Multidisciplinary Optimization of Tilt Rotor Blades Using Comprehensive Composite Modeling Technique
Chattopadhyay, Aditi; McCarthy, Thomas R.; Rajadas, John N.
1997-01-01
An optimization procedure is developed for addressing the design of composite tilt rotor blades. A comprehensive technique, based on a higher-order laminate theory, is developed for the analysis of the thick composite load-carrying sections, modeled as box beams, in the blade. The theory, which is based on a refined displacement field, is a three-dimensional model which approximates the elasticity solution so that the beam cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are included automatically in the formulation. The model can accurately capture the transverse shear stresses through the thickness of each wall while satisfying stress free boundary conditions on the inner and outer surfaces of the beam. The aerodynamic loads on the blade are calculated using the classical blade element momentum theory. Analytical expressions for the lift and drag are obtained based on the blade planform with corrections for the high lift capability of rotor blades. The aerodynamic analysis is coupled with the structural model to formulate the complete coupled equations of motion for aeroelastic analyses. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt rotor aircraft. The objective functions include the figure of merit in hover and the high speed cruise propulsive efficiency. Structural, aerodynamic and aeroelastic stability criteria are imposed as constraints on the problem. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem. The search direction is determined by the Broyden-Fletcher-Goldfarb-Shanno algorithm. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt rotor blade.
Comparison with Tilted Axis Cranking and particle rotor model for triaxial nuclei
Energy Technology Data Exchange (ETDEWEB)
Ohtsubo, Shin-ichi; Shimizu, Yoshifumi R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics
1998-03-01
An extension of the cranking model in such a way to allow a rotation axis to deviate from the principal axes of the deformed mean-field is a promising tool for the spectroscopic study of rapidly rotating nuclei. We have applied such a `Tilted Axis Cranking` (TAC) method to a simple system of one-quasiparticle coupled to a triaxial rotor and compared it with a particle-rotor coupling calculation in order to check whether the spin-orientation degrees of freedom can be well described within the mean-field approximation. The result shows that the TAC method gives a good approximation to observable quantities and it is a suitable method to understand the dynamical interplay between the collective and single-particle angular momenta. (author)
Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes
Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.
2014-01-01
In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.
Directory of Open Access Journals (Sweden)
Juing-Shian Chiou
2013-01-01
Full Text Available This paper has implemented nonlinear control strategy for the single tilt tri-rotor aerial robot. Based on Newton-Euler’s laws, the linear and nonlinear mathematical models of tri-rotor UAVs are obtained. A numerical analysis using Newton-Raphson method is chosen for finding hovering equilibrium point. Back-stepping nonlinear controller design is based on constructing Lyapunov candidate function for closed-loop system. By imitating the linguistic logic of human thought, fuzzy logic controllers (FLCs are designed based on control rules and membership functions, which are much less rigid than the calculations computers generally perform. Effectiveness of the controllers design scheme is shown through nonlinear simulation model on each channel.
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Santos, Ilmar
2017-01-01
This is part II of a twofold paper series dealing with the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting pad journal bearings (active TPJBs). In both papers theoretical and experimen...... derived in part I. Results show further suppression of resonant vibrations when using the feedback-controlled or active lubrication, overweighting the reduction already achieved with hybrid lubrication, thus improving the whole machine dynamic performance.......This is part II of a twofold paper series dealing with the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting pad journal bearings (active TPJBs). In both papers theoretical...... and experimental analyses are presented with focus on the reduction of rotor lateral vibration. This part is devoted to synthesising model-based LQG optimal controllers (LQR regulator + Kalman Filter) for the feedback-controlled lubrication and is based upon the mathematical model of the rotor-bearing system...
Tilt rotor tricopter : control system for the holonomic multirotor platform
Gjertsen, Sindre; Salem, Daniel
2013-01-01
Masteroppgave i mekatronikk MAS500 2013 – Universitetet i Agder, Grimstad Development of a new approach to the multicopter segment of the Unmanned Areal Vehicle (UAV) family is presented. The system is designed on a T-shaped tricopter platform with ability to tilt all three motors, hereby defined as Tilt Rotor Tricopter (TRT). The highly coupled nonlinear system is investigated through the mathematical model, and verified by simulations. Linearization of the system has been ach...
Directory of Open Access Journals (Sweden)
Ying Zhang
2015-02-01
Full Text Available A method combining rotor actuator disk model and embedded grid technique is presented in this paper, aimed at predicting the flow fields and aerodynamic characteristics of tilt rotor aircraft in conversion mode more efficiently and effectively. In this method, rotor’s influence is considered in terms of the momentum it impacts to the fluid around it; transformation matrixes among different coordinate systems are deduced to extend actuator method’s utility to conversion mode flow fields’ calculation. Meanwhile, an embedded grid system is designed, in which grids generated around fuselage and actuator disk are regarded as background grid and minor grid respectively, and a new method is presented for ‘donor searching’ and ‘hole cutting’ during grid assembling. Based on the above methods, flow fields of tilt rotor aircraft in conversion mode are simulated, with three-dimensional Navier–Stokes equations discretized by a second-order upwind finite-volume scheme and an implicit lower–upper symmetric Gauss–Seidel (LU-SGS time-stepping scheme. Numerical results demonstrate that the proposed CFD method is very effective in simulating the conversion mode flow fields of tilt rotor aircraft.
Soule, V. A.; Badri-Nath, Y.
1973-01-01
The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.
Position, Attitude, and Fault-Tolerant Control of Tilting-Rotor Quadcopter
Kumar, Rumit
flight. Further, the performance of the controller and the tilt-rotor design has been compared with respect to the conventional quadcopter in the presence of wind disturbances and sensor uncertainties. In this work, another novel feed-forward control design approach is presented for complex trajectory tracking during autonomous flight. Differential flatness based feed-forward position control is employed to enhance the performance of the UAV during complex trajectory tracking. By accounting for differential flatness based feed-forward control input parameters, a new PD controller is designed to achieve the desired performance in autonomous flight. The results for tracking complex trajectories have been presented by performing numerical simulations with and without environmental uncertainties to demonstrate robustness of the controller during flight. The conventional quadcopters are under-actuated systems and, upon failure of one propeller, the conventional quadcopter would have a tendency of spinning about the primary axis fixed to the vehicle as an outcome of the asymmetry in resultant yawing moment in the system. In this work, control of tilt-rotor quadcopter is presented upon failure of one propeller during flight. The tilt-rotor quadcopter is capable of handling a propeller failure and hence is a fault-tolerant system. The dynamic model of tilting-rotor quadcopter with one propeller failure is derived and a controller has been designed to achieve hovering and navigation capability. The simulation results of way point navigation, complex trajectory tracking and fault-tolerance are presented.
CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode
Directory of Open Access Journals (Sweden)
Li Peng
2015-12-01
Full Text Available In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode, a virtual blade model (VBM and an real blade model (RBM are established respectively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM is established to search corresponding donor elements in the present moving-embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum–Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are validated by comparing the calculated results with available experimental data. Then, unsteady aerodynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60° and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these
Control techniques of tilt rotor unmanned aerial vehicle systems: A review
Directory of Open Access Journals (Sweden)
Zhong Liu
2017-02-01
Full Text Available The tilt rotor unmanned aerial vehicle (TRUAV exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technical challenges and key issues for TRUAV’s high-powered flight controls, which have attracted the attention of many researchers. This paper outlines the concept of TRUAV and some typical TRUAV platforms while focusing on control techniques. TRUAV structural features, dynamics modeling, and flight control methods are discussed, and major challenges and corresponding developmental tendencies associated with TRUAV flight control are summarized.
Investigation of a new model accounting for rotors of finite tip-speed ratio in yaw or tilt
International Nuclear Information System (INIS)
Branlard, E; Gaunaa, M; Machefaux, E
2014-01-01
The main results from a recently developed vortex model are implemented into a Blade Element Momentum(BEM) code. This implementation accounts for the effect of finite tip-speed ratio, an effect which was not considered in standard BEM yaw-models. The model and its implementation are presented. Data from the MEXICO experiment are used as a basis for validation. Three tools using the same 2D airfoil coefficient data are compared: a BEM code, an Actuator-Line and a vortex code. The vortex code is further used to validate the results from the newly implemented BEM yaw-model. Significant improvements are obtained for the prediction of loads and induced velocities. Further relaxation of the main assumptions of the model are briefly presented and discussed
Investigation of a new model accounting for rotors of finite tip-speed ratio in yaw or tilt
DEFF Research Database (Denmark)
Branlard, Emmanuel; Gaunaa, Mac; Machefaux, Ewan
2014-01-01
from the MEXICO experiment are used as a basis for validation. Three tools using the same 2D airfoil coefficient data are compared: a BEM code, an Actuator-Line and a vortex code. The vortex code is further used to validate the results from the newly implemented BEM yaw-model. Significant improvements...
Modelling and simulation of a compliant tilting pad air bearing
Duijnhouwer, F.; Nijmeijer, H.
The compliant tilting pad air bearing concept, a tilting pad bearing with the pivot of the pads placed on radial springs, is a promising aerodynamic bearing solution. Nevertheless, its non-linear dynamics make a time domain dynamic simulation model an essential tool for the design of rotor systems
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Santos, Ilmar
2015-01-01
function is optimized in the stabilizing gain domain and then chosen from a subdomain imposed by servovalve restrictions. This work demonstrates enhancements of the dynamic response of flexible rotor-bearing systems supported by an active tilting-pad journal bearing by means of the feedback......The feedback-controlled lubrication regime, based on a model-free designed proportional–derivative controller, is experimentally investigated in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing. With such a lubrication regime, both the resulting pressure distribution...
Energy Technology Data Exchange (ETDEWEB)
Sambell, K.W.
1976-04-01
A conceptual design study is presented of 1,985 commercial tilt rotor STOL transports for a NASA 200 n. mi. (370 km) STOL Mission. A 100-passenger STOL Variant (Bell D313) of the Phase I VTOL Tilt Rotor Aircraft is defined. Aircraft characteristics are given; with the aircraft redesigned to meet 2,000-foot (610 m) field criteria, with emphasis on low fuel consumption and low direct operating cost. The 100-passenger STOL Tilt Rotor Aircraft was analyzed for performance, weights, economics, handling qualities, noise footprint and aeroelastic stability. (GRA)
Extension-twist coupling of composite circular tubes with application to tilt rotor blade design
Nixon, Mark W.
1987-01-01
This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.
Modeling of Tilting-Pad Journal Bearings with Transfer Functions
Directory of Open Access Journals (Sweden)
J. A. Vázquez
2001-01-01
Full Text Available Tilting-pad journal bearings are widely used to promote stability in modern rotating machinery. However, the dynamics associated with pad motion alters this stabilizing capacity depending on the operating speed of the machine and the bearing geometric parameters, particularly the bearing preload. In modeling the dynamics of the entire rotor-bearing system, the rotor is augmented with a model of the bearings. This model may explicitly include the pad degrees of freedom or may implicitly include them by using dynamic matrix reduction methods. The dynamic reduction models may be represented as a set of polynomials in the eigenvalues of the system used to determine stability. All tilting-pad bearings can then be represented by a fixed size matrix with polynomial elements interacting with the rotor. This paper presents a procedure to calculate the coefficients of polynomials for implicit bearing models. The order of the polynomials changes to reflect the number of pads in the bearings. This results in a very compact and computationally efficient method for fully including the dynamics of tilting-pad bearings or other multiple degrees of freedom components that interact with rotors. The fixed size of the dynamic reduction matrices permits the method to be easily incorporated into rotor dynamic stability codes. A recursive algorithm is developed and presented for calculating the coefficients of the polynomials. The method is applied to stability calculations for a model of a typical industrial compressor.
A New Higher-Order Composite Theory for Analysis and Design of High Speed Tilt-Rotor Blades
McCarthy, Thomas Robert
1996-01-01
A higher-order theory is developed to model composite box beams with arbitrary wall thicknesses. The theory, based on a refined displacement field, represents a three-dimensional model which approximates the elasticity solution. Therefore, the cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are automatically included in the formulation. The model accurately captures the transverse shear stresses through the thickness of each wall while satisfying all stress-free boundary conditions. Several numerical results are presented to validate the present theory. The developed theory is then used to model the load carrying member of a tilt-rotor blade which has thick-walled sections. The composite structural analysis is coupled with an aerodynamic analysis to compute the aeroelastic stability of the blade. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt-rotor aircraft. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem and a hybrid approximate analysis is used to reduce the computational effort. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt-rotor blade.
V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft
1972-01-01
A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Santos, Ilmar
2014-01-01
In this work, the feedback-controlled lubrication regime, based on a model-free designed proportional-derivative (PD) controller, is studied and experimentally tested in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing (active TPJB). With such a lubrication regime...... to experimentally characterized multi-input multi-output systems is used to determine the stabilizing PD gain domain. The main contribution of this work is to demonstrate the enhancement of the dynamic response of a flexible rotor-bearing system supported by an active TPJB by means of the feedback...... are used as actuators and the flexible rotor lateral movements as feedback control signals. To synthesise the PD controller gains an objective function is optimized in the stabilizing gain domain and then chosen from a subdomain imposed by the servovalves restrictions. The D-decomposition approach expanded...
Nonlinear Dynamics Analysis of Tilting Pad Journal Bearing-Rotor System
Directory of Open Access Journals (Sweden)
Jiayang Ying
2011-01-01
Full Text Available The nonlinear dynamics theory is increasingly applied in the dynamics analysis of tilting pad journal bearing-rotor system. However, extensive work on system dynamics done previously neglects the influence caused by the moment of inertia of the pad. In this paper, a comparison is made between the responses of the rotor in the bearings with and without pad inertia effect. Taking the Jeffcott rotor system as an example, the characteristics of bearing-rotor system, such as bifurcation diagram, cycle response, frequency spectrum, phase trajectories, and Poincaré maps, were attained within a certain rotation rate range. The pivotal oil-film force of tilting pad journal bearing was calculated by database method. The results directly demonstrate that considering the influence of the pad moment of inertia, system dynamics characteristics are found more complicated when rotor-bearing system works around natural frequency and system bifurcation is observed forward when rotor-bearing system works on high-speed range.
Calculations of the flow past bluff bodies, including tilt-rotor wing sections at alpha = 90 deg
Raghavan, V.; Mccroskey, W. J.; Baeder, J. D.; Van Dalsem, W. R.
1990-01-01
An attempt was made to model in two dimensions the effects of rotor downwash on the wing of the tilt-rotor aircraft and to compute the drag force on airfoils at - 90 deg angle of attack, using a well-established Navier-Stokes code. However, neither laminar nor turbulent calculations agreed well with drag and base-pressure measurements at high Reynolds numbers. Therefore, further efforts were concentrated on bluff-body flows past various shapes at low Reynolds numbers, where a strong vortex shedding is observed. Good results were obtained for a circular cylinder, but the calculated drag of a slender ellipse at right angles to the freestream was significantly higher than experimental values reported in the literature for flat plates. Similar anomalous results were obtained on the tilt-rotor airfoils, although the qualitative effects of flap deflection agreed with the wind tunnel data. The ensemble of results suggest that there may be fundamental differences in the vortical wakes of circular cylinders and noncircular bluff bodies.
Control of a Quadrotor Equipped with a Fixed-wing by Tilting Some of Four Rotors
Directory of Open Access Journals (Sweden)
Yoshikazu Nakamura
2017-03-01
Full Text Available Abstract—Unmanned aerial vehicles (UAVs are beingexpected to be used for the vegetational observation and theinformation collection of disaster sites. Especially, rotorcraftstypified by helicopters are attractive, because they are able tohover and achieve vertical take-off and landing (VTOL.However, rotorcrafts have a disadvantage that it cannot have along-distance flight, because they fly by the thrust of upwarddirection. Aircrafts with tilt rotors are developed in order toovercome such disadvantages. Such aircrafts can be hovering andtake a VTOL and also a long-distance flight by changing theangle of the rotor. In this research, it is aimed at proposing aVTOL-type UAV with a fixed-wing and four tiltable rotors andcontrolling it.
Definition and analytical evaluation of a power management system for tilt-rotor aircraft
Morris, J. J.; Alexander, H. R.
1978-01-01
The paper reviews the special design criteria which apply to power management in a tilt-rotor aircraft. These include the need for accurate and fast control of rpm and thrust, while accounting for the dynamic interactions between rotor systems caused by cross-shafting and aircraft lateral/directional response. The power management system is also required to provide acceptable high speed sensitivity to longitudinal turbulence. It is shown that the criteria can best be met using a single governor adjusting the collective pitch by an amount proportional to a combination of the average rpm and the integral of the average rpm of the two rotors. This system is evaluated and compared with other candidate systems in hover and cruise flight.
Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft
Directory of Open Access Journals (Sweden)
Yanchao Yin
2017-01-01
Full Text Available A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA. Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eliminate the approximation error, where a radial basis function (RBF neural network is used to online regulate the equivalent sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and comparative simulations are included to verify the efficacy of the proposed control method.
Design Study of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft
Robuck, Mark; Wilkerson, Joseph; Zhang, Yiyi; Snyder, Christopher A.; Vonderwell, Daniel
2013-01-01
Boeing, Rolls Royce, and NASA have worked together to complete a parametric sizing study for NASA's Large Civil Tilt Rotor (LCTR2) concept 2nd iteration. Vehicle gross weight and fuel usage were evaluated as propulsion and drive system characteristics were varied to maximize the benefit of reduced rotor tip speed during cruise conditions. The study examined different combinations of engine and gearbox variability to achieve rotor cruise tip speed reductions down to 54% of the hover tip speed. Previous NASA studies identified that a 54% rotor speed reduction in cruise minimizes vehicle gross weight and fuel burn. The LCTR2 was the study baseline for initial sizing. This study included rotor tip speed ratios (cruise to hover) of 100%, 77% and 54% at different combinations of engine RPM and gearbox speed reductions, which were analyzed to achieve the lightest overall vehicle gross weight (GW) at the chosen rotor tip speed ratio. Different engine and gearbox technology levels are applied ranging from commercial off-the-shelf (COTS) engines and gearbox technology to entry-in-service (EIS) dates of 2025 and 2035 to assess the benefits of advanced technology on vehicle gross weight and fuel burn. Interim results were previously reported1. This technical paper extends that work and summarizes the final study results including additional engine and drive system study accomplishments. New vehicle sizing data is presented for engine performance at a single operating speed with a multispeed drive system. Modeling details for LCTR2 vehicle sizing and subject engine and drive sub-systems are presented as well. This study was conducted in support of NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project.
Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft
Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.
1990-01-01
Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.
Schoendorfer, David L.; Morlok, Edward K.
1985-01-01
The cost analysis done to support an assessment of the potential for a small tilt-rotor aircraft to operate in short-haul intercity passenger service is described in detail. Anticipated costs of tilt-rotor air service were compared to the costs of two alternatives: conventional air and high speed rail (HSR). Costs were developed for corridor service, varying key market characteristics including distance, passenger volumes, and minimum frequency standards. The resulting cost vs output information can then be used to compare modal costs for essentially identical service quality and passenger volume or for different service levels and volumes for each mode, as appropriate. Extensive sensitivity analyses are performed. The cost-output features of these technologies are compared. Tilt-rotor is very attractive compared to HSR in terms of costs over the entire range of volume. It also has costs not dramatically different from conventional air, but tilt-rotor costs are generally higher. Thus some of its other advantages, such as the VTOL capability, must offset the cost disadvantage for it to be a preferred or competitive mode in any given market. These issues are addressed in the companion report which considers strategies for tilt-rotor development in commercial air service.
Extension-torsion coupling behavior of advanced composite tilt-rotor blades
Kosmatka, J. B.
1989-01-01
An analytic model was developed to study the extension-bend-twist coupling behavior of an advanced composite helicopter or tilt-rotor blade. The outer surface of the blade is defined by rotating an arbitrary cross section about an initial twist axis. The cross section can be nonhomogeneous and composed of generally anisotropic materials. The model is developed based upon a three dimensional elasticity approach that is recast as a coupled two-dimensional boundary value problem defined in a curvilinear coordinate system. Displacement solutions are written in terms of known functions that represent extension, bending, and twisting and unknown functions for local cross section deformations. The unknown local deformation functions are determined by applying the principle of minimum potential energy to the discretized two-dimensional cross section. This is an application of the Ritz method, where the trial function family is the displacement field associated with a finite element (8-node isoparametric quadrilaterals) representation of the section. A computer program was written where the cross section is discretized into 8-node quadrilateral subregions. Initially the program was verified using previously published results (both three-dimensional elasticity and technical beam theory) for pretwisted isotropic bars with an elliptical cross section. In addition, solid and thin-wall multi-cell NACA-0012 airfoil sections were analyzed to illustrate the pronounced effects that pretwist, initial twist axis location, and spar location has on coupled behavior. Currently, a series of advanced composite airfoils are being modeled in order to assess how the use of laminated composite materials interacts with pretwist to alter the coupling behavior of the blade. These studies will investigate the use of different ply angle orientations and the use of symmetric versus unsymmetric laminates.
Global-Local Analysis and Optimization of a Composite Civil Tilt-Rotor Wing
Rais-Rohani, Masound
1999-01-01
This report gives highlights of an investigation on the design and optimization of a thin composite wing box structure for a civil tilt-rotor aircraft. Two different concepts are considered for the cantilever wing: (a) a thin monolithic skin design, and (b) a thick sandwich skin design. Each concept is examined with three different skin ply patterns based on various combinations of 0, +/-45, and 90 degree plies. The global-local technique is used in the analysis and optimization of the six design models. The global analysis is based on a finite element model of the wing-pylon configuration while the local analysis uses a uniformly supported plate representing a wing panel. Design allowables include those on vibration frequencies, panel buckling, and material strength. The design optimization problem is formulated as one of minimizing the structural weight subject to strength, stiffness, and d,vnamic constraints. Six different loading conditions based on three different flight modes are considered in the design optimization. The results of this investigation reveal that of all the loading conditions the one corresponding to the rolling pull-out in the airplane mode is the most stringent. Also the frequency constraints are found to drive the skin thickness limits, rendering the buckling constraints inactive. The optimum skin ply pattern for the monolithic skin concept is found to be (((0/+/-45/90/(0/90)(sub 2))(sub s))(sub s), while for the sandwich skin concept the optimal ply pattern is found to be ((0/+/-45/90)(sub 2s))(sub s).
Demonstration of an elastically coupled twist control concept for tilt rotor blade application
Lake, R. C.; Nixon, M. W.; Wilbur, M. L.; Singleton, J. D.; Mirick, P. H.
1994-01-01
The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.
Macroscopic balance model for wave rotors
Welch, Gerard E.
1996-01-01
A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.
An Investigation of Large Tilt-Rotor Hover and Low Speed Handling Qualities
Malpica, Carlos A.; Decker, William A.; Theodore, Colin R.; Lindsey, James E.; Lawrence, Ben; Blanken, Chris L.
2011-01-01
A piloted simulation experiment conducted on the NASA-Ames Vertical Motion Simulator evaluated the hover and low speed handling qualities of a large tilt-rotor concept, with particular emphasis on longitudinal and lateral position control. Ten experimental test pilots evaluated different combinations of Attitude Command-Attitude Hold (ACAH) and Translational Rate Command (TRC) response types, nacelle conversion actuator authority limits and inceptor choices. Pilots performed evaluations in revised versions of the ADS-33 Hover, Lateral Reposition and Depart/Abort MTEs and moderate turbulence conditions. Level 2 handling qualities ratings were primarily recorded using ACAH response type in all three of the evaluation maneuvers. The baseline TRC conferred Level 1 handling qualities in the Hover MTE, but there was a tendency to enter into a PIO associated with nacelle actuator rate limiting when employing large, aggressive control inputs. Interestingly, increasing rate limits also led to a reduction in the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired, pitching motions proportional to the allowable amount of nacelle rate. A modification that counteracted this effect significantly improved the handling qualities. Evaluation of the different response type variants showed that inclusion of TRC response could provide Level 1 handling qualities in the Lateral Reposition maneuver by reducing coupled pitch and heave off axis responses that otherwise manifest with ACAH. Finally, evaluations in the Depart/Abort maneuver showed that uncertainty about commanded nacelle position and ensuing aircraft response, when manually controlling the nacelle, demanded high levels of attention from the pilot. Additional requirements to maintain pitch attitude within 5 deg compounded the necessary workload.
1980-01-01
Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.
Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2004-01-01
lubrication. The second approach based on the equivalent dynamic coefficients leads to more accurate results since it includes the frequency dependence of the active hydraulic forces. Theoretical and experimental results reveal the feasibility of reducing resonance peaks by using the active lubricated tilting...... into the model by using two different approaches: (a) linearized active oil film forces and the assumption that the hydrodynamic forces and the active hydraulic forces can be decoupled; (b) equivalent dynamic coefficients of the active oil film and the solution of the modified Reynolds' equation for the active...... their operational range by attenuating resonance peaks and reducing vibration problems....
Directory of Open Access Journals (Sweden)
Weimin Wang
2014-01-01
Full Text Available Rotordynamic stability is crucial for high performance centrifugal compressors. In this paper, the weighted instrumental variable (WIV based system identification method for rotating machinery stability is investigated based on a sine sweep forward excitation with an electromagnetic actuator. The traditional multiple input multiple output (MIMO frequency response function (FRF is transformed into a directional frequency response function (dFRF. The rational polynomial method (RPM combined with WIV is developed to identify the rotor’s first forward mode parameters. This new approach is called the COMDYN method. Experimental work using the COMDYN method is carried out under different rotating speeds, oil inlet temperatures, and pressure conditions. Two sets of bearings with preloads 0.1 and 0.3 are investigated. A numerical rotor-bearing model is also built. The numerical results correlate reasonably well with the experimental results. The investigation results indicate that the new method satisfies the desired features of rotating machine stability identification. Furthermore, the system log decrement was improved somewhat with the increase of oil inlet temperature. The increase of oil supply pressure affects the rotor-bearing system stability very slightly. The results of this paper provide new and useful insights for potentially avoiding instability faults in centrifugal compressors.
Reference Model 2: "Rev 0" Rotor Design
Energy Technology Data Exchange (ETDEWEB)
Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2011-12-01
The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd
Directory of Open Access Journals (Sweden)
Yongliang Wang
2015-01-01
Full Text Available Tilting pad bearings offer unique dynamic stability enabling successful deployment of high-speed rotating machinery. The model of dynamic stiffness, damping, and added mass coefficients is often used for rotordynamic analyses, and this method does not suffice to describe the dynamic behaviour due to the nonlinear effects of oil film force under larger shaft vibration or vertical rotor conditions. The objective of this paper is to present a nonlinear oil force model for finite length tilting pad journal bearings. An approximate analytic oil film force model was established by analysing the dynamic characteristic of oil film of a single pad journal bearing using variable separation method under the dynamic π oil film boundary condition. And an oil film force model of a four-tilting-pad journal bearing was established by using the pad assembly technique and considering pad tilting angle. The validity of the model established was proved by analyzing the distribution of oil film pressure and the locus of journal centre for tilting pad journal bearings and by comparing the model established in this paper with the model established using finite difference method.
Simple theoretical models for composite rotor blades
Valisetty, R. R.; Rehfield, L. W.
1984-01-01
The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.
Numerical modelling of the tilt casting processes of titanium alumindes
Wang, Hong
2008-01-01
This research has investigated the modelling and optimisation of the tilt casting process of Titanium Aluminides (TiAl). This study is carried out in parallel with the experimental research undertaken in IRC at the University of Birmingham. They propose to use tilt casting inside a vacuum chamber and attempt to combine this tilt casting process with Induction Skull Melting (ISM). A totally novel process is developing for investment casting, which is suitable for casting gamma TiAl.\\ud \\ud As ...
MODELLING AND CONTROL OF H-SHAPED RACING QUADCOPTER WITH TILTING PROPELLERS
Directory of Open Access Journals (Sweden)
Ahmed Alkamachi
2017-08-01
Full Text Available Traditional quadcopter suffers terribly from its underactuation which implies the coupling between the rotational and the translational motion. In this paper, we present a quadcopter with dynamic rotor tilting capability in which the four propellers are allowed to tilt together around their arm axis. The proposed model provides leveled forward/backward horizontal motion and therefore, ensures a correct view of the onboard camera, and increases the vehicle speed by reducing the air drag. The rotor tilt mechanism also provides an instant high speed in the forward or reverse direction and offers a quick and solid air brake to restrain that fast moving speed. The nonlinear dynamical model for the quadcopter under consideration is derived using Newton-Euler formalization. A control strategy is then proposed aimed to control the altitude, attitude, and the forward speed of the obtained model. Finally, a numerical simulation is used to integrate the system model with the controller and to test the system performance. Simulation results are reported to demonstrate the advantages of the proposed novel configuration.
Tilted-ring modelling of disk galaxies : Anomalous gas
Jozsa, G. I. G.; Niemczyk, C.; Klein, U.; Oosterloo, T. A.
We report our ongoing work on kinematical modelling of HI in disk galaxies. We employ our new software TiRiFiC (Tilted-Ring-Fitting-Code) in order to derive tilted-ring models by fitting artificial HI data cubes to observed ones in an automated process. With this technique we derive very reliable
Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps
Bergami, Leonardo
2014-01-01
A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam
International Nuclear Information System (INIS)
Gronert, H.; Vetter, J.; Eckert, M.
1978-01-01
In the field of hollow high speed rotors there is an increasing demand for progressively higher speeds of safe operation. High speed operation causes support bearings to be carefully designed if the rotor speed is to pass safely through its critical speed of operation where intense vibration is experienced. Also the rotational speed is limited by the peripheral velocity and strength of the outside surface portion of the rotor. The invention proposes that elemental boron, which has great tensile strength and lightness be used to provide a major part of a hollow rotor so that increased operating speeds can be attained. Such a rotor is usable to provide a high speed centrifuge drum. (author)
Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.
1979-01-01
Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.
Directory of Open Access Journals (Sweden)
Hui-Hui Feng
2014-01-01
Full Text Available The water-lubricated bearings have been paid attention for their advantages to reduce the power loss and temperature rise and increase load capacity at high speed. To fully study the complete dynamic coefficients of two water-lubricated, hydrostatic journal bearings used to support a rigid rotor, a four-degree-of-freedom model considering the translational and tilting motion is presented. The effects of tilting ratio, rotary speed, and eccentricity ratio on the static and dynamic performances of the bearings are investigated. The bulk turbulent Reynolds equation is adopted. The finite difference method and a linear perturbation method are used to calculate the zeroth- and first-order pressure fields to obtain the static and dynamic coefficients. The results suggest that when the tilting ratio is smaller than 0.4 or the eccentricity ratio is smaller than 0.1, the static and dynamic characteristics are relatively insensitive to the tilting and eccentricity ratios; however, for larger tilting or eccentricity ratios, the tilting and eccentric effects should be fully considered. Meanwhile, the rotary speed significantly affects the performance of the hydrostatic, water-lubricated bearings.
Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2005-01-01
for the active lubrication. The second approach, based on the equivalent dynamic coefficients, leads to more accurate results because it includes the frequency dependence of the active hydraulic forces. Theoretical and experimental results reveal the feasibility of reducing resonance peaks by using the active...... into the model by using two different approaches: (a) linearized active oil film forces and the assumption that the hydrodynamic forces and the active hydraulic forces can be decoupled, and (b) equivalent dynamic coefficients of the active oil film and the solution of the modified Reynolds equation...... of increasing their operational range by attenuating resonance peaks and reducing vibration problems....
Robuck, Mark; Wilkerson, Joseph; Snyder, Christopher A.; Zhang, Yiyi; Maciolek, Bob
2013-01-01
In a series of study tasks conducted as a part of NASA's Fundamental Aeronautics Program, Rotary Wing Project, Boeing and Rolls-Royce explored propulsion, drive, and rotor system options for the NASA Large Civil Tilt Rotor (LCTR2) concept vehicle. The original objective of this study was to identify engine and drive system configurations to reduce rotor tip speed during cruise conditions and quantify the associated benefits. Previous NASA studies concluded that reducing rotor speed (from 650 fps hover tip speed) during cruise would reduce vehicle gross weight and fuel burn. Initially, rotor cruise speed ratios of 54% of the hover tip speed were of most interest during operation at cruise air speed of 310 ktas. Interim results were previously reported1 for cruise tip speed ratios of 100%, 77%, and 54% of the hover tip speed using engine and/or gearbox features to achieve the reduction. Technology levels from commercial off-the-shelf (COTS), through entry-in-service (EIS) dates of 2025 and 2035 were considered to assess the benefits of advanced technology on vehicle gross weight and fuel burn. This technical paper presents the final study results in terms of vehicle sizing and fuel burn as well as Operational and Support (O&S) costs. New vehicle sizing at rotor tip speed reduced to 65% of hover is presented for engine performance with an EIS 2035 fixed geometry variable speed power turbine. LCTR2 is also evaluated for missions range cases of 400, 600, 800, 1000, and 1200 nautical miles and cruise air speeds of 310, 350 and 375 ktas.
Tilted dipole model for bias-dependent photoluminescence pattern
Energy Technology Data Exchange (ETDEWEB)
Fujieda, Ichiro, E-mail: fujieda@se.ritsumei.ac.jp; Suzuki, Daisuke; Masuda, Taishi [Department of Electrical and Electronic Engineering, Ritsumeikan University, Kusatsu 525-8577 (Japan)
2014-12-14
In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.
Structural modeling for multicell composite rotor blades
Rehfield, Lawrence W.; Atilgan, Ali R.
1987-01-01
Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.
Modeling of high speed micro rotors in moderate flow confinement
Dikmen, E.; van der Hoogt, Peter; Aarts, Ronald G.K.M.; Sas, P.; Bergen, B.
2008-01-01
The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via
PIV in a model wind turbine rotor wake
DEFF Research Database (Denmark)
Meyer, Knud Erik; Naumov, Igor; Karbadin, Ivan
2013-01-01
Stereoscopic particle image velocimetry (PIV) measurements of the flow in the wake of scale model of a horizontal axis wind turbine is presented Near the rotor, measurements are made in vertical planes intersecting the rotor axis These planes capture flow effect from the tip and root vortices...... perpendicular to the rotor axis is used to investigate the dynamics in the far wake Here, a precessing core is found and data indicate that the Strouhal number of the precessing is independent of the rotor speed...
Patient Specific Modeling of Head-Up Tilt
DEFF Research Database (Denmark)
Williams, Nakeya; Wright, Andrew; Mehlsen, Jesper
2014-01-01
Short term cardiovascular responses to head-up tilt (HUT) experiments involve complex cardiovascular regulation in order to maintain blood pressure at homeostatic levels. This manuscript presents a patient specific compartmental model developed to predict dynamic changes in heart rate and arterial...
Modeling Flow Past a Tilted Vena Cava Filter
Energy Technology Data Exchange (ETDEWEB)
Singer, M A; Wang, S L
2009-06-29
Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside a model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.
Stability of Rotor Systems: A Complex Modelling Approach
DEFF Research Database (Denmark)
Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob
1996-01-01
A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...
Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps
DEFF Research Database (Denmark)
Bergami, Leonardo
the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field.......This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...
Rotordynamic Evaluation of Full Scale Rotor on Tilting Pad Bearings with 0.1 and 0.3 Preload
Directory of Open Access Journals (Sweden)
Weimin Wang
2014-01-01
Full Text Available A system identification method for rotating machinery stability evaluation is investigated based on sine sweep excitation testing with electromagnetic actuator. The traditional MIMO FRF is transformed into dFRF from real number field to complex field with a transformation matrix, eliminating the influence of forward and backward modal overlap and providing higher accuracy to identify rotor’s first forward modal parameters using the rational polynomial method. The modal parameters are acquired for stability estimation. Furthermore, two sets of bearing with preloads of 0.1 and 0.3 under both load-on-pad (LOP and load-between-pad (LBP conditions are investigated. The effects of oil inlet pressure (1.0 bar–1.75 bar and temperature (43°C–51°C on the stability of rotor are investigated in detail. Results indicate that the stability of rotor will be improved by increasing the oil inlet temperature and pressure. It is found that the rotor is more stable on bearing with 0.1 preload than that of 0.3 preload. Load-on-pad provides more damping to rotor than load-between-pad. The method and outcomes of this paper can provide both theory basis and technology foundation for improving the rotor stability of centrifugal compressors.
Numerical modeling of a rotor misalignment; Modelado numerico del desalineamiento de un rotor
Energy Technology Data Exchange (ETDEWEB)
Leon Pina, Roberto
2009-12-15
In the turbo-machinery area after an unbalancing, the misalignment is the fault that most frequently appears, and this one has been little studied compared to the unbalance. The misalignment appears when the geometric centers of two shafts and/or bearings do not coincide, these differences take place by different factors such as: incorrect installation of the bearings or rotors, thermal effects, or rotor weight, to mention some of them. The of the misalignment diagnosis continues being an area little studied, since the effects it generates are complex and include diverse physical processes reason why it presents/displays similar symptoms to those of other faults; thus, one of the methods that are used to diagnose this fault, is based on analyzing the vibration phantoms but this works only under particular conditions. In order to reproduce the dynamic behavior of a misaligned rotor, in the present work non-linear simplified models of the supports are used, whose objective is to contribute to facilitate future studies of the flow-dynamic behavior of the bearing, helping to identify the type and magnitude of the existing non-linearity in the supports and leaning in the analysis of the vibratory behavior of misaligned rotors observed in the field. [Spanish] En el area de turbomaquinaria despues del desbalance, el desalineamiento es la falla que se presenta con mayor frecuencia, y esta se ha estudiado poco comparada con el desbalance. El desalineamiento se presenta cuando los centros geometricos de dos flechas y/o chumaceras no coinciden, estas diferencias se producen por diferentes factores como: instalacion incorrecta de las chumaceras o rotores, efectos termicos, o el peso del rotor, por mencionar algunos. El diagnostico del desalineamiento sigue siendo una area poco estudiada, ya que los efectos que genera son complejos y abarcan diversos procesos fisicos por lo que presenta sintomas similares a los de otras fallas; asi, uno de los metodos que se utilizan para
Modelling of Rotor-gas bearings for Feedback Controller Design
DEFF Research Database (Denmark)
Theisen, Lukas Roy Svane; Niemann, Hans Henrik
2014-01-01
Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which ca...... and are shown to accurately describe the dynamical behaviour of the rotor-gas bearing. Design of a controller using the identied models is treated and experiments verify the improvement of the damping properties of the rotor-gas bearing.......Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which can...... be designed from suitable models describing the relation from actuator input to measured shaft position. Current state of the art models of controllable gas bearings however do not provide such relation, which calls for alternative strategies. The present contribution discusses the challenges for feedback...
Stability of rotor systems: A complex modelling approach
DEFF Research Database (Denmark)
Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob
1998-01-01
The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...... approach applying bounds of appropriate Rayleigh quotients. The rotor systems tested are: a simple Laval rotor, a Laval rotor with additional elasticity and damping in the bearings, and a number of rotor systems with complex symmetric 4 x 4 randomly generated matrices.......The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...
Effective ellipsoidal models for wavefield extrapolation in tilted orthorhombic media
Waheed, Umair Bin
2016-04-22
Wavefield computations using the ellipsoidally anisotropic extrapolation operator offer significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate wavefield representation or imaging for media of orthorhombic symmetry. Therefore, we propose the use of ‘effective ellipsoidally anisotropic’ models that correctly capture the kinematic behaviour of wavefields for tilted orthorhombic (TOR) media. We compute effective velocities for the ellipsoidally anisotropic medium using kinematic high-frequency representation of the TOR wavefield, obtained by solving the TOR eikonal equation. The effective model allows us to use the cheaper ellipsoidally anisotropic wave extrapolation operators. Although the effective models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The proposed methodology offers a much better cost versus accuracy trade-off for wavefield computations in TOR media, particularly for media of low to moderate anisotropic strength. Furthermore, the computed wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference based TOR wave extrapolation scheme. We demonstrate applicability and usefulness of our formulation through numerical tests on synthetic TOR models. © 2016 Institute of Geophysics of the ASCR, v.v.i
Model-based monitoring of rotors with multiple coexisting faults
International Nuclear Information System (INIS)
Rossner, Markus
2015-01-01
Monitoring systems are applied to many rotors, but only few monitoring systems can separate coexisting errors and identify their quantity. This research project solves this problem using a combination of signal-based and model-based monitoring. The signal-based part performs a pre-selection of possible errors; these errors are further separated with model-based methods. This approach is demonstrated for the errors unbalance, bow, stator-fixed misalignment, rotor-fixed misalignment and roundness errors. For the model-based part, unambiguous error definitions and models are set up. The Ritz approach reduces the model order and therefore speeds up the diagnosis. Identification algorithms are developed for the different rotor faults. Hereto, reliable damage indicators and proper sub steps of the diagnosis have to be defined. For several monitoring problems, measuring both deflection and bearing force is very useful. The monitoring system is verified by experiments on an academic rotor test rig. The interpretation of the measurements requires much knowledge concerning the dynamics of the rotor. Due to the model-based approach, the system can separate errors with similar signal patterns and identify bow and roundness error online at operation speed. [de
International Nuclear Information System (INIS)
Andronov, I.N.
1999-01-01
The attempts to development of the rotor-dampers universal model with ability of fast correction of the parameters of mock-up rotor and dampers, their construction were made. The model that takes into account viscous characteristics of the material of the centrifuge rotor and allows research numerically into the rotor behaviour during over-speeding is suggested. The examples of calculations as show good effect of electromagnetic damping on the dynamics of the centrifuge rotor are given [ru
General model and control of an n rotor helicopter
DEFF Research Database (Denmark)
Sidea, Adriana-Gabriela; Brogaard, Rune Yding; Andersen, Nils Axel
2015-01-01
The purpose of this study was to create a dynamic, nonlinear mathematical model ofa multirotor that would be valid for different numbers of rotors. Furthermore, a set of SingleInput Single Output (SISO) controllers were implemented for attitude control. Both model andcontrollers were tested exper...
3 QP plus rotor model and high spin states
International Nuclear Information System (INIS)
Mathur, Tripti
1995-01-01
Nuclear models are approximate methods to describe certain properties of a large number of nuclei. In this paper details of 3 QP (three quasi particle) plus rotor model and high spin state are discussed. The band head energies for the 3 QP rotational bands for 157 Ho and 159 Tm are also given. 5 refs., 8 figs
International Nuclear Information System (INIS)
Yadav, P.; Chandel, S.S.
