, M.

    1983-01-01

    Total neutron cross-section of ordinary selenium has been measured at room temperature as a function of neutron energy in the range from 2.2 eV to 5.5 meV. The measurements were performed using the transmission method in connection with a time-of-flight spectrometer installed in front of one of the horizontal channels of the ET-RR-1 reactor. Expression for the dependence of the total neutron cross-section of selenium upon energy was obtained. New values for the coherent scattering amplitude as well as the coherent scattering cross-section of selenium were also determined. Values for the average scattering cross-section and the total incoherent scattering cross-section were also obtained. The values of both potential scattering cross-section and effective potential scattering radius R' were determined for this element from the measured behaviour of the total cross section, using the single level Breit-Wigner formula. The determined value of R' was found to be in agreement with that predicted from vibrational-rotational optical model calculations.

  13. Total energy, equation of state and bulk modulus of AlP, AlAs and AlSb semiconductors

    Indian Academy of Sciences (India)

    A R Jivani; H J Trivedi; P J Gajjar; A R Jani

    2005-01-01

    Recently proposed model potential which combines both linear and quadratic types of interactions is employed for the investigation of some properties like the total energy, equation of state and bulk modulus of AlP, AlAs and AlSb semiconductor compounds using higher-order perturbation theory. The model potential parameter is determined using zero pressure condition. The ratio of the covalent bonding term E cov to the second-order term 2 is 6.77% to 11.85% which shows that contribution from higher order terms are important for zinc-blende-type crystals. The calculated numerical results of the total energy, energy band gap at Jones-zone face and bulk modulus of these compounds are in good agreement with the experimental data and found much better than other such theoretical findings. We have also studied pressure–volume relations of these compounds. The present study is carried out using six different screening functions along with latest screening function proposed by Sarkar et al. It is found from the present study that effect of exchange and correlation is clearly distinguishable.

  14. Beverage Consumption Habits in Italian Population: Association with Total Water Intake and Energy Intake

    Directory of Open Access Journals (Sweden)

    Lorenza Mistura

    2016-10-01

    Full Text Available Background: The aim of this study was to investigate total water intake (TWI from water, beverages and foods among Italian adults and the elderly. Methods: Data of 2607 adults and the elderly, aged 18–75 years from the last national food consumption survey, INRAN-SCAI 2005-06, were used to evaluate the TWI. The INRAN-SCAI 2005-06 survey was conducted on a representative sample of 3323 individuals aged 0.1 to 97.7 years. A 3-day semi-structured diary was used for participants to record the consumption of all foods, beverages and nutritional supplements. Results: On average, TWI was 1.8 L for men and 1.7 L for women. More than 75% of women and 90% of men did not comply with the European Food Safety Authority (EFSA Adequate Intake. The contribution of beverages to the total energy intake (EI was 6% for the total sample. Water was the most consumed beverage, followed by alcoholic beverages for men and hot beverages for women. Conclusion: According to the present results, adults and elderly Italians do not reach the adequate intake for water as suggested by the EFSA and by the national reference level of nutrient and energy intake. Data on water consumption should also be analyzed in single socio-demographic groups in order to identify sub-groups of the population that need more attention and to plan more targeted interventions.

  15. Forecast of useful energy for the TIMES-Norway model

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-25

    A regional forecast of useful energy demand in seven Norwegian regions is calculated based on an earlier work with a national forecast. This forecast will be input to the energy system model TIMES-Norway and analyses will result in forecasts of energy use of different energy carriers with varying external conditions (not included in this report). The forecast presented here describes the methodology used and the resulting forecast of useful energy. lt is based on information of the long-term development of the economy by the Ministry of Finance, projections of population growths from Statistics Norway and several other studies. The definition of a forecast of useful energy demand is not absolute, but depends on the purpose. One has to be careful not to include parts that are a part of the energy system model, such as energy efficiency measures. In the forecast presented here the influence of new building regulations and the prohibition of production of incandescent light bulbs in EU etc. are included. Other energy efficiency measures such as energy management, heat pumps, tightening of leaks etc. are modelled as technologies to invest in and are included in the TIMES-Norway model. The elasticity between different energy carriers are handled by the TIMES-Norway model and some elasticity is also included as the possibility to invest in energy efficiency measures. The forecast results in an increase of the total useful energy from 2006 to 2050 by 18 o/o. The growth is expected to be highest in the regions South and East. The industry remains at a constant level in the base case and increased or reduced energy demand is analysed as different scenarios with the TIMES-Norway model. The most important driver is the population growth. Together with the assumptions made it results in increased useful energy demand in the household and service sectors of 25 o/o and 57 % respectively.(au)

  16. A Dynamic Model for Energy Structure Analysis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Energy structure is a complicated system concerning economic development, natural resources, technological innovation, ecological balance, social progress and many other elements. It is not easy to explain clearly the developmental mechanism of an energy system and the mutual relations between the energy system and its related environments by the traditional methods. It is necessary to develop a suitable dynamic model, which can reflect the dynamic characteristics and the mutual relations of the energy system and its related environments. In this paper, the historical development of China's energy structure was analyzed. A new quantitative analysis model was developed based on system dynamics principles through analysis of energy resources, and the production and consumption of energy in China and comparison with the world. Finally, this model was used to predict China's future energy structures under different conditions.

  17. Analysis of temperature difference on the total of energy expenditure during static bicycle exercise

    Science.gov (United States)

    Sugiono

    2016-04-01

    How to manage energy expenditure for cyclist is very crucial part to achieve a good performance. As the tropical situation, the differences of temperature level might be contributed in energy expenditure and durability. The aim of the paper is to estimate and to analysis the configuration of energy expenditure for static cycling activity based on heart rate value in room with air conditioning (AC)/no AC treatment. The research is started with study literatures of climate factors, temperature impact on human body, and definition of energy expenditure. The next step is design the experiment for 5 participants in 2 difference models for 26.80C - 74% relative humidity (room no AC) and 23,80C - 54.8% relative humidity (room with AC). The participants’ heart rate and blood pressure are measured in rest condition and in cycling condition to know the impact of difference temperature in energy expenditure profile. According to the experiment results, the reducing of the temperature has significantly impact on the decreasing of energy expenditure at average 0.3 Kcal/minute for all 5 performers. Finally, the research shows that climate condition (temperature and relative humidity) are very important factors to manage and to reach a higher performance of cycling sport.

  18. Directory of Energy Information Administration models 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This directory revises and updates the Directory of Energy Information Administration Models 1995, DOE/EIA-0293(95), Energy Information Administration (EIA), U.S. Department of Energy, July 1995. Four models have been deleted in this directory as they are no longer being used: (1) Market Penetration Model for Ground-Water Heat Pump Systems (MPGWHP); (2) Market Penetration Model for Residential Rooftop PV Systems (MPRESPV-PC); (3) Market Penetration Model for Active and Passive Solar Technologies (MPSOLARPC); and (4) Revenue Requirements Modeling System (RRMS).

  19. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...

  20. Modeling Malaysia's Energy System: Some Preliminary Results

    Directory of Open Access Journals (Sweden)

    Ahmad M. Yusof

    2011-01-01

    Full Text Available Problem statement: The current dynamic and fragile world energy environment necessitates the development of new energy model that solely caters to analyze Malaysia’s energy scenarios. Approach: The model is a network flow model that traces the flow of energy carriers from its sources (import and mining through some conversion and transformation processes for the production of energy products to final destinations (energy demand sectors. The integration to the economic sectors is done exogeneously by specifying the annual sectoral energy demand levels. The model in turn optimizes the energy variables for a specified objective function to meet those demands. Results: By minimizing the inter temporal petroleum product imports for the crude oil system the annual extraction level of Tapis blend is projected at 579600 barrels per day. The aggregate demand for petroleum products is projected to grow at 2.1% year-1 while motor gasoline and diesel constitute 42 and 38% of the petroleum products demands mix respectively over the 5 year planning period. Petroleum products import is expected to grow at 6.0% year-1. Conclusion: The preliminary results indicate that the model performs as expected. Thus other types of energy carriers such as natural gas, coal and biomass will be added to the energy system for the overall development of Malaysia energy model.

  1. Analyzing industrial energy use through ordinary least squares regression models

    Science.gov (United States)

    Golden, Allyson Katherine

    Extensive research has been performed using regression analysis and calibrated simulations to create baseline energy consumption models for residential buildings and commercial institutions. However, few attempts have been made to discuss the applicability of these methodologies to establish baseline energy consumption models for industrial manufacturing facilities. In the few studies of industrial facilities, the presented linear change-point and degree-day regression analyses illustrate ideal cases. It follows that there is a need in the established literature to discuss the methodologies and to determine their applicability for establishing baseline energy consumption models of industrial manufacturing facilities. The thesis determines the effectiveness of simple inverse linear statistical regression models when establishing baseline energy consumption models for industrial manufacturing facilities. Ordinary least squares change-point and degree-day regression methods are used to create baseline energy consumption models for nine different case studies of industrial manufacturing facilities located in the southeastern United States. The influence of ambient dry-bulb temperature and production on total facility energy consumption is observed. The energy consumption behavior of industrial manufacturing facilities is only sometimes sufficiently explained by temperature, production, or a combination of the two variables. This thesis also provides methods for generating baseline energy models that are straightforward and accessible to anyone in the industrial manufacturing community. The methods outlined in this thesis may be easily replicated by anyone that possesses basic spreadsheet software and general knowledge of the relationship between energy consumption and weather, production, or other influential variables. With the help of simple inverse linear regression models, industrial manufacturing facilities may better understand their energy consumption and

  2. The nutrient composition of European ready meals: protein, fat, total carbohydrates and energy.

    Science.gov (United States)

    Kanzler, Sonja; Manschein, Martin; Lammer, Guido; Wagner, Karl-Heinz

    2015-04-01

    Despite the increasing social importance of ready meals, only few studies have been conducted on their nutrient composition. Therefore, 32 chilled, frozen and heat-treated ready meals (only main dishes) from the continental European market were analysed for protein, fat, total carbohydrate and energy. Half of the meals were nutritionally imbalanced by providing elevated fat (>30% of energy) and low carbohydrate levels (quality for the food industry, seven "nutritionally optimised" ready meals were created at the European level and analysed, however success was limited. If product labelling is to be useful for consumers, our results also indicate a need for better quality control to reduce the differences between content and labelling. Copyright © 2014. Published by Elsevier Ltd.

  3. Measurement of the energy dependence of the total photon-proton cross section at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; Univ. Coll. London (United Kingdom); Krakow Univ. of Technology (Poland). Faculty of Physics, Mathematics and Applied Computer Science; Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2010-10-15

    The energy dependence of the photon-proton total cross section, {sigma}{sub tot}{sup {gamma}}{sup p}, was determined from e{sup +}p scattering data collected with the ZEUS detector at HERA at three values of the center-of-mass energy, W, of the {gamma}p system in the range 194

  4. Association between estimated total daily energy expenditure and stage of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Lee, Jihye; Baek, Heejoon; Kim, Seung Hyun; Park, Yongsoon

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, and nutritional status is one of the major prognostic factors of ALS. The aim of this study was to investigate the relationship between total daily energy expenditure (TDEE) and progression of disease in ALS patients, as well as sex differences in TDEE. Patients with ALS (N = 370) were diagnosed according to El Escorial criteria and categorized into stage 2, 3, or 4 using a clinical staging system. TDEEs were calculated by summing resting energy expenditure (REE) and physical activity. REE was calculated using equations of Harris-Benedict or Mifflin St. Jeor, and physical activity was calculated using the ALS Functional Rating Scale-Revised, a physical activity coefficient, or adding 30% of REE. TDEE significantly decreased with progression of ALS stage and did not vary by sex. Actual energy intake was lower than TDEE in patients in all stages and lowest in patients with stage 3 ALS. Comparing TDEEs 1 to 5, TDEE 2 decreased with progression of ALS stage and was similar to the average TDEE. The present study suggests that TDEE decreases with progression of ALS, and patients consume insufficient energy compared with required intake at all stages, particularly at stage 3, suggesting that nutrition support should be started at least before stage 3. Additionally, among the five equations for TDEE, TDEE 2 could be the best for evaluating the nutritional status of patients with ALS. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  6. Total Reaction Cross Section in an Isospin-Dependent Quantum Molecular Dynamics Model

    Institute of Scientific and Technical Information of China (English)

    魏义彬; 蔡翔舟; 沈文庆; 马余刚; 张虎勇; 钟晨; 郭威; 陈金根; 马国亮; 王鲲

    2003-01-01

    The isospin-dependent quantum molecular dynamics (IDQMD) model is used to study the total reaction cross section σR. The energy-dependent Pauli volumes of neutrons and protons have been discussed and introduced into the IDQMD calculation to replace the widely used energy-independent Pauli volumes. The modified IDQMD calculation can reproduce the experimental cr R well for both stable and exotic nuclei induced reactions. Comparisons of the calculated σn induced by 11Li with different initial density distributions have been performed. It is shown that the calculation by using the experimentally deduced density distribution with a long tail can fit the experimental excitation function better than that by using the Skyrme-Hartree-Fock calculated density without long tails. It is also found that σR at high energy is sensitive to the long tail of density distribution.

  7. Boundedness of the total energy of relativistic membranes evolving in a curved spacetime

    CERN Document Server

    LeFloch, Philippe G

    2016-01-01

    We establish a global existence theory for the equation governing the evolution of a relativistic membrane in a (possibly curved) Lorentzian manifold, when the spacetime metric is a perturbation of the Minkowski metric. Relying on the Hyperboloidal Foliation Method introduced by LeFloch and Ma in 2014, we revisit a theorem established earlier by Lindblad (who treated membranes in the flat Minkowski spacetime) and we provide a simpler proof of existence, which is also valid in a curved spacetime and, most importantly, leads to the important property that the total energy of the membrane is globally bounded in time.

  8. Solar total energy: large scale experiment, Shenandoah, Georgia Site. Annual report, June 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ney, E.J.

    1979-07-01

    A background summary and a complete description of the progress and current status of activities relative to the Cooperative Agreement for the Solar Total Energy - Large Scale Experiment at the Bleyle Knitwear Plant at Shenandoah, Georgia are presented. A statement of objectives and an abstract of progress to date are included. This is followed by a short introduction containing a project overview, a summary of the participants and their respective roles, a brief description of the Solar Total Energy System (STES) design concept, and a chronological summary of progress to date. A general description of the site is given, a detailed report of progress is reported, and drawings and equipment lists are included. The closed-loop solar energy system planned for Shenandoah begins with circulation of Syltherm 800, a heat transfer fluid of the Dow-Corning Corporation, through the receiver tubes of a parabolic dish solar collector field. As solar energy is focused on the receivers, the heat transfer fluid is heated to approximately 399/sup 0/C (750/sup 0/F) and is pumped to a heat exchanger for immediate use, or to a thermal storage system for later use. Once in the heat exchanger, the fluid heats a working fluid that produces the steam required for operating the turbine. After performing this task, the heat transfer fluid returns to the collectors to repeat the cycle, while the steam turbine-generator system supplies the electrical demands for the knitwear plant and the STES. During STES operation, maximum thermal and electrical requirements of the application are expected to be at 1.08 MWth and 161 kWe, respectively. During the power generation phase, some of the steam is extracted for use as process steam in the knitwear manufacturing process, while exhaust steam from the turbine is passed through a condenser to produce hot water for heating, domestic use, and absorption air conditioning. (WHK)

  9. Total hadronic cross section and the elastic slope: An almost model-independent connection

    Energy Technology Data Exchange (ETDEWEB)

    Fagundes, D.A., E-mail: fagundes@ifi.unicamp.br [Universidade Estadual de Campinas - UNICAMP, Instituto de Fisica Gleb Wataghin, 13083-859 Campinas, SP (Brazil); Menon, M.J., E-mail: menon@ifi.unicamp.br [Universidade Estadual de Campinas - UNICAMP, Instituto de Fisica Gleb Wataghin, 13083-859 Campinas, SP (Brazil)

    2012-04-15

    An almost model-independent parametrization for the ratio of the total cross section to the elastic slope, as function of the center of mass energy, is introduced. The analytical result is based on the approximate relation of this quantity with the ratio R of the elastic to total cross section and empirical fits to the R data from proton-proton scattering above 10 GeV, under the conditions of asymptotic unitarity and the black-disk limit. This parametrization may be useful in studies of extensive air showers and the determination of the proton-proton total cross section from proton-air production cross section in cosmic-ray experiments.

  10. Directory of Energy Information Administration Models 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994.

  11. Power Systems and Energy Storage Modeling for Directed Energy Weapons

    Science.gov (United States)

    2014-06-01

    electron laser kW Kilo-watt LCS Littoral Combat Ship LAWS Laser Weapon System MLD Maritime Laser Demonstration MW Mega -watt NiMH Nickel metal...and various littoral combat ships. Also, an accurate, working model of the capacitor energy bank is being developed and the flywheel model is being

  12. “丝绸之路经济带”框架下中国与中亚五国能源效率评价--基于 CCR-BCC 和 Malmquist 指数分析方法的 DEA-Tobit 模型%Analysis of Total Factor Energy Efficiency of China and Five Countries in the Central Asia on the Silk Road Economic Belt:DEA-Tobit model based on CCR-BCC & Malmquist Index Method

    Institute of Scientific and Technical Information of China (English)

    岳立; 杨帆

    2016-01-01

    基于 CCR-BCC 和 Malmquist 指数法的 DEA-Tobit 模型,测算丝绸之路经济带中国与中亚五国全要素能源效率的变化分解和影响因素。通过数据分析发现,在2000-2012年间,各国能源效率都处于上升趋势,其中中国、哈萨克斯坦、土库曼斯坦能源效率一直在提升,并且不断逼近能源效率的前沿面。技术进步和技术效率分别对能源效率具有正向和负向作用。在对影响因素的研究中发现,政府影响力和能源结构对能源效率具有显著的负向影响,而产业结构和社会经济发展水平与能源效率存在显著的正相关关系。%Improving energy efficiency is an important way to solve global energy predicament.At the same time,it is also the important content of sustainable development of the Silk Road Economic Belt.By means of taking the data of China and Five Countries in the central Asia on the Silk Road Economic Belt from 2000 to 2012,we measured the total factor energy efficiency and its fluctuation by the method of the DEA-Tobit based on CCR-BCC model and Malmquist productivity index.The results show that the improving of total factor energy efficiency in China and Five Countries in the central Asia on the Silk Road Economic Belt is attributed to the technological progress.The total factor energy efficiency of China and the five central Asian countries stands in the efficient frontier and shows a rising tendency,such as China, Kazakhstan and Turkmenistan.We found that the decreasing of Technical efficiency has significant negative impacts on total factor energy efficiency.The opening degree and technological advance plays a positive role in improving total factor energy efficiency.We also found that the influence of government and energy structure play a negative role in improving total factor energy efficiency,on the contrary,the size of economy and industrial structure have significant positive impacts on total factor energy

  13. A correlated study between effective total macroscopic cross sections and effective energies for neutron beams with continuous spectra

    CERN Document Server

    Kobayashi, H

    1999-01-01

    Two practically useful quantities have been introduced to characterize a continuous-energy-spectrum neutron beam and to describe transmission phenomena of the beam in the field of quantitative neutron radiography. These quantities are the effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section as defined for a monochromatic energy. Four neutron beams have been used to measure ETM cross sections at effective energies of 29.8, 17.2, 9.8 meV, and at the In resonance energy of 1.46 eV. Results are studied as a function of estimated effective energy, where the effective energy was estimated by a beam quality indicator (BQI) which has been proposed recently. Validity of ETM cross sections as a function of the effective energy is discussed and correlated with recent nuclear data.

  14. G-corrected holographic dark energy model

    CERN Document Server

    Malekjani, M

    2013-01-01

    Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant,$G$, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of $G$, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of $G$. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of $G$- corrected deceleration parameter for holographic dark energy model and show that the dependency of $G$ on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for $G$- corrected holographic model and show that this model has a shorter distance from the observational point in $s-r$ plane compare with original holographic dark energy model.

  15. Modeling of renewable hybrid energy sources

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragos

    2009-12-01

    Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.

  16. Statefinder parameters in two dark energy models

    CERN Document Server

    Panotopoulos, Grigoris

    2007-01-01

    The statefinder parameters ($r,s$) in two dark energy models are studied. In the first, we discuss in four-dimensional General Relativity a two fluid model, in which dark energy and dark matter are allowed to interact with each other. In the second model, we consider the DGP brane model generalized by taking a possible energy exchange between the brane and the bulk into account. We determine the values of the statefinder parameters that correspond to the unique attractor of the system at hand. Furthermore, we produce plots in which we show $s,r$ as functions of red-shift, and the ($s-r$) plane for each model.

  17. The simultaneous mass and energy evaporation (SM2E) model.

    Science.gov (United States)

    Choudhary, Rehan; Klauda, Jeffery B

    2016-01-01

    In this article, the Simultaneous Mass and Energy Evaporation (SM2E) model is presented. The SM2E model is based on theoretical models for mass and energy transfer. The theoretical models systematically under or over predicted at various flow conditions: laminar, transition, and turbulent. These models were harmonized with experimental measurements to eliminate systematic under or over predictions; a total of 113 measured evaporation rates were used. The SM2E model can be used to estimate evaporation rates for pure liquids as well as liquid mixtures at laminar, transition, and turbulent flow conditions. However, due to limited availability of evaporation data, the model has so far only been tested against data for pure liquids and binary mixtures. The model can take evaporative cooling into account and when the temperature of the evaporating liquid or liquid mixture is known (e.g., isothermal evaporation), the SM2E model reduces to a mass transfer-only model.

  18. A new gravitational model for dark energy

    Institute of Scientific and Technical Information of China (English)

    HUANG Chao-Guang; ZHANG Hai-Qing; GUO Han-Ying

    2008-01-01

    A new gravitational model for dark energy is presented based on the model of de Sitter gauge theory of gravity.In the model,in addition to the cosmological constant,the homogeneous and isotropic torsion and its coupling with curvature play an important role for dark energy.The model may supply the universe with a natural transit from decelerating expansion to accelerating expansion.

  19. Hadronic total cross sections at high energy and the QCD spectrum

    CERN Document Server

    Giordano, Matteo

    2014-01-01

    We show how to obtain the leading energy dependence of hadronic total cross sections, in the framework of the nonperturbative approach to soft high-energy scattering based on Wilson-loop correlation functions, if certain nontrivial analyticity assumptions are satisfied. The total cross sections turn out to be of "Froissart" type, $\\sigma_{\\rm tot}^{(hh)}(s) \\mathop\\sim B\\log^2 s$ for ${s \\to \\infty}$. We also discuss under which conditions the coefficient $B$ is universal, i.e., independent of the hadrons involved in the scattering process. In the most natural scenarios for universality, $B$ can be related to the stable spectrum of QCD, and is predicted to be $B_{\\rm th}\\simeq 0.22~{\\rm mb}$, in fair agreement with experimental results. If we consider, instead, the stable spectrum of the quenched (i.e., pure-gauge) theory, we obtain a quite larger value $B^{(Q)}_{\\rm th} \\ge 0.42~{\\rm mb}$, suggesting (quite surprisingly) large unquenching effects due to the sea quarks.

  20. Constraining interacting dark energy models with latest cosmological observations

    Science.gov (United States)

    Xia, Dong-Mei; Wang, Sai

    2016-11-01

    The local measurement of H0 is in tension with the prediction of Λ cold dark matter model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on cosmic microwave background, the baryon acoustic oscillation, large-scale structure, supernovae, H(z) and H0 to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The H0 tension can be moderately alleviated, but not totally released.

  1. Constraining interacting dark energy models with latest cosmological observations

    CERN Document Server

    Xia, Dong-Mei

    2016-01-01

    The local measurement of $H_0$ is in tension with the prediction of $\\Lambda$CDM model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on CMB, BAO, LSS, SNe, $H(z)$ and $H_0$ to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The $H_0$ tension can be moderately alleviated, but not totally released.

  2. Non-linear Total Energy Optimisation of a Fleet of Power Plants

    Science.gov (United States)

    Nolle, Lars; Biegler-König, Friedrich; Deeskow, Peter

    In order to optimise the energy production in a fleet of power plants, it is necessary to solve a mixed integer optimisation problem. Traditionally, the continuous parts of the problem are linearized and a Simplex scheme is applied. Alternatively, heuristic "bionic" optimisation methods can be used without having to linearize the problem. Weare going to demonstrate this approach by modelling power plant blocks with fast Neural Networks and optimising the operation of multi-block power plants over one day with Simulated Annealing.

  3. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  4. Net-Zero-Energy Model for Sustainable Wastewater Treatment.

    Science.gov (United States)

    Yan, Peng; Qin, Rong-Cong; Guo, Jin-Song; Yu, Qiang; Li, Zhe; Chen, You-Peng; Shen, Yu; Fang, Fang

    2017-01-17

    A large external energy input prevents wastewater treatment from being environmentally sustainable. A net-zero-energy (NZE) wastewater treatment concept based on biomass energy recycling was proposed to avoid wasting resources and to promote energy recycling in wastewater treatment plants (WWTPs). Simultaneously, a theoretical model and boundary condition based on energy balance were established to evaluate the feasibility of achieving NZE in WWTPs; the model and condition were employed to analyze data from 20 conventional WWTPs in China. A total of six WWTPs can currently export excess energy, eight WWTPs can achieve 100% energy self-sufficiency by adjusting the metabolic material allocation, and six municipal WWTPs cannot achieve net-zero energy consumption based on the evaluation of the theoretical model. The NZE model offset 79.5% of the electricity and sludge disposal cost compared with conventional wastewater treatment. The NZE model provides a theoretical basis for the optimization of material regulation for the effective utilization of organic energy from wastewater and promotes engineering applications of the NZE concept in WWTPs.

  5. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report

    Energy Technology Data Exchange (ETDEWEB)

    Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M. [Argonne National Lab., IL (United States); Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N. [National Renewable Energy Lab., Golden, CO (United States); Freeman, S.; Humphreys, K.; Placet, M. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

  6. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  7. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  8. Energy and Uncertainty: Models and Algorithms for Complex Energy Systems

    OpenAIRE

    2014-01-01

    The problem of controlling energy systems (generation, transmission, storage, investment) introduces a number of optimization problems which need to be solved in the presence of different types of uncertainty. We highlight several of these applications, using a simple energy storage problem as a case application. Using this setting, we describe a modeling framework based around five fundamental dimensions which is more natural than the standard canonical form widely used in the reinforcement ...

  9. Exactly solved models of interacting dark matter and dark energy

    CERN Document Server

    Chimento, Luis P

    2012-01-01

    We introduce an effective one-fluid description of the interacting dark sector in a spatially flat Friedmann-Robertson-Walker space-time and investigate the stability of the power-law solutions. We find the "source equation" for the total energy density and determine the energy density of each dark component. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities, their first derivatives, the total energy density with its derivatives up to second order and the scale factor. We solve the evolution equations of the dark components for both interactions, examine exhaustively several examples and show cases where the problem of the coincidence is alleviated. We show that a generic nonlinear interaction gives rise to the "relaxed Chaplygin gas model" whose effective equation of state includes the variable modified Chaplygin gas model while some others nonlinear interactions yield de Sitter and power-law scenarios.

