WorldWideScience

Sample records for model three-way catalysts

  1. TXRF analysis of aged three way catalysts.

    Science.gov (United States)

    Fernández-Ruiz, R; Galisteo, F Cabello; Larese, C; Granados, M López; Mariscal, R; Fierro, J L G

    2006-04-01

    A methodology for the quantitative analysis of the elements present in car exhaust catalysts by TXRF is described. Some of the most relevant catalytic components (Zr, Rh, Pd) and contaminant elements (P, Pb, Zn, Pt, Ca and Ni) on car Three Way Catalysts were quantified during vehicle aging. The study was conducted along the main axis of a Ford Focus 1.6i catalytic cartridge, aiming to obtain the axial profile of the elements retained or eliminated after more than 59,000 km. The analysis of a fresh Three Way Catalysts (0 km) was also conducted for comparative purposes. The existence of a strong differences for elemental concentration in the interphase between the two blocks of the catalytic cartridge has been quantitatively measured for first time. In addition, the behaviour of the contaminant absorption capacity of both catalytic blocks has been obtained. Finally, the loss of the contaminant elements Pb and Zn to the environment has been proven.

  2. Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts

    Directory of Open Access Journals (Sweden)

    Qinghe Zheng

    2015-10-01

    Full Text Available The rhodium (Rh component in automotive three way catalysts (TWC experiences severe thermal deactivation during fuel shutoff, an engine mode (e.g., at downhill coasting used for enhancing fuel economy. In a subsequent switch to a slightly fuel rich condition, in situ catalyst regeneration is accomplished by reduction with H2 generated through steam reforming catalyzed by Rh0 sites. The present work reports the effects of the two processes on the activity and properties of 0.5% Rh/Al2O3 and 0.5% Rh/CexOy-ZrO2 (CZO as model catalysts for Rh-TWC. A very brief introduction of three way catalysts and system considerations is also given. During simulated fuel shutoff, catalyst deactivation is accelerated with increasing aging temperature from 800 °C to 1050 °C. Rh on a CZO support experiences less deactivation and faster regeneration than Rh on Al2O3. Catalyst characterization techniques including BET surface area, CO chemisorption, TPR, and XPS measurements were applied to examine the roles of metal-support interactions in each catalyst system. For Rh/Al2O3, strong metal-support interactions with the formation of stable rhodium aluminate (Rh(AlO2y complex dominates in fuel shutoff, leading to more difficult catalyst regeneration. For Rh/CZO, Rh sites were partially oxidized to Rh2O3 and were relatively easy to be reduced to active Rh0 during regeneration.

  3. System and method for determining an ammonia generation rate in a three-way catalyst

    Science.gov (United States)

    Sun, Min; Perry, Kevin L; Kim, Chang H

    2014-12-30

    A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.

  4. Development of a transient kinetic model for the CO oxidation by O{sub 2} over a Pt/Rh/CeO{sub 2}/{gamma}-Al{sub 2}O{sub 3} three-way catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nibbelke, Rob H.; Nievergeld, Arthur J.L.; Hoebink, Jozef H.B.J.; Marin, Guy B. [Eindhoven University of Technology, Schuit Institute of Catalysis, Laboratorium voor Chemische Technologie, PO Box 513, 5600 MB Eindhoven (Netherlands)

    1998-12-07

    A transient kinetic model was developed for the CO oxidation by O{sub 2} over a Pt/Rh/CeO{sub 2}/{gamma}-Al{sub 2}O{sub 3} three-way catalyst. The experiments which were modelled consisted of periodically switching between a feed stream containing 0.5mol% CO in helium and a feed stream containing 0.5mol% O{sub 2} in helium, with a frequency from 0.1 to 0.25Hz, in the temperature range 393-433K. These temperatures are representative for cold start conditions. The transient experiments yield information about the reaction mechanism. A transient kinetic model based on elementary reaction steps was developed which describes the experimental data in the above mentioned range of experimental conditions adequately. The kinetic model consists of two monofunctional and one bifunctional contribution. The first monofunctional reaction path comprises competitive adsorption of CO and O{sub 2} on the noble metal surface followed by a surface reaction. The second monofunctional reaction path consists of CO adsorption on an oxygen atom adsorbed on the noble metal surface, followed by a reaction to CO{sub 2}. The bifunctional reaction path involves a reaction between CO adsorbed on the noble metal surface and oxygen from ceria at the noble metal/ceria interface. Also, reversible adsorption of carbon dioxide on the support is taken into account. The kinetic parameters, i.e. preexponential factors and activation energies for the different elementary reaction steps, and the oxygen storage capacity were estimated using multi-response non-linear regression analysis of the oxygen, carbon monoxide and carbon dioxide outlet concentrations

  5. Chemical analysis of used three-way catalysts by total reflection X-ray fluorescence.

    Science.gov (United States)

    Fernández-Ruiz, R; Furió, M; Galisteo, F Cabello; Larese, C; López Granados, M; Mariscal, R; Fierro, J L G

    2002-11-01

    The methodology developed for evaluating, by total reflection X-ray fluorescence, the main elements in used three-way catalysts for cars after more than 59 000 km is described. The analytical method does not require chemical manipulation of the samples, is quick (30 min for sample preparation and 10 min for analysis), precise (between 1% and 10% of variation coefficient), and simple. The two catalytic monoliths contained in the cartridge of a car with more than 59,000 km have been analyzed. The mass relationships between the detected elements and Si, a component of the cordierite ceramic substrate, have been used to follow the axial and radial profiles of the elements. Information concerning the loss of active elements and the retention of contaminating elements as a consequence of the working conditions was attained by comparison between the results obtained for the used catalyst (59 000 km) with those of a fresh catalyst (0 km). The interface effect between the first and the second catalytic bricks was also studied.

  6. From trash to resource: recovered-Pd from spent three-way catalysts as a precursor of an effective photo-catalyst for H 2 production

    KAUST Repository

    Gombac, V.

    2016-01-06

    The successful production of a nanostructured and highly dispersed Pd-TiO2 photo-catalyst, using [Pd(Me2dazdt)2](I3)2 (Me2dazdt = N,N′-dimethyl-perhydrodiazepine-2,3-dithione) salt, obtained through the selective and safe recovery of palladium from model exhaust three-way catalysts (TWCs), is reported here. The photo-catalyst prepared by the impregnation/photo-reduction of palladium on the support showed improved performance in H2 production from methanol and in glycerol photo-reforming compared to reference photo-catalysts obtained from conventional Pd-salts. The reported results represent a case of successful palladium “recovery and re-employment” and thus constitute an example of green chemistry by providing, in one route, the environmentally friendly recovery of a critical metal and its employment in the renewable energy field.

  7. In operando Detection of Three-Way Catalyst Aging by a Microwave-Based Method: Initial Studies

    Directory of Open Access Journals (Sweden)

    Gregor Beulertz

    2015-07-01

    Full Text Available Initial studies on aging detection of three way catalysts with a microwave cavity perturbation method were conducted. Two physico-chemical effects correlate with the aging state. At high temperatures, the resonance frequencies for oxidized catalysts (λ = 1.02 are not influenced by aging, but are significantly affected by aging in the reduced case (λ = 0.98. The catalyst aging state can therefore potentially be inferred from the resonance frequency differences between reduced and oxidized states or from the resonance frequency amplitudes during lambda oscillations. Secondly, adsorbed water at low temperatures strongly affects the resonance frequencies. Light-off experiment studies showed that the resonance frequency depends on the aging state at temperatures below the oxygen storage light-off. These differences were attributed to different water sorption capabilities of differently aged samples due to a surface area decrease with proceeding aging. In addition to the aging state, the water content in the feed gas and the temperature affect the amount of adsorbed water, leading to different integral electrical material properties of the catalyst and changing the resonance properties of the catalyst-filled canning. The classical aging-related properties of the catalyst (oxygen storage capacity, oxygen storage light-off, surface area, agreed very well with data obtained by the microwave-based method.

  8. A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst.

    Science.gov (United States)

    Misumi, Satoshi; Yoshida, Hiroshi; Hinokuma, Satoshi; Sato, Tetsuya; Machida, Masato

    2016-07-08

    Pulsed arc-plasma (AP) deposition of an Rh overlayer on an Fe-Cr-Al stainless steel foil produced a composite material that exhibited high activity for automotive three-way catalysis (TWC). The AP pulses deposited metallic Rh nanoparticles 1-3 nm in size, whose density on the surface increased with the number of pulses. This led to coalescence and grain growth on the foil surface and the eventual formation of a uniform two-dimensional Rh overlayer. Full coverage of the 51 μm-thick flat foil by a 3.2 nm-thick Rh overlayer was achieved after 1,000 pulses. A simulated TWC reaction using a miniature honeycomb fabricated using flat and corrugated foils with the Rh overlayers exhibited successful light-off at a practical gaseous hourly space velocity of 1.2 × 10(5) h(-1). The turnover frequency for the NO-CO reaction over the metallic honeycomb catalyst was ca. 80-fold greater than that achieved with a reference Rh/ZrO2-coated cordierite honeycomb prepared using a conventional wet impregnation and slurry coating procedure. Despite the nonporosity and low surface area of the foil-supported Rh overlayer compared with conventional powder catalysts (Rh/ZrO2), it is a promising alternative design for more efficient automotive catalysts that use less Rh loading.