2014-01-01
Tilt angle and orientation greatly are influenced on the performance of the solar photo voltaic panels. The tilt angle of solar photovoltaic panels is one of the important parameters for the optimum sizing of solar photovoltaic systems. This paper analyses six different isotropic and anisotropic diffused solar radiation models for optimum tilt angle determination. The predicted optimum tilt angles are compared with the experimentally measured values for summer season under outdoor conditions. The Liu and Jordan model is found to exhibit t lowest error as compared to other models for the location. (author)
Flow diagnostics downstream of a tribladed rotor model
DEFF Research Database (Denmark)
Naumov, I. V.; Rahmanov, V. V.; Okulov, Valery
2012-01-01
This paper presents results of a study of vortex wake structures and measurements of instantaneous 3D velocity fields downstream of a triblade turbine model. Two operation modes of flow around the rotor with different tip speed ratios were tested. Initially the wake structures were visualized...... and subsequently quantitative data were recorded through velocity field restoration from particle tracks using a stereo PIV system.The study supplied flow diagnostics and recovered the instantaneous 3D velocity fields in the longitudinal cross section behind a tribladed rotor at different values of tip speed ratio...
Helicopter Rotor Load Prediction Using a Geometrically Exact Beam with Multicomponent Model
DEFF Research Database (Denmark)
Lee, Hyun-Ku; Viswamurthy, S.R.; Park, Sang Chul
2010-01-01
In this paper, an accurate structural dynamic analysis was developed for a helicopter rotor system including rotor control components, which was coupled to various aerodynamic and wake models in order to predict an aeroelastic response and the loads acting on the rotor. Its blade analysis was based...... rotor-blade/control-system model was loosely coupled with various inflow and wake models in order to simulate both hover and forward-flight conditions. The resulting rotor blade response and pitch link loads are in good agreement with those predicted byCAMRADII. The present analysis features both model...... on an intrinsic formulation of moving beams implemented in the time domain. The rotor control system was modeled as a combination of rigid and elastic components. A multicomponent analysis was then developed by coupling the beam finite element model with the rotor control system model to obtain a complete rotor-blade/control...
Efficient Beam-Type Structural Modeling of Rotor Blades
DEFF Research Database (Denmark)
Couturier, Philippe; Krenk, Steen
2015-01-01
The present paper presents two recently developed numerical formulations which enable accurate representation of the static and dynamic behaviour of wind turbine rotor blades using little modeling and computational effort. The first development consists of an intuitive method to extract fully...... by application to a composite section with bend-twist coupling and a real wind turbine blade....
Using a collision model to design safer wind turbine rotors for birds
International Nuclear Information System (INIS)
Tucker, V.A.
1996-01-01
A mathematical model for collisions between birds and propeller-type turbine rotors identifies the variables that can be manipulated to reduce the probability that birds will collide with the rotor. This study defines a safety index--the clearance power density--that allows rotors of different sizes and designs to be compared in terms of the amount of wind energy converted to electrical energy per bird collision. The collision model accounts for variations in wind speed during the year and shows that for model rotors with simple, one-dimensional blades, the safety index increases in proportion to rotor diameter, and variable speed rotors have higher safety indexes than constant speed rotors. The safety index can also be increased by enlarging the region near the center of the rotor hub where the blades move slowly enough for birds to avoid them. Painting the blades to make them more visible might have this effect. Model rotors with practical designs can have safety indexes an order of magnitude higher than those for model rotors typical of the constant speeds rotors in common use today. This finding suggests that redesigned rotors could have collision rates with birds perhaps an order of magnitude lower than today's rotors, with no reduction in the production of wind power. The empirical data that exist for collisions between raptors, such as hawks and eagles, and rotors are consistent with the model: the numbers of raptor carcasses found beneath large variable speed rotors, relative to the numbers found under small constant speed rotors, are in the proportions predicted by the collision model rather than in proportion to the areas swept by the rotor blades. However, uncontrolled variables associated with these data prevent a stronger claim of support for the model
Tilted Bianchi type I dust fluid cosmological model in general relativity
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 3. Tilted Bianchi type I dust ﬂuid cosmological model in general ... In this paper, we have investigated a tilted Bianchi type I cosmological model ﬁlled with dust of perfect ﬂuid in general relativity. To get a determinate solution, we have assumed a condition ...
Tilted Bianchi type I dust fluid cosmological model in general relativity
Indian Academy of Sciences (India)
Tilted Bianchi type I dust ﬂuid cosmological model in general relativity ... In this paper, we have investigated a tilted Bianchi type I cosmological model ﬁlled with dust of perfect ﬂuid in general relativity. ... Pramana – Journal of Physics | News ...
General model and control of an n rotor helicopter
International Nuclear Information System (INIS)
Sidea, A G; Brogaard, R Yding; Andersen, N A; Ravn, O
2014-01-01
The purpose of this study was to create a dynamic, nonlinear mathematical model of a multirotor that would be valid for different numbers of rotors. Furthermore, a set of Single Input Single Output (SISO) controllers were implemented for attitude control. Both model and controllers were tested experimentally on a quadcopter. Using the combined model and controllers, simple system simulation and control is possible, by replacing the physical values for the individual systems
General model and control of an n rotor helicopter
Sidea, A. G.; Yding Brogaard, R.; Andersen, N. A.; Ravn, O.
2014-12-01
The purpose of this study was to create a dynamic, nonlinear mathematical model of a multirotor that would be valid for different numbers of rotors. Furthermore, a set of Single Input Single Output (SISO) controllers were implemented for attitude control. Both model and controllers were tested experimentally on a quadcopter. Using the combined model and controllers, simple system simulation and control is possible, by replacing the physical values for the individual systems.
Bayesian energy landscape tilting: towards concordant models of molecular ensembles.
Beauchamp, Kyle A; Pande, Vijay S; Das, Rhiju
2014-03-18
Predicting biological structure has remained challenging for systems such as disordered proteins that take on myriad conformations. Hybrid simulation/experiment strategies have been undermined by difficulties in evaluating errors from computational model inaccuracies and data uncertainties. Building on recent proposals from maximum entropy theory and nonequilibrium thermodynamics, we address these issues through a Bayesian energy landscape tilting (BELT) scheme for computing Bayesian hyperensembles over conformational ensembles. BELT uses Markov chain Monte Carlo to directly sample maximum-entropy conformational ensembles consistent with a set of input experimental observables. To test this framework, we apply BELT to model trialanine, starting from disagreeing simulations with the force fields ff96, ff99, ff99sbnmr-ildn, CHARMM27, and OPLS-AA. BELT incorporation of limited chemical shift and (3)J measurements gives convergent values of the peptide's α, β, and PPII conformational populations in all cases. As a test of predictive power, all five BELT hyperensembles recover set-aside measurements not used in the fitting and report accurate errors, even when starting from highly inaccurate simulations. BELT's principled framework thus enables practical predictions for complex biomolecular systems from discordant simulations and sparse data. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Application of aeroacoustic models to design of wind turbine rotors
Energy Technology Data Exchange (ETDEWEB)
Fuglsang, P.; Madsen, H.A. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1997-12-31
A design method is presented for wind turbine rotors. The design process is split into overall design of the rotor and detailed design of the blade tip. A numerical optimization tool is used together with a semi-empirical noise prediction code for overall rotor design. The noise prediction code is validated with measurements and good agreement is obtained both on the total noise emission and on the sensitivity to wind speed, tip pitch angle and tip speed. A design study for minimum noise emission for a 300 kW rotor shows that the total sound power level can be reduced by 3 dB(A) without loss in energy production and the energy production can be increased by 2% without increase in the total noise. Detailed CFD calculations are subsequently done to resolve the blade tip flow. The characteristics of the general flow and the tip vortex are found, and the relevant parameters for the aeroacoustic models are derived for a sharp rectangular tip. (au) 16 refs.
Rotor-Flying Manipulator: Modeling, Analysis, and Control
Directory of Open Access Journals (Sweden)
Bin Yang
2014-01-01
Full Text Available Equipping multijoint manipulators on a mobile robot is a typical redesign scheme to make the latter be able to actively influence the surroundings and has been extensively used for many ground robots, underwater robots, and space robotic systems. However, the rotor-flying robot (RFR is difficult to be made such redesign. This is mainly because the motion of the manipulator will bring heavy coupling between itself and the RFR system, which makes the system model highly complicated and the controller design difficult. Thus, in this paper, the modeling, analysis, and control of the combined system, called rotor-flying multijoint manipulator (RF-MJM, are conducted. Firstly, the detailed dynamics model is constructed and analyzed. Subsequently, a full-state feedback linear quadratic regulator (LQR controller is designed through obtaining linearized model near steady state. Finally, simulations are conducted and the results are analyzed to show the basic control performance.
A mathematical model of bird collisions with wind turbine rotors
International Nuclear Information System (INIS)
Tucker, V.A.
1996-01-01
When a bird flies through the disk swept out by the blades of a wind turbine rotor, the probability of collision depends on the motions and dimensions of the bird and the blades. The collision model in this paper predicts the probability for birds that glide upwind, downwind, an across the wind past simple one-dimensional blades represented by straight lines, and upwind and downwind past more realistic three-dimensional blades with chord and twist. Probabilities vary over the surface of the disk, and in most cases, the tip of the blade is less likely to collide with a bird than parts of the blade nearer the hub. The mean probability may be found by integration over the disk area. The collision model identifies the rotor characteristics that could be altered to make turbines safer for birds
Model of the double-rotor induction motor in terms of electromagnetic differential
Directory of Open Access Journals (Sweden)
Adamczyk Dominik
2016-12-01
Full Text Available The paper presents a concept, a construction, a circuit model and experimental results of the double-rotor induction motor. This type of a motor is to be implemented in the concept of the electromagnetic differential. At the same time it should fulfill the function of differential mechanism and the vehicle drive. One of the motor shafts is coupled to the direction changing mechanical transmission. The windings of the external rotor are powered by slip rings and brushes. The inner rotor has the squirrel-cage windings. The circuit model parameters were calculated based on the 7.5 kW real single-rotor induction motor (2p = 4. Experimental verification of the model was based on comparison between the mentioned single-rotor motor and double-rotor model with the outer rotor blocked. The presented results showed relatively good compliance between the model and real motor.
The modeling of the dynamic behavior of an unsymmetrical rotor
Pǎrǎuşanu, Ioan; Gheorghiu, Horia; Petre, Cristian; Jiga, Gabriel; Crişan, Nicoleta
2018-02-01
The purpose of this article is to present the modeling of the dynamic behaviour of unsymmetrical rotors in relatively simple quantitative terms. Numerical simulations show that the shaft orthotropy produces a peak of resonant vibration about half the regular critical speed and, for small damping, a range of possible unstable behavior between the two critical speeds. Rotors having the shaft and/or the disks with unequal diametral moments of inertia (e.g., two-bladed small airplane propellers, wind turbines and fans) are dynamically unstable above a certain speed and some of these may return to a stable condition at a sufficiently high speed, depending on the particular magnitudes of the gyroscopic coupling and the inertia inequality.
Computational Analysis of Multi-Rotor Flows
Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.
2016-01-01
Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.
On the finite element modeling of the asymmetric cracked rotor
AL-Shudeifat, Mohammad A.
2013-05-01
The advanced phase of the breathing crack in the heavy duty horizontal rotor system is expected to be dominated by the open crack state rather than the breathing state after a short period of operation. The reason for this scenario is the expected plastic deformation in crack location due to a large compression stress field appears during the continuous shaft rotation. Based on that, the finite element modeling of a cracked rotor system with a transverse open crack is addressed here. The cracked rotor with the open crack model behaves as an asymmetric shaft due to the presence of the transverse edge crack. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix which yields a linear time-periodic system. The harmonic balance method (HB) is used for solving the finite element (FE) equations of motion for studying the dynamic behavior of the system. The behavior of the whirl orbits during the passage through the subcritical rotational speeds of the open crack model is compared to that for the breathing crack model. The presence of the open crack with the unbalance force was found only to excite the 1/2 and 1/3 of the backward critical whirling speed. The whirl orbits in the neighborhood of these subcritical speeds were found to have nearly similar behavior for both open and breathing crack models. While unlike the breathing crack model, the subcritical forward whirling speeds have not been observed for the open crack model in the response to the unbalance force. As a result, the behavior of the whirl orbits during the passage through the forward subcritical rotational speeds is found to be enough to distinguish the breathing crack from the open crack model. These whirl orbits with inner loops that appear in the neighborhood of the forward subcritical speeds are then a unique property for the breathing crack model.
Measurement of the Lightweight Rotor Eigenfrequencies and Tuning of its Model Parameters
Directory of Open Access Journals (Sweden)
Luboš SMOLÍK
2013-06-01
Full Text Available The common sizes and weights of rotors, which can be found e.g. in the energy production industry, allow to employ a standard methodology of an experimental modal analysis. However, certain applications with rotors of small weights lead to the usage of alternative measuring methods suitable for the identification of rotor eigenfrequencies. One of these methods, which is characterized by the measuring of noise, is introduced in this paper and the results for a particular rotor is presented. Moreover the tuning of the finite element rotor model on the basis of such measured values is shown.
DEFF Research Database (Denmark)
Cerda, Alejandro; Santos, Ilmar
2012-01-01
This work is aimed at a theoretical study of the dynamic behavior of a rotor-tilting pad journal bearing (TPJB) system under different lubrication regimes, namely, thermohydrodynamic (THD), elastohydrodynamic (EHD), and hybrid lubrication regime. The rotor modeled corresponds to an industrial com...
Comparison of Modelled and Measured Tilted Solar Irradiance for Photovoltaic Applications
Directory of Open Access Journals (Sweden)
Riyad Mubarak
2017-10-01
Full Text Available This work assesses the performance of five transposition models that estimate the global and diffuse solar irradiance on tilted planes based on the global horizontal irradiance. The modelled tilted irradiance values are compared to measured one-minute values from pyranometers and silicon sensors tilted at different angles at Hannover (Germany and NREL (Golden, CO, USA. It can be recognized that the deviations of the model of Liu and Jordan, Klucher and Perez from the measurements increases as the tilt angle increases and as the sensors are oriented away from the south direction, where they receive lower direct radiation than south-oriented surfaces. Accordingly, the vertical E, W and N planes show the highest deviation. Best results are found by the models from Hay and Davies and Reindl, when horizontal pyranometer measurements and a constant albedo value of 0.2 are used. The relative root mean squared difference (rRMSD of the anisotropic models does not exceed 11% for south orientation and low inclination angles (β = 10–60°, but reaches up to 28.9% at vertical planes. For sunny locations such as Golden, the Perez model provides the best estimates of global tilted irradiance for south-facing surfaces. The relative mean absolute difference (rMAD of the Perez model at NREL ranges from 4.2% for 40° tilt to 8.7% for 90° tilt angle, when horizontal pyranometer measurements and a measured albedo value are used; the use of measured albedo values instead of a constant value of 0.2 leads to a reduction of the deviation to 3.9% and 6.0%, respectively. The use of higher albedo values leads to a significant increase of rMAD. We also investigated the uncertainty resulting from using horizontal pyranometer measurements, in combination with constant albedo values, to estimate the incident irradiance on tilted photovoltaic (PV modules. We found that these uncertainties are small or negligible.
An Incidence Loss Model for Wave Rotors with Axially Aligned Passages
Paxson, Daniel E.
1998-01-01
A simple mathematical model is described to account for the losses incurred when the flow in the duct (port) of a wave rotor is not aligned with the passages. The model, specifically for wave rotors with axially aligned passages, describes a loss mechanism which is sensitive to incident flow angle and Mach number. Implementation of the model in a one-dimensional CFD based wave rotor simulation is presented. Comparisons with limited experimental results are consistent with the model. Sensitivity studies are presented which highlight the significance of the incidence loss relative to other loss mechanisms in the wave rotor.
Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model
Karak, Bidya Binay; Miesch, Mark
2017-09-01
We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.
A structural model for composite rotor blades and lifting surfaces
Rehfield, Lawrence W.; Atilgan, Ali R.
1987-01-01
Composite material systems are currently candidates for aerospace structures, primarily for the design flexibiity they offer i.e., it is possible to tailor the material and manufacturing approach to the application. Two notable examples are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under development by the U.S.A. Aerostructures Directorate (AVSCOM), Langley Research Center. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to improve the single-cell beam model for composite rotor blades or lifting surfaces and to demonstrate its usefullness in applications.
Dynamic Model of Contact Interface between Stator and Rotor
Directory of Open Access Journals (Sweden)
ZengHui Zhao
2013-01-01
Full Text Available Based on the equivalent principle, a linear spring contact model was established for the friction layer between stator and rotor. Different contact conditions were described by a distance index δ. Detailed analysis of the nonlinear contact behavior especially the static and dynamic slipping was carried on using a space-time equation. A contact deflection angle was proposed to quantitatively express the influence of friction force on the output performance. A more precision simulation model was established based on the theoretical analysis, and influences of different preload pressures and elastic modulus Em of friction layer on output performance were analyzed. The results showed the simulation results had very good consistency with experimental results, and the model could well reflect the output characteristics of contact interface.
Advances in transitional flow modeling applications to helicopter rotors
Sheng, Chunhua
2017-01-01
This book provides a comprehensive description of numerical methods and validation processes for predicting transitional flows based on the Langtry–Menter local correlation-based transition model, integrated with both one-equation Spalart–Allmaras (S–A) and two-equation Shear Stress Transport (SST) turbulence models. A comparative study is presented to combine the respective merits of the two coupling methods in the context of predicting the boundary-layer transition phenomenon from fundamental benchmark flows to realistic helicopter rotors. The book will of interest to industrial practitioners working in aerodynamic design and the analysis of fixed-wing or rotary wing aircraft, while also offering advanced reading material for graduate students in the research areas of Computational Fluid Dynamics (CFD), turbulence modeling and related fields.
DEFF Research Database (Denmark)
Cerda Varela, Alejandro Javier; Fillon, Michel; Santos, Ilmar
2012-01-01
formulation for inclusion of the heat transfer effects between oil film and pad surface. Such simplified approach becomes necessary when modeling the behavior of tilting-pad journal bearings operating on controllable lubrication regime. Three different simplified heat transfer models are tested, by comparing...... are strongly dependent on the Reynolds number for the oil flow in the bearing. For bearings operating in laminar regime, the decoupling of the oil film energy equation solving procedure, with no heat transfer terms included, with the pad heat conduction problem, where the oil film temperature is applied......The relevance of calculating accurately the oil film temperature build up when modeling tilting-pad journal bearings is well established within the literature on the subject. This work studies the feasibility of using a thermal model for the tilting-pad journal bearing which includes a simplified...
A Coupled Helicopter Rotor/Fuselage Dynamics Model Using Finite Element Multi-body
Directory of Open Access Journals (Sweden)
Cheng Qi-you
2016-01-01
Full Text Available To develop a coupled rotor/flexible fuselage model for vibration reduction studies, the equation of coupled rotor-fuselage is set up based on the theory of multi-body dynamics, and the dynamic analysis model is established with the software MSC.ADMAS and MSC.NASTRAN. The frequencies and vibration acceleration responses of the system are calculated with the model of coupled rotor-fuselage, and the results are compared with those of uncoupled modeling method. Analysis results showed that compared with uncoupled model, the dynamic characteristic obtained by the model of coupled rotor-fuselage are some different. The intrinsic frequency of rotor is increased with the increase of rotational velocities. The results also show that the flying speed has obvious influence on the vibration acceleration responses of the fuselage. The vibration acceleration response in the vertical direction is much higher at the low speed and high speed flight conditions.
Optimization model for rotor blades of horizontal axis wind turbines
Institute of Scientific and Technical Information of China (English)
LIU Xiong; CHEN Yan; YE Zhiquan
2007-01-01
This paper presents an optimization model for rotor blades of horizontal axis wind turbines. The model refers to the wind speed distribution function on the specific wind site, with an objective to satisfy the maximum annual energy output. To speed up the search process and guarantee a global optimal result, the extended compact genetic algorithm (ECGA) is used to carry out the search process.Compared with the simple genetic algorithm, ECGA runs much faster and can get more accurate results with a much smaller population size and fewer function evaluations. Using the developed optimization program, blades of a 1.3 MW stall-regulated wind turbine are designed. Compared with the existing blades, the designed blades have obviously better aerodynamic performance.
Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges
International Nuclear Information System (INIS)
Gasparro, Joel; Hult, Mikael; Johnston, Peter N.; Tagziria, Hamid
2008-01-01
Gamma-ray detection efficiencies and cascade summing effects in germanium detectors are often calculated using Monte Carlo codes based on a computer model of the detection system. Such a model can never fully replicate reality and it is important to understand how various parameters affect the results. This work concentrates on quantifying two issues, namely (i) the effect of having a Ge-crystal that is tilted inside the cryostat and (ii) the effect of having a model of a Ge-crystal with rounded edges (bulletization). The effect of the tilting is very small (in the order of per mille) when the tilting angles are within a realistic range. The effect of the rounded edges is, however, relatively large (5-10% or higher) particularly for gamma-ray energies below 100 keV
Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges
Energy Technology Data Exchange (ETDEWEB)
Gasparro, Joel [EC-JRC-IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Hult, Mikael [EC-JRC-IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: mikael.hult@ec.europa.eu; Johnston, Peter N. [Applied Physics, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne 3001 (Australia); Tagziria, Hamid [EC-JRC-IPSC, Institute for the Protection and the Security of the Citizen, Via E. Fermi 1, I-21020 Ispra (Vatican City State, Holy See,) (Italy)
2008-09-01
Gamma-ray detection efficiencies and cascade summing effects in germanium detectors are often calculated using Monte Carlo codes based on a computer model of the detection system. Such a model can never fully replicate reality and it is important to understand how various parameters affect the results. This work concentrates on quantifying two issues, namely (i) the effect of having a Ge-crystal that is tilted inside the cryostat and (ii) the effect of having a model of a Ge-crystal with rounded edges (bulletization). The effect of the tilting is very small (in the order of per mille) when the tilting angles are within a realistic range. The effect of the rounded edges is, however, relatively large (5-10% or higher) particularly for gamma-ray energies below 100 keV.
Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis
Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael
2013-04-01
Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.
Vishwakarma, Vinod
Modified Modal Domain Analysis (MMDA) is a novel method for the development of a reduced-order model (ROM) of a bladed rotor. This method utilizes proper orthogonal decomposition (POD) of Coordinate Measurement Machine (CMM) data of blades' geometries and sector analyses using ANSYS. For the first time ROM of a geometrically mistuned industrial scale rotor (Transonic rotor) with large size of Finite Element (FE) model is generated using MMDA. Two methods for estimating mass and stiffness mistuning matrices are used a) exact computation from sector FE analysis, b) estimates based on POD mistuning parameters. Modal characteristics such as mistuned natural frequencies, mode shapes and forced harmonic response are obtained from ROM for various cases, and results are compared with full rotor ANSYS analysis and other ROM methods such as Subset of Nominal Modes (SNM) and Fundamental Model of Mistuning (FMM). Accuracy of MMDA ROM is demonstrated with variations in number of POD features and geometric mistuning parameters. It is shown for the aforementioned case b) that the high accuracy of ROM studied in previous work with Academic rotor does not directly translate to the Transonic rotor. Reasons for such mismatch in results are investigated and attributed to higher mistuning in Transonic rotor. Alternate solutions such as estimation of sensitivities via least squares, and interpolation of mass and stiffness matrices on manifolds are developed, and their results are discussed. Statistics such as mean and standard deviations of forced harmonic response peak amplitude are obtained from random permutations, and are shown to have similar results as those of Monte Carlo simulations. These statistics are obtained and compared for 3 degree of freedom (DOF) lumped parameter model (LPM) of rotor, Academic rotor and Transonic rotor. A state -- estimator based on MMDA ROM and Kalman filter is also developed for offline or online estimation of harmonic forcing function from
Fluid-structure interaction analysis of annular seals and rotor systems in multi-stage pumps
International Nuclear Information System (INIS)
Jiang, Qinglei; Zhai, Lulu; Wang, Leqin; Wu, Dazhuan
2013-01-01
Annular seals play an important role in determining the vibrational behavior of rotors in multi-stage pumps. To determine the critical speeds and unbalanced responses of rotor systems which consider annular seals, a fluid-structure interaction (FSI) method was developed, and the numerical method was verified by experiments conducted on a model rotor. In a typical FSI process, rotor systems are modeled based on a node-element method, and the motion equations are expressed in a type of matrix. To consider the influence of annular seals, dynamic coefficients of annular seals were introduced into the motion equations through matrix transformation. The test results of the model rotor showed good agreement with the calculated results. Based on the FSI method proposed here, the governing equations of annular seals were solved in two different ways. The results showed that the Childs method is more accurate in predicting a rotor's critical speed. The critical speeds of the model rotor were calculated at different clearance sizes and length/diameter ratios. Tilting coefficients of long seals were added to the dynamic coefficients to consider the influence of tilting. The critical speeds reached their maximum value when the L/D ratio was around 1.25, and tilting enhanced the rotor's stability when long annular seals were located in either end of the shaft.
Dynamic model of cage induction motor with number of rotor bars as parameter
Directory of Open Access Journals (Sweden)
Gojko Joksimović
2017-05-01
Full Text Available A dynamic mathematical model, using number of rotor bars as parameter, is reached for cage induction motors through the use of coupled-circuits and the concept of winding functions. The exact MMFs waveforms are accounted for by the model which is derived in natural frames of reference. By knowing the initial motor parameters for a priori adopted number of stator slots and rotor bars model allows change of rotor bars number what results in new model parameters. During this process, the rated machine power, number of stator slots and stator winding scheme remain the same. Although presented model has a potentially broad application area it is primarily suitable for the analysis of the different stator/rotor slot combination on motor behaviour during the transients or in steady-state regime. The model is significant in its potential to provide analysis of dozen of different number of rotor bars in a few tens of minutes. Numerical example on cage rotor induction motor exemplifies this application, including three variants of number of rotor bars.
CAA modeling of helicopter main rotor in hover
Directory of Open Access Journals (Sweden)
Kusyumov Alexander N.
2017-01-01
Full Text Available In this work rotor aeroacoustics in hover is considered. Farfield observers are used and the nearfield flow parameters are obtained using the in house HMB and commercial Fluent CFD codes (identical hexa-grids are used for both solvers. Farfield noise at a remote observer position is calculated at post processing stage using FW–H solver implemented in Fluent and HMB. The main rotor of the UH-1H helicopter is considered as a test case for comparison to experimental data. The sound pressure level is estimated for different rotor blade collectives and observation angles.
CAA modeling of helicopter main rotor in hover
Kusyumov, Alexander N.; Mikhailov, Sergey A.; Batrakov, Andrey S.; Kusyumov, Sergey A.; Barakos, George
In this work rotor aeroacoustics in hover is considered. Farfield observers are used and the nearfield flow parameters are obtained using the in house HMB and commercial Fluent CFD codes (identical hexa-grids are used for both solvers). Farfield noise at a remote observer position is calculated at post processing stage using FW-H solver implemented in Fluent and HMB. The main rotor of the UH-1H helicopter is considered as a test case for comparison to experimental data. The sound pressure level is estimated for different rotor blade collectives and observation angles.
Validation of the Actuator Line Model for Simulating Flows past Yawed Wind Turbine Rotors
DEFF Research Database (Denmark)
Shen, Wen Zhong; Zhu, Wei Jun; Yang, Hua
2015-01-01
The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of −2.3˚, wind speeds of 10, 15, 24 m/s and yaw angles of 15......˚, 30˚ and 45˚. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm...
Ugarte, Juan P; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John
2014-01-01
There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping.
Ugarte, Juan P.; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John
2014-01-01
There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping. PMID:25489858
Attraction of rotors to the pulmonary veins in paroxysmal atrial fibrillation: a modeling study.
Calvo, Conrado J; Deo, Makarand; Zlochiver, Sharon; Millet, José; Berenfeld, Omer
2014-04-15
Maintenance of paroxysmal atrial fibrillation (AF) by fast rotors in the left atrium (LA) or at the pulmonary veins (PVs) is not fully understood. To gain insight into this dynamic and complex process, we studied the role of the heterogeneous distribution of transmembrane currents in the PVs and LA junction (PV-LAJ) in the localization of rotors in the PVs. We also investigated whether simple pacing protocols could be used to predict rotor drift in the PV-LAJ. Experimentally observed heterogeneities in IK1, IKs, IKr, Ito, and ICaL in the PV-LAJ were incorporated into two- and pseudo three-dimensional models of Courtemanche-Ramirez-Nattel-Kneller human atrial kinetics to simulate various conditions and investigate rotor drifting mechanisms. Spatial gradients in the currents resulted in shorter action potential duration, minimum diastolic potential that was less negative, and slower upstroke and conduction velocity for rotors in the PV region than in the LA. Rotors under such conditions drifted toward the PV and stabilized at the shortest action potential duration and less-excitable region, consistent with drift direction under intercellular coupling heterogeneities and regardless of the geometrical constraint in the PVs. Simulations with various IK1 gradient conditions and current-voltage relationships substantiated its major role in the rotor drift. In our 1:1 pacing protocol, we found that among various action potential properties, only the minimum diastolic potential gradient was a rate-independent predictor of rotor drift direction. Consistent with experimental and clinical AF studies, simulations in an electrophysiologically heterogeneous model of the PV-LAJ showed rotor attraction toward the PV. Our simulations suggest that IK1 heterogeneity is dominant compared to other currents in determining the drift direction through its impact on the excitability gradient. These results provide a believed novel framework for understanding the complex dynamics of rotors
Conformally flat tilted Bianchi Type-V cosmological models in ...
Indian Academy of Sciences (India)
the complete determination of these quantities, we assume two extra conditions. First we assume that the space-time is conformally flat which leads to. 1008 .... Discussions. The model starts expanding with a big-bang at М = 0 and the expansion in the model stops at М = ∞ and = -2(Т + 2)¬. The model in general represents.
Aerodynamic and acoustic test of a United Technologies model scale rotor at DNW
Yu, Yung H.; Liu, Sandy R.; Jordan, Dave E.; Landgrebe, Anton J.; Lorber, Peter F.; Pollack, Michael J.; Martin, Ruth M.
1990-01-01
The UTC model scale rotors, the DNW wind tunnel, the AFDD rotary wing test stand, the UTRC and AFDD aerodynamic and acoustic data acquisition systems, and the scope of test matrices are discussed and an introduction to the test results is provided. It is pointed out that a comprehensive aero/acoustic database of several configurations of the UTC scaled model rotor has been created. The data is expected to improve understanding of rotor aerodynamics, acoustics, and dynamics, and lead to enhanced analytical methodology and design capabilities for the next generation of rotorcraft.
A note on tilted Bianchi type VIh models: the type III bifurcation
Coley, A. A.; Hervik, S.
2008-10-01
In this note we complete the analysis of Hervik, van den Hoogen, Lim and Coley (2007 Class. Quantum Grav. 24 3859) of the late-time behaviour of tilted perfect fluid Bianchi type III models. We consider models with dust, and perfect fluids stiffer than dust, and eludicate the late-time behaviour by studying the centre manifold which dominates the behaviour of the model at late times. In the dust case, this centre manifold is three-dimensional and can be considered a double bifurcation as the two parameters (h and γ) of the type VIh model are varied. We therefore complete the analysis of the late-time behaviour of tilted ever-expanding Bianchi models of types I VIII.
Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions
Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei
2017-09-01
Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.
Validation of Tilt Gain under Realistic Path Loss Model and Network Scenario
DEFF Research Database (Denmark)
Nguyen, Huan Cong; Rodriguez, Ignacio; Sørensen, Troels Bundgaard
2013-01-01
Despite being a simple and commonly-applied radio optimization technique, the impact on practical network performance from base station antenna downtilt is not well understood. Most published studies based on empirical path loss models report tilt angles and performance gains that are far higher...... than practical experience suggests. We motivate in this paper, based on a practical LTE scenario, that the discrepancy partly lies in the path loss model, and shows that a more detailed semi-deterministic model leads to both lower gains in terms of SINR, outage probability and downlink throughput...... settings, including the use of electrical and/or mechanical antenna downtilt, and therefore it is possible to find multiple optimum tilt profiles in a practical case. A broader implication of this study is that care must be taken when using the 3GPP model to evaluate advanced adaptive antenna techniques...
Directory of Open Access Journals (Sweden)
Farooq Ahmed Arain
2012-01-01
Full Text Available The aim of this study was to develop a statistical model for the effect of RS (Rotor Speed, YT (Yarn Twist and YLD (Yarn Linear Density on production and quality characteristics of rotor spun yarn. Cotton yarns of 30, 35 and 40 tex were produced on rotor spinning machine at different rotor speeds (i.e. 70000, 80000, 90000 and 100000 rpm and with different twist levels (i.e. 450, 500, 550, 600 and 700 tpm. Yarn production (g/hr and quality characteristics were determined for all the experiments. Based on the results, models were developed using response surface regression on MINITAB�16 statistical tool. The developed models not only characterize the intricate relationships among the factors but may also be used to predict the yarn production and quality characteristics at any level of factors within the range of experimental values.
Directory of Open Access Journals (Sweden)
Birgit Wieland
2017-10-01
Full Text Available The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.
Wieland, Birgit; Ropte, Sven
2017-10-05
The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.
Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing
2018-05-01
We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.
A numerical model for design and optimization of surface textures for tilting pad thrust bearings
Gropper, Daniel; Harvey, Terence; Wang, Ling
2018-01-01
A numerical model based on the Reynolds equation to study textured tilting pad thrust bearings considering mass-conserving cavitation and thermal effects is presented. A non-uniform and adaptive finite volume method is utilized and two methods are compared and selected regarding their efficiency in handling discontinuities; specifically placing additional nodes closely around discontinuities and directly incorporating discontinuities in the discrete system. Multithreading is applied to improv...
A linear dynamic model for rotor-spun composite yarn spinning process
International Nuclear Information System (INIS)
Yang, R H; Wang, S Y
2008-01-01
A linear dynamic model is established for the stable rotor-spun composite yarn spinning process. Approximate oscillating frequencies in the vertical and horizontal directions are obtained. By suitable choice of certain processing parameters, the mixture construction after the convergent point can be optimally matched. The presented study is expected to provide a general pathway to understand the motion of the rotor-spun composite yarn spinning process
Modelling multi-rotor UAVs swarm deployment using virtual pheromones
Pujol, Mar; Rizo, Ramón; Rizo, Carlos
2018-01-01
In this work, a swarm behaviour for multi-rotor Unmanned Aerial Vehicles (UAVs) deployment will be presented. The main contribution of this behaviour is the use of a virtual device for quantitative sematectonic stigmergy providing more adaptable behaviours in complex environments. It is a fault tolerant highly robust behaviour that does not require prior information of the area to be covered, or to assume the existence of any kind of information signals (GPS, mobile communication networks …), taking into account the specific features of UAVs. This behaviour will be oriented towards emergency tasks. Their main goal will be to cover an area of the environment for later creating an ad-hoc communication network, that can be used to establish communications inside this zone. Although there are several papers on robotic deployment it is more difficult to find applications with UAV systems, mainly because of the existence of various problems that must be overcome including limitations in available sensory and on-board processing capabilities and low flight endurance. In addition, those behaviours designed for UAVs often have significant limitations on their ability to be used in real tasks, because they assume specific features, not easily applicable in a general way. Firstly, in this article the characteristics of the simulation environment will be presented. Secondly, a microscopic model for deployment and creation of ad-hoc networks, that implicitly includes stigmergy features, will be shown. Then, the overall swarm behaviour will be modeled, providing a macroscopic model of this behaviour. This model can accurately predict the number of agents needed to cover an area as well as the time required for the deployment process. An experimental analysis through simulation will be carried out in order to verify our models. In this analysis the influence of both the complexity of the environment and the stigmergy system will be discussed, given the data obtained in the
Rotor scale model tests for power conversion unit of GT-MHR
Energy Technology Data Exchange (ETDEWEB)
Baxi, C.B.; Daugherty, R.; Shenoy, A. [General Atomics, 3550 General Atomics Court, CA (United States); Kodochigov, N.G.; Belov, S.E. [Experimental Design Bureau of Machine Building, N. Novgorad, RF (United States)
2007-07-01
The gas-turbine modular helium reactor (GT-MHR) combines a modular high-temperature gas-cooled reactor with a closed Brayton gas-turbine cycle power conversion unit (PCU) for thermal to electric energy conversion. The PCU has a vertical orientation and is supported on electromagnetic bearings (EMB). The Rotor Scale Model (RSM) Tests are intended to model directly the control of EMB and rotor-dynamic characteristics of the full-scale GT-MHR Turbo-machine. The objectives of the RSM tests are to: -1) confirm the EMB control system design for the GT-MHR turbo-machine over the full-range of operation, -2) confirm the redundancy and on-line maintainability features that have been specified for the EMBs, -3) provide a benchmark for validation of analytical tools that will be used for independent analyses of the EMB subsystem design, -4) provide experience with the installation, operation and maintenance of EMBs supporting multiple rotors with flexible couplings. As with the full-scale turbo-machine, the RSM will incorporate two rotors that are joined by a flexible coupling. Each of the rotors will be supported on one axial and two radial EMBs. Additional devices, similar in concept to radial EMBs, will be installed to simulate magnetic and/or mechanical forces representing those that would be seen by the exciter, generator, compressors and turbine. Overall, the length of the RSM rotor is about 1/3 that of the full-scale turbo-machine, while the diameter is approximately 1/5 scale. The design and sizing of the rotor is such that the number of critical speeds in the RSM are the same as in the full-scale turbo-machine. The EMBs will also be designed such that their response to rotor-dynamic forces is representative of the full-scale turbo-machine. (authors)
Effects of head down tilt on episcleral venous pressure in a rabbit model.
Lavery, W J; Kiel, J W
2013-06-01
In humans, changing from upright to supine elicits an approximately 10 mmHg increase in cephalic venous pressure caused by the hydrostatic column effect, but episcleral venous pressure (EVP) and intraocular pressure (IOP) rise by only a few mmHg. The dissociation of the small increases in IOP and EVP compared to the larger increase in cephalic venous pressure suggests a regulatory mechanism controlling EVP. The aim of the present study was to determine if the rabbit model is suitable to study the effects of postural changes on EVP despite its short hydrostatic column. In anesthetized rabbits (n = 43), we measured arterial pressure (AP), IOP, and orbital venous pressure (OVP) by direct cannulation; carotid blood flow (BFcar) by transit time ultrasound, heart rate (HR) by digital cardiotachometer, and EVP with a servonull micropressure system. The goal of the protocol was to obtain measurement of supine EVP for ≈10 min, followed by ≈10 min of EVP measurement with the rabbit in a head down tilt. The data were analyzed by paired t-tests and the results reported as the mean ± standard error of the mean. In a separate group of animals (n = 35), aqueous flow was measured by fluorophotometry. This protocol entailed measurement of aqueous flow in the supine position for ≈60 min, followed by ≈60 min of aqueous flow measurement with the rabbit in a head down tilt. From supine to head down tilt, AP and BFcar were unchanged, IOP increased by 2.3 ± 0.4 mmHg (p measurements of the pressures and systemic parameters likely involved in the EVP responses to posture change. The present results indicate directionally similar EVP and IOP responses to tilt as occur in humans and, as in humans, the responses are smaller than would be expected from the change in the hydrostatic column height. Also, as in humans, the model reveals no change in aqueous flow during head down tilt. We conclude the rabbit model is appropriate for studying the mechanisms responsible for the relative
International Nuclear Information System (INIS)
Khaizer, A.N.; Hussain, I.
2015-01-01
This paper presents a time-domain approach for identification of longitudinal dynamics of single rotor model helicopter. A frequency sweep excitation input signal is applied for hover flying mode widely used for space state linearized model. A fully automated programmed flight test method provides high quality flight data for system identification using the computer controlled flight simulator X-plane. The flight test data were recorded, analyzed and reduced using the SIDPAC (System Identification Programs for Air Craft) toolbox for MATLAB, resulting in an aerodynamic model of single rotor helicopter. Finally, the identified model of single rotor helicopter is validated on Raptor 30-class model helicopter at hover showing the reliability of proposed approach. (author)
Dynamic performance of a C/C composite finger seal in a tilting mode
Directory of Open Access Journals (Sweden)
Hailin ZHAO
2017-08-01
Full Text Available The complex operating state of aeroengines has an impact on the performance of finger seals. However, little work has been focused on the issue and the dynamic performance of finger seals is also rarely studied. Therefore, a distributed mass equivalent model considering working conditions is proposed in this paper for solving the existing problems. The effects of the fiber bundle density and the preparation direction of the fiber bundle of a C/C composite on the dynamic performance of a finger seal are investigated in rotor tilt based on the proposed model. The difference between the C/C composite finger seal performances under the rotor precession and nutation tilt cases is also investigated. The results show that the fiber bundle density and the preparation direction of the fiber bundle have an influence on the dynamic performance of the finger seal as rotor tilt is considered, and the dynamic performance of the finger seal is different in the two kinds of tilting modes. In addition, a novel method for design of finger seals is presented based on the contact pressure between finger boots and the rotor. Finger seals with good leakage rates and low wear can be acquired in this method.
Active twist of model rotor blades with D-spar design
Directory of Open Access Journals (Sweden)
A. Kovalovs
2007-03-01
Full Text Available The design methodology based on the planning of experiments and response surface technique has been developed for an optimum placement of Macro Fiber Composite (MFC actuators in the helicopter rotor blades. The baseline helicopter rotor blade consists of D-spar made of UD GFRP, skin made of +45o/–45o GFRP, foam core, MFC actuators placement on the skin and balance weight. 3D finite element model of the rotor blade has been built by ANSYS, where the rotor blade skin and spar “moustaches” are modeled by the linear layered structural shell elements SHELL99, and the spar and foam - by 3D 20-node structural solid elements SOLID186. The thermal analyses of 3D finite element model have been developed to investigate an active twist of the helicopter rotor blade. Strain analogy between piezoelectric strains and thermally induced strains is used to model piezoelectric effects. The optimisation results have been obtained for design solutions, connected with the application of active materials, and checked by the finite element calculations.
Mechanical model development of rolling bearing-rotor systems: A review
Cao, Hongrui; Niu, Linkai; Xi, Songtao; Chen, Xuefeng
2018-03-01
The rolling bearing rotor (RBR) system is the kernel of many rotating machines, which affects the performance of the whole machine. Over the past decades, extensive research work has been carried out to investigate the dynamic behavior of RBR systems. However, to the best of the authors' knowledge, no comprehensive review on RBR modelling has been reported yet. To address this gap in the literature, this paper reviews and critically discusses the current progress of mechanical model development of RBR systems, and identifies future trends for research. Firstly, five kinds of rolling bearing models, i.e., the lumped-parameter model, the quasi-static model, the quasi-dynamic model, the dynamic model, and the finite element (FE) model are summarized. Then, the coupled modelling between bearing models and various rotor models including De Laval/Jeffcott rotor, rigid rotor, transfer matrix method (TMM) models and FE models are presented. Finally, the paper discusses the key challenges of previous works and provides new insights into understanding of RBR systems for their advanced future engineering applications.