  10. Total skin electron therapy at two energies on a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.R.; Wymme, C.J. [Christchurch Hospital (New Zealand); Hugtenburg, R.P. [Canterbury Univ., Christchurch (New Zealand). Dept. of Physics

    1995-12-01

    Extensive measurements have been performed on the Varian 2100c linear accelerator with a water equivalent phantom, cylindrical phantoms and an anthropomorphic phantom to validate the 12 beam technique and to measure calibration factors with respect to total skin electron therapy (TEST) for the treatment of Mycosis Fungoides. The technique was developed at 2.5 MeV and 3.5 MeV (mean energy at the surface) with the energy degrading screen at 30 cm from the patient. Field flatness over the treatment area was within {+-} 3% with no significant regional variation of energy. The bremstrahlung contamination was 0.06 - 1.2 %. The absolute calibration of absorbed dose to the patient required the measurement of the ratio skin dose to calibration point dose, this was confirmed by measurements with a parallel plate ionization chamber and thermoluminescence dosimetry. The results indicate the care that must be taken with ionization chamber measurements under TSET condition to avoid erroneous readings due to the `polarity effect`. A protocol is suggested for the practical implementation and quality assurance of the technique. The results of two successful treatments are presented and compared with the predicted results from phantoms. 18 refs., 2 tabs., 10 figs.

  11. Physical activity and total energy expenditure of child-bearing Gambian village women.

    Science.gov (United States)

    Lawrence, M; Whitehead, R G

    1988-02-01

    In a longitudinal study of pregnancy and lactation levels of physical activity and total energy expenditure (TEE) were measured in 32 rural Gambian women using an activity diary technique. TEE, which was higher than previously measured food intake in this community, ranged from a minimum of 9.6 MJ (2300 kcal)/d (1.7 X BMR) in the months January-March to a maximum of 11.3 MJ (2700 kcal)/d (2 X BMR) during the agricultural season (July-October). During pregnancy and early lactation women went less often to the fields and also reduced the amount of time spent walking and performing household tasks. Standardizing for season and for changes in BMR and the energy cost of activity, reductions in physical activity reduced TEE by 0.59 +/- 0.08 MJ (140 +/- 18 kcal)/d between the 28th week of gestation and 4 weeks post-partum (P less than 0.001). While reduced physical activity may have had an adverse effect on agricultural productivity, energy was spared for other processes including fetal growth and milk output immediately post-partum. Dietary supplementation was without effect on activity pattern.

  12. Response of lightning energy and total electron content with sprites over Antarctic Peninsula

    Science.gov (United States)

    Suparta, W.; Yusop, N.

    2017-05-01

    This paper investigates the response of the lightning energy with the total electron content (TEC) derived from GPS over Antarctic Peninsula during St Patrick’s geomagnetic storm. During this event, sprite as one of the mesospheric transient luminous events (TLEs) associated with positive cloud-to-ground (+CG) lightning discharges can be generated. In this work, GPS and lightning data for the period from 14 to 20 March 2015 is analyzed. Geomagnetic activity and electric field data are also processed to relate the geomagnetic storm and lightning. Results show that during St Patrick’s geomagnetic storm, the lighting energy was produced up to ∼257 kJ. The ionospheric TEC was obtained 60 TECU, 38 TECU and 78 TECU between 18:00 and 21:00 UT for OHI3, PALV and ROTH stations, respectively. The peak of lightning energy was observed 14 hours after peaked of TEC. Sprite possibly generated through the electrical coupling process between the top cloud, middle and upper atmosphere with the DC electric field found to be ∼10 mVm-1 which leading to the sprite generation after the return strokes on 18 March 2015.

  13. MILP model for energy optimization in EIP water networks

    Energy Technology Data Exchange (ETDEWEB)

    Taskhiri, Mohammad Sadegh [De La Salle University, Industrial Engineering Department, Manila (Philippines); Tan, Raymond R. [De La Salle University, Center for Engineering and Sustainable Development Research, Manila (Philippines); Chiu, Anthony S.F. [De La Salle University, Industrial Engineering Department, Manila (Philippines); De La Salle University, Center for Engineering and Sustainable Development Research, Manila (Philippines)

    2011-10-15

    The eco-industrial park (EIP) concept provides a framework in which several plants can cooperate with each other and exchange their wastewater to minimize total freshwater consumption. Energy analysis is a methodology that considers the total, cumulative energy which has been consumed within a system; thus, by minimizing energy, an environmentally optimal EIP can be designed. This article presents a mixed-integer linear programming (MILP) model for minimizing energy of an interplant water network in an EIP. The methodology accounts for the environmental impacts of water use, energy consumption, and capital goods within the EIP in a balanced manner. The proposed technique is then demonstrated by solving a case study from literature. (orig.)

  14. Optical model predictions for total cross sections for scattering of neutrons from {sup 40}Ca

    Energy Technology Data Exchange (ETDEWEB)

    Chinn C.R.; Elster, C.; Thaler, R.M.

    1993-10-01

    Measurements of neutron total cross sections are both extensive and extremely accurate. Although they should place a strong constraint on theoretically constructed optical models, there are relatively few comparisons of optical model predictions with those experiments. We have calculated total cross sections for neutron scattering from {sup 40}Ca as a function of energy from 100 - 600 MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although the results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator using a recently derived microscopic mean field approach, is essential for correctly predicting the energy dependence given by the experiment. In the region below 200 MeV, where our off-shell tp calculations over predict the experiment, the modification due to the nuclear medium reduces the calculated values, whereas above 200 MeV, these corrections tend to compensate for the under prediction of the off-shell t{rho} results.

  15. Modeling Energy and Development : An Evaluation of Models and Concepts

    NARCIS (Netherlands)

    Ruijven, Bas van; Urban, Frauke; Benders, René M.J.; Moll, Henri C.; Sluijs, Jeroen P. van der; Vries, Bert de; Vuuren, Detlef P. van

    2008-01-01

    Most global energy models are developed by institutes from developed countries focusing primarily oil issues that are important in industrialized countries. Evaluation of the results for Asia of the IPCC/SRES models shows that broad concepts of energy and development. the energy ladder and the envir

  16. Changes in intakes of total and added sugar and their contribution to energy intake in the U.S.

    Science.gov (United States)

    Chun, Ock K; Chung, Chin E; Wang, Ying; Padgitt, Andrea; Song, Won O

    2010-08-01

    This study was designed to document changes in total sugar intake and intake of added sugars, in the context of total energy intake and intake of nutrient categories, between the 1970s and the 1990s, and to identify major food sources contributing to those changes in intake. Data from the NHANES I and III were analyzed to obtain nationally representative information on food consumption for the civilian, non-institutionalized population of the U.S. from 1971 to 1994. In the past three decades, in addition to the increase in mean intakes of total energy, total sugar, added sugars, significant increases in the total intake of carbohydrates and the proportion of carbohydrates to the total energy intake were observed. The contribution of sugars to total carbohydrate intake decreased in both 1-18 y and 19+ y age subgroups, and the contribution of added sugars to the total energy intake did not change. Soft drinks/fluid milk/sugars and cakes, pastries, and pies remained the major food sources for intake of total sugar, total carbohydrates, and total energy during the past three decades. Carbonated soft drinks were the most significant sugar source across the entire three decades. Changes in sugar consumption over the past three decades may be a useful specific area of investigation in examining the effect of dietary patterns on chronic diseases.

  17. Changes in Intakes of Total and Added Sugar and their Contribution to Energy Intake in the U.S.

    Directory of Open Access Journals (Sweden)

    Won O. Song

    2010-08-01

    Full Text Available This study was designed to document changes in total sugar intake and intake of added sugars, in the context of total energy intake and intake of nutrient categories, between the 1970s and the 1990s, and to identify major food sources contributing to those changes in intake. Data from the NHANES I and III were analyzed to obtain nationally representative information on food consumption for the civilian, non-institutionalized population of the U.S. from 1971 to 1994. In the past three decades, in addition to the increase in mean intakes of total energy, total sugar, added sugars, significant increases in the total intake of carbohydrates and the proportion of carbohydrates to the total energy intake were observed. The contribution of sugars to total carbohydrate intake decreased in both 1–18 y and 19+ y age subgroups, and the contribution of added sugars to the total energy intake did not change. Soft drinks/fluid milk/sugars and cakes, pastries, and pies remained the major food sources for intake of total sugar, total carbohydrates, and total energy during the past three decades. Carbonated soft drinks were the most significant sugar source across the entire three decades. Changes in sugar consumption over the past three decades may be a useful specific area of investigation in examining the effect of dietary patterns on chronic diseases.

  18. Validation of dietary history method in a group of elderly women using measurements of total energy expenditure.

    NARCIS (Netherlands)

    Visser, M.; Groot, de C.P.G.M.; Deurenberg, P.; Staveren, van W.A.

    1995-01-01

    The objective of the present study was to validate energy intake data, obtained by dietary history, in twelve elderly women aged 69–82 years. Energy and protein intakes were obtained using the dietary history method with a reference period of 30 d. Reported energy intake was compared with total

  19. Integrated Autopilot/Autothrottle Based on a Total Energy Control Concept: Design and Evaluation of Additional Autopilot Modes

    Science.gov (United States)

    Bruce, Kevin R.

    1988-01-01

    An integrated autopilot/autothrottle system was designed using a total energy control design philosophy. This design ensures that the system can differentiate between maneuvers requiring a change in thrust to accomplish a net energy change, and those maneuvers which only require elevator control to redistribute energy. The system design, the development of the system, and a summary of simulation results are defined.

  20. Development of a Total Energy, Environment and Asset Management (TE2AM tm) Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Phillip R. [Univ. of Wisconsin, Madison, WI (United States)

    2012-12-31

    The University of Wisconsin Department of Engineering Professional Development (EPD) has completed the sponsored project entitled, Development of a Total Energy, Environment and Asset Management (TE2AM) Curriculum. The project involved the development of a structured professional development program to improve the knowledge, skills, capabilities, and competencies of engineers and operators of commercial buildings. TE2AM advances a radically different approach to commercial building design, operation, maintenance, and end of life disposition. By employing asset management principles to the lifecycle of a commercial building, owners and occupants will realize improved building performance, reduced energy consumption and positive environmental impacts. Through our commercialization plan, we intend to offer TE2AM courses and certificates to the professional community and continuously improve TE2AM course materials. The TE2AM project supports the DOE Strategic Theme 1 Energy Security; and will further advance the DOE Strategic Goal 1.4 Energy Productivity. Through participation in the TE2AM curriculum, engineers and operators of commercial buildings will be eligible for a professional certificate; denoting the completion of a prescribed series of learning activities. The project involved a comprehensive, rigorous approach to curriculum development, and accomplished the following goals: 1. Identify, analyze and prioritize key learning needs of engineers, architects and technical professionals as operators of commercial buildings. 2. Design and develop TE2AM curricula and instructional strategies to meet learning needs of the target learning community. 3. Establish partnerships with the sponsor and key stakeholders to enhance the development and delivery of learning programs. 4. Successfully commercialize and sustain the training and certificate programs for a substantial time following the term of the award. The project team was successful in achieving the goals and

  1. Dark energy observational evidence and theoretical models

    CERN Document Server

    Novosyadlyj, B; Shtanov, Yu; Zhuk, A

    2013-01-01

    The book elucidates the current state of the dark energy problem and presents the results of the authors, who work in this area. It describes the observational evidence for the existence of dark energy, the methods and results of constraining of its parameters, modeling of dark energy by scalar fields, the space-times with extra spatial dimensions, especially Kaluza---Klein models, the braneworld models with a single extra dimension as well as the problems of positive definition of gravitational energy in General Relativity, energy conditions and consequences of their violation in the presence of dark energy. This monograph is intended for science professionals, educators and graduate students, specializing in general relativity, cosmology, field theory and particle physics.

  2. Modeling global and regional energy futures

    Science.gov (United States)

    Rethinaraj, T. S. Gopi

    A rigorous econometric calibration of a model of energy consumption is presented using a comprehensive time series database on energy consumption and other socioeconomic indicators. The future of nuclear power in the evolving distribution of various energy sources is also examined. An important consideration for the long-term future of nuclear power concerns the rate of decline of the fraction of energy that comes from coal, which has historically declined on a global basis about linearly as a function of the cumulative use of coal. The use of fluid fossil fuels is also expected to eventually decline as the more readily extractable deposits are depleted. The investigation here is restricted to examining a comparatively simple model of the dynamics of competition between nuclear and other competing energy sources. Using a defined tropical/temperate disaggregation of the world, region-specific modeling results are presented for population growth, GDP growth, energy use, and carbon use compatible with a gradual transition to energy sustainability. Results for the fractions of energy use from various sources by grouping nine commercial primary energy sources into pairs of competing fuel categories are presented in combination with the idea of experiential learning and resource depletion. Analysis based on this division provides estimates for future evolution of the fractional shares, annual use rates, cumulative use of individual energy sources, and the economic attractiveness of spent nuclear fuel reprocessing. This unified approach helps to conceptualize and understand the dynamics of evolution of importance of various energy resources over time.

  3. [Study on simplification of extraction kinetics model and adaptability of total flavonoids model of Scutellariae radix].

    Science.gov (United States)

    Chen, Yang; Zhang, Jin; Ni, Jian; Dong, Xiao-Xu; Xu, Meng-Jie; Dou, Hao-Ran; Shen, Ming-Rui; Yang, Bo-Di; Fu, Jing

    2014-01-01

    Because of irregular shapes of Chinese herbal pieces, we simplified the previously deduced general extraction kinetic model for TCMs, and integrated particle diameters of Chinese herbs that had been hard to be determined in the final parameter "a". The reduction of the direct determination of particle diameters of Chinese herbs was conducive to increase the accuracy of the model, expand the application scope of the model, and get closer to the actual production conditions. Finally, a simplified model was established, with its corresponding experimental methods and data processing methods determined. With total flavonoids in Scutellariae Radix as the determination index, we conducted a study on the adaptability of total flavonoids extracted from Scutellariae Radix with the water decoction method in the model. The results showed a good linear correlation among the natural logarithm value of the mass concentration of total flavonoids in Scutellariae Radix, the time and the changes in the natural logarithm of solvent multiple. Through calculating and fitting, efforts were made to establish the kinetic model of extracting total flavonoids from Scutellariae Radix with the water decoction method, and verify the model, with a good degree of fitting and deviation within the range of the industrial production requirements. This indicated that the model established by the method has a good adaptability.

  4. Gravastar model in a dark energy universe

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Carlos Frederico Charret; Silva, Maria de Fatima Alves da [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Teorica; Chan, Roberto [Observatorio Nacional, Rio de Janeiro, RJ (Brazil); Rocha, Pedro [Associacao Comunitaria Escola de Radio Progresso (ACERP), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: The study of gravastars, in general, has considered these objects embedded in a Schwarzschild spacetime. However, taking the point of view that the universe must be fulfilled by a considerable amount of dark energy, it is very important to investigate its influence in the gravastar stability and in the possible dynamical evolution. In a first step, we have considered the de Sitter-Schwarzschild exterior spacetime, in order to introduce a positive cosmological constant, which has been suggested as a dark energy candidate. Then, with this purpose, we constructed three-layer dynamical models, which consists of an internal anisotropic dark energy fluid, a dynamical infinitely thin shell of perfect fluid with the equation of state p = (1 - γ)σ, and an external de Sitter- Schwarzschild spacetime. The present work allows to confirm one of the conclusion of one of the our previous work, that is, the sign of the difference between the pressures (radial and tangential) affects the conditions of the formation of the gravastar and black hole when the interior fluid of prototype gravastars are anisotropic, even when combined with an external cosmological constant. We have shown explicitly that the final output can be a black hole, a 'bounded excursion' stable gravastar depending on the total mass m of the system, the cosmological constant L{sub e}, the parameter ω, the constant a, the parameter γ and the initial position R{sub 0} of the dynamical shell. Another interesting result is that we can have black hole and stable gravastar formation even with an interior and a shell constituted of dark and repulsive dark energy. We also would like to point out the significant influence of the presence of the exterior cosmological constant to formation of this kind of structure, since there are some cases where we have a stable gravastar (for Λ 0) or none structure (for Λ > 0). Still more interesting is a case, where for small radius of the shell, we have

  5. Stochastic Modelling of Energy Systems

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae

    2001-01-01

    equations are expressed in terms of stochastic differential equations. From a theoretical viewpoint the techniques for experimental design, parameter estimation and model validation are considered. From the practical viewpoint emphasis is put on how this methods can be used to construct models adequate...

  6. Modeling and Optimization for Piercing Energy Consumption

    Institute of Scientific and Technical Information of China (English)

    XIAO Dong; PAN Xiao-li; YUAN Yong; MAO Zhi-zhong; WANG Fu-li

    2009-01-01

    Energy consumption is an important quality index in the production of seamless tubes. The complex factors affecting energy consumption make it difficult to build its mechanism model, and optimization is also very difficult, if not impossible. The piercing process was divided into three parts based on the production process, and an energy consumption prediction model was proposed based on the step mean value staged multiway partial least square meth-od. On the basis of the batch process prediction model, a genetic algorithm was adopted to calculate the optimum mean value of each process parameter and the minimum piercing energy consumption. Simulation proves that the op-timization method based on the energy consumption prediction model can obtain the optimum process parameters ef-fectively and also provide reliable evidences for practical production.

  7. Modeling approach suitable for energy system

    Energy Technology Data Exchange (ETDEWEB)

    Goetschel, D. V.

    1979-01-01

    Recently increased attention has been placed on optimization problems related to the determination and analysis of operating strategies for energy systems. Presented in this paper is a nonlinear model that can be used in the formulation of certain energy-conversion systems-modeling problems. The model lends itself nicely to solution approaches based on nonlinear-programming algorithms and, in particular, to those methods falling into the class of variable metric algorithms for nonlinearly constrained optimization.

  8. Exact solution of phantom dark energy model

    Institute of Scientific and Technical Information of China (English)

    Wang Wen-Fu; Shui Zheng-Wei; Tang Bin

    2010-01-01

    We investigate the phantom dark energy model derived from the scalar field with a negative kinetic term. By assuming a particular relation between the time derivative of the phantom field and the Hubble function, an exact solution of the model is constructed. Absence of the 'big rip' singularity is shown explicitly. We then derive special features of phantom dark energy model and show that its predictions are consistent with all astrophysical observations.

  9. Noninvasive quantification of fluid mechanical energy losses in the total cavopulmonary connection with magnetic resonance phase velocity mapping.

    Science.gov (United States)

    Venkatachari, Anand K; Halliburton, Sandra S; Setser, Randolph M; White, Richard D; Chatzimavroudis, George P

    2007-01-01

    A major determinant of the success of surgical vascular modifications, such as the total cavopulmonary connection (TCPC), is the energetic efficiency that is assessed by calculating the mechanical energy loss of blood flow through the new connection. Currently, however, to determine the energy loss, invasive pressure measurements are necessary. Therefore, this study evaluated the feasibility of the viscous dissipation (VD) method, which has the potential to provide the energy loss without the need for invasive pressure measurements. Two experimental phantoms, a U-shaped tube and a glass TCPC, were scanned in a magnetic resonance (MR) imaging scanner and the images were used to construct computational models of both geometries. MR phase velocity mapping (PVM) acquisitions of all three spatial components of the fluid velocity were made in both phantoms and the VD was calculated. VD results from MR PVM experiments were compared with VD results from computational fluid dynamics (CFD) simulations on the image-based computational models. The results showed an overall agreement between MR PVM and CFD. There was a similar ascending tendency in the VD values as the image spatial resolution increased. The most accurate computations of the energy loss were achieved for a CFD grid density that was too high for MR to achieve under current MR system capabilities (in-plane pixel size of less than 0.4 mm). Nevertheless, the agreement between the MR PVM and the CFD VD results under the same resolution settings suggests that the VD method implemented with a clinical imaging modality such as MR has good potential to quantify the energy loss in vascular geometries such as the TCPC.

  10. Electronic structure, total energies, and STM images of clean and oxygen-covered Al(111)

    DEFF Research Database (Denmark)

    Jacobsen, Joachim; Hammer, Bjørk; Jacobsen, Karsten Wedel

    1995-01-01

    A set of density-functional calculations for clean and O-covered Al(111) are presented. At low O coverages the potential energy surface (PES) of chemisorbed O is investigated. The PES indicates large barriers (0.8 eV) against O diffusion and a large corrugation of the equilibrium O height over...... the Al(111) while only a moderate energy gain (5 eV per atom) is found upon Oz dissociation over the surface. The possible existence of ''hot'' O adatoms after O-2 dissociation is discussed on the basis of the presented PES and existing dynamical simulations on model potentials. At high O coverages...... an attractive O-O interaction is identified together with an enhancement in the dipole moment induced per O atom. Finally, Tersoff-Hamann-type scanning tunneling microscopy (STM) topographs are derived based on the calculated one-electron wave functions and spectra. For the clean Al(111) a theoretical STM...

  11. On Kinetics Modeling of Vibrational Energy Transfer

    Science.gov (United States)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  12. Alternating Direction Total Variation Image Reconstruction and Practical Decomposition for Dual-energy Computed Tomography

    CERN Document Server

    Li, Lei; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Zheng, Zhizhong; Zhang, Wenkun; Lu, Wanli; Hu, Guoen

    2016-01-01

    Dual-energy computed tomography (DECT) has shown great potential and promising applications in advanced imaging fields for its capabilities of material decomposition. However, image reconstructions and decompositions under sparse views dataset suffers severely from multi factors, such as insufficiencies of data, appearances of noise, and inconsistencies of observations. Under sparse views, conventional filtered back-projection type reconstruction methods fails to provide CT images with satisfying quality. Moreover, direct image decomposition is unstable and meet with noise boost even with full views dataset. This paper proposes an iterative image reconstruction algorithm and a practical image domain decomposition method for DECT. On one hand, the reconstruction algorithm is formulated as an optimization problem, which containing total variation regularization term and data fidelity term. The alternating direction method is utilized to design the corresponding algorithm which shows faster convergence speed com...

  13. Mechanism and Experimental Observability of Global Switching Between Reactive and Nonreactive Coordinates at High Total Energies

    Science.gov (United States)

    Teramoto, Hiroshi; Toda, Mikito; Takahashi, Masahiko; Kono, Hirohiko; Komatsuzaki, Tamiki

    2015-08-01

    We present a mechanism of global reaction coordinate switching, namely, a phenomenon in which the reaction coordinate dynamically switches to another coordinate as the total energy of the system increases. The mechanism is based on global changes in the underlying phase space geometry caused by a switching of dominant unstable modes from the original reactive mode to another nonreactive mode in systems with more than 2 degrees of freedom. We demonstrate an experimental observability to detect a reaction coordinate switching in an ionization reaction of a hydrogen atom in crossed electric and magnetic fields. For this reaction, the reaction coordinate is a coordinate along which electrons escape and its switching changes the escaping direction from the direction of the electric field to that of the magnetic field and, thus, the switching can be detected experimentally by measuring the angle-resolved momentum distribution of escaping electrons.

  14. Real-space formulation of the electrostatic potential and total energy of solids

    Energy Technology Data Exchange (ETDEWEB)

    Pask, J E; Sterne, P A

    2004-05-12

    We develop expressions for the electrostatic potential and total energy of crystalline solids which are amenable to direct evaluation in real space. Unlike conventional reciprocal space formulations, no Fourier transforms or reciprocal lattice summations are required, and the formulation is well suited for large-scale, parallel computations. The need for reciprocal space expressions is eliminated by replacing long-range potentials by equivalent localized charge distributions and incorporating long-range interactions into boundary conditions on the unit cell. In so doing, a simplification of the conventional reciprocal space formalism is obtained. The equivalence of the real- and reciprocal space formalisms is demonstrated by direct comparison in self-consistent density-functional calculations.

  15. Total variation superiorization in dual-energy CT reconstruction for proton therapy treatment planning

    Science.gov (United States)

    Zhu, Jiahua; Penfold, Scott

    2017-04-01

    Proton therapy is a precise form of radiotherapy in which the range of an energetic beam of protons within a patient must be accurately known. The current approach based on single-energy computed tomography (SECT) can lead to uncertainties in the proton range of approximately 3%. This range of uncertainty may lead to under-dosing of the tumour or over-dosing of healthy tissues. Dual-energy CT (DECT) theoretically has the potential to reduce these range uncertainties by quantifying electron density and the effective atomic number. In practice, however, DECT images reconstructed with filtered backprojection (FBP) tend to suffer from high levels of noise. The objective of the current work was to examine the effect of total variation superiorization (TVS) on proton therapy planning accuracy when compared with FBP. A virtual CT scanner was created with the Monte Carlo toolkit Geant4. Tomographic images were reconstructed with FBP and TVS combined with diagonally relaxed orthogonal projections (TVS-DROP). A total variation minimization (TVM) filter was also applied to the image reconstructed with FBP (FBP-TVM). Quantitative accuracy and variance of proton relative stopping power (RSP) derived from each image set was assessed. Mean RSPs were comparable with each image; however, the standard deviation of pixel values with TVS-DROP was reduced by a factor of 0.44 compared with the FBP image and a factor of 0.66 when compared with the FBP-TVM image. Proton doses calculated with the TVS-DROP image set were also better able to predict a reference dose distribution when compared with the FBP and FBP-TVM image sets. The study demonstrated the potential advantages of TVS-DROP as an image reconstruction method for DECT applied to proton therapy treatment planning.

  16. A continuum solvent model of the multipolar dispersion solvation energy.

    Science.gov (United States)

    Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W

    2013-08-15

    The dispersion energy is an important contribution to the total solvation energies of ions and neutral molecules. Here, we present a new continuum model calculation of these energies, based on macroscopic quantum electrodynamics. The model uses the frequency dependent multipole polarizabilities of molecules in order to accurately calculate the dispersion interaction of a solute particle with surrounding water molecules. It includes the dipole, quadrupole, and octupole moment contributions. The water is modeled via a bulk dielectric susceptibility with a spherical cavity occupied by the solute. The model invokes damping functions to account for solute-solvent wave function overlap. The assumptions made are very similar to those used in the Born model. This provides consistency and additivity of electrostatic and dispersion (quantum mechanical) interactions. The energy increases in magnitude with cation size, but decreases slightly with size for the highly polarizable anions. The higher order multipole moments are essential, making up more than 50% of the dispersion solvation energy of the fluoride ion. This method provides an accurate and simple way of calculating the notoriously problematic dispersion contribution to the solvation energy. The result establishes the importance of using accurate calculations of the dispersion energy for the modeling of solvation.

  17. Total parenteral nutrition in a methylcholanthrene-induced rat sarcoma model.

    Science.gov (United States)

    Popp, M B; Morrison, S D; Brennan, M F

    1981-01-01

    Problems with currently available studies of the effects of total parenteral nutrition (TPN) on rat tumor models include: inadequate definition of the natural history of the tumor model; use of nutritional techniques and solutions which have not been proven effective; failure to allow animals to recover from stress of catheterization before starting nutritional manipulation; short-term studies; failure to use sham-operated orally fed control animals; and inadequate evaluation of nutritional result. We have instituted TPN after a 4-day postcatheterization recovery period in a defined methylcholanthrene-induced rat sarcoma model. Preliminary results suggest that TPN increases tumor weight without changing tumor composition of water, nitrogen, or fat. TPN also increases carcass fat and water content, but not carcass protein. In tumor-bearing animals, the percentage of energy expended on activity decreases with increasing tumor burden in both TPN and orally fed controls. TPN in these studies appears to support fat stores and stimulate tumor growth.