  9. Influence of oxychlorination treatments on the redox and oxygen storage and release properties of thermally aged Pd-Rh/Ce{sub x}Zr{sub 1-x}O{sub 2}/Al{sub 2}O{sub 3} model three-way catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Daley, R.A.; Anderson, J.A. [Surface Chemistry and Catalysis Group, Department of Chemistry, University of Aberdeen, Scotland AB24 3UE (United Kingdom); Christou, S.Y.; Efstathiou, A.M. [Department of Chemistry, Heterogeneous Catalysis Laboratory, University of Cyprus, P.O. Box 20537, CY 1678 Nicosia (Cyprus)

    2005-09-01

    Model Pd-Rh/Al{sub 2}O{sub 3} three-way catalysts with and without Ce{sub x}Zr{sub 1-x}O{sub 2} as oxygen storage component have been compared in their fresh, thermally aged and oxychlorinated treated surface states to determine the potential regenerating effects of the latter thermo-chemical treatments. Special attention has been made on the characterisation of the metal dispersion, redox properties and the oxygen storage and release properties of the catalyst following each of the treatment stages. It was found that thermal aging under the conditions employed leads to a loss of metal dispersion, but with negligible sintering of the ceria-zirconia mixed metal oxide. Loss of oxygen storage capacity is a consequence of the loss in metal area that results in a loss of interfacial contact with the storage component. Oxychlorination of the aged samples leads to even greater than 100% recovery of metal dispersion and a significant recovery of the oxygen storage capacity. As a consequence of these effects, catalytic activity for the CO/O{sub 2} and NO/H{sub 2}/O{sub 2} reactions was shown to improve significantly. The role of residual chloride following regenerating treatment is discussed in terms of ceria reducibility.

  10. Development of hydrocarbon adsorbents, oxygen storage materials for three-way catalysts and NO{sub x} storage-reduction catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Takaaki [Material Engineering Division 1, Toyota Motor Corporation, 1 Toyota-cyo, Toyota, Aichi 471-8572 (Japan)

    2004-10-05

    Hydrocarbon adsorbents, three-way catalysts and NO{sub x} storage-reduction catalysts for application in gasoline engines have been studied at Toyota in order to meet more stringent environmental regulations.The hydrocarbon adsorption capacity of zeolites has been studied. Hydrocarbon adsorption increased with decreasing aluminum content. Zeolites with a pore size approximately 0.1nm greater than the diameter of the hydrocarbon molecules showed the best performance. Two zeolites with different pore size were mixed, and this strategy succeeded in adsorbing hydrocarbons of carbon number 3 and above. Silver (Ag) ion-exchanged zeolite was used to increase the adsorption of exhaust gas hydrocarbons, including those of carbon number 2.To optimize the performance of three-way catalysts, another development project focused on the heat resistance of CeO{sub 2}-ZrO{sub 2} solid solutions (CZ) with oxygen storage capacity (OSC). We devised a new method of inhibiting the coagulation of the primary CZ particles by placing diffusion barrier layers made of alumina among the primary CZ particles. This material is called 'ACZ'. The OSC and the light-off temperature of the ACZ-added catalyst are improved. For the improvement of NO{sub x} storage-reduction catalysts (NSR catalysts), we focused on the performance deterioration at high temperature via sulfur-poisoning and thermal degradation. A new zirconia-titania complex metal oxide was developed which improves the high-temperature performance and to promotes desorption of sulfur from the supports after aging.

  11. Effects of synthesis methods on the performance of Pt + Rh/Ce0.6Zr0.4O2 three-way catalysts.

    Science.gov (United States)

    Zhan, Zongcheng; Song, Liyun; Liu, Xiaojun; Jiao, Jiao; Li, Jinzhou; He, Hong

    2014-03-01

    The 0.7 wt% Pt + 0.3 wt% Rh/Ce0.6Zr0.4O2 catalysts were fabricated via different methods, including ultrasonic-assisted membrane reduction (UAMR) co-precipitation, UAMR separation precipitation, co-impregnation, and sequential impregnation. The catalysts were physico-chemically characterized by N2 adsorption, XRD, TEM, and H2-TPR techniques, and evaluated for three-way catalytic activities with simulated automobile exhaust. UAMR co-precipitation- and UAMR separation precipitation-prepared catalysts exhibited a high surface area and metal dispersion, wide λ window and excellent conversion for NOx reduction under lean conditions. Both fresh and aged catalysts from UAMR-precipitation showed the high surface areas of ca. 60-67 m(2)/g and 18-22 m(2)/g, respectively, high metal dispersion of 41%-55%, and small active particle diameters of 2.1-2.7 nm. When these catalysts were aged, the catalysts prepared by the UAMR method exhibited a wider working window (Δλ = 0.284-0.287) than impregnated ones (Δλ = 0.065-0.115) as well as excellent three-way catalytic performance, and showed lower T50 (169°C) and T90 (195°C) for NO reduction than the aged catalysts from impregnation processes, which were at 265 and 309°C, respectively. This implied that the UAMR-separation precipitation has important potential for industrial applications to improve catalytic performance and thermal stability. The fresh and aged 0.7 wt% Pt + 0.3 wt% Rh/Ce0.6Zr0.4O2 catalysts prepared by the UAMR-separation precipitation method exhibited better catalytic performance than the corresponding catalysts prepared by conventional impregnation routes. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Study of Pt-Rh/CeO2-ZrO2-MxOy (M = Y, La)/Al2O3 three-way catalysts

    Science.gov (United States)

    Jiaxiu, Guo; Zhonghua, Shi; Dongdong, Wu; Huaqiang, Yin; Maochu, Gong; Yaoqiang, Chen

    2013-05-01

    CeO2-ZrO2-MxOy (M = Y; La) mixed oxides, prepared by co-precipitation method and characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Raman spectra (RM) and oxygen pulse reaction, were comparatively investigated to elucidate the combinational effects of Y and/or La oxide promoters on the catalytic activity and anti-aging performance of monolithic cordierite honeycomb catalysts with low Pt and Rh content. The catalytic activities, water-gas shift (WGS) and steam reforming reaction (SR) were studied under a simulated gas mixture. The catalysts were also characterized by H2-temperature-programmed reduction (H2-TPR) and O2-temperature-programmed desorption (O2-TPD). The results showed that the prepared CeO2-ZrO2-MxOy oxides have a face-centered cubic fluorite structure and are nanosize. La3+ ions can significantly improve thermal stability and efficiently retard CeO2-ZrO2 crystal sintering and growth. Doped CeO2-ZrO2 with Y3+ and La3+ has 105 and 60 m2/g surface area and 460 and 390 μmol/g OSC before and after aging. The T50 of fresh Pt-Rh/CZYL/LA is 170 °C for CO, 222 °C for C3H8 and 189 °C for NO, and shift to 205, 262 and 228 °C after hydrothermal aging, which are better than those of Pt-Rh/CZY/LA or Pt-Rh/CZL/LA. WGS and SR are relate to the OSC of oxygen storage materials and absorbed oxygen species on the catalyst surface and affect the three-way catalytic activities of catalysts. The reductive property of noble metals and the dissociatively adsorbed O2 on the surface of catalysts are closely related to the catalytic activities.

  13. Burnout Disrupts Anxiety Buffer Functioning Among Nurses: A Three-Way Interaction Model

    Directory of Open Access Journals (Sweden)

    Elena Trifiletti

    2017-08-01

    Full Text Available Over the last 40 years, job burnout has attracted a great deal of attention among researchers and practitioners and, after decades of research and interventions, it is still regarded as an important issue. With the aim of extending the Anxiety Buffer Disruption Theory (ABDT, in this paper we argue that high levels of burnout may disrupt the anxiety buffer functioning that protects people from death concerns. ABDT was developed from Terror Management Theory (TMT. According to TMT, reminders of one’s mortality are an essential part of humans’ daily experience and have the potential to awake paralyzing fear and anxiety. In order to cope with death concerns, people typically activate an anxiety-buffering system centered on their cultural worldview and self-esteem. Recent ABDT research shows that individuals with post-traumatic stress disorder are unable to activate such anxiety buffering defenses. In line with these results, we hypothesized that the burnout syndrome may have similar effects, and that individuals with higher levels of burnout will be less likely to activate an anxiety buffering response when their mortality is made salient. Participants were 418 nurses, who completed a questionnaire including: a mortality salience (MS manipulation, a delay manipulation, and measures of burnout, work-related self-efficacy, and representation of oneself as a valuable caregiver. Nurses are daily exposed both to the risk of burnout and to mortality reminders, and thus constituted an ideal population for this study. In line with an anxiety buffer disruption hypothesis, we found a significant three-way interaction between burnout, MS and delay. Participants with lower levels of burnout reported higher levels of self-efficacy and a more positive representation as caregivers in the MS condition compared to the control condition, when there was a delay between MS manipulation and the assessment of the dependent measures. The difference was non

  14. Multivariate statistical process control of batch processes based on three-way models

    NARCIS (Netherlands)

    Louwerse, D. J.; Smilde, A. K.

    2000-01-01

    The theory of batch MSPC control charts is extended and improved control charts an developed. Unfold-PCA, PARAFAC and Tucker3 models are discussed and used as a basis for these charts. The results of the different models are compared and the performance of the control charts based on these models is

  15. Source apportionment of synchronously size segregated fine and coarse particulate matter, using an improved three-way factor analysis model.