Modelling of the UV Index on vertical and 40° tilted planes for different orientations.
Serrano, D; Marín, M J; Utrillas, M P; Tena, F; Martínez-Lozano, J A
2012-02-01
In this study, estimated data of the UV Index on vertical planes are presented for the latitude of Valencia, Spain. For that purpose, the UVER values have been generated on vertical planes by means of four different geometrical models a) isotropic, b) Perez, c) Gueymard, d) Muneer, based on values of the global horizontal UVER and the diffuse horizontal UVER, measured experimentally. The UVER values, obtained by any model, overestimate the experimental values for all orientations, with the exception of the Perez model for the East plane. The results show statistical values of the MAD parameter (Mean Absolute Deviation) between 10% and 25%, the Perez model being the one that obtained a lower MAD for all levels. As for the statistic RMSD parameter (Root Mean Square Deviation), the results show values between 17% and 32%, and again the Perez model provides the best results in all vertical planes. The difference between the estimated UV Index and the experimental UV Index, for vertical and 40° tilted planes, was also calculated. 40° is an angle close to the latitude of Burjassot, Valencia, (39.5°), which, according to various studies, is the optimum angle to capture maximum radiation on tilted planes. We conclude that the models provide a good estimate of the UV Index, as they coincide or differ in one unit compared to the experimental values in 99% of cases, and this is valid for all orientations. Finally, we examined the relation between the UV Index on vertical and 40° tilted planes, both the experimental and estimated by the Perez model, and the experimental UV Index on a horizontal plane at 12 GMT. Based on the results, we can conclude that it is possible to estimate with a good approximation the UV Index on vertical and 40° tilted planes in different directions on the basis of the experimental horizontal UVI value, thus justifying the interest of this study. This journal is © The Royal Society of Chemistry and Owner Societies 2012
Waheed, Umair bin; Alkhalifah, Tariq Ali
2014-01-01
The wavefield extrapolation operator for ellipsoidally anisotropic (EA) media offers significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate focusing for media of orthorhombic anisotropy. Therefore, we develop effective EA models that correctly capture the kinematic behavior of the wavefield for tilted orthorhombic (TOR) media. Specifically, we compute effective source-dependent velocities for the EA model using kinematic high-frequency representation of the TOR wavefield. The effective model allows us to use the cheaper EA wavefield extrapolation operator to obtain approximate wavefield solutions for a TOR model. Despite the fact that the effective EA models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TOR media, particularly for media of low to moderate complexity. We demonstrate applicability of the proposed approach on a layered TOR model.
Waheed, Umair bin
2014-08-01
The wavefield extrapolation operator for ellipsoidally anisotropic (EA) media offers significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate focusing for media of orthorhombic anisotropy. Therefore, we develop effective EA models that correctly capture the kinematic behavior of the wavefield for tilted orthorhombic (TOR) media. Specifically, we compute effective source-dependent velocities for the EA model using kinematic high-frequency representation of the TOR wavefield. The effective model allows us to use the cheaper EA wavefield extrapolation operator to obtain approximate wavefield solutions for a TOR model. Despite the fact that the effective EA models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TOR media, particularly for media of low to moderate complexity. We demonstrate applicability of the proposed approach on a layered TOR model.
Directory of Open Access Journals (Sweden)
Xi Wu
2008-01-01
Full Text Available A mathematical model of a cracked rotor and an asymmetric rotor with two disks representing a turbine and a generator is utilized to study the vibrations due to imbalance and side load. Nonlinearities typically related with a “breathing” crack are included using a Mayes steering function. Numerical simulations demonstrate how the variations of rotor parameters affect the vibration response and the effect of coupling between torsional and lateral modes. Bode, spectrum, and orbit plots are used to show the differences between the vibration signatures associated with cracked shafts versus asymmetric shafts. Results show how nonlinear lateral-torsional coupling shifts the resonance peaks in the torsional vibration response for cracked shafts and asymmetric rotors. The resonance peaks shift depending on the ratio of the lateral-to-torsional natural frequencies with the peak responses occurring at noninteger values of the lateral natural frequency. When the general nonlinear models used in this study are constrained to reduce to linear torsional vibration, the peak responses occur at commonly reported integer ratios. Full spectrum analyses of the X and Y vibrations reveal distinct vibration characteristics of both cracked and asymmetric rotors including reverse vibration components. Critical speeds and vibration orders predicted using the models presented herein include and extend diagnostic indicators commonly reported.
Modeling and Design of a Full-Scale Rotor Blade with Embedded Piezocomposite Actuators
Kovalovs, A.; Barkanov, E.; Ruchevskis, S.; Wesolowski, M.
2017-05-01
An optimization methodology for the design of a full-scale rotor blade with an active twist in order to enhance its ability to reduce vibrations and noise is presented. It is based on a 3D finite-element model, the planning of experiments, and the response surface technique to obtain high piezoelectric actuation forces and displacements with a minimum actuator weight and energy applied. To investigate an active twist of the helicopter rotor blade, a structural static analysis using a 3D finite-element model was carried out. Optimum results were obtained at two possible applications of macrofiber composite actuators. The torsion angle found from the finite-element simulation of helicopter rotor blades was successfully validated by its experimental values, which confirmed the modeling accuracy.
Analytical model of tilted driver–pickup coils for eddy current nondestructive evaluation
Cao, Bing-Hua; Li, Chao; Fan, Meng-Bao; Ye, Bo; Tian, Gui-Yun
2018-03-01
A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil. It is frequently observed in an eddy current (EC) array probe. In this work, a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for eddy current nondestructive evaluation. Basically, the core of the formulation is to obtain the projection of magnetic vector potential (MVP) from the driver coil onto the vector along the tilted pickup coil, which is divided into two key steps. The first step is to make a projection of MVP along the pickup coil onto a horizontal plane, and the second one is to build the relationship between the projected MVP and the MVP along the driver coil. Afterwards, an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields. The calculated values from the resulting model indicate good agreement with those from the finite element model (FEM) and experiments, which validates the developed analytical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61701500, 51677187, and 51465024).
Simplified rotor load models and fatigue damage estimates for offshore wind turbines.
Muskulus, M
2015-02-28
The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures.
Schargott, M
2009-06-01
A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.
A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures
Energy Technology Data Exchange (ETDEWEB)
Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de
2009-06-01
A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.
A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures
International Nuclear Information System (INIS)
Schargott, M
2009-01-01
A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface
Application of engineering models to predict wake deflection due to a tilted wind turbine
DEFF Research Database (Denmark)
Guntur, Srinivas; Troldborg, Niels; Gaunaa, Mac
2012-01-01
such a mechanism introduces control complications due to changing wind directions. Deflecting the wake in the vertical direction using tilt, on the other hand, overcomes this challenge. In this paper, the feasibility of steering wake is explored in a simple uniform inflow case. This is done by trying to model......It is a known fact that the power produced by wind turbines operating inside an array decreases due to the wake effects of the upstream turbines. It has been proposed previously to use the yaw mechanism as a potential means to steer the upstream wake away from downstream turbines, however...
Static tilt tests of a full-sized cylindrical liquid storage tank model
International Nuclear Information System (INIS)
Sakai, F.
1988-01-01
This paper is explaining a static tilt test with a full-scaled tank model, the objects of which are the above-ground type LNG,LPG and oil storage tanks. Main points of view to investigate are as follows: Stress and deformation at each part of the tank wall, the bottom plate and the anchor straps in case that the anchor straps are very effective; Behavior in case that the anchor straps are not very effective; Behavior in case of no anchors; Influence of the roof above the shell; and Influence of the foundation rigidity under the bottom plate
The importance of dynamic stall in aerodynamic modeling of the Darrieus rotor
Fraunie, P.; Beguier, C.; Paraschivoiu, I.
The CAARDEX program is defined for analyzing the behavior of Darrieus wind turbines in terms of the Reynolds number, the geometrical characteristics of the wind turbine and the spreading of the stream tubes traversing the rotor volume. It is demonstrated that the maximum power conversion efficiency of the Darrieus rotor is 0.4, with the energy capture being divided at a 4:1 ratio upstream to downstream rotor. The model shows that the velocity induced on the rotor is a function of the specific velocity and solidity, and that previous stream tube theories are valid only at low values of these parameters. CARDAAX treats the rotor disk in terms of horizontal slices of stream tubes modeled separately for the upstream and downstream segments. Account is taken of the velocity profile in the atmospheric boundary layer, which can vary significantly in the case of large wind turbines, i.e., several hundred feet high. When applied to predicting the performance of a 1 kW, 2.6 m diam prototype Darrieus wind turbine in a 10 mps flow, fair agreement is obtained for power capture/wind velocity and cyclic aerodynamic forces. Additional flow visualization data is provided to illustrate the production of turbulence in the form of vortices shed between the blades.
Modeling and Robust Trajectory Tracking Control for a Novel Six-Rotor Unmanned Aerial Vehicle
Directory of Open Access Journals (Sweden)
Chengshun Yang
2013-01-01
Full Text Available Modeling and trajectory tracking control of a novel six-rotor unmanned aerial vehicle (UAV is concerned to solve problems such as smaller payload capacity and lack of both hardware redundancy and anticrosswind capability for quad-rotor. The mathematical modeling for the six-rotor UAV is developed on the basis of the Newton-Euler formalism, and a second-order sliding-mode disturbance observer (SOSMDO is proposed to reconstruct the disturbances of the rotational dynamics. In consideration of the under-actuated and strong coupling properties of the six-rotor UAV, a nested double loops trajectory tracking control strategy is adopted. In the outer loop, a position error PID controller is designed, of which the task is to compare the desired trajectory with real position of the six-rotor UAV and export the desired attitude angles to the inner loop. In the inner loop, a rapid-convergent nonlinear differentiator (RCND is proposed to calculate the derivatives of the virtual control signal, instead of using the analytical differentiation, to avoid “differential expansion” in the procedure of the attitude controller design. Finally, the validity and effectiveness of the proposed technique are demonstrated by the simulation results.
Finite Element Multibody Simulation of a Breathing Crack in a Rotor with a Cohesive Zone Model
Liong, Rugerri Toni; Proppe, Carsten
2013-01-01
The breathing mechanism of a transversely cracked shaft and its influence on a rotor system that appears due to shaft weight and inertia forces is studied. The presence of a crack reduces the stiffness of the rotor system and introduces a stiffness variation during the revolution of the shaft. Here, 3D finite element (FE) model and multibody simulation (MBS) are introduced to predict and to analyse the breathing mechanism on a transverse cracked shaft. It is based on a cohesive zone model (CZ...
Actuator disk model of wind farms based on the rotor average wind speed
DEFF Research Database (Denmark)
Han, Xing Xing; Xu, Chang; Liu, De You
2016-01-01
Due to difficulty of estimating the reference wind speed for wake modeling in wind farm, this paper proposes a new method to calculate the momentum source based on the rotor average wind speed. The proposed model applies volume correction factor to reduce the influence of the mesh recognition of ...
Rotor scale model tests for power conversion unit of GT-MHR
Energy Technology Data Exchange (ETDEWEB)
Baxi, C.B., E-mail: baxicb1130@hotmail.com [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Telengator, A.; Razvi, J. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)
2012-10-15
The gas turbine modular helium reactor (GT-MHR) combines a modular high-temperature gas-cooled reactor (HTGR) nuclear heat source with a closed Brayton gas-turbine cycle power conversion unit (PCU) for thermal to electric energy conversion. The PCU has a vertical orientation and is supported on electromagnetic bearings (EMB). The rotor scale model (RSM) tests are intended to directly model the control of EMB and rotor dynamic characteristics of the full-scale GT-MHR turbo-machine (TM). The objectives of the RSM tests are to: Bullet Confirm the EMB control system design for the GT-MHR turbo machine over the full-range of operation. Bullet Confirm the redundancy and on-line maintainability features that have been specified for the EMBs. Bullet Provide a benchmark for validation of analytical tools that will be used for independent analyses of the EMB subsystem design. Bullet Provide experience with the installation, operation and maintenance of EMBs supporting multiple rotors with flexible couplings. As with the full-scale TM, the RSM incorporates two rotors that are joined by a flexible coupling. Each of the rotors is supported on one axial and two radial EMBs. Additional devices, similar in concept to radial EMBs, are installed to simulate magnetic and/or mechanical forces representing those that would be seen by the exciter, generator, compressors and turbine. Overall, the lengths of the RSM rotor is about 1/3rd that of the full-scale TM, while the diameters are approximately 1/5th scale. The design and sizing of the rotor is such that the number and values of critical speeds in the RSM are the same as in the full-scale TM. The EMBs are designed such that their response to rotor dynamic forces is representative of the full-scale TM. The fabrication and assembly of the RSM was completed at the end of 2008. All start up adjustments were finished in December 2009. To-date the generator rotor has been supported in the EMBs and rotated up to 1800 rpm. Final tests are
Modeling of switching energy of magnetic tunnel junction devices with tilted magnetization
International Nuclear Information System (INIS)
Surawanitkun, C.; Kaewrawang, A.; Siritaratiwat, A.; Kruesubthaworn, A.; Sivaratana, R.; Jutong, N.; Mewes, C.K.A.; Mewes, T.
2015-01-01
For spin transfer torque (STT), the switching energy and thermal stability of magnetic tunnel junctions (MTJ) bits utilized in memory devices are important factors that have to be considered simultaneously. In this article, we examined the minimum energy for STT induced magnetization switching in MTJ devices for different in-plane angles of the magnetization in the free layer and the pinned layer with respect to the major axis of the elliptical cylinder of the cell. Simulations were performed by comparing the analytical solution with macrospin and full micromagnetic calculations. The results show good agreement of the switching energy calculated by using the three approaches for different initial angles of the magnetization of the free layer. Also, the low-energy location specifies the suitable value of both time and current in order to reduce the heat effect during the switching process. - Highlights: • Switching energy model was firstly examined with tiled magnetization in STT-RAM. • Simulation was performed by analytical solution, macrospin and micromagnetic models. • Low energy results from three models show agreement for tilt angle in free layer. • We also found an optimal tilt angle of the pinned layer. • Low-energy location specifies the suitable switching location to reduce heat effect
Modelling and analysis of the dynamics of a tilting three-wheeled vehicle
International Nuclear Information System (INIS)
Edelmann, Johannes; Plöchl, Manfred; Lugner, Peter
2011-01-01
To understand the handling behaviour of a three-wheeled tilting vehicle, models of the vehicle with different level of detail, corresponding to specific fields of investigation, have been developed. Then the proposed kinematics of the three-wheeler are assessed and optimized with respect to desired dynamic properties by applying a detailed multibody system model. The partially unstable nature of the motion of the vehicle suggests the application of an analytically derived, simplified model, to allow for focusing on stability aspects and steady-state handling properties. These investigations reveal the necessity of employing a steer-by-wire control system to support the driver by stabilizing the motion of the vehicle. Thus, an additional basic vehicle model is derived for control design, and an energy-efficient control strategy is presented. Numerical simulation results demonstrate the dynamic properties of the optimized kinematics and the control system, approved by successful test runs of a prototype.
The Role of Flow Diagnostic Techniques in Fan and Open Rotor Noise Modeling
Envia, Edmane
2016-01-01
A principal source of turbomachinery noise is the interaction of the rotating and stationary blade rows with the perturbations in the airstream through the engine. As such, a lot of research has been devoted to the study of the turbomachinery noise generation mechanisms. This is particularly true of fan and open rotors, both of which are the major contributors to the overall noise output of modern aircraft engines. Much of the research in fan and open rotor noise has been focused on developing theoretical models for predicting their noise characteristics. These models, which run the gamut from the semi-empirical to fully computational ones, are, in one form or another, informed by the description of the unsteady flow-field in which the propulsors (i.e., the fan and open rotors) operate. Not surprisingly, the fidelity of the theoretical models is dependent, to a large extent, on capturing the nuances of the unsteady flowfield that have a direct role in the noise generation process. As such, flow diagnostic techniques have proven to be indispensible in identifying the shortcoming of theoretical models and in helping to improve them. This presentation will provide a few examples of the role of flow diagnostic techniques in assessing the fidelity and robustness of the fan and open rotor noise prediction models.
Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.
1987-01-01
A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.
A discontinuous Galerkin method for P-wave modeling in tilted TI media
Amler, Thomas; Alkhalifah, Tariq Ali; Hoteit, Ibrahim
2014-01-01
The acoustic approximation is an efficient alternative to the equations of elastodynamics for modeling Pwave propagation in weakly anisotropic media. We present a stable discontinuous Galerkin (DG) method for solving the acoustic approximation in tilted TI media (acoustic TI approximation). The acoustic TI approximation is considered as a modification of the equations of elastodynamics from which a modified energy is derived. The modified energy is obtained by eliminating the shear stress in the coordinates determined by the tilt angle and finding an energy for the remaining unknowns. This construction is valid if the medium is not elliptically anisotropic, a requirement frequently found in the literature. In the fully discrete setting, the modified energy is also conserved in time the presence of sharp contrasts in material parameters. By construction, the scheme can be coupled to the (fully) acoustic wave equation in the same way as the equations of elastodynamics. Hence, the number of unknowns can be reduced in acoustic regions. Our numerical examples confirm the conservation of energy in the discrete setting and the stability of the scheme.
Advanced Model of Squirrel Cage Induction Machine for Broken Rotor Bars Fault Using Multi Indicators
Directory of Open Access Journals (Sweden)
Ilias Ouachtouk
2016-01-01
Full Text Available Squirrel cage induction machine are the most commonly used electrical drives, but like any other machine, they are vulnerable to faults. Among the widespread failures of the induction machine there are rotor faults. This paper focuses on the detection of broken rotor bars fault using multi-indicator. However, diagnostics of asynchronous machine rotor faults can be accomplished by analysing the anomalies of machine local variable such as torque, magnetic flux, stator current and neutral voltage signature analysis. The aim of this research is to summarize the existing models and to develop new models of squirrel cage induction motors with consideration of the neutral voltage and to study the effect of broken rotor bars on the different electrical quantities such as the park currents, torque, stator currents and neutral voltage. The performance of the model was assessed by comparing the simulation and experimental results. The obtained results show the effectiveness of the model, and allow detection and diagnosis of these defects.
Fingerprint states of odd mass 115I nuclei in the framework of particle rotor model
International Nuclear Information System (INIS)
Goswami, R.; Saha Sarkar, M.; Sen, S.
2008-01-01
Extensive theoretical as well as experimental investigation of the nuclear structure of odd-mass iodine nuclei have revealed systematic presence of strongly coupled bands in all neutron deficient as well as neutron rich odd-mass iodine isotopes. The present work shows that the positive as well as the negative parity are fairly well reproduced in the framework of particle rotor model
The rotationally induced quadrupole pair field in the particle-rotor model
International Nuclear Information System (INIS)
Almberger, J.
1980-04-01
A formalism is developed which makes it possible to consider the influence of the rotationally induced quadrupole pair field and corresponding quasi-particle residual interactions within the particle-rotor model. The Y 21 pair field renormalizes both the Coriolis and the recoil interactions. (Auth.)
Unified continuum damage model for matrix cracking in composite rotor blades
Energy Technology Data Exchange (ETDEWEB)
Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)
2015-03-10
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.
Unified continuum damage model for matrix cracking in composite rotor blades
International Nuclear Information System (INIS)
Pollayi, Hemaraju; Harursampath, Dineshkumar
2015-01-01
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load
Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K
2008-10-01
Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the
Ice accretion modeling for wind turbine rotor blades
Energy Technology Data Exchange (ETDEWEB)
Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)
1997-12-31
The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.
Numerical investigation of turbulent flow past a four-bladed helicopter rotor using k - ω SST model
International Nuclear Information System (INIS)
Xu, H.; Khalid, M.
2002-01-01
In a previous study of the laminar flow over a four-bladed helicopter rotor, abnormal Cp distributions were observed on the upper surfaces of the blades. To address this problem, the aerodynamic performance of the same rotor is investigated using the k - ω SST turbulence model, as contained in the WIND code. The rotor is configured as a Chimera moving grid in a quasi-steady flow field. The rotor rotation schedule and the blade twisting are implemented as specified in the wind tunnel testing of a RoBin generic helicopter. More realistic Cp distributions on the blade surfaces are thus obtained. The aerodynamic load distributions in the radial direction of the rotor plane are generated by integrating the pressure on each blade surfaces along the blade chordwise direction. The analyses of these load distributions in the azmuthal direction provide a critical insight into the rotor model, which is based on the actuator-disc assumption. Also, some preliminary results for the flow past a full helicopter configuration, including the rotor and the RoBin fuselage, are presented. The current paper demonstrates the Chimera grid topologies and the Chimera grid generation technique for both blade and fuselage configuration. This would provide a powerful tool to simulate flow past an entire helicopter and to study the rotor-fuselage flow interaction. (author)
Yu, Pingchao; Zhang, Dayi; Ma, Yanhong; Hong, Jie
2018-06-01
Fan Blade Out (FBO) from a running rotor of the turbofan engine will not only introduce the sudden unbalance and inertia asymmetry into the rotor, but also apply large impact load and induce rotor-to-stator rubbing on the rotor, which makes the mass, gyroscopic and stiffness matrixes of the dynamic equation become time-varying and highly nonlinear, consequently leads to the system's complicated vibration. The dynamic analysis of the aero-engine rotor system is one essential requirement of the authorities and is vital to the aero-engine's safety. The paper aims at studying the dynamic responses of the complicated dual-rotor systems at instantaneous and windmilling statuses when FBO event occurs. The physical process and mechanical characteristics of the FBO event are described qualitatively, based on which the dynamic modeling for an aero-engine dual-rotor system is carried out considering several excitations caused by FBO. Meanwhile the transient response during the instantaneous status and steady-state response at the windmilling status are obtained. The results reveal that the sudden unbalance can induce impact load to the rotor, and lead to the sharp increase of the vibration amplitude and reaction force. The rub-impact will apply constraint effects on the rotor and restrict the transient vibration amplitude, while the inertia asymmetry has little influence on the transient response. When the rotor with huge unbalance operates at windmilling status, the rub-impact turns to be the main factor determining the rotor's dynamic behavior, and several potential motion states, such as instable dry whip, intermittent rubbing and synchronous full annular rubbing would happen on certain conditions.
Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model
Cosme, Jayson G.
2018-04-01
We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.
A method of LED free-form tilted lens rapid modeling based on scheme language
Dai, Yidan
2017-10-01
According to nonimaging optical principle and traditional LED free-form surface lens, a new kind of LED free-form tilted lens was designed. And a method of rapid modeling based on Scheme language was proposed. The mesh division method was applied to obtain the corresponding surface configuration according to the character of the light source and the desired energy distribution on the illumination plane. Then 3D modeling software and the Scheme language programming are used to generate lens model respectively. With the help of optical simulation software, a light source with the size of 1mm*1mm*1mm in volume is used in experiment, and the lateral migration distance of illumination area is 0.5m, in which total one million rays are computed. We could acquire the simulated results of both models. The simulated output result shows that the Scheme language can prevent the model deformation problems caused by the process of the model transfer, and the degree of illumination uniformity is reached to 82%, and the offset angle is 26°. Also, the efficiency of modeling process is greatly increased by using Scheme language.
Offset, tilted dipole models of Uranian smooth high-frequency radio emission
International Nuclear Information System (INIS)
Schweitzer, A.E.; Romig, J.H.; Evans, D.R.; Sawyer, C.B.; Warwick, J.W.
1990-01-01
During the Voyager 2 encounter with Uranus in January 1986, the Planetary Radio Astronomy (PRA) experiment detected a complex pattern of radio emissions. Two types of emissions were seen: smooth and bursty. The smooth emission has been divided into smooth high-frequency (SHF) and smooth low-frequency (SLF) components which are presumed to come from different sources because of their distinctly different characteristics. The SHF component is considered in this paper. The SHF emission has been modeled by many authors on OTD (offset, tilted dipole (Ness et al., 1986)) L shells ranging from 5 to 40. However, the bursts have been modeled at much higher L shells. The authors complete an OTD investigation of the SHF emission at high L shells within the range of the bursty source locations, and present a viable high L shell model. This model has fundamentally the same longitudinally symmetric net emission pattern in space as the L shell 5 model presented in Romig et al. (1987) and Barbosa (1988). However, they were unable to produce an acceptable model on intermediate L shells without restricting source longitude. They discuss the similarities and distinctions between their two models and the models of other authors. They believe that the high L shell model (and others similar to it) cannot account for the observed smoothness and periodicity of the SHF emissions because it has open field lines containing untrapped particles, which should produce more variable emission than that seen in the SHF data. Therefore, the authors prefer models at L shells less than 18, the boundary for closed field lines (Ness et al., 1986). They then discuss and contrast two models within this boundary: the L = 5 model and an L ∼ 12 model by Kaiser et al. (1987) and Farrell and Calvert (1989b). The main distinction between these two models is the longitudinal extent of the source location
Study of creep-fatigue behavior in a 1000 MW rotor using a phenomenological lifetime model
Energy Technology Data Exchange (ETDEWEB)
Zhao, Nailong; Wang, Weizhe; Jiang, Jishen; Liu, Yingzheng [School of Mechanical Engineering, Shanghai (China)
2017-02-15
In this study, the phenomenological lifetime model was applied to part of an ultra-supercritical steam turbine rotor model to predict its lifetime as a post processing of the finite element method. To validate the accuracy and adaptation of the post processing program, stress strain hysteresis loops of a cylinderal model under service-like load cycle conditions in cycle N = 1 and 300 were constructed, and the comparison of the results with experimental data on the same cylinderal specimen showed them to be satisfactory. The temperature and von Mises stress distributions of the rotor during a startup-running-shutdown-natural cool process were numerically studied using ABAQUS and the damage caused by the interaction of creep and fatigue was subsequently computed and discussed. It was found that the maximum damage appeared at the inlet notch zone, with the blade groove areas and the front notch areas also suffering a large damage amplitude.
Chu, Chunlei
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.
Measurement and Modelling of Multicopter UAS Rotor Blades in Hover
Nowicki, Nathalie
2016-01-01
Multicopters are becoming one of the more common and popular type of unmanned aircraft systems (UAS) which have both civilian and military applications. One example being the concept of drone deliveries proposed by the distribution company Amazon [1]. The electrical propulsion is considered to have both faster and easier deliveries and also environmental benefits compared to other vehicles that still use fossil fuel. Other examples include surveillance and just simple entertainment. The reason behind their success is often said to be due to their small size, relatively low cost, simple structure and finally simple usage. With an increase in the UAS market comes challenges in terms of security, as both people and other aircrafts could be harmed if not used correctly. Therefore further studies and regulations are needed to ensure that future use of drones, especially in the civilian and public sectors, are safe and efficient. Thorough research has been done on full scale, man or cargo transporting, helicopters so that most parts of flight and performance are fairly well understood. Yet not much of it have been verified for small multicopters. Until today many studies and research projects have been done on the control systems, navigation and aerodynamics of multicopters. Many of the methods used today for building multicopters involve a process of trial an error of what will work well together, and once that is accomplished some structural analysis of the multicopter bodies might be done to verify that the product will be strong enough and have a decent aerodynamic performance. However, not much has been done on the research of the rotor blades, especially in terms of structural stress analyses and ways to ensure that the commonly used parts are indeed safe and follow safety measures. Some producers claim that their propellers indeed have been tested, but again that usually tends towards simple fluid dynamic analyses and even simpler stress analyses. There is no real
Simulation and experimental validation of the dynamical model of a dual-rotor vibrotactor
Miklós, Á.; Szabó, Z.
2015-01-01
In this work, a novel design for small vibrotactors called the Dual Excenter is presented, which makes it possible to produce vibrations with independently adjustable frequency and amplitude. This feature has been realized using two coaxially aligned eccentric rotors, which are driven by DC motors independently. The prototype of the device has been built, where mechanical components are integrated on a frame with two optical sensors for the measurement of angular velocity and phase angle. The system is equipped with a digital controller. Simulations confirm the results of analytical investigations and they allow us to model the sampling method of the signals of the angular velocity and the phase angle between the rotors. Furthermore, we model the discrete behavior of the controller, which is a PI controller for the angular velocities and a PID controller for the phase angle. Finally, simulation results are compared to experimental ones, which show that the Dual Excenter concept is feasible.
Late-time behaviour of the tilted Bianchi type VIh models
Hervik, S.; van den Hoogen, R. J.; Lim, W. C.; Coley, A. A.
2007-08-01
We study tilted perfect fluid cosmological models with a constant equation of state parameter in spatially homogeneous models of Bianchi type VIh using dynamical systems methods and numerical experimentation, with an emphasis on their future asymptotic evolution. We determine all of the equilibrium points of the type VIh state space (which correspond to exact self-similar solutions of the Einstein equations, some of which are new), and their stability is investigated. We find that there are vacuum plane-wave solutions that act as future attractors. In the parameter space, a 'loophole' is shown to exist in which there are no stable equilibrium points. We then show that a Hopf-bifurcation can occur resulting in a stable closed orbit (which we refer to as the Mussel attractor) corresponding to points both inside the loophole and points just outside the loophole; in the former case the closed curves act as late-time attractors while in the latter case these attracting curves will co-exist with attracting equilibrium points. In the special Bianchi type III case, centre manifold theory is required to determine the future attractors. Comprehensive numerical experiments are carried out to complement and confirm the analytical results presented. We note that the Bianchi type VIh case is of particular interest in that it contains many different subcases which exhibit many of the different possible future asymptotic behaviours of Bianchi cosmological models.
Strong coupling and quasispinor representations of the SU(3) rotor model
International Nuclear Information System (INIS)
Rowe, D.J.; De Guise, H.
1992-01-01
We define a coupling scheme, in close parallel to the coupling scheme of Elliott and Wilsdon, in which nucleonic intrinsic spins are strongly coupled to SU(3) spatial wave functions. The scheme is proposed for shell-model calculations in strongly deformed nuclei and for semimicroscopic analyses of rotations in odd-mass nuclei and other nuclei for which the spin-orbit interaction is believed to play an important role. The coupling scheme extends the domain of utility of the SU(3) model, and the symplectic model, to heavy nuclei and odd-mass nuclei. It is based on the observation that the low angular-momentum states of an SU(3) irrep have properties that mimic those of a corresponding irrep of the rotor algebra. Thus, we show that strongly coupled spin-SU(3) bands behave like strongly coupled rotor bands with properties that approach those of irreducible representations of the rigid-rotor algebra in the limit of large SU(3) quantum numbers. Moreover, we determine that the low angular-momentum states of a strongly coupled band of states of half-odd integer angular momentum behave to a high degree of accuracy as if they belonged to an SU(3) irrep. These are the quasispinor SU(3) irreps referred to in the title. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N. [National Research Nuclear University, “MEPhI” Moscow Engineering Physics Institute, Moscow (Russian Federation)
2016-06-08
Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gas is taken to be constant.
The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling
Schmitz, Frederic H.; Greenwood, Eric
2011-01-01
A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.
CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor
Belhocien, Ali; Omar, Wan Zaidi Wan
Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for the safe retarding of the vehicles. During the braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behavior of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC) on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.
Design model for bending vibrations of single-stage tunnel fan rotor
Krasyuk, AM; Kosykh, PV
2018-03-01
Using of one-mass model of tunnel fan rotor is justified for estimation calculation of the natural bending vibrations frequency during the design stage. It’s shown that the evaluative computation of the main axial tunnel fan at the early design stage yields the acceptable accuracy. It is shown that after completion of the design, the mass of the stepped-type shaft differs from the mass of the calculated uniform-diameter shaft no more than by 40%. Inclusion of this additional mass in the estimation calculation makes it possible to improve the calculation accuracy. The region of the dimensionless rotor design parameters at which the relative difference of frequency in the evaluative and verification calculations is not higher than 5 % is determined.
Mathematical Modelling of Unmanned Aerial Vehicles with Four Rotors
Directory of Open Access Journals (Sweden)
Zoran Benić
2016-01-01
Full Text Available Mathematical model of an unmanned aerial vehicle with four propulsors (quadcopter is indispensable in quadcopter movement simulation and later modelling of the control algorithm. Mathematical model is, at the same time, the first step in comprehending the mathematical principles and physical laws which are applied to the quadcopter system. The objective is to define the mathematical model which will describe the quadcopter behavior with satisfactory accuracy and which can be, with certain modifications, applicable for the similar configurations of multirotor aerial vehicles. At the beginning of mathematical model derivation, coordinate systems are defined and explained. By using those coordinate systems, relations between parameters defined in the earth coordinate system and in the body coordinate system are defined. Further, the quadcopter kinematic is described which enables setting those relations. Also, quadcopter dynamics is used to introduce forces and torques to the model through usage of Newton-Euler method. Final derived equation is Newton’s second law in the matrix notation. For the sake of model simplification, hybrid coordinate system is defined, and quadcopter dynamic equations derived with the respect to it. Those equations are implemented in the simulation. Results of behavior of quadcopter mathematical model are graphically shown for four cases. For each of the cases the propellers revolutions per minute (RPM are set in a way that results in the occurrence of the controllable variables which causes one of four basic quadcopter movements in space.
Interpretation and quality of the tilted axis cranking approximation
International Nuclear Information System (INIS)
Frauendorf, S.; Meng, J.
1996-06-01
Comparing with the exact solutions of the model system of one and two particles coupled to an axial rotor, the quality of the semi classical tilted axis cranking approximation is investigated. Extensive comparisons of the energies and M1 and E2 transition probabilities are carried out for the lowest bands. Very good agreement is found, except near band crossings. Various recipes to take into account finite K within the frame of the usual principal axis cranking are included into the comparison. A set of rules is suggested that permits to construct the excited bands from the cranking configurations, avoiding spurious states. (orig.)
International Nuclear Information System (INIS)
Posadillo, R.; Lopez Luque, R.
2009-01-01
The performance of three diffuse hourly irradiation models on tilted surfaces was evaluated by making a database of hourly global and diffuse solar irradiation on a horizontal surface, as well as global solar irradiation on a tilted surface, recorded in a solar radiation station located at Cordoba University (Spain). The method for a comparison of the performance of these models was developed from a study of the 'utilizable energy' statistics, a value representing, for a specific period of time, the mean monthly radiation that exceeded a critical level of radiation. This model comparison method seemed to us to be highly suitable since it provides a way of comparing the capacity of these models to estimate, however, much energy is incident on a tilted surface above a critical radiation level. Estimated and measured values were compared using the normalized RMBE and RRMSE statistics. According to the results of the method let us verify that, of the three models evaluated, one isotropic and two anisotropic, the Reindl et al. anisotropic model was the one giving the best results.
Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.
2014-01-01
Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.
Transverse Crack Modeling and Validation in Rotor Systems, Including Thermal Effects
Directory of Open Access Journals (Sweden)
N. Bachschmid
2003-01-01
Full Text Available This article describes a model that allows the simulation of the static behavior of a transverse crack in a horizontal rotor under the action of weight and other possible static loads and the dynamic behavior of cracked rotating shaft. The crack breathes—that is, the mechanism of the crack's opening and closing is ruled by the stress on the cracked section exerted by the external loads. In a rotor, the stresses are time-dependent and have a period equal to the period of rotation; thus, the crack periodically breathes. An original, simplified model allows cracks of various shapes to be modeled and thermal stresses to be taken into account, as they may influence the opening and closing mechanism. The proposed method was validated by using two criteria. First the crack's breathing mechanism, simulated by the model, was compared with the results obtained by a nonlinear, threedimensional finite element model calculation, and a good agreement in the results was observed. Then the proposed model allowed the development of the equivalent cracked beam. The results of this model were compared with those obtained by the three-dimensional finite element model. Also in this case, there was a good agreement in the results.
Description of multi-quasiparticle bands by the tilted axis cranking model
International Nuclear Information System (INIS)
Frauendorf, S.
2000-01-01
The selfconsistent cranking approach is extended to the case of rotation about an axis which is tilted with respect to the principal axes of the deformed potential (Tilted Axis Cranking). Expressions for the energies and the intra bands electro-magnetic transition probabilities are given. The mean field solutions are interpreted in terms of quantal rotational states. The construction of the quasiparticle configurations and the elimination of spurious states is discussed. The application of the theory to high spin data is demonstrated by analyzing the multi-quasiparticle bands in the nuclides with N=102,103 and Z=71,72,73
Generalized two axes model of a squirrel-cage induction motor for rotor fault diagnosis
Directory of Open Access Journals (Sweden)
Samir Hamdani
2008-01-01
Full Text Available A generalized two axes model of a squirrel-cage induction motor is developed This model is based on a winding function approach and the coupled magnetic circuit theory and takes into account the stator and the rotor asymmetries due to faults. This paper presents a computer simulation and experimental dynamic characteristics for a healthy induction machine, machine with one broken bar and a machine with two broken bars. The results illustrate good agreement between both simulated and experimental results. Also, the power spectral density PSD was performed to obtain a stator current spectrum.
Using a cylindrical vortex model to assess the induction zone infront of aligned and yawed rotors
DEFF Research Database (Denmark)
Branlard, Emmanuel Simon Pierre; Meyer Forsting, Alexander Raul
2015-01-01
. The mean relative error is estimated in the induction zone and foundto be below 0.4% for the aligned flows tested and below 1.3% for the yawed test cases. Thecomputational time required by the analytical model is in the order of thousands of timesless than the one required by the actuator disk simulation.......Analytical formulae for the velocity field induced by a cylindrical vortex wake model areapplied to assess the induction zone in front of aligned and yawed rotors. The results arecompared to actuator disk (AD) simulations for different operating conditions, includingfinite tip-speed ratios...
DEFF Research Database (Denmark)
Andersen, Elsa; Lund, Hans; Furbo, Simon
2004-01-01
Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...
Transverse Crack Modeling and Validation in Rotor Systems Including Thermal Effects
Directory of Open Access Journals (Sweden)
N. Bachschmid
2004-01-01
Full Text Available In this article, a model is described that allows one to simulate the static behavior of a transversal crack in a horizontal rotor, under the action of the weight and other possible static loads and the dynamical behavior of the rotating cracked shaft. The crack “breaths,” i.e., the mechanism of opening and closing of the crack, is ruled by the stress acting on the cracked section due to the external loads; in a rotor the stress is time-depending with a period equal to the period of rotation, thus the crack “periodically breaths.” An original simplified model is described that allows cracks of different shape to be modeled and thermal stresses to be taken into account, since they may influence the opening and closing mechanism. The proposed method has been validated using two criteria. Firstly, the crack “breathing” mechanism, simulated with the model, has been compared with the results obtained by a nonlinear 3-D FEM calculation and a good agreement in the results has been observed. Secondly, the proposed model allows the development of the equivalent cracked beam. The results of this model are compared with those obtained by the above-mentioned 3-D FEM. There is a good agreement in the results, of this case as well.
PS-wave moveout inversion for tilted TI media: A physical modeling study
Digital Repository Service at National Institute of Oceanography (India)
Dewangan, P.; Tsvankin, I.; Batzle, M.; Van Wijk, K.; Haney, M.
-waves can be inverted for the parameters of a horizontal TI layer with a tilted symmetry axis. The 2D multicomponent reflection data are acquired over a phenolic sample manufactured to simulate the effective medium formed by steeply dipping fracture sets...
Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings
Wang, Hong; Han, Qinkai; Zhou, Daning
2017-02-01
In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.
Soft hub for bearingless rotors
Dixon, Peter G. C.
1991-01-01
Soft hub concepts which allow the direct replacement of articulated rotor systems by bearingless types without any change in controllability or need for reinforcement to the drive shaft and/or transmission/fuselage attachments of the helicopter were studied. Two concepts were analyzed and confirmed for functional and structural feasibility against a design criteria and specifications established for this effort. Both systems are gimballed about a thrust carrying universal elastomeric bearing. One concept includes a set of composite flexures for drive torque transmittal from the shaft to the rotor, and another set (which is changeable) to impart hub tilting stiffness to the rotor system as required to meet the helicopter application. The second concept uses a composite bellows flexure to drive the rotor and to augment the hub stiffness provided by the elastomeric bearing. Each concept was assessed for weight, drag, ROM cost, and number of parts and compared with the production BO-105 hub.
Structural modelling of composite beams with application to wind turbine rotor blades
DEFF Research Database (Denmark)
Couturier, Philippe
The ever changing structure and growing size of wind turbine blades put focus on the accuracy and flexibility of design tools. The present thesis is organized in four parts - all concerning the development of efficient computational methods for the structural modelling of composite beams which...... will support future growth in the rotor size.The first part presents a two-node beam element formulation, based on complementary elastic energy, valid for fully coupled beams with variable cross-section properties.The element stiffness matrix is derived by use of the six equilibrium states of the element...
Toni Liong, Rugerri; Proppe, Carsten
2013-04-01
The breathing mechanism of a transversely cracked rotor and its influence on a rotor system that appears due to shaft weight and inertia forces is studied. A method is proposed for the evaluation of the stiffness losses in the cross-section that contains the crack. This method is based on a cohesive zone model (CZM) instead of linear elastic fracture mechanics (LEFM). The CZM is developed for mode-I plane strain conditions and accounts explicitly for triaxiality of the stress state by using constitutive relations. The breathing crack is modelled by a parabolic shape. As long as the relative crack depth is small, a crack closure straight line model may be used, while the crack closure parabolic line should be used in the case of a deep crack. The CZM is also implemented in a one-dimensional continuum rotor model by means of finite element (FE) discretisation in order to predict and to analyse the dynamic behavior of a cracked rotor. The proposed method provides a useful tool for the analysis of rotor systems containing cracks.
Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.
1984-01-01
Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.
Critical behavior of the XY-rotor model on regular and small-world networks
De Nigris, Sarah; Leoncini, Xavier
2013-07-01
We study the XY rotors model on small networks whose number of links scales with the system size Nlinks˜Nγ, where 1≤γ≤2. We first focus on regular one-dimensional rings in the microcanonical ensemble. For γ1.5, the system equilibrium properties are found to be identical to the mean field, which displays a second-order phase transition at a critical energy density ɛ=E/N,ɛc=0.75. Moreover, for γc≃1.5 we find that a nontrivial state emerges, characterized by an infinite susceptibility. We then consider small-world networks, using the Watts-Strogatz mechanism on the regular networks parametrized by γ. We first analyze the topology and find that the small-world regime appears for rewiring probabilities which scale as pSW∝1/Nγ. Then considering the XY-rotors model on these networks, we find that a second-order phase transition occurs at a critical energy ɛc which logarithmically depends on the topological parameters p and γ. We also define a critical probability pMF, corresponding to the probability beyond which the mean field is quantitatively recovered, and we analyze its dependence on γ.