  18. Total bremsstrahlung spectra of thick lead compounds produced by {sup 90}Sr beta emitter in photon energy region of 10–100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suhansar Jit [Department of Physics, B.B.S.B Polytechnic, Fatehgarh Sahib, Punjab (India); Singh, Tajinder, E-mail: tajindersingh2k9@gmail.com [Department of Physics, Mata Gujri College, Fatehgarh Sahib, Punjab (India); Singh, Doordarshi [Department of Mechanical Engineering, B.B.S.B Engineering College, Fatehgarh Sahib, Punjab (India); Singh, Amrit [Department of Physics, Baba Ajay Singh Khalsa College, Gurdas Nangal, Gurdaspur, Punjab (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab (India)

    2017-06-15

    Highlights: • Total bremsstrahlung spectra in thick targets of Pb compounds by {sup 90}Sr in energy range 10–100 keV. • Experimental results show better agreement with the model which includes PB in SA up to 30 keV. • At higher photon energy region 30–100 keV the model which describes OB is more accurate. • Experimental results show positive deviations from the entire models at higher energy end spectrum. - Abstract: The total bremsstrahlung spectra in the thick targets of lead acetate trihydrate (Pb(CH{sub 3}COO){sub 2}·3H{sub 2}O), lead nitrate Pb(NO{sub 3}){sub 2} and lead chloride (PbCl{sub 2}) produced by {sup 90}Sr beta particles have been investigated in the photon energy region of 10–100 keV. The experimental bremsstrahlung spectra have been compared with the theoretical models Elwert corrected (non relativistic) Bethe Heitler theory, modified Elwert factor (relativistic) Bethe Heitler theory for ordinary bremsstrahlung and modified Elwert factor (relativistic) Bethe Heitler theory which includes polarization bremsstrahlung in the stripped atom approximation. The experimental results show better agreement with theoretical model that includes polarization bremsstrahlung in stripped approximation in the photon energy region below 30 keV. However, at higher photon energy region 30–100 keV, the theoretical model which describes ordinary bremsstrahlung is more accurate to describe the experimental bremsstrahlung spectra. The experimental results show positive deviations from the entire theoretical models at higher energy end of the spectrum. The results indicate that polarization bremsstrahlung plays important role in the formation of total bremsstrahlung spectra in lead compounds produced by continuous beta particles at low photon energy region of 10–30 keV.

  19. Total Energy Recovery System for Agribusiness: Lake County study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.

    1978-04-01

    A brief summary is given of the results of a previously reported study designed to evaluate the costs and viability of combined thermodynamic and biologic cycles in a system known as the Total Energy Recovery System for Agribusiness (TERSA). This conceptual system involved the combined geothermally assisted activities of greenhouse crop and mushroom growing, fish farming, and biogas generation in an integrated biologic system such that the waste or by-products of each subsystem cycle were recovered to service input needs of companion cycles. An updated direct use geothermal system based on TERSA that is viable for implementation in Lake County is presented. Particular consideration is given to: location of geothermal resources, availability of land and irrigation quality water, compatibility of the specific direct use geothermal activities with adjacent and local uses. Private interest and opposition, and institutional factors as identified. Factors relevant to local TERSA implementation are discussed, followed by sites considered, selection criteria, site slection, and the modified system resulting. Particular attention is paid to attempt to make clear the process followed in applying this conceptual design to the specific task of realistic local implementation. Previous publications on geothermal energy and Lake County are referenced where specific details outside the scope of this study may be found. (JGB)

  20. Correlation matrix renormalization approximation for total-energy calculations of correlated electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Y. X. [Ames Lab., Ames, IA (United States); Liu, Jun [Ames Lab., Ames, IA (United States); Wang, Cai-Zhuang [Ames Lab., Ames, IA (United States); Ho, Kai-Ming [Ames Lab., Ames, IA (United States)

    2014-01-23

    We generalized the commonly used Gutzwiller approximation for calculating the electronic structure and total energy of strongly correlated electron systems. In our method, the evaluation of one-body and two-body density matrix elements of the Hamiltonian is simplified using a renormalization approximation to achieve better scaling of the computational effort as a function of system size. To achieve a clear presentation of the concept and methodology, we describe the detailed formalism for a finite hydrogen system with minimal basis set. We applied the correlation matrix renormalization approximation approach to a H2 dimer and H8 cubic fragment with minimal basis sets, as well as a H2 molecule with a large basis set. The results compare favorably with sophisticated quantum chemical calculations. We believe our approach can serve as an alternative way to build up the exchange-correlation energy functional for an improved density functional theory description of systems with strong electron correlations.

  1. Modelling in nuclear energy environments

    Directory of Open Access Journals (Sweden)

    M. Samaras

    2008-12-01

    Full Text Available Producing energy to supply the demands of our societies is reaching a critical limit. To tackle this issue, there is a slow renaissance of fission reactors and the push to realise fusion reactors. The safe, reliable and optimal performance of fusion and fission plants is dependent on the choice of suitable materials used as components and fuels. As these materials are degraded by their exposure to high temperatures, irradiation and a corrosive environment, it is necessary to address the issue of long term degradation of materials under service exposure in advanced plants. A higher confidence in life-time assessments of these materials requires an understanding of the related physical phenomena on a range of scales from the atomic level of single defect energetics all the way up to macroscopic effects.

  2. Building Energy Modeling: A Data-Driven Approach

    Science.gov (United States)

    Cui, Can

    Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling approach for generic buildings. In this study, an integrated computationally efficient and high-fidelity building energy modeling framework is proposed, with the concentration on developing a generalized modeling approach for various types of buildings. First, a number of data-driven simulation models are reviewed and assessed on various types of computationally expensive simulation problems. Motivated by the conclusion that no model outperforms others if amortized over diverse problems, a meta-learning based recommendation system for data-driven simulation modeling is proposed. To test the feasibility of the proposed framework on the building energy system, an extended application of the recommendation system for short-term building energy forecasting is deployed on various buildings. Finally, Kalman filter-based data fusion technique is incorporated into the building recommendation system for on-line energy forecasting. Data fusion enables model calibration to update the state estimation in real-time, which filters out the noise and renders more accurate energy forecast. The framework is composed of two modules: off-line model recommendation module and on-line model calibration module. Specifically, the off-line model recommendation module includes 6 widely used data-driven simulation models, which are ranked by meta-learning recommendation system for off-line energy modeling on a given building scenario. Only a selective set of building physical and operational characteristic features is needed to complete the recommendation task. The on-line calibration module effectively addresses system uncertainties, where data fusion on

  3. Modeling Total Suspended Solids (TSS) Concentrations in Narragansett Bay.

    Science.gov (United States)

    This work covers mechanistic modeling of suspended particulates in estuarine systems with an application to Narragansett Bay, RI. Suspended particles directly affect water clarity and attenuate light in the water column. Water clarity affects both phytoplankton and submerged aqua...

  4. Impacts of Model Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Deepak [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, Rosemarie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO2 emissions at the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.

  5. Energy Systems Modelling Research and Analysis

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Alberg Østergaard, Poul

    2015-01-01

    This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out...

  6. Directory of Energy Information Administration Models 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-06

    This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included in this directory are 35 EIA models active as of May 1, 1993. Models that run on personal computers are identified by ``PC`` as part of the acronym. EIA is developing new models, a National Energy Modeling System (NEMS), and is making changes to existing models to include new technologies, environmental issues, conservation, and renewables, as well as extend forecast horizon. Other parts of the Department are involved in this modeling effort. A fully operational model is planned which will integrate completed segments of NEMS for its first official application--preparation of EIA`s Annual Energy Outlook 1994. Abstracts for the new models will be included in next year`s version of this directory.

  7. Directory of energy information administration models 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-13

    This updated directory has been published annually; after this issue, it will be published only biennially. The Disruption Impact Simulator Model in use by EIA is included. Model descriptions have been updated according to revised documentation approved during the past year. This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included are 37 EIA models active as of February 1, 1995. The first group is the National Energy Modeling System (NEMS) models. The second group is all other EIA models that are not part of NEMS. Appendix A identifies major EIA modeling systems and the models within these systems. Appendix B is a summary of the `Annual Energy Outlook` Forecasting System.

  8. Modelling the energy transition in cities

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Felix [Wuppertal Univ. (Germany). Dept. of Civil Engineering; Schwarze, Bjoern; Spiekermann, Klaus; Wegener, Michael [Spiekermann und Wegener Urban and Regional Research, Dortmund (Germany)

    2013-09-01

    The history of cities is a history of energy transitions. In the medieval city heating and cooking occurred with wood and peat. The growth of the industrial city in the 19th century was built on coal and electricity. The sprawling metropolis of the 20th century was made possible by oil and gas. How will the city of the 21st century look after the next energy transition from fossil to renewable energy? This paper reports on the extension of an urban land-use transport interaction model to a model of the energy transition in the Ruhr Area, a five-million agglomeration in Germany. The paper presents the planned model extensions and how they are to be integrated into the model and shows first preliminary results.

  9. A Unidirectional Total Variation and Second-Order Total Variation Model for Destriping of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Min Wang

    2017-01-01

    Full Text Available Remote sensing images often suffer from stripe noise, which greatly degrades the image quality. Destriping of remote sensing images is to recover a good image from the image containing stripe noise. Since the stripes in remote sensing images have a directional characteristic (horizontal or vertical, the unidirectional total variation has been used to consider the directional information and preserve the edges. The remote sensing image contaminated by heavy stripe noise always has large width stripes and the pixels in the stripes have low correlations with the true pixels. On this occasion, the destriping process can be viewed as inpainting the wide stripe domains. In many works, high-order total variation has been proved to be a powerful tool to inpainting wide domains. Therefore, in this paper, we propose a variational destriping model that combines unidirectional total variation and second-order total variation regularization to employ the directional information and handle the wide stripes. In particular, the split Bregman iteration method is employed to solve the proposed model. Experimental results demonstrate the effectiveness of the proposed method.

  10. Simulation model accurately estimates total dietary iodine intake

    NARCIS (Netherlands)

    Verkaik-Kloosterman, J.; Veer, van 't P.; Ocke, M.C.

    2009-01-01

    One problem with estimating iodine intake is the lack of detailed data about the discretionary use of iodized kitchen salt and iodization of industrially processed foods. To be able to take into account these uncertainties in estimating iodine intake, a simulation model combining deterministic and p

  11. Water chemistry model development at Total EandP Canada: modeling uncertainty in ore chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, H.A.W.; Yoo, A.; Schaffer, M. [Total EandP Canada Ltd. (Canada)

    2011-07-01

    In oil sands mining operations, water chemistry is a key factor as it plays a role in the bitumen recovery and water discharge to the environment. Total Canada have developed a new water chemistry model combining the previous models developed by Rogers and Kasperski and making modifications to improve reliability of the results. Two challenges had to be addressed in the development of this model: making sure that the data used were appropriate, and accurately modeling uncertainty. The aim of this paper is to present the modifications made to the model and other water chemistry models. Laboratory tests were conducted using the double leach and the standard leach methods. Results showed that the standard leach method provides more accurate measurement on batch extraction tests. This paper outlined the challenges of developing a new prediction model; further tests are needed to determine the best method to use in describing ore chemistry.

  12. Energy-based models for environmental biotechnology.

    Science.gov (United States)

    Rodríguez, Jorge; Lema, Juan M; Kleerebezem, Robbert

    2008-07-01

    Environmental biotechnology is evolving. Current process objectives include the production of chemicals and/or energy carriers (biofuels) in addition to the traditional objective of removing pollutants from waste. To maximise product yields and minimise biomass production, future processes will rely on anaerobic microbial communities. Anaerobic processes are characterised by small Gibbs energy changes in the reactions catalysed, and this provides clear thermodynamic process boundaries. Here, a Gibbs-energy-based methodology is proposed for mathematical modelling of energy-limited anaerobic ecosystems. This methodology provides a basis for the description of microbial activities as a function of environmental factors, which will allow enhanced catalysis of specific reactions of interest for process development.

  13. Models for the energy performance of low-energy houses

    DEFF Research Database (Denmark)

    Andersen, Philip Hvidthøft Delff

    such as mechanical ventilation, floor heating, and control of the lighting effect, the heat dynamics must be taken into account. Hence, this thesis provides methods for data-driven modeling of heat dynamics of modern buildings. While most of the work in this thesis is related to characterization of heat dynamics...... - referred to as "grey-box” modeling - one-step predictions can be generated and used for model validation by testing statistically whether the model describes all variation and dynamics observed in the data. The possibility of validating the model dynamics is a great advantage from the use of stochastic......-building. The building is well-insulated and features large modern energy-effcient windows and oor heating. These features lead to increased non-linear responses to solar radiation and longer time constants. The building is equipped with advanced control and measuring equipment. Experiments are designed and performed...

  14. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  15. TRANSP modelling of total and local neutron emission on MAST

    Science.gov (United States)

    Klimek, I.; Cecconello, M.; Gorelenkova, M.; Keeling, D.; Meakins, A.; Jones, O.; Akers, R.; Lupelli, I.; Turnyanskiy, M.; Ericsson, G.; the MAST Team

    2015-02-01

    The results of TRANSP simulations of neutron count rate profiles measured by a collimated neutron flux monitor-neutron camera (NC)—for different plasma scenarios on MAST are reported. In addition, the effect of various plasma parameters on neutron emission is studied by means of TRANSP simulation. The fast ion redistribution and losses due to fishbone modes, which belong to a wider category of energetic particle modes, are observed by the NC and modelled in TRANSP.

  16. Introduction to the physics of the total cross section at LHC. A review of data and models

    Science.gov (United States)

    Pancheri, Giulia; Srivastava, Yogendra N.

    2017-03-01

    This review describes the development of the physics of hadronic cross sections up to recent LHC results and cosmic ray experiments. We present here a comprehensive review - written with a historical perspective - about total cross sections from medium to the highest energies explored experimentally and studied through a variety of methods and theoretical models for over 60 years. We begin by recalling the analytic properties of the elastic amplitude and the theorems about the asymptotic behavior of the total cross section. A discussion of how proton-proton cross sections are extracted from cosmic rays at higher than accelerator energies and help the study of these asymptotic limits, is presented. This is followed by a description of the advent of particle colliders, through which high energies and unmatched experimental precisions have been attained. Thus the measured hadronic elastic and total cross sections have become crucial instruments to probe the so called soft part of QCD physics, where quarks and gluons are confined, and have led to test and refine Regge behavior and a number of diffractive models. As the c.m. energy increases, the total cross section also probes the transition into hard scattering describable with perturbative QCD, the so-called mini-jet region. Further tests are provided by cross section measurements of γ p, γ ^* p and γ ^* γ ^* for models based on vector meson dominance, scaling limits of virtual photons at high Q^2 and the BFKL formalism. Models interpolating from virtual to real photons are also tested.

  17. Simulation model accurately estimates total dietary iodine intake.

    Science.gov (United States)

    Verkaik-Kloosterman, Janneke; van 't Veer, Pieter; Ocké, Marga C

    2009-07-01

    One problem with estimating iodine intake is the lack of detailed data about the discretionary use of iodized kitchen salt and iodization of industrially processed foods. To be able to take into account these uncertainties in estimating iodine intake, a simulation model combining deterministic and probabilistic techniques was developed. Data from the Dutch National Food Consumption Survey (1997-1998) and an update of the Food Composition database were used to simulate 3 different scenarios: Dutch iodine legislation until July 2008, Dutch iodine legislation after July 2008, and a potential future situation. Results from studies measuring iodine excretion during the former legislation are comparable with the iodine intakes estimated with our model. For both former and current legislation, iodine intake was adequate for a large part of the Dutch population, but some young children (iodine levels, the percentage of the Dutch population with intakes that were too low increased (almost 10% of young children). To keep iodine intakes adequate, salt iodine levels should not be decreased, unless many more foods will contain iodized salt. Our model should be useful in predicting the effects of food reformulation or fortification on habitual nutrient intakes.

  18. Simple model of stacking-fault energies

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Jacobsen, Lærke Wedel

    1993-01-01

    -density calculations of stacking-fault energies, and gives a simple way of understanding the calculated energy contributions from the different atomic layers in the stacking-fault region. The two parameters in the model describe the relative energy contributions of the s and d electrons in the noble and transition......A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local...... metals, and thereby explain the pronounced differences in energetics in these two classes of metals. The model is discussed in the framework of the effective-medium theory where it is possible to find a functional form for the pair potential and relate the contribution associated with the fourth moment...

  19. Policy modeling for industrial energy use

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the

  20. Holographic dark energy in the DGP model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Avelino, Arturo [Universidad de Guanajuato, Departamento de Fisica, DCI, Codigo Postal 37150, Leon, Guanajuato (Mexico)

    2012-09-15

    The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: {epsilon}={+-}1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)

  1. The Total Variation Regularized L1 Model for Multiscale Decomposition

    Science.gov (United States)

    2006-01-01

    N00014-03-1- 0514, and DOE Grant GE-FG01-92ER-25126. †Department of Industrial Engineering and Operations Research, Columbia University, New York, NY...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Columbia University,Department of Industrial Engineering and Operations...2r . THE TV-L1 MODEL FOR MULTISCALE DECOMPOSITION 5 In general the minimizer of the TV-L1 is nonunique . In the above disk example, if λ = 2/r

  2. Effects of Material Properties on the Total Stored Energy of a Hybrid Flywheel Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Ha, S.K.; Yoon, Y.B. [Hanyang University, Seoul (Korea); Han, S.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2000-05-01

    A numerical method based on an assumption of a generalized plane strain (GPS) state is presented for calculating the stress and strength ratio distributions of the rotating composite flywheel rotor of varying material properties in the radial direction. The rotor is divided into many rings and each ring has constant material properties. All the rings are assumed to expand and have the same axial strain. A three-dimensional finite element method is then used to verify the accuracy of the present method for various height ratios and ply angles. This method gives a better solution for most of the rotors than other methods of a plane stress or plane strain state. After verification, the effects of material properties on the total stored energy (TSE) of the composite flywheel rotor are investigated. For this purpose, the material properties of the rotor, i.e., circumferential and radial Youngs moduli, ply angles and mass densities, are expressed by power functions of the radius and the rotor is analyzed. The analysis shows that TSE can be most effectively increased by changing the circumferential Youngs moduli along the radius, which amounts to over 300% of TSE of the constant material properties. The variation of ply angles along the radius can increase TSE by about 30% at most. The method of changing the mass densities along the radius could be also effective but its effects are not so noticeable in the rotor where the circumferential stiffness is properly arranged. (author). 24 refs., 7 figs.

  3. Qualidade total: proposta de um modelo para implantação Total quality: proposal of a model for implantation

    Directory of Open Access Journals (Sweden)

    Luiz Cláudio Torelli

    1995-12-01

    Full Text Available A implantação efetiva de Programas de Qualidade Total tem apresentado diversas dificuldades nas organizações em geral. As peculiaridades que envolvem cada empresa - sua estrutura de operações, seu mercado específico, sua cultura organizacional, entre outras - faz com que seja virtualmente impossível a elaboração de um único modelo detalhado de implantação. Dessa forma, é necessária a adoção de um modelo mais geral, que deve ser adaptado a cada caso particular. Neste texto, é apresentado um modelo elaborado para a implantação de um Programa de Qualidade Total em uma organização militar, prestadora de serviços na área de manutenção de aeronaves. O enfoque sistêmico utilizado na elaboração do modelo faz com que sua estrutura básica, apresentada aqui, possa ser utilizada de forma bastante geral em processos de implantação de Programas de Qualidade Total. São apresentadas diversas fases do processo de implantação, as quais deverão ser detalhadas e dispostas cronologicamente de acordo com cada situação específica.The effective implantation of Total Quality Management Programs has been presenting several dificulties. The particular features related to each organization - due to its operational structure, its specific market, its organizational culture, among others - make it virtually impossible to elaborate a uniquely deployed implantation model. Thus, it becomes necessary to adopt a general model, to be adapted to each particular case. Within this text, a model developed to implement a Total Quality Management Program in a military aircraft depot is presented. The system approach, used to develop the model, allows its basic structure to be used in a broad sense. The implantation process is partially deployed in phases, which must be scheduled and completely detailed according to each specific situation.

  4. Revolutions in energy through modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tatro, M.; Woodard, J.

    1998-08-01

    The development and application of energy technologies for all aspects from generation to storage have improved dramatically with the advent of advanced computational tools, particularly modeling and simulation. Modeling and simulation are not new to energy technology development, and have been used extensively ever since the first commercial computers were available. However, recent advances in computing power and access have broadened the extent and use, and, through increased fidelity (i.e., accuracy) of the models due to greatly enhanced computing power, the increased reliance on modeling and simulation has shifted the balance point between modeling and experimentation. The complex nature of energy technologies has motivated researchers to use these tools to understand better performance, reliability and cost issues related to energy. The tools originated in sciences such as the strength of materials (nuclear reactor containment vessels); physics, heat transfer and fluid flow (oil production); chemistry, physics, and electronics (photovoltaics); and geosciences and fluid flow (oil exploration and reservoir storage). Other tools include mathematics, such as statistics, for assessing project risks. This paper describes a few advancements made possible by these tools and explores the benefits and costs of their use, particularly as they relate to the acceleration of energy technology development. The computational complexity ranges from basic spreadsheets to complex numerical simulations using hardware ranging from personal computers (PCs) to Cray computers. In all cases, the benefits of using modeling and simulation relate to lower risks, accelerated technology development, or lower cost projects.

  5. Interacting Dark Energy Models and Observations

    Science.gov (United States)

    Shojaei, Hamed; Urioste, Jazmin

    2017-01-01

    Dark energy is one of the mysteries of the twenty first century. Although there are candidates resembling some features of dark energy, there is no single model describing all the properties of dark energy. Dark energy is believed to be the most dominant component of the cosmic inventory, but a lot of models do not consider any interaction between dark energy and other constituents of the cosmic inventory. Introducing an interaction will change the equation governing the behavior of dark energy and matter and creates new ways to explain cosmic coincidence problem. In this work we studied how the Hubble parameter and density parameters evolve with time in the presence of certain types of interaction. The interaction serves as a way to convert dark energy into matter to avoid a dark energy-dominated universe by creating new equilibrium points for the differential equations. Then we will use numerical analysis to predict the values of distance moduli at different redshifts and compare them to the values for the distance moduli obtained by WMAP (Wilkinson Microwave Anisotropy Probe). Undergraduate Student

  6. Introduction to the physics of the total cross-section at LHC: A Review of Data and Models

    CERN Document Server

    Pancheri, Giulia

    2016-01-01

    This review describes the development of the physics of hadronic cross sections up to recent LHC results and cosmic ray experiments. We present here a comprehensive review - written with a historical perspective - about total cross-sections from medium to the highest energies explored experimentally and studied through a variety of methods and theoretical models for over sixty years. We begin by recalling the analytic properties of the elastic amplitude and the theorems about the asymptotic behavior of the total cross-section. A discussion of how proton-proton cross-sections are extracted from cosmic rays at higher than accelerator energies and help the study of these asymptotic limits, is presented. This is followed by a description of the advent of particle colliders, through which high energies and unmatched experimental precisions have been attained. Thus the measured hadronic elastic and total cross-sections have become crucial instruments to probe the so called soft part of QCD physics, where quarks and...

  7. Measurements and Modeling of Total Solar Irradiance in X-Class Solar Flares

    CERN Document Server

    Moore, Christopher Samuel; Hock, Rachel

    2015-01-01

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment (SORCE) can detect changes in the Total Solar Irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-Class solar ares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar ares presented in Woods et al. (2006), as well as an additional are measured on 2006 December 6. The radiative outputs for both phases of these five ares are then compared to the Vacuum Ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-Class ares. This model provides the basis for the bolometric energy estimates for the solar ares analyzed in the Emslie et al. (2012) study.

  8. Cosmological degeneracy versus cosmography: A cosmographic dark energy model

    Science.gov (United States)

    Luongo, Orlando; Pisani, Giovanni Battista; Troisi, Antonio

    In this work, we use cosmography to alleviate the degeneracy among cosmological models, proposing a way to parametrize matter and dark energy in terms of cosmokinematics quantities. The recipe of using cosmography allows to expand observable quantities in Taylor series and to directly compare those expansions with data. The strategy involves the expansions of q and j, up to the second-order around a(t) = 1. This includes additional cosmographic parameters which are fixed by current values of q0 and j0. We therefore propose a fully self-consistent parametrization of the total energy density driving the late-time universe speed up. This stratagem does not remove all the degeneracy but enables one to pass from the model-dependent couple of coefficients, ω0 and Ωm,0, to model-independent quantities determined from cosmography. Afterwards, we describe a feasible cosmographic dark energy model, in which matter is fixed whereas dark energy evolves by means of the cosmographic series. Our technique provides robust constraints on cosmokinematic parameters, permitting one to separately bound matter from dark energy densities. Our cosmographic dark energy model turns out to be one parameter only, but differently from the lambda cold dark matter (ΛCDM) paradigm, it does not contain ansatz on the dark energy form. In addition, we even determine the free parameter of our model in suitable 1σ intervals through Monte Carlo analyses based on the Metropolis algorithm. We compare our results with the standard concordance model and we find that our treatment seems to indicate that dark energy slightly evolves in time, reducing to a pure cosmological constant only as z → 0.

  9. Research on renewable energy power generation complementarity and storage distribution model

    Science.gov (United States)

    Wei, Xiaoxia; Zhang, Jinfang

    2017-01-01

    This paper mainly studied the equivalent conversion relationships and model of different “quality “energies in process of multi-energy conversion. In energy interconnection system containing wind turbine, photovoltaic cell and energy storage systems, it gives renewable energy and storage distribution development model, considering comprehensive effect of load demand characteristics on energy utilization mode, multi-objective optimization model is established with objectives of both maximized energy utilization ratio and minimized system operation costs. Then, take Chinese one certain area as scenario, and give out “renewable energy utilization“, “energy transfer” and “total operating cost” three different analyses, according to the connection model. The result is compared with that for traditional energy utilization model. Feasibility of the proposed model is verified with simulation results.

  10. Building Energy Model Development for Retrofit Homes

    Energy Technology Data Exchange (ETDEWEB)

    Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

    2012-09-30

    Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This “true up” procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The “trued” post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the “true up” procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or

  11. RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CONTINUUM THEORIES (Ⅷ)-PRINCIPLE OF TOTAL WORK AND ENERGY

    Institute of Scientific and Technical Information of China (English)

    DAI Tian-min

    2005-01-01

    Theoretical incompleteness of the existing conservation laws of energy for polar continuum mechanics is further clarified. For completeness, the principles of total work and energy and of total work and energy of incremental rate type are postulated. Via total variations of the former and the latter of them, the principles of virtual displacement and microrotation & stress and couple stress as well as virtual velocity and angular velocity &stress rate and couple stress rate are immediately obtained, respectively. From these principles all balance equations and boundary conditions for micropolar mechanics are naturally and simultaneously deduced. The essential differences between the nontraditional results obtained in this paper and the existing conservation laws of energy are expounded.

  12. Comprehensive country energy assessments using the MARKAL-MACRO model

    Energy Technology Data Exchange (ETDEWEB)

    Reisman, A.W.