    Science.gov (United States)

    Shi, Guo-Liang; Tian, Ying-Ze; Ye, Si; Peng, Xing; Xu, Jiao; Wang, Wei; Han, Bo; Feng, Yin-Chang

    2015-02-01

    Samples of PM₁₀ and PM₂.₅ were synchronously collected from a megacity in China (Chengdu) during the 2011 sampling campaign and then analyzed by an improved three-way factor analysis method based on ME2 (multilinear engine 2), to investigate the contributions and size distributions of the source categories for size segregated particulate matter (PM). Firstly, the synthetic test was performed to evaluate the accuracy of the improved three-way model. The same five source categories with slightly different source profiles were caught. The low AAE (average absolute error) values between the estimated and the synthetic source contributions (dust & coal combustion presented the highest percentage contributions, accounting for 58.20% (PM₁₀) and 53.73% (PM2.5); followed by vehicle exhaust & secondary organic carbon (18.45% for PM₁₀ and 21.63% for PM₂.₅), secondary sulfate and nitrate (17.06% for PM₁₀ and 20.91% for PM₂.₅) and cement dust (6.30% for PM₁₀ and 3.73% for PM₂.₅). The source profiles and contributions presented slightly different distributions for PM₁₀ and PM₂.₅, which could better reflect the actual situation. The findings based on the improved three-way factor analysis method may provide clear and deep insights into the sources of synchronously size-resolved PM. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Part II: Oxidative Thermal Aging of Pd/Al2O3 and Pd/CexOy-ZrO2 in Automotive Three Way Catalysts: The Effects of Fuel Shutoff and Attempted Fuel Rich Regeneration

    Directory of Open Access Journals (Sweden)

    Qinghe Zheng

    2015-10-01

    Full Text Available The Pd component in the automotive three way catalyst (TWC experiences deactivation during fuel shutoff, a process employed by automobile companies for enhancing fuel economy when the vehicle is coasting downhill. The process exposes the TWC to a severe oxidative aging environment with the flow of hot (800 °C–1050 °C air. Simulated fuel shutoff aging at 1050 °C leads to Pd metal sintering, the main cause of irreversible deactivation of 3% Pd/Al2O3 and 3% Pd/CexOy-ZrO2 (CZO as model catalysts. The effect on the Rh component was presented in our companion paper Part I. Moderate support sintering and Pd-CexOy interactions were also experienced upon aging, but had a minimal effect on the catalyst activity losses. Cooling in air, following aging, was not able to reverse the metallic Pd sintering by re-dispersing to PdO. Unlike the aged Rh-TWCs (Part I, reduction via in situ steam reforming (SR of exhaust HCs was not effective in reversing the deactivation of aged Pd/Al2O3, but did show a slight recovery of the Pd activity when CZO was the carrier. The Pd+/Pd0 and Ce3+/Ce4+ couples in Pd/CZO are reported to promote the catalytic SR by improving the redox efficiency during the regeneration, while no such promoting effect was observed for Pd/Al2O3. A suggestion is made for improving the catalyst performance.

  17. Forward Behavioral Modeling of a Three-Way Amplitude Modulator-Based Transmitter Using an Augmented Memory Polynomial

    Directory of Open Access Journals (Sweden)

    Jatin Chatrath

    2018-03-01

    Full Text Available Reconfigurable and multi-standard RF front-ends for wireless communication and sensor networks have gained importance as building blocks for the Internet of Things. Simpler and highly-efficient transmitter architectures, which can transmit better quality signals with reduced impairments, are an important step in this direction. In this regard, mixer-less transmitter architecture, namely, the three-way amplitude modulator-based transmitter, avoids the use of imperfect mixers and frequency up-converters, and their resulting distortions, leading to an improved signal quality. In this work, an augmented memory polynomial-based model for the behavioral modeling of such mixer-less transmitter architecture is proposed. Extensive simulations and measurements have been carried out in order to validate the accuracy of the proposed modeling strategy. The performance of the proposed model is evaluated using normalized mean square error (NMSE for long-term evolution (LTE signals. NMSE for a LTE signal of 1.4 MHz bandwidth with 100,000 samples for digital combining and analog combining are recorded as −36.41 dB and −36.9 dB, respectively. Similarly, for a 5 MHz signal the proposed models achieves −31.93 dB and −32.08 dB NMSE using digital and analog combining, respectively. For further validation of the proposed model, amplitude-to-amplitude (AM-AM, amplitude-to-phase (AM-PM, and the spectral response of the modeled and measured data are plotted, reasonably meeting the desired modeling criteria.

  18. Forward Behavioral Modeling of a Three-Way Amplitude Modulator-Based Transmitter Using an Augmented Memory Polynomial.

    Science.gov (United States)

    Chatrath, Jatin; Aziz, Mohsin; Helaoui, Mohamed

    2018-03-03

    Reconfigurable and multi-standard RF front-ends for wireless communication and sensor networks have gained importance as building blocks for the Internet of Things. Simpler and highly-efficient transmitter architectures, which can transmit better quality signals with reduced impairments, are an important step in this direction. In this regard, mixer-less transmitter architecture, namely, the three-way amplitude modulator-based transmitter, avoids the use of imperfect mixers and frequency up-converters, and their resulting distortions, leading to an improved signal quality. In this work, an augmented memory polynomial-based model for the behavioral modeling of such mixer-less transmitter architecture is proposed. Extensive simulations and measurements have been carried out in order to validate the accuracy of the proposed modeling strategy. The performance of the proposed model is evaluated using normalized mean square error (NMSE) for long-term evolution (LTE) signals. NMSE for a LTE signal of 1.4 MHz bandwidth with 100,000 samples for digital combining and analog combining are recorded as -36.41 dB and -36.9 dB, respectively. Similarly, for a 5 MHz signal the proposed models achieves -31.93 dB and -32.08 dB NMSE using digital and analog combining, respectively. For further validation of the proposed model, amplitude-to-amplitude (AM-AM), amplitude-to-phase (AM-PM), and the spectral response of the modeled and measured data are plotted, reasonably meeting the desired modeling criteria.

  19. Regeneration of Three-Way Automobile Catalysts using Biodegradable Metal Chelating Agent – S, S-Ethylenediamine Disuccinic Acid (S, S-EDDS)

    Science.gov (United States)

    Regeneration of the activity of three-way catalytic converters (TWCs) was tested for the first time using a biodegradable metal chelating agent (S, S. Ethylenediamine disuccinic acid (S, S-EDDS). The efficiency of this novel environmentally friendly solvent in removing various c...

  20. Risk Decision Making Based on Decision-theoretic Rough Set: A Three-way View Decision Model

    OpenAIRE

    Huaxiong Li; Xianzhong Zhou

    2011-01-01

    Rough set theory has witnessed great success in data mining and knowledge discovery, which provides a good support for decision making on a certain data. However, a practical decision problem always shows diversity under the same circumstance according to different personality of the decision makers. A simplex decision model can not provide a full description on such diverse decisions. In this article, a review of Pawlak rough set models and probabilistic rough set models is presented, and a ...

  1. Ce-Zr-La/Al2O3 prepared in a continuous stirred-tank reactor: a highly thermostable support for an efficient Rh-based three-way catalyst.

    Science.gov (United States)

    Wang, Su-Ning; Lan, Li; Hua, Wei-Bo; Shi, Zhong-Hua; Chen, Yao-Qiang; Gong, Mao-Chu; Zhong, Lin

    2015-12-21

    Two Ce-Zr-La/Al2O3 composite oxides, CZLA-C and CZLA-B, were synthesized using a co-precipitation method in a continuous stirred-tank reactor (CSTR) and a batch reactor (BR), respectively. Two Rh-based three-way catalysts (TWCs), Rh/CZLA-C and Rh/CZLA-B were obtained by a wet-impregnation method using the two composites as the supports. The physicochemical properties of the samples before and after thermal treatment at 1000 °C were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), H2-temperature programmed reduction (H2-TPR) and CO chemisorption. The results indicated that CZLA-C shows higher thermal stability than CZLA-B due to a sparsely-agglomerated morphology. Compared with Rh/CZLA-B, Rh/CZLA-C displayed better reducibility and higher thermal stability and exhibited significantly higher activity in the catalytic removal of the simulated gasoline vehicle exhaust emission (NO, CO and C3H8). Our work can provide a facile and economical synthesis route to advanced support materials and catalysts for exhaust emission control.

  2. Oxide Nanocrystal Model Catalysts.

    Science.gov (United States)

    Huang, Weixin

    2016-03-15

    Model catalysts with uniform and well-defined surface structures have been extensively employed to explore structure-property relationships of powder catalysts. Traditional oxide model catalysts are based on oxide single crystals and single crystal thin films, and the surface chemistry and catalysis are studied under ultrahigh-vacuum conditions. However, the acquired fundamental understandings often suffer from the "materials gap" and "pressure gap" when they are extended to the real world of powder catalysts working at atmospheric or higher pressures. Recent advances in colloidal synthesis have realized controlled synthesis of catalytic oxide nanocrystals with uniform and well-defined morphologies. These oxide nanocrystals consist of a novel type of oxide model catalyst whose surface chemistry and catalysis can be studied under the same conditions as working oxide catalysts. In this Account, the emerging concept of oxide nanocrystal model catalysts is demonstrated using our investigations of surface chemistry and catalysis of uniform and well-defined cuprous oxide nanocrystals and ceria nanocrystals. Cu2O cubes enclosed with the {100} crystal planes, Cu2O octahedra enclosed with the {111} crystal planes, and Cu2O rhombic dodecahedra enclosed with the {110} crystal planes exhibit distinct morphology-dependent surface reactivities and catalytic properties that can be well correlated with the surface compositions and structures of exposed crystal planes. Among these types of Cu2O nanocrystals, the octahedra are most reactive and catalytically active due to the presence of coordination-unsaturated (1-fold-coordinated) Cu on the exposed {111} crystal planes. The crystal-plane-controlled surface restructuring and catalytic activity of Cu2O nanocrystals were observed in CO oxidation with excess oxygen. In the propylene oxidation reaction with O2, 1-fold-coordinated Cu on Cu2O(111), 3-fold-coordinated O on Cu2O(110), and 2-fold-coordinated O on Cu2O(100) were identified

  3. Persistent Memory Effects and the Mid- and Post-Brick Dynamic Behaviour of Three-Way Automotive Catalysts Effets mémoires persistants et comportement dynamique des briques médiane et postérieure de catalyseurs automobiles à trois voies

    OpenAIRE

    Peyton Jones J.C.; Schallock R.

    2011-01-01

    This paper presents the results of an experimental study into the dynamic behaviour of a three-way automotive catalyst and its associated exhaust gas oxygen sensors. Motivated by issues of feedback sensor location, the study seeks to overlay the results of repeat experiments, with sensors and fast-response gas analyzers positioned at different locations, in order to obtain a detailed picture of system dynamics at different points within the catalyst. Initial results demonstrated that the...