Aeroelastic modeling of composite rotor blades with straight and swept tips
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the FEM are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction. These results illustrate the inherent potential for aeroelastic tailoring present in composite rotor blades with swept tips, which still remains to be exploited in the design process.
Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.
Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay
2017-11-01
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
A new aeroelastic model for composite rotor blades with straight and swept tips
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.
Energy Technology Data Exchange (ETDEWEB)
Shen, Chen [General Electric Global Research, Niskayuna, NY (United States)
2014-04-01
The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.
High-fidelity linear time-invariant model of a smart rotor with adaptive trailing edge flaps
DEFF Research Database (Denmark)
Bergami, Leonardo; Hansen, Morten Hartvig
2017-01-01
aero-servo-elastic model support the design, systematic tuning and model synthesis of smart rotor control systems. As an example application, the gains of an individual flap controller are tuned using the Ziegler-Nichols method for the full-order poles. The flap controller is based on feedback...
A coupled CFD and wake model simulation of helicopter rotor in hover
Zhao, Qinghe; Li, Xiaodong
2018-03-01
The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.
Measured Boundary Layer Transition and Rotor Hover Performance at Model Scale
Overmeyer, Austin D.; Martin, Preston B.
2017-01-01
An experiment involving a Mach-scaled, 11:08 f t: diameter rotor was performed in hover during the summer of 2016 at NASA Langley Research Center. The experiment investigated the hover performance as a function of the laminar to turbulent transition state of the boundary layer, including both natural and fixed transition cases. The boundary layer transition locations were measured on both the upper and lower aerodynamic surfaces simultaneously. The measurements were enabled by recent advances in infrared sensor sensitivity and stability. The infrared thermography measurement technique was enhanced by a paintable blade surface heater, as well as a new high-sensitivity long wave infrared camera. The measured transition locations showed extensive amounts, x=c>0:90, of laminar flow on the lower surface at moderate to high thrust (CT=s > 0:068) for the full blade radius. The upper surface showed large amounts, x=c > 0:50, of laminar flow at the blade tip for low thrust (CT=s boundary layer transition models in CFD and rotor design tools. The data is expected to be used as part of the AIAA Rotorcraft SimulationWorking Group
Influence of forming conditions on fiber tilt
David W. Vahey; John M. Considine; Michael A. and MacGregor
2013-01-01
Fiber tilt describes the projection of fiber length in the thickness direction of paper. The projection is described by the tilt angle of fibers with respect to the plane of the sheet. A simple model for fiber tilt is based on jet-to-wire velocity differential in combination with cross-flows on the wire. The tilt angle of a fiber is found to vary as the sine of its in-...
DEFF Research Database (Denmark)
Wang, K.; Hansen, Martin Otto Laver; Moan, T.
2015-01-01
If a vertical axis wind turbine is mounted offshore on a semi-submersible, the pitch motion of the platform will dominate the static pitch and dynamic motion of the platform and wind turbine such that the effect of tower tilting on the aerodynamics of the vertical axis wind turbine should...... be investigated to more accurately predict the aerodynamic loads. This paper proposes certain modifications to the double multiple-streamtube (DMS) model to include the component of wind speed parallel to the rotating shaft. The model is validated against experimental data collected on an H-Darrieus wind turbine...... in skewed flow conditions. Three different dynamic stall models are also integrated into the DMS model: Gormont's model with the adaptation of Strickland, Gormont's model with the modification of Berg and the Beddoes-Leishman dynamic stall model. Both the small Sandia 17m wind turbine and the large DeepWind...
Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.
2006-01-01
The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.
Fluid observers and tilting cosmology
International Nuclear Information System (INIS)
Coley, A A; Hervik, S; Lim, W C
2006-01-01
We study perfect fluid cosmological models with a constant equation of state parameter γ in which there are two naturally defined timelike congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e. γ > 4/3), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e. γ < 4/3), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant
Magee, J. P.; Clark, R. D.; Widdison, C. A.
1975-01-01
Conceptual design studies are summarized of tandem-rotor helicopter and tilt-rotor aircraft for a short haul transport mission in the 1985 time frame. Vertical takeoff designs of both configurations are discussed, and the impact of external noise criteria on the vehicle designs, performance, and costs are shown. A STOL design for the tilt-rotor configuration is reported, and the effect of removing the vertical takeoff design constraints on the design parameters, fuel economy, and operating cost is discussed.
DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well
2013-01-01
This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean
Wang, Chi; Tan, Zhiqiang; Louis, Thomas A
2014-01-01
Evaluating the effect of a treatment on a time-to-event outcome is the focus of many randomized clinical trials. It is often observed that the treatment effect is heterogeneous, where only a subgroup of the patients may respond to the treatment due to some unknown mechanism such as genetic polymorphism. In this paper, we propose a semiparametric exponential tilt mixture model to estimate the proportion of patients who respond to the treatment and to assess the treatment effect. Our model is a natural extension of parametric mixture models to a semiparametric setting with a time-to-event outcome. We propose a nonparametric maximum likelihood estimation approach for inference and establish related asymptotic properties. Our method is illustrated by a randomized clinical trial on biodegradable polymer-delivered chemotherapy for malignant gliomas patients.
The influence of engine/transmission/governor on tilting proprotor aircraft dynamics
Johnson, W.
1975-01-01
An analytical model is developed for the dynamics of a tilting proprotor aircraft engine and drive train, including a rotor speed governor and interconnect shaft. The dynamic stability of a proprotor and cantilever wing is calculated, including the engine-transmission-governor model. It is concluded that the rotor behaves much as if windmilling as far as its dynamic behavior is concerned, with some influence of the turboshaft engine inertia and damping. The interconnect shaft has a significant influence on the antisymmetric dynamics of proprotor aircraft. The proprotor aerodynamics model is extended to include reverse flow, and a refinement on the method used to calculate the kinematic pitch-bending coupling of the blade is developed.
Pavlenko, I. V.; Simonovskiy, V. I.; Demianenko, M. M.
2017-08-01
This research paper is aimed to investigating rotor dynamics of multistage centrifugal machines with ball bearings by using the computer programs “Critical frequencies of the rotor” and “Forced oscillations of the rotor,” which are implemented the mathematical model based on the use of beam finite elements. Free and forces oscillations of the rotor for the multistage centrifugal oil pump NPS 200-700 are observed by taking into account the analytical dependence of bearing stiffness on rotor speed, which is previously defined on the basis of results’ approximation for the numerical simulation in ANSYS by applying 3D finite elements. The calculations found that characteristic and constrained oscillations of rotor and corresponded to them forms of vibrations, as well as the form of constrained oscillation on the actual frequency for acceptable residual unbalance are determined.
International Nuclear Information System (INIS)
Mayer, T.
2012-01-01
This dissertation deals with the effective mechanical analysis of steam turbine parts which is not only required for the reliable and safe use of newly built steam turbines, but also for the remaining life assessment of components that have been exposed to service duty over long periods of time. This Thesis aims to develop a physically motivated evolutionary constitutive model for a low-alloy bainitic 2CrMoNiWV (23CrMoNiWV8-8) steam turbine rotor steels. A comprehensive experimental characterisation is performed concerning the mechanical and microstructural evolution of 2CrMoNiWV as subjected to low cycle fatigue (LCF) deformation at elevated temperatures, at different strain rates and for various strain amplitudes. This cyclic plastic deformation causes the rearrangement of dislocations in the microstructure of the steels used for such rotor applications. Symmetric, strain controlled LCF experiments have been carried out in the Laboratory of the High Temperature Integrity Group at the Swiss Federal Laboratories for Materials Science and Technology EMPA. These include mechanical tests in the temperature range between 20 °C to 600 °C at strain rates of 0.001%/s to 1.0%/s and strain amplitudes of ±0.25% to ±1.0%. The LCF experiments reported on comprehensively characterise the temperature, strain rate and strain amplitude dependent cyclic elastic-plastic behaviour of 2CrMoNiWV. Both complete single-specimen endurance tests and interrupted multi-specimen tests have been performed. On the basis of this experimental evidence, an evolutionary formulation of the model is further developed that excellently reproduces the strain amplitude dependent mechanical evolution of 2CrMoNiWV when subjected to LCF loading at different constant strain amplitudes but equal temperature and strain rate. The simulation of benchmark experiments introducing increasing or decreasing strain amplitude steps into the LCF deformation history provide promising results. A further important
Energy Technology Data Exchange (ETDEWEB)
Mayer, T.
2012-07-01
This dissertation deals with the effective mechanical analysis of steam turbine parts which is not only required for the reliable and safe use of newly built steam turbines, but also for the remaining life assessment of components that have been exposed to service duty over long periods of time. This Thesis aims to develop a physically motivated evolutionary constitutive model for a low-alloy bainitic 2CrMoNiWV (23CrMoNiWV8-8) steam turbine rotor steels. A comprehensive experimental characterisation is performed concerning the mechanical and microstructural evolution of 2CrMoNiWV as subjected to low cycle fatigue (LCF) deformation at elevated temperatures, at different strain rates and for various strain amplitudes. This cyclic plastic deformation causes the rearrangement of dislocations in the microstructure of the steels used for such rotor applications. Symmetric, strain controlled LCF experiments have been carried out in the Laboratory of the High Temperature Integrity Group at the Swiss Federal Laboratories for Materials Science and Technology EMPA. These include mechanical tests in the temperature range between 20 °C to 600 °C at strain rates of 0.001%/s to 1.0%/s and strain amplitudes of ±0.25% to ±1.0%. The LCF experiments reported on comprehensively characterise the temperature, strain rate and strain amplitude dependent cyclic elastic-plastic behaviour of 2CrMoNiWV. Both complete single-specimen endurance tests and interrupted multi-specimen tests have been performed. On the basis of this experimental evidence, an evolutionary formulation of the model is further developed that excellently reproduces the strain amplitude dependent mechanical evolution of 2CrMoNiWV when subjected to LCF loading at different constant strain amplitudes but equal temperature and strain rate. The simulation of benchmark experiments introducing increasing or decreasing strain amplitude steps into the LCF deformation history provide promising results. A further important
Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.
He, Z; Xi, B; Zhu, K; Hwang, N H
2001-09-01
The induction of mechanical heart valve (MHV) cavitation was investigated using a 27 mm Medtronic Hall (MH27) tilting disk valve. The MH27 valve was mounted in the mitral position of a simulating pulse flow system, and stroboscopic lighting used to visualize cavitation bubbles on the occluder inflow surface at the instant of valve closure. MHV cavitation was monitored using a digital camera with 0.04 mm/pixel resolution sufficient to render the tiny bubbles clearly visible on the computer monitor screen. Cavitation on MH27 valve was classified as five types according to the time, site and shape of the cavitation bubbles. Valve cavitation occurred at the instant of occluder impact with the valve seat at closing. The impact motion was subdivided into three temporal phases: (i) squeezing flow; (ii) elastic collision; and (iii) leaflet rebound. MHV cavitation caused by vortices was found to be initiated by the squeezing jet and/or by the transvalvular leakage jets. By using a tension wave which swept across the occluder surface immediately upon elastic impact, nuclei in the vortex core were expanded to form cavitation bubbles. Analysis of the shape and location of the cavitation bubbles permitted a better understanding of MHV cavitation mechanisms, based on the fluid dynamics of jet vortex and tension wave propagations.
Sun, Hokeun; Wang, Ya; Chen, Yong; Li, Yun; Wang, Shuang
2017-06-15
DNA methylation plays an important role in many biological processes and cancer progression. Recent studies have found that there are also differences in methylation variations in different groups other than differences in methylation means. Several methods have been developed that consider both mean and variance signals in order to improve statistical power of detecting differentially methylated loci. Moreover, as methylation levels of neighboring CpG sites are known to be strongly correlated, methods that incorporate correlations have also been developed. We previously developed a network-based penalized logistic regression for correlated methylation data, but only focusing on mean signals. We have also developed a generalized exponential tilt model that captures both mean and variance signals but only examining one CpG site at a time. In this article, we proposed a penalized Exponential Tilt Model (pETM) using network-based regularization that captures both mean and variance signals in DNA methylation data and takes into account the correlations among nearby CpG sites. By combining the strength of the two models we previously developed, we demonstrated the superior power and better performance of the pETM method through simulations and the applications to the 450K DNA methylation array data of the four breast invasive carcinoma cancer subtypes from The Cancer Genome Atlas (TCGA) project. The developed pETM method identifies many cancer-related methylation loci that were missed by our previously developed method that considers correlations among nearby methylation loci but not variance signals. The R package 'pETM' is publicly available through CRAN: http://cran.r-project.org . sw2206@columbia.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Analytical calculation of the vibrator-rotor transition in the sdg interacting boson model
International Nuclear Information System (INIS)
Wang Baolin
1992-01-01
Analytical calculation of the vibrator-rotor transition is given by utilizing the 1/N expansion technique in the sdg IBM. The phase transition of low-lying energy spectrum and E2 transition for Sm isotopes are calculated
DEFF Research Database (Denmark)
Cerda Varela, Alejandro Javier; Santos, Ilmar
2014-01-01
In recent years, a continuous research effort has transformed the conventional tilting-pad journal bearing into a mechatronic machine element. The addition of electromechanical elements provides the possibility of generating controllable forces over the rotor as a function of a suitable control...... directly into the bearing clearance. The injected flow is controlled by means of a servovalve. The theoretical model includes the dynamics of servovalves and pipelines using a lumped parameter approach, whereas the coupling between the hydraulic system and the bearing oil film is modeled using a modified...
Truncated exponential-rigid-rotor model for strong electron and ion rings
International Nuclear Information System (INIS)
Larrabee, D.A.; Lovelace, R.V.; Fleischmann, H.H.
1979-01-01
A comprehensive study of exponential-rigid-rotor equilibria for strong electron and ion rings indicates the presence of a sizeable percentage of untrapped particles in all equilibria with aspect-ratios R/a approximately <4. Such aspect-ratios are required in fusion-relevant rings. Significant changes in the equilibria are observed when untrapped particles are excluded by the use of a truncated exponential-rigid-rotor distribution function. (author)
Tilt testing results are influenced by tilt protocol.
Zyśko, Dorota; Fedorowski, Artur; Nilsson, David; Rudnicki, Jerzy; Gajek, Jacek; Melander, Olle; Sutton, Richard
2016-07-01
It is unknown how the return to supine position influences duration of loss of consciousness (LOC) and cardioinhibition during tilt test. Retrospective analysis of two datasets containing records of patients who underwent tilt testing for unexplained syncope in two centres was performed. Patients, totalling 1232, were included in the study: 262 in a Swedish centre and 970 patients in a Polish centre. In Sweden, tilt table with tilt-down time (TDT) of 18 s was used (Group II). In Poland, two different tilt tables were used, one of them with TDT of 10 s (Group I, n = 325), and the other with TDT of 47 s (Group III, n = 645). Cardioinhibitory reflex occurred most frequently in Group III, whereas number of pauses >3 s, frequency of very long asystole ≥30 s, and the total duration of pauses >3 s demonstrated a trend to increase from Group I to III. Duration of LOC in Groups II and III was significantly longer compared with Group I (32.0 and 33.7 s vs. 16.4 s). In the multivariate-adjusted regression model, cardioinhibitory reflex was predicted by tilt-table model (odds ratio per model with increasing TDT: 1.40; 95% confidence interval, 1.19-1.64; P < 0.0001), whereas LOC duration was longer with increasing TDT (P < 0.0001) and age (P < 0.0001). Longer TDT during induced vasovagal syncope increases the prevalence of cardioinhibitory reflex and prolongs the duration of LOC. Tilt-down time does not affect asystolic pause duration but delay may lead to occurrence of multiple pauses, higher frequency of very long asystole, and longer total asystole duration. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Stanciu, Camelia; Stanciu, Dorin
2014-01-01
Highlights: • Monthly optimum tilt angle is predicted for North latitudes between 0° and 80°. • From practical considerations, an optimum fixed value all along the year is derived. • Three solar radiation models are compared from the point of view of total incident solar radiation density prediction. - Abstract: The paper presents a theoretical study on the optimum tilt angle for flat plate collectors at different geographical locations and different time moments over a year. The solar radiation density is estimated based on three analysis models, namely Hottel and Woertz model (the simplest), Isotropic diffuse model (Liu and Jordan model) and HDKR model (Hay–Davis–Klucker–Reindl), passing from the simplest to the most complex one. Further, the absorbed solar radiation density is computed and the optimum tilt angle is found for different geographical locations (covering the Globe latitudes). The optimum value for the tilt angle is researched for maximum incident solar radiation and also for maximum absorbed one. The results indicate that the same angle is obtained when looking for maximum incident and for maximum absorbed solar radiation. When comparing the three above mentioned models, different tilt angles are supplied by applying the Hottel and Woertz model and respectively the others two (both of them providing the same angle). Although, the predicted absorbed solar radiation is the same in the summertime for all three models, and probably overestimated by the last model in the springtime. The obtained results give an overview over the whole year operation at different geographical latitudes. When using the Hottel and Woertz model for estimating the incident solar radiation, the optimum tilt angle for a flat plate collector should be computed as simplest as β opt = φ − δ function on the latitude and declination. If a fixed value is easier to be used over a specific operation period, an optimum value is provided by this research. The novelty
National Research Council Canada - National Science Library
Maglieri, Domenic
1955-01-01
Preliminary investigations have been made in the Langley gust tunnel to determine the effects of a sharp-edge vertical gust on the blade flapwise vibratory bending moments of small model rotors having...
Modeling and Analysis of Double Stator Slotted Rotor Permanent Magnet Generator
Directory of Open Access Journals (Sweden)
Suhairi Rizuan Che Ahmad
2017-03-01
Full Text Available This paper discusses the modeling and analysis of three phase double stator slotted rotor permanent magnet generator (DSSR-PMG. The use of double stator topology through the double magnetic circuit helps to maximize the usage of flux linkage in the yoke structure of the single stator topology. The analytical computation is done using Permeance Analysis Method (PAM. Finite Element Analysis (FEA is used for numerical verifications and to verify the design structure a prototype laboratory is performed. The analysis is done with various loading conditions to derive the electromagnetic torque, output power and efficiency for the proposed structure. The analytical, numerical and experimental results from the analysis are found to be in good agreement. The maximum power developed by this generator at rated speed of 2000 rpm is of 1 kW with the operational efficiency of 75%. A rectifier bridge circuit is used to make the generated voltage a storage capable constant voltage to make it suitable for mobile applications (such as Direct Current DC generator. The proposed generator structure is highly recommended for applications such as micro-hydro and small renewable plants.
A preliminary investigation of finite-element modeling for composite rotor blades
Lake, Renee C.; Nixon, Mark W.
1988-01-01
The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness.
Molecular tilt on monolayer-protected nanoparticles
Giomi, L.
2012-02-01
The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.
Molecular tilt on monolayer-protected nanoparticles
Giomi, L.; Bowick, M. J.; Ma, X.; Majumdar, A.
2012-01-01
The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.
Study on Creep Damage Model of 1Cr1Mo1/4V Steel for Turbine Rotor
International Nuclear Information System (INIS)
Choi, Woo Sung; Song, Gee Wook; Kim, Bum Shin; Chang, Sung Ho; Fleury, Eric
2011-01-01
It is well known that the dominant damage mechanisms in high-temperature steam turbine facilities such as rotor and casing are creep and fatigue damages. Even though coupling of creep and fatigue should be considered while predicting the life of turbine facilities, the remaining life of large steam turbine facilities is generally determined on the basis of creep damage because the turbines must generate stable base-load power and because they are operated at a high temperature and pressure for a long time. Almost every large steam turbine in Korea has been operated for more than 20 years and is made of steel containing various amounts of principal alloying elements nickel, chromium, molybdenum, and vanadium. In this study, creep damage model of 1Cr1Mo1/4V steel for turbine rotor is proposed and that can assess the high temperature creep life of large steam turbine facilities is proposed
Edwards, C. L.; Boone, B. G.; Levine, W. S.; Davis, C. C.
2007-04-01
The availability of recently developed MEMS micro-mirror technology provides an opportunity to replace macro-scale actuators for free-space laser beamsteering in lidar and communication systems. Such an approach is under investigation at the Johns Hopkins University Applied Physics Laboratory for use on space-based platforms. Precision modeling of mirror pointing and its dynamics are critical to optimal design and control of MEMS beamsteerers. Beginning with Hornbeck's torque approach, this paper presents a first-principle, analytically closed-form torque model for an electro-statically actuated two-axis (tip-tilt) MEMS structure. An Euler dynamic equation formulation describes the gimbaled motion as a coupled pair of damped harmonic oscillators with a common forcing function. Static physical parameters such as MEMS mirror dimensions, facet mass, and height are inputs to the model as well as dynamic harmonic oscillator parameters such as damping and restoring constants fitted from measurements. A Taylor series expansion of the torque function provides valuable insights into basic one dimensional as well as two dimensional MEMS behavior, including operational sensitivities near "pull-in." The model also permits the natural inclusion and analysis of pointing noise sources such as electrical drive noise, platform vibration, and molecular Brownian motion. MATLAB and SIMULINK simulations illustrate performance sensitivities, controllability, and physical limitations, important considerations in the design of optimal pointing systems.
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar
2013-01-01
This paper reports the dynamic study of a flexible rotor-bearing test rig which resembles a large overhung centrifugal compressor. The rotor is supported by an active tilting pad journal bearing (TPJB) able to perform the adjustable lubrication regime. Such a regime is obtained by injecting...... pressurized oil directly into the bearing clearance through a nozzle placed in a radial bore at the middle of the pad and connected to a high pressure supply unit by servovalves. The theoretical model is based on a finite element model, where the active TPJB with adjustable lubrication is included using...... and the experimental results are obtained. The improvements are obtained when the system response amplitudes in a bounded speed range is reduced by applying the adjustable lubrication. Results are in agreement with the established fact that a significant improvement of the rotor-bearing system dynamic performance can...
Rotor Dynamic Inflow Derivatives and Time Constants from Various Inflow Models.
1980-12-01
fore-and-aft rotor diameter for the case of horizontal flight. It i- possible to determine from the blade twist both the geometric and equivalent...17, the flat-wake theory represents a limiting case where all the vortices transferred to the slipstream of a rotor, moving horizontally at a...L44,4) 66- p E 40- R CE T~ 26* E R R 0 0 R -a,- ’ I 1 P I . . . I . . 6.0 0.1 0.2 0.3 0.4 0.5 INTERGRATION INCREMENT Figure 9. Effects of the
Nonlinear dynamic model of a gear-rotor-bearing system considering the flash temperature
Gou, Xiangfeng; Zhu, Lingyun; Qi, Changjun
2017-12-01
The instantaneous flash temperature is an important factor for gears in service. To investigate the effect of the flash temperature of a tooth surface on the dynamics of the spur gear system, a modified nonlinear dynamic model of a gear-rotor-bearing system is established. The factors such as the contact temperature of the tooth surface, time-varying stiffness, tooth surface friction, backlash, the comprehensive transmission error and so on are considered. The flash temperature of a tooth surface of pinion and gear is formulated according to Blok's flash temperature theory. The mathematical expression of the contact temperature of the tooth surface varied with time is derived and the tooth profile deformation caused by the change of the flash temperature of the tooth surface is calculated. The expression of the mesh stiffness varied with the flash temperature of the tooth surface is derived based on Hertz contact theory. The temperature stiffness is proposed and added to the nonlinear dynamic model of the system. The influence of load on the flash temperature of the tooth surface is analyzed in the parameters plane. The variation of the flash temperature of the tooth surface is studied. The numerical results indicate that the calculated method of the flash temperature of the gear tooth surface is effective and it can reflect the rules for the change of gear meshing temperature and sliding of the gear tooth surface. The effects of frequency, backlash, bearing clearance, comprehensive transmission error and time-varying stiffness on the nonlinear dynamics of the system are analyzed according to the bifurcation diagrams, Top Lyapunov Exponent (TLE) spectrums, phase portraits and Poincaré maps. Some nonlinear phenomena such as periodic bifurcation, grazing bifurcation, quasi-periodic bifurcation, chaos and its routes to chaos are investigated and the critical parameters are identified. The results provide an understanding of the system and serve as a useful reference
Modeling and inversion of PS-wave moveout asymmetry for tilted TI media: Part 2: Dipping TTI layer
Digital Repository Service at National Institute of Oceanography (India)
Dewangan, P.; Tsvankin, I.
Dipping transversely isotropic layers with a tilted symmetry axis (TTI media) cause serious imaging problems in fold-and-thrust belts and near salt domes. The modified PP + PS = SS method introduced in Part 1 is applied to the inversion...
Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar
2014-05-28
The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.
Fu, Jicheng; Jones, Maria; Jan, Yih-Kuen
2014-01-01
Wheelchair tilt and recline functions are two of the most desirable features for relieving seating pressure to decrease the risk of pressure ulcers. The effective guidance on wheelchair tilt and recline usage is therefore critical to pressure ulcer prevention. The aim of this study was to demonstrate the feasibility of using machine learning techniques to construct an intelligent model to provide personalized guidance to individuals with spinal cord injury (SCI). The motivation stems from the clinical evidence that the requirements of individuals vary greatly and that no universal guidance on tilt and recline usage could possibly satisfy all individuals with SCI. We explored all aspects involved in constructing the intelligent model and proposed approaches tailored to suit the characteristics of this preliminary study, such as the way of modeling research participants, using machine learning techniques to construct the intelligent model, and evaluating the performance of the intelligent model. We further improved the intelligent model's prediction accuracy by developing a two-phase feature selection algorithm to identify important attributes. Experimental results demonstrated that our approaches held the promise: they could effectively construct the intelligent model, evaluate its performance, and refine the participant model so that the intelligent model's prediction accuracy was significantly improved.
Modelling of magnetorheological squeeze film dampers for vibration suppression of rigid rotors
Czech Academy of Sciences Publication Activity Database
Zapoměl, Jaroslav; Ferfecki, Petr; Kozánek, Jan
2017-01-01
Roč. 127, Jul SI (2017), s. 191-197 ISSN 0020-7403 R&D Projects: GA ČR GA15-06621S Institutional support: RVO:61388998 Keywords : squeeze film damper * magnetorheological fluid * bilinear material * rigid rotor * frequency response Subject RIV: JR - Other Machinery OBOR OECD: Mechanical engineering Impact factor: 2.884, year: 2016
Cui, Peiling; Yan, Ning
2012-01-01
The magnetically suspended Control Moment Gyroscope (CMG) has the advantages of long-life, micro-vibration and being non-lubricating, and is the ideal actuator for agile maneuver satellite attitude control. However, the stability of the rotor in magnetic bearing and the precision of the output torque of a magnetically suspended CMG are affected by the rapid maneuvers of satellites. In this paper, a dynamic model of the agile satellite including a magnetically suspended single gimbal control moment gyroscope is built and the equivalent disturbance torque effected on the rotor is obtained. The feedforward compensation control method is used to depress the disturbance on the rotor. Simulation results are given to show that the rotor displacement is obviously reduced. PMID:23235442
Directory of Open Access Journals (Sweden)
Ning Yan
2012-12-01
Full Text Available The magnetically suspended Control Moment Gyroscope (CMG has the advantages of long-life, micro-vibration and being non-lubricating, and is the ideal actuator for agile maneuver satellite attitude control. However, the stability of the rotor in magnetic bearing and the precision of the output torque of a magnetically suspended CMG are affected by the rapid maneuvers of satellites. In this paper, a dynamic model of the agile satellite including a magnetically suspended single gimbal control moment gyroscope is built and the equivalent disturbance torque effected on the rotor is obtained. The feedforward compensation control method is used to depress the disturbance on the rotor. Simulation results are given to show that the rotor displacement is obviously reduced.
Directory of Open Access Journals (Sweden)
Shilin Chen
1994-01-01
Full Text Available An exact and direct modeling technique is proposed for modeling of rotor-bearing systems with arbitrary selected degrees-of-freedom. This technique is based on the combination of the transfer and dynamic stiffness matrices. The technique differs from the usual combination methods in that the global dynamic stiffness matrix for the system or the subsystem is obtained directly by rearranging the corresponding global transfer matrix. Therefore, the dimension of the global dynamic stiffness matrix is independent of the number of the elements or the substructures. In order to show the simplicity and efficiency of the method, two numerical examples are given.
Tilting Saturn without Tilting Jupiter: Constraints on Giant Planet Migration
Brasser, R.; Lee, Man Hoi
2015-11-01
The migration and encounter histories of the giant planets in our solar system can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn’s spin axis to the current obliquity if the product of the migration timescale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today’s obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance crossing. Migration timescales sufficiently long to tilt Saturn generally suffice to tilt Jupiter more than is observed. The full N-body simulations tell a somewhat different story, with Jupiter generally being tilted as often as Saturn, but on average having a higher obliquity. The main obstacle is the final orbital spacing of the giant planets, coupled with the tail of Neptune’s migration. The resonant Nice case is barely able to simultaneously reproduce the orbital and spin properties of the giant planets, with a probability ˜ 0.15%. The loose five planet model is unable to match all our constraints (probability <0.08%). The compact five planet model has the highest chance of matching the orbital and obliquity constraints simultaneously (probability ˜0.3%).
Comparison of Models for the Steady-State Analysis of Tilting-Pad Thrust Bearings
DEFF Research Database (Denmark)
Heinrichson, Niels; Santos, Ilmar
2005-01-01
Prediction of the minimum oil film thickness and the maximum temperature on the surface of the bearing pad is crucial in the design and dimensioning of bearings. Friction loss, oil bath temperature and pad deflection are other parameters of interest. Depending on the desired information a numerical...... for the groove between pads and the oil bath temperature from energy equilibrium for the entire bearing. The main theoretical contribution of this paper is the elaboration and comparison of 7 different mathematical models of increasing complexity. The results are compared to experimental data for steady......-state operation of a 228 mm outer diameter bearing. It is found that for the given bearing a two dimensional model is sufficient to estimate the minimum oil film thickness and the maximum temperature on the pad surface. Three dimensional modelling does not improve the quality of the results....
Moment distributions of clusters and molecules in the adiabatic rotor model
Ballentine, G. E.; Bertsch, G. F.; Onishi, N.; Yabana, K.
2008-01-01
We present a Fortran program to compute the distribution of dipole moments of free particles for use in analyzing molecular beams experiments that measure moments by deflection in an inhomogeneous field. The theory is the same for magnetic and electric dipole moments, and is based on a thermal ensemble of classical particles that are free to rotate and that have moment vectors aligned along a principal axis of rotation. The theory has two parameters, the ratio of the magnetic (or electric) dipole energy to the thermal energy, and the ratio of moments of inertia of the rotor. Program summaryProgram title:AdiabaticRotor Catalogue identifier:ADZO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZO_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:479 No. of bytes in distributed program, including test data, etc.:4853 Distribution format:tar.gz Programming language:Fortran 90 Computer:Pentium-IV, Macintosh Power PC G4 Operating system:Linux, Mac OS X RAM:600 Kbytes Word size:64 bits Classification:2.3 Nature of problem:The system considered is a thermal ensemble of rotors having a magnetic or electric moment aligned along one of the principal axes. The ensemble is placed in an external field which is turned on adiabatically. The problem is to find the distribution of moments in the presence of the external field. Solution method:There are three adiabatic invariants. The only nontrivial one is the action associated with the polar angle of the rotor axis with respect to external field. It is found by Newton's method. Running time:3 min on a 3 GHz Pentium IV processor.
DEFF Research Database (Denmark)
Troldborg, Niels; Zahle, Frederik; Réthoré, Pierre-Elouan
2015-01-01
, which is characterized by much higher turbulence levels. In the simulations with turbulent inflow, the wake characteristics predicted by the three methods are in close agreement, indicating that the differences observed in uniform inflow do not play an important role if the inflow is turbulent...... both uniform and turbulent inflows, and the wake properties predicted by the three models are compared. In uniform inflow, the wake properties predicted by the actuator disc and line methods are found to be in very close agreement but differ significantly from the wake of the fully resolved rotor....... Copyright © 2014 John Wiley & Sons, Ltd....
Directory of Open Access Journals (Sweden)
Ali Belhocine
2017-05-01
Full Text Available Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for safe retardation of the vehicles. During braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behaviour of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.
Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Lomonova, E.A.
2014-01-01
A fast, semi-analyticalmodel for inductionmotors (IMs) with 36/28 stator/rotor slot combination is presented. In comparison to traditional analytical models for IMs, such as lumped parameter, magnetic equivalent circuit and anisotropic layer models, the presented model calculates a continuous
Muszynska, Agnes; Bently, Donald E.
1991-01-01
Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.
Sun, Li-Chung; Chang, Young-Fo; Chang, Chih-Hsiung; Chung, Chia-Lung
2012-05-01
In reflection seismology, detailed knowledge of how seismic waves propagate in anisotropic media is important for locating reservoirs accurately. The SH-wave possesses a pure mode polarization which does not convert to P- and SV-waves when reflecting from a horizontal interface, and vice versa. The simplicity of the SH-wave thus provides an easy way to view the details of SH-wave propagation in anisotropic media. In this study, we attempt to inspect the theoretical reflection moveouts of SH-waves reflected from transversely isotropic (TI) layers with tilted symmetry axes and to verify the reflection point, which could be shifted away from the common midpoint (CMP), by numerical calculations and physical modelling. In travel time-offset analyses, the moveout curves of SH-waves reflected from horizontal TI media (TIM) with different tilted angles of symmetry axes are computed by the TI modified hyperbolic equation and Fermat's principle, respectively. It turns out that both the computed moveout curves are similar and fit well to the observed physical data. The reflection points of SH-waves for a CMP gather computed by Fermat's principle show that they are close to the CMP for TIM with the vertical and horizontal symmetry axes, but they shift away from the CMP for the other tilted angles of symmetry axes. The shifts of the reflection points of the SH-waves from the CMP were verified by physical modelling.
Optimum Tilt Angle at Tropical Region
Directory of Open Access Journals (Sweden)
S Soulayman
2015-02-01
Full Text Available : One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. Meanwhile, is the rule of thumb, which says that solar collector Equator facing position is the best, is valid for tropical region? Thus, it is required to determine the optimum tilt as for Equator facing and for Pole oriented collectors. In addition, the question that may arise: how many times is reasonable for adjusting collector tilt angle for a definite value of surface azimuth angle? A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle for the solar collector at any latitude. This model was applied for determining optimum tilt angle and orientation in the tropical zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of 11% to 18% more than the case of a solar collector fixed on a horizontal surface.
Energy Technology Data Exchange (ETDEWEB)
Norbut, T G.J.
1975-10-09
The feet of rotor blades, with their trapezoidal or dove-tailed cross-sections are, as usual, fastened in corresponding grooves in the drive shaft. The juntion of the groove flank, which, on its outer end, runs radially to the axis of the drive shaft, to the cylinder surface of the drive shaft between the grooves, therefore vertically to the first level takes place not relatively sharp-edged or with only little edge radius, but rather takes place in increasing radii which vary throughout the circumference. The touching of surfaces with the radial blade foot which exits the groove can thus be tight or at a normal assembly tolerance. Avoidance or reduction of load-tension concentrations and of unbalanced load distribution on the foot anchors of the rotor blades is possible. Ceramic and other brittle material can be used besides monolithic materials, and also fiber-reinforced metallic or inorganic and organic composite materials such as boron/aluminum, graphite/epoxy, 'Borsic'-titanium, as well as other organic polymer materials like silicon resin.
DEFF Research Database (Denmark)
Jannati, Mohammad; Monadi, Ali; Nik Idris, Nik Rumzi
2016-01-01
This paper discusses the d-q model and winding function method (WFM) for modeling and a rotor eld-oriented control (RFOC) system for controlling a faulty three-phase induction motor (three-phase IM when one of the phases is disconnected). In the adapted scheme for controlling the faulty IM...
Experimental investigation of main rotor wake
Directory of Open Access Journals (Sweden)
Stepanov Robert
2017-01-01
Full Text Available In this work, experimental results of rotor wake in hover mode are presented. The experiments were carried out with a rotor rig model in the T-1K wind tunnel in Kazan National Research Technical University (Kazan Aviation Institute. The rotor consisted of four identical blades. The Q-criterion was used to identify tip vortices for a 2D case. The results were then compared with two different wake models.
2017-01-01
top rotor superimposes an effective correlation time, τe, onto a symmetric top rotor to account for internal motion. 2. THEORY The purpose...specifically describe how simple 13C relaxation theory is used to describe quantitatively simple molecular 3 motions. More-detailed accounts ...of nuclear magnetic relaxation can be found in a number of basic textbooks (i.e., Farrar and Becker, 1971; Fukushima and Roeder, 1981; Harris, 1986
Jin, Yulin; Lu, Kuan; Hou, Lei; Chen, Yushu
2017-12-01
The proper orthogonal decomposition (POD) method is a main and efficient tool for order reduction of high-dimensional complex systems in many research fields. However, the robustness problem of this method is always unsolved, although there are some modified POD methods which were proposed to solve this problem. In this paper, a new adaptive POD method called the interpolation Grassmann manifold (IGM) method is proposed to address the weakness of local property of the interpolation tangent-space of Grassmann manifold (ITGM) method in a wider parametric region. This method is demonstrated here by a nonlinear rotor system of 33-degrees of freedom (DOFs) with a pair of liquid-film bearings and a pedestal looseness fault. The motion region of the rotor system is divided into two parts: simple motion region and complex motion region. The adaptive POD method is compared with the ITGM method for the large and small spans of parameter in the two parametric regions to present the advantage of this method and disadvantage of the ITGM method. The comparisons of the responses are applied to verify the accuracy and robustness of the adaptive POD method, as well as the computational efficiency is also analyzed. As a result, the new adaptive POD method has a strong robustness and high computational efficiency and accuracy in a wide scope of parameter.
Aerodynamic Support of a Big Industrial Turboblower Rotor
Šimek, Jiří; Kozánek, Jan; Šafr, Milan
2007-01-01
Aerodynamic bearing support for the rotor of a 100 kW input industrial turboblower with operational speed of 18 000 rpm was designed and manufactured. Rotor with mass of about 50 kg is supported in two tilting-pad journal bearings 120 mm in diameter, axial forces are taken up by aerodynamic spiral groove thrust bearing 250 mm in diameter. Some specific features of the bearing design are described in the paper and the results of rotor support tests are presented. The paper is an extended versi...
DEFF Research Database (Denmark)
Sørensen, Niels N.
2009-01-01
When predicting the flow over airfoils and rotors, the laminar-turbulent transition process can be important for the aerodynamic performance. Today, the most widespread approach is to use fully turbulent computations, where the transitional process is ignored and the entire boundary layer...... to flow over a flat plate, flow over the S809 and the NACA63-415 airfoils, flow over a prolate spheroid at zero and thirty degrees angle of attack, and finally to the NREL Phase VI wind turbine rotor for the zero yaw upwind cases from the NREL/NASA Ames wind tunnel test. Copyright © 2009 John Wiley & Sons...
Directory of Open Access Journals (Sweden)
Gumuła Stanisław
2017-01-01
Full Text Available The aim of this study was to determine the effect of regulation of an axis of a wind turbine rotor to the direction of wind on the volume of energy produced by wind turbines. A role of an optimal setting of the blades of the wind turbine rotor was specified, as well. According to the measurements, changes in the tilt angle of the axis of the wind turbine rotor in relation to the air stream flow direction cause changes in the use of wind energy. The publication explores the effects of the operating conditions of wind turbines on the possibility of using wind energy. A range of factors affect the operation of the wind turbine, and thus the volume of energy produced by the plant. The impact of design parameters of wind power plant, climatic factors or associated with the location seismic challenges can be shown from among them. One of the parameters has proved to be change settings of the rotor axis in relation to direction of flow of the air stream. Studies have shown that the accurate determination of the optimum angle of the axis of the rotor with respect to flow of air stream strongly influences the characteristics of the wind turbine.
Tilting-Pad Guide Bearing in Large Hydro-unit
Directory of Open Access Journals (Sweden)
Li-Feng Ma
2000-01-01
Full Text Available A new numerical method is proposed for predicting the nonlinearity of tilting-pad guide bearing oilfilm force in the rotor-bearing system in a large hydro-unit. Nonlinear displacement and velocity of the journal center, as well as nonlinear tilting angles and angular velocities of the pads in non-stationary Reynolds equation are taken into account. This method is also suited for other small rotor-bearing system. As an example, the response due to a momentarily created unbalance is Calculated. The nonlinear motion patterns of the pad and journal whirling orbit are obtained. Finally, the nonlinear orbit is compared to the linear one that could be calculated from linear stiffness and damping coefficients. It is shown that there are important differences between those two orbits and that the nonlinear simulation is more accurate.
Directory of Open Access Journals (Sweden)
Mohsen Shanbeh
2011-01-01
Full Text Available One of the main methods to reduce the production costs is waste recycling which is the most important challenge for the future. Cotton wastes collected from ginning process have desirable properties which could be used during spinning process. The purpose of this study was to develop predictive models of breaking strength and mass irregularity (CV% of cotton waste rotor-spun yarns containing cotton waste collected from ginning process by using the artificial neural network trained with backpropagation algorithm. Artificial neural network models have been developed based on rotor diameter, rotor speed, navel type, opener roller speed, ginning waste proportion and yarn linear density as input parameters. The parameters of artificial neural network model, namely, learning, and momentum rate, number of hidden layers and number of hidden processing elements (neurons were optimized to get the best predictive models. The findings showed that the breaking strength and mass irregularity of rotor spun yarns could be predicted satisfactorily by artificial neural network. The maximum error in predicting the breaking strength and mass irregularity of testing data was 8.34% and 6.65%, respectively.
Nixon, Mark W.
1993-01-01
There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via
Sree, Dave
2015-01-01
Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.
Aeroelastic characteristics of composite bearingless rotor blades
Bielawa, R. L.
1976-01-01
Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.