    1997-07-01

    A number of comprehensive country energy assessments were performed in the late 1970s and early 1980s in cooperation with the governments of various countries. The assessments provided a framework for analyzing the impacts of various national strategies for meeting energy requirements. These analyses considered the total energy framework. Economics, energy supply, national resources, energy use, environmental impacts, technologies, energy efficiencies, and sociopolitical impacts were some of the factors addressed. These analyses incorporated the best available data bases and computer models to facilitate the analyses. National policy makers identified the various strategies to examine. The results of the analyses were provided to the national policy makers to support their decision making. Almost 20 years have passed since these assessments were performed. There have been major changes in energy supply and use, technologies, economics, available resources, and environmental concerns. The available tools for performing the assessments have improved drastically. The availability of improved computer modeling, i.e., MARKAL-MACRO, and improved data collection methods and data bases now permit such assessments to be performed in a more sophisticated manner to provide state of the art support to policy makers. The MARKAL-MACRO model was developed by Brookhaven National Laboratory over the last 25 years to support strategic energy planning. It is widely used in the international community for integrating analyses of environmental options, such as reduction of greenhouse gas emissions. It was used to perform the analyses in the least cost energy strategy study for the Energy Policy Act of 1992. Improvements continue to be made to MARKAL-MACRO and its capabilities extended. A methodology to conduct Country Energy Assessments using MARKAL-MACRO is discussed.

  13. Design and Modelling of Sustainable Bioethanol Supply Chain by Minimizing the Total Ecological Footprint in Life Cycle Perspective

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Toniolo, Sara

    2013-01-01

    The purpose of this paper is to develop a model for designing the most sustainable bioethanol supply chain. Taking into consideration of the possibility of multiple-feedstock, multiple transportation modes, multiple alternative technologies, multiple transport patterns and multiple waste disposal...... manners in bioethanol systems, this study developed a model for designing the most sustainable bioethanol supply chain by minimizing the total ecological footprint under some prerequisite constraints including satisfying the goal of the stakeholders', the limitation of resources and energy, the capacity...

  14. A nuclear fragmentation energy deposition model

    Science.gov (United States)

    Ngo, D. M.; Wilson, J. W.; Fogarty, T. N.; Buck, W. W.; Townsend, L. W. (Principal Investigator)

    1991-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. A nuclear data base is recommended that agrees well with the measurements of McNulty et al. using surface barrier detectors. High-energy events observed by McNulty et al., which are not predicted by intranuclear cascade models, are well represented by the present work.

  15. Modelling energy demand in the Norwegian building stock

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor

    2008-07-15

    Energy demand in the building stock in Norway represents about 40% of the final energy consumption, of which 22% goes to the residential sector and 18% to the service sector. In Norway there is a strong dependency on electricity for heating purposes, with electricity covering about 80% of the energy demand in buildings. The building sector can play an important role in the achievement of a more sustainable energy system. The work performed in the articles presented in this thesis investigates various aspects related to the energy demand in the building sector, both in singular cases and in the stock as a whole. The work performed in the first part of this thesis on development and survey of case studies provided background knowledge that was then used in the second part, on modelling the entire stock. In the first part, a literature survey of case studies showed that, in a life cycle perspective, the energy used in the operating phase of buildings is the single most important factor. Design of low-energy buildings is then beneficial and should be pursued, even though it implies a somewhat higher embodied energy. A case study was performed on a school building. First, a methodology using a Monte Carlo method in the calibration process was explored. Then, the calibrated model of the school was used to investigate measures for the achievement of high energy efficiency standard through renovation work. In the second part, a model was developed to study the energy demand in a scenario analysis. The results showed the robustness of policies that included conservation measures against the conflicting effects of the other policies. Adopting conservation measures on a large scale showed the potential to reduce both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlighted the inertia to change of the building stock, due to low activity levels compared to the stock size. It also became clear that a deeper

  16. High Energy Proton-Proton Elastic Scattering in Reggeon-Pomeron Exchange Model

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; HU Zhao-Hui; MA Wei-Xing

    2006-01-01

    We initially propose a Reggeon-Pomeron exchange model to describe proton-proton elastic scattering at high energies in this short paper. A calculation for total cross section of proton-proton elastic scattering at high energies is performed without any free parameters. Our new finding from this work is that the Reggeon-Pomeron model gives a perfect fit to experimental data of the total cross section at the whole energy region where experimental data exist.

  17. Extra Dimensions and Vacuum Dark Energy Models

    Institute of Scientific and Technical Information of China (English)

    CHEN Chi-Yi; SHEN You-Gen

    2004-01-01

    @@ The role of vacuum energy or cosmological constant in cosmology is discussed in a kind of nontrivial higherdimensional model. Under the framework of Einstein's gravity, we obtain the corresponding equations of motion and find that the cosmological constant and vacuum energy in the full regime does not drive its acceleration, but decelerates the expansion of the universe. The dimension of space is required to be n = 3 if we regard vacuum energy or cosmological constant as the candidate to drive the accelerated expansion of the universe.

  18. Solar energy estimation using REST2 model

    Directory of Open Access Journals (Sweden)

    M. Rizwan, Majid Jamil, D. P. Kothari

    2010-03-01

    Full Text Available The network of solar energy measuring stations is relatively rare through out the world. In India, only IMD (India Meteorological Department Pune provides data for quite few stations, which is considered as the base data for research purposes. However, hourly data of measured energy is not available, even for those stations where measurement has already been done. Due to lack of hourly measured data, the estimation of solar energy at the earth’s surface is required. In the proposed study, hourly solar energy is estimated at four important Indian stations namely New Delhi, Mumbai, Pune and Jaipur keeping in mind their different climatic conditions. For this study, REST2 (Reference Evaluation of Solar Transmittance, 2 bands, a high performance parametric model for the estimation of solar energy is used. REST2 derivation uses the two-band scheme as used in the CPCR2 (Code for Physical Computation of Radiation, 2 bands but CPCR2 does not include NO2 absorption, which is an important parameter for estimating solar energy. In this study, using ground measurements during 1986-2000 as reference, a MATLAB program is written to evaluate the performance of REST2 model at four proposed stations. The solar energy at four stations throughout the year is estimated and compared with CPCR2. The results obtained from REST2 model show the good agreement against the measured data on horizontal surface. The study reveals that REST2 models performs better and evaluate the best results as compared to the other existing models under cloudless sky for Indian climatic conditions.

  19. Total daily energy expenditure is increased following a single bout of sprint interval training.

    Science.gov (United States)

    Sevits, Kyle J; Melanson, Edward L; Swibas, Tracy; Binns, Scott E; Klochak, Anna L; Lonac, Mark C; Peltonen, Garrett L; Scalzo, Rebecca L; Schweder, Melani M; Smith, Amy M; Wood, Lacey M; Melby, Christopher L; Bell, Christopher

    2013-10-01

    REGULAR ENDURANCE EXERCISE IS AN EFFECTIVE STRATEGY FOR HEALTHY WEIGHT MAINTENANCE, MEDIATED VIA INCREASED TOTAL DAILY ENERGY EXPENDITURE (TDEE), AND POSSIBLY AN INCREASE IN RESTING METABOLIC RATE (RMR: the single largest component of TDEE). Sprint interval training (SIT) is a low-volume alternative to endurance exercise; however, the utility of SIT for healthy weight maintenance is less clear. In this regard, it is feasible that SIT may evoke a thermogenic response above and beyond the estimates required for prevention of weight gain (i.e., >200-600 kJ). The purpose of these studies was to investigate the hypotheses that a single bout of SIT would increase RMR and/or TDEE. Study 1: RMR (ventilated hood) was determined on four separate occasions in 15 healthy men. Measurements were performed over two pairs of consecutive mornings; each pair was separated by 7 days. Immediately following either the first or third RMR measurement (randomly assigned) subjects completed a single bout of SIT (cycle ergometer exercise). RMR was unaffected by a single bout of SIT (7195 ± 285 kJ/day vs. 7147 ± 222, 7149 ± 246 and 6987 ± 245 kJ/day (mean ± SE); P = 0.12). Study 2: TDEE (whole-room calorimeter) was measured in 12 healthy men, on two consecutive days, one of which began with a single bout of SIT (random order). Sprint exercise increased TDEE in every research participant (9169 ± 243 vs. 10,111 ± 260 kJ/day; P < 0.0001); the magnitude of increase was 946 ± 62 kJ/day (∼10%). These data provide support for SIT as a strategy for increasing TDEE, and may have implications for healthy body weight maintenance.

  20. Coupling dark energy with Standard Model states

    CERN Document Server

    Bento, M C; Bertolami, O

    2009-01-01

    In this contribution one examines the coupling of dark energy to the gauge fields, to neutrinos, and to the Higgs field. In the first case, one shows how a putative evolution of the fundamental couplings of strong and weak interactions via coupling to dark energy through a generalized Bekenstein-type model may cause deviations on the statistical nuclear decay Rutherford-Soddy law. Existing bounds for the weak interaction exclude any significant deviation. For neutrinos, a perturbative approach is developed which allows for considering viable varying mass neutrino models coupled to any quintessence-type field. The generalized Chaplygin model is considered as an example. For the coupling with the Higgs field one obtains an interesting cosmological solution which includes the unification of dark energy and dark matter.

  1. Metamaterial Model of Tachyonic Dark Energy

    Directory of Open Access Journals (Sweden)

    Igor I. Smolyaninov

    2014-02-01

    Full Text Available Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.

  2. Interacting Dark Energy Models -- Scalar Linear Perturbations

    CERN Document Server

    Perico, E L D

    2016-01-01

    We extend the dark sector interacting models assuming the dark energy as the sum of independent contributions $\\rho_{\\Lambda} =\\sum_i\\rho_{\\Lambda i}$, associated with (and interacting with) each of the $i$ material species. We derive the linear scalar perturbations for two interacting dark energy scenarios, modeling its cosmic evolution and identifying their different imprints in the CMB and matter power spectrum. Our treatment was carried out for two phenomenological motivated expressions of the dark energy density, $\\rho_\\Lambda(H^2)$ and $\\rho_\\Lambda(R)$. The $\\rho_\\Lambda(H^2)$ description turned out to be a full interacting model, i.e., the dark energy interacts with everyone material species in the universe, whereas the $\\rho_\\Lambda(R)$ description only leads to interactions between dark energy and the non-relativistic matter components; which produces different imprints of the two models on the matter power spectrum. A comparison with the Planck 2015 data was made in order to constrain the free para...

  3. Raytracing simulations of coupled dark energy models

    CERN Document Server

    Pace, Francesco; Moscardini, Lauro; Bacon, David; Crittenden, Robert

    2014-01-01

    Dark matter and dark energy are usually assumed to be independent, coupling only gravitationally. An extension to this simple picture is to model dark energy as a scalar field which is directly coupled to the cold dark matter fluid. Such a non-trivial coupling in the dark sector leads to a fifth force and a time-dependent dark matter particle mass. In this work we examine the impact that dark energy-dark matter couplings have on weak lensing statistics by constructing realistic simulated weak-lensing maps using raytracing techniques through a suite of N-body cosmological simulations. We construct maps for an array of different lensing quantities, covering a range of scales from a few arcminutes to several degrees. The concordance $\\Lambda$CDM model is compared to different coupled dark energy models, described either by an exponential scalar field potential (standard coupled dark energy scenario) or by a SUGRA potential (bouncing model). We analyse several statistical quantities, in particular the power spect...

  4. Total (elastic plus inelastic) cross sections for positron-methane (helium) collisions at low, intermediate, and high energies

    Science.gov (United States)

    Jain, Ashok

    1987-06-01

    Theoretical calculations on the total (elastic plus inelastic) cross sections σt for positron (e+)-methane collisions are reported at 2-600 eV. We evaluate a complex optical potential (COP) for the e+-CH4 system and treat it exactly in a partial-wave analysis to obtain the S matrix. The real part is composed of an accurate repulsive static potential plus a parameter-free attractive correlation polarization potential. The imaginary part of the COP, Vabs(r), is derived semiempirically in order to reproduce the sharp rise in σt just above the positronium-formation threshold (EPs). This form of Vabs is a function of target charge density, static plus polarization potential, local kinetic energy of the projectile, Fermi momentum, and the mean excitation energy of the system. Our final e+-CH4 σt compare very well with measurements in the EPs-600-eV region. Below EPs, the present results are in good accord with close-coupling calculations of Jain and Thompson and the measurements of Charlton and co-workers. We also test this absorption potential for the e+-He system and find qualitative agreement with measurements. It is also possible from this model to extract approximate values of the Ps-formation cross sections in the ore gap.

  5. The effects of dimensional parameters on sensing and energy harvesting of an embedded PZT in a total knee replacement

    Science.gov (United States)

    Safaei, Mohsen; Anton, Steven R.

    2016-04-01

    Total Knee Replacement (TKR), one of the most common surgeries in the United States, is performed when the patient is experiencing significant amounts of pain or when knee functionality has become substantially degraded. Despite impressive recent developments, only about 85% of patients are satisfied with the pain reduction after one year. Therefore, structural health and performance monitoring are integral for intraoperative and postoperative feedback. In extension of the author's previous work, a new configuration for implementation of piezoelectric transducers in total knee replacement bearings is proposed and FEA modeling is performed to attain appropriate sensing and energy harvesting ability. The predicted force transmission ratio to the PZT (ratio of force applied to the bearing to force transferred to the embedded piezoelectric transducer) is about 6.2% compared to about 5% found for the previous encapsulated design. Dimensional parameters of the polyethylene bearing including the diameter and depth of the PZT pocket as well as the placement geometry of the PZT transducer within the bearing are hypothesized as the most influential parameters on the performance of the designed system. The results show a small change of 1% and 2.3% in the output of the system as a result of variation in the PZT location and pocket diameter, respectively. Whereas, the output of the system is significantly sensitive to the pocket depth; a pocket 0.01 mm deeper than the PZT transducer leads to no force transmission, and a pocket 0.15 mm shallower leads to full load transmission to the PZT. In order to develop a self-powered sensor, the amount of energy harvested from tibial forces for the proposed geometry is investigated.

  6. Predicted and Totally Unexpected in the Energy Frontier Opened by LHC

    Science.gov (United States)

    Zichichi, Antonino

    2011-01-01

    Opening lectures. Sid Coleman and Erice / A. Zichichi. Remembering Sidney Coleman / G.'t Hooft -- Predicted signals at LHC. From extra-dimensions: Multiple branes scenarios and their contenders / I. Antoniadis. Predicted signals at the LHC from technicolor / A. Martin. The one-parameter model at LHC / J. Maxin, E. Mayes and D. V. Nanopoulos. How supercritical string cosmology affects LHC / D. V. Nanopoulos. High scale physics connection to LHC data / P. Nath. Predicted signatures at the LHC from U(I) extensions of the standard model / P. Nath -- Hot theoretical topics. Progress on the ultraviolet finiteness of supergravity / Z. Bern. Status of supersymmetry: Foundations and applications / S. Ferrara and A. Marrani. Quantum gravity from dynamical triangulation / R. Loll. Status of superstring and M-theory / J. H. Schwarz. Some effects of instantons in QCD / G.'t Hooft. Crystalline gravity / G.'t Hooft -- QCD problems. Strongly coupled gauge theories / R. Kenway. Strongly interacting matter at high energy density / L. McLerran. Seminars on specialized topics. The nature and the mass of neutrinos. Majorana vs. Dirac / A. Bettini. The anomalous spin distributions in the nucleon / A. Deshpande. Results from PHENIX at RHIC / M. J. Tannenbaum -- Highlights from laboratories. Highlights from RHIC / Y. Akiba. News from the Gran Sasso Underground Laboratory / E. Coccia. Highlights from TRIUMF / N. S. Lockyer. Highlights from Superkamiokande / M. Koshiba. Highlights from Fermilab / P. J. Oddone. Highlights from IHEP / Y. Wang -- Special sessions for new talents. Fake supergravity and black hole evolution / A. Gnecchi. Track-based improvement in the jet transverse momentum resolution for ATLAS / Z. Marshall. Searches for supersymmetric dark matter with XENON / K. Ni. Running of Newton's constant and quantum gravitational effects / D. Reeb.

  7. OSeMOSYS Energy Modeling Using an Extended UTOPIA Model

    Science.gov (United States)

    Lavigne, Denis

    2017-01-01

    The OSeMOSYS project offers open-access energy modeling to a wide audience. Its relative simplicity makes it appealing for academic research and governmental organizations to study the impacts of policy decisions on an energy system in the context of possibly severe greenhouse gases emissions limitations. OSeMOSYS is a tool that enhances the…

  8. Energy modelling for economies in transition

    Energy Technology Data Exchange (ETDEWEB)

    Van Leeuwen, M.L.; Velthuijsen, J.W. [Foundation for Economic Research SEO, University of Amsterdam UvA, Amsterdam (Netherlands); Van Oostvoorn, F.; Voogt, M. [ECN Policy Study, Petten (Netherlands)

    1998-12-31

    The model system composed of a Computable General Equilibrium (CGE) E3 model and the least-cost energy sector model Energy Flow Optimization Model - Environment (EFOM-ENV) proved to be a useful support in developing long-term scenarios for several Central European and Eastern European (CEE) countries. Calculation results obtained from using the model.system could be used to support energy policy decisions in the framework of different possible future developments in energy demand and supply and related emissions, which is also consistent with macro-economic developments in the national economies. Also, and most important, the developments within the national (transition) economy could be made consistent with external developments (on a world and European Union (EU) level) that are envisioned in EC-scenarios. This facilitates the analysis of an increasing convergence process of different CEE countries towards the EU and could be useful in the policy dialogue on convergence. Empirical studies with the model system have shown that the interrelations between macro-economic indicators and important factors determining energy supply and demand could be dealt with in a transparent way. An assessment could be made of the impact of changes in economic structure, employment rate, trade balance, social security and public spending on the structure of energy demand, fuel mix, capacity requirements and related energy costs, and vice versa. Specific policy issues such as a restructuring of the Polish coal industry or determining the scope for CO2 reduction in Romania could be addressed and instruments could be identified to encounter these issues. Especially for policy makers in transition economies who are faced with many interactive changes, it is important to have a realistic insight in the scope and restrictions of future policy. Ambitions are often very high, but reaching certain objectives could be conflicting with others. Results obtained from calculations with the model

  9. Economic Modeling of Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    Rui Bo

    2013-04-01

    Full Text Available Due to the variable nature of wind resources, the increasing penetration level of wind power will have a significant impact on the operation and planning of the electric power system. Energy storage systems are considered an effective way to compensate for the variability of wind generation. This paper presents a detailed production cost simulation model to evaluate the economic value of compressed air energy storage (CAES in systems with large-scale wind power generation. The co-optimization of energy and ancillary services markets is implemented in order to analyze the impacts of CAES, not only on energy supply, but also on system operating reserves. Both hourly and 5-minute simulations are considered to capture the economic performance of CAES in the day-ahead (DA and real-time (RT markets. The generalized network flow formulation is used to model the characteristics of CAES in detail. The proposed model is applied on a modified IEEE 24-bus reliability test system. The numerical example shows that besides the economic benefits gained through energy arbitrage in the DA market, CAES can also generate significant profits by providing reserves, compensating for wind forecast errors and intra-hour fluctuation, and participating in the RT market.

  10. Development of an energy storage tank model

    Science.gov (United States)

    Buckley, Robert Christopher

    A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.

  11. Modeling elements of energy systems for thermal energy transportation

    Directory of Open Access Journals (Sweden)

    Shurygin A. M.

    2016-12-01

    Full Text Available Heating industrial facilities and the residential sector in recent years is the economic and technical challenge. It has been noted that the efficiency of the heat generating equipment depends not only on its sophistication, fuel type, but also on work of the distributing network taking into account the thermal, hydraulic losses, characteristics and modes of use of heating objects – buildings and technological processes. Possibility of supplying maximum heat flow from the heating system considering mismatch of highs and types of resources consumed from individual consumers should be provided by the right choice of energy equipment set, as well as bandwidth of transport systems and possibility of its regulation. It is important not just to configure the system to work effectively in the current mode (usually at the maximum load, but in the entire load range, as the calculated mode often takes a relatively small portion of the operating time. Thus, the efficiency of heating systems is largely determined by the method used for its control, including the possibility of regulating the main units and elements of the system. The paper considers the factors affecting the system efficiency. Mathematical models of the system elements allowing adjust the amount of released heat energy for consumers have been presented. Separately the mathematical model of the control system of electric drive vehicles used in the system has been considered and implemented.

  12. The Sustainable Energy Utility (SEU) Model for Energy Service Delivery

    Science.gov (United States)

    Houck, Jason; Rickerson, Wilson

    2009-01-01

    Climate change, energy price spikes, and concerns about energy security have reignited interest in state and local efforts to promote end-use energy efficiency, customer-sited renewable energy, and energy conservation. Government agencies and utilities have historically designed and administered such demand-side measures, but innovative…

  13. Energy Blocks--A Physical Model for Teaching Energy Concepts

    Science.gov (United States)

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams.…

  14. Learning curves in energy planning models

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, L.; Kypreos, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This study describes the endogenous representation of investment cost learning curves into the MARKAL energy planning model. A piece-wise representation of the learning curves is implemented using Mixed Integer Programming. The approach is briefly described and some results are presented. (author) 3 figs., 5 refs.

  15. Numerical modelling in wave energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    El Marjani, A. [Labo. de Turbomachines, Ecole Mohammadia d' Ingenieurs (EMI), Universite Mohammed V Agdal, Av Ibn Sina, B.P. 765 Agdal, Rabat (Morocco); Castro Ruiz, F.; Rodriguez, M.A.; Parra Santos, M.T. [Depto. de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Valladolid, Paseo del Cauce s/n, E-47011 Valladolid (Spain)

    2008-08-15

    This paper deals with a numerical modelling devoted to predict the flow characteristics in the components of an oscillating water column (OWC) system used for the wave energy capture. In the present paper, the flow behaviour is modelled by using the FLUENT code. Two numerical flow models have been elaborated and tested independently in the geometries of an air chamber and a turbine, which is chosen of a radial impulse type. The flow is assumed to be three-dimensional (3D), viscous, turbulent and unsteady. The FLUENT code is used with a solver of the coupled conservation equations of mass, momentum and energy, with an implicit time scheme and with the adoption of the dynamic mesh and the sliding mesh techniques in areas of moving surfaces. Turbulence is modelled with the k-{epsilon} model. The obtained results indicate that the developed models are well suitable to analyse the air flows both in the air chamber and in the turbine. The performances associated with the energy transfer processes have been well predicted. For the turbine, the numerical results of pressure and torque were compared to the experimental ones. Good agreements between these results have been observed. (author)

  16. Total fission cross section of {sup 181}Ta and {sup 208}Pb induced by protons at relativistic energies

    Energy Technology Data Exchange (ETDEWEB)

    Ayyad, Y.; Benlliure, J.; Casarejos, E. [Group GENP, Dpto. Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Schmidt, K. H. [GSI, Planckstrasse 1, 64941, Darmstadt (Germany); Jurado, B. [Universite Bordeaux I, CNRS/IN2 P3, CENBG, BP 120, F-33175 Gradignan (France); Kelic-Heil, A. [GSI, Planckstrasse 1, 64941, Darmstadt (Germany); Pol, H. A. [Group GENP, Dpto. Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Ricciardi, M. V.; Pleskac, R. [GSI, Planckstrasse 1, 64941, Darmstadt (Germany); Enqvist, T. [CUPP Project, P.O. Box 22, FI-86801, Pyhsalmi (Finland); Rejmund, F. [Grand Accelerateur National D Ions Lourds, BP 55027, F-14076 Caen Cedex 05 (France); Giot, L. [Subatech - Ecole des Mines de Nantes (France); Henzl, V. [Massachusetts Inst. of Technology, 77, Massachusetts Ave, Cambridge, MA 02139 (United States); Lukic, S. [Karlsruhe Inst. of Technology, D-76021 Karlsruhe (Germany); Ngoc, S. N. [Dept. of Nuclear Physics, Inst. of Physics, National Centre for Natural Science and Technology, NgiaDo-TuLiem, Hanoi (Viet Nam); Boudard, A. [DSM/IRFU/CEA, 91191 Gif-sur-Ivette (France); Universite Louis Pasteur, Strasbourg (France); Leray, S. [DSM/IRFU/CEA, 91191 Gif-sur-Ivette (France); Fernandez, M. [Entro de Investigaciones Energticas Medioambientales Y Tecnolgicas, Madrid (Spain); Kurtukian, T. [Universite Bordeaux I, CNRS/IN2 P3, CENBG, BP 120, F-33175 Gradignan (France); Nadtochy, P. [Omsk State Univ., Dept. of Theoretical Physics, RU-644077 Omsk (Russian Federation); Schmitt, C. [Grand Accelerateur National D' Ions Lourds, BP 55027, F-14076 Caen Cedex 05 (France); Henzlova, D. [Los Alamos National Laboratory, Safeguards Science and Technology Group N-1, Los Alamos, NM 87545 (United States); Paradela, C. [Group GENP, Dpto. Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Bacquias, A. [DSM/IRFU/CEA, 91191 Gif-sur-Ivette (France); Universite Louis Pasteur, Strasbourg (France); Loureiro, D. P. [Group GENP, Dpto. Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Foehr, V. [GSI, Planckstrasse 1, 64941, Darmstadt (Germany); Tarrio, D. [Group GENP, Dpto. Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Kezzar, K. [DSM/IRFU/CEA, 91191 Gif-sur-Ivette (France)

    2011-07-01

    Total fission cross section induced by protons in {sup 181}Ta and {sup 208}Pb at energies in the range of 300 to 1000 A MeV have been measured at GSI (Germany) using the inverse kinematics technique. A dedicated setup with high efficiency made it possible to determine these cross sections with high accuracy. The new data seed light in the controversial results obtained so far and contribute to the understanding of the fission process at high excitation energies. (authors)

  17. Beverage Consumption Habits and Association with Total Water and Energy Intakes in the Spanish Population: Findings of the ANIBES Study

    OpenAIRE

    Mariela Nissensohn; Almudena Sánchez-Villegas; Rosa M Ortega; Javier Aranceta-Bartrina; Ángel Gil; Marcela González-Gross; Gregorio Varela-Moreiras; Lluis Serra-Majem

    2016-01-01

    Background: Inadequate hydration is a public health issue that imposes a significant economic burden. In Spain, data of total water intake (TWI) are scarce. There is a clear need for a national study that quantifies water and beverage intakes and explores associations between the types of beverages and energy intakes. Methods: The Anthropometry, Intake and Energy Balance Study ANIBES is a national survey of diet and nutrition conducted among a representative sample of 2285 healthy participant...

  18. The problem with total error models in establishing performance specifications and a simple remedy.

    Science.gov (United States)

    Krouwer, Jan S

    2016-08-01

    A recent issue in this journal revisited performance specifications since the Stockholm conference. Of the three recommended methods, two use total error models to establish performance specifications. It is shown that the most commonly used total error model - the Westgard model - is deficient, yet even more complete models fail to capture all errors that comprise total error. Moreover, total error models are often set at 95% of results, which leave 5% of results as unspecified. Glucose meter performance standards are used to illustrate these problems. The Westgard model is useful to asses assay performance but not to set performance specifications. Total error can be used to set performance specifications if the specifications include 100% of the results.