  4. Study of the elimination on palladium three-way catalysts of the different unburnt hydrocarbons types contained in automobiles exhaust gases; Etude de l`elimination sur catalyseurs trois-voies a base de palladium des differentes categories d`hydrocarbures imbrules presentes dans les gaz d`echappement automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Amon-Meziere, I.

    1996-04-22

    This work was done about a study of behaviour of automotive three-way catalyst containing palladium. In particularly the conversion of many hydrocarbons and oxygenate compounds was studied either alone or mixed. The temperature range of reaction, the influence of the hydrocarbon nature on his conversion, the effect of thermal ageing of catalyst and the effect of dioxide sulfur on the hydrocarbon oxidation was clarified. We have showed the different reaction who were done at the time of different pollutant conversion (CO, NO and one HC) and the influence of different species present in a real exhaust gas on the catalytic oxidation of propane and propane has been checked. We have concluded that the presence of the other species in the gas mixture did not modify very much the activities of the catalyst toward hydrocarbon conversion under stoichiometric conditions, that the slow step of hydrocarbon oxidation is the absorption of molecule and that under oxidizing conditions propane conversion was effected by oxygen. Then we have evaluated our palladium/rhodium three-way catalyst as regards its effectiveness in the catalytic oxidation of different hydrocarbon species and oxygenated compounds taken individually. Two categories of hydrocarbons can also distinguished: first the short chain alkanes and then the long chain alkanes and the other hydrocarbons. We have showed the inhibiting effect of hydrocarbons as concerns CO oxidation and NO reduction. And the study of hydrocarbons mixtures has showed an inhibiting effect of one hydrocarbon on the oxidation of the hydrocarbons in few cases. The study of behaviour of the ageing catalyst containing palladium has showed an important decrease of its effectiveness who can be explained by the decrease of active site number. Some ppm of sulfur dioxide in gas mixture resulted in its inhibiting effect of all species conversion. (author) 74 refs.

  5. THREE-WAY CATALYSTS: PAST, PRESENT AND FUTURE.

    Directory of Open Access Journals (Sweden)

    N. GUILLÉN-HURTADO

    2012-01-01

    Full Text Available En este artículo de revisión se discute el pasado, presente y futuro de los catalizadores de tres vías. Se presentan las principales reacciones químicas que tiene lugar en los motor de gasolina así como las reacciones que ocurren en los catalizadores de tres vías (CTV colocados en el escape, concretamente la oxidación de monóxido de carbonos e hidrocarburos y la reducción de los óxidos de nitrógeno a nitrógeno molecular. También se describen los principales componentes de un CTV (sustratos, metals nobles y óxidos de cerio. Por último se discute el problema del control de las emisiones en motores diesel, analizando la tecnología disponible en la actualidad para estos vehículos.

  6. Least-squares Bilinear Clustering of Three-way Data

    NARCIS (Netherlands)

    P.C. Schoonees (Pieter); P.J.F. Groenen (Patrick); M. van de Velden (Michel)

    2015-01-01

    markdownabstract__Abstract__ A least-squares bilinear clustering framework for modelling three-way data, where each observation consists of an ordinary two-way matrix, is introduced. The method combines bilinear decompositions of the two-way matrices into overall means, row margins, column

  7. Three ways of assembling a house

    DEFF Research Database (Denmark)

    Beim, Anne; Nielsen, Jesper; Vibæk, Kasper Sánchez

    themselves, the way they are produced and the business models behind them, the systems and concepts are assessed in their broader organisational context and not just as physical manifestations of their design intentions. Acknowledging that there is more than one possible way of enhancing the application...... of industrialised solutions in building and architecture, the present work introduces a framework of several different strategies for industrialisation and assesses their viabilities....

  8. Persistent Memory Effects and the Mid- and Post-Brick Dynamic Behaviour of Three-Way Automotive Catalysts Effets mémoires persistants et comportement dynamique des briques médiane et postérieure de catalyseurs automobiles à trois voies

    Directory of Open Access Journals (Sweden)

    Peyton Jones J.C.

    2011-09-01

    Full Text Available This paper presents the results of an experimental study into the dynamic behaviour of a three-way automotive catalyst and its associated exhaust gas oxygen sensors. Motivated by issues of feedback sensor location, the study seeks to overlay the results of repeat experiments, with sensors and fast-response gas analyzers positioned at different locations, in order to obtain a detailed picture of system dynamics at different points within the catalyst. Initial results demonstrated that the dynamic response of the catalyst can be significantly affected by a persistent memory effect in addition to reversible deactivation dynamics and the familiar oxygen storage/release dynamics of the system. In particular, the effects of prior rich or stoichiometric operation are shown to persist even after extended periods of lean operation. This memory effect is important, not only because of its potential impact on conversion efficiency, but also because of its impact on the repeatability of experiments carried out under what would appear to be near-identical operating conditions. By pre-conditioning under rich conditions highly repeatable experiments were achieved. The results were combined to give a detailed picture of catalyst dynamics at pre-, mid- and post-catalyst locations, and provide insight into catalyst and (non-ideal exhaust gas oxygen sensor behavior. Cet article présente les résultats d’une étude expérimentale en matière de comportement dynamique d’un catalyseur automobile à trois voies et de ses capteurs d’oxygène de gaz d’échappement associés. Motivée par les problèmes de localisation des capteurs de retour d’information, l’étude cherche à corréler les résultats d’expériences répétées, capteurs et analyseurs de gaz à réponse rapide étant disposés en des emplacements différents afin d’obtenir une image détaillée des dynamiques de système en différents points à l’intérieur du catalyseur. Les r

  9. Temporal analysis of social networks using three-way DEDICOM.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Harshman, Richard A. (University of Ontario, London, Ontario, Canada); Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2006-06-01

    DEDICOM is an algebraic model for analyzing intrinsically asymmetric relationships, such as the balance of trade among nations or the flow of information among organizations or individuals. It provides information on latent components in the data that can be regarded as ''properties'' or ''aspects'' of the objects, and it finds a few patterns that can be combined to describe many relationships among these components. When we apply this technique to adjacency matrices arising from directed graphs, we obtain a smaller graph that gives an idealized description of its patterns. Three-way DEDICOM is a higher-order extension of the model that has certain uniqueness properties. It allows for a third mode of the data, such as time, and permits the analysis of semantic graphs. We present an improved algorithm for computing three-way DEDICOM on sparse data and demonstrate it by applying it to the adjacency tensor of a semantic graph with time-labeled edges. Our application uses the Enron email corpus, from which we construct a semantic graph corresponding to email exchanges among Enron personnel over a series of 44 months. Meaningful patterns are recovered in which the representation of asymmetries adds insight into the social networks at Enron.

  10. Three-way flexible cantilever probes for static contact

    International Nuclear Information System (INIS)

    Wang, Fei; Petersen, Dirch H; Hansen, Christian; Mortensen, Dennis; Friis, Lars; Hansen, Ole; Jensen, Helle V

    2011-01-01

    In micro four-point probe measurements, three-way flexible L-shaped cantilever probes show significant advantages over conventional straight cantilever probes. The L-shaped cantilever allows static contact to the sample surface which reduces the frictional wear of the cantilever tips. We analyze the geometrical design space that must be fulfilled for the cantilevers to obtain static contact with the test sample. The design space relates the spring constant tensor of the cantilevers to the minimal value of the static tip-to-sample friction coefficient. Using an approximate model, we provide the analytical calculation of the compliance matrix of the L-shaped cantilever. Compared to results derived from finite element model simulations, the theoretical model provides a good qualitative analysis while deviations for the absolute values are seen. From a statistical analysis, the deviation is small for cantilevers with low effective spring constants, while the deviation is significant for large spring constants where the quasi one-dimensional approximation is no longer valid

  11. Catalyst design for carbon nanotube growth using atomistic modeling

    International Nuclear Information System (INIS)

    Pint, Cary L; Bozzolo, Guillermo; Hauge, Robert

    2008-01-01

    The formation and stability of bimetallic catalyst particles, in the framework of carbon nanotube growth, is studied using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Monte Carlo-Metropolis simulations with the BFS method are utilized in order to predict and study equilibrium configurations for nanoscale catalyst particles which are directly relevant to the catalyst state prior to growth of carbon nanotubes. At the forefront of possible catalyst combinations is the popular Fe-Mo bimetallic catalyst, which we have recently studied experimentally. We explain our experimental results, which indicate that the growth observed is dependent on the order of co-catalyst deposition, in the straightforward interpretation of BFS strain and chemical energy contributions toward the formation of Fe-Mo catalyst prior to growth. We find that the competition between the formation of metastable inner Mo cores and clusters of surface-segregated Mo atoms in Fe-Mo catalyst particles influences catalyst formation, and we investigate the role of Mo concentration and catalyst particle size in this process. Finally, we apply the same modeling approach to other prominent bimetallic catalysts and suggest that this technique can be a powerful tool to understand and manipulate catalyst design for highly efficient carbon nanotube growth

  12. Genome-Wide Prediction of the Performance of Three-Way Hybrids in Barley

    Directory of Open Access Journals (Sweden)

    Zuo Li

    2017-03-01

    Full Text Available Predicting the grain yield performance of three-way hybrids is challenging. Three-way crosses are relevant for hybrid breeding in barley ( L. and maize ( L. adapted to East Africa. The main goal of our study was to implement and evaluate genome-wide prediction approaches of the performance of three-way hybrids using data of single-cross hybrids for a scenario in which parental lines of the three-way hybrids originate from three genetically distinct subpopulations. We extended the ridge regression best linear unbiased prediction (RRBLUP and devised a genomic selection model allowing for subpopulation-specific marker effects (GSA-RRBLUP: general and subpopulation-specific additive RRBLUP. Using an empirical barley data set, we showed that applying GSA-RRBLUP tripled the prediction ability of three-way hybrids from 0.095 to 0.308 compared with RRBLUP, modeling one additive effect for all three subpopulations. The experimental findings were further substantiated with computer simulations. Our results emphasize the potential of GSA-RRBLUP to improve genome-wide hybrid prediction of three-way hybrids for scenarios of genetically diverse parental populations. Because of the advantages of the GSA-RRBLUP model in dealing with hybrids from different parental populations, it may also be a promising approach to boost the prediction ability for hybrid breeding programs based on genetically diverse heterotic groups.