Dohi, Satoshi; Ichizuka, Kiyotake; Matsuoka, Ryu; Seo, Kohei; Nagatsuka, Masaaki; Sekizawa, Akihiko
2017-09-01
The risk of maternal and fetal mortality is high if cardiopulmonary arrest occurs during pregnancy. To assess the best position for maternal cardiopulmonary resuscitation (CPR), a prospective randomized crossover study was undertaken, involving basic life support mannequin-based simulation (BLS-MS) and a swine model of pulseless electrical activity (an unstable cardiac state) incorporating a fetal mannequin (PEA-FM). The BLS-MS (performed by certified rescuers) served to evaluate the quality of chest compressions in 30° left lateral tilt (LLT) and supine positions. Based on a 5-point scale, each rescuer subjectively graded their experience. The PEA-FM model was used to compare coronary perfusion pressure readings during CPR in supine, supine with left uterine displacement, 30° LLT, and 30° right lateral tilt positions. Compression rate and correctness of hand position, compression depth, and recoil were measures of compression quality (BLS-MS). Compared with LLT position, supine position enabled correct hand position (rate: 0.99 vs 0.88; p<0.05) and compression depth (rate: 0.76 vs 0.36; p<0.001) significantly more often. Moreover, BLS-MS rescuers found chest compressions significantly easier to perform with the mannequin in supine (vs LLT) position (difficulty score: 1.75 vs 3.95; p<0.001). In the PEA-FM study arm, supine position with left uterine displacement and right lateral tilt positions had the highest and lowest recorded coronary perfusion pressure readings, respectively. Supine position with left uterine displacement is optimal for maternal CPR. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
THE DESIGN OF AXIAL PUMP ROTORS USING THE NUMERICAL METHODS
Directory of Open Access Journals (Sweden)
Ali BEAZIT
2010-06-01
Full Text Available The researches in rotor theory, the increasing use of computers and the connection between design and manufacturing of rotors, have determined the revaluation and completion of classical rotor geometry. This paper presents practical applications of mathematical description of rotor geometry. A program has been created to describe the rotor geometry for arbitrary shape of the blade. The results can be imported by GAMBIT - a processor for geometry with modeling and mesh generations, to create a mesh needed in hydrodynamics analysis of rotor CFD. The results obtained are applicable in numerical methods and are functionally convenient for CAD/CAM systems.
Directory of Open Access Journals (Sweden)
Feng Chai
2016-10-01
Full Text Available High power density outer-rotor motors commonly use water or oil cooling. A reasonable thermal design for outer-rotor air-cooling motors can effectively enhance the power density without the fluid circulating device. Research on the heat dissipation mechanism of an outer-rotor air-cooling motor can provide guidelines for the selection of the suitable cooling mode and the design of the cooling structure. This study investigates the temperature field of the motor through computational fluid dynamics (CFD and presents a method to overcome the difficulties in building an accurate temperature field model. The proposed method mainly includes two aspects: a new method for calculating the equivalent thermal conductivity (ETC of the air-gap in the laminar state and an equivalent treatment to the thermal circuit that comprises a hub, shaft, and bearings. Using an outer-rotor air-cooling in-wheel motor as an example, the temperature field of this motor is calculated numerically using the proposed method; the results are experimentally verified. The heat transfer rate (HTR of each cooling path is obtained using the numerical results and analytic formulas. The influences of the structural parameters on temperature increases and the HTR of each cooling path are analyzed. Thereafter, the overload capability of the motor is analyzed in various overload conditions.
impedance calculations of induction machine rotor conductors.
African Journals Online (AJOL)
Dr Obe
computed. The parallel R-L network shown in figure 3 is used in the modeling of the rotor bars. The network total impedance is given by,. (19). Where,. 5. simulation Results. MATLAB m-file for the calculation of the total impedance of the rectangular and trapezoidal rotor bars is developed [10]. The parameters of the bars.
Energy Technology Data Exchange (ETDEWEB)
Doessing, M.
2011-05-15
During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic effects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Risoe DTU optimization software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplified way allowing fast conceptual design studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an effective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coefficient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization. (Author)
DEFF Research Database (Denmark)
Haahr Andersen, Henning; Kaneda, Masaharu
Let $U_q$ denote the quantum group associated with a finite dimensional semisimple Lie algebra. Assume that $q$ is a complex root of unity of odd order and that $U_q$ is %the quantum group version obtained via Lusztig's $q$-divided powers construction. We prove that all regular projective (tilting...
Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor
VanZante, Dale E.; Wernet, Mark P.
2012-01-01
One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.
Internal rotor friction instability
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1990-01-01
The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.
Van Zante, Dale E.; Rizzi, Stephen A.
2016-01-01
The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.
Naderi, Peyman
2016-09-01
The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Melin, Alexander M [ORNL; Kisner, Roger A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL
2015-01-01
Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.
Directory of Open Access Journals (Sweden)
Unger Laura Anna
2015-09-01
Full Text Available This work aimed at the detection of rotor centers within the atrial cavity during atrial fibrillation on the basis of phase singularities. A voxel based method was established which employs the Hilbert transform and the phase of unipolar electrograms. The method provides a 3D overview of phase singularities at the endocardial surface and within the blood volume. Mapping those phase singularities from the inside of the atria at the endocardium yielded rotor center trajectories. We discuss the results for an unstable and a more stable rotor. The side length of the areas covered by the trajectories varied from 1.5 mm to 10 mm. These results are important for cardiologists who target rotors with RF ablation in order to cure atrial fibrillation.
Amezquita-Brooks, Luis; Liceaga-Castro, Eduardo; Gonzalez-Sanchez, Mario; Garcia-Salazar, Octavio; Martinez-Vazquez, Daniel
2017-11-01
Applications based on quad-rotor-vehicles (QRV) are becoming increasingly wide-spread. Many of these applications require accurate mathematical representations for control design, simulation and estimation. However, there is no consensus on a standardized model for these purposes. In this article a review of the most common elements included in QRV models reported in the literature is presented. This survey shows that some elements are recurrent for typical non-aerobatic QRV applications; in particular, for control design and high-performance simulation. By synthesising the common features of the reviewed models a standard generic model SGM is proposed. The SGM is cast as a typical state-space model without memory-less transformations, a structure which is useful for simulation and controller design. The survey also shows that many QRV applications use simplified representations, which may be considered simplifications of the SGM here proposed. In order to assess the effectiveness of the simplified models, a comprehensive comparison based on digital simulations is presented. With this comparison, it is possible to determine the accuracy of each model under particular operating ranges. Such information is useful for the selection of a model according to a particular application. In addition to the models found in the literature, in this article a novel simplified model is derived. The main characteristics of this model are that its inner dynamics are linear, it has low complexity and it has a high level of accuracy in all the studied operating ranges, a characteristic found only in more complex representations. To complement the article the main elements of the SGM are evaluated with the aid of experimental data and the computational complexity of all surveyed models is briefly analysed. Finally, the article presents a discussion on how the structural characteristics of the models are useful to suggest particular QRV control structures.
DEFF Research Database (Denmark)
Venturoli, M.; Smit, B.; Sperotto, Maria Maddalena
2005-01-01
membranes. Here we present a mesoscopic model for lipid bilayers with embedded proteins, which we have studied with the help of the dissipative particle dynamics simulation technique. Because hydrophobic matching is believed to be one of the main physical mechanisms regulating lipid-protein interactions......-induced protein tilt, with the hydrophobic mismatch ( positive and negative) between the protein hydrophobic length and the pure lipid bilayer hydrophobic thickness. The protein-induced bilayer perturbation was quantified in terms of a coherence length, xi(P), of the lipid bilayer hydrophobic thickness pro. le...... for positive values of mismatch; a dependence on the protein size appears as well. In the case of large model proteins experiencing extreme mismatch conditions, in the region next to the so-called lipid annulus, there appears an undershooting ( or overshooting) region where the bilayer hydrophobic thickness...
Energy Technology Data Exchange (ETDEWEB)
Tian, T.; Wong, V.W.
2000-01-01
A theoretical model was developed to study the lubrication, friction, dynamics, and oil transport of twin-land oil control rings (TLOCR) in internal combustion engines. A mixed lubrication model with consideration of shear-thinning effects of multigrade oils was used to describe the lubrication between the running surfaces of the two lands and the liner. Oil squeezing and asperity contact were both considered for the interaction between the flanks of the TLOCR and the ring groove. Then, the moments and axial forces from TLOCR/liner lubrication and TLOCR/groove interaction were coupled into the dynamic equations of the TLOCR. Furthermore, effects of piston dynamic tilt were considered in a quasi three-dimensional manner so that the behaviors of the TLOCR at different circumferential location could be studied. As a first step, variation of the third land pressure was neglected. The model predictions were illustrated via an SI engine. One important finding is that around thrust and anti-thrust sides, the difference between the minimum oil film thickness of two lands can be as high as several micrometers due to piston dynamic tilt. As a result, at thrust and anti-thrust sides, significant oil can pass under one land of the TLOCR along the bore, although the other land perfectly seals the bore. Then, the capabilities of the model were further explained by studying the effects of ring tension and torsional resistance on the lubrication and oil transport between the lands and the liner. The effects of oil film thickness on the flanks of the ring groove on the dynamics of the TLOCR were also studied. Friction results show that boundary lubrication contributes significantly to the total friction of the TLOCR.
Mapping of moveout in tilted transversely isotropic media
Stovas, A.; Alkhalifah, Tariq Ali
2013-01-01
The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.
Mapping of moveout in tilted transversely isotropic media
Stovas, A.
2013-09-09
The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.
Lieb's correlation inequality for plane rotors
International Nuclear Information System (INIS)
Rivasseau, V.
1980-01-01
We prove a conjecture by E. Lieb, which leads to the Lieb inequality for plane rotors. As in the Ising model case, this inequality implies the existence of an algorithm to compute the transition temperature of this model. (orig.)
Directory of Open Access Journals (Sweden)
Maulana Arifin
2015-07-01
Full Text Available Organic Rankine Cycle (ORC is one of the most promising technology for small electric power generations. The geometry analysis and the effect of turbulence model on the radial turbo-expanders design for small ORC power generation systems were discussed in this paper. The rotor blades and performance were calculated using several working fluids such as R134a, R143a, R245fa, n-Pentane, and R123. Subsequently, a numerical study was carried out in the fluid flow area with R134a and R123 as the working fluids. Analyses were performed using Computational Fluid Dynamics (CFD ANSYS Multiphysics on two real gas models, with the k-epsilon and SST (shear stress transport turbulence models. The result shows the distribution of Mach number, pressure, velocity and temperature along the rotor blade of the radial turbo-expanders and estimation of performance at various operating conditions. The operating conditions are as follow: 250,000 grid mesh flow area, real gas model SST at steady state condition, 0.4 kg/s of mass flow rate, 15,000 rpm rotor speed, 5 bar inlet pressure, and 373K inlet temperature. By using those conditions, CFD analysis shows that the turbo-expander able to produce 6.7 kW and 5.5 kW of power when using R134a and R123, respectively.
Rotating Shaft Tilt Angle Measurement Using an Inclinometer
Luo Jun; Wang Zhiqian; Shen Chengwu; Wen Zhuoman; Liu Shaojin; Cai Sheng; Li Jianrong
2015-01-01
This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendic...
Saleh, Muftah; Sedaghati, Ramin; Bhat, Rama
2018-06-01
The present study addresses the performance of a skid landing gear (SLG) system of a rotorcraft impacting the ground at a vertical sink rate of up to 4.5 ms‑1. The impact attitude is assumed to be level as per chapter 527 of the Airworthiness Manual of Transport Canada Civil Aviation and part 27 of the Federal Aviation Regulations of the US Federal Aviation Administration. A single degree of freedom helicopter model is investigated under different values of rotor lift factor, L. In this study, three SLG versions are evaluated: (a) standalone conventional SLG; (b) SLG equipped with a passive viscous damper; and (c) SLG incorporated a magnetorheological energy absorber (MREA). The non-dimensional solutions of the helicopter models show that the two former SLG systems suffer adaptability issues with variations in the impact velocity and the rotor lift factor. Therefore, the alternative successful choice is to employ the MREA. Two different optimum Bingham numbers for compression and rebound strokes are defined. A new chart, called the optimum Bingham number versus rotor lift factor ‘B{i}o-L’, is introduced in this study to correlate the optimum Bingham numbers to the variation in the rotor lift factor and to provide more accessibility from the perspective of control design. The chart shows that the optimum Bingham number for the compression stroke is inversely linearly proportional to the increase in the rotor lift factor. This alleviates the impact force on the system and reduces the amount of magnetorheological yield force that would be generated. On the contrary, the optimum Bingham number for the rebound stroke is found to be directly linearly proportional to the rotor lift factor. This ensures controllable attenuation of the restoring force of the linear spring element. This idea can be exploited to generate charts for different landing attitudes and sink rates. In this article, the response of the helicopter equipped with the conventional undamped, damped
Khouli, F.
An aeroelastic phenomenon, known as blade sailing, encountered during maritime operation of helicopters is identified as being a factor that limits the tactical flexibility of helicopter operation in some sea conditions. The hazards associated with this phenomenon and its complexity, owing to the number of factors contributing to its occurrence, led previous investigators to conclude that advanced and validated simulation tools are best suited to investigate it. A research gap is identified in terms of scaled experimental investigation of this phenomenon and practical engineering solutions to alleviate its negative impact on maritime helicopter operation. The feasibility of a proposed strategy to alleviate it required addressing a gap in modelling thin-walled composite active beams/rotor blades. The modelling is performed by extending a mathematically-consistent and asymptotic reduction strategy of the 3-D elastic problem to account for embedded active materials. The derived active cross-sectional theory is validated using 2-D finite element results for closed and open cross-sections. The geometrically-exact intrinsic formulation of active maritime rotor systems is demonstrated to yield compact and symbolic governing equations. The intrinsic feature is shown to allow a classical and proven solution scheme to be successfully applied to obtain time history solutions. A Froude-scaled experimental rotor was designed, built, and tested in a scaled ship airwake environment and representative ship motion. Based on experimental and simulations data, conclusions are drawn regarding the influence of the maritime operation environment and the rotor operation parameters on the blade sailing phenomenon. The experimental data is also used to successfully validate the developed simulation tools. The feasibility of an open-loop control strategy based on the integral active twist concept to counter blade sailing is established in a Mach-scaled maritime operation environment
Diagnosis of wind turbine rotor system
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian
2016-01-01
is based on available standard sensors on wind turbines. The method can be used both on-line as well as off-line. Faults or changes in the rotor system will result in asymmetries, which can be monitored and diagnosed. This can be done by using the multi-blade coordinate transformation. Changes in the rotor......This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...
Nemeth, Z. N.
1972-01-01
Rotor bearing dynamic tests were conducted with tilting-pad journal bearings having three different pad masses and two different pivot geometries. The rotor was vertically mounted and supported by two three-pad tilting-pad gas journal bearings and a simple externally pressurized thrust bearing. The bearing pads were 5.1 cm (2.02 in.) in diameter and 2.8 cm (1.5 in.) long. The length to diameter ratio was 0.75. One pad was mounted on a flexible diaphragm. The bearing supply pressure ranged from 0 to 690 kilonewtons per square meter (0 to 100 psig), and speeds ranged to 38,500 rpm. Heavy mass pad tilting-pad assemblies produced three rotor-bearing resonances above the first two rotor critical speeds. Lower supply pressure eliminated the resonances. The resonances were oriented primarily in the direction normal to the diaphragm.
DEFF Research Database (Denmark)
Pierart Vásquez, Fabián Gonzalo
, abundant and clean. Nevertheless, this technology has important drawbacks: the low viscosity of the lubricant results in a low load carrying capacity and gas bearings also presents low damping properties, which often lead to a reduced stability range and make dangerous running close to, or across...... theoretical model for active gas bearings, with special attention to the modelling of the injection system. Secondly, experimentally validate the improved mathematical model in terms of static properties (journal equilibrium position and resulting aerodynamic forces) and dynamic properties (natural...
DEFF Research Database (Denmark)
von Osmanski, Alexander Sebastian; Larsen, Jon Steffen; Santos, Ilmar
2017-01-01
Despite decades of research, the dynamics of air foil bearings (AFBs) are not yet fully captured by any model,suggesting that the fundamental mechanisms of the AFB and their relative merits are not yet fully understood. The recent years have seen promising results from nonlinear time domain models......, allowing the dynamic pressure–compliance interaction and the unsteady terms of the compressible Reynolds equation to be considered. By including the simple elastic foundation model (SEFM) in a fully coupled simultaneous time integration, the dynamics of a rotor supported by industrial AFBs have previously...
Sprangers, R.L.J.; Gysen, B.L.J.; Paulides, J.J.H.; Waarma, J.; Lomonova, E.A.
2014-01-01
Recently, strong improvements have been made in the applicability of harmonic modeling techniques for electrical machines with slotted structures. Various implementations for permanent magnet motors and actuators have been investigated and applied in design and optimization tools. For the slotted
Cracked rotors. A survey on static and dynamic behaviour including modelling and diagnosis
Energy Technology Data Exchange (ETDEWEB)
Bachschmid, Nicolo; Pennacchi, Paolo; Tanzi, Ezio [Politecnico di Milano (Italy). Dept. of Mechanical Engineering
2010-07-01
Cracks can develop in rotating shafts and can propagate to relevant depths without affecting consistently the normal operating conditions of the shaft. In order to avoid catastrophic failures, accurate vibration analyses have to be performed for crack detection. The identification of the crack location and depth is possible by means of a model based diagnostic approach, provided that the model of the crack and the model of the cracked shaft dynamical behavior are accurate and reliable. This monograph shows the typical dynamical behavior of cracked shafts and presents tests for detecting cracks. The book describes how to model cracks, how to simulate the dynamical behavior of cracked shaft, and compares the corresponding numerical with experimental results. All effects of cracks on the vibrations of rotating shafts are analyzed, and some results of a numerical sensitivity analysis of the vibrations to the presence and severity of the crack are shown. Finally the book describes some crack identification procedures and shows some results in model based crack identification in position and depth. The book is useful for higher university courses in mechanical and energetic engineering, but also for skilled technical people employed in power generation industries. (orig.)
Dynamic Gust Load Analysis for Rotors
Directory of Open Access Journals (Sweden)
Yuting Dai
2016-01-01
Full Text Available Dynamic load of helicopter rotors due to gust directly affects the structural stress and flight performance for helicopters. Based on a large deflection beam theory, an aeroelastic model for isolated helicopter rotors in the time domain is constructed. The dynamic response and structural load for a rotor under the impulse gust and slope-shape gust are calculated, respectively. First, a nonlinear Euler beam model with 36 degrees-of-freedoms per element is applied to depict the structural dynamics for an isolated rotor. The generalized dynamic wake model and Leishman-Beddoes dynamic stall model are applied to calculate the nonlinear unsteady aerodynamic forces on rotors. Then, we transformed the differential aeroelastic governing equation to an algebraic one. Hence, the widely used Newton-Raphson iteration algorithm is employed to simulate the dynamic gust load. An isolated helicopter rotor with four blades is studied to validate the structural model and the aeroelastic model. The modal frequencies based on the Euler beam model agree well with published ones by CAMRAD. The flap deflection due to impulse gust with the speed of 2m/s increases twice to the one without gust. In this numerical example, results indicate that the bending moment at the blade root is alleviated due to elastic effect.
DEFF Research Database (Denmark)
Sørensen, Dan Nørtoft; Sørensen, Jens Nørkær
2000-01-01
, and radialposition are derived from the incompressible conservation laws for mass, tangential momentum, and energy. The resulting system of equations isnonlinear and, due to mass conservation and pressure equilibrium far downstream of the rotor, strongly coupled. The equations are solved using theNewton-Raphson...
Topological dynamics in supramolecular rotors.
Palma, Carlos-Andres; Björk, Jonas; Rao, Francesco; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V
2014-08-13
Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules.
Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model
DEFF Research Database (Denmark)
Troldborg, Niels; Zahle, Frederik; Sørensen, Niels N.
2015-01-01
This article presents a comparison of CFD simulations of the DTU 10 MW reference wind turbine with and without vortex generators installed on the inboard part of the blades. The vortex generators are modelled by introducing body forces determined using a modified version of the so-called BAY mode...
Internal Friction And Instabilities Of Rotors
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1992-01-01
Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.
Material Optimization of Carbon/Epoxy Composite Rotor for Spacecraft Energy Storage
R Varatharajoo; M Salit; G Hong
2016-01-01
An investigation to optimize the carbon/epoxy composite rotor is performed for the spacecraft energy storage application. A highspeed multi-layer rotor design is proposed and different composite materials are tested to achieve the most suitable recipe. First, the analytical rotor evaluation is performed to establish a reliable numerical rotor model. Then, finite element analysis (FEA) is employed in order to optimise the multi-layer composite rotor design. Subsequently, the modal analysis is ...
Unique parity states in 109Pd as a test of particle-rotor and IBFA models
International Nuclear Information System (INIS)
Casten, R.F.
1980-01-01
Calculations were performed for anti-aligned levels in 109 Pd. For a Nilsson model with pairing, variable moment of inertia, and Coriolis coupling, the favored levels were well reproduced, but the low-spin unfavored states exhibited serious disagreement with experiment results. Calculations with the IBFA were a significant improvement, in particular a regards the splitting of states of common spin. Comments on the source of this improvement are offered. 2 figures, 1 table
Tilting Uranus without a Collision
Rogoszinski, Zeeve; Hamilton, Douglas P.
2016-10-01
The most accepted hypothesis for the origin of Uranus' 98° obliquity is a giant collision during the late stages of planetary accretion. This model requires a single Earth mass object striking Uranus at high latitudes; such events occur with a probability of about 10%. Alternatively, Uranus' obliquity may have arisen from a sequence of smaller impactors which lead to a uniform distribution of obliquities. Here we explore a third model for tilting Uranus using secular spin-orbit resonance theory. We investigate early Solar System configurations in which a secular resonance between Uranus' axial precession frequency and another planet's orbital node precession frequency might occur.Thommes et al. (1999) hypothesized that Uranus and Neptune initially formed between Jupiter and Saturn, and were then kicked outward. In our scenario, Neptune leaves first while Uranus remains behind. As an exterior Neptune slowly migrates outward, it picks up both Uranus and Saturn in spin-orbit resonances (Ward and Hamilton 2004; Hamilton and Ward 2004). Only a distant Neptune has a nodal frequency slow enough to resonate with Uranus' axial precession.This scenario, with diverging orbits, results in resonance capture. As Neptune migrates outward its nodal precession slows. While in resonance, Uranus and Saturn each tilt a bit further, slowing their axial precession rates to continually match Neptune's nodal precession rate. Tilting Uranus to high obliquities takes a few 100 Myrs. This timescale may be too long to hold Uranus captive between Jupiter and Saturn, and we are investigating how to reduce it. We also find that resonance capture is rare if Uranus' initial obliquity is greater than about 10°, as the probability of capture decreases as the planet's initial obliquity increases. We will refine this estimate by quantifying capture statistics, and running accretion simulations to test the likelihood of a low early obliquity. Our preliminary findings show that most assumptions about
Optimization of wind turbine rotors
Energy Technology Data Exchange (ETDEWEB)
Nygaard, Tor Anders
1999-07-01
The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest
A stydy on the heat transfer characteristics in the composite heat pipe as modeling turbine rotor
International Nuclear Information System (INIS)
Kwon, Sun Sok; Jang, Yeong Suc; Yoo, Byung Wook
1993-01-01
The purpose of this research is to study the characteristics of heat transfer in composite rotary heat pipe as modeled turbine rotating by a finite element analysis and experiment. Nu number, Re number, Pr number and dimensionless condensate layer thickness by thermal input and revolutions per minute were given as analysis factors. The comparison between calculated and experimental data showed similar tendency. Therefore the analysis method may be useful to predict the performance of composite heat pipe. The resistance on heat pipe showed the best effect of heat transfer by film condensation, by decreasing film condensation, the heat transfer rate from condenser was increased rapidly. The dimensionless condensate layer thickness according to Re number at given Pr number showed constant values, the dimensionless condensate layer thickness is proportionate to the square root of inverse of revolution number per minute. In this study Nu = A(δ(ω/ν) -1/2 Re B ) is used to the convection heat transfer coefficient and A = 0.963, B = 0.5025 were obtained as analysis predicts. (Author)
Viana, Ilisio; Orteu, Jean-José; Cornille, Nicolas; Bugarin, Florian
2015-11-01
We focus on quality control of mechanical parts in aeronautical context using a single pan-tilt-zoom (PTZ) camera and a computer-aided design (CAD) model of the mechanical part. We use the CAD model to create a theoretical image of the element to be checked, which is further matched with the sensed image of the element to be inspected, using a graph theory-based approach. The matching is carried out in two stages. First, the two images are used to create two attributed graphs representing the primitives (ellipses and line segments) in the images. In the second stage, the graphs are matched using a similarity function built from the primitive parameters. The similarity scores of the matching are injected in the edges of a bipartite graph. A best-match-search procedure in the bipartite graph guarantees the uniqueness of the match solution. The method achieves promising performance in tests with synthetic data including missing elements, displaced elements, size changes, and combinations of these cases. The results open good prospects for using the method with realistic data.
Waltz, R. E.; Bass, E. M.; Heidbrink, W. W.; VanZeeland, M. A.
2015-11-01
Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient [Heidbrink et al 2013 Nucl. Fusion 53 093006]. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code [Waltz and Bass 2014 Nucl. Fusion 54 104006], used to validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the Angioni et al (2009 Nucl. Fusion 49 055013) energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. These results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.
Duval, R. W.; Bahrami, M.
1985-01-01
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.
Directory of Open Access Journals (Sweden)
Guangtao Zhang
2017-05-01
Full Text Available Inter-turn short circuit of field windings (ISCFW may cause the field current of a generator to increase, output reactive power to decrease, and unit vibration to intensify, seriously affecting its safe and stable operation. Full integration of mechanical and electrical characteristics can improve the sensitivity of online monitoring, and detect the early embryonic period fault of small turns. This paper studies the calculations and variations of unbalanced magnetic pull (UMP, of which the excitation source of rotor vibration is the basis and key to online fault monitoring. In grid load operation, ISCFW are first calculated with the multi-loop method, so as to obtain the numerical solutions of the stator and the rotor currents during the fault. Next, the air-gap magnetic field of the ISCFW is analyzed according to the actual composition modes of the motor loops in the fault, so as to obtain the analytic expressions of the air-gap magnetic motive force (MMF and magnetic density. The UMP of the rotor is obtained by solving the integral of the Maxwell stress. The correctness of the electric quantity calculation is verified by the ISCFW experiment, conducted in a one pair-pole non-salient pole model machine. On this basis, comparing the simulation analysis with the calculation results of the model in this paper not only verifies the accuracy of the electromagnetic force calculation, but also proves that the latter has the advantages of a short time consumption and high efficiency. Finally, the influencing factors and variation law of UMP are analyzed by means of an analytic model. This develops a base for the online monitoring of ISCFW with the integration of mechanical and electrical information.
Thermomechanical Behavior of Rotor with Rubbing
Directory of Open Access Journals (Sweden)
Jerzy T. Sawicki
2003-01-01
Full Text Available This article presents an analytical study of the dynamics and stability of rotors subjected to rubbing due to contact with seals, taking account of associated thermal effects. The seal interaction force acting on the shaft gives rise to a friction force, which is a source of heating and can induce so-called spiral vibrations. A mathematical model that has been developed couples the heat-conduction equation with the equations for motion of the rotor. Numerical simulations have been conducted that show the thermomechanical behavior of the rotor at various operating conditions. A procedure for analyzing the stability of multibearing rotors based on the system eigenvalue analysis and the state-space approach has been proposed. Finally, the experimental data related to full annular rub have been presented.
Vortex trapping by tilted columnar defects
International Nuclear Information System (INIS)
Baladie, I.; Buzdin, A.
2000-01-01
The irradiation of high-T c superconductors by inclined heavy-ion beam can create columnar defects (CD's) practically at any angle towards the crystal c axis. We calculate the energy of a tilted vortex trapped on an inclined columnar defect within the framework of an electromagnetic model. Under a weak perpendicular magnetic field, and if the CD radius is larger than the superconducting coherence length, vortices always prefer to be on a tilted CD than to be aligned along the external field. We calculate also the interaction energy between two tilted vortices and find that large attractive regions appear. In particular, in the plane defined by c axis and the CD axis, tilted vortices attract each other at long distances, leading to the formation of vortex chains. The equilibrium distance between vortices in a chain is of the order of the magnitude of the in-plane London penetration depth. The existence of the inclined trapped vortices could be revealed by torque measurements, and could also lead to the anisotropy of the in-plane resistivity and the critical current
DEFF Research Database (Denmark)
Matzuka, Brett; Mehlsen, Jesper; Tran, Hien
2015-01-01
are sparse, typical studies only include measurements of heart rate and blood pressure, as a result it is difficult to determine what mechanisms that are impaired. It is known, that blood pressure regulation is mediated by changes in heart rate, vascular resistance, cardiac contractility and a number...... of other factors. Given that numerous factors contribute to changing these quantities it is difficult to devise a physiological model describing how they change in time. One way is to build a model that allows these controlled quantities to change and to compare dynamics between subject groups. To do so...
Analysis of the Strength on the Rotor Punching Sheet of Nuclear Reactor Cooling Medium Driving Motor
Directory of Open Access Journals (Sweden)
GE Bao-jun
2017-02-01
Full Text Available A strong stress is withstood by the rotor punching sheet during the running of nuclear reactor cooling medium driving motor. In order to study the strength on the rotor punching sheet and the influential factor of its stress，the rotor of driving motor was the research object, the three-dimensional rotor model of driving motor is established by the finite element method to obtain the Mires equivalent stress nephogram and check the rotor’s strength with setting parameters and constraints. According to different rotor speeds，the different average temperatures of rotor punching sheet and shaft and the different static magnitude of interference between rotor punching sheet and shaft，the research about how the contact pressure of matching surface between rotor punching sheet and shaft and the Mires equivalent stress are impacted is carried on. The results show that the maximum Miser equivalent stress value of rotor punching sheet emerges on the axial vents，the stress value is beyond the tensile limit of the materialand. The greater the static magnitude of interference and the smaller temperature difference of rotor punching sheet and shaft lead to the greater interface compressive stress of rotor punching sheet and shaft and the greater maximum Mires equivalent stress value of rotor punching sheet. The higher the rotor speed lead to the smaller interface compressive stress of rotor punching sheet and shaft and the greater equivalent stress value of rotor punching sheet.
Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights
Friedmann, Peretz P.
1990-01-01
Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.
Energy Technology Data Exchange (ETDEWEB)
Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)
1997-12-31
The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.
Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...
Open Rotor Noise Shielding by Blended-Wing-Body Aircraft
Guo, Yueping; Czech, Michael J.; Thomas, Russell H.
2015-01-01
This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.
International Nuclear Information System (INIS)
Song, Jun Beom; Byun, Young Seop; Jeong, Jin Seok; Kim, Jeong; Kang, Beom Soo
2016-01-01
This paper proposes a cascaded control structure and a method of practical application for attitude control of a multi-rotor Unmanned aerial vehicle (UAV). The cascade control, which has tighter control capability than a single-loop control, is rarely used in attitude control of a multi-rotor UAV due to the input-output relation, which is no longer simply a set-point to Euler angle response transfer function of a single-loop PID control, but there are multiply measured signals and interactive control loops that increase the complexity of evaluation in conventional way of design. However, it is proposed in this research a method that can optimize a cascade control with a primary and secondary loops and a PID controller for each loop. An investigation of currently available PID-tuning methods lead to selection of the Simple internal model control (SIMC) method, which is based on the Internal model control (IMC) and direct-synthesis method. Through the analysis and experiments, this research proposes a systematic procedure to implement a cascaded attitude controller, which includes the flight test, system identification and SIMC-based PID-tuning. The proposed method was validated successfully from multiple applications where the application to roll axis lead to a PID-PID cascade control, but the application to yaw axis lead to that of PID-PI
Energy Technology Data Exchange (ETDEWEB)
Song, Jun Beom [Dept. of Aviation Maintenance, Dongwon Institute of Science and Technology, Yangsan (Korea, Republic of); Byun, Young Seop; Jeong, Jin Seok; Kim, Jeong; Kang, Beom Soo [Dept. of Aerospace Engineering, Pusan National University, Busan (Korea, Republic of)
2016-11-15
This paper proposes a cascaded control structure and a method of practical application for attitude control of a multi-rotor Unmanned aerial vehicle (UAV). The cascade control, which has tighter control capability than a single-loop control, is rarely used in attitude control of a multi-rotor UAV due to the input-output relation, which is no longer simply a set-point to Euler angle response transfer function of a single-loop PID control, but there are multiply measured signals and interactive control loops that increase the complexity of evaluation in conventional way of design. However, it is proposed in this research a method that can optimize a cascade control with a primary and secondary loops and a PID controller for each loop. An investigation of currently available PID-tuning methods lead to selection of the Simple internal model control (SIMC) method, which is based on the Internal model control (IMC) and direct-synthesis method. Through the analysis and experiments, this research proposes a systematic procedure to implement a cascaded attitude controller, which includes the flight test, system identification and SIMC-based PID-tuning. The proposed method was validated successfully from multiple applications where the application to roll axis lead to a PID-PID cascade control, but the application to yaw axis lead to that of PID-PI.
Lim, Einly; Salamonsen, Robert Francis; Mansouri, Mahdi; Gaddum, Nicholas; Mason, David Glen; Timms, Daniel L; Stevens, Michael Charles; Fraser, John; Akmeliawati, Rini; Lovell, Nigel Hamilton
2015-02-01
The present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures. At the same time, reduced venous return associated with upright posture was not shown to induce left ventricular (LV) suction. Although P l a ¯ control outperformed other control modes in its ability to increase cardiac output during exercise, it caused a fall in the mean arterial pressure upon HUT, which may cause postural hypotension or patient discomfort. To the contrary, maintaining constant average pressure difference between the aorta and the left atrium demonstrated superior performance in both exercise and HUT scenarios. Due to their strong dependence on the pump operating point, PI and ratioPI control performed poorly during exercise and HUT. Our simulation results also highlighted the importance of the baroreflex mechanism in determining the response of the IRBP-assisted patients to exercise and postural changes, where desensitized reflex response attenuated the percentage increase in cardiac output during exercise and
Control system design for flexible rotors supported by actively lubricated bearings
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2008-01-01
and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are presented...
Montgomery, M. M.; Martin, E. L.
2010-01-01
Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...
CFD simulations of the MEXICO rotor
DEFF Research Database (Denmark)
Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik
2011-01-01
The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...
Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors
Lobitz, D. W.
1981-01-01
The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.
Material Optimization of Carbon/Epoxy Composite Rotor for Spacecraft Energy Storage
Directory of Open Access Journals (Sweden)
R Varatharajoo
2016-09-01
Full Text Available An investigation to optimize the carbon/epoxy composite rotor is performed for the spacecraft energy storage application. A highspeed multi-layer rotor design is proposed and different composite materials are tested to achieve the most suitable recipe. First, the analytical rotor evaluation is performed to establish a reliable numerical rotor model. Then, finite element analysis (FEA is employed in order to optimise the multi-layer composite rotor design. Subsequently, the modal analysis is carried out to determine the rotor natural frequencies and mode shapes for a safe operational regime below 50, 000 rpm.
Prediction of helicopter rotor noise in hover
Directory of Open Access Journals (Sweden)
Kusyumov A.N.
2015-01-01
Full Text Available Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.
Prediction of helicopter rotor noise in hover
Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.
2015-05-01
Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.
Optimum tilt angle and orientation for solar collectors in Syria
International Nuclear Information System (INIS)
Skeiker, Kamal
2009-01-01
One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle) for the solar collector in the main Syrian zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle) maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of approximately 30% more than the case of a solar collector fixed on a horizontal surface.
Substorm onset location and dipole tilt angle
Directory of Open Access Journals (Sweden)
J. Wanliss
2006-03-01
Full Text Available From an initial data set of over 200 substorms we have studied a subset of 30 magnetospheric substorms close to magnetic midnight to investigate, in a statistical fashion, the source region of the auroral arc that brightens at the onset of expansive phase. This arc is usually identified as the ionospheric signature of the expansive phase onset that occurs in the magnetotail. All the substorm onsets were identified via ground-based magnetometer and photometer data from the CANOPUS array. Various Tsyganenko global magnetic field models were used to map magnetic field lines from the location of the onset arc out to its greatest radial distance in the magnetotail. The results appear to favour the current disruption model of substorms since the average onset location has an average of 14.1 Earth radii (RE and is therefore more consistent with theories that place the onset location in the inner magnetotail. For the narrow range of tilts available our modeling indicates the parameter that appears to strongly influence the location of the substorm onset is the dipole tilt angle; as tilt becomes less negative onsets occur further downtail.
Flocking of quad-rotor UAVs with fuzzy control.
Mao, Xiang; Zhang, Hongbin; Wang, Yanhui
2018-03-01
This paper investigates the flocking problem of quad-rotor UAVs. Considering the actual situations, we derived a new simplified quad-rotor UAV model which is more reasonable. Based on the model, the T-S fuzzy model of attitude dynamic equation and the corresponding T-S fuzzy feedback controller are discussed. By introducing a double-loop control construction, we adjust its attitude to realize the position control. Then a flocking algorithm is proposed to achieve the flocking of the quad-rotor UAVs. Compared with the flocking algorithm of the mass point model, we dealt with the collision problem of the quad-rotor UAVs. In order to improve the airspace utilization, a more compact configuration called quasi e-lattice is constructed to guarantee the compact flight of the quad-rotor UAVs. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Effect of Bearing Housings on Centrifugal Pump Rotor Dynamics
Yashchenko, A. S.; Rudenko, A. A.; Simonovskiy, V. I.; Kozlov, O. M.
2017-08-01
The article deals with the effect of a bearing housing on rotor dynamics of a barrel casing centrifugal boiler feed pump rotor. The calculation of the rotor model including the bearing housing has been performed by the method of initial parameters. The calculation of a rotor solid model including the bearing housing has been performed by the finite element method. Results of both calculations highlight the need to add bearing housings into dynamic analyses of the pump rotor. The calculation performed by modern software packages is more a time-taking process, at the same time it is a preferred one due to a graphic editor that is employed for creating a numerical model. When it is necessary to view many variants of design parameters, programs for beam modeling should be used.
Wang, Shuai; Wang, Yu; Zi, Yanyang; He, Zhengjia
2015-12-01
A generalized and efficient model for rotating anisotropic rotor-bearing systems is presented in this paper with full considerations of the system's anisotropy in stiffness, inertia and damping. Based on the 3D finite element model and the model order reduction method, the effects of anisotropy in shaft and bearings on the forced response and whirling of anisotropic rotor-bearing systems are systematically investigated. First, the coefficients of journal bearings are transformed from the fixed frame to the rotating one. Due to the anisotropy in shaft and bearings, the motion is governed by differential equations with periodically time-variant coefficients. Then, a free-interface complex component mode synthesis (CMS) method is employed to generate efficient reduced-order models (ROM) for the periodically time-variant systems. In order to solve the obtained equations, a variant of Hill's method for systems with multiple harmonic excitations is developed. Four dimensionless parameters are defined to quantify the types and levels of anisotropy of bearings. Finally, the effects of the four types of anisotropy on the forced response and whirl orbits are studied. Numerical results show that the anisotropy of bearings in stiffness splits the sole resonant peak into two isolated ones, but the anisotropy of bearings in damping coefficients mainly affect the response amplitudes. Moreover, the whirl orbits become much more complex when the shaft and bearings are both anisotropic. In addition, the cross-coupling stiffness coefficients of bearings significantly affect the dynamic behaviors of the systems and cannot be neglected, though they are often much smaller than the principle stiffness terms.
Component level study of an actively lubricated LEG Tilting Pad Bearing: Theory and experiment
DEFF Research Database (Denmark)
Cerda Varela, Alejandro Javier; Santos, Ilmar Ferreira
2018-01-01
portrays the first experimental study for the“proof of concept” of this configuration, as well as a comparison with theoretical results. A simplified setup, featuring a rigid rotor supported by a single pad arrangement is the subject of study. The obtained results prove the viability of the proposed active...... bearing design, validate the available simulation tool and exemplify on a conceptual level the operational benefits from introducing this technology into standard LEG Tilting Pad Bearings....
Experimental test of static and dynamic characteristics of tilting-pad thrust bearings
Annan Guo; Xiaojing Wang; Jian Jin; Diann Y Hua; Zikai Hua
2015-01-01
The axial vibration in turbine machine has attracted more and more interest. Tilting-pad thrust bearings are widely used in turbine machines to support the axial load. The dynamic properties generated by oil film of the thrust pad have important effects on the axial vibration of the rotor-bearing system. It is necessary to develop the method to test the dynamic characteristics of thrust bearings. A new rig has been developed. The facility allows a complete set of bearing operating parameters ...
Inner core tilt and polar motion
Dumberry, Mathieu; Bloxham, Jeremy
2002-11-01
A tilted inner core permits exchange of angular momentum between the core and the mantle through gravitational and pressure torques and, as a result, changes in the direction of Earth's axis of rotation with respect to the mantle. We have developed a model to calculate the amplitude of the polar motion that results from an equatorial torque at the inner core boundary which tilts the inner core out of alignment with the mantle. We specifically address the issue of the role of the inner core tilt in the decade polar motion known as the Markowitz wobble. We show that a decade polar motion of the same amplitude as the observed Markowitz wobble requires a torque of 1020 N m which tilts the inner core by 0.07 degrees. This result critically depends on the viscosity of the inner core; for a viscosity less than 5 × 1017 Pa s, larger torques are required. We investigate the possibility that a torque of 1020 N m with decadal periodicity can be produced by electromagnetic coupling between the inner core and torsional oscillations of the flow in the outer core. We demonstrate that a radial magnetic field at the inner core boundary of 3 to 4 mT is required to obtain a torque of such amplitude. The resulting polar motion is eccentric and polarized, in agreement with the observations. Our model suggests that equatorial torques at the inner core boundary might also excite the Chandler wobble, provided there exists a physical mechanism that can generate a large torque at a 14 month period.
Tilt measurements at Vulcano Island
Directory of Open Access Journals (Sweden)
B. Saraceno
2007-06-01
Full Text Available A network of tiltmeters has been operational on Vulcano Island for numerous years. At present, the network comprises five functioning borehole stations, four of which are installed at 8-10 m and allow recording very stable, high precision signals with very low noise. We report observations over the last 12 years that illustrate impulsive variations linked to seismicity and long-term (several years trends in the signals. We suggest a relationship between tilt changes correlated to the strongest regional seismic events and site acceleration; long-term tilt variations analyzed in combination with other ground deformation data seem to represent the evidence of a contraction of the La Fossa cone. We also analyzed how the tilt device has the capability to detect possible magma migrations; we considered previous studies that have imaged spatially well-defined levels of magma accumulation beneath La Fossa, and Vulcanello; we concluded that the Vulcano tilt network should be capable of detecting the upward migration of small magma volumes. Finally, we show that no evidence of changes are visible on tilt signals during anomalous degassing episodes (linked to a building up input of magmatic fluids at the La Fossa thereby evidencing that no magma migration occurred during such events.