  19. Development of an Integrated Global Energy Model

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1999-07-08

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E{sup 3}) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term ({approximately}2,100) context. The E{sup 3} model so developed was applied to create a Los Alamos presence in this E{sup 3} area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E{sup 3} model have been presented at a variety of national and international conferences and workshops. Through use of the E{sup 3} model Los Alamos was afforded the opportunity to participate in a multi-national E{sup 3} study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E{sup 3} model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project.

  20. Constraining Logotropic Unified Dark Energy Models

    CERN Document Server

    Ferreira, V M C

    2016-01-01

    A unification of dark matter and dark energy in terms of a logotropic perfect dark fluid has recently been proposed, where deviations with respect to the standard $\\Lambda {\\rm CDM}$ model are dependent on a single parameter $B$. In this paper we show that the requirement that the linear growth of cosmic structures on comoving scales larger than $8 h^{-1} \\, {\\rm Mpc}$ is not significantly affected with respect to the standard $\\Lambda {\\rm CDM}$ result provides the strongest constraint to date on the model ($B <6 \\times 10^{-7}$), an improvement of more than three orders of magnitude over previous constraints on the value of $B$. We further show that this constraint rules out the logotropic Unified Dark Energy model as a possible solution to the small scale problems of the $\\Lambda$CDM model, including the cusp problem of Dark Matter halos or the missing satellite problem, as well as the original version of the model where the Planck energy density was taken as one of the two parameters characterizing the...

  1. Cosmological Perturbations in Phantom Dark Energy Models

    Directory of Open Access Journals (Sweden)

    Imanol Albarran

    2017-03-01

    Full Text Available The ΛCDM paradigm, characterised by a constant equation of state w = − 1 for dark energy, is the model that better fits observations. However, the same observations strongly support the possibility of a dark energy content where the corresponding equation of state is close to but slightly smaller than − 1 . In this regard, we focus on three different models where the dark energy content is described by a perfect fluid with an equation of state w ≲ − 1 which can evolve or not. The three proposals show very similar behaviour at present, while the asymptotic evolution of each model drives the Universe to different abrupt events known as (i Big Rip; (ii Little Rip (LR; and (iii Little Sibling of the Big Rip. With the aim of comparing these models and finding possible imprints in their predicted matter distribution, we compute the matter power spectrum and the growth rate f σ 8 . We conclude that the model which induces a LR seems to be favoured by observations.

  2. Singularity Problem in Teleparallel Dark Energy Models

    CERN Document Server

    Geng, Chao-Qiang; Lee, Chung-Chi

    2013-01-01

    We study the singularity problem in teleparallel dark energy models. A future singularity may occur due to the non-minimal coupling of the dark energy scalar field to teleparallel gravity that effectively changes the gravitational coupling strength and can even make it diverge. This singularity may be avoided by a binding-type self-potential that keeps the scalar field away from the singularity point. For demonstration we analyze the model with a quadratic potential and show how the (non)occurrence of the singularity depends on the initial conditions and the steepness of the potential, both of which affect the competition between the self-interaction and the non-minimal coupling. To examine the capability of the binding-type potential to fit observational data and meanwhile to avoid the singularity, we perform the data fitting for this model and show that the observationally viable region up to the $3\\sigma$ confidence level is free of the future singularity.

  3. Simple implementation of general dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, Jolyon K. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave #37241, Cambridge, MA, 02139 (United States); Pearson, Jonathan A., E-mail: jolyon@mit.edu, E-mail: jonathan.pearson@durham.ac.uk [Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE (United Kingdom)

    2014-03-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data.

  4. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.

    Science.gov (United States)

    Wang, Jake X; Smith, Joshua R; Bonde, Pramod

    2014-04-01

    Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources.

  5. PECULIARITIES OF THE RENEWABLE ENERGY BUSINESS MODELS

    Directory of Open Access Journals (Sweden)

    BĂLOI Ionut-Cosmin

    2014-07-01

    Full Text Available By exploring the competitiveness of industries and companies, we could identify the factors whose importance is likely to generate competitive advantage. An inventory of content elements of the business model summarizes the clearest opportunities and prospects. The objectives developed throughout the paper want to identify the pillars of a renewable business model and to describe the strategic dimensions of their capitalisation in regional and national energy entrepreneurship. The trend of increasing the renewable energy business volume is driven by the entrepreneurs and company’s availability to try new markets, with many unpredictable implications and the willingness of these players or their creditors to spend their savings, in various forms, for the concerned projects. There is no alternative to intensive investment strategies, given that the small projects are not able to create high value and competitiveness for interested entrepreneurs. For this reason, the international practice shows that the business models in energy production are supported by partnerships and networks of entrepreneurs who are involved in the development of large projects. The most important feature of renewable business initiatives is on attracting the latest clean emerging technologies, and obviously the investors who can assume the risk of such great projects. The benefits of a well developed business model recommend a prudent approach in the launching in the investment strategies, because the competitive contexts hide always some dissatisfaction of the partners that endanger the business concept’s success. The small firms can develop a profitable business model by exploring the opportunity of the alliances, namely the particular joint ventures (association between Romanian and foreign firms. The advantages of joint venture's partners are considerable; they include access to expertise, resources and other assets that the partners could not achieve on their own

  6. Split Bregman Iteration Algorithm for Image Deblurring Using Fourth-Order Total Bounded Variation Regularization Model

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2013-01-01

    Full Text Available We propose a fourth-order total bounded variation regularization model which could reduce undesirable effects effectively. Based on this model, we introduce an improved split Bregman iteration algorithm to obtain the optimum solution. The convergence property of our algorithm is provided. Numerical experiments show the more excellent visual quality of the proposed model compared with the second-order total bounded variation model which is proposed by Liu and Huang (2010.

  7. MODELING AND ANALYSIS OF ENERGY SYSTEM BASED ON COMPLEX ADAPTIVE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    QIU Shiming; GU Peiliang

    2004-01-01

    Complex adaptive system (CAS) is a kind of complex system in natural and artificial systems. In this paper, the theory of complex adaptive system is introduced at first. Considering the characteristic of energy system, it can be regarded as a complex adaptive system. After the evolutionary law is analysed, the energy complex system model is established based on CAS and application tool SWARM, which is a simulation software platform. The model differs from the models as well as methods developed before. As an application, China's energy system is simulated with the model established above.China's future total energy demand in the future, energy structure and related in fiuence on environment are presented.

  8. Energy consumption optimization of the total-FETI solver by changing the CPU frequency

    Science.gov (United States)

    Horak, David; Riha, Lubomir; Sojka, Radim; Kruzik, Jakub; Beseda, Martin; Cermak, Martin; Schuchart, Joseph

    2017-07-01

    The energy consumption of supercomputers is one of the critical problems for the upcoming Exascale supercomputing era. The awareness of power and energy consumption is required on both software and hardware side. This paper deals with the energy consumption evaluation of the Finite Element Tearing and Interconnect (FETI) based solvers of linear systems, which is an established method for solving real-world engineering problems. We have evaluated the effect of the CPU frequency on the energy consumption of the FETI solver using a linear elasticity 3D cube synthetic benchmark. In this problem, we have evaluated the effect of frequency tuning on the energy consumption of the essential processing kernels of the FETI method. The paper provides results for two types of frequency tuning: (1) static tuning and (2) dynamic tuning. For static tuning experiments, the frequency is set before execution and kept constant during the runtime. For dynamic tuning, the frequency is changed during the program execution to adapt the system to the actual needs of the application. The paper shows that static tuning brings up 12% energy savings when compared to default CPU settings (the highest clock rate). The dynamic tuning improves this further by up to 3%.

  9. Reveal of small alkanes and isomers using calculated core and valence binding energy spectra and total momentum cross sections

    CERN Document Server

    Yang, Zejin

    2013-01-01

    The present study revealed quantum mechanically that the C1s binding energy spectra of the small alkanes (upto six carbons) provide a clear picture of isomeric chemical shift in linear alkanes and branched isomers, whereas the valence binding energy spectra contain more sensitive information regarding the length of the carbon chains. Total momentum cross sections of the alkanes exhibit the information of the chain length as well as constitutional isomers of the small alkanes. The C1s binding energies of small alkanes (including isomers) are position specific and the terminal carbons have the lowest energies. The length of an alkane chain does not apparently affect the C1s energies so that the terminal carbons (289.11 eV) of pentane are almost the same as those of hexane. The valence binding energy spectra of the alkanes are characterized by inner valence and outer valence regions which are separated by an energy gap at approximately 17 eV. The intensities of the total momentum cross sections of the alkanes ar...

  10. Is the decrease of the total electron energy density a covalence indicator in hydrogen and halogen bonds?

    Science.gov (United States)

    Angelina, Emilio L; Duarte, Darío J R; Peruchena, Nélida M

    2013-05-01

    In this work, halogen bonding (XB) and hydrogen bonding (HB) complexes were studied with the aim of analyzing the variation of the total electronic energy density H(r b ) with the interaction strengthening. The calculations were performed at the MP2/6-311++G(2d,2p) level of approximation. To explain the nature of such interactions, the atoms in molecules theory (AIM) in conjunction with reduced variational space self-consistent field (RVS) energy decomposition analysis were carried out. Based on the local virial theorem, an equation to decompose the total electronic energy density H(r b ) in two energy densities, (-G(r b )) and 1/4∇(2)ρ(r b ), was derived. These energy densities were linked with the RVS interaction energy components. Through the connection between both decomposition schemes, it was possible to conclude that the decrease in H(r b ) with the interaction strengthening observed in the HB as well as the XB complexes, is mainly due to the increase in the attractive electrostatic part of the interaction energy and in lesser extent to the increase in its covalent character, as is commonly considered.

  11. Nonlinear modeling of thermoacoustically driven energy cascade

    Science.gov (United States)

    Gupta, Prateek; Scalo, Carlo; Lodato, Guido

    2016-11-01

    We present an investigation of nonlinear energy cascade in thermoacoustically driven high-amplitude oscillations, from the initial weakly nonlinear regime to the shock wave dominated limit cycle. We develop a first principle based quasi-1D model for nonlinear wave propagation in a canonical minimal unit thermoacoustic device inspired by the experimental setup of Biwa et al.. Retaining up to quadratic nonlinear terms in the governing equations, we develop model equations for nonlinear wave propagation in the proximity of differentially heated no-slip boundaries. Furthermore, we discard the effects of acoustic streaming in the present study and focus on nonlinear energy cascade due to high amplitude wave propagation. Our model correctly predicts the observed exponential growth of the thermoacoustically amplified second harmonic, as well as the energy transfer rate to higher harmonics causing wave steepening. Moreover, we note that nonlinear coupling of local pressure with heat transfer reduces thermoacoustic amplification gradually thus causing the system to reach limit cycle exhibiting shock waves. Throughout, we verify the results from the quasi-1D model with fully compressible Navier-Stokes simulations.

  12. Dynamic energy-demand models. A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Feng [Department of Economics, Goeteborg University, Gothenburg (Sweden)

    2000-04-01

    This paper compares two second-generation dynamic energy demand models, a translog (TL) and a general Leontief (GL), in the study of price elasticities and factor substitutions of nine Swedish manufacturing industries: food, textiles, wood, paper, printing, chemicals, non-metallic minerals, base metals and machinery. Several model specifications are tested with likelihood ratio test. There is a disagreement on short-run adjustments; the TL model accepts putty-putty production technology of immediate adjustments, implying equal short- and long-run price elasticities of factors, while the GL model rejects immediate adjustments, giving out short-run elasticities quite different from the long-run. The two models also disagree in substitutability in many cases. 21 refs.

  13. Alternative Dark Energy Models: An Overview

    CERN Document Server

    Lima, J A S

    2004-01-01

    A large number of recent observational data strongly suggest that we live in a flat, accelerating Universe composed of $\\sim$ 1/3 of matter (baryonic + dark) and $\\sim$ 2/3 of an exotic component with large negative pressure, usually named {\\bf Dark Energy} or {\\bf Quintessence}. The basic set of experiments includes: observations from SNe Ia, CMB anisotropies, large scale structure, X-ray data from galaxy clusters, age estimates of globular clusters and old high redshift galaxies (OHRG's). Such results seem to provide the remaining piece of information connecting the inflationary flatness prediction ($\\Omega_{\\rm{T}} = 1$) with astronomical observations. Theoretically, they have also stimulated the current interest for more general models containing an extra component describing this unknown dark energy, and simultaneously accounting for the present accelerating stage of the Universe. An overlook in the literature shows that at least five dark energy candidates have been proposed in the context of general re...

  14. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  15. Corporate social responsibility report 2003. Sharing our energies; Notre energie en partage. TOTAL rapport societal and environnemental 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-05-15

    This document assesses the results of the group Total initiatives in the domain of the corporate social responsibility, for the year 2003. It presents the society policy and actions concerning: the ethics as a foundation of broader corporate, the environment stewardship and the safety enhancement, the equity and diversity of the labor relations and human resources, the broader responsibility to society and communities, the financial performance and a group portrait. (A.L.B.)

  16. Sharing our energies. Corporate social responsibility report 2002; TOTAL notre energie en partage. Rapport societal et environmental 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-15

    This document assesses the results of the group Total initiatives in the domain of the corporate social responsibility, for the year 2002. It presents the society policy and actions concerning: the ethics as a foundation of broader corporate, the environment stewardship and the safety enhancement, the equity and diversity of the labor relations and human resources, the broader responsibility to society and communities, the financial performance and a group portrait. (A.L.B.)

  17. Addressing Energy System Modelling Challenges: The Contribution of the Open Energy Modelling Framework (oemof)

    DEFF Research Database (Denmark)

    Hilpert, Simon; Günther, Stephan; Kaldemeyer, Cord

    2017-01-01

    The process of modelling energy systems is accompanied by challenges inherently connected with mathematical modelling. However, due to modern realities in the 21st century, existing challenges are gaining in magnitude and are supplemented with new ones. Modellers are confronted with a rising comp...

  18. Positron total cross sections for collisions with O2, H2O and CH4 in energy range from 30 to 3000eV

    Institute of Scientific and Technical Information of China (English)

    Shi De-Heng; Liu Yu-Fang; Sun Jin-Feng; Zhu Zun-Lue; Yang Xiang-Dong

    2005-01-01

    Total (elastic plus inelastic) cross sections (TCSs) for the scattering of positrons by molecules O2, H2O and CH4 in the energy range from 30 to 3000eV are calculated using the additivity rule model at Hartree-Fock level. A complex optical model potential modified by incorporating the concept of bonded atom which takes into considerationthe overlapping effect of electron clouds between two atoms in a molecule is firstly employed for the TCS calculation of positron-molecule scattering. TCSs are quantitatively compared with those obtained in experiments and other theorieswherever available, and good agreement is obtained in the energy range from 30 to 3000eV. It is shown that the additivity rule model together with the modified complex optical model potential is completely suitable for the TCS calculations of the positron-molecule scattering.

  19. Studies on fission with ALADIN. Precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Belier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric [CEA DAM Bruyeres-le-Chatel, Arpajon (France); Alvarez-Pol, Hector; Ayyad, Yassid; Benlliure, Jose; Cortina Gil, Dolores; Caamano, Manuel; Fernandez Dominguez, Beatriz; Paradela, Carlos; Ramos, Diego; Rodriguez-Sanchez, Jose-Luis; Vargas, Jossitt [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, Laurent; Tassan-Got, Laurent [CNRS/IN2P3, IPNO, Orsay (France); Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Casarejos, Enrique [Universidad de Vigo, Vigo (Spain); Farget, Fanny; Rodriguez-Tajes, Carme [CNRS/IN2P3, GANIL, Caen (France); Heinz, Andreas [Chalmers University of Technology, Gothenburg (Sweden); Jurado, Beatriz [CNRS/IN2P3, CENBG, Gradignan (France); Kelic-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Pietri, Stephane; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Voss, Bernd; Weick, Helmut [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-12-15

    A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism. (orig.)

  20. 灰色预测模型在陕西省电力消费量预测中的应用%Using GM (1,1) to Predict New Energy Source Producing Proportion in the Yearly Total Energy Producing

    Institute of Scientific and Technical Information of China (English)

    张依玲

    2013-01-01

    电力消费是人们日常生活必不可少的,随着城市的大力发展,有效地对电力消费进行预测显得越来越重要。本文采用灰色预测模型GM(1,1),建立陕西省电力消费量预测GM(1,1)模型,验证预测精度,进一步对2011-2015年陕西省的电力消费量进行预测,为今后陕西省的电力规划提供参考价值。%The energy consumption is essential to people’s daily lives, as the global environmental protection requirements for continuous improvement, effective use of clean and environmentally friendly new energy (especially wind power and solar power) has become increasingly important. In this paper, using gray prediction model GM (1, 1), to establish the new energy production accounts for the proportion of the yearly total energy production forecasting GM (1, 1) model, verify the prediction accuracy, then further to predict 2011-2015 new energy production accounts for the proportion of total energy production, to provide a reference value for the future use of new energy.

  1. Numerical modeling of sandwich panel response to ballistic loading - energy balance for varying impactor geometries

    DEFF Research Database (Denmark)

    Kepler, Jørgen Asbøl; Hansen, Michael Rygaard

    2007-01-01

    thickness but significantly smaller than panel length dimensions. Experimental data for the total loss in impactor kinetic energy and momentum and estimated damage energy are described. For a selection of impactor tip shapes, the numerical model is used to evaluate different simplified force histories...... between the impactor and the panel during penetration. The force histories are selected from a primary criterion of conservation of linear momentum in the impactor-panel system, and evaluated according to agreement with the total measured energy balance....

  2. Scripted Building Energy Modeling and Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

    2012-08-01

    Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

  3. Camera-based model to predict the total difference between effect coatings under directional illumination

    Institute of Scientific and Technical Information of China (English)

    Zhongning Huang; Haisong Xu; M.Rounier Luo

    2011-01-01

    @@ A camera-based model is established to predict the total difference for samples of metallic panels with effect coatings under directional illumination,and the testing results indicate that the model can precisely predict the total difference between samples with metallic coatings with satisfactory consistency to the visual data.Due to the limited amount of testing samples,the model performance should be further developed by increasing the training and testing samples.%A camera-based model is established to predict the total difference for samples of metallic panels with effect coatings under directional illumination, and the testing results indicate that the model can precisely predict the total difference between samples with metallic coatings with satisfactory consistency to the visual data. Due to the limited amount of testing samples, the model performance should be further developed by increasing the training and testing samples.

  4. Total Water Intake from Beverages and Foods Is Associated with Energy Intake and Eating Behaviors in Korean Adults.

    Science.gov (United States)

    Lee, Kyung Won; Shin, Dayeon; Song, Won O

    2016-10-04

    Water is essential for the proper functioning of the body. Even though a recommendation exists for adequate water intake for Koreans, studies identifying actual water intake from all beverages and foods consumed daily in the Korean population are limited. Thus, we estimated total water intake from both beverages and foods and its association with energy intake and eating behaviors in Korean adults. We used a nationally representative sample of 25,122 Korean adults aged ≥19 years, from the Korean National Health and Nutrition Examination Survey 2008-2012. We performed multiple regression analyses, adjusting for sociodemographic and health-related variables to investigate the contribution of overall energy and dietary intakes and eating behaviors to total water intake. The mean total water intake excluding plain water was 1071 g (398 g from beverages and 673 g from foods) and the estimated plain water intake was 1.3 L. Among Korean adults, 82% consumed beverages (excluding plain water) and these beverages contributed to 10% of daily energy intake and 32% of total water intake from beverages and foods. For every 100 kcal/day in energy intake, water intake consumed through beverages and foods increased by 18 g and 31 g, respectively. Water intake from beverages and foods was positively associated with energy from fat and dietary calcium, but inversely associated with energy density and energy from carbohydrates. When there was a 5% increase in energy intake from snacks and eating outside the home, there was an increase in water intake from beverages of 13 g and 2 g, respectively. Increased daily energy intake, the number of eating episodes, and energy intake from snacks and eating outside the home predicted higher water intake from beverages and foods. Our results provide evidence suggesting that various factors, including sociodemographic status, dietary intakes, and eating behaviors, could be important contributors to the water intake of Korean adults. Findings

  5. Total Water Intake from Beverages and Foods Is Associated with Energy Intake and Eating Behaviors in Korean Adults

    Directory of Open Access Journals (Sweden)

    Kyung Won Lee

    2016-10-01

    Full Text Available Water is essential for the proper functioning of the body. Even though a recommendation exists for adequate water intake for Koreans, studies identifying actual water intake from all beverages and foods consumed daily in the Korean population are limited. Thus, we estimated total water intake from both beverages and foods and its association with energy intake and eating behaviors in Korean adults. We used a nationally representative sample of 25,122 Korean adults aged ≥19 years, from the Korean National Health and Nutrition Examination Survey 2008–2012. We performed multiple regression analyses, adjusting for sociodemographic and health-related variables to investigate the contribution of overall energy and dietary intakes and eating behaviors to total water intake. The mean total water intake excluding plain water was 1071 g (398 g from beverages and 673 g from foods and the estimated plain water intake was 1.3 L. Among Korean adults, 82% consumed beverages (excluding plain water and these beverages contributed to 10% of daily energy intake and 32% of total water intake from beverages and foods. For every 100 kcal/day in energy intake, water intake consumed through beverages and foods increased by 18 g and 31 g, respectively. Water intake from beverages and foods was positively associated with energy from fat and dietary calcium, but inversely associated with energy density and energy from carbohydrates. When there was a 5% increase in energy intake from snacks and eating outside the home, there was an increase in water intake from beverages of 13 g and 2 g, respectively. Increased daily energy intake, the number of eating episodes, and energy intake from snacks and eating outside the home predicted higher water intake from beverages and foods. Our results provide evidence suggesting that various factors, including sociodemographic status, dietary intakes, and eating behaviors, could be important contributors to the water intake of Korean

  6. Dose-Dependent Model of Caffeine Effects on Human Vigilance during Total Sleep Deprivation

    Science.gov (United States)

    2014-05-20

    Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation Sridhar Ramakrishnan a, Srinivas Laxminarayan a, Nancy J...We modeled the dose-dependent effects of caffeine on human vigilance. The model predicted the effects of both single and repeated caffeine doses...We developed and validated the model using two laboratory studies. Individual-specific caffeine models outperformed population-average models. a

  7. Low energy behaviour of standard model extensions

    CERN Document Server

    Boggia, Michele; Passarino, Giampiero

    2016-01-01

    The integration of heavy scalar fields is discussed in a class of BSM models, containing more that one representation for scalars and with mixing. The interplay between integrating out heavy scalars and the Standard Model decoupling limit is examined. In general, the latter cannot be obtained in terms of only one large scale and can only be achieved by imposing further assumptions on the couplings. Systematic low-energy expansions are derived in the more general, non-decoupling scenario, including mixed tree-loop and mixed heavy-light generated operators. The number of local operators is larger than the one usually reported in the literature.

  8. Single- and dual energy QCT around acetabular cups in total hip arthroplasty using 3-dimensional segmentation

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder; Andersen, Poul Erik; Torfing, Trine

    Introduction: Bone density measurements around hip implants are challenged by artifacts and the complex anatomy of the acetabulum. We developed 3D segmentation software and used dual energy CT to reduce artifacts. The between-scan agreement and reliability of the software was tested and bone mine...

  9. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  10. A mathematical model of weight loss under total starvation: evidence against the thrifty-gene hypothesis

    Directory of Open Access Journals (Sweden)

    John R. Speakman

    2013-01-01

    The thrifty-gene hypothesis (TGH posits that the modern genetic predisposition to obesity stems from a historical past where famine selected for genes that promote efficient fat deposition. It has been previously argued that such a scenario is unfeasible because under such strong selection any gene favouring fat deposition would rapidly move to fixation. Hence, we should all be predisposed to obesity: which we are not. The genetic architecture of obesity that has been revealed by genome-wide association studies (GWAS, however, calls into question such an argument. Obesity is caused by mutations in many hundreds (maybe thousands of genes, each with a very minor, independent and additive impact. Selection on such genes would probably be very weak because the individual advantages they would confer would be very small. Hence, the genetic architecture of the epidemic may indeed be compatible with, and hence support, the TGH. To evaluate whether this is correct, it is necessary to know the likely effects of the identified GWAS alleles on survival during starvation. This would allow definition of their advantage in famine conditions, and hence the likely selection pressure for such alleles to have spread over the time course of human evolution. We constructed a mathematical model of weight loss under total starvation using the established principles of energy balance. Using the model, we found that fatter individuals would indeed survive longer and, at a given body weight, females would survive longer than males, when totally starved. An allele causing deposition of an extra 80 g of fat would result in an extension of life under total starvation by about 1.1–1.6% in an individual with 10 kg of fat and by 0.25–0.27% in an individual carrying 32 kg of fat. A mutation causing a per allele effect of 0.25% would become completely fixed in a population with an effective size of 5 million individuals in 6000 selection events. Because there have probably been about 24

  11. Valuation Model for Adding Energy Resource into Autonomous Energy Cluster

    NARCIS (Netherlands)

    De Kok, E.; Negeri, E.O.; Van Wijk, A.; Baken, N.

    2013-01-01

    With the availability of distributed generation (DG), clusters that can autonomously manage their energy profile are emerging in the power grid. These autonomous clusters manage their load profiles by orchestrating their energy resources, such as DG, storage, flexible energy consuming appliances, et

  12. Valuation Model for Adding Energy Resource into Autonomous Energy Cluster

    NARCIS (Netherlands)

    De Kok, E.; Negeri, E.O.; Van Wijk, A.; Baken, N.

    2013-01-01

    With the availability of distributed generation (DG), clusters that can autonomously manage their energy profile are emerging in the power grid. These autonomous clusters manage their load profiles by orchestrating their energy resources, such as DG, storage, flexible energy consuming appliances,

  13. Total Cross Sections at current/Future Colliders, conventional models and QCD

    CERN Document Server

    Fazal-e-Aleem, M

    1999-01-01

    Rise in total cross sections for elastic scattering generated immense interest both for experimental measurements and theoretical investigations. How will total cross section behave at LHC and Cosmic Ray energies is therefore in the limelight of our future measurements. Theoretical studies become even more interesting when we take into consideration the ratio of real and imaginary parts of the scattering amplitudes. We will briefly undertake the current results and future prospects in the light of conventional as well as QCD-based phenomenology.