  13. Bootstrap confidence intervals for three-way methods

    NARCIS (Netherlands)

    Kiers, Henk A.L.

    Results from exploratory three-way analysis techniques such as CANDECOMP/PARAFAC and Tucker3 analysis are usually presented without giving insight into uncertainties due to sampling. Here a bootstrap procedure is proposed that produces percentile intervals for all output parameters. Special

  14. Three-way flexible cantilever probes for static contact

    DEFF Research Database (Denmark)

    Wang, Fei; Petersen, Dirch Hjorth; Jensen, Helle Vendelbo

    2011-01-01

    In micro four-point probe measurements, three-way flexible L-shaped cantilever probes show significant advantages over conventional straight cantilever probes. The L-shaped cantilever allows static contact to the sample surface which reduces the frictional wear of the cantilever tips. We analyze...

  15. MODELING STYRENE HYDROGENATION KINETICS USING PALLADIUM CATALYSTS

    Directory of Open Access Journals (Sweden)

    G. T. Justino

    Full Text Available Abstract The high octane number of pyrolysis gasoline (PYGAS explains its insertion in the gasoline pool. However, its use is troublesome due to the presence of gum-forming chemicals which, in turn, can be removed via hydrogenation. The use of Langmuir-Hinshelwood kinetic models was evaluated for hydrogenation of styrene, a typical gum monomer, using Pd/9%Nb2O5-Al2O3 as catalyst. Kinetic models accounting for hydrogen dissociative and non-dissociative adsorption were considered. The availability of one or two kinds of catalytic sites was analyzed. Experiments were carried out in a semi-batch reactor at constant temperature and pressure in the absence of transport limitations. The conditions used in each experiment varied between 16 - 56 bar and 60 - 100 ºC for pressure and temperature, respectively. The kinetic models were evaluated using MATLAB and EMSO software. Models using adsorption of hydrogen and organic molecules on the same type of site fitted the data best.

  16. Dynamic performance of self-operated three-way valve used in a hybrid air conditioner

    International Nuclear Information System (INIS)

    Zhang, Penglei; Zhou, Dehai; Shi, Wenxing; Li, Xianting; Wang, Baolong

    2014-01-01

    A hybrid air conditioner combining a thermosyphon cycle with a vapor compression refrigeration cycle has a large energy saving potential compared with a common air conditioner for spaces requiring year-round cooling. The performance of the switch between the vapor compression mode and the thermosyphon mode largely impacts the safety and reliability of hybrid air conditioners. Therefore, a self-operated three-way valve is proposed. A thermodynamic model and a kinetic model are developed in this paper to evaluate the dynamic performance of the switch valve. The effects of the spring force constant, compressor discharging volume, fit clearance and piston length on the dynamic performance of the switch valve are analyzed. In conclusion, the proposed self-operated three-way valve can realize the switch operation accurately. - Highlights: •A self-operated three-way valve is proposed for hybrid air conditioners. •The thermodynamic model and kinetic model of the self-operated three-way valve are developed. •The validity of models is verified by experiments. •Effects of four main design parameters on the operating performance of the valve are researched

  17. Screening of Catalysts for Hydrodeoxygenation of Phenol as Model Compound for Bio-oil

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt

    2013-01-01

    Four groups of catalysts have been tested for hydrodeoxygenation (HDO) of phenol as a model compound of bio-oil, including: oxide catalysts, methanol synthesis catalysts, reduced noble metal catalysts, and reduced non-noble metal catalysts. In total 23 different catalysts were tested at 100 bar H2...... and 275 °C in a batch reactor. The experiments showed that none of the tested oxides and methanol synthesis catalysts had any significant activity for phenol HDO at the given conditions, which were linked to their inability to hydrogenate the phenol. HDO of phenol over reduced metal catalysts could...

  18. Genetic Effects and Prediction of Performance in Three-Way-Cross Grain Sorghum

    International Nuclear Information System (INIS)

    Ombakho, G.A.; Miller, F.R.; Wbuko, B.O.

    1999-01-01

    Sorghum (Sorghum Bicolor (L.) Moench) varieties grown by farmers have low yield compared with other cereals and though several improved varieties have been developed yield gains have been insignificant. Three-way-cross hybrids exhibit modest degree of genetic heterogeneity which may provide substantially increased ranges of adaptation and stability over a wide range of environments resulting in sustainable agricultural systems. The primary objective of the study was to assess the relative importance of various types of gene effects on grain yield, 1000-seed weight, plant height, and panicle length. A secondary objective was to evaluate grain yield prediction methods for three-way hybrids, and to compare observed and predicted values. A complete set , excluding reciprocals, of parental lines, single cross and three-way-cross hybrids of sorghum were grown at four locations-- Kibos, Kiboko, Alupe and Kakamega during 1992 long rainy season, with a second season at Kakamega during 1992 short rains. Genetic analyses of the data indicated both additive and dominant effects to be important . This study demonstrates that a quantitative genetic model can be used successfully in predicting based on the mean of non-parental single crosses, Jenkins' method B seemed more appropriate to the other methods

  19. Surface Structures of Model Metal Catalysts in Reactant Gases.

    Science.gov (United States)

    Tao, Franklin Feng; Ralston, Walter T; Liu, Huimin; Somorjai, Gabor A

    2018-01-18

    Atomic scale knowledge of the surface structure of a metal catalyst is essential for fundamentally understanding the catalytic reactions performed on it. A correlation between the true atomic surface structure of a metal catalyst under reaction conditions and the corresponding catalytic performance is the key in pursuing mechanistic insight at a molecular level. Here the surface structures of model, metal catalysts in both ultrahigh vacuum (UHV) and gaseous environments of CO at a wide range of pressures are discussed. The complexity of observed surface structures in CO is illustrated, driving the necessity for visualization of the catalytic metals under realistic reaction conditions. Technical barriers for visualization of metal surfaces in situ at high temperature and high pressure are discussed.

  20. Kinetic modeling of ethylbenzene dehydrogenation over hydrotalcite catalysts

    KAUST Repository

    Atanda, Luqman

    2011-07-01

    Kinetics of ethylbenzene dehydrogenation to styrene was investigated over a series of quaternary mixed oxides of Mg3Fe0.25Me0.25Al0.5 (Me=Co, Mn and Ni) catalysts prepared by calcination of hydrotalcite-like compounds and compared with commercial catalyst. The study was carried out in the absence of steam using a riser simulator at 400, 450, 500 and 550°C for reaction times of 5, 10, 15 and 20s. Mg3Fe0.25Mn0.25Al0.5 afforded the highest ethylbenzene conversion of 19.7% at 550°C. Kinetic parameters for the dehydrogenation process were determined using the catalyst deactivation function based on reactant conversion model. The apparent activation energies for styrene production were found to decrease as follows: E1-Ni>E1-Co>E1-Mn. © 2011 Elsevier B.V.

  1. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2016-01-01

    A challenge during the development of models for simulation of the automotive Selective Catalytic Reduction catalyst is the parameter estimation of the kinetic parameters, which can be time consuming and problematic. The parameter estimation is often carried out on small-scale reactor tests...

  2. Energetic Mapping of Ni Catalysts by Detailed Kinetic Modeling

    DEFF Research Database (Denmark)

    Bjørgum, Erlend; Chen, De; Bakken, Mari G.

    2005-01-01

    precursor seems to result in more steplike sites, kinks, and defects for carbon monoxide dissociation. A detailed kinetic modeling of the TPO results based on elementary reaction steps has been conducted to give an energetic map of supported Ni catalysts. Experimental results from the ideal Ni surface fit...

  3. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  4. Tests of Symmetry in Three-Way Contingency Tables.

    Science.gov (United States)

    Read, Campbell B.

    1978-01-01

    Three dimensional contingency tables in which one variable is considered to be a factor and the other two variables have a natural relationship (such as left and right eye vision) are analyzed. Models involving symmetry and proportional symmetry between the related variables are also presented. (Author/JKS)

  5. Three-way ROC analysis using SAS Software

    Directory of Open Access Journals (Sweden)

    Juraj Kapasný

    2013-01-01

    Full Text Available The most commonly used measure of model accuracy in medicine with three categories of target variable is the volume under ROC surface (VUS, which is the extension of the area under curve (AUC for binary models (Le and Lili, 2013. This paper deals primarily with usage of the multinomial logistic regression and the three–way ROC analysis in the financial sector, especially in the credit risk management. Moreover, SAS system is very often used software in the financial sector. Therefore this paper is focused on ways of doing three–way ROC analysis in this statistical software, in particular on estimating the VUS.We propose an estimate of the VUS based on the confusion matrix, which is compared to estimates based on Mann-Whitney statistic and on empirical distribution functions. We developed three SAS macros based on these approaches for computing the VUS. Further- more, we developed some logistic models for three-value target variable based on the Loss Given Default (LGD. This was done on real financial data. Results obtained by the SAS macros on these models are presented a discussed in the paper.