Energy Technology Data Exchange (ETDEWEB)
Myrent, Noah J. [Vanderbilt Univ., Nashville, TN (United States). Lab. for Systems Integrity and Reliability; Barrett, Natalie C. [Vanderbilt Univ., Nashville, TN (United States). Lab. for Systems Integrity and Reliability; Adams, Douglas E. [Vanderbilt Univ., Nashville, TN (United States). Lab. for Systems Integrity and Reliability; Griffith, Daniel Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technology Dept.
2014-07-01
Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling and simulation approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Sensitivity analyses were carried out for the detection strategies of rotor imbalance and shear web disbond developed in prior work by evaluating the robustness of key measurement parameters in the presence of varying wind speeds, horizontal shear, and turbulence. Detection strategies were refined for these fault mechanisms and probabilities of detection were calculated. For all three fault mechanisms, the probability of detection was 96% or higher for the optimized wind speed ranges of the laminar, 30% horizontal shear, and 60% horizontal shear wind profiles. The revised cost model provided insight into the estimated savings in operations and maintenance costs as they relate to the characteristics of the SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability
Sree, Dave
2015-01-01
Far-field acoustic power level and performance analyses of open rotor model F31/A31 have been performed to determine its noise characteristics at simulated scaled takeoff, nominal takeoff, and approach flight conditions. The nonproprietary parts of the data obtained from experiments in 9- by 15-Foot Low-Speed Wind Tunnel (9?15 LSWT) tests were provided by NASA Glenn Research Center to perform the analyses. The tone and broadband noise components have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, angle of attack, thrust, and input shaft power have been presented and discussed. The effect of an upstream pylon on the noise levels of the model has been addressed. Empirical equations relating model's acoustic power level, thrust, and input shaft power have been developed. The far-field acoustic efficiency of the model is also determined for various simulated flight conditions. It is intended that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.
Remaining life assessment of a high pressure turbine rotor
International Nuclear Information System (INIS)
Nguyen, Ninh; Little, Alfie
2012-01-01
This paper describes finite element and fracture mechanics based modelling work that provides a useful tool for evaluation of the remaining life of a high pressure (HP) steam turbine rotor that had experienced thermal fatigue cracking. An axis-symmetrical model of a HP rotor was constructed. Steam temperature, pressure and rotor speed data from start ups and shut downs were used for the thermal and stress analysis. Operating history and inspection records were used to benchmark the damage experienced by the rotor. Fracture mechanics crack growth analysis was carried out to evaluate the remaining life of the rotor under themal cyclic loading conditions. The work confirmed that the fracture mechanics approach in conjunction with finite element modelling provides a useful tool for assessing the remaining life of high temperature components in power plants.
Wind Turbine Rotors with Active Vibration Control
DEFF Research Database (Denmark)
Svendsen, Martin Nymann
that the basic modes of a wind turbine blade can be effectively addressed by an in-blade ‘active strut’ actuator mechanism. The importance of accounting for background mode flexibility is demonstrated. Also, it is shown that it is generally possible to address multiple beam modes with multiple controllers, given...... in the targeted modes and the observed spill-over to other modes is very limited and generally stabilizing. It is shown that physical controller positioning for reduced background noise is important to the calibration. By simulation of the rotor response to both simple initial conditions and a stochastic wind......This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...
International Nuclear Information System (INIS)
Chen Guojie; Cao Hui; Liu Yuxin; Song Huichao
2006-01-01
By taking the particle-triaxial-rotor model with variable moment of inertia, we systematically investigate the energy spectra, deformations, and single-particle configurations of the nuclei 183,185,187 Tl. The calculated energy spectra agree quite well with experimental data. The obtained results indicate that the rotation-aligned bands observed in 183,185,187 Tl originate from one of the [530](1/2) - ,[532](3/2) - ,[660](1/2) + proton configurations coupled to a prolate deformed core. Furthermore, the negative parity bands built upon the (9/2) - isomeric states in 183,185,187 Tl are formed by a proton with the [505](9/2) - configuration coupled to a core with triaxial oblate deformation, and the positive parity band on the (13/2) + isomeric state in 187 Tl is generated by a proton with configuration [606](13/2) + coupled to a triaxial oblate core
Correlation between length and tilt of lipid tails
Kopelevich, Dmitry I.; Nagle, John F.
2015-10-01
It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κθ to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.
DEFF Research Database (Denmark)
Enemark, Søren; Santos, Ilmar F.
2016-01-01
nonlinear coupled dynamics of the rotor-bearing system. The nonlinear forces from the thermomechanical shape memory alloy springs and from the passive magnetic bearings are coupled to the rotor and bearing housing dynamics. The equations of motion describing rotor tilt and bearing housing lateral motion......Helical pseudoelastic shape memory alloy (SMA) springs are integrated into a dynamic system consisting of a rigid rotor supported by passive magnetic bearings. The aim is to determine the utility of SMAs for vibration attenuation via their mechanical hysteresis, and for adaptation of the dynamic...
Yamada, Yuzo; Toritsuka, Yukiyoshi; Nakamura, Norimasa; Horibe, Shuji; Sugamoto, Kazuomi; Yoshikawa, Hideki; Shino, Konsei
2017-11-01
The concepts of lateral deviation and lateral inclination of the patella, characterized as shift and tilt, have been applied in combination to evaluate patellar malalignment in patients with patellar dislocation. It is not reasonable, however, to describe the 3-dimensional (3D) positional relation between the patella and the femur according to measurements made on 2-dimensional (2D) images. The current study sought to clarify the relation between lateral deviation and inclination of the patella in patients with recurrent dislocation of the patella (RDP) by redefining them via 3D computer models as 3D shift and 3D tilt. Descriptive laboratory study. Altogether, 60 knees from 56 patients with RDP and 15 knees from 10 healthy volunteers were evaluated. 3D shift and tilt of the patella were analyzed with 3D computer models created by magnetic resonance imaging scans obtained at 10° intervals of knee flexion (0°-50°). 3D shift was defined as the spatial distance between the patellar reference point and the midsagittal plane of the femur; it is expressed as a percentage of the interepicondylar width. 3D tilt was defined as the spatial angle between the patellar reference plane and the transepicondylar axis. Correlations between the 2 parameters were assessed with the Pearson correlation coefficient. The patients' mean Pearson correlation coefficient was 0.895 ± 0.186 (range, -0.073 to 0.997; median, 0.965). In all, 56 knees (93%) had coefficients >0.7 (strong correlation); 1 knee (2%), >0.4 (moderate correlation); 2 knees (3%), >0.2 (weak correlation); and 1 knee (2%), correlation). The mean correlation coefficient of the healthy volunteers was 0.645 ± 0.448 (range, -0.445 to 0.982; median, 0.834). A statistically significant difference was found in the distribution of the correlation coefficients between the patients and the healthy volunteers ( P = .0034). When distribution of the correlation coefficients obtained by the 3D analyses was compared with that by the 2
Wind tunnel testing of the DeepWind demonstrator in design and tilted operating conditions
DEFF Research Database (Denmark)
Battistia, L.; Benini, E.; Brighenti, A.
2016-01-01
The DeepWind Project aims at investigating the feasibility of a new floating vertical-axis wind turbine (VAWT) concept, whose purpose is to exploit wind resources at deep-water offshore sites. The results of an extensive experimental campaign on the DeepWind reduced scale demonstrator are here...... was installed on a high precision test bench, whose axis was suitable to be inclined up to 15° with respect to the design (i.e. upright) operating condition. The experiments were performed at the large scale, high speed wind tunnel of the Politecnico di Milano (Italy), using a “free jet” (open channel...... presented for different wind speeds and rotor angular velocities, including also skewed flow operation due to a tilted rotor arrangement. To accomplish this, after being instrumented to measure aerodynamic power and thrust (both in streamwise and transversal directions), a troposkien three-bladed rotor...
An efficient eikonal solver for tilted transversely isotropic and tilted orthorhombic media
Waheed, Umair bin
2014-01-01
Computing first-arrival traveltimes in the presence of anisotropy is important for high-end near surface modeling, microseismic source localization, and fractured reservoir characterization. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the equation a challenging task. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects due to the higher order nonlinear terms in the anisotropy. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an efficient algorithm for firstarrival traveltime computations in tilted anisotropic media. We demonstrate the proposed method for the tilted transversely isotropic media and the tilted orthorhombic media. Numerical tests show that the proposed method is feasible and produces results that are comparable to wavefield extrapolation, even for strongly anisotropic and complex structures. Therefore, for the cases where one or two-point ray tracing fails, our method may be a potential substitute for computing traveltimes.
Directory of Open Access Journals (Sweden)
Mattias Nässelqvist
2014-01-01
Full Text Available In vertically oriented machines with journal bearing, there are no predefined static radial loads, such as dead weight for horizontal rotor. Most of the commercial software is designed to calculate rotordynamic and bearing properties based on machines with a horizontally oriented rotor; that is, the bearing properties are calculated at a static eccentricity. For tilting-pad bearings, there are no existing analytical expressions for bearing parameters and the bearing parameters are dependent on eccentricity and load angle. The objective of this paper is to present a simplified method to perform numerical simulations on vertical rotors including bearing parameters. Instead of recalculating the bearing parameters in each time step polynomials are used to represent the bearing parameters for present eccentricities and load angles. Numerical results are compared with results from tests performed in a test rig. The test rig consists of two guide bearings and a midspan rotor. The guide bearings are 4-pad tilting-pad bearings. Shaft displacement and strains in the bearing bracket are measured to determine the test rig’s properties. The comparison between measurements and simulated results shows small deviations in absolute displacement and load levels, which can be expected due to difficulties in calculating exact bearing parameters.
Energy Technology Data Exchange (ETDEWEB)
Griffiths, H.; Wandtke, J.
1981-05-01
Classically tibiotalar tilt (TTT) is associated with four conditions: Fairbanks disease, hemophilia, sickle-cell anemia and juvenile rheumatoid arthritis. We have found it to be present in at least 20 other conditions including other dysplasias, developmental conditions such as fibrous dysplasia and a variety of other acquired disorders including various metabolic diseases and following previous trauma. The pathogenesis is controversial, but the most probable cause is related to stress and the blood supply of the distal tibial epiphysis. The differentiation of TTT from pseudotibiotalar tilt is also discussed.
Aerodynamic loads and rotor performance for the Darrieus wind turbines
Paraschivoiu, I.
1981-12-01
Aerodynamic blade loads and rotor performance are studied for the Darrieus windmill by using a double-multiple streamtube model. The Darrieus is represented as a pair of actuator disks in tandem at each level of the rotor, with upstream and downstream half-cycles. An equilibrium velocity exists in the center plane, and the upwind velocity is higher than the downwind velocity; lift and drag coefficients are calculated from the Reynolds number and the local angle of attack. Half-rotor torque and power are found by averaging the contributions from each streamtube at each position of the rotor in the upwind cycle. An example is provided for a 17 m Darrieus employing NACA blades. While the method is found to be suitable for predicting blade and rotor performance, the need to incorporate the effects of dynamic stall in the model is stressed as a means to improve accuracy.
Effects of increasing tip velocity on wind turbine rotor design.
Energy Technology Data Exchange (ETDEWEB)
Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-05-01
A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.
Rotor Vibration Reduction via Active Hybrid Bearings
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2002-01-01
The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...
Height and Tilt Geometric Texture
DEFF Research Database (Denmark)
Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas
2009-01-01
compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...
Tilting-connected symmetric algebras
Aihara, Takuma
2010-01-01
The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.
Towards More Efficient Comprehensive Rotor Noise Simulation, Phase I
National Aeronautics and Space Administration — Rotorcraft design and optimization currently still rely largely on simplified (low-fidelity) models, such as rotor disk or wake models to reduce the turn-around time...
Dynamic response of a rub-impact rotor system under axial thrust
Energy Technology Data Exchange (ETDEWEB)
An, Xueli; Zhou, Jianzhong; Xiang, Xiuqiao; Li, Chaoshun; Luo, Zhimeng [Huazhong University of Science andTechnology, College of Hydroelectric and Digitalization Engineering, Wuhan, Hubei (China)
2009-11-15
A model of a rigid rotor system under axial thrust with rotor-to-stator is developed based on the classic impact theory and is analyzed by the Lagrangian dynamics. The rubbing condition is modeled using the elastic impact-contact idealization, which consists of normal and tangential forces at the rotor-to-stator contact point. Mass eccentricity and rotating speed are used as control parameters to simulate the response of rotor system. The motions of periodic, quasi-periodic and chaotic are found in the rotor system response. Mass eccentricity plays an important role in creating chaotic phenomena. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kamel, Lebchek; Outtas, T. [Laboratory of Structural Mechanics and Materials faculty of technology - University of Batna, Batha (Algeria)
2013-07-01
The aim of this work is the study of behavior of rotor dynamics of industrial turbines, using numerical simulation. Finite element model was developed by introducing a new hysteresis parameter to control more precisely the behavior of rolling bearings. The finite element model is used to extract the natural frequencies and modal deformed rotor vibration, as it identifies the constraints acting on the system and predict the dynamic behavior of the rotor transient. Results in Campbell diagram and those relating to the unbalance responses show significant amplitude differences in the parameters of hysteresis imposed . Key words: rotor dynamics, hysteresis, finite element, rotor vibration, unbalance responses, Campbell diagram.
Interlaminar stress analysis for carbon/epoxy composite space rotors
Directory of Open Access Journals (Sweden)
C Lian
2016-09-01
Full Text Available This paper extends the previous works that appears in the International Journal of Multiphysics, Varatharajoo, Salit and Goh (2010. An approach incorporating cohesive zone modelling technique is incorporated into an optimized flywheel to properly simulate the stresses at the layer interfaces. Investigation on several fiber stacking sequences are also conducted to demonstrate the effect of fiber orientations on the overall rotor stress as well as the interface stress behaviour. The results demonstrated that the rotor interlaminar stresses are within the rotor materials' ultimate strength and that the fiber direction with a combination of 45°/-45°/0° offers the best triple layer rotor among the few combinations selected for this analysis. It was shown that the present approach can facilitate also further investigation on the interface stress behaviour of rotating rotors.
Causal Scale of Rotors in a Cardiac System
Ashikaga, Hiroshi; Prieto-Castrillo, Francisco; Kawakatsu, Mari; Dehghani, Nima
2018-04-01
Rotors of spiral waves are thought to be one of the potential mechanisms that maintain atrial fibrillation (AF). However, disappointing clinical outcomes of rotor mapping and ablation to eliminate AF raise a serious doubt on rotors as a macro-scale mechanism that causes the micro-scale behavior of individual cardiomyocytes to maintain spiral waves. In this study, we aimed to elucidate the causal relationship between rotors and spiral waves in a numerical model of cardiac excitation. To accomplish the aim, we described the system in a series of spatiotemporal scales by generating a renormalization group, and evaluated the causal architecture of the system by quantifying causal emergence. Causal emergence is an information-theoretic metric that quantifies emergence or reduction between micro- and macro-scale behaviors of a system by evaluating effective information at each scale. We found that the cardiac system with rotors has a spatiotemporal scale at which effective information peaks. A positive correlation between the number of rotors and causal emergence was observed only up to the scale of peak causation. We conclude that rotors are not the universal mechanism to maintain spiral waves at all spatiotemporal scales. This finding may account for the conflicting benefit of rotor ablation in clinical studies.
Rotor Systems of Aircraft Jet Engines
Directory of Open Access Journals (Sweden)
Ján Kamenický
2000-01-01
engine's both coaxial rotors, their supports (including their hydrodynamic dampers, and its casing as well. Besides the short description of the engine design peculiarities and of its calculating model, there is also a short description of the used method of calculations, with focus on its peculiarities as well. Finally, some results of calculations and conclusions that follow from them are presented.
Realization of Tip Tilting By 8-Step Line Tilting
International Nuclear Information System (INIS)
Chen Yingtian; Zhang Yang; Lim, Boon Ham; Lim, Chen Sin; Hu Sen; Ho, Tso-Hsiu
2009-01-01
By direct calculation of rotation matrices of SO(3), we show how certain specific sequence of eight consecutive rotations of digital angles can yield a tilting of a facet mirror. We also design a detailed program specifically to tilt an array of mirrors from planar orientation to the required focusing orientation. We describe how to use the 8-step to realize the focusing of the mirror array. We have found, in our designed program, an important feature of row-sharing during the rotations for the columns and similarly the column-sharing during the rotations for the row. This feature can save a lot of operating time during the actual realization of the mechanical movements.
Development and tests of large nuclear turbo-generator welded rotors
International Nuclear Information System (INIS)
Colombie, H.; Thiery, M.; Rotzinger, R.; Pelissou, C.; Tabacco, C.; Fernagut, V.
2015-01-01
Turbo-generators require large forgings for the rotor and it is a worldwide practice to manufacture turbo-generator rotor bodies as single piece forgings. Rotors for nuclear applications (4-pole rotors design, 1500/1800 rpm) require forgings of up to 2.0 m diameter and ultra large ingots with weight more than 500 tons. Nowadays only few forge masters can deliver such forgings in the world. Based on the large welding experience Alstom has gained over decades on steam and gas turbines and Alstom's multi piece shrunk turbo-generator rotors, it was suggested to manufacture 4-pole turbo-generator rotors by welding the shaft from aligned cylindrical forgings. Compared to turbine welded rotors, the shaft of a turbo-generator rotor presents differences linked to dimensions/weight, weld depth and electrical application. The manufacture of a 2 disc model allowed to prove through electrical and mechanical analysis the reliability of the concept as well as the reliability of the manufacturing processes through material tests, micro sections, electrical component tests, weld geometry, welding processes (TIG,SAW,...), weld inspection (Ultrasonic testing, radiographic inspection,...) weld heat treatments and machining. Then a full rotor able to replace a single forging rotor was manufactured in order to validate and prove to potential customers the validity of the welded rotor technology. During the first order from EDF of a welded 900 MW spare rotor, the procedure for the Non Destructive Test on a slotted rotor was developed upon EDF request in order to compare future Non Destructive Testing with the finger print of the new rotor. This complete rotor was delivered to EDF in January 2013. This rotor is in operation in a nuclear unit since November 2013. (authors)
Usage of modal synthesis method with condensation in rotor
Directory of Open Access Journals (Sweden)
Zeman V.
2008-11-01
Full Text Available The paper deals with mathematical modelling of vibration and modal analysis of rotors composed of a flexible shaft and several flexible disks. The shaft is modelled as a one dimensional continuum whereon flexible disks modelled as a three dimensional continuum are rigid mounted to shaft. The presented approach allows to introduce continuously distributed centrifugal and gyroscopic effects. The finite element method was used for shaft and disks discretization. The modelling of such flexible multi-body rotors with large DOF number is based on the system decomposition into subsystems and on the modal synthesis method with condensation. Lower vibration mode shapes of the mutually uncoupled and non-rotating subsystems are used for creation of the rotor condensed mathematical model. An influence of the different level of a rotor condensation model on the accuracy of calculated eigenfrequencies and eigenvectors is discussed.
Rotor for a pyrolysis centrifuge reactor
DEFF Research Database (Denmark)
2015-01-01
The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....
Computations of Torque-Balanced Coaxial Rotor Flows
Yoon, Seokkwan; Chan, William M.; Pulliam, Thomas H.
2017-01-01
Interactional aerodynamics has been studied for counter-rotating coaxial rotors in hover. The effects of torque balancing on the performance of coaxial-rotor systems have been investigated. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. Computational results for an experimental model are compared to available data. The results for a coaxial quadcopter vehicle with and without torque balancing are discussed. Understanding interactions in coaxial-rotor flows would help improve the design of next-generation autonomous drones.
Tilt measurements at Vulcano Island
B. Saraceno; G. Laudani; F. Guglielmino; A. Ferro; G. Falzone; O. Campisi; S. Gambino
2007-01-01
A network of tiltmeters has been operational on Vulcano Island for numerous years. At present, the network comprises five functioning borehole stations, four of which are installed at 8-10 m and allow recording very stable, high precision signals with very low noise. We report observations over the last 12 years that illustrate impulsive variations linked to seismicity and long-term (several years) trends in the signals. We suggest a relationship between tilt changes correlated to the stro...
Piezoelectric actuation of helicopter rotor blades
Lieven, Nicholas A. J.
2001-07-01
The work presented in this paper is concerned with the application of embedded piezo-electric actuators in model helicopter rotor blades. The paper outlines techniques to define the optimal location of actuators to excite particular modes of vibration whilst the blade is rotating. Using composite blades the distribution of strain energy is defined using a Finite Element model with imposed rotor-dynamic and aerodynamics loads. The loads are specified through strip theory to determine the position of maximum bending moment and thus the optimal location of the embedded actuators. The effectiveness of the technique is demonstrated on a 1/4 scale fixed cyclic pitch rotor head. Measurement of the blade displacement is achieved by using strain gauges. In addition a redundant piezo-electric actuator is used to measure the blades' response characteristics. The addition of piezo-electric devices in this application has been shown to exhibit adverse aeroelastic effects, such as counter mass balancing and increased drag. Methods to minimise these effects are suggested. The outcome of the paper is a method for defining the location and orientation of piezo-electric devices in rotor-dynamic applications.
Homopolar motor with dual rotors
Energy Technology Data Exchange (ETDEWEB)
Hsu, J.S.
1998-12-01
A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.
Homopolar motor with dual rotors
Energy Technology Data Exchange (ETDEWEB)
Hsu, John S. (Oak Ridge, TN)
1998-01-01
A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.
CFD simulation of rotor aerodynamic performance when using additional surface structure array
Wang, Bing; Kong, Deyi
2017-10-01
The present work analyses the aerodynamic performance of the rotor with additional surface structure array in an attempt to maximize its performance in hover flight. The unstructured grids and the Reynolds Average Navier-Stokes equations were used to calculate the performance of the prototype rotor and the rotor with additional surface structure array in the air. The computational fluid dynamics software FLUENT was used to simulate the thrust of the rotors. The results of the calculations are in reasonable agreement with experimental data, which shows that the calculation model used in this work is useful in simulating the performance of the rotor with additional surface structure array. With this theoretical calculation model, the thrusts of the rotors with arrays of surface structure in three different shapes were calculated. According to the simulation results and the experimental data, the rotor with triangle surface structure array has better aerodynamic performance than the other rotors. In contrast with the prototype rotor, the thrust of the rotor with triangle surface structure array increases by 5.2% at the operating rotating speed of 3000r/min, and the additional triangle surface structure array has almost no influence on the efficiency of the rotor.
Rotor Design for Diffuser Augmented Wind Turbines
Directory of Open Access Journals (Sweden)
Søren Hjort
2015-09-01
Full Text Available Diffuser augmented wind turbines (DAWTs can increase mass flow through the rotor substantially, but have often failed to fulfill expectations. We address high-performance diffusers, and investigate the design requirements for a DAWT rotor to efficiently convert the available energy to shaft energy. Several factors can induce wake stall scenarios causing significant energy loss. The causality between these stall mechanisms and earlier DAWT failures is discussed. First, a swirled actuator disk CFD code is validated through comparison with results from a far wake swirl corrected blade-element momentum (BEM model, and horizontal-axis wind turbine (HAWT reference results. Then, power efficiency versus thrust is computed with the swirled actuator disk (AD code for low and high values of tip-speed ratios (TSR, for different centerbodies, and for different spanwise rotor thrust loading distributions. Three different configurations are studied: The bare propeller HAWT, the classical DAWT, and the high-performance multi-element DAWT. In total nearly 400 high-resolution AD runs are generated. These results are presented and discussed. It is concluded that dedicated DAWT rotors can successfully convert the available energy to shaft energy, provided the identified design requirements for swirl and axial loading distributions are satisfied.
Integrated technology rotor/flight research rotor concept definition study
Carlson, R. G.; Beno, E. A.; Ulisnik, H. D.
1983-01-01
As part of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) Program a number of advanced rotor system designs were conceived and investigated. From these, several were chosen that best meet the started ITR goals with emphasis on stability, reduced weight and hub drag, simplicity, low head moment stiffness, and adequate strength and fatigue life. It was concluded that obtaining low hub moment stiffness was difficult when only the blade flexibility of bearingless rotor blades is considered, unacceptably low fatigue life being the primary problem. Achieving a moderate hub moment stiffness somewhat higher than state of the art articulated rotors in production today is possible within the fatigue life constraint. Alternatively, low stiffness is possible when additional rotor elements, besides the blades themselves, provide part of the rotor flexibility. Two primary designs evolved as best meeting the general ITR requirements that presently exist. An I shaped flexbeam with an external torque tube can satisfy the general goals but would have either higher stiffness or reduced fatigue life. The elastic gimbal rotor can achieve a better combination of low stiffness and high fatigue life but would be a somewhat heavier design and possibly exhibit a higher risk of aeromechanical instability.
Dynamic Analysis of Rotor Systems Considering Ball Bearing Contact Mechanism
International Nuclear Information System (INIS)
Kim, Youngjin; Lee, Jongmahn; Oh, Dongho
2013-01-01
We propose a finite element modeling method considering the ball bearing contact mechanism, and the developed method was verified through experimental and analytical results of inner and outer race-type rotor systems. A comparison of the proposed method with conventional method reveals that there is little difference in the results of the inner race-type rotor system, but there are considerable differences in the results of the outer race-type rotor system such that predictions of greater accuracy can be made. Therefore, the proposed method can be used for accurately predicting the dynamic characteristics of an outer race-type rotary machine
Design of a wind turbine rotor for maximum aerodynamic efficiency
DEFF Research Database (Denmark)
Johansen, Jeppe; Aagaard Madsen, Helge; Gaunaa, Mac
2009-01-01
The design of a three-bladed wind turbine rotor is described, where the main focus has been highest possible mechanical power coefficient, CP, at a single operational condition. Structural, as well as off-design, issues are not considered, leading to a purely theoretical design for investigating...... maximum aerodynamic efficiency. The rotor is designed assuming constant induction for most of the blade span, but near the tip region, a constant load is assumed instead. The rotor design is obtained using an actuator disc model, and is subsequently verified using both a free-wake lifting line method...
Study on the prevention of spragging in a tilting pad journal bearing using the variation of preload
International Nuclear Information System (INIS)
Yang, Seong Heon; Park, Chul Hyun; Ha, Hyun Cheon; Kim, Chae Sil
2001-01-01
Tilting pad journal bearings have been widely used in a high speed rotating machinery, such as steam turbines and gas turbines, owing to their inherent stability characteristics. However, some peculiar fatigue failure in the babbitt metal due to spragging has been continuously occurred at the leading edge of the upper pads. The spragging is defined as the pad vibration initiated on the upper unloaded pads in tilting pad journal bearing. This paper describes both several kinds of bearing failure related with spragging and the theoretical investigation on the prevention of the spragging phenomenon using the variation of preload. Results show that positive preload(m>0.5) assures all pads remain statically loaded under all operating conditions. For the change of design parameter to prevent spragging, thermo-hydrodynamic lubrication and rotor dynamic analysis were performed to verify temperature limitation on bearing and vibration problems on rotor bearing system
Rotating Shaft Tilt Angle Measurement Using an Inclinometer
Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong
2015-10-01
This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.
Rotating Shaft Tilt Angle Measurement Using an Inclinometer
Directory of Open Access Journals (Sweden)
Luo Jun
2015-10-01
Full Text Available This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.
Real-Time Simulation of Coaxial Rotor Configurations with Combined Finite State Dynamic Wake and VPM
Zhao, Jinggen; He, Chengjian
2017-01-01
This paper describes a first-principle based finite state dynamic rotor wake model that addresses the complex aerodynamic interference inherent to coaxial rotor configurations in support of advanced vertical lift aircraft simulation, design, and analysis. The high fidelity rotor dynamic wake solution combines an enhanced real-time finite state dynamic wake model (DYW) with a first-principle based viscous Vortex Particle Method (VPM). The finite state dynamic wake model provides a state-spa...
Directory of Open Access Journals (Sweden)
Uğbreve;ur Dalli
2011-01-01
Full Text Available An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing conditions. Rotor blade system response is calculated using the proposed solution method and the developed program depending on any structural and aerodynamic properties of rotor blades, structural properties of trailing edge flaps and properties of trailing edge flap actuator inputs. Rotor blade loads are determined first on a nominal rotor blade without multiple active trailing edge flaps and then the effects of the active flap motions on the existing rotor blade loads are investigated. Multiple active trailing edge flaps are controlled by using open loop controllers to identify the effects of the actuator signal output properties such as frequency, amplitude and phase on the system response. Effects of using multiple trailing edge flaps on controlling rotor blade vibrations are investigated and some design criteria are determined for the design of trailing edge flap controller that will provide actuator signal outputs to minimize the rotor blade root loads. It is calculated that using the developed active trailing edge rotor blade model, helicopter rotor blade vibrations can be reduced up to 36% of the nominal rotor blade vibrations.
Flexible-Rotor Balancing Demonstration
Giordano, J.; Zorzi, E.
1986-01-01
Report describes method for balancing high-speed rotors at relatively low speeds and discusses demonstration of method on laboratory test rig. Method ensures rotor brought up to speeds well over 20,000 r/min smoothly, without excessive vibration amplitude at critical speeds or at operating speed.
Rotor and wind turbine formalism
DEFF Research Database (Denmark)
Branlard, Emmanuel Simon Pierre
2017-01-01
The main conventions used in this book for the study of rotors are introduced in this chapter. The main assumptions and notations are provided. The formalism specific to wind turbines is presented. The forces, moments, velocities and dimensionless coefficients used in the study of rotors...
Tilted cranking classification of multibandspectra
Energy Technology Data Exchange (ETDEWEB)
Frauendorf, S [IHK F2-Rossendorf, Dresden (Germany); [Lawrence Berkeley Lab., CA (United States); May, F R [Niels Bohr Inst., Copenhagen (Denmark); [Lund Univ. (Sweden). Dept. of Mathematical Physics
1992-08-01
The tilted cranking theory of multi-band spectra of deformed nuclei is discussed. The existence of TDHF (time-dependent Hartree Fock) solutions rotating uniformly about a non-principal axis of the deformed axial potential is demonstrated. The solutions represent {Delta}I=1 bands. Self-consistency and symmetry are discussed. The transfer of experimental spectra to the rotating field of reference is introduced. Excitation spectra at high spin are calculated, and found to agree well with recent data on {sup 163}Er and {sup 174}Hf. 7 refs., 5 figs.
Radiographic cup anteversion measurement corrected from pelvic tilt.
Wang, Liao; Thoreson, Andrew R; Trousdale, Robert T; Morrey, Bernard F; Dai, Kerong; An, Kai-Nan
2017-11-01
The purpose of this study was to develop a novel technique to improve the accuracy of radiographic cup anteversion measurement by correcting the influence of pelvic tilt. Ninety virtual total hip arthroplasties were simulated from computed tomography data of 6 patients with 15 predetermined cup orientations. For each simulated implantation, anteroposterior (AP) virtual pelvic radiographs were generated for 11 predetermined pelvic tilts. A linear regression model was created to capture the relationship between radiographic cup anteversion angle error measured on AP pelvic radiographs and pelvic tilt. Overall, nine hundred and ninety virtual AP pelvic radiographs were measured, and 90 linear regression models were created. Pearson's correlation analyses confirmed a strong correlation between the errors of conventional radiographic cup anteversion angle measured on AP pelvic radiographs and the magnitude of pelvic tilt (P cup anteversion angle from the influence of pelvic tilt. The current method proposes to measure the pelvic tilt on a lateral radiograph, and to use it as a correction for the radiographic cup anteversion measurement on an AP pelvic radiograph. Thus, both AP and lateral pelvic radiographs are required for the measurement of pelvic posture-integrated cup anteversion. Compared with conventional radiographic cup anteversion, the errors of pelvic posture-integrated radiographic cup anteversion were reduced from 10.03 (SD = 5.13) degrees to 2.53 (SD = 1.33) degrees. Pelvic posture-integrated cup anteversion measurement improves the accuracy of radiographic cup anteversion measurement, which shows the potential of further clarifying the etiology of postoperative instability based on planar radiographs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation
Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu
2011-01-01
Natural movements in the sagittal plane involve pitch tilt relative to gravity combined with translation motion. The Gravito-Inertial Force (GIF) resolution hypothesis states that the resultant force on the body is perceptually resolved into tilt and translation consistently with the laws of physics. The purpose of this study was to test this hypothesis for human perception during combined tilt and translation motion. EXPERIMENTAL METHODS: Twelve subjects provided verbal reports during 0.3 Hz motion in the dark with 4 types of tilt and/or translation motion: 1) pitch tilt about an interaural axis at +/-10deg or +/-20deg, 2) fore-aft translation with acceleration equivalent to +/-10deg or +/-20deg, 3) combined "in phase" tilt and translation motion resulting in acceleration equivalent to +/-20deg, and 4) "out of phase" tilt and translation motion that maintained the resultant gravito-inertial force aligned with the longitudinal body axis. The amplitude of perceived pitch tilt and translation at the head were obtained during separate trials. MODELING METHODS: Three-dimensional mathematical modeling was performed to test the GIF-resolution hypothesis using a dynamical model. The model encoded GIF-resolution using the standard vector equation, and used an internal model of motion parameters, including gravity. Differential equations conveyed time-varying predictions. The six motion profiles were tested, resulting in predicted perceived amplitude of tilt and translation for each. RESULTS: The modeling results exhibited the same pattern as the experimental results. Most importantly, both modeling and experimental results showed greater perceived tilt during the "in phase" profile than the "out of phase" profile, and greater perceived tilt during combined "in phase" motion than during pure tilt of the same amplitude. However, the model did not predict as much perceived translation as reported by subjects during pure tilt. CONCLUSION: Human perception is consistent with
Housmans, Caroline; Bertrand, Cédric
2017-02-01
Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane. The inverse process, i.e. the conversion from tilted to horizontal is investigated here based upon seven months of in-plane global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle (Longitude 4.35° E, Latitude 50.79° N). Up to three pyranometers mounted on inclined planes of different tilts and orientations were involved in the inverse transposition process. Our results indicate that (1) the tilt to horizontal irradiance conversion is improved when measurements from more than one tilted pyranometer are considered (i.e. by using a multi-pyranometer approach) and (2) the improvement from using an isotropic model to anisotropic models in the inverse transposition problem is not significant.
Energy Technology Data Exchange (ETDEWEB)
Jeon, Sang Hyeon; Kim, Bum Suk; Huh, Jong Chul [Jeju National Univ., Jeju (Korea, Republic of); Go, Young Jun [Hanjin Ind, Co., Ltd., Yangsan (Korea, Republic of)
2016-01-15
The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.
Khazaei, Somayeh; Sebastiani, Daniel
2017-11-01
We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the
The impact of gravity during head-up tilt
DEFF Research Database (Denmark)
Ottesen, Johnny T.; Olufsen, Mette; Smith, Brittany
2011-01-01
The impact of gravity during head-up tilt, a test often used in the clinic to diagnose patients who suffer from dizziness or frequent episodes of syncope, is not well described. This study uses mathematical modeling to analyze experimental blood pressure data measured at the level of the aorta an...
Integrated technology rotor/flight research rotor hub concept definition
Dixon, P. G. C.
1983-01-01
Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.
A soft rotor concept - design, verification and potentials
Energy Technology Data Exchange (ETDEWEB)
Rasmussen, F; Thirstrup Petersen, J [Risoe National Lab., Roskilde (Denmark)
1999-03-01
This paper contains results from development and testing of a two-bladed soft rotor for an existing 15 kW flexible wind turbine. The new concept is characterised as a free yawing down wind turbine with nacelle tilting flexibility and a two-bladed teetering rotor with three-point supported flexible blades with built-in structural couplings. The power and the loads are controlled by active stall and active coning. The concept has been developed by extensive application of aero-elastic predictions, numerical optimisation and stability analysis in order to obtain optimal aero-elastic response and minimal loads. The flexible blades and the principle of active coning allow the blades to deflect with the wind to such an extent that the loads are reduced to between 25 and 50% of the loads for a similar rigid rotor. All conceptual design principles have been focused on application to large MW turbines, and aero-elastic predictions for an upscale 1 MW version show that this would have approximately identical characteristisc, without being particularly optimised for the actual size. (au)
International Nuclear Information System (INIS)
Iudice, N.L.
1993-01-01
It is shown by a model independent numerical estimate that the TRM expression of the M1 strength is fully consistent with the recently discovered saturation properties of the M1 excitations knows as scissors mode
An analytical investigation of the performance of wind-turbines with gyrocopter-like rotors
Energy Technology Data Exchange (ETDEWEB)
Kentfield, J.A.C.; Brophy, D.C. [Univ. of Calgary, Alberta (Canada)
1997-12-31
The performance was predicted of a wind-turbine, intended for electrical power generation, the rotor of which is similar in configuration to the rotor of an autogyro or gyrocopter as originated by Cierva. Hence the rotor axis of spin is tilted downwind, for maximum power production, by an angle of 40{degrees} to 50{degrees} relative to the vertical with power regulation by modulation of the tilt angle. Because the rotor of a Cierva turbine generates lift the simple, non-twisted, fixed-pitch blades {open_quotes}fly{close_quotes} and are self supporting thereby eliminating flap-wise bending moments when the blades are hinged at their roots. It was found from the analysis that it is possible to reduce tower bending moments substantially relative to a conventional horizontal axis turbine of equal power output and also, for equal maximum hub heights and blade tip altitudes, a Cierva turbine is capable, at a prescribed wind speed, of a greater power output than a conventional horizontal axis machine.
Modern rotor balancing - Emerging technologies
Zorzi, E. S.; Von Pragenau, G. L.
1985-01-01
Modern balancing methods for flexible and rigid rotors are explored. Rigid rotor balancing is performed at several hundred rpm, well below the first bending mode of the shaft. High speed balancing is necessary when the nominal rotational speed is higher than the first bending mode. Both methods introduce weights which will produce rotor responses at given speeds that will be exactly out of phase with the responses of an unbalanced rotor. Modal balancing seeks to add weights which will leave other rotor modes unaffected. Also, influence coefficients can be determined by trial and error addition of weights and recording of their effects on vibration at speeds of interest. The latter method is useful for balancing rotors at other than critical speeds and for performing unified balancing beginning with the first critical speed. Finally, low-speed flexible balancing permits low-speed tests and adjustments of rotor assemblies which will not be accessible when operating in their high-speed functional configuration. The method was developed for the high pressure liquid oxygen turbopumps for the Shuttle.
Wind tower with vertical rotors
Energy Technology Data Exchange (ETDEWEB)
Dietz, A
1978-08-03
The invention concerns a wind tower with vertical rotors. A characteristic is that the useful output of the rotors is increased by the wind pressure, which is guided to the rotors at the central opening and over the whole height of the structure by duct slots in the inner cells. These duct slots start behind the front nose of the inner cell and lead via the transverse axis of the pillar at an angle into the space between the inner cells and the cell body. This measure appreciably increases the useful output of the rotors, as the rotors do not have to provide any displacement work from their output, but receive additional thrust. The wind pressure pressing from inside the rotor and accelerating from the outside produces a better outflow of the wind from the power plant pillar with only small tendency to turbulence, which appreciably improves the effect of the adjustable turbulence smoothers, which are situated below the rotors over the whole height.
TORNADO concept and realisation of a rotor for small VAWTs
Directory of Open Access Journals (Sweden)
Horia DUMITRESCU
2013-09-01
Full Text Available The concept of a three-tier configuration for a vertical axis rotor was successfully developed into a experimental model. The rotor assembly is divided into three tiers with three straight blades in each tier. The three-tiers are shifted by an angle of 400 generating a full helical flow field inside the rotor. Thereby the new configuration has some different mechanism of torque generation as other Darrieus rotors. The three-tier configuration facilitates the operation by enabling the turbine to self-start at wind velocity as low as 2 m/s with good performance and a smoother driving torque. At the same time the design couples an esthetic appearance with low noise level.
Modal Characteristics of Novel Wind Turbine Rotors with Hinged Structures
Lu, Hongya; Zeng, Pan; Lei, Liping
2018-03-01
The vibration problems of the wind turbine rotors have drawn public attention as the size of wind turbine has increased incredibly. Although various factors may cause the vibration problems, the flexibility is a big threat among them. Therefore, ensuring the high stiffness of the rotors by adopting novel techniques becomes a necessity. The study was a further investigation of several novel designs regarding the dynamic behaviour and the influencing mechanism. The modal testing experiments were conducted on a traditional blade and an isolated blade with the hinged rods mounted close to the root. The results showed that the rod increased both the modal frequency and the damping of the blade. More studies were done on the rods’ impact on the wind turbine rotor with a numerical model, where dimensionless parameters were defined to describe the configuration of the interveined and the bisymmetrical rods. Their influences on the modal frequencies of the rotor were analyzed and discussed.
Using collisions and resonances to tilting Uranus
Rogoszinski, Zeeve; Hamilton, Douglas
2018-01-01
Uranus’ large obliquity (98°) is widely thought to have occurred from a polar strike with an Earth sized object. Morbidelli et al. (2012) argue that two or more collisions are required in order to explain the prograde motion of Uranus’ satellites. These impactors could have been less massive by about a factor of ten, but multiple polar strikes are still improbable as even larger mass impactors would be needed for more equatorial collisions. Here we explore an alternative non-collisional model inspired by the explanation to Saturn’s significant tilt (27°). Ward and Hamilton (2004) & Hamilton and Ward (2004) argue that a secular resonance currently between Saturn’s spin axis and Neptune’s orbital pole is responsible for Saturn’s large obliquity. Unfortunately, Uranus’ axial precession frequency today is too long to match any of the current planets’ fundamental frequencies. Boué and Laskar (2010) explain that Uranus may have harbored an improbably large moon in the past which could have sped up the planet’s axial precession frequency enough to resonate with the regression of its own orbital pole. We explore another scenario which requires only the interactions between the giant planets.Thommes et al. (1999, 2002, 2003) argue that at least the cores of Uranus and Neptune were formed in between Jupiter and Saturn, as the density of the protoplanetary disk was greater there. If Neptune was scattered outward before Uranus, then a secular spin-orbit resonance between the two planets is possible. However, driving Uranus’ obliquity to near 90° with a resonance capture requires a timescale on the order of 100 Myr. If Neptune migrated out quicker or its orbital inclination was initially larger, then we find that the resulting resonance kick can tilt Uranus more than 40° in a reasonable timespan. This could replace one of the impactors required in the collisional scenario described by Morbidelli et al. (2012), but in most situations the effect of such a
Design Optimization of Tilting-Pad Journal Bearing Using a Genetic Algorithm
Directory of Open Access Journals (Sweden)
Hamit Saruhan
2004-01-01
Full Text Available This article focuses on the use of genetic algorithms in developing an efficient optimum design method for tilting pad bearings. The approach optimizes based on minimum film thickness, power loss, maximum film temperature, and a global objective. Results for a five tilting-pad preloaded bearing are presented to provide a comparison with more traditional optimum design methods such as the gradient-based global criterion method, and also to provide insight into the potential of genetic algorithms in the design of rotor bearings. Genetic algorithms are efficient search techniques based on the idea of natural selection and genetics. These robust methods have gained recognition as general problem solving techniques in many applications.