  14. Applications of GARCH models to energy commodities

    Science.gov (United States)

    Humphreys, H. Brett

    This thesis uses GARCH methods to examine different aspects of the energy markets. The first part of the thesis examines seasonality in the variance. This study modifies the standard univariate GARCH models to test for seasonal components in both the constant and the persistence in natural gas, heating oil and soybeans. These commodities exhibit seasonal price movements and, therefore, may exhibit seasonal variances. In addition, the heating oil model is tested for a structural change in variance during the Gulf War. The results indicate the presence of an annual seasonal component in the persistence for all commodities. Out-of-sample volatility forecasting for natural gas outperforms standard forecasts. The second part of this thesis uses a multivariate GARCH model to examine volatility spillovers within the crude oil forward curve and between the London and New York crude oil futures markets. Using these results the effect of spillovers on dynamic hedging is examined. In addition, this research examines cointegration within the oil markets using investable returns rather than fixed prices. The results indicate the presence of strong volatility spillovers between both markets, weak spillovers from the front of the forward curve to the rest of the curve, and cointegration between the long term oil price on the two markets. The spillover dynamic hedge models lead to a marginal benefit in terms of variance reduction, but a substantial decrease in the variability of the dynamic hedge; thereby decreasing the transactions costs associated with the hedge. The final portion of the thesis uses portfolio theory to demonstrate how the energy mix consumed in the United States could be chosen given a national goal to reduce the risks to the domestic macroeconomy of unanticipated energy price shocks. An efficient portfolio frontier of U.S. energy consumption is constructed using a covariance matrix estimated with GARCH models. The results indicate that while the electric

  15. Modeling Smart Energy Systems for Model Predictive Control

    DEFF Research Database (Denmark)

    2012-01-01

    as it is produced requires a very exible and controllable power consumption. Examples of controllable electric loads are heat pumps in buildings and Electric Vehicles (EVs) that are expected to play a large role in the future danish energy system. These units in a smart energy system can potentially oer exibility...... on a time scale ranging from seconds to several days by moving power consumption, exploiting thermal inertia or battery storage capacity, respectively. Using advanced control algorithms these systems are able to reduce their own electricity costs by planning ahead and moving consumption to periods...... the total power consumption of the smart energy systems connected to the power grid. Compared to a direct control strategy the complexity of the problem is reduced and decreases both the computation eorts and the need for communication. However, not only the current price, but a forecast of the expected...

  16. An Occupant Behavior Model for Building Energy Efficiency and Safety

    Science.gov (United States)

    Pan, L. L.; Chen, T.; Jia, Q. S.; Yuan, R. X.; Wang, H. T.; Ding, R.

    2010-05-01

    An occupant behavior model is suggested to improve building energy efficiency and safety. This paper provides a generic outline of the model, which includes occupancy behavior abstraction, model framework and primary structure, input and output, computer simulation results as well as summary and outlook. Using information technology, now it's possible to collect large amount of information of occupancy. Yet this can only provide partial and historical information, so it's important to develop a model to have full view of the researched building as well as prediction. We used the infrared monitoring system which is set at the front door of the Low Energy Demo Building (LEDB) at Tsinghua University in China, to provide the time variation of the total number of occupants in the LEDB building. This information is used as input data for the model. While the RFID system is set on the 1st floor, which provides the time variation of the occupants' localization in each region. The collected data are used to validate the model. The simulation results show that this presented model provides a feasible framework to simulate occupants' behavior and predict the time variation of the number of occupants in the building. Further development and application of the model is also discussed.

  17. A Model for High Energy Scattering in Quantum Gravity

    CERN Document Server

    Banks, T; Banks, Tom; Fischler, Willy

    1999-01-01

    We present a model for high energy two body scattering in a quantum theory of gravity. The model is applicable for center of mass energies higher than the relevant Planck scale. At impact parameters smaller than the Schwarzchild radius appropriate to the center of mass energy and total charge of the initial state, the cross section is dominated by an inelastic process in which a single large black hole is formed. The black hole then decays by Hawking radiation. The elastic cross section is highly suppressed at these impact parameters because of the small phase space for thermal decay into a high energy two body state. For very large impact parameter the amplitude is dominated by eikonalized single graviton exchange. At intermediate impact parameters the scattering is more complicated, but since the Schwarzchild radius grows with energy, we speculate that a more sophisticated eikonal calculation which uses the nonlinear classical solutions of the field equations may provide a good approximation at all larger i...

  18. From partial to total economic analysis. Five applications to environmental and energy economics

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, T.

    2006-05-04

    The studies presented in this thesis address the consequences of market distortions of governmental policies - predominantly in the area of environmental and energy policy. The studies cover different economic aggregation levels: The first study aims at investigating firm-level effects. Thus, the results refer only to a small number of well-defined economic entities, e.g. electricity supply companies in Germany. Subsequently, issues - such as the evaluation of efficiency effects of the European Emissions Trading system - are addressed on a multi-sectoral and multi-regional level, but still only one market is considered. Thereupon, the scope of investigation is broadened by interactions of different markets - e.g. as in the case of the economic evaluation of renewable energy promotion strategies. Finally, a general equilibrium analysis of a European nuclear phase-out scenario covers all economic feed-backs on the national and international level. (orig.) 5.

  19. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  20. Singularities and Entropy in Bulk Viscosity Dark Energy Model

    Institute of Scientific and Technical Information of China (English)

    孟新河; 窦旭

    2011-01-01

    In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ0 +λ1(1 +z)n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. B2 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ACDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {τ, s} as axes where the fixed point represents the A CDM model The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling.

  1. Underwater Noise Modelling of Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Future large-scale implementation of wave energy converts (WECs) will introduce an anthropogenic activity in the ocean which may contribute to underwater noise. The Ocean houses several marine species with acoustic sensibility; consequently the potential impact of the underwater noise needs to be addressed. At present, there are no acoustic impact studies based on acquired data. The WEAM project (Wave Energy Acoustic Monitoring) aims at developing an underwater noise monitoring plan for WECs. The development of an acoustic monitoring plan must consider the sound propagation in the ocean, identify noise sources, understand the operational characteristics and select adequate instrumentation. Any monitoring strategy must involve in-situ measurements. However, the vast distances which sound travels within the ocean, can make in-situ measurements covering the entire area of interest, impracticable. This difficulty can be partially overcome through acoustic numerical modelling. This paper presents a synthetic study, on the application of acoustic forward modelling and the evaluation of the impact of noise produced by wave energy devices on marine mammals using criteria based on audiograms of dolphins, or other species. The idea is to illustrate the application of that methodology, and to show to what extent it allows for estimating distances of impacts due to acoustic noise.

  2. Model-Independent Jets plus Missing Energy Searches

    Energy Technology Data Exchange (ETDEWEB)

    Alwall, Johan; Le, My-Phuong; Lisanti, Mariangela; Wacker, Jay G.

    2008-09-22

    We present a proposal for performing model-independent jets plus missing energy searches. Currently, these searches are optimized for mSUGRA and are consequently not sensitive to all kinematically-accessible regions of parameter space. We show that the reach of these searches can be broadened by setting limits on the differential cross section as a function of the total visible energy and the missing energy. These measurements only require knowledge of the relevant Standard Model backgrounds and can be subsequently used to limit any theoretical model of new physics. We apply this approach to an example where gluinos are pair-produced and decay to the LSP through a single-step cascade, and show how sensitivity to different gluino masses is altered by the presence of the decay chain. The analysis is closely based upon the current searches done at the Tevatron and our proposal requires only small modifications to the existing techniques. We find that within the MSSM, the gluino can be as light as 125 GeV. The same techniques are applicable to jets and missing energy searches at the Large Hadron Collider.

  3. AStructural Model Suggestion About Relationship Between Total Tourism Affect Perceived By Local Residents And Tourism Support

    OpenAIRE

    Ekrem Cengiz; Fazl› Kirkbir

    2007-01-01

    This study attempts to examine the structural effects of four tourism-impact factors on total impact and on local residents’support for tourism development. For this purpose, a model was developed and was tested with structural equation model. Test the model, 6 hypothesis constitude and a questionnary was conducted from 193 local residents in Bodrum. Structural equation model was applied using AMOS 4 and SPSS 13. After the test, suggested model accomodate intermediate and all hypothesis was...

  4. Direct measurement of the 15N(p,gamma)16O total cross section at novae energies

    CERN Document Server

    Bemmerer, D; Bonetti, R; Broggini, C; Confortola, F; Corvisiero, P; Costantini, H; Elekes, Z; Formicola, A; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Junker, M; Limata, B; Marta, M; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O

    2009-01-01

    The 15N(p,gamma)16O reaction controls the passage of nucleosynthetic material from the first to the second carbon-nitrogen-oxygen (CNO) cycle. A direct measurement of the total 15N(p,gamma)16O cross section at energies corresponding to hydrogen burning in novae is presented here. Data have been taken at 90-230 keV center-of-mass energy using a windowless gas target filled with nitrogen of natural isotopic composition and a bismuth germanate summing detector. The cross section is found to be a factor two lower than previously believed.

  5. Definition of Total Energy budget equation in terms of moist-air Enthalpy surface flux

    CERN Document Server

    Marquet, Pascal

    2015-01-01

    Uncertainty exists concerning the proper formulation of surface heat fluxes, namely the sum of "sensible" and "latent" heat fluxes, and in fact concerning these two fluxes if they are considered as separate fluxes. In fact, eddy flux of moist-air energy must be defined as the eddy transfer of moist-air specific enthalpy ($\\overline{w' h'}$), where the specific enthalpy ($h$) is equal to the internal energy of moist air plus the pressure divided by the density (namely $h = e_{\\rm int} + p/\\rho$). The fundamental issue is to compute this local (specific) moist-air enthalpy ($h$), and in particular to determine absolute reference value of enthalpies for dry air and water vapour $(h_d)_{\\rm ref}$ and $(h_v)_{\\rm ref}$. New results shown in Marquet (QJRMS 2015, arXiv:1401.3125) are based on the Third-law of Thermodynamics and can allow these computations. In this note, this approach is taken to show that Third-law based values of moist-air enthalpy fluxes is the sum of two terms. These two terms are similar to wha...

  6. Validating hyperbilirubinemia and gut mucosal atrophy with a novel ultramobile ambulatory total parenteral nutrition piglet model

    Science.gov (United States)

    Total parenteral nutrition (TPN) provides all nutrition intravenously. Although TPN therapy has grown enormously, it causes significant complications, including gut and hepatic dysfunction. Current models use animal tethering which is unlike ambulatory human TPN delivery and is cost prohibitive. We ...

  7. Establishing an Integration-Energy-Practice Model for Improving Energy Performance Indicators in ISO 50001 Energy Management Systems

    Directory of Open Access Journals (Sweden)

    Tsung-Yung Chiu

    2012-12-01

    Full Text Available Global energy sources are gradually becoming scarce and prices are continually rising. Governments and businesses in various countries are actively developing technologies for energy management and developing new sources of energy. On 15 June 2011, the International Organization for Standardization (ISO announced the ISO 50001 standard for energy management systems. Organizations and enterprises are confronted with challenges associated with enhancing energy performance indicators, continuing to improve energy consumption efficiency, and managing third-party international certifications. This study conducted cases studies of businesses that have introduced an ISO 50001 energy management system by using an integration-energy-practice model to improve energy performance indicators and to complete the international auditing and certification procedures for ISO 50001 energy management systems. Based on case study results, the achievement rates for annual energy performance indicators increased, thereby enhancing the energy intensity efficiency. Establishing an integration-energy-practice model for introducing an ISO 50001 energy management system can efficiently meet demands for energy performance indicators and pass the international certification for ISO 50001 energy management systems. The proposed model efficiently provides enterprises with methods for developing sustainable energy management. It integrates internal and external technical resources to establish energy technology think tanks, for promoting successful technology and experiences to various sectors, thereby allowing enterprises to integrate energy management, increase energy efficiency, and meet the ISO 50001 international standard for energy management systems.

  8. Energy savings modelling of re-tuning energy conservation measures in large office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2014-10-20

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS’s capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energy’s building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated – each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  9. A New High Energy Resolution Neutron Transmission Detector at the Gaerttner LINAC Center and Isotopic Molybdenum Total Cross Section Measurements in the keV-Region

    Science.gov (United States)

    Bahran, Rian M.

    The Gaerttner LINAC Center at Rensselaer Polytechnic Institute is home to a 60 MeV electron linear accelerator (LINAC) that is used as a pulsed neutron source for TOF nuclear data experiments. High energy resolution total cross section measurements for the stable molybdenum isotopes of Mo-95, Mo-96, Mo-98, and Mo-100 were performed with a newly developed modular neutron transmission detector positioned at a 100 m experimental flight station. This work is part of an effort to both improve existing neutron total cross section libraries and measurement capabilities at the Gaerttner LINAC Center in and above the resolved resonance energy region (from 5-620 keV). The overall design optimization process and qualification of the new high resolution detector is presented. Additionally, a new method to quantify the energy-dependent neutron and gamma-ray experimental background of the detector was developed. High resolution isotopic molybdenum total cross section data are of particular importance because stable Mo isotopes can be found in significant concentrations in a nuclear fuel cycle either as a high yield fission product or in alloyed form with applications in reactor piping, fuel cladding, and as an advanced nuclear fuel in the form of U-Mo. The measured total cross section energy range encompasses the resolved resonance region and extends into the unresolved resonance region for each molybdenum isotope. New high accuracy resonance parameters for Mo-95 were generated from fitting experimental data using the multilevel R-matrix Bayesian code SAMMY in the resolved resonance region. In the unresolved resonance region, average resonance parameters and fits to the total cross section were obtained using the Hauser-Feshbach statistical model code FITACS which is embedded in SAMMY.

  10. Total energy calculation of perovskite, BaTiO3, by self-consistent tight binding method

    Indian Academy of Sciences (India)

    B T Cong; P N A Huy; P K Schelling; J W Halley

    2003-01-01

    We present results of numerical computation on some characteristics of BaTiO3 such as total energy, lattice constant, density of states, band structure etc using self-consistent tight binding method. Besides strong Ti–O bond between 3 on titanium and 2 orbital on oxygen states, we also include weak hybridization between the Ba 6 and O 2 states. The results are compared with those of other more sophisticated methods.

  11. Structural phase diagrams for the surface of a solid - A total-energy, renormalization-group approach

    Science.gov (United States)

    Ihm, J.; Lee, D. H.; Joannopoulos, J. D.; Xiong, J. J.

    1983-11-01

    Total-energy calculations based on microscopic electronic structure are combined with position-space renormalization-group calculations to predict the structural phase transitions of the Si(100) surface as a function of temperature. It is found that two distinct families of reconstructed geometries can exist on the surface, with independent phase transitions occurring within each. Two critical temperatures representing order-disorder transitions are calculated.

  12. Heatstroke Pathophysiology: The Energy Depletion Model

    Science.gov (United States)

    1989-06-12

    Pathophysiology: The Energy Depletion Model Roger W. Hubbard, Ph.D., Director Heat Research Division U. S. Army Research Institute of Environmental...Medicine Natick, MA 01760-5007 USA Send correspondence to: Roger W. Hubbard, Ph.D. Director Heat Research Division USARIEM Kansas St Natick, MA 01760...The NaK-Pump. Part B: Celular Asoects J.C. Skou, J.G. Normy, A.B. Maunsback, and M. Esmann (Eds) New York: Alan R. Uss, 1988, pp. 171-194. 54: Lewis

  13. Symbolic modeling of high energy beam optics

    CERN Document Server

    Autin, Bruno

    1999-01-01

    A classical problem of computational physics consists of finding the minimum of a chi /sup 2/ like function of many variables. Powerful optimization algorithms have been developed but do not guarantee convergence towards an absolute minimum. Analytical methods can improve the insight into a physical problem but calculations quickly exceed the power of a human brain. There comes the interest of optical design of high energy particle accelerators. The physics background is sketched and emphasis is put on the methodology. In practice, algebraic models may not be precise enough but they usually provide excellent initial conditions for a final numerical optimization. (4 refs).

  14. Elastic Model for Dinucleosome Structure and Energy

    CERN Document Server

    Fatemi, Hashem; Mohammad-Rafiee, Farshid

    2016-01-01

    The equilibrium structure of a Dinucleosome is studied using an elastic model that takes into account the force and torque balance conditions. Using the proper boundary conditions, it is found that the conformational energy of the problem does not depend on the length of the linker DNA. In addition it is shown that the two histone octamers are almost perpendicular to each other and the linker DNA in short lengths is almost straight. These findings could shed some light on the role of DNA elasticity in the chromatin structure.

  15. Energy modelling towards low carbon development of Beijing in 2030

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Jiang, Kejun

    2017-01-01

    Beijing, as the capital of China, is under the high pressure of climate change and pollution. The consumption of non-renewable energy is one of the most important sources of the CO2 emissions, which cause climate changes. This paper presents a study on the energy system modelling towards renewable...... energy and low carbon development for the city of Beijing. The analysis of energy system modelling is organized in two steps to explore the alternative renewable energy system in Beijing. Firstly, a reference energy system of Beijing is created based on the available data in 2014. The Energy......PLAN, an energy system analysis tool, is chosen to develop the reference energy model. Secondly, this reference model is used to investigate the alternative energy system for integrating renewable energies. Three scenarios are developed towards the energy system of Beijing in 2030, which are: (i) reference...

  16. Total Lagrangian Finite Element Formulation of the Flory-Rehner Free Energy Function

    Directory of Open Access Journals (Sweden)

    Mario J. Juha

    2013-01-01

    Full Text Available Se trata la implemetación total Lagrangiana en elemento finito de la función de energía libre de Flory-Rehner en un marco de un modelo de material hiperelastico. Explícitamente se dan todas las ecuaciones requeridas para implementar este modelo de material en un análisis de elemento finito no lineal, particularmente, se muestra como derivar el llamado modulo tangente consistente o algorítmico en una descripción Lagrangiana. Algunos resultados analíticos y numéricos para diferentes problemas de valor de frontera son presentados para validar la implementación.

  17. Modelling energy demand in the buildings sector within the EU

    Energy Technology Data Exchange (ETDEWEB)

    O Broin, Eoin

    2012-11-01

    In the on-going effort within the EU to tackle greenhouse gas emissions and secure future energy supplies, the buildings sector is often referred to as offering a large potential for energy savings. The aim of this thesis is to produce scenarios that highlight the parameters that affect the energy demands and thus potentials for savings of the building sector. Top-down and bottom-up approaches to modelling energy demand in EU buildings are applied in this thesis. The top-down approach uses econometrics to establish the historical contribution of various parameters to energy demands for space and water heating in the residential sectors of four EU countries. The bottom-up approach models the explicit impact of trends in energy efficiency improvement on total energy demand in the EU buildings stock. The two approaches are implemented independently, i.e., the results from the top-down studies do not feed into those from the bottom-up studies or vice versa. The explanatory variables used in the top-down approach are: energy prices; heating degree days, as a proxy for outdoor climate; a linear time trend, as a proxy for technology development; and the lag of energy demand, as a proxy for inertia in the system. In this case, inertia refers to the time it takes to replace space and water heating systems in reaction to price changes. The analysis gives long-term price elasticities of demand as follows: for France, -0.17; for Italy, -0.35; for Sweden, -0.27; and for the UK, -0.35. These results reveal that the price elasticity of demand for space and water heating is inelastic in each of these cases. Nonetheless, scenarios created for the period up to 2050 using these elasticities and an annual price increase of 3 % show that demand can be reduced by more than 1 % per year in France and Sweden and by less than 1 % per year in Italy and the UK. In the bottom-up modelling, varying rates for conversion efficiencies, heating standards for new buildings, end-use efficiency, and

  18. Evaluation of n + /sup 242/Pu reactions from 10 keV to 20 MeV. [Total cross sections, neutron emission energy dependence

    Energy Technology Data Exchange (ETDEWEB)

    Madland, D.G.; Young, P.G.

    1978-10-01

    An evaluation of the n + /sup 242/Pu cross sections is presented for the neutron energy range of 10 keV to 20 MeV. The total fission and radiative capture cross sections are based upon experimental measurements on /sup 242/Pu. The remaining cross sections, together with the elastic and inelastic angular distributions to low-lying states, were calculated using various reaction models. An expression is presented for the energy dependence of the average number of neutrons produced per fission. The results were placed in ENDF/B-V format and combined with a recent evaluation of data below 10 keV by the Hanford Engineering Development Laboratory, so that a complete data set covering the energy range of 10/sup -5/ eV to 20 MeV is available. 41 references. (JFP)

  19. Precise Measurement of the $\\bar{p}p$ Total Cross-Section in the ISR Energy Range

    CERN Multimedia

    2002-01-01

    The major aim of this experiment is the precise measurement of the antiproton-proton total cross-section in the ISR energy range, using the total-rate method. The proton-proton total cross-section is remeasured with the same method and the same apparatus, and a precision of 0.5\\% is expected for both cross-sections. The total-rate method consists in the simultaneous measurement of the total interaction rate and the ISR luminosity. This is done with a set of scintillation-counter hodoscopes covering over 99.99\\% of the solid angle, which are sensitive to over 95\\% of all interactions. In addition to these detectors, small-angle drift-tube hodoscopes are used to measure the differential elastic cross-section as a function of the momentum transfert t. The total cross-section can be measured independently by extrapolating this differential cross-section to the forward direction and invoking the optical theorem. A study of the general features of charged-particle production is performed using finely divided scinti...

  20. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 2. System performance and supporting studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    The preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas, is presented. System performance analysis and evaluation are described. Feedback of completed performance analyses on current system design and operating philosophy is discussed. The basic computer simulation techniques and assumptions are described and the resulting energy displacement analysis is presented. Supporting technical studies are presented. These include health and safety and reliability assessments; solar collector component evaluation; weather analysis; and a review of selected trade studies which address significant design alternatives. Additional supporting studies which are generally specific to the installation site are reported. These include solar availability analysis; energy load measurements; environmental impact assessment; life cycle cost and economic analysis; heat transfer fluid testing; meteorological/solar station planning; and information dissemination. (WHK)

  1. A Weighted Difference of Anisotropic and Isotropic Total Variation Model for Image Processing

    Science.gov (United States)

    2014-09-01

    leads to the classical Potts model [32] or piece-wise constant Mumford-Shah model [28] for image segmentation or partition. Recently, Storath et. al...34] propose a hybrid ADMM and dynamic programming method to solve the Potts model . Motivated from L1 − L2 minimization of coherent CS [23, 41], we...A WEIGHTED DIFFERENCE OF ANISOTROPIC AND ISOTROPIC TOTAL VARIATION MODEL FOR IMAGE PROCESSING YIFEI LOU∗, TIEYONG ZENG† , STANLEY OSHER‡ , AND JACK

  2. Repulsive gravity model for dark energy

    CERN Document Server

    Hohmann, Manuel

    2010-01-01

    We construct a multimetric gravity theory containing N >= 3 copies of standard model matter and a corresponding number of metrics. In the Newtonian limit, this theory generates attractive gravitational forces within each matter sector, and repulsive forces of the same strength between matter from different sectors. This result demonstrates that the recently proven no-go theorem that forbids gravity theories of this type in N = 2 cannot be extended beyond the bimetric case. We apply our theory to cosmology and show that the repulsion between different types of matter may induce the observed accelerating expansion of the universe. In this way dark energy can be explained simply by dark copies of the well-understood standard model.

  3. Repulsive gravity model for dark energy

    Science.gov (United States)

    Hohmann, Manuel; Wohlfarth, Mattias N. R.

    2010-05-01

    We construct a multimetric gravity theory containing N≥3 copies of standard model matter and a corresponding number of metrics. In the Newtonian limit, this theory generates attractive gravitational forces within each matter sector and repulsive forces of the same strength between matter from different sectors. This result demonstrates that the recently proven no-go theorem that forbids gravity theories of this type in N=2 cannot be extended beyond the bimetric case. We apply our theory to cosmology and show that the repulsion between different types of matter may induce the observed accelerating expansion of the universe. In this way dark energy can be explained simply by dark copies of the well-understood standard model.

  4. Efficient computerized model for dynamic analysis of energy conversion systems

    Science.gov (United States)

    Hughes, R. D.; Lansing, F. L.; Khan, I. R.

    1983-02-01

    In searching for the optimum parameters that minimize the total life cycle cost of an energy conversion system, various combinations of components are examined and the resulting system performance and associated economics are studied. The systems performance and economics simulation computer program (SPECS) was developed to fill this need. The program simulates the fluid flow, thermal, and electrical characteristics of a system of components on a quasi-steady state basis for a variety of energy conversion systems. A unique approach is used in which the set of characteristic equations is solved by the Newton-Raphson technique. This approach eliminates the tedious iterative loops which are found in comparable programs such as TRNSYS or SOLTES-1. Several efficient features were also incorporated such as the centralized control and energy management scheme, and analogous treatment of energy flow in electrical and mechanical components, and the modeling of components of similar fundamental characteristics using generic subroutines. Initial tests indicate that this model can be used effectively with a relatively small number of time steps and low computer cost.

  5. Research on Large Energy Power Enterprise Group total compensation conglomerates distribution systems Construction

    Directory of Open Access Journals (Sweden)

    Cheng Jia-xu

    2016-01-01

    Full Text Available In order to solve the problem of exist in W company salary distribution, such as the work guide is unknown, incentive enough, the target set properly and other issues, this paper especially focuses on the characteristics of enterprises, the company management and control model and other aspects to do in-depth study. On the basis of recognition control mode the pay distribution structure is determined, and then the appropriate indicators are sated. They are linked to further clarify the distribution of the guide, while the target value of properly designed and incentive mechanisms to ensure that the salary distribution model to follow on the basis of the relevant principles on the realization of economic promotion and to promote the strategic objectives.

  6. Data mining, mining data : energy consumption modelling

    Energy Technology Data Exchange (ETDEWEB)

    Dessureault, S. [Arizona Univ., Tucson, AZ (United States)

    2007-09-15

    Most modern mining operations are accumulating large amounts of data on production and business processes. Data, however, provides value only if it can be translated into information that appropriate users can utilize. This paper emphasized that a new technological focus should emerge, notably how to concentrate data into information; analyze information sufficiently to become knowledge; and, act on that knowledge. Researchers at the Mining Information Systems and Operations Management (MISOM) laboratory at the University of Arizona have created a method to transform data into action. The data-to-action approach was exercised in the development of an energy consumption model (ECM), in partnership with a major US-based copper mining company, 2 software companies, and the MISOM laboratory. The approach begins by integrating several key data sources using data warehousing techniques, and increasing the existing level of integration and data cleaning. An online analytical processing (OLAP) cube was also created to investigate the data and identify a subset of several million records. Data mining algorithms were applied using the information that was isolated by the OLAP cube. The data mining results showed that traditional cost drivers of energy consumption are poor predictors. A comparison was made between traditional methods of predicting energy consumption and the prediction formed using data mining. Traditionally, in the mines for which data were available, monthly averages of tons and distance are used to predict diesel fuel consumption. However, this article showed that new information technology can be used to incorporate many more variables into the budgeting process, resulting in more accurate predictions. The ECM helped mine planners improve the prediction of energy use through more data integration, measure development, and workflow analysis. 5 refs., 11 figs.

  7. A comparison of total precipitation values estimated from measurements and a 1D cloud model

    Directory of Open Access Journals (Sweden)

    Z. Aslan

    Full Text Available The purpose of this study is to establish a relation between observed total precipitation values and estimations from a one-dimensional diagnostic cloud model. Total precipitation values estimated from maximum liquid water content, maximum vertical velocity, cloud top height, and temperature excess are also used to provide an equation for the total precipitation prediction. Data for this study were collected in Istanbul during the autumns of 1987 and 1988. The statistical models are developed with multiple regression technique and then comparatively verified with independent data for 1990. The multiple regression coefficients are in the range of 75% to 80% in the statistical models. Results of the test showed that total precipitation values estimated from the above techniques are in good agreement, with correlation coefficient between 40% and 46% based on test data for 1990.

  8. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...... of the external envelope and the thermal capacity of the internal walls as the main parameters that affect the load shifting potential of the apartment....... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...

  9. A discrete model of energy-conserved wavefunction collapse

    CERN Document Server

    Gao, Shan

    2013-01-01

    Energy nonconservation is a serious problem of dynamical collapse theories. In this paper, we propose a discrete model of energy-conserved wavefunction collapse. It is shown that the model is consistent with existing experiments and our macroscopic experience.