  6. Formation of Three-Way Scanning Electron Microscope Moiré on Micro/Nanostructures

    Directory of Open Access Journals (Sweden)

    Qinghua Wang

    2014-01-01

    Full Text Available Three-way scanning electron microscope (SEM moiré was first generated using a designed three-way electron beam (EB in an SEM. The spot-type three-way SEM moiré comes from the interference between the three-way EB and the specimen grating in which the periodic cells are arranged in a triangular manner. The deformation and the structure information of the specimen grating in three directions can be simultaneously obtained from the three-way SEM moiré. The design considerations of the three-way EB were discussed. As an illustration, the three-way SEM moiré spots produced on a silicon slide were presented. The proposed three-way SEM moiré method is expected to characterize micro/nanostructures in triangular or hexagonal arrangements in three directions at the same time.

  7. Evaluation of on-board diagnosis methods for three-way catalytic converters.

    Science.gov (United States)

    Tsinoglou, Dimitrios N; Koltsakis, Grigorios C; Samaras, Zissis C

    2002-12-01

    On-board diagnosis (OBD) aims at detecting malfunctions of emission-related components of road vehicles. It is required by legislation in United States and the European Union, as it is considered to be beneficial for the reduction of vehicle-related air pollution. On-board diagnosis of the catalytic converter is a challenging task, as it relies on indirect assessments of catalyst activity. Several methods have been proposed for catalyst diagnosis, presenting a varying degree of correlation between the quantities used as OBD indexes and the actual tailpipe emissions. This paper evaluates two methods, with the support of mathematical modeling; in the first one, which is commonly used by vehicle manufacturers, malfunction detection relies on the oxygen storage properties of the catalyst, while in the second, detection relies on the heat released by the chemical reactions in the catalyst. Both are found to be sufficient for the diagnosis of catalytic converters for current legislation requirements. However, the thermal method presents higher sensitivity to low levels of catalyst deactivation and could therefore be more suitable for diagnosis of future, ultra-low-emitting vehicles.

  8. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  9. Three-way analysis of the UPLC-PDA dataset for the multicomponent quantitation of hydrochlorothiazide and olmesartan medoxomil in tablets by parallel factor analysis and three-way partial least squares.

    Science.gov (United States)

    Dinç, Erdal; Ertekin, Zehra Ceren

    2016-01-01

    An application of parallel factor analysis (PARAFAC) and three-way partial least squares (3W-PLS1) regression models to ultra-performance liquid chromatography-photodiode array detection (UPLC-PDA) data with co-eluted peaks in the same wavelength and time regions was described for the multicomponent quantitation of hydrochlorothiazide (HCT) and olmesartan medoxomil (OLM) in tablets. Three-way dataset of HCT and OLM in their binary mixtures containing telmisartan (IS) as an internal standard was recorded with a UPLC-PDA instrument. Firstly, the PARAFAC algorithm was applied for the decomposition of three-way UPLC-PDA data into the chromatographic, spectral and concentration profiles to quantify the concerned compounds. Secondly, 3W-PLS1 approach was subjected to the decomposition of a tensor consisting of three-way UPLC-PDA data into a set of triads to build 3W-PLS1 regression for the analysis of the same compounds in samples. For the proposed three-way analysis methods in the regression and prediction steps, the applicability and validity of PARAFAC and 3W-PLS1 models were checked by analyzing the synthetic mixture samples, inter-day and intra-day samples, and standard addition samples containing HCT and OLM. Two different three-way analysis methods, PARAFAC and 3W-PLS1, were successfully applied to the quantitative estimation of the solid dosage form containing HCT and OLM. Regression and prediction results provided from three-way analysis were compared with those obtained by traditional UPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Estimation of diffusion properties in three-way fiber crossings without overfitting

    Science.gov (United States)

    Yang, Jianfei; Poot, Dirk H. J.; van Vliet, Lucas J.; Vos, Frans M.

    2015-12-01

    Diffusion-weighted magnetic resonance imaging permits assessment of the structural integrity of the brain’s white matter. This requires unbiased and precise quantification of diffusion properties. We aim to estimate such properties in simple and complex fiber geometries up to three-way fiber crossings using rank-2 tensor model selection. A maximum a-posteriori (MAP) estimator is employed to determine the parameters of a constrained triple tensor model. A prior is imposed on the parameters to avoid the degeneracy of the model estimation. This prior maximizes the divergence between the three tensor’s principal orientations. A new model selection approach quantifies the extent to which the candidate models are appropriate, i.e. a single-, dual- or triple-tensor model. The model selection precludes overfitting to the data. It is based on the goodness of fit and information complexity measured by the total Kullback-Leibler divergence (ICOMP-TKLD). The proposed framework is compared to maximum likelihood estimation on phantom data of three-way fiber crossings. It is also compared to the ball-and-stick approach from the FMRIB Software Library (FSL) on experimental data. The spread in the estimated parameters reduces significantly due to the prior. The fractional anisotropy (FA) could be precisely estimated with MAP down to an angle of approximately 40° between the three fibers. Furthermore, volume fractions between 0.2 and 0.8 could be reliably estimated. The configurations inferred by our method corresponded to the anticipated neuro-anatomy both in single fibers and in three-way fiber crossings. The main difference with FSL was in single fiber regions. Here, ICOMP-TKLD predominantly inferred a single fiber configuration, as preferred, whereas FSL mostly selected dual or triple order ball-and-stick models. The prior of our MAP estimator enhances the precision of the parameter estimation, without introducing a bias. Additionally, our model selection effectively

  11. On the added value of multiset methods for three-way data analysis

    NARCIS (Netherlands)

    De Roover, Kim; Timmerman, Marieke E.; Van Mechelen, Iven; Ceulemans, Eva

    2013-01-01

    Three-way three-mode data are collected regularly in scientific research and yield information on the relation between three sets of entities. To summarize the information in such data, three-way component methods like CANDECOMP/PARAFAC (CP) and Tucker3 are often used. When applying CP and Tucker3

  12. Live birth from a patient with a three-way balanced translocation t(5 ...

    African Journals Online (AJOL)

    Background: Three-way balanced translocations are unusual and can lead to infertility as well as abnormal embryos. In this case report, we describe a couple who experienced repeated miscarriages as a result of the male partner being a carrier of a three-way translocation t(5;8;12). Objectives: Array comparative genomic ...

  13. Sulfur Deactivation of NOx Storage Catalysts: A Multiscale Modeling Approach

    Directory of Open Access Journals (Sweden)

    Rankovic N.

    2013-09-01

    Full Text Available Lean NOx Trap (LNT catalysts, a promising solution for reducing the noxious nitrogen oxide emissions from the lean burn and Diesel engines, are technologically limited by the presence of sulfur in the exhaust gas stream. Sulfur stemming from both fuels and lubricating oils is oxidized during the combustion event and mainly exists as SOx (SO2 and SO3 in the exhaust. Sulfur oxides interact strongly with the NOx trapping material of a LNT to form thermodynamically favored sulfate species, consequently leading to the blockage of NOx sorption sites and altering the catalyst operation. Molecular and kinetic modeling represent a valuable tool for predicting system behavior and evaluating catalytic performances. The present paper demonstrates how fundamental ab initio calculations can be used as a valuable source for designing kinetic models developed in the IFP Exhaust library, intended for vehicle simulations. The concrete example we chose to illustrate our approach was SO3 adsorption on the model NOx storage material, BaO. SO3 adsorption was described for various sites (terraces, surface steps and kinks and bulk for a closer description of a real storage material. Additional rate and sensitivity analyses provided a deeper understanding of the poisoning phenomena.

  14. On the degradation of fuel cell catalyst. From model systems to high surface area catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Arenz, M. [Copenhagen Univ. (Denmark). Dept. of Chemistry

    2010-07-01

    In the presented work, as an alternative accelerated degradation tests in the form of half-cell measurements combined with identical location transmission electron microscopy (IL-TEM){sup 10,} {sup 11} are presented. It is demonstrated that for different catalysts the degradation mechanism can be scrutinized in detail. Thus this approach enables the systematic investigation of fuel cell catalyst degradation in a reduced period of time. (orig.)

  15. Bond Energies in Models of the Schrock Metathesis Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliu, Monica; Li, Shenggang; Arduengo, Anthony J.; Dixon, David A.

    2011-06-23

    Heats of formation, adiabatic and diabatic bond dissociation energies (BDEs) of the model Schrock-type metal complexes M(NH)(CRR)(OH)₂ (M = Cr, Mo, W; CRR = CH₂, CHF, CF₂) and MO₂(OH)₂ compounds, and Brønsted acidities and fluoride affinities for the M(NH)(CH₂)(OH) ₂ transition metal complexes are predicted using high level CCSD(T) calculations. The metallacycle intermediates formed by reaction of C₂H4 with M(NH)-(CH₂)(OH)2 and MO₂(OH)₂ are investigated at the same level of theory. Additional corrections were added to the complete basis set limit to obtain near chemical accuracy ((1 kcal/mol). A comparison between adiabatic and diabatic BDEs is made and provides an explanation of trends in the BDEs. Electronegative groups bonded on the carbenic carbon lead to less stable Schrock-type complexes as the adiabatic BDEs ofMdCF₂ andMdCHF bonds are much lower than theMdCH₂ bonds. The Cr compounds have smaller BDEs than theWorMo complexes and should be less stable. Different M(NH)(OH)₂(C₃H₆) and MO(OH)₂(OC₂H4) metallacycle intermediates are investigated, and the lowest-energy metallacycles have a square pyramidal geometry. The results show that consideration of the singlet_triplet splitting in the carbene in the initial catalyst as well as in the metal product formed by the retro [2+2] cycloaddition is a critical component in the design of an effective olefin metathesis catalyst in terms of the parent catalyst and the groups being transferred.