Navadeh, N.; Goroshko, I. O.; Zhuk, Y. A.; Fallah, A. S.
2017-11-01
An approach to construction of a beam-type simplified model of a horizontal axis wind turbine composite blade based on the finite element method is proposed. The model allows effective and accurate description of low vibration bending modes taking into account the effects of coupling between flapwise and lead-lag modes of vibration transpiring due to the non-uniform distribution of twist angle in the blade geometry along its length. The identification of model parameters is carried out on the basis of modal data obtained by more detailed finite element simulations and subsequent adoption of the 'DIRECT' optimisation algorithm. Stable identification results were obtained using absolute deviations in frequencies and in modal displacements in the objective function and additional a priori information (boundedness and monotony) on the solution properties.
CFD Analysis of A Starved Four-Pad Tilting-Pad Journal Bearing with An Elastic Support of Pads
Parovay, E. F.; Falaleev, S. V.
2018-01-01
Tilting-pad journal bearings are widely used in technics. Oil starvation operation regime is not common for hydrodynamic bearings. However, correctly designed low-flow journal bearing have to operate efficiently and consistently on high rotor speeds. An elastic support of bearing pads is a set of elastic pins made of steel. Elastic support allows pads to self-align and achieve an optimal operational mode. The article presents the thermohydrodynamic performance of an axial journal bearing. The study deals with 60 mm diameter four-pad tilting-pad journal bearing, submitted to a static load varying from 1000 to 30000 N with a rotating speed varying from 1000 to 10000 rpm. The investigation focuses on numerical studying the characteristics of low-flow tilting-pad journal bearings under oil starvation conditions. Dependencies of the bearing performance on the load, rotational speed of the shaft, and the size of the radial clearance are presented.
Czech Academy of Sciences Publication Activity Database
Zapoměl, Jaroslav; Ferfecki, Petr; Kozánek, Jan
2013-01-01
Roč. 7, č. 2 (2013), s. 223-234 ISSN 1802-680X. [COMPUTATIONAL MECHANICS 2012 /28./. Špičák, 12.11.2012-14.11.2012] Institutional support : RVO:61388998 Keywords : rigid rotors * controllable damping * hybrid magnetorheological dampers * transient response Subject RIV: JR - Other Machinery
Sedimentary basins reconnaissance using the magnetic Tilt-Depth method
Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.
2010-01-01
We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to
Carpenter, Paul J.; Paulnock, Russell S.
1949-01-01
An investigation has been conducted with the Langley helicopter tower to obtain basic performance and control characteristics of the Raman rotor system. Blade-pitch control is obtained in this configuration by utilizing an auxiliary flap to twist the blades. Rotor thrust and power required were measured for the hovering condition and over a range of wind velocities from 0 to 30 miles per hour. The control characteristics and the transient response of the rotor to various control movements were also measured. The hovering-performance data are presented as a survey of the wake velocities and the variation of torque coefficient with thrust coefficient. The power required for the test rotor to hover at a thrust of 1350 pounds and a rotor speed of 240 rpm is approximately 6.5 percent greater than that estimated for a conventional rotor of the same diameter and solidity. It is believed that most of this difference is caused by th e flap servomechanism. The reduction in total power required for sustentation of the single-rotor configuration tested at various wind velocities and at the normal operating rotor thrust was found to be similar to the theoretical and experimental results for ro tors with conventionally actuated pitch. The control effectiveness was determined as a function of rotor speed. Sufficient control was available to give a thrust range of 0 to 1500 pounds and a rotor tilt of plus or minus 7 degrees. The time lag between flap motion and blade-pitch response is approximately 0.02 to 0.03 second. The response of the rotor following the blade-pitch response is similar to that of a rotor with conventionally actuated pitch changes. The over-all characteristics of the rotor investigated indicate that satisfactory performance and control characteristics were obtained.
Mach number scaling of helicopter rotor blade/vortex interaction noise
Leighton, Kenneth P.; Harris, Wesley L.
1985-01-01
A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.
Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System
Directory of Open Access Journals (Sweden)
Nan Zhang
2011-01-01
Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.
Large optics inspection, tilting, and washing stand
Ayers, Marion Jay [Brentwood, CA; Ayers, Shannon Lee [Brentwood, CA
2010-08-24
A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.
Lake-tilting investigations in southern Sweden
International Nuclear Information System (INIS)
Paasse, T.
1996-04-01
The main aim of lake-tilting investigations is to determine the course of the glacio-isostatic uplift, i.e. to find a formula for the uplift. Besides the lake-tilting graphs, knowledge of the recent relative uplift and the gradient of some marine shorelines are used for solving this problem. This paper summarizes four investigations. 23 refs, 10 figs
Optic flow induced self-tilt perception
Bos, J.E.
2008-01-01
Roll optic flow induces illusory self-tilt in humans. As far as the mechanism underlying this visual-vestibular interaction is understood, larger angles of self-tilt are predicted than observed. It is hypothesized that the discrepancy can be explained by idiotropic (i.e., referring to a personal
International Nuclear Information System (INIS)
Buczkowski, M.; Fisz, J.J.
2008-01-01
In this paper the possibility of the numerical data modelling in the case of angle- and time-resolved fluorescence spectroscopy is investigated. The asymmetric fluorescence probes are assumed to undergo the restricted rotational diffusion in a hosting medium. This process is described quantitatively by the diffusion tensor and the aligning potential. The evolution of the system is expressed in terms of the Smoluchowski equation with an appropriate time-developing operator. A matrix representation of this operator is calculated, then symmetrized and diagonalized. The resulting propagator is used to generate the synthetic noisy data set that imitates results of experimental measurements. The data set serves as a groundwork to the χ 2 optimization, performed by the genetic algorithm followed by the gradient search, in order to recover model parameters, which are diagonal elements of the diffusion tensor, aligning potential expansion coefficients and directions of the electronic dipole moments. This whole procedure properly identifies model parameters, showing that the outlined formalism should be taken in the account in the case of analysing real experimental data
Aerodynamic design of the National Rotor Testbed.
Energy Technology Data Exchange (ETDEWEB)
Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-10-01
A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.
Tilting mode in field-reversed configurations
International Nuclear Information System (INIS)
Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.
1982-01-01
Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal
Dynamic Characteristics and Experimental Research of Dual-Rotor System with Rub-Impact Fault
Directory of Open Access Journals (Sweden)
Hongzhi Xu
2016-01-01
Full Text Available Rub-impact fault model for dual-rotor system was further developed, in which rubbing board is regarded as elastic sheet. Sheet elastic deformation, contact penetration, and elastic damping support during rubbing of sheet and wheel disk were considered. Collision force and friction were calculated by utilizing Hertz contact theory and Coulomb model and introducing nonlinear spring damping model and friction coefficient. Then kinetic differential equations of rub-impact under dry rubbing condition were established. Based on one-dimensional finite element model of dual-rotor system, dynamic transient response of overall structure under rub-impact existing between rotor wheel and sheet was obtained. Meanwhile, fault dynamic characteristics and impact of rubbing clearance on rotor vibration were analyzed. The results show that, during the process of rub-impact, the spectrums of rotor vibration are complicated and multiple combined frequency components of inner and outer rotor fundamental frequencies are typical characteristic of rub-impact fault for dual-rotor system. It also can be seen from rotor vibration response that the rubbing rotor’s fundamental frequency is modulated by normal rotor double frequency.
Correlation between length and tilt of lipid tails
Energy Technology Data Exchange (ETDEWEB)
Kopelevich, Dmitry I., E-mail: dkopelevich@che.ufl.edu [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Nagle, John F., E-mail: nagle@cmu.edu [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)
2015-10-21
It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κ{sub θ} to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.
Assessment of community noise for a medium-range airplane with open-rotor engines
Kopiev, V. F.; Shur, M. L.; Travin, A. K.; Belyaev, I. V.; Zamtfort, B. S.; Medvedev, Yu. V.
2017-11-01
Community noise of a hypothetical medium-range airplane equipped with open-rotor engines is assessed by numerical modeling of the aeroacoustic characteristics of an isolated open rotor with the simplest blade geometry. Various open-rotor configurations are considered at constant thrust, and the lowest-noise configuration is selected. A two-engine medium-range airplane at known thrust of bypass turbofan engines at different segments of the takeoff-landing trajectory is considered, after the replacement of those engines by the open-rotor engines. It is established that a medium-range airplane with two open-rotor engines meets the requirements of Chapter 4 of the ICAO standard with a significant margin. It is shown that airframe noise makes a significant contribution to the total noise of an airplane with open-rotor engines at landing.
Efficiency of operation of wind turbine rotors optimized by the Glauert and Betz methods
Okulov, V. L.; Mikkelsen, R.; Litvinov, I. V.; Naumov, I. V.
2015-11-01
The models of two types of rotors with blades constructed using different optimization methods are compared experimentally. In the first case, the Glauert optimization by the pulsed method is used, which is applied independently for each individual blade cross section. This method remains the main approach in designing rotors of various duties. The construction of the other rotor is based on the Betz idea about optimization of rotors by determining a special distribution of circulation over the blade, which ensures the helical structure of the wake behind the rotor. It is established for the first time as a result of direct experimental comparison that the rotor constructed using the Betz method makes it possible to extract more kinetic energy from the homogeneous incoming flow.
Transonic airfoil design for helicopter rotor applications
Hassan, Ahmed A.; Jackson, B.
1989-01-01
Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.
Institute of Scientific and Technical Information of China (English)
王铁成; 李伟力; 孙建伟
2003-01-01
A mathematical model has been built up for compound cage rotor induction machine with the rotor re-sistance and leakage inductance in the model identified through Kalman filtering method. Using the identifiedparameters, simulation studies are performed, and simulation results are compared with testing results.
Unilateral otolith centrifugation by head tilt.
Winters, Stephanie M; Bos, Jelte E; Klis, Sjaak F L
2014-01-01
To test for otolith asymmetries, several studies described horizontal translation of the body and head en bloc during fast vertical axis rotation. This stimulus causes one otolithic organ to rotate on-axis, and the other to experience centripetal acceleration. To test a new, more simple method of unilateral stimulation with head tilt and the body remaining on axis. During stationary and during 360 deg/s rotation, 12 healthy blindfolded subjects had their heads tilted 30 degrees sideways, positioning one otolithic organ on the axis of rotation after the other. The haptic subjective vertical (SV) was recorded several times by means of a manually adjustable rod. It was found that during stationary the SV tilted about 4 degrees on average in the direction of the head. During rotation, the SV tilted about 9 degrees on average. We therefore estimate the effect of eccentric otolith rotation to be 5 degrees on average. Tilt of the subjective vertical induced by head tilt during on-axis body rotation can provide a relatively uncomplicated alternative to test unilateral otolithic function as compared to body and head translation during rotation. Moreover, unlike eccentric rotation of the entire body, somatosensory cues are minimized by keeping the body fixed on axis and by subtracting the effect of head tilt per se.
Evaluating Tilt for Wind Farms: Preprint
Energy Technology Data Exchange (ETDEWEB)
Annoni, Jennifer; Scholbrock, Andrew; Churchfield, Matthew; Fleming, Paul
2017-06-29
The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and threeturbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array, the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.
Discontinuity effects in dynamically loaded tilting pad journal bearings
DEFF Research Database (Denmark)
Thomsen, Kim; Klit, Peder; Vølund, Anders
2011-01-01
This paper describes two discontinuity effects that can occur when modelling radial tilting pad bearings subjected to high dynamic loads. The first effect to be treated is a pressure build-up discontinuity effect. The second effect is a contact-related discontinuity that disappears when a contact...... force is included in the theoretical model. Methods for avoiding the pressure build-up discontinuity effect are proposed....
Directory of Open Access Journals (Sweden)
Wu Zaixin
2016-01-01
Full Text Available High-speed motorized spindle is a multi-variable, non-linear and strong coupling system. The rotor static eccentricity is inevitable because of machining or assembling error. The rotor static eccentricities have an important effect on the electromechanical coupled characteristics of the motorized spindle. In this paper, the electromechanical coupled mathematical model of the motorized spindle was set up. The mathematical model includes mechanical and electrical equation. The mechanical and electrical equation is built up by the variational principle. Furthermore, the inductance parameters without the rotor static eccentricity and the inductance parameters with rotor static eccentricity have been calculated by the winding function method and the high speed motorized spindle was simulated. The result show that the rotor static eccentricity can delay the starting process of the motorized spindle, and at steady state, the rotor circuit currents are still large because of the rotor static eccentricity.
Nonlinear Dynamics of a Foil Bearing Supported Rotor System: Simulation and Analysis
Li, Feng; Flowers, George T.
1996-01-01
Foil bearings provide noncontacting rotor support through a number of thin metal strips attached around the circumference of a stator and separated from the rotor by a fluid film. The resulting support stiffness is dominated by the characteristics of the foils and is a nonlinear function of the rotor deflection. The present study is concerned with characterizing this nonlinear effect and investigating its influence on rotordynamical behavior. A finite element model is developed for an existing bearing, the force versus deflection relation characterized, and the dynamics of a sample rotor system are studied. Some conclusions are discussed with regard to appropriate ranges of operation for such a system.
Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor
Acree, C. W., Jr.
2010-01-01
Coupling of aeromechanics analysis with vehicle sizing is demonstrated with the CAMRAD II aeromechanics code and NDARC sizing code. The example is optimization of cruise tip speed with rotor/wing interference for the Large Civil Tiltrotor (LCTR2) concept design. Free-wake models were used for both rotors and the wing. This report is part of a NASA effort to develop an integrated analytical capability combining rotorcraft aeromechanics, structures, propulsion, mission analysis, and vehicle sizing. The present paper extends previous efforts by including rotor/wing interference explicitly in the rotor performance optimization and implicitly in the sizing.
Experimental Investigation of a Helicopter Rotor Hub Flow
Reich, David
The rotor hub system is by far the largest contributor to helicopter parasite drag and a barrier to increasing helicopter forward-flight speed and range. Additionally, the hub sheds undesirable vibration- and instability-inducing unsteady flow over the empennage. The challenges associated with rotor hub flows are discussed, including bluff body drag, interactional aerodynamics, and the effect of the turbulent hub wake on the helicopter empennage. This study was conducted in three phases to quantify model-scale rotor hub flows in water tunnels at The Pennsylvania State University Applied research lab. The first phase investigated scaling and component interaction effects on a 1:17 scale rotor hub model in the 12-inch diameter water tunnel. Effects of Reynolds number, advance ratio, and hub geometry configuration on the drag and wake shed from the rotor hub were quantified using load cell measurements and particle-image velocimetry (PIV). The second phase focused on flow visualization and measurement on a rotor hub and rotor hub/pylon geometry in the 12-inch diameter water tunnel. Stereo PIV was conducted in a cross plane downstream of the hub and flow visualization was conducted using oil paint and fluorescent dye. The third phase concentrated on high accuracy load measurement and prediction up to full-scale Reynolds number on a 1:4.25 scale model in the 48-inch diameter water tunnel. Measurements include 6 degree of freedom loads on the hub and two-component laser-Doppler velocimetry in the wake. Finally, results and conclusions are discussed, followed by recommendations for future investigations.
CT patellar cortex tilt angle: A radiological method to measure patellar tilt
International Nuclear Information System (INIS)
Mirza Toluei, F.; Afshar, A.; Salarilak, S.; Sina, A.
2005-01-01
Background/Objectives: the role of patellar tilt in the anterior knee pain is indisputable. Traditionally. the lateral patello-femoral angle of Laurin has been defined in both the axial view and CT images for measuring the tilt of patella. We present a new angle. which is independent of the morphology of patella and directly relates to clinical assessment of the tilt. which is appreciated from palpation of the edges of the patella. Patients and Methods: 38 patients with anterior knee pain and forty normal control subjects were examined using CT scan of patello-femoral joint in 15 degrees of knee flexion. The amount of lateral patellar tilt was quantitatively assessed using the lateral patello-femoral angle, as described by Laurin et al, and the newly defined patellar cortex tilt angle. This angle is subtended by the line drawn along the posterior femoral condyles and the one parallel to the subchondral bone of patellar cortex. The fifteen-degree tilt was taken as normal cut-off point for patellar cortex tilt angle in the control group. Results: in patients, the average tilt of patella. using the patellar cortex tilt angle was 15.26 versus 7.05 in the control group. Using Student's t test, the difference between the two means was significant (P<0.001). The sensitivity and specificity of patellar cortex tilt angle were 40 and 90 percent, respectively There was a moderate agreement between our presented test and the lateral tilt angle test (kappa=0.40. P<0.001). Conclusion: our results indicate that patellar tilt can also be detected using patellar cortex tilt angle. We need more specific studies ta determine the validity of the test
Coupled bending and torsional vibration of a rotor system with nonlinear friction
International Nuclear Information System (INIS)
Hua, Chunli; Cao, Guohua; Zhu, Zhencai; Rao, Zhushi; Ta, Na
2017-01-01
Unacceptable vibrations induced by the nonlinear friction in a rotor system seriously affect the health and reliability of the rotating ma- chinery. To find out the basic excitation mechanism and characteristics of the vibrations, a coupled bending and torsional nonlinear dynamic model of rotor system with nonlinear friction is presented. The dynamic friction characteristic is described with a Stribeck curve, which generates nonlinear friction related to relative velocity. The motion equations of unbalance rotor system are established by the Lagrangian approach. Through numerical calculation, the coupled vibration characteristics of a rotor system under nonlinear friction are well investigated. The influence of main system parameters on the behaviors of the system is discussed. The bifurcation diagrams, waterfall plots, the times series, orbit trails, phase plane portraits and Poincaré maps are obtained to analyze dynamic characteristics of the rotor system and the results reveal multiform complex nonlinear dynamic responses of rotor system under rubbing. These analysis results of the present paper can effectively provide a theoretical reference for structural design of rotor systems and be used to diagnose self- excited vibration faults in this kind of rotor systems. The present research could contribute to further understanding on the self-excited vibration and the bending and torsional coupling vibration of the rotor systems with Stribeck friction model.
Coupled bending and torsional vibration of a rotor system with nonlinear friction
Energy Technology Data Exchange (ETDEWEB)
Hua, Chunli; Cao, Guohua; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China); Rao, Zhushi; Ta, Na [Shanghai Jiao Tong University, Shanghai (China)
2017-06-15
Unacceptable vibrations induced by the nonlinear friction in a rotor system seriously affect the health and reliability of the rotating ma- chinery. To find out the basic excitation mechanism and characteristics of the vibrations, a coupled bending and torsional nonlinear dynamic model of rotor system with nonlinear friction is presented. The dynamic friction characteristic is described with a Stribeck curve, which generates nonlinear friction related to relative velocity. The motion equations of unbalance rotor system are established by the Lagrangian approach. Through numerical calculation, the coupled vibration characteristics of a rotor system under nonlinear friction are well investigated. The influence of main system parameters on the behaviors of the system is discussed. The bifurcation diagrams, waterfall plots, the times series, orbit trails, phase plane portraits and Poincaré maps are obtained to analyze dynamic characteristics of the rotor system and the results reveal multiform complex nonlinear dynamic responses of rotor system under rubbing. These analysis results of the present paper can effectively provide a theoretical reference for structural design of rotor systems and be used to diagnose self- excited vibration faults in this kind of rotor systems. The present research could contribute to further understanding on the self-excited vibration and the bending and torsional coupling vibration of the rotor systems with Stribeck friction model.
Uncertainty analysis of flexible rotors considering fuzzy parameters and fuzzy-random parameters
Directory of Open Access Journals (Sweden)
Fabian Andres Lara-Molina
Full Text Available Abstract The components of flexible rotors are subjected to uncertainties. The main sources of uncertainties include the variation of mechanical properties. This contribution aims at analyzing the dynamics of flexible rotors under uncertain parameters modeled as fuzzy and fuzzy random variables. The uncertainty analysis encompasses the modeling of uncertain parameters and the numerical simulation of the corresponding flexible rotor model by using an approach based on fuzzy dynamic analysis. The numerical simulation is accomplished by mapping the fuzzy parameters of the deterministic flexible rotor model. Thereby, the flexible rotor is modeled by using both the Fuzzy Finite Element Method and the Fuzzy Stochastic Finite Element Method. Numerical simulations illustrate the methodology conveyed in terms of orbits and frequency response functions subject to uncertain parameters.
Rotor compound concept for designing an industrial HTS synchronous motor
International Nuclear Information System (INIS)
Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.
2013-01-01
Highlights: • The superconducting tapes are used in the industrial synchronous motor winding due to their electrical characteristics. • The high magnetic field with no electric loss is obtainable by using the superconducting rotor coils. • The rotor core can be replaced by light non-magnetic materials which drops the rotor total weight up to 50%. • Decreasing the rotor weight was verified by FEM analyses for a sample motor. -- Abstract: Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model
Dynamic of charged planar geometry in tilted and non-tilted frames
Energy Technology Data Exchange (ETDEWEB)
Sharif, M., E-mail: msharif.math@pu.edu.pk; Zaeem Ul Haq Bhatti, M., E-mail: mzaeem.math@pu.edu.pk [University of the Punjab, Department of Mathematics (Pakistan)
2015-05-15
We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in the pure diffusion case and examine the effects of the electromagnetic field.
Rotor assembly and assay method
Burtis, C.A.; Johnson, W.F.; Walker, W.A.
1993-09-07
A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor. 34 figures.
Thermoelastic steam turbine rotor control based on neural network
Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.
2015-12-01
Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.
Spheromak tilting and its stability control
International Nuclear Information System (INIS)
Hayashi, T.; Sato, T.
1983-01-01
Spheromak tilting instability was studied. A numerical technique to create a rather arbitrarily-shaped spheromak like the one with a flux hole was investigated. The dynamics governing the tilting instability, namely, the influence of the magnetic index, the toroidal current (q-profile) and the resistivity upon the tilting growth rate, and the roles of magnetc reconnection upon the nonlinear development were studied. The best way to control the tilting instability was invented. The stabilizing effects of the vertical wall, the isolated conducting cylindrical belt, and the horizontal wall were studied. Central pole stabilization was also investigated. The influence of the wall condition, namely, whether the wall acted as a flux conserver in the spheromak creation stage or not is discussed. The present study has shown that the three- dimensional simulation is indeed useful and practical in not only studying the underlying physics but also finding a stabilization technique of spheromaks. (Kato, T.)
PERFORMANCE ANALYSIS OF A HELICAL SAVONIUS ROTOR WITHOUT SHAFT AT 45° TWIST ANGLE USING CFD
Directory of Open Access Journals (Sweden)
Bachu Deb
2013-06-01
Full Text Available Helical Savonius rotor exhibits better performance characteristics at all the rotor angles compared to conventional Savonius rotor. However studies related to the performance measurement and flow physics of such rotor are very scarce. Keeping this in view, in this paper, a three dimensional Computational Fluid Dynamics analysis using commercial Fluent 6.2 software was done to predict the performance of a two-bucket helical Savonius rotor without shaft and with end plates in a complete cycle of rotation. A two-bucket helical Savonius rotor having height of 60 cm and diameter of 17 cm with 45° bucket twist angle was designed using Gambit. The buckets were connected at the top and bottom circular end plates, which are 1.1 times the rotor diameter. The k-ε turbulence model with second order upwind discretization scheme was adopted with standard wall condition. Power coefficients (Cp and torque coefficients (Ct at different tip speed ratios were evaluated at different rotor angles. From the investigation, it was observed that power coefficient increased with increase of tip speed ratio up to an optimum limit, but then decreased even further tip speed ratio was increased. Further investigation was done on the variations of Cp & Ct in a complete cycle of rotation from 0° to 360° in a step of 45° rotor corresponding to the optimum tip speed ratio. The value of Cp at all the rotor angles is positive. Moreover, velocity magnitude contours were analyzed for each rotor angle and it could be concluded that high aerodynamic torque and power can be expected when the rotor is positioned at 45º & 90º with respect to incoming flow.
Wind Turbine Rotor Simulation via CFD Based Actuator Disc Technique Compared to Detailed Measurement
Directory of Open Access Journals (Sweden)
Esmail Mahmoodi
2015-10-01
Full Text Available In this paper, a generalized Actuator Disc (AD is used to model the wind turbine rotor of the MEXICO experiment, a collaborative European wind turbine project. The AD model as a combination of CFD technique and User Defined Functions codes (UDF, so-called UDF/AD model is used to simulate loads and performance of the rotor in three different wind speed tests. Distributed force on the blade, thrust and power production of the rotor as important designing parameters of wind turbine rotors are focused to model. A developed Blade Element Momentum (BEM theory as a code based numerical technique as well as a full rotor simulation both from the literature are included into the results to compare and discuss. The output of all techniques is compared to detailed measurements for validation, which led us to final conclusions.
Combined Influence of Visual Scene and Body Tilt on Arm Pointing Movements: Gravity Matters!
Scotto Di Cesare, Cécile; Sarlegna, Fabrice R.; Bourdin, Christophe; Mestre, Daniel R.; Bringoux, Lionel
2014-01-01
Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., ‘combined’ tilts equal to the sum of ‘single’ tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues. PMID:24925371
Flow-driven simulation on variation diameter of counter rotating wind turbines rotor
Directory of Open Access Journals (Sweden)
Littik Y. Fredrika
2018-01-01
Full Text Available Wind turbines model in this paper developed from horizontal axis wind turbine propeller with single rotor (HAWT. This research aims to investigating the influence of front rotor diameter variation (D1 with rear rotor (D2 to the angular velocity optimal (ω and tip speed ratio (TSR on counter rotating wind turbines (CRWT. The method used transient 3D simulation with computational fluid dynamics (CFD to perform the aerodynamics characteristic of rotor wind turbines. The counter rotating wind turbines (CRWT is designed with front rotor diameter of 0.23 m and rear rotor diameter of 0.40 m. In this research, the wind velocity is 4.2 m/s and variation ratio between front rotor and rear rotor (D1/D2 are 0.65; 0.80; 1.20; 1.40; and 1.60 with axial distance (Z/D2 0.20 m. The result of this research indicated that the variation diameter on front rotor influence the aerodynamics performance of counter rotating wind turbines.
Tilt angles and positive response of head-up tilt test in children with orthostatic intolerance.
Lin, Jing; Wang, Yuli; Ochs, Todd; Tang, Chaoshu; Du, Junbao; Jin, Hongfang
2015-01-01
This study aimed at examining three tilt angle-based positive responses and the time to positive response in a head-up tilt test for children with orthostatic intolerance, and the psychological fear experienced at the three angles during head-up tilt test. A total of 174 children, including 76 boys and 98 girls, aged from 4 to 18 years old (mean 11.3±2.8 years old), with unexplained syncope, were randomly divided into three groups, to undergo head-up tilt test at the angles of 60°, 70° and 80°, respectively. The diagnostic rates and times were analysed, and Wong-Baker face pain rating scale was used to access the children's psychological fear. There were no significant differences in diagnostic rates of postural orthostatic tachycardia syndrome and vasovagal syncope at different tilt angles during the head-up tilt test (p>0.05). There was a significant difference, however, in the psychological fear at different tilt angles utilising the Kruskal-Wallis test (χ2=36.398, ptest (ptest for vasovagal syncope or for postural orthostatic tachycardia syndrome. Hence, it is suggested that a tilt angle of 60° and head-up tilt test time of 45 minutes should be suitable for children with vasovagal syncope.
Analytical methods in rotor dynamics
Dimarogonas, Andrew D; Chondros, Thomas G
2013-01-01
The design and construction of rotating machinery operating at supercritical speeds was, in the 1920s, an event of revolutionary importance for the then new branch of dynamics known as rotor dynamics. In the 1960s, another revolution occurred: In less than a decade, imposed by operational and economic needs, an increase in the power of turbomachinery by one order of magnitude took place. Dynamic analysis of complex rotor forms became a necessity, while the importance of approximate methods for dynamic analysis was stressed. Finally, the emergence of fracture mechanics, as a new branch of applied mechanics, provided analytical tools to investigate crack influence on the dynamic behavior of rotors. The scope of this book is based on all these developments. No topics related to the well-known classical problems are included, rather the book deals exclusively with modern high-power turbomachinery.
Actuator Line/Navier-Stokes Computations for Flows past the Yawed MEXICO Rotor
DEFF Research Database (Denmark)
Shen, Wen Zhong; Sørensen, Jens Nørkær; Yang, H.
2011-01-01
In the paper the Actuator Line/Navier-Stokes model has been used to simulate flows past the yawed MEXICO rotor. The computed loads as well as the velocity field behind the yawed rotor are compared to detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project...
Rotor aerodynamic power limits at low tip speed ratio using CFD
DEFF Research Database (Denmark)
Mikkelsen, Robert Flemming; Sarmast, Sasan; Henningson, Dan
2014-01-01
. In the present work we study in detail, using a CFD actuator line model, the flow behavior for rotors at small tip speed ratios. It is shown that the excessive swirl appearing towards the rotor center at small tip speed ratios generates vortex breakdown, causing a recirculating zone in the wake that limits...
New perspective in the use of soft rotor formula for K = 2 γ-band
Indian Academy of Sciences (India)
The systematic dependence of the softness parameter on energy ratio ... Nuclear structure; γ-band; even Z even N nuclei; soft rotor formula; softness ..... MoI of ground band of nuclei listed in table 2 in rotor model. 80. Pramana – J. Phys., Vol.
Determination of the angle of attack on the mexico rotor using experimental data
DEFF Research Database (Denmark)
Yang, Hua; Shen, Wen Zhong; Sørensen, Jens Nørkær
2010-01-01
characteristics from experimental data on the MEXICO (Model Experiments in controlled Conditions) rotor. Detailed surface pressure and Particle Image Velocimetry (PIV) flow field at different rotor azimuth positions were examined for determining the sectional airfoil data. It is worthwhile noting that the present...
Lackner, M.A.; van Kuik, G.A.M.
2009-01-01
Modern wind turbines have been steadily increasing in size, and have now become very large, with recent models boasting rotor diameters greater than 120 m. Reducing the loads experienced by the wind turbine rotor blades is one means of lowering the cost of energy of wind turbines. Wind turbines are
Comparison of the far wake behind dual rotor and dual disk configurations
DEFF Research Database (Denmark)
Okulov, Valery; Mikkelsen, Robert Flemming; Naumov, I. V.
2016-01-01
wake features for two rotors subjected to different operating and spatial conditions. As a part of this, a comparison with the wake development behind two disks replacing the rotor models was performed to determine the difference between the two wake systems.LDA and Stereo PIV experiments were carried...
Tilt stability of rotating current rings with passive conductors
International Nuclear Information System (INIS)
Zweibel, E.G.; Pomphrey, N.
1984-12-01
We study the combined effects of rotation and resistive passive conductors on the stability of a rigid current in an external magnetic field. We present numerical and approximate analytical solutions to the equations of motion, which show that the ring is always tilt unstable on the resistive decay timescale of the conductors, although rotation and eddy currents may stabilize it over short times. Possible applications of our model include spheromaks which rotate or which are encircled by energetic particle rings
Variable-Speed Power-Turbine for the Large Civil Tilt Rotor
Suchezky, Mark; Cruzen, G. Scott
2012-01-01
Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.
V-22 Osprey Tilt-Rotor Aircraft: Background and Issues for Congress
2009-12-22
perpendicular to spindle shaft ) by not producing the commands requested by the pilot’s controls positions. This tends to significantly reduce the severity of... designed to transport 24 fully equipped Marines at a cruising speed of about 250 knots (about 288 mph), exceeding the performance of the Marine Corps CH...Background and Issues for Congress Congressional Research Service 2 22 is designed to carry 18 troops, with auxiliary fuel tanks increasing the
Márquez, Andrés; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Álvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto
2018-03-01
Simplified analytical models with predictive capability enable simpler and faster optimization of the performance in applications of complex photonic devices. We recently demonstrated the most simplified analytical model still showing predictive capability for parallel-aligned liquid crystal on silicon (PA-LCoS) devices, which provides the voltage-dependent retardance for a very wide range of incidence angles and any wavelength in the visible. We further show that the proposed model is not only phenomenological but also physically meaningful, since two of its parameters provide the correct values for important internal properties of these devices related to the birefringence, cell gap, and director profile. Therefore, the proposed model can be used as a means to inspect internal physical properties of the cell. As an innovation, we also show the applicability of the split-field finite-difference time-domain (SF-FDTD) technique for phase-shift and retardance evaluation of PA-LCoS devices under oblique incidence. As a simplified model for PA-LCoS devices, we also consider the exact description of homogeneous birefringent slabs. However, we show that, despite its higher degree of simplification, the proposed model is more robust, providing unambiguous and physically meaningful solutions when fitting its parameters.
Lifting to cluster-tilting objects in higher cluster categories
Liu, Pin
2008-01-01
In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.
Energy Technology Data Exchange (ETDEWEB)
Xu, X P; Zhang, G Y; Zhang, N; Wang, L Y [Changchun University of Science and Technology, 130022, Changchun (China)
2006-10-15
Tilt angle of scanning mirror is one of the important qualifications of performance measurement on the earth surface for swing scanning mode infrared the earth sensor. In order to settle the problem of measuring the tilt angle of scanning mirror in dynamic, real-time and non-contact, based on laser inspecting technology and CCD probing technology, a method of laser dynamical measurement for tilt angle of scanning mirror of the infrared earth sensor is presented. The measurement system developed in this paper can accomplish the dynamic and static laser non-contact measurement for the parameters of scanning mirror such as tilt angle, swing frequency, etc. In this paper the composition and overall structure of system are introduced. Emphasis on analyzing and discussing the theory of dynamically measuring tilt angle of scanning mirror, the problems of data processing and error correction are settled by established mathematic model of system. The accuracy of measurement system is verified by experiment, the results indicated that measurement range of system for tilt angle is 0{approx}{+-}12{sup 0}, accuracy of dynamic and static measurement is less than {+-}0.05{sup 0}, this method of dynamically measuring tilt angle is suitable.
Analysis and Optimization of Wireless Power Transfer Efficiency Considering the Tilt Angle of a Coil
Directory of Open Access Journals (Sweden)
Wei Huang
2018-01-01
Full Text Available Wireless power transfer (WPT based on magnetic resonant coupling is a promising technology in many industrial applications. Efficiency of the WPT system usually depends on the tilt angle of the transmitter or the receiver coil. This work analyzes the effect of the tilt angle on the efficiency of the WPT system with horizontal misalignment. The mutual inductance between two coils located at arbitrary positions with tilt angles is calculated using a numerical analysis based on the Neumann formula. The efficiency of the WPT system with a tilted coil is extracted using an equivalent circuit model with extracted mutual inductance. By analyzing the results, we propose an optimal tilt angle to maximize the efficiency of the WPT system. The best angle to maximize the efficiency depends on the radii of the two coils and their relative position. The calculated efficiencies versus the tilt angle for various WPT cases, which change the radius of RX (r2 = 0.075 m, 0.1 m, 0.15 m and the horizontal distance (y = 0 m, 0.05 m, 0.1 m, are compared with the experimental results. The analytically extracted efficiencies and the extracted optimal tilt angles agree well with those of the experimental results.
Energy characteristics of Darrieus rotor ( review)
Gorelov, D. N.
2010-09-01
Presented below is the review of the results of experimental studies of energy characteristics of Darrieus rotor with vertical rotation axis. Influence of main geometry parameters of the rotor on its energy characteristics has been analyzed. It is shown that Darrieus rotor may have the higher level of energy characteristics than the best propeller wind turbines.
Flywheels Would Compensate for Rotor Imbalance
Hrastar, J. A. S.
1982-01-01
Spinning flywheels within rotor can null imbalance forces in rotor. Flywheels axes are perpendicular to each other and to rotor axis. Feedback signals from accelerometers or strain gages in platform control flywheel speeds and rotation directions. Concept should be useful for compensating rotating bodies on Earth. For example, may be applied to large industrial centrifuge, particularly if balance changes during operation.
Directory of Open Access Journals (Sweden)
Amjad M. J. Umari
2018-01-01
Full Text Available Underpressures (subhydrostatic heads in the Paleozoic units underlying the Great Plains of North America are a consequence of Cenozoic uplift of the area. Based on tectonostratigraphic data, we have developed a cumulative uplift history with superimposed periods of deposition and erosion for the Great Plains for the period from 40 Ma to the present. Uplift, deposition, and erosion on an 800 km geologic cross-section extending from northeast Colorado to eastern Kansas is represented in nine time-stepped geohydrologic models. Sequential solution of the two-dimensional diffusion equation reveals the evolution of hydraulic head and underpressure in a changing structural environment after 40 Ma, culminating in an approximate match with the measured present-day values. The modeled and measured hydraulic head values indicate that underpressures increase to the west. The 2 to 0 Ma model indicates that the present-day hydraulic head values of the Paleozoic units have not reached steady state. This result is significant because it indicates that present-day hydraulic heads are not at equilibrium, and underpressures will increase in the future. The pattern uncovered by the series of nine MODFLOW models is of increased underpressures with time. Overall, the models indicate that tectonic uplift explains the development of underpressures in the Great Plains.
Analysis, design and elastic tailoring of composite rotor blades
Rehfield, Lawrence W.; Atilgan, Ali R.
1987-01-01
The development of structural models for composite rotor blades is summarized. The models are intended for use in design analysis for the purpose of exploring the potential of elastic tailoring. The research was performed at the Center for Rotary Wing Aircraft Technology.
Direct cone beam SPECT reconstruction with camera tilt
International Nuclear Information System (INIS)
Jianying Li; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E.; Zongjian Cao; Tsui, B.M.W.
1993-01-01
A filtered backprojection (FBP) algorithm is derived to perform cone beam (CB) single-photon emission computed tomography (SPECT) reconstruction with camera tilt using circular orbits. This algorithm reconstructs the tilted angle CB projection data directly by incorporating the tilt angle into it. When the tilt angle becomes zero, this algorithm reduces to that of Feldkamp. Experimentally acquired phantom studies using both a two-point source and the three-dimensional Hoffman brain phantom have been performed. The transaxial tilted cone beam brain images and profiles obtained using the new algorithm are compared with those without camera tilt. For those slices which have approximately the same distance from the detector in both tilt and non-tilt set-ups, the two transaxial reconstructions have similar profiles. The two-point source images reconstructed from this new algorithm and the tilted cone beam brain images are also compared with those reconstructed from the existing tilted cone beam algorithm. (author)
Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet
Directory of Open Access Journals (Sweden)
Qijun ZHAO
2017-12-01
Full Text Available The effects of synthetic jet control on unsteady dynamic stall over rotor airfoil are investigated numerically. A moving-embedded grid method and an Unsteady Reynolds Averaged Navier-Stokes (URANS solver coupled with k-Ï Shear Stress Transport (SST turbulence model are established for predicting the complex flowfields of oscillatory airfoil under jet control. Additionally, a velocity boundary condition modeled by sinusoidal function has been developed to fulfill the perturbation effect of periodic jet. The validity of present CFD method is evaluated by comparisons of the calculated results of baseline dynamic stall case for rotor airfoil and jet control case for VR-7B airfoil with experimental data. Then, parametric analyses are conducted emphatically for an OA212 rotor airfoil to investigate the effects of jet control parameters (jet location, dimensionless frequency, momentum coefficient, jet angle, jet type and dual-jet on dynamic stall characteristics of rotor airfoil. It is demonstrated by the calculated results that efficiency of jet control could be improved with specific momentum coefficient and jet angle when the jet is located near separation point of rotor airfoil. Furthermore, the dual-jet could improve control efficiency more obviously on dynamic stall of rotor airfoil with respect to the unique jet, and the influence laws of dual-jetâs angles and momentum coefficients on control effects are similar to those of the unique jet. Finally, unsteady aerodynamic characteristics of rotor via synthetic jet which is located on the upper surface of rotor blade in forward flight are calculated, and asÂ a result, the aerodynamic characteristics of rotor are improved compared with the baseline. The results indicate that synthetic jet has the capability in improving aerodynamic characteristics of rotor. Keywords: Airfoil, Dynamic stall characteristics, Flow control, Moving-embedded grid methodology, Navier-Stokes equations, Parametric
Linear dynamic coupling in geared rotor systems
David, J. W.; Mitchell, L. D.
1986-01-01
The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.
Aerodynamic optimization of wind turbine rotor using CFD/AD method
Cao, Jiufa; Zhu, Weijun; Wang, Tongguang; Ke, Shitang
2018-05-01
The current work describes a novel technique for wind turbine rotor optimization. The aerodynamic design and optimization of wind turbine rotor can be achieved with different methods, such as the semi-empirical engineering methods and more accurate computational fluid dynamic (CFD) method. The CFD method often provides more detailed aerodynamics features during the design process. However, high computational cost limits the application, especially for rotor optimization purpose. In this paper, a CFD-based actuator disc (AD) model is used to represent turbulent flow over a wind turbine rotor. The rotor is modeled as a permeable disc of equivalent area where the forces from the blades are distributed on the circular disc. The AD model is coupled with a Reynolds Averaged Navier-Stokes (RANS) solver such that the thrust and power are simulated. The design variables are the shape parameters comprising the chord, the twist and the relative thickness of the wind turbine rotor blade. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results showed that the optimization framework can be effectively and accurately utilized in enhancing the aerodynamic performance of the wind turbine rotor.
Directory of Open Access Journals (Sweden)
Han Dong
2015-10-01
Full Text Available To reduce the pitch link loads of variable speed rotors, variable tuning frequency fluidlastic isolators are proposed. This isolator utilizes the variation of centrifugal force due to the change of rotor speed to change the tuning port area ratio, which can change the tuning frequency of the isolator. A rotor model including the model of fluidlastic isolator is coupled with a fuselage model to predict the steady responses of the rotor system in forward flight. The aeroelastic analyses indicate that distinct performance improvement in pitch link load control can be achieved by the utilization of variable frequency isolators compared with the constant tuning frequency isolators. The 4/rev (per revolution pitch link load is observed to be reduced by 87.6% compared with the increase of 56.3% by the constant frequency isolator, when the rotor speed is reduced by 16.7%. The isolation ability at different rotor speeds in different flight states is investigated. To achieve overall load reduction within the whole range of rotor speed, the strategy of the variation of tuning frequency is adjusted. The results indicate that the 4/rev pitch link load within the whole rotor speed range is decreased.