  10. Total electron scattering cross sections of molecules containing H, C, N, O and F in the energy range 0.2–6.0 keV

    Energy Technology Data Exchange (ETDEWEB)

    Gurung, Meera Devi; Ariyasinghe, W.M., E-mail: wickram_ariyasinghe@baylor.edu

    2017-03-15

    Based on the effective atomic total electron scattering cross sections (EATCS) of atoms in a molecular environment, a simple model is proposed to predict the total electron scattering cross sections (TCS) of H, C, N, O, and F containing molecules. The EATCS for these five atoms are reported for 0.2–6.0 keV energies. The predicted TCS by this model are compared with experimental TCS in the literature. The experimental TCS of CHF{sub 3}, C{sub 2}F{sub 4}, C{sub 2}F{sub 2}H{sub 2}, C{sub 4}F{sub 6}, and c-C{sub 4}F{sub 8} have been obtained for 0.2–4.5 keV electrons by measuring the attenuation of the electron beam through a gas cell.

  11. Total electron scattering cross sections of molecules containing H, C, N, O and F in the energy range 0.2-6.0 keV

    Science.gov (United States)

    Gurung, Meera Devi; Ariyasinghe, W. M.

    2017-03-01

    Based on the effective atomic total electron scattering cross sections (EATCS) of atoms in a molecular environment, a simple model is proposed to predict the total electron scattering cross sections (TCS) of H, C, N, O, and F containing molecules. The EATCS for these five atoms are reported for 0.2-6.0 keV energies. The predicted TCS by this model are compared with experimental TCS in the literature. The experimental TCS of CHF3, C2F4, C2F2H2, C4F6, and c-C4F8 have been obtained for 0.2-4.5 keV electrons by measuring the attenuation of the electron beam through a gas cell.

  12. Skylarks trade size and energy content in weed seeds to maximize total ingested lipid biomass.

    Science.gov (United States)

    Gaba, Sabrina; Collas, Claire; Powolny, Thibaut; Bretagnolle, François; Bretagnolle, Vincent

    2014-10-01

    The trade-off between forage quality and quantity has been particularly studied in herbivore organisms, but much less for seed eating animals, in particular seed-eating birds which constitute the bulk of wintering passerines in European farmlands. The skylark is one of the commonest farmland birds in winter, mainly feeding on seeds. We focus on weed seeds for conservation and management purposes. Weed seeds form the bulk of the diet of skylarks during winter period, and although this is still a matter for discussion, weed seed predation by granivorous has been suggested as an alternative to herbicides used to regulate weed populations in arable crops. Our objectives were to identify whether weed seed traits govern foraging decisions of skylarks, and to characterize key seed traits with respect to size, which is related to searching and handling time, and lipid content, which is essential for migratory birds. We combined a single-offer experiment and a multiple-offer one to test for feeding preferences of the birds by estimating seed intake on weed seed species differing in their seed size and seed lipid content. Our results showed (1) a selective preference for smaller seeds above a threshold of seed size or seed size difference in the pair and, (2) a significant effect of seed lipid biomass suggesting a trade-off between foraging for smaller seeds and selecting seeds rich in lipids. Skylarks foraging decision thus seems to be mainly based on seed size, that is presumably a 'proxy' for weed seed energy content. However, there are clearly many possible combinations of morphological and physiological traits that must play crucial role in the plant-bird interaction such as toxic compound or seed coat. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A SIMPLIFIED EQUATION FOR TOTAL ENERGY EXPENDITURE IN MECHANICALLY VENTILATED CRITICALLY ILL PATIENTS.

    Science.gov (United States)

    Raurich, Joan Maria; Llompart-Pou, Juan Antonio; Ferreruela, Mireia; Riera, Maria; Homar, Javier; Marsé, Pere; Colomar, Asunción; Ayestarán, Ignacio

    2015-09-01

    Introducción: el concepto de “control calorico estricto” surgio para evitar la excesiva y la deficiente nutricion de los pacientes. Objetivo: describir y validar una ecuacion simplificada para el calculo del gasto energetico total (GET) en pacientes criticos con ventilacion mecanica. Métodos: analisis secundario de las mediciones de GET por calorimetria indirecta en pacientes criticos. Los pacientes fueron asignados de forma 2:1 por un paquete estadistico; el primer grupo se empleo para desarrollar la nueva ecuacion predictiva del GET (grupo predictivo) y el segundo para validarla (grupo validacion). La calorimetria indirecta se realizo con tres calorimetros diferentes: la bolsa de Douglas, un computador metabolico y el equipo CalorimetR. Hemos desarrollado la nueva ecuacion predictiva del GET utilizando el GET medido (en kcal/kg/d), como variable dependiente, y como variables independientes los diferentes factores que influyen en el gasto energetico: edad, genero, indice de masa corporal (IMC) y tipo de lesion. Resultados: el grupo de prediccion incluyo 179 pacientes y el de validacion 91 pacientes. La ecuacion predictiva fue: GETEP = 33 - (3 x E) - (3 x IMC) - (1 x G). Donde: E (edad en anos): ≤ 50 = 0; > 50 = 1. IMC (kg / m2): 18,5- 24,9 = 0; 25-29,9 = 1; 30-34,9 = 2; 35-39,9 = 3. G (genero): hombre = 0; mujer = 1. El sesgo (IC del 95%) entre el GET medido y el predicho fue de -0,1 (-1,0 a 0,7) kcal/ kg/dia y los limites de acuerdo (} 2SD) fueron -8,0 a 7,8 kcal/kg/d. El GET por la ecuacion predictiva fue preciso (entre el 85% y el 115%) en el 73,6% de los pacientes. Conclusiones: La nueva ecuacion predictiva fue aceptable para predecir el GET de la mayoria de pacientes criticos con ventilacion mecanica en la practica clinica.

  14. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants.

    Science.gov (United States)

    Antoni, Rona; Johnston, Kelly L; Collins, Adam L; Robertson, M Denise

    2016-03-28

    The intermittent energy restriction (IER) approach to weight loss involves short periods of substantial (75-100 %) energy restriction (ER) interspersed with normal eating. This study aimed to characterise the early metabolic response to these varying degrees of ER, which occurs acutely and prior to weight loss. Ten (three female) healthy, overweight/obese participants (36 (SEM 5) years; 29·0 (sem 1·1) kg/m2) took part in this acute three-way cross-over study. Participants completed three 1-d dietary interventions in a randomised order with a 1-week washout period: isoenergetic intake, partial 75 % ER and total 100 % ER. Fasting and postprandial (6-h) metabolic responses to a liquid test meal were assessed the following morning via serial blood sampling and indirect calorimetry. Food intake was also recorded for two subsequent days of ad libitum intake. Relative to the isoenergetic control, postprandial glucose responses were increased following total ER (+142 %; P=0·015) and to a lesser extent after partial ER (+76 %; P=0·051). There was also a delay in the glucose time to peak after total ER only (P=0·024). Both total and partial ER interventions produced comparable reductions in postprandial TAG responses (-75 and -59 %, respectively; both Penergy intake deficits of approximately 30 % (both P=0·015). Resting and meal-induced thermogenesis were not significantly affected by either ER intervention. In conclusion, our data demonstrate the ability of substantial ER to acutely alter postprandial glucose-lipid metabolism (with partial ER producing the more favourable overall response), as well as incomplete energy-intake compensation amongst overweight/obese participants. Further investigations are required to establish how metabolism adapts over time to the repeated perturbations experienced during IER, as well as the implications for long-term health.

  15. Enthalpy of the gas-phase CO2 + Mg reaction from ab initio total energies.

    Science.gov (United States)

    Lesar, Antonija; Prebil, Sasa; Hodoscek, Milan

    2002-01-01

    Various highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3(MP2), G3//B3LYP, G3(MP2)//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction enthalpies of the ground-state reaction of CO2 with Mg. All model chemistries predict highly endothermic reactions, with DeltaH(298) = 63.6-69.7 kcal x mol(-1). The difference between the calculated reaction enthalpies and the experimental value, evaluated with recommended experimental standard enthalpies of formation for products and reactants, is more than 20 kcal x mol(-1) for all methods. This difference originates in the incorrect experimental enthalpy of formation of gaseous MgO given in thermochemical databases. When the theoretical formation enthalpy for MgO calculated by a particular method is used, the deviation is reduced to 1.3 kcal x mol(-1). The performance of the methodologies used to calculate the heat of this particular reaction and the enthalpy of formation of MgO are discussed.

  16. Cavitation erosion resistance and ratio of elastic deformation energy to total deformation energy for Ti3Al and TiNiNb alloys

    Institute of Scientific and Technical Information of China (English)

    龙霓东; 朱金华

    2004-01-01

    The cavitation erosion of Ti-46Ni-9Nb alloy, Ti-24Al-15Nb-1Mo alloy and 0Cr13Ni5Mo stainless steel has been investigated in tap water by using rotating disc equipment. It is shown that Ti-24Al-15Nb-1Mo alloy has the highest cavitation erosion resistance among the three tested materials and Ti-46Ni-9Nb alloy is more resistant to cavitation erosion than 0Cr13Ni5Mo stainless steel. To simulate the effect of collapse of vapor cavities or bubbles,the Rockwell hardness tester was used to exert a load on the small area of the tested materials, and the elastic deformation energy and total deformation energy in indentation were determined. The experiment results show that there is a good correlation between cavitaton erosion resistance and the ratio of elastic deformation energy to total deformation energy in indentation for the three tested materials. The higher the ratio, the better the cavitation erosion resistance.

  17. Design and modeling of sustainable bioethanol supply chain by minimizing the total ecological footprint in life cycle perspective.

    Science.gov (United States)

    Ren, Jingzheng; Manzardo, Alessandro; Toniolo, Sara; Scipioni, Antonio; Tan, Shiyu; Dong, Lichun; Gao, Suzhao

    2013-10-01

    The purpose of this paper is to develop a model for designing the most sustainable bioethanol supply chain. Taking into consideration of the possibility of multiple-feedstock, multiple transportation modes, multiple alternative technologies, multiple transport patterns and multiple waste disposal manners in bioethanol systems, this study developed a model for designing the most sustainable bioethanol supply chain by minimizing the total ecological footprint under some prerequisite constraints including satisfying the goal of the stakeholders', the limitation of resources and energy, the capacity of warehouses, the market demand and some technological constraints. And an illustrative case of multiple-feedstock bioethanol system has been studied by the proposed method, and a global best solution by which the total ecological footprint is the minimal has been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The Total Quality Management Model Department of Personnel State of Colorado,

    Science.gov (United States)

    A panel of three members will present the Total Quality Management model recently designed for the Department of Personnel, State of Colorado. This model was selected to increase work quality and productivity of the Department and to exemplify Governor Romer’s commitment to quality work within state government.

  19. Use of Total Possibilistic Uncertainty as a Measure of Students' Modelling Capacities

    Science.gov (United States)

    Voskoglou, Michael Gr.

    2010-01-01

    We represent the main stages of the process of mathematical modelling as fuzzy sets in the set of the linguistic labels of negligible, low intermediate, high and complete success by students in each of these stages and we use the total possibilistic uncertainty as a measure of students' modelling capacities. A classroom experiment is also…

  20. Zenith total delay study of a mesoscale convective system : GPS observations and fine-scale modelling

    NARCIS (Netherlands)

    Cucurull, I.; Vilà-Guerau de Arellano, J.; Rius, A.

    2002-01-01

    Zenith Total Delay (ZTD) observations and model calculations are used to analyze a mesoscale convective system which yielded a large amount of precipitation over a short period of time in the north-western Mediterranean. ZTD observations are derived from the GPS signal delay whereas the ZTD model re

  1. Analysis of Challenges for Management Education in India Using Total Interpretive Structural Modelling

    Science.gov (United States)

    Mahajan, Ritika; Agrawal, Rajat; Sharma, Vinay; Nangia, Vinay

    2016-01-01

    Purpose: The purpose of this paper is to identify challenges for management education in India and explain their nature, significance and interrelations using total interpretive structural modelling (TISM), an innovative version of Warfield's interpretive structural modelling (ISM). Design/methodology/approach: The challenges have been drawn from…

  2. Dynamics of a stochastic tuberculosis model with constant recruitment and varying total population size

    Science.gov (United States)

    Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed

    2017-03-01

    In this paper, we develop a mathematical model for a tuberculosis model with constant recruitment and varying total population size by incorporating stochastic perturbations. By constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of an ergodic stationary distribution as well as extinction of the disease to the stochastic system.

  3. Anisotropic Generalized Ghost Pilgrim Dark Energy Model in General Relativity

    Science.gov (United States)

    Santhi, M. Vijaya; Rao, V. U. M.; Aditya, Y.

    2017-02-01

    A spatially homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type- I Universe filled with matter and generalized ghost pilgrim dark energy (GGPDE) has been studied in general theory of relativity. To obtain determinate solution of the field equations we have used scalar expansion proportional to the shear scalar which leads to a relation between the metric potentials. Some well-known cosmological parameters (equation of state (EoS) parameter ( ω Λ), deceleration parameter ( q) and squared speed of sound {vs2}) and planes (ω _{Λ }-dot {ω }_{Λ } and statefinder) are constructed for obtained model. The discussion and significance of these parameters is totally done through pilgrim dark energy parameter ( β) and cosmic time ( t).

  4. The Use of the Articulated Total Body Model as a Robot Dynamics Simulation Tool

    Science.gov (United States)

    1988-07-01

    AARL-SR-90-512 AD-A235 930l[liill ~i 11111111111 iIII J The Use of the Articulated Total Body Model as a Robot Dynamics Simulation Tool Louise A...R 4. TITLE AND SUBTITLE S. FUNDING NUMBERS The Use of the Articulated Total Body Model as a Robot Dynamics Simulation Tool PE 62202F 6. AUTHOR(S) PR...Lagrange method. In this paper the use of the ATH model as a robot dynamics simulation tool is discussed and various simulations are demonstrated. For this

  5. A Thermodynamic Point of View on Dark Energy Models

    Directory of Open Access Journals (Sweden)

    Vincenzo F. Cardone

    2017-07-01

    Full Text Available We present a conjugate analysis of two different dark energy models, namely the Barboza–Alcaniz parameterization and the phenomenologically-motivated Hobbit model, investigating both their agreement with observational data and their thermodynamical properties. We successfully fit a wide dataset including the Hubble diagram of Type Ia Supernovae, the Hubble rate expansion parameter as measured from cosmic chronometers, the baryon acoustic oscillations (BAO standard ruler data and the Planck distance priors. This analysis allows us to constrain the model parameters, thus pointing at the region of the wide parameters space, which is worth focusing on. As a novel step, we exploit the strong connection between gravity and thermodynamics to further check models’ viability by investigating their thermodynamical quantities. In particular, we study whether the cosmological scenario fulfills the generalized second law of thermodynamics, and moreover, we contrast the two models, asking whether the evolution of the total entropy is in agreement with the expectation for a closed system. As a general result, we discuss whether thermodynamic constraints can be a valid complementary way to both constrain dark energy models and differentiate among rival scenarios.

  6. Low and High Energy Modeling in Geant4

    CERN Document Server

    Wright, Dennis H; Folger, Günter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; Heikkinen, Aatos; Wellisch, Hans-Peter

    2007-01-01

    Four of the most-used Geant4 hadronic models, the Quark-gluon string, Bertini-style cascade, Binary cascade and Chiral Invariant Phase Space, are discussed. These models cover high, medium and low energies, respectively, and represent a more theoretical approach to simulating hadronic interactions than do the Low Energy and High Energy Parameterized models. The four models together do not yet cover all particles for all energies, so the Low Energy and High Energy Parameterized models, among others, are used to fill the gaps.The validity range in energy and particle type of each model is presented, as is a discussion of the models' distinguishing features. The main modeling stages are also described qualitatively and areas for improvement are pointed out for each model.

  7. Low And High Energy Modeling in GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Dennis H.; Koi, Tatsumi; /SLAC; Folger, Gunter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; /CERN; Heikkinen, Aatos; /Helsinki Inst. of Phys.; Wellisch,

    2007-10-05

    Four of the most-used Geant4 hadronic models, the Quark-gluon string, Bertini-style cascade, Binary cascade and Chiral Invariant Phase Space, are discussed. These models cover high, medium and low energies, respectively, and represent a more theoretical approach to simulating hadronic interactions than do the Low Energy and High Energy Parameterized models. The four models together do not yet cover all particles for all energies, so the Low Energy and High Energy Parameterized models, among others, are used to fill the gaps. The validity range in energy and particle type of each model is presented, as is a discussion of the models' distinguishing features. The main modeling stages are also described qualitatively and areas for improvement are pointed out for each model.

  8. Statefinder Diagnostic for Born-Infeld Type Dark Energy Model

    Institute of Scientific and Technical Information of China (English)

    HUANG Zeng-Guang; LU Hui-Qing

    2008-01-01

    Using a new method called the statefinder diagnostics which can make one dark energy model differ from the others, we investigate the dynamics of Born-Infeld (B-I) type dark energy model. The evolution trajectory of B-I type dark energy with Mexican hat potential model with respect to e-folding time N is shown in the r (s) diagram, When the parameter of noncanonical kinetic energy term η→0 or kinetic energy ψ2→0, the B-I type dark energy (K-essence) model reduces to the quintessence model or the ACDM model corresponding to the statefinder pair {r, s}={1, 0} respectively. As a result, the evolution trajectory of our model in the r (s) diagram in Mexican hat potential is quite different from those of other dark energy models. The current values of parameters Ω,ψ and ω,ψ in this model meet the latest observations WMAP5 well.

  9. Oneida Tribe of Indians of Wisconsin Energy Optimization Model

    Energy Technology Data Exchange (ETDEWEB)

    Troge, Michael [Little Bear Development Center, Oneida, WI (United States)

    2014-12-01

    Oneida Nation is located in Northeast Wisconsin. The reservation is approximately 96 square miles (8 miles x 12 miles), or 65,000 acres. The greater Green Bay area is east and adjacent to the reservation. A county line roughly splits the reservation in half; the west half is in Outagamie County and the east half is in Brown County. Land use is predominantly agriculture on the west 2/3 and suburban on the east 1/3 of the reservation. Nearly 5,000 tribally enrolled members live in the reservation with a total population of about 21,000. Tribal ownership is scattered across the reservation and is about 23,000 acres. Currently, the Oneida Tribe of Indians of Wisconsin (OTIW) community members and facilities receive the vast majority of electrical and natural gas services from two of the largest investor-owned utilities in the state, WE Energies and Wisconsin Public Service. All urban and suburban buildings have access to natural gas. About 15% of the population and five Tribal facilities are in rural locations and therefore use propane as a primary heating fuel. Wood and oil are also used as primary or supplemental heat sources for a small percent of the population. Very few renewable energy systems, used to generate electricity and heat, have been installed on the Oneida Reservation. This project was an effort to develop a reasonable renewable energy portfolio that will help Oneida to provide a leadership role in developing a clean energy economy. The Energy Optimization Model (EOM) is an exploration of energy opportunities available to the Tribe and it is intended to provide a decision framework to allow the Tribe to make the wisest choices in energy investment with an organizational desire to establish a renewable portfolio standard (RPS).

  10. Modeling and Simulation of Smart Energy Systems

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2015-01-01

    At a global level, it is essential that the world transfers from fossil fuels to renewable energy resources to minimize the implications of climate change, which has been clearly demonstrated by the Intergovernmental Panel on Climate Change (IPCC, 2007a). At a national level, for most countries......, the transition to renewable energy will improve energy security of supply, create new jobs, enhance trade, and consequently grow the national economy. However, even with such promising consequences, renewable energy only provided approximately 13% of the world's energy in 2007 (International Energy Agency, 2009a......). Therefore, identifying how to utilize more renewable energy is one of the most pressing challenges facing many countries at present. Owing to the ever-growing complexity of modern energy systems, energy-system-analysis tools are often used to analyze the potential of renewable energy in future energy...

  11. Energy absorption, lean body mass, and total body fat changes during 5 weeks of continuous bed rest

    Science.gov (United States)

    Krebs, Jean M.; Evans, Harlan; Kuo, Mike C.; Schneider, Victor S.; Leblanc, Adrian D.

    1990-01-01

    The nature of the body composition changes due to inactivity was examined together with the question of whether these changes are secondary to changes in energy absorption. Volunteers were 15 healthy males who lived on a metabolic research ward under close staff supervision for 11 weeks. Subjects were ambulatory during the first six weeks and remained in continuous bed rest for the last five weeks of the study. Six male volunteers (age 24-61 years) were selected for body composition measurements. Nine different male volunteers (age 21-50 years) were selected for energy absorption measurements. The volunteers were fed weighed conventional foods on a constant 7-d rotation menu. The average daily caloric content was 2,592 kcal. Comparing the five weeks of continuous bed rest with the previous six weeks of ambulation, it was observed that there was no change in energy absorption or total body weight during bed rest, but a significant decrease in lean body mass and a significant increase in total body fat (p less than 0.05).

  12. Universal trend for heavy-ion total reaction cross-sections at energies above the Coulomb barrier

    Science.gov (United States)

    Tavares, O. A. P.; Medeiros, E. L.; Morcelle, V.

    2010-08-01

    Heavy-ion total reaction cross-section measurements for more than 1100 reaction cases covering 61 target nuclei in the range 6Li-238U and 158 projectile nuclei from 2H to 84Kr (mostly exotic ones) have been analyzed in a systematic way by using an empirical, three-parameter formula that is applicable to the cases of projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities that describe the cross-section patterns. A great amount of cross-section data (87%) has been quite satisfactorily reproduced by the proposed formula; therefore, the total reaction cross-section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25% (or much less) uncertainty. Dedicated to CBPF—Centro Brasileiro de Pesquisas Físicas in its celebration of the 60th anniversary of its foundation.

  13. Effect of dietary concentration of total nonstructural carbohydrate on energy and nitrogen metabolism and milk production of dairy cows.

    Science.gov (United States)

    MacGregor, C A; Stokes, M R; Hoover, W H; Leonard, H A; Junkins, L L; Sniffen, C J; Mailman, R W

    1983-01-01

    Two complete blended diets with a ratio of concentrate: silage dry matter of 60:40 were fed to 12 Holstein cows in the first 12 wk of lactation in an incomplete changeover arrangement of treatments. Diets differed (dry basis) in content of total nonstructural carbohydrate (24.9% versus 32.9%), neutral detergent fiber (37.0% versus 32.1%), and hemicellulose (19.6% versus 15.7%) but were similar in amounts of lignin, crude protein, soluble nitrogen, and acid detergent insoluble nitrogen. The diet with more total nonstructural carbohydrate was associated with greater dry matter intake as a percentage of body weight and greater yields of milk and solids-not-fat. Cellulose digestibility and mean rumen ammonia concentration were lower with this diet. Despite similar protein solubilities, the diet with more total nonstructural carbohydrate contained more rumen degradable nitrogen (80% versus 60%) but similar amounts of rumen degradable dry matter (82% versus 79%). The metabolizable energy of this diet was used more efficiently for the combined functions of maintenance and production, and net energy for lactation was larger (2.2 versus 1.9 Mcal/kg dry matter), as measured calorimetrically.

  14. Modeling Reserve Ancillary Service as Virtual Energy Carrier in Multi-Energy Systems

    OpenAIRE

    Damavandi, M; Moghaddam, Mohsen,; Haghifam, M.-R.; Shafie-khah, M.; Catalão, João,

    2015-01-01

    Part 14: Energy: Simulation; International audience; Multi-energy systems (MES) are considered various energy carriers and energy players in an integrated energy model. Vast amount of decision making data is gathered in these systems that cannot be processed by conventional methods. Cloud-based computing is an opportunity to develop these kinds of integrated and efficient approaches. Developing mathematical models that can be compatible with cloud-based engineering systems will help decision ...

  15. Introduction of Energy and Climate Mitigation Policy Issues in Energy - Environment Model of Latvia

    Science.gov (United States)

    Klavs, G.; Rekis, J.

    2016-12-01

    The present research is aimed at contributing to the Latvian national climate policy development by projecting total GHG emissions up to 2030, by evaluating the GHG emission reduction path in the non-ETS sector at different targets set for emissions reduction and by evaluating the obtained results within the context of the obligations defined by the EU 2030 policy framework for climate and energy. The method used in the research was bottom-up, linear programming optimisation model MARKAL code adapted as the MARKAL-Latvia model with improvements for perfecting the integrated assessment of climate policy. The modelling results in the baseline scenario, reflecting national economic development forecasts and comprising the existing GHG emissions reduction policies and measures, show that in 2030 emissions will increase by 19.1 % compared to 2005. GHG emissions stabilisation and reduction in 2030, compared to 2005, were researched in respective alternative scenarios. Detailed modelling and analysis of the Latvian situation according to the scenario of non-ETS sector GHG emissions stabilisation and reduction in 2030 compared to 2005 have revealed that to implement a cost effective strategy of GHG emissions reduction first of all a policy should be developed that ensures effective absorption of the available energy efficiency potential in all consumer sectors. The next group of emissions reduction measures includes all non-ETS sectors (industry, services, agriculture, transport, and waste management).

  16. Developing an Energy Performance Modeling Startup Kit

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-10-01

    In 2011, the NAHB Research Center began assessing the needs and motivations of residential remodelers regarding energy performance remodeling. This report outlines: the current remodeling industry and the role of energy efficiency; gaps and barriers to adding energy efficiency into remodeling; and support needs of professional remodelers to increase sales and projects involving improving home energy efficiency.

  17. Land-total and Ocean-total Precipitation and Evaporation from a Community Atmosphere Model version 5 Perturbed Parameter Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Covey, Curt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trenberth, Kevin E. [National Center for Atmospheric Research, Boulder, CO (United States)

    2016-03-02

    This document presents the large scale water budget statistics of a perturbed input-parameter ensemble of atmospheric model runs. The model is Version 5.1.02 of the Community Atmosphere Model (CAM). These runs are the “C-Ensemble” described by Qian et al., “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5” (Journal of Advances in Modeling the Earth System, 2015). As noted by Qian et al., the simulations are “AMIP type” with temperature and sea ice boundary conditions chosen to match surface observations for the five year period 2000-2004. There are 1100 ensemble members in addition to one run with default inputparameter values.

  18. Energy of the Universe in Bianchi-type I Models in Moller's Tetrad Theory of Gravity

    CERN Document Server

    Aydogdu, O; Aydogdu, Oktay; Salti, Mustafa

    2005-01-01

    In this paper, using the energy definition in Moller's tetrad theory of gravity we calculate the total energy of the universe in Bianchi-type I cosmological models which includes both the matter and gravitational fields. The total energy is found to be zero and this result agrees with a previous works of Banerjee-Sen who investigated this problem using the general relativity version of the Einstein energy-momentum complex and Xulu who investigated same problem using the general relativity versions of the Landau-lifshitz, Papapetrou and Weinberg's energy-momentum complexes. The result that total energy of the universe in Bianchi-type I universes is zero supports the viewpoint of Tryon.

  19. Energy modeling towards low carbon development of Beijing in 2030

    DEFF Research Database (Denmark)

    Zhao, Guangling; Chen, Sha; Guerrero, Josep M.