  16. Model studies of methanol synthesis on copper catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, J.; Nakamura, I.; Uchijima, T. [Univ. of Tsukuba, Ibaraki (Japan); Watanabe, T. [Research Inst. of Innovative Technology for Earth, Kyoto (Japan); Fujitani, T. [National Inst. for Resources and Environment, Ibaraki (Japan)

    1996-12-31

    The synthesis of methanol by the hydrogenation of CO{sub 2} over Zn-deposited and Zn-free copper surfaces has been studied using an XPS apparatus combined with a high-pressure flow reactor (18 atm). It was shown that the Zn deposited on Cu(111) and poly-Cu acted as a promoter for methanol synthesis, while the Zn on Cu(110) and Cu(100) had no such a promotional effect. The turnover frequency (TOF) for Zn/Cu(111) linearly increased with Zn coverage below {Theta}Zn--0.19, and then decreased above {Theta}Zn=0.20. The optimum TOF obtained at {Theta}Zn--0-19 was thirteen-fold larger than TOF for the Zn-free Cu(111) surface. On the other hand, no promotional effect of Zn was observed for the reverse water-gas shift reaction on all the surfaces. The results indicate the formation of special sites for methanol synthesis on Zn/Cu(111). The Zn-deposited Cu(111) can be regarded as a model of Cu/ZnO catalysts because the TOF and the activation energy for methanol formation over the Zn-deposited Cu(111) were in fairly good agreement with those for the Cu/ZnO powder catalysts. The post-reaction surface analysis by XPS showed the formation of formate species (HCOOa). The formate coverage was proportional to the activity for methanol formation below {Theta}Zn=0.20, suggesting that the hydrogenation of the formate species is the rate-determining step of methanol formation. The formate species was stabilized by Zn species on Cu(111) in the absence of ZnO species. STM results on the Zn-deposited Cu(111) suggested the formation of a Cu-Zn surface alloy. The presence of special sites for methanol synthesis was also indicated in the results of powder catalysts.

  17. A Numerical Model for Thermal Effects in a Microwave Irradiated Catalyst Bed

    OpenAIRE

    Lanz, Jason E.

    1998-01-01

    Electromagnetic and heat transfer analysis is used to determine possibility of selective heating of nanometer-sized, metallic catalyst particles attached to a ceramic support through microwave irradiation. This analysis is incorporated into a macroscopic heat transfer model of a packed and fluidized catalyst bed heated by a microwave field to predict thermal effects associated with selective heating of the catalyst sites. The model shows a dependence on particle size and microwave frequency...

  18. Multiscale modeling for materials design: Molecular square catalysts

    Science.gov (United States)

    Majumder, Debarshi

    In a wide variety of materials, including a number of heterogeneous catalysts, the properties manifested at the process scale are a consequence of phenomena that occur at different time and length scales. Recent experimental developments allow materials to be designed precisely at the nanometer scale. However, the optimum design of such materials requires capabilities to predict the properties at the process scale based on the phenomena occurring at the relevant scales. The thesis research reported here addresses this need to develop multiscale modeling strategies for the design of new materials. As a model system, a new system of materials called molecular squares was studied in this research. Both serial and parallel multiscale strategies and their components were developed as parts of this work. As a serial component, a parameter estimation tool was developed that uses a hierarchical protocol and consists of two different search elements: a global search method implemented using a genetic algorithm that is capable of exploring large parametric space, and a local search method using gradient search techniques that accurately finds the optimum in a localized space. As an essential component of parallel multiscale modeling, different standard as well as specialized computational fluid dynamics (CFD) techniques were explored and developed in order to identify a technique that is best suited to solve a membrane reactor model employing layered films of molecular squares as the heterogeneous catalyst. The coupled set of non-linear partial differential equations (PDEs) representing the continuum model was solved numerically using three different classes of methods: a split-step method using finite difference (FD); domain decomposition in two different forms, one involving three overlapping subdomains and the other involving a gap-tooth scheme; and the multiple-timestep method that was developed in this research. The parallel multiscale approach coupled continuum

  19. Mathematical Model of Synthesis Catalyst with Local Reaction Centers

    Directory of Open Access Journals (Sweden)

    I. V. Derevich

    2017-01-01

    Full Text Available The article considers a catalyst granule with a porous ceramic passive substrate and point active centers on which an exothermic synthesis reaction occurs. A rate of the chemical reaction depends on the temperature according to the Arrhenius law. Heat is removed from the pellet surface in products of synthesis due to heat transfer. In our work we first proposed a model for calculating the steady-state temperature of a catalyst pellet with local reaction centers. Calculation of active centers temperature is based on the idea of self-consistent field (mean-field theory. At first, it is considered that powers of the reaction heat release at the centers are known. On the basis of the found analytical solution, which describes temperature distribution inside the granule, the average temperature of the reaction centers is calculated, which then is inserted in the formula for heat release. The resulting system of transcendental algebraic equations is transformed into a system of ordinary differential equations of relaxation type and solved numerically to achieve a steady-state value. As a practical application, the article considers a Fischer-Tropsch synthesis catalyst granule with active cobalt metallic micro-particles. Cobalt micro-particles are the centers of the exothermic reaction of hydrocarbons macromolecular synthesis. Synthesis occurs as a result of absorption of the components of the synthesis gas on metallic cobalt. The temperature distribution inside the granule for a single local center and reaction centers located on the same granule diameter is found. It was found that there is a critical temperature of reactor exceeding of which leads to significant local overheating of the centers - thermal explosion. The temperature distribution with the local reaction centers is qualitatively different from the granule temperature, calculated in the homogeneous approximation. It is shown that, in contrast to the homogeneous approximation, the

  20. Three-Way Channels With Multiple Unicast Sessions: Capacity Approximation via Network Transformation

    KAUST Repository

    Chaaban, Anas

    2016-09-28

    A network of three nodes mutually communicating with each other is studied. This multi-way network is a suitable model for three-user device-to-device communications. The main goal of this paper is to characterize the capacity region of the underlying Gaussian three-way channel (3WC) within a constant gap. To this end, a capacity outer bound is derived using cut-set bounds and genie-aided bounds. For achievability, the 3WC is first transformed into an equivalent star channel. This latter is then decomposed into a set of “successive” sub-channels, leading to a sub-channel allocation problem. Using backward decoding, interference neutralization, and known results on the capacity of the star-channel relying of physical-layer network coding, an achievable rate region for the 3WC is obtained. It is then shown that the achievable rate region is within a constant gap of the developed outer bound, leading to the desired capacity approximation. Interestingly, in contrast to the Gaussian two-way channel (TWC), adaptation is necessary in the 3WC. Furthermore, message splitting is another ingredient of the developed scheme for the 3WC, which is not required in the TWC. The two setups are, however, similar in terms of their sum-capacity pre-log, which is equal to 2. Finally, some interesting networks and their approximate capacities are recovered as special cases of the 3WC, such as the cooperative broadcast channel and multiple access channel.

  1. The double meaning of control: three-way interactions between internal resources, job control, and stressors at work.

    Science.gov (United States)

    Meier, Laurenz L; Semmer, Norbert K; Elfering, Achim; Jacobshagen, Nicola

    2008-07-01

    The Job Demand-Control model postulates that job control attenuates the effects of job demands on health and well-being. Support for this interactive effect is rather weak. Conceivably, it holds only when there is a match between job control and individual characteristics that relate to exercising control options, such as locus of control, or self-efficacy. This three-way interaction was tested in a sample of 96 service employees, with affective strain and musculoskeletal pain as dependent variables. As hypothesized, job control attenuated the effects of stressors only for people with an internal locus of control. For people with an external locus of control, job control actually predicted poorer well-being and health as stressors increased. For self-efficacy, the corresponding three-way interaction was significant with regard to affective strain. Copyright (c) 2008 APA, all rights reserved.

  2. A generic model for photocatalytic activity as a function of catalyst thickness

    DEFF Research Database (Denmark)

    Nielsen, Morten G.; In, Su-Il; Vesborg, Peter C.K.

    2012-01-01

    value for increasing catalyst film thickness. Conversely, having opposing directions of illumination and incident gas, there exists an optimal catalyst film thickness with respect to activity. In the present work, we demonstrate, quantify and model this effect using methane photooxidation over PVD TiO2...

  3. Structure and chemistry of model catalysts in ultrahigh vacuum

    Science.gov (United States)

    Walker, Joshua D.

    The study of catalysis is a key area of focus not only in the industrial sector but also in the nature and biological systems. The market for catalysis is a multi-billion dollar industry. Many of the materials and products we use on a daily basis are formed through a catalytic process. The quest to understanding and improving catalytic mechanisms is ongoing. Many model catalysts use transition metals as a support for chemical reactions to take place due to their selectivity and activity. Palladium, gold, and copper metals are studied in this work and show the ability to be catalytically reactive. It is important to understand the characteristics and properties of these surfaces. A well-known example of catalysis is the conversion of carbon monoxide (CO), a very harmful gas to carbon dioxide (CO2) which is less harmful. This reaction is mainly seen in the automotive industry. This reaction is investigated in this work on a Au(111) single crystal, which is normally inert but becomes reactivity with the adsorption of oxygen on the surface. Temperature Programmed Desorption (TPD) is used to understand some of the chemistry and effects with and without the addition of H2O. The oxidation of CO is shown to be enhanced by the addition of water, but warrants further analysis too fully understand the different mechanisms and reaction pathways existing. The field of nano-electronics is rapidly growing as technology continues to challenge scientists to create innovative ideas. The trend to produce smaller electronic products is increasing as consumer demands persist. It has been shown previously that 1,4-phenlyene diisocyanobenzene (1,4-PDI) on Au(111) react to form one-dimensional oligomer chains comprising alternating gold and 1,4-PDI units on the Au(111) surface. A similar compound 1,3-phenlyene diisocyanobenzene (1,3-PDI) was studied in order to investigate whether the oligomerization found for 1,4-PDI is a general phenomenon and to ultimately explore the effect of

  4. Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction

    International Nuclear Information System (INIS)

    Lee, Myeong Gon; Han, Seung Ho; Lim, Cha Suk

    2015-01-01

    A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively

  5. Shape optimization of three-way reversing valve for cavitation reduction

    International Nuclear Information System (INIS)