Directory of Open Access Journals (Sweden)
Adilson Pacheco de Souza
2010-04-01
Full Text Available O objetivo deste trabalho foi avaliar o desempenho de modelos isotrópicos de estimativa do total de radiação incidente em superfícies inclinadas e propor estimativas com base nas correlações entre os índices de claridade horizontais e inclinados, em diferentes condições de cobertura de céu, em Botucatu, SP. Foram avaliadas superfícies com inclinação de 12,85º, 22,85º e 32,85º, pelos modelos isotrópicos propostos por Liu & Jordan, Revfeim, Jimenez & Castro, Koronakis, a teoria Circunsolar, e a correlação entre os índices de claridade horizontais e inclinados, para diferentes condições de cobertura de céu. O banco de dados de radiação global utilizado corresponde ao período de 1998 a 2007, com intervalos de 4/1998 a 8/2001 para a inclinação de 22,85º, de 9/2001 a 2/2003 para 12,85º e de 1/2004 a 12/2007 para 32,85º. O desempenho dos modelos foi avaliado pelos indicadores estatísticos erro absoluto médio, raiz quadrada do quadrado médio do erro e índice "d" de Wilmott. Os modelos de Liu & Jordan, Koronakis e de Revfeim apresentaram os melhores desempenhos em dias nublados, em todas as inclinações. As coberturas de céu parcialmente difuso e parcialmente aberto, nos maiores ângulos de inclinação, apresentaram as maiores dispersões entre valores estimados e medidos, independentemente do modelo. As equações estatísticas apresentaram bons resultados em aplicações com agrupamentos de dados mensais.The objective of this work was to evaluate the performance of isotropic models estimative of the global radiation on tilted surfaces and to propose estimations based on correlation between the clearness index for horizontal and tilted surfaces, for different sky conditions, in Botucatu, SP, Brazil. The isotropic model proposed by Liu & Jordan, Revfeim, Jimenez & Castro, Koronakis, the Circunsolar theory and the correlation between the clearness index for horizontal and tilted surfaces, for different sky conditions
Profile stabilization of tilt mode in a Field Reversed Configuration
Energy Technology Data Exchange (ETDEWEB)
Cobb, J.W.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Barnes, D.C. [Los Alamos National Lab., NM (United States)
1993-06-01
The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.
Profile stabilization of tilt mode in a Field Reversed Configuration
International Nuclear Information System (INIS)
Cobb, J.W.; Tajima, T.
1993-06-01
The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P(Ψ), are chosen, including ''hollow'' profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, β sep . The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed
On the Design of Tilting-Pad Thrust Bearings
DEFF Research Database (Denmark)
Heinrichson, Niels
2007-01-01
Pockets are often machined in the surfaces of tilting-pad thrust bearings to allow for hydrostatic jacking in the start-up phase. Pockets and other recesses in the surfaces of bearing pads influence the pressure distribution and thereby the position of the pivot resulting in the most advantageous...... based on the Reynolds equation are used. They include the effects of variations of viscosity with temperature and the deformation of the bearing pads due to pressure and thermal gradients. The models are validated using measurements. Tilting-pad bearings of standard design are studied and the influences...... of the friction loss. Both this bearing and the bearing design with enclosed recesses in the high-pressure regions of the pads suffer from a higher sensitivity to the position of the pivot. The design of such bearing is therefore no trivial task....
Liquid Self-Balancing Device Effects on Flexible Rotor Stability
Directory of Open Access Journals (Sweden)
Leonardo Urbiola-Soto
2013-01-01
Full Text Available Nearly a century ago, the liquid self-balancing device was first introduced by M. LeBlanc for passive balancing of turbine rotors. Although of common use in many types or rotating machines nowadays, little information is available on the unbalance response and stability characteristics of this device. Experimental fluid flow visualization evidences that radial and traverse circulatory waves arise due to the interaction of the fluid backward rotation and the baffle boards within the self-balancer annular cavity. The otherwise destabilizing force induced by trapped fluids in hollow rotors, becomes a stabilizing mechanism when the cavity is equipped with adequate baffle boards. Further experiments using Particle Image Velocimetry (PIV enable to assess the active fluid mass fraction to be one-third of the total fluid mass. An analytical model is introduced to study the effects of the active fluid mass fraction on a flexible rotor supported by flexible supports excited by bwo different destabilizing mechanisms; rotor internal friction damping and aerodynamic cross-coupling. It is found that the fluid radial and traverse forces contribute to the balancing action and to improve the rotor stability, respectively.
A bistable mechanism for chord extension morphing rotors
Johnson, Terrence; Frecker, Mary; Gandhi, Farhan
2009-03-01
Research efforts have shown that helicopter rotor blade morphing is an effective means to improve flight performance. Previous example of rotor blade morphing include using smart-materials for trailing deflection and rotor blade twist and tip twist, the development of a comfortable airfoil using compliant mechanisms, the use of a Gurney flap for air-flow deflection and centrifugal force actuated device to increase the span of the blade. In this paper we explore the use of a bistable mechanism for rotor morphing, specifically, blade chord extension using a bistable arc. Increasing the chord of the rotor blade is expected to generate more lift-load and improve helicopter performance. Bistable or "snap through" mechanisms have multiple stable equilibrium states and are a novel way to achieve large actuation output stroke. Bistable mechanisms do not require energy input to maintain a stable equilibrium state as both states do not require locking. In this work, we introduce a methodology for the design of bistable arcs for chord morphing using the finite element analysis and pseudo-rigid body model, to study the effect of different arc types, applied loads and rigidity on arc performance.
Patterns of the Rotor-over-Stator Rolling under Change in the Damping Components
Shatokhin, V. F.
2018-03-01
As experimental studies show, the rubbing of the rotor against the structure usually excites harmonics of different frequencies. In high-frequency regions, the power of the vibration signal appears to be considerable. The rotor—supports—stator system is in an unstable equilibrium state during the contact interaction between the rotor and the stator. The forces exerted on the rotor facilitate the excitation of the asynchronous rolling and its damping. The forces have been determined that facilitate the excitation of the progressive and retrograde rotor precession. The consideration of these forces in the algorithm for modeling the rotor-over-stator rolling development allows investigation of the impact of the components of the above forces on the behavior of the rotor system. The initial excitation—disturbance of the normal operation—of the rotor and subsequent unsteady oscillations of it result from sudden imbalance in the second span. The results of numerical modeling of the rubbing in the second span and the rotor-over-stator rolling upon change in the damping components of secondary (gyroscopic) components b ij ( i ≠ j) of the damping matrix are presented for the rotor on three bearing-supports considering the synergetic effect of the forces of various types exerted on the rotor. It is shown that change in one of the parameters of the excitation forces leads to ambiguity of the pattern (manifestation form) of the asynchronous rotor-over-stator rolling and proves the existence of more than one states towards which the rotor—supports—stator system tends. In addition to the rolling with a constant rotor—stator contact, oscillations of the rotor develop in the direction perpendicular to the common trajectory of the precession motion of the rotor's center with transition to the vibro-impact motion mode. The oscillations of the rotor tend towards the symmetry center of the system (the stator bore center). The reason is the components of the stiffness
Egolf, T. A.; Landgrebe, A. J.
1982-01-01
A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.
Application of a system modification technique to dynamic tuning of a spinning rotor blade
Spain, C. V.
1987-01-01
An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.
Design optimization for active twist rotor blades
Mok, Ji Won
This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to
Rotor for a brushless micromotor
Gilles, P.-A.; Delamare, J.; Cugat, O.
2002-04-01
Synchronous planar micromotors are studied at LEG, with diameters ranging from φ 3 to φ 8 mm. They combine state-of-the-art collective means of fabrication with watch industry techniques. This paper describes the design, simulation, fabrication and magnetisation of disc-shaped SmCo rotors with several axial pairs of poles.
International Nuclear Information System (INIS)
Singh, M.; Pradeep Kumar; Singh, Y.; Varshney, A.K.; Gupta, D.K.
2014-01-01
We undertake the present work to treat 232 Th with a soft rotor formula used recently by C. Bihari et. al for γ-band and modified by J.B. Gupta et. al. It describes energy in terms of moment of inertia and softness parameter
Dynamic Analysis of Composite Rotors
Directory of Open Access Journals (Sweden)
S. P. Singh
1996-01-01
accounted for. Material damping is also taken into account. The layerwise theory is compared with conventionally used equivalent modulus beam theory. Some interesting case studies are presented. The effect of various parameters on dynamic behavior and stability of a composite rotor is presented.
Energy Technology Data Exchange (ETDEWEB)
Jacques, R.; Le Quere, P.; Daube, O. [Centre National de la Recherche Scientifique (CNRS), 91 - Orsay (France)
1997-12-31
Turbulent flows between a fixed disc and a rotating disc are encountered in various applications like turbo-machineries or torque converters of automatic gear boxes. These flows are characterised by particular physical phenomena mainly due to the effects of rotation (Coriolis and inertia forces) and thus, classical k-{epsilon}-type modeling gives approximative results. The aim of this work is to study these flows using direct numerical simulation in order to provide precise information about the statistical turbulent quantities and to improve the k-{epsilon} modeling in the industrial MATHILDA code of the ONERA and used by SNECMA company (aerospace industry). The results presented are restricted to the comparison between results obtained with direct simulation and results obtained with the MATHILDA code in the same configuration. (J.S.) 8 refs.
Directory of Open Access Journals (Sweden)
Cheng-Wei Fei
2014-01-01
Full Text Available To improve the diagnosis capacity of rotor vibration fault in stochastic process, an effective fault diagnosis method (named Process Power Spectrum Entropy (PPSE and Support Vector Machine (SVM (PPSE-SVM, for short method was proposed. The fault diagnosis model of PPSE-SVM was established by fusing PPSE method and SVM theory. Based on the simulation experiment of rotor vibration fault, process data for four typical vibration faults (rotor imbalance, shaft misalignment, rotor-stator rubbing, and pedestal looseness were collected under multipoint (multiple channels and multispeed. By using PPSE method, the PPSE values of these data were extracted as fault feature vectors to establish the SVM model of rotor vibration fault diagnosis. From rotor vibration fault diagnosis, the results demonstrate that the proposed method possesses high precision, good learning ability, good generalization ability, and strong fault-tolerant ability (robustness in four aspects of distinguishing fault types, fault severity, fault location, and noise immunity of rotor stochastic vibration. This paper presents a novel method (PPSE-SVM for rotor vibration fault diagnosis and real-time vibration monitoring. The presented effort is promising to improve the fault diagnosis precision of rotating machinery like gas turbine.
Power Properties of Two Interacting Wind Turbine Rotors
DEFF Research Database (Denmark)
Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær
2016-01-01
In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Both....... The resulting power capacity has been studied and analyzed at different rotor positions and a range of tip speed ratios from 2 to 8 and a simple algebraic relationship between the velocity deficit in the wake of the front turbine and the power of the second turbine was found, when both rotors have the coaxial...
Power Properties of Two Interacting Wind Turbine Rotors
DEFF Research Database (Denmark)
Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær
2017-01-01
In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Both....... The resulting power capacity has been studied and analyzed at different rotor positions and a range of tip-speed ratios from 2 to 8, and a simple algebraic relationship between the velocity deficit in the wake of the front turbine and the power of the second turbine was found, when both rotors have the coaxial...
Analysis of fixed tilt and sun tracking photovoltaic–micro wind based hybrid power systems
International Nuclear Information System (INIS)
Sinha, Sunanda; Chandel, S.S.
2016-01-01
Graphical abstract: 6 kW_p photovoltaic–micro wind based hybrid power system analysis in a Indian Western Himalayan location. - Highlights: • Power generation by a roof mounted photovoltaic–micro wind hybrid system is explored. • Optimum hybrid configurations using fixed and sun tracking photovoltaic systems are determined. • Analysis of hybrid systems with optimally tilted and different sun tracking systems is presented. • Two axis sun tracking systems are found to generate 4.88–26.29% more energy than fixed tilt system. • Hybrid system installed at optimum tilt angle is found to be cost effective than a sun tracking system. - Abstract: In this study fixed tilt and sun tracking photovoltaic based micro wind hybrid power systems are analyzed along with determining the optimum configurations for a 6 kW_p roof mounted micro wind based hybrid system using fixed and tracking photovoltaic systems to enhance the power generation potential in a low windy Indian hilly terrain with good solar resource. The main objective of the study is to enhance power generation by focusing on photovoltaic component of the hybrid system. A comparative power generation analysis of different configurations of hybrid systems with fixed tilt, monthly optimum tilt, yearly optimum tilt and 6 different sun tracking photovoltaic systems is carried out using Hybrid Optimization Model for Electric Renewables. Monthly and seasonal optimum tilt angles determined for the location vary between 0° and 60° with annual optimum tilt angle as 29.25°. The optimum configurations for all sun tracking systems except for the two axis tracking system is found to be 7 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The optimum configuration for two axis tracking system and two types of fixed tilt systems, is found to be a 8 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The results show that horizontal axis with
Paimushin, V. N.; Shishkin, V. M.
2016-01-01
A rod-shape finite element with twelve degrees of freedom is proposed for modeling the elastic and damping properties of rotor blades with regard to their geometric stiffness caused by rotation of the rotor. A model of coupling of the torsion bar with blades is developed based on the hypothesis of linear deplanation of the connecting section of the torsion bar and a special transition element to ensure the compatibility of displacements of the torsion bar and blades upon their vibrations in the flapping and rotation planes. Numerical experiments were carried out to test and assess the validity of the model developed. Suggestions are made for ensuring unconditional stability of the iteration method in a subspace in determining the specified number of modes and frequencies of free vibrations of the torsion bar-blade structure.
Directory of Open Access Journals (Sweden)
Pierre Tchakoua
2015-09-01
Full Text Available Models are crucial in the engineering design process because they can be used for both the optimization of design parameters and the prediction of performance. Thus, models can significantly reduce design, development and optimization costs. This paper proposes a novel equivalent electrical model for Darrieus-type vertical axis wind turbines (DTVAWTs. The proposed model was built from the mechanical description given by the Paraschivoiu double-multiple streamtube model and is based on the analogy between mechanical and electrical circuits. This work addresses the physical concepts and theoretical formulations underpinning the development of the model. After highlighting the working principle of the DTVAWT, the step-by-step development of the model is presented. For assessment purposes, simulations of aerodynamic characteristics and those of corresponding electrical components are performed and compared.
Reducing friction in tilting-pad bearings by the use of enclosed recesses
DEFF Research Database (Denmark)
Heinrichson, Niels; Santos, Ilmar
2008-01-01
A three-dimensional thermoelastohydrodynamic model is applied to the analysis of tilting-pad bearings with spherical pivots and equipped with deep recesses in the high-pressure regions. A potential for a 10-20% reduction in the friction loss compared to conventional plain bearing pads is documented....... Design suggestions minimizing the power loss are given for various length-to-width ratios. The tilting angle in the sliding direction is more sensitive to correct positioning of the pivot point than conventional bearing pads. Improving the performance by equipping a tilting-pad bearing with a deep recess...... therefore requires accurate analysis and design of the bearing. Similarly, a high sensitivity perpendicular to the sliding direction suggests that this method of reducing friction is more feasible when using line pivots or spring beds than when using spherical pivots for controlling the tilting angle....
Properties of HTS YBCO thin films deposited on tilted NdGaO{sub 3} substrates
Energy Technology Data Exchange (ETDEWEB)
Nurgaliev, T. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria)]. E-mail: timur@ie.bas.bg; Donchev, T. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Mateev, E. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Miteva, S. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Mozhaev, P.B. [Institute of Physics and Technology RAS, Nakhimovsky Ave. 36, 117218 Moscow (Russian Federation); Mozhaeva, J.E. [Institute of Physics and Technology RAS, Nakhimovsky Ave. 36, 117218 Moscow (Russian Federation)
2005-03-15
Thin YBa{sub 2}Cu{sub 3}O{sub 7} films were fabricated by 2-opposed DC magnetron sputtering onto NdGaO{sub 3} substrates, tilted from standard (1 1 0) orientation by 0-26 deg , and their surface morphology and electrical characteristics were investigated. Normal state resistivity (at 295 K) and microwave surface resistance (at 77 K and {approx}8 GHz) of the films demonstrated anisotropy, introduced by the tilted substrate, and some improvement of the superconducting parameters of the films was observed at small tilt angles ({theta} {approx} 1.5-3 deg ). The increase of the microwave surface resistance at high tilt angles for the current tracks, perpendicular to the steps of the substrate, was described in the framework of a simple model, which takes into account the complex conductivity of the film and the weak links between the film terraces.
Properties of HTS YBCO thin films deposited on tilted NdGaO3 substrates
International Nuclear Information System (INIS)
Nurgaliev, T.; Donchev, T.; Mateev, E.; Miteva, S.; Mozhaev, P.B.; Mozhaeva, J.E.
2005-01-01
Thin YBa 2 Cu 3 O 7 films were fabricated by 2-opposed DC magnetron sputtering onto NdGaO 3 substrates, tilted from standard (1 1 0) orientation by 0-26 deg , and their surface morphology and electrical characteristics were investigated. Normal state resistivity (at 295 K) and microwave surface resistance (at 77 K and ∼8 GHz) of the films demonstrated anisotropy, introduced by the tilted substrate, and some improvement of the superconducting parameters of the films was observed at small tilt angles (θ ∼ 1.5-3 deg ). The increase of the microwave surface resistance at high tilt angles for the current tracks, perpendicular to the steps of the substrate, was described in the framework of a simple model, which takes into account the complex conductivity of the film and the weak links between the film terraces
Why is it so difficult to tilt Uranus?
Rogoszinski, Zeeve; Hamilton, Douglas
2018-04-01
The leading hypothesis for the origin of Uranus' large obliquity (98°) is a polar strike from an Earth sized object, but to tilt Saturn similarly would require an impactor roughly 10x as massive. A more likely cause for Saturn's tilt (27°) is a spin-orbit resonance with Neptune (Ward & Hamilton, 2004; Hamilton & Ward, 2004); might the same process work for Uranus? It initially seems unlikely, as at its current location Uranus' axial precession period is too long to resonate with any of the giant planets' orbital precession frequencies. If we place Uranus between Jupiter and Saturn, however, then Uranus' spin axis would precess much more quickly. Thommes et al. (1999, 2002, 2003) first postulated that Uranus and Neptune were formed between Jupiter and Saturn because the conditions there allow the ice giants to be built rapidly. A resonance for our closer Uranus still requires a distant planet, nevertheless, a condition that can be satisfied if Neptune is ejected from Jupiter and Saturn first with Uranus following significantly later. This scenario, while contrived, is consistent with at least some versions of the Nice model and allows us to fully test the resonance hypothesis. We discovered that even with these optimistic assumptions, i) a resonance capture requires a migration timescale on the order of 100 Myr, and ii) it is impossible to tilt Uranus past 90°. Increasing Neptune's migration speed precludes resonant capture, and instead results in a resonance kick. In the most favorable cases, a resonance kick could raise Uranus' obliquity by 40° on a time span of about 50 Myr. We conclude that even in our best scenario, a resonance cannot fully account for Uranus' tilt. We have investigated some scenarios that include both resonances and collisions, and will report on our findings.
Quad-rotor flight path energy optimization
Kemper, Edward
Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.
Energy Technology Data Exchange (ETDEWEB)
Werner, Ulrich [Siemens AG, Nuernberg (Germany). Industry, Drive Technologies, Large Drives, Industry Development
2010-03-15
The paper shows a computational methodology for calculating the relative shaft vibrations in the sleeve bearings of two-pole induction machines regarding excitation due to an electromagnetic force, which is caused by static rotor eccentricity. For a worst case calculation concerning the height of exciting magnetic force electromagnetic field damping effects and magnetic resistance concerning the homopolar flux are neglected. The calculated magnetic force, acting on the rotor core with double supply frequency in direction of the smallest air gap, is implemented into a finite element rotor dynamic model. With this model the influence of the rotor speed as well as influence of the direction of the magnetic force on the relative shaft displacements can be analyzed. Therefore the paper shows a computational methodology to check, whether the rotor-bearing design is sensitive for electromagnetic excitations due to static rotor eccentricity and prepares therefore the possibility to introduce improvements during the design phase of the induction motor. (orig.)
Hybrid Configuration of Darrieus and Savonius Rotors for Stand-alone Power Systems
Wakui, Tetsuya; Tanzawa, Yoshiaki; Hashizume, Takumi; Nagao, Toshio
The suitable hybrid configuration of Darrieus lift-type and Savonius drag-type rotors for stand-alone wind turbine-generator systems is discussed using our dynamic simulation model. Two types of hybrid configurations are taken up: Type-A installs the Savonius rotor inside the Darrieus rotor and Type-B installs the Savonius rotor outside the Darrieus rotor. The computed results of the output characteristics and the dynamic behaviors of the system operated at the maximum power coefficient points show that Type-A, which has fine operating behavior to wind speed changes and can be compactly designed because of a shorter rotational shaft, is an effective way for self-controlled stand-alone small-scale systems.
International Nuclear Information System (INIS)
Wang, C.-C.; Jang, M.-J.; Yeh, Y.-L.
2007-01-01
This paper studies the bifurcation and nonlinear behaviors of a flexible rotor supported by relative short gas film bearings. A time-dependent mathematical model for gas journal bearings is presented. The finite difference method with successive over relation method is employed to solve the Reynolds' equation. The system state trajectory, Poincare maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor and journal center in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behavior comprising periodic and subharmonic response of the rotor and journal center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and rotational velocity. The results of this study contribute to a further understanding of the nonlinear dynamics of gas film rotor-bearing systems
Directory of Open Access Journals (Sweden)
Zhentao Wang
2012-01-01
Full Text Available Fault detection and isolation (FDI in rotor systems often faces the problem that the system dynamics is dependent on the rotor rotary frequency because of the gyroscopic effect. In unbalance excited rotor systems, the continuously distributed unbalances are hard to be determined or estimated accurately. The unbalance forces as disturbances make fault detection more complicated. The aim of this paper is to develop linear time invariant (LTI FDI methods (i.e., with constant parameters for rotor systems under consideration of gyroscopic effect and disturbances. Two approaches to describe the gyroscopic effect, that is, as unknown inputs and as model uncertainties, are investigated. Based on these two approaches, FDI methods are developed and the results are compared regarding the resulting FDI performances. Results are obtained by the application in a rotor test rig. Restrictions for the application of these methods are discussed.
Turbulent Flow Characteristics and Dynamics Response of a Vertical-Axis Spiral Rotor
Directory of Open Access Journals (Sweden)
Yuli Wang
2013-05-01
Full Text Available The concept of a vertical-axis spiral wind rotor is proposed and implemented in the interest of adapting it to air flows from all directions and improving the rotor’s performance. A comparative study is performed between the proposed rotor and conventional Savonius rotor. Turbulent flow features near the rotor blades are simulated with Spalart-Allmaras turbulence model. The torque coefficient of the proposed rotor is satisfactory in terms of its magnitude and variation through the rotational cycle. Along the height of the rotor, distinct spatial turbulent flow patterns vary with the upstream air velocity. Subsequent experiments involving a disk generator gives an in-depth understanding of the dynamic response of the proposed rotor under different operation conditions. The optimal tip-speed ratio of the spiral rotor is 0.4–0.5, as is shown in both simulation and experiment. Under normal and relative-motion flow conditions, and within the range of upstream air velocity from 1 to 12 m/s, the output voltage of the generator was monitored and statistically analyzed. It was found that normal air velocity fluctuations lead to a non-synchronous correspondence between upstream air velocity and output voltage. In contrast, the spiral rotor’s performance when operating from the back of a moving truck was significantly different to its performance under the natural conditions.
Estimation of Rotor Effective Wind Speed: A Comparison
DEFF Research Database (Denmark)
Soltani, Mohsen; Knudsen, Torben; Svenstrup, Mikael
2013-01-01
Modern wind turbine controllers use wind speed information to improve power production and reduce loads on the turbine components. The turbine top wind speed measurement is unfortunately imprecise and not a good representative of the rotor effective wind speed. Consequently, many different model...... aero-servo-elastic turbine simulations and real turbine field experiments in different wind scenarios....
Rotor Rolling over a Water-Lubricated Bearing
Shatokhin, V. F.
2018-02-01
The article presents the results of studying the effect of forces associated with secondary damping coefficients (gyroscopic forces) on the development of asynchronous rolling of the rotor over a water-lubricated bearing. The damping forces act against the background of other exciting forces in the rotor-supports system, in particular, the exciting forces of contact interaction between the rotor and bearing. The article considers a rotor resting on supports rubbing against the bearing and the occurrence of self-excited vibration in the form of asynchronous roll-over. The rotor supports are made in the form of plain-type water-lubricated bearings. The plain-type bearing's lubrication stiffness and damping forces are determined using the wellknown algorithms taking into account the physical properties of water serving as lubrication of the bearing. The bearing sliding pair is composed of refractory materials. The lubrication layer in such bearings is thinner than that used in oil-lubricated bearings with white metal lining, and there is no white metal layer in waterlubricated bearings. In case of possible deviations from normal operation of the installation, the rotating rotor comes into direct contact with the liner's rigid body. Unsteady vibrations are modeled using a specially developed software package for calculating the vibration of rotors that rub against the turbine (pump) stator elements. The stiffness of the bearing liner with the stator support structure is specified by a dependence in the force-deformation coordinate axes. In modeling the effect of damping forces, the time moment corresponding to the onset of asynchronous rolling-over with growing vibration amplitudes is used as the assessment criterion. With a longer period of time taken for the rolling-over to develop, it becomes possible to take the necessary measures in response to actuation of the equipment set safety system, which require certain time for implementing them. It is shown that the
Jain, Anuj Kumar; Rastogi, Vikas; Agrawal, Atul Kumar
2018-01-01
The main focus of this paper is to study effects of asymmetric stiffness on parametric instabilities of multi-rotor-system through extended Lagrangian formalism, where symmetries are broken in terms of the rotor stiffness. The complete insight of dynamic behaviour of multi-rotor-system with asymmetries is evaluated through extension of Lagrangian equation with a case study. In this work, a dynamic mathematical model of a multi-rotor-system through a novel approach of extension of Lagrangian mechanics is developed, where the system is having asymmetries due to varying stiffness. The amplitude and the natural frequency of the rotor are obtained analytically through the proposed methodology. The bond graph modeling technique is used for modeling the asymmetric rotor. Symbol-shakti® software is used for the simulation of the model. The effects of the stiffness of multi-rotor-system on amplitude and frequencies are studied using numerical simulation. Simulation results show a considerable agreement with the theoretical results obtained through extended Lagrangian formalism. It is further shown that amplitude of the rotor increases inversely the stiffness of the rotor up to a certain limit, which is also affirmed theoretically.
Dalli, Uğbreve;ur; Yüksel, Şcedilefaatdin
2011-01-01
An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing condit...
Instability of nuclear wobbling motion and tilted axis rotation
International Nuclear Information System (INIS)
Matsuzaki, Masayuki; Ohtsubo, Shin-Ichi
2004-01-01
We study a possible correspondence between the softening of the wobbling mode and the 'phase transition' of the one-dimensionally rotating mean field to a three-dimensionally rotating one by comparing the properties of the wobbling mode obtained by the one-dimensional cranking model + random phase approximation with the total Routhian surface obtained by the three-dimensional tilted-axis cranking model. The potential surface for the observed wobbling mode excited on the triaxial superdeformed states in 163 Lu is also analyzed
Rotor calculations for neutron spectroscopy
International Nuclear Information System (INIS)
Gobert, G.
1968-01-01
The determination of stress in a rotating disk plane of symmetry normal to the axis of rotation has been studied by a number of investigators. In a recent paper Reich gives an operating process for an analytical solution in an asymmetric rotating disk. In the report we give the calculation of finite difference stress solutions applicable to the two rotating disks. The equations are then programmed for the 360.75 computer by Fortran methods concerning the rotors of choppers. (author) [fr
Material sampling for rotor evaluation
International Nuclear Information System (INIS)
Mercaldi, D.; Parker, J.
1990-01-01
Decisions regarding continued operation of aging rotating machinery must often be made without adequate knowledge of rotor material conditions. Physical specimens of the material are not generally available due to lack of an appropriate sampling technique or the high cost and inconvenience of obtaining such samples. This is despite the fact that examination of such samples may be critical to effectively assess the degradation of mechanical properties of the components in service or to permit detailed examination of microstructure and surface flaws. Such information permits a reduction in the uncertainty of remaining life estimates for turbine rotors to avoid unnecessarily premature and costly rotor retirement decisions. This paper describes the operation and use of a recently developed material sampling device which machines and recovers an undeformed specimen from the surface of rotor bores or other components for metallurgical analysis. The removal of the thin, wafer-like sample has a negligible effect on the structural integrity of these components, due to the geometry and smooth surface finish of the resulting shallow depression. Samples measuring approximately 0.03 to 0.1 inches (0.76 to 2.5 mm) thick by 0.5 to 1.0 inch (1.3 to 2.5 cm) in diameter can be removed without mechanical deformation or thermal degradation of the sample or the remaining component material. The device is operated remotely from a control console and can be used externally or internally on any surface for which there is at least a three inch (7.6 cm) working clearance. Application of the device in two case studies of turbine-generator evaluations are presented
Behavior of Tilted Angle Shear Connectors
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193
Behavior of Tilted Angle Shear Connectors.
Directory of Open Access Journals (Sweden)
Koosha Khorramian
Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.
"Happiness and Education": Tilting at Windmills?
Verducci, Susan
2013-01-01
This essay explores the question: Is Nel Noddings a visionary who sees past the constraints of contemporary education or is she, like Don Quixote, madly tilting at windmills in her description and defense of happiness as an educational aim? Viewing the educational aim of happiness as an ideal raises substantial challenges for the practicality of…
Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels
International Nuclear Information System (INIS)
Lubitz, William David
2011-01-01
Hourly typical meteorological year (TMY3) data was utilized with the Perez radiation model to simulate solar radiation on fixed, azimuth tracking and two axis tracking surfaces at 217 geographically diverse temperate latitude sites across the contiguous United States of America. The optimum tilt angle for maximizing annual irradiation on a fixed south-facing panel varied from being equal to the latitude at low-latitude, high clearness sites, to up to 14 o less than the latitude at a north-western coastal site with very low clearness index. Across the United States, the optimum tilt angle for an azimuth tracking panel was found to be on average 19 o closer to vertical than the optimum tilt angle for a fixed, south-facing panel at the same site. Azimuth tracking increased annual solar irradiation incident on a surface by an average of 29% relative to a fixed south-facing surface at optimum tilt angle. Two axis tracking resulted in an average irradiation increase of 34% relative to the fixed surface. Introduction of manual surface tilt changes during the year produced a greater impact for non-tracking surfaces than it did for azimuth tracking surfaces. Even monthly tilt changes only resulted in an average annual irradiation increase of 5% for fixed panels and 1% for azimuth tracked surfaces, relative to using a single optimized tilt angle in each case. In practice, the decision whether to manually tilt panels requires balancing the added cost in labor and the panel support versus the extra energy generation and the cost value of that energy. A spreadsheet file is available that gives individual results for each of the 217 simulated sites.
A novel method of measuring spatial rotation angle using MEMS tilt sensors
International Nuclear Information System (INIS)
Cao, Jian’an; Zhu, Xin; Zhang, Leping; Wu, Hao
2017-01-01
This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α , the sensor’s swing angle on the measuring plane; β , the angle between the rotation axis and the horizontal plane; and γ , the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°. (paper)
Magnetic domain-wall tilting due to domain-wall speed asymmetry
Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Kim, Joo-Sung; Nam, Yoon-Seok; Hwang, Hyun-Seok; Kim, Duck-Ho; Je, Soong-Geun; Min, Byoung-Chul; Choe, Sug-Bong
2018-04-01
Broken symmetries in diverse systems generate a number of intriguing phenomena and the analysis on such broken symmetries often provides decisive clues for exploring underlying physics in the systems. Recently, in magnetic thin-film systems, the Dzyaloshinskii-Moriya interaction (DMI)—induced by the broken symmetry of structural inversion—accounts for various chiral phenomena, which are of timely issues in spintronics. Here, we report an experimental observation on unexpected tilting of magnetic domain walls (DWs) due to the broken symmetry under the application of the magnetic field transverse to the magnetic wire systems. It has been predicted that the DMI possibly causes such DW tilting in the direction of the energy minimization. However, very interestingly, experimental observation reveals that the DW tilting does not follow the prediction based on the energy minimization, even for the tilting direction. Instead, the DW tilting is governed by the DW speed asymmetry that is initiated by the DW pinning at wire edges. A simple analytic model is proposed in consideration of the DW speed asymmetry at wire edges, which successfully explains the experimental observation of the DW tilting directions and angles, as confirmed by numerical simulation. The present study manifests the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW configuration and consequently, the dynamics.
Klimas, P. C.
1982-05-01
A summary of the progress of modeling the aerodynamic effects on the blades of a Darrieus wind turbine is presented. Interference is discussed in terms of blade/blade wake interaction and improvements in single and multiple stream tube models, of vortex simulations of blades and their wakes, and a hybrid momentum/vortex code to combine fast computation time with interference-describing capabilities. An empirical model has been developed for treating the properties of dynamic stall such as airfoil geometry, Reynolds number, reduced frequency, angle-of-attack, and Mach number. Pitching circulation has been subjected to simulation as potential flow about a two-dimensional flat plate, along with applications of the concepts of virtual camber and virtual incidence, with a cambered airfoil operating in a rectilinear flowfield. Finally, a need to develop a loading model suitable for nonsymmetrical blade sections is indicated, as well as blade behavior in a dynamic, curvilinear regime.
Study on Nonlinear Vibration and Crack Fault of Rotor-bearing-seal Coupling System
Directory of Open Access Journals (Sweden)
Yuegang LUO
2014-02-01
Full Text Available The nonlinear dynamic model of rotor-bearing-seal system with crack in shaft is set up based on the coupling model of nonlinear oil-film force and Muszyska’s nonlinear seal fluid force. The dynamic vibration characteristics of the rotor-bearing-seal system and the effects of physical and structural parameters of labyrinth seal and crack fault on movement character of the rotor were analyzed. The increases of seal length, seal pressure differential, seal radius and axial velocity are in favor of the stability of the system, and it of seal gap and crack depth are not in favor of the stability of the system.
Numerical simulation of turbulent flows past the RoBin helicopter with a four-bladed rotor
Energy Technology Data Exchange (ETDEWEB)
Xu, H.; Mamou, M.; Khalid, M. [National Research Council, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Hongyi.Xu@nrc.ca
2003-07-01
The current paper presents a turbulent flow simulation study past a generic helicopter RoBin with a four-bladed rotor using the Chimera moving grid approach. The aerodynamic performance of the rotor blades and their interactions with the RoBin fuselage are investigated using the k - {omega} SST turbulence model contained in the WIND code. The rotor is configured as a Chimera moving grid in a quasisteady flow field. The rotor blades are rectangular, untapered, linearly twisted and are made from NACA 0012 airfoil profile. The blade motion (rotation and cyclic pitching) schedule is specified in the NASA wind tunnel testing of a generic helicopter RoBin. The aerodynamic radial load distributions in the rotor plane are generated by integrating the pressure on each blade surfaces along the blade chordwise direction. The rotor flow interacts strongly with the flow coming off from the fuselage and thus has a significant impact on helicopter aerodynamic performance. (author)
International Nuclear Information System (INIS)
Xiao Zhen; Yang Guojun; Li Yue; Shi Zhengang; Yu Suyuan
2014-01-01
In this paper, a model for analyzing internal contact stress arid external load of ball bearing from rotor displacement was developed based on the Hertz contact theory and applied to the analysis of the rotor drop test in HTR-10 helium circulator equipped with AMB (Active Magnetic Bearing) to gain a better understanding of auxiliary bearing performance at different stages after the rotor drop. It was shown that the auxiliary bearing can well resist axial impact produced by rotor drop, avoiding of internal severe plastic deformation and damage to the performance of the auxiliary bearing. Rotor's rotary motion and the heat accumulation of the inner ring resulted from the initial acute acceleration are the main contributor of radial load during the rotor idling and may cause the failure of auxiliary bearing. This paper analyzed the influence of this load and confirmed that the auxiliary bearing can still work in its loading limits. (authors)
Gust Response Analysis for Helicopter Rotors in the Hover and Forward Flights
Directory of Open Access Journals (Sweden)
Linpeng Wang
2017-01-01
Full Text Available Dynamic load due to gust for helicopter rotors directly affects the structural stress and flight performance. In case of gust, it may cause the loss of trust force or the increase of deflection for rotors. In current work, an effective coupled aeroelastic model based on a medium-deflection beam theory and a nonlinear unsteady aerodynamic model in the time domain were constructed. Three types of gust in vertical direction were added in the model. The dynamic response and structural load for helicopter rotors under three types of gust were calculated, respectively. Results indicated that when rotors suffer a gust in hover at downward direction, the thrust force on rotor disk would decrease significantly when the gust amplitude increases, which should be paid attention in the design. Among the three gust types with the same gust strength, the maximum instantaneous shear force due to impulse shape gust is the largest. When the rotors suffer a gust in a forward flight, the shear force at the root of rotors would increase with the gust strength first but then it decreases. More attention should be paid to the decrease of thrust force and the increase of structural load in a forward flight.
Rotor Embedded with Shape Memory Alloy Wires
Directory of Open Access Journals (Sweden)
K. Gupta
2000-01-01
Full Text Available In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i increase in Young's modulus of SMA (NITINOL wires when activated, (ii tension in wires because of phase recovery stresses, and (iii variation of support stiffness by three times because of activation of SMA in rotor supports. It is shown by numerical examples that substantial variation in rotor critical speeds can be achieved by a combination of these factors which can be effectively used to avoid resonance during rotor coast up/down.
The Effect of Flowing Water on Turbine Rotor Vibrations
Energy Technology Data Exchange (ETDEWEB)
Jansson, Ida
2010-07-01
There is a lack of standardized rules on how the fluid in the turbine should be included in rotor models of hydraulic machinery. This thesis is an attempt to shed some light on this issue. We approach the problem from two viewpoints, situated at place at a hydropower plant and by mathematical analysis. One goal of the thesis is to develop a measurement system that monitors the instantaneous pressure at several locations of a runner blade on a 10 MW Kaplan prototype in Porjus along Lule river. Paper A outlines the development of the measurement system and the instrumentation of the runner blade. Miniature piezo-resistive pressure transducers were mounted flush to the surface. If instrumentation is successful, the pressure field of the runner blade could be measured simultaneously as the loads and displacements of the guide bearings and the generator. The second objective is concerned with how the motion-induced fluid force affects the dynamic behaviour of the rotor. Inertia and angular momentum of the fluid and shrouding are expected to influence the dynamic behaviour of the turbine. Paper B scrutinizes this assumption by presenting a simple fluid-rotor model that captures the effects of inertia and angular momentum of the fluid on the motion of a confined cylinder. The simplicity of the model allows for powerful analytical solution methods. The results show that fluid inertia, angular momentum and shrouding of hydraulic turbines could have substantial effects on lateral rotor vibrations. This calls for further investigation with a more complex fluid-rotor model that accounts for flexural bending modes.
Rotor design optimization using a free wake analysis
Quackenbush, Todd R.; Boschitsch, Alexander H.; Wachspress, Daniel A.; Chua, Kiat
1993-01-01
The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed.
Strong, Ductile Rotor For Cryogenic Flowmeters
Royals, W. T.
1993-01-01
Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.
A practical approach to flexible rotor balancing
International Nuclear Information System (INIS)
Khan, M.I.; Chohan, G.Y.; Khan, M.Z.
2001-01-01
There are various conventional methods for flexible rotor balancing. These :methods have been applied successfully for balancing cylindrical rotors since long. One of these mostly used is modal balancing. Besides its usefulness, difficulties are encountered when sufficient number of balancing planes are not available under certain conditions where a rotor is enclosed at its both ends by discs. In this work, a practical technique of counter balancing has been introduced. This technique has proved its importance in balancing the rotors. We would discuss efficiency of this technique over the conventional modal balancing. (author)
Variable Speed Rotor System, Phase I
National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...
Thermal state of a turbofan rotor
Energy Technology Data Exchange (ETDEWEB)
Bileka, B D; Diachenko, A M; Orinichev, I S
1988-01-01
Results of an experimental study of the thermal state of a combined turbofan rotor consisting of a peripheral turbine stage and a central fan stage are reported. In particular, attention is given to the effect of gas temperature, air flow rate, and rotation speed on temperature distributions at characteristic points of the rotor. The relative dimensionless temperatures of the turbofan rotor are shown to be constant under all the regimes investigated. An approximate method is proposed for calculating the temperature of the rotor elements, and the results of calculations are compared with experimental data.
Energy from Swastika-Shaped Rotors
Directory of Open Access Journals (Sweden)
McCulloch M. E.
2015-04-01
Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.
Mechanisms of Günther Tulip filter tilting during transfemoral placement.
Matsui, Y; Horikawa, M; Ohta, K; Jahangiri Noudeh, Y; Kaufman, J A; Farsad, K
The purpose of this study was to characterize the mechanisms of Günther Tulip filter (GTF) tilting during transfemoral placement in an experimental model with further validation in a clinical series. In an experimental study, 120 GTF placements in an inferior vena cava (IVC) model were performed using 6 configurations of pre-deployment filter position. The angle between the pre-deployment filter axis and IVC axis, and the proximity of the constrained filter legs to IVC wall prior to deployment were evaluated. The association of those pre-deployment factors with post-deployment filter tilting was analyzed. The association noted in the experimental study was then evaluated in a retrospective clinical series of 21 patients. In the experimental study, there was a significant association between the pre-deployment angle and post-deployment filter tilting (P<0.0001). With a low pre-deployment angle (≤5°), a significant association was noted between filter tilting and the proximity of the constrained filter legs to the far IVC wall (P=0.001). In a retrospective clinical study, a significant association between the pre-deployment angle and post-deployment filter tilting was also noted with a linear regression model (P=0.026). Significant association of the pre-deployment angle with post-deployment GTF tilting was shown in both the experimental and clinical studies. The experimental study also showed that proximity of filter legs is relevant when pre-deployment angle is small. Addressing these factors may result in a lower incidence of filter tilting. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.