    2017-01-01

    renewable energy and low carbon development for the city of Beijing. The analysis of energy system modeling is organized in two steps to explore the potential renewable energy alternative in Beijing. Firstly, a reference energy system of Beijing is created based on the available data in 2014. The Energy......PLAN, an energy system analysis tool, is chosen to develop the reference energy model. Secondly, this reference model is used to investigate the alternative energy system for integrating renewable energies. Three scenarios are developed towards the energy system of Beijing in 2030, which are: (i) reference...... scenario 2030, (ii) BAU (business as usual) scenario 2030 and (iii) RES (renewable energies) scenario 2030. The results shows that the share of renewables can increase to 100% of electricity and heat production in the RE scenario. The primary fuel consumption is reduced to 155.9 TWh, which is 72 % of fuel...

  20. Soft-systems model of energy management and checklists for energy managers

    Energy Technology Data Exchange (ETDEWEB)

    Fawkes, S.

    1987-01-01

    This paper presents a model of the energy management process developed using a soft systems methodology. The model divides energy management into 4 levels; good housekeeping, retro-fit projects, plant replacement projects and new process design. The purpose of the model is to assist energy managers and other agents of change implement technical changes resulting in energy conservation. However, as with all soft systems models, it should not be taken as a final development, but rather a starting point for structured debate. From the model a number of checklists for energy managers are developed and presented.

  1. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  2. Beverage Consumption Habits and Association with Total Water and Energy Intakes in the Spanish Population: Findings of the ANIBES Study

    Directory of Open Access Journals (Sweden)

    Mariela Nissensohn

    2016-04-01

    Full Text Available Background: Inadequate hydration is a public health issue that imposes a significant economic burden. In Spain, data of total water intake (TWI are scarce. There is a clear need for a national study that quantifies water and beverage intakes and explores associations between the types of beverages and energy intakes. Methods: The Anthropometry, Intake and Energy Balance Study ANIBES is a national survey of diet and nutrition conducted among a representative sample of 2285 healthy participants aged 9–75 years in Spain. Food and beverage intakes were assessed in a food diary over three days. Day and time of beverage consumption were also recorded. Results: On average, TWI was 1.7 L (SE 21.2 for men and 1.6 L (SE 18.9 for women. More than 75% of participants had inadequate TWI, according to European Food Safety Authority (EFSA recommendations. Mean total energy intake (EI was 1810 kcal/day (SE 11.1, of which 12% was provided by beverages. Water was the most consumed beverage, followed by milk. The contribution of alcoholic drinks to the EI was near 3%. For caloric soft drinks, a relatively low contribution to the EI was obtained, only 2%. Of eight different types of beverages, the variety score was positively correlated with TWI (r = 0.39 and EI (r = 0.23, suggesting that beverage variety is an indicator of higher consumption of food and drinks. Conclusions: The present study demonstrates that well-conducted surveys such as the ANIBES study have the potential to yield rich contextual value data that can emphasize the need to undertake appropriate health and nutrition policies to increase the total water intake at the population level promoting a healthy Mediterranean hydration pattern.

  3. Magnetic-Field Immunity Examination and Evaluation of Transcutaneous Energy-Transmission System for a Totally Implantable Artificial Heart

    Directory of Open Access Journals (Sweden)

    Takahiko Yamamoto

    2012-01-01

    Full Text Available Transcutaneous energy transmission (TET is the most promising noninvasive method for supplying driving energy to a totally implantable artificial heart. Induction-heating (IH cookers generate a magnetic flux, and if a cooker is operated near a transcutaneous transformer, the magnetic flux generated will link with its external and internal coils. This will affect the performance of the TET and the artificial heart system. In this paper, we present the design and development of a coil to be used for a magnetic immunity test, and we detail the investigation of the magnetic immunity of a transcutaneous transformer. The experimental coil, with five turns like a solenoid, was able to generate a uniform magnetic field in the necessary bandwidth. A magnetic-field immunity examination of the TET system was performed using this coil, and the system was confirmed to have sufficient immunity to the magnetic field generated as a result of the conventional operation of induction-heating cooker.

  4. Quark, Gluon, Odderon Contributions to Total Cross Section of Proton-Proton Elastic Scattering at High Energies

    Institute of Scientific and Technical Information of China (English)

    TAN Jia-Jin; LU Juan; CHENG Yan; ZHOU Li-Huan; ZHU Wen-Jun; MA Wei-Xing; GOU Qing-Quan

    2008-01-01

    Based on the quark-gluon structure of nucleon and the existence of Odderon in nucleon via gluon self-interaction, the elastic scattering of pp at high energies is studied. Our theoretical predictions reproduce experimental data perfectly. The contributions from individual terms of quark-quark, gluon-gluon interactions, quark-gluon interfer-ence and the Odderon terms to total cross section are analyzed. In addition to the leading quark-quark contribution, the Odderon contribution is quite important. In particular, the Odderon plays an essential role in fitting to data. Therefore, We may claim that the high energy lap and pp elastic scattering may be good processes to search for the Odderon, the three Reggeized gluon bound states.

  5. Measurement of the total neutron cross-section of germanium at energies below 2 eV

    Energy Technology Data Exchange (ETDEWEB)

    Salama, M.

    1983-01-01

    The total neutron cross-section of germanium has been measured at room temperature as a function of neutron energy in the range between 2.2 eV and 7 meV for randomly distributed crystals of germanium by transmission method using a chopper time-of-flight spectrometer at ET-RR-1 research reactor. The measured cross-section showed an evidence of 1/..nu.. thermal slope in the energy range 1.20 eV to 0.20 eV. Crystal structure effects were also observed. Calculations were performed giving values for the coherent scattering amplitude as well as the coherent scattering cross-section. The results obtained showed also the absence of scattering nuclear spin dependence in case of germanium.

  6. Solar total energy-large scale experiment, Shenandoah, Georgia site. Annual report, June 1977--June 1978. [For Bleyle Knitwear Plant

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1978-06-01

    The site was described in terms of location, suitably, accessibility, and other factors. Detailed descriptions of the Solar Total Energy-Large Scale Experiment Application (STE-LSE) (Bleyle of America, Inc., Knitwear Plant), the DOE owned Meteorology Station operating at the site, and the instrumentation provided by the Georgia Power Company to measure energy usage within the knitwear plant are included. A detailed report of progress is given at the Shenandoah Site, introduced by the STE-LSE schedule and the Cooperative Agreement work tasks. Progress is described in terms of the following major task areas: site/application; instrumentation/data acquisition; meteorology station; site to STES interface; information dissemination. A brief overview of milestones to be accomplished is given, followed by these appendices: solar easement agreement, interface drawing set, and additional site background data. (MHR)

  7. DYNAMIC FREE ENERGY HYSTERESIS MODEL IN MAGNETOSTRICTIVE ACTUATORS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A dynamic free energy hysteresis model in magnetostrictive actuators is presented. It is the free energy hysteresis model coupled to an ordinary different equation in an unusual way. According to its special structure, numerical implementation method of the dynamic model is provided. The resistor parameter in the dynamic model changes according to different frequency ranges. This makes numerical implementation results reasonable in the discussed operating frequency range. The validity of the dynamic free energy model is illustrated by comparison with experimental data.

  8. Improvement of energy model based on cubic interpolation curve

    Institute of Scientific and Technical Information of China (English)

    Li Peipei; Li Xuemei; and Wei Yu

    2012-01-01

    In CAGD and CG, energy model is often used to control the curves and surfaces shape. In curve/surface modeling, we can get fair curve/surface by minimizing the energy of curve/surface. However, our research indicates that in some cases we can't get fair curves/surface using the current energy model. So an improved energy model is presented in this paper. Examples are also included to show that fair curves can be obtained using the improved energy model.

  9. Application analysis of solar total energy systems to the residential sector. Volume III, conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup. The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)

  10. Building and Running the Yucca Mountain Total System Performance Model in a Quality Environment

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Kalinich; K.P. Lee; J.A. McNeish

    2005-01-09

    A Total System Performance Assessment (TSPA) model has been developed to support the Safety Analysis Report (SAR) for the Yucca Mountain High-Level Waste Repository. The TSPA model forecasts repository performance over a 20,000-year simulation period. It has a high degree of complexity due to the complexity of its underlying process and abstraction models. This is reflected in the size of the model (a 27,000 element GoldSim file), its use of dynamic-linked libraries (14 DLLs), the number and size of its input files (659 files totaling 4.7 GB), and the number of model input parameters (2541 input database entries). TSPA model development and subsequent simulations with the final version of the model were performed to a set of Quality Assurance (QA) procedures. Due to the complexity of the model, comments on previous TSPAs, and the number of analysts involved (22 analysts in seven cities across four time zones), additional controls for the entire life-cycle of the TSPA model, including management, physical, model change, and input controls were developed and documented. These controls did not replace the QA. procedures, rather they provided guidance for implementing the requirements of the QA procedures with the specific intent of ensuring that the model development process and the simulations performed with the final version of the model had sufficient checking, traceability, and transparency. Management controls were developed to ensure that only management-approved changes were implemented into the TSPA model and that only management-approved model runs were performed. Physical controls were developed to track the use of prototype software and preliminary input files, and to ensure that only qualified software and inputs were used in the final version of the TSPA model. In addition, a system was developed to name, file, and track development versions of the TSPA model as well as simulations performed with the final version of the model.

  11. Realistic cosmological model with dynamical cancellation of vacuum energy

    CERN Document Server

    Dolgov, A D

    2003-01-01

    We propose a model with a compensating scalar field whose back reaction to the cosmological curvature cancels possible vacuum energy density down to the terms of the order of the time dependent critical energy density. Thus the model simultaneously solves the mystery of the compensation of vacuum energy with the accuracy of 120 orders of magnitude and explains existence of the observed dark energy. At an early stage the suggested cosmological model might experience exponential expansion without an additional inflaton field.

  12. Transportation Sector Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  13. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  14. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    Science.gov (United States)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  15. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  16. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  17. Holographic tachyon model of dark energy

    OpenAIRE

    Setare, M.R.

    2007-01-01

    In this paper we consider a correspondence between the holographic dark energy density and tachyon energy density in FRW universe. Then we reconstruct the potential and the dynamics of the tachyon field which describe tachyon cosmology.

  18. Targets IMage Energy Regional (TIMER) Model, Technical Documentation

    NARCIS (Netherlands)

    Vries B de; Vuuren D van; Elzen M den; Janssen M; MNV

    2002-01-01

    The Targets IMage Energy Regional simulation model, TIMER, is described in detail. This model was developed and used in close connection with the Integrated Model to Assess the Global Environment (IMAGE) 2.2. The system-dynamics TIMER model simulates the global energy system at an intermediate level

  19. Modelling energy consumption in a manufacturing plant using productivity KPIs

    Energy Technology Data Exchange (ETDEWEB)

    Gallachoir, Brian O.; Cahill, Caiman (Sustainable Energy Research Group, Dept. of Civil and Environmental Engineering, Univ. College Cork (Ireland))

    2009-07-01

    Energy efficiency initiatives in industrial plants are often focused on getting energy-consuming utilities and devices to operate more efficiently, or on conserving energy. While such device-oriented energy efficiency measures can achieve considerable savings, greater energy efficiency improvement may be achieved by improving the overall productivity and quality of manufacturing processes. The paper highlights the observed relationship between productivity and energy efficiency using aggregated data on unit consumption and production index data for Irish industry. Past studies have developed simple top-down models of final energy consumption in manufacturing plants using energy consumption and production output figures, but these models do not help identify opportunities for energy savings that could achieved through increased productivity. This paper proposes an improved and innovative method of modelling plant final energy demand that introduces standard productivity Key Performance Indicators (KPIs) into the model. The model demonstrates the relationship between energy consumption and productivity, and uses standard productivity metrics to identify the areas of manufacturing activity that offer the most potential for improved energy efficiency. The model provides a means of comparing the effect of device-oriented energy efficiency measures with the potential for improved energy efficiency through increased productivity.

  20. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  1. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  2. Programming models for energy-aware systems

    Science.gov (United States)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real

  3. Preclinical computational models: predictors of tibial insert damage patterns in total knee arthroplasty: AAOS exhibit selection.

    Science.gov (United States)

    Morra, Edward A; Heim, Christine S; Greenwald, A Seth

    2012-09-19

    Computational models that predict clinical surface damage of the tibial insert during activities of daily living are emerging as powerful tools to assess the safety and efficacy of contemporary total knee arthroplasty designs. These models have the advantage of quickly determining the performance of new designs at low cost, and they allow direct comparison with the performance of classic, clinically successful designs. This study validated finite element and kinematic modeling predictions through comparison with preclinical physical testing results, damage patterns on retrieved tibial inserts, and clinically measured knee motion. There is a mounting body of evidence to support the role of computational modeling as a preclinical tool that enables the optimization of total knee arthroplasty designs and the auditing of component quality control before large-scale manufacturing is undertaken.

  4. Coronal structure analysis based on the potential field source surface modeling and total solar eclipse observation

    Science.gov (United States)

    Muhamad, Johan; Mumtahana, Farahhati; Sutastio, Heri; Imaduddin, Irfan; Putri, Gerhana P.

    2016-11-01

    We constructed global coronal magnetic fields of the Sun during the Total Solar Eclipse (TSE) 9 March 2016 by using Potential Field Source Surface (PFSS) model. Synoptic photospheric magnetogram data from Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO) was used as a boundary condition to extrapolate the coronal magnetic fields of the Sun. This extrapolated structure was analyzed by comparing the alignment of the fields from the model with coronal structure from the observation. We also used observational data of coronal structure during the total solar eclipse to know how well the model agree with the observation. As a result, we could identify several coronal streamers which were produced by the large closed loops in the lower regime of the corona. This result verified that the PFSS extrapolation can be used as a tool to model the inner corona with several constraints. We also discussed how the coronal structure can be used to deduce the phase of the solar cycle.

  5. Two-dimensional surrogate contact modeling for computationally efficient dynamic simulation of total knee replacements.

    Science.gov (United States)

    Lin, Yi-Chung; Haftka, Raphael T; Queipo, Nestor V; Fregly, Benjamin J

    2009-04-01

    Computational speed is a major limiting factor for performing design sensitivity and optimization studies of total knee replacements. Much of this limitation arises from extensive geometry calculations required by contact analyses. This study presents a novel surrogate contact modeling approach to address this limitation. The approach involves fitting contact forces from a computationally expensive contact model (e.g., a finite element model) as a function of the relative pose between the contacting bodies. Because contact forces are much more sensitive to displacements in some directions than others, standard surrogate sampling and modeling techniques do not work well, necessitating the development of special techniques for contact problems. We present a computational evaluation and practical application of the approach using dynamic wear simulation of a total knee replacement constrained to planar motion in a Stanmore machine. The sample points needed for surrogate model fitting were generated by an elastic foundation (EF) contact model. For the computational evaluation, we performed nine different dynamic wear simulations with both the surrogate contact model and the EF contact model. In all cases, the surrogate contact model accurately reproduced the contact force, motion, and wear volume results from the EF model, with computation time being reduced from 13 min to 13 s. For the practical application, we performed a series of Monte Carlo analyses to determine the sensitivity of predicted wear volume to Stanmore machine setup issues. Wear volume was highly sensitive to small variations in motion and load inputs, especially femoral flexion angle, but not to small variations in component placements. Computational speed was reduced from an estimated 230 h to 4 h per analysis. Surrogate contact modeling can significantly improve the computational speed of dynamic contact and wear simulations of total knee replacements and is appropriate for use in design sensitivity

  6. Semiphysiological versus Empirical Modelling of the Population Pharmacokinetics of Free and Total Cefazolin during Pregnancy

    Directory of Open Access Journals (Sweden)

    J. G. Coen van Hasselt

    2014-01-01

    Full Text Available This work describes a first population pharmacokinetic (PK model for free and total cefazolin during pregnancy, which can be used for dose regimen optimization. Secondly, analysis of PK studies in pregnant patients is challenging due to study design limitations. We therefore developed a semiphysiological modeling approach, which leveraged gestation-induced changes in creatinine clearance (CrCL into a population PK model. This model was then compared to the conventional empirical covariate model. First, a base two-compartmental PK model with a linear protein binding was developed. The empirical covariate model for gestational changes consisted of a linear relationship between CL and gestational age. The semiphysiological model was based on the base population PK model and a separately developed mixed-effect model for gestation-induced change in CrCL. Estimates for baseline clearance (CL were 0.119 L/min (RSE 58% and 0.142 L/min (RSE 44% for the empirical and semiphysiological models, respectively. Both models described the available PK data comparably well. However, as the semiphysiological model was based on prior knowledge of gestation-induced changes in renal function, this model may have improved predictive performance. This work demonstrates how a hybrid semiphysiological population PK approach may be of relevance in order to derive more informative inferences.

  7. Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs)

    Science.gov (United States)

    Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal

    2014-06-01

    This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.

  8. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  9. Quantification model for energy consumption in edification

    Directory of Open Access Journals (Sweden)

    Mercader, Mª P.

    2012-12-01

    Full Text Available The research conducted in this paper focuses on the generation of a model for the quantification of energy consumption in building. This is to be done through one of the most relevant environmental impact indicators associated with weight per m2 of construction, as well as the energy consumption resulting from the manufacturing process of materials used in building construction. The practical application of the proposed model on different buildings typologies in Seville, will provide information regarding the building materials, the subsystems and the most relevant construction elements. Hence, we will be able to observe the impact the built surface has on the environment. The results obtained aim to reference the scientific community, providing quantitative data comparable to other types of buildings and geographical areas. Furthermore, it may also allow the analysis and the characterization of feasible solutions to reduce the environmental impact generated by the different materials, subsystems and construction elements commonly used in the different building types defined in this study.

    La investigación realizada en el presente trabajo plantea la generación de un modelo de cuantificación del consumo energético en edificación, a través de uno de los indicadores de impacto ambiental más relevantes asociados al peso por m2 de construcción, el consumo energético derivado del proceso de fabricación de los materiales de construcción empleados en edificación. La aplicación práctica del modelo propuesto sobre diferentes tipologías edificatorias en Sevilla aportará información respecto a los materiales de construcción, subsistemas y elementos constructivos más impactantes, permitiendo visualizar la influencia que presenta la superficie construida en cuanto al impacto ambiental generado. Los resultados obtenidos pretenden servir de referencia a la comunidad científica, aportando datos num

  10. Anomaly transform methods based on total energy and ocean heat content norms for generating ocean dynamic disturbances for ensemble climate forecasts

    Science.gov (United States)

    Romanova, Vanya; Hense, Andreas

    2017-08-01

    In our study we use the anomaly transform, a special case of ensemble transform method, in which a selected set of initial oceanic anomalies in space, time and variables are defined and orthogonalized. The resulting orthogonal perturbation patterns are designed such that they pick up typical balanced anomaly structures in space and time and between variables. The metric used to set up the eigen problem is taken either as the weighted total energy with its zonal, meridional kinetic and available potential energy terms having equal contributions, or the weighted ocean heat content in which a disturbance is applied only to the initial temperature fields. The choices of a reference state for defining the initial anomalies are such that either perturbations on seasonal timescales and or on interannual timescales are constructed. These project a-priori only the slow modes of the ocean physical processes, such that the disturbances grow mainly in the Western Boundary Currents, in the Antarctic Circumpolar Current and the El Nino Southern Oscillation regions. An additional set of initial conditions is designed to fit in a least square sense data from global ocean reanalysis. Applying the AT produced sets of disturbances to oceanic initial conditions initialized by observations of the MPIOM-ESM coupled model on T63L47/GR15 resolution, four ensemble and one hind-cast experiments were performed. The weighted total energy norm is used to monitor the amplitudes and rates of the fastest growing error modes. The results showed minor dependence of the instabilities or error growth on the selected metric but considerable change due to the magnitude of the scaling amplitudes of the perturbation patterns. In contrast to similar atmospheric applications, we find an energy conversion from kinetic to available potential energy, which suggests a different source of uncertainty generation in the ocean than in the atmosphere mainly associated with changes in the density field.

  11. The seasonal cycle amplitude of total column CO2: factors behind the model-observation mismatch

    NARCIS (Netherlands)

    Basu, S.; Houweling, S.; Peters, W.; Sweeney, C.; Machida, T.; Maksyutov, S.; Patra, P. K.; Saito, R.; Chevallier, F.; Niwa, Y.; Matsueda, H.; Sawa, Y.

    2011-01-01

    CO2 surface fluxes that are statistically consistent with surface layer measurements of CO2, when propagated forward in time by atmospheric transport models, underestimate the seasonal cycle amplitude of total column CO2 in the northern temperate latitudes by 1–2 ppm. In this paper we verify the sys

  12. Semiphysiological versus empirical modelling of the population pharmacokinetics of free and total cefazolin during pregnancy

    NARCIS (Netherlands)

    van Hasselt, J G Coen; Allegaert, Karel; van Calsteren, Kristel; Beijnen, Jos H; Schellens, Jan H M; Huitema, Alwin D R

    2014-01-01

    This work describes a first population pharmacokinetic (PK) model for free and total cefazolin during pregnancy, which can be used for dose regimen optimization. Secondly, analysis of PK studies in pregnant patients is challenging due to study design limitations. We therefore developed a semiphysiol

  13. Total cross sections for double-electron detachment in intermediate energy H{sup {minus}}+ neon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kvale, T.J.; Sen, A.; Fang, X. [Univ. of Toledo, OH (United States)] [and others

    1993-05-01

    Absolute total cross sections for the double electron detachment {sigma}{sub {minus}1,1} in collisions between H{sup {minus}} and Ne have been measured in the 5 - 50 keV energy range. A well-collimated H{sup {minus}} beam components of the collision products (i.e, H{sup O}, H{sup +} and H{sup {minus}}) are magnetically analyzed and directed into appropriately-biased Faraday cups for detection. The cross sections are determined by a quadratic least squares fit of the H{sup =} fraction as a function of the target thickness in the growth curve analysis of the data. The double-electron detachment cross sections increase monotonically with impact energy over the energy region covered in this experiment. The values of {sigma}{sub {minus}1,1} range from 1.02 x 10{sup {minus}17}cm{sup 2} at 5.0 keV to 5.54 x 10{sup {minus}17} cm{sup 2} at 50 keV.

  14. Total electron content obtained from the USU-GAIM data assimilation models

    Science.gov (United States)

    Scherliess, Ludger; Eccles, Vince; Schunk, Robert; Zhu, Lie; Gardner, Larry

    2016-07-01

    Physics-based data assimilation models have been used in meteorology and oceanography for several decades and are now also prevalent for specifications and forecasts of the ionosphere. This increased use of ionospheric data assimilation models coincides with the increase in data suitable for assimilation. At USU we have developed several different data assimilation models, including the Global Assimilation on Ionospheric Measurements Gauss-Markov (GAIM-GM) and Full Physics (GAIM-FP) models. Both models assimilate a variety of different data types, including ground-based GPS/TEC, occultation, bottomside electron density profiles from ionosondes, in-situ electron densities, and space-based UV radiance measurements and provide specifications and forecasts on a spatial grid that can be global, regional, or local. The GAIM-GM model is a simpler model that uses the physics-based Ionosphere Forecast Model (IFM) as a background model but uses a statistical process in the Kalman filter. The GAIM-FP model is a more sophisticated model that uses a physics-based ionosphere-plasmasphere model (IPM) and an Ensemble Kalman filter. The primary GAIM-FP output is in the form of 3-dimensional electron density distributions from 90 km to near geosynchronous altitude. The 3-d densities can be used to obtain the total electron content (TEC) over the globe. We will present the differences and similarities of TEC obtained from our models and compare them with independent observations.

  15. Measurement of low-energy Na^+ -- Na total collision rate in an ion--neutral hybrid trap

    CERN Document Server

    Goodman, D S; Kwolek, J M; Blümel, R; Narducci, F A; Smith, W W

    2014-01-01

    We present measurements of the total elastic and resonant charge-exchange ion-atom collision rate coefficient $k_\\mathrm{ia}$ of cold sodium (\\ce{Na}) with optically-dark low energy \\ce{Na+} ions in a hybrid ion-neutral trap. To determine $k_\\mathrm{ia}$, we measured the trap loading and loss from both a \\ce{Na} magneto-optical trap (MOT) and a linear radio frequency quadrupole Paul trap. We found the total rate coefficient to be $7.4 \\pm 1.9 \\times 10^{-8}$ cm$^3$/s for the type I \\ce{Na} MOT immersed within an $\\approx 140$ K ion cloud and $1.10 \\pm 0.25 \\times 10^{-7}$ cm$^3$/s for the type II \\ce{Na} MOT within an $\\approx 1070$ K ion cloud. Our measurements show excellent agreement with previously reported theoretical fully quantal \\textit{ab initio} calculations. In the process of determining the total rate coefficient, we demonstrate that a MOT can be used to probe an optically dark ion cloud's spatial distribution within a hybrid trap.

  16. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    Science.gov (United States)

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff.

  17. RESRO: A spatio-temporal model to optimise regional energy systems emphasising renewable energies

    OpenAIRE

    2012-01-01

    RESRO (Reference Energy System Regional Optimization) optimises the simultaneous fulfilment of the heat and power demand in regional energy systems. It is a mixed-integer program realised in the modelling language GAMS. The model handles information on geographically disaggregated data describing heat demand and renewable energy potentials (e.g. biomass, solar energy, ambient heat). Power demand is handled spatially aggregated in an hourly time resolution within 8 type days. The major idea is...

  18. Diffractive, inelastic and total cross sections in high energy pp, pA and γ*A reactions with the dipole formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ster, Andras [MTA Wigner FK, RMI, H-1525 Budapest 114, POBox 49 (Hungary)

    2015-04-10

    The Lund Monte Carlo model DIPSY has recently been extended to ions to study elastic, inelastic and diffractive processes in high energy collisions between electrons, protons and nuclei. In this BFKL-based dipole formalism of parton interactions fluctuations are naturally included and adding them to the pomeron ladder substantially determine the diffractive excitation cross sections of the processes. Starting from √(s{sub NN})=200 GeV and √(s{sub γ*N})=100 GeV we provide results for pp, pA and γ*A total, inelastic and diffractive cross sections that are shown and discussed in case of pp, pO, pCu, pPb and γ*Au reactions. We find good agreement with pp and pPb data. We find that the diffractive cross sections are relatively small compared to the total ones but with increasing collision energies they grow faster than the elastic or the inelastic ones. We make a comparison to calculations obtained by the more conventional method of the Glauber Model MC, too.

  19. Energy efficiency and renewable energy modeling with ETSAP TIAM - challenges, opportunities, and solutions

    DEFF Research Database (Denmark)

    Gregg, Jay Sterling; Balyk, Olexandr; Pérez, Cristian Hernán Cabrera

    The objectives of the Sustainable Energy for All (SE4ALL), a United Nations (UN) global initiative, are to achieve, by 2030: 1) universal access to modern energy services; 2) a doubling of the global rate of improvement in energy efficiency; and 3) a doubling of the share of renewable energy in t...... including updating data, setting constraints, and reporting on output. The presentation also addresses the addition of new model components such as traditional biomass and building energy efficiency....

  20. Quantifying and Disaggregating Consumer Purchasing Behavior for Energy Systems Modeling

    Science.gov (United States)

    Consumer behaviors such as energy conservation, adoption of more efficient technologies, and fuel switching represent significant potential for greenhouse gas mitigation. Current efforts to model future energy outcomes have tended to use simplified economic assumptions ...