    Lee, Myeong Gon; Han, Seung Ho; Lim, Cha Suk

    2015-01-01

    A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time-consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively

  6. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  7. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  8. Bisphenol A Synthesis - Modeling of Industrial Reactor and Catalyst Deactivation

    Czech Academy of Sciences Publication Activity Database

    Prokop, Zdeněk; Hanková, Libuše; Jeřábek, Karel

    2004-01-01

    Roč. 60, - (2004), s. 77-83 Sp/Iss/ SI ISSN 1381-5148. [Asia-Pacific Congress on Catalysis /3./. Dalian, 12.10.2003-15.10.2003] R&D Projects: GA ČR GA104/02/1104 Institutional research plan: CEZ:AV0Z4072921 Keywords : bisphenol A * catalyst deactivation * ion exchanger catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.582, year: 2004

  9. TRAP: A Three-Way Handshake Server for TCP Connection Establishment

    Directory of Open Access Journals (Sweden)

    Fu-Hau Hsu

    2016-11-01

    Full Text Available Distributed denial of service attacks have become more and more frequent nowadays. In 2013, a massive distributed denial of service (DDoS attack was launched against Spamhaus causing the service to shut down. In this paper, we present a three-way handshaking server for Transmission Control Protocol (TCP connection redirection utilizing TCP header options. When a legitimate client attempted to connect to a server undergoing an SYN-flood DDoS attack, it will try to initiate a three-way handshake. After it has successfully established a connection, the server will reply with a reset (RST packet, in which a new server address and a secret is embedded. The client can, thus, connect to the new server that only accepts SYN packets with the corrected secret using the supplied secret.

  10. Statistical modeling for Toluene Diisocyanate and Polypropylene Glycol Polymerization with Ferric Acetylacetonate as Catalyst

    International Nuclear Information System (INIS)

    Semsarzadeh, M. A.; Salehi, H.

    2001-01-01

    Polyurethane elastomer was synthesized with propylene glycol and toluene diisocyanate with ferric acetylacetonate catalyst. This polymerization was modeled using the kinetic equations. The number and weight average degrees of polymerization (DP w and DP n ), the number and weight average molecular weights (M w and M n ) and the polydispersity index parameters were found and tested as function of time and conversion and they were finally compared with GPC laboratory and experimental results. The effect of concentration of the catalyst and the addition sequence of starting materials and catalyst on M n , M w , DPI and M z /M n are reported and discussed

  11. Studi Peningkatan Kualitas Pelayanan Penyulang Menggunakan Load Break Switch (LBS Three Way

    Directory of Open Access Journals (Sweden)

    Hery Samudra

    2016-06-01

    Full Text Available Pada sistem distribusi, kualitas keandalan dapat dilihat dari lamanya pemadaman atau SAIDI (System Average Interruption Duration Index dan seberapa sering pemadaman terjadi dalam satuan waktu atau SAIFI (System Average Interruption Frequency Index. Sebuah upaya yang telah dilakukan oleh PT. PLN (persero Distribusi Bali AJ Bali Selatan untuk mengurangi jumlah pelanggan padam saat terjadi gangguan yaitu dengan cara pemasangan LBS Three Way. Berdasarkan hasil perhitungan kualitas keandalan pada penyulang Gunung Agung setelah pemasangan LBS Three Way yaitu SAIFI sebesar 0.989688526 dan SAIDI sebesar 5.737530618, penyulang Imam Bonjol setelah pemasangan LBS Tree Way yaitu SAIFI sebesar 0.683913253 dan SAIDI sebesar 3.908243775. Hasil analisa pengaruh pemasangan LBS Three Way terhadp pelanggan DB0133 (United Overseas Bank yaitu pelanggan pada DB133 tidak mengalami pemadaman apabila terjadi gangguan pada penyulang Gunung Agung karena pelanggan dapat dimanuver oleh penyulang Imam Bonjol. Berdasarkan perhitungan kemampuan manuver beban pada penyulang Gunung Agung dan Imam Bonjol dapat dikatakan penyulang Gunung Agung mampu memanuver beban seksi I dan III pada penyulang Imam Bonjol, dan penyulang Imam Bonjol mampu memanuver beban seksi III, IV dan V pada penyulang Gunung Agung.

  12. A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells

    International Nuclear Information System (INIS)

    Wang Qianpu; Song Datong; Navessin, Titichai; Holdcroft, Steven; Liu Zhongsheng

    2004-01-01

    A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst vertical bar electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design

  13. SO2 oxidation catalyst model systems characterized by thermal methods

    DEFF Research Database (Denmark)

    Hatem, G; Eriksen, Kim Michael; Gaune-Escard, M

    2002-01-01

    ) and Differential Scanning Calorimetry (DSC). Fundamental thermodynamic data like temperatures and molar heats of solid-solid transition and fusion, phase diagrams, heat capacities of solids and liquids, heat of mixing and heats of complex formation have been obtained and the results are discussed in relation...... to the mechanism Of SO2 oxidation by V2O5 based industrial catalysts....

  14. Ordered mesoporous materials as model supports to study catalyst preparation

    NARCIS (Netherlands)

    Sietsma, J.R.A.

    2007-01-01

    Catalysts are indispensable to modern-day society because of their prominent role in petroleum refining, chemical processing, and the reduction of environmental pollution. The catalytically active component often consists of small metal (oxide) particles that are supported on a carrier such as

  15. Modeling of Ultrathin Catalyst Layers in Polymer Electrolyte Fuel Cells: Proton Transport and Water Management

    OpenAIRE

    Chan, Karen Ka Wing

    2013-01-01

    Ultrathin catalyst layers (UTCLs) are emerging as a promising alternative to conventional catalyst layers in polymer electrolyte fuel cells. In comparison, UTCLs have dramatically reduced Pt loading and thicknesses and are ionomer–free. We explore two open questions in the theory of UTCLs (1) the proton transport mechanism within the ionomer–free layer and (2) water management in membrane electrode assemblies (MEAs) with UTCLs. To investigate (1), we present a UTCL model, which assumes the pr...

  16. Modeling Deactivation of Catalysts for Selective Catalytic Reduction of NOx by KCl Aerosols

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Castellino, Francesco; Jensen, Anker Degn

    2017-01-01

    A detailed model for the deactivation of a V2O5–WO3/TiO2-based SCR monolith catalyst by potassium poisoning has been developed and validated. The model accounts for deposition of KCl aerosol particles present in the flue gas on the external catalyst surface, the reaction of the deposited particles...... with the catalyst at the surface of the monolith wall, the transport and accumulation of potassium, bound to Brønsted acid sites, throughout the catalyst wall, and the resulting loss in SCR activity. Using an experimentally measured KCl aerosol size distribution as input, the model can replicate the observed...... deactivation rate of a 3 wt % V2O5-7 wt % WO3/TiO2 monolith catalyst, exposed to a KCl aerosol at 350 °C for about 1000 h, as well as the resulting potassium-to-vanadium molar ratios in the catalyst wall. Simulations show that the particle deposition rate, as well as the deactivation rate, decreases...

  17. Methanol oxidation at platinum electrodes in acid solution: comparison between model and real catalysts

    Directory of Open Access Journals (Sweden)

    A. V. TRIPKOVIC

    2006-12-01

    Full Text Available Methanol oxidation in acid solution was studied at platinum single crystals, Pt(hkl, as the model catalyst, and at nanostructural platinum supported on high surface area carbon, Pt/C, as the real catalyst. The linear extrapolation method was used to determine the beginning of hydroxyl anion adsorption. Structural sensitivity of the adsorption was proved and a correlation with the onset of the methanol oxidation current was established at all catalysts. Bisulfate and chloride anions were found to decrease the methanol oxidation rate, but probably did not influence the reaction parth. The specific activity for the reaction increased in the sequence Pt(110 < Pt/C < Pt(111, suggesting that the activity of the supported Pt catalyst can be correlated with the activities of the dominating crystal planes on its surface.

  18. DNA Three Way Junction Core Decorated with Amino Acids-Like Residues-Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Claudia Addamiano

    2016-08-01

    Full Text Available Construction and physico-chemical behavior of DNA three way junction (3WJ functionalized by protein-like residues (imidazole, alcohol and carboxylic acid at unpaired positions at the core is described. One 5′-C(S-propargyl-thymidine nucleotide was specifically incorporated on each strand to react through a post synthetic CuACC reaction with either protected imidazolyl-, hydroxyl- or carboxyl-azide. Structural impacts of 5′-C(S-functionalization were investigated to evaluate how 3WJ flexibility/stability is affected.

  19. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  20. Parameter estimation and analysis of an automotive heavy-duty SCR catalyst model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2017-01-01

    A single channel model for a heavy-duty SCR catalyst was derived based on first principles. The model considered heat and mass transfer between the channel gas phase and the wash coat phase. The parameters of the kinetic model were estimated using bench-scale monolith isothermal data. Validation ...

  1. Optimization of alkali catalyst for transesterification of jatropha curcus using adaptive neuro-fuzzy modeling

    Directory of Open Access Journals (Sweden)

    Vipan K Sohpal

    2014-06-01

    Full Text Available Transesterification of Jatropha curcus for biodiesel production is a kinetic control process, which is complex in nature and controlled by temperature, the molar ratio, mixing intensity and catalyst process parameters. A precise choice of catalyst is required to improve the rate of transesterification and to simulate the kinetic study in a batch reactor. The present paper uses an Adaptive Neuro-Fuzzy Inference System (ANFIS approach to model and simulate the butyl ester production using alkaline catalyst (NaOH. The amounts of catalyst and time for reaction have been used as the model’s input parameters. The model is a combination of fuzzy inference and artificial neural network, including a set of fuzzy rules which have been developed directly from experimental data. The proposed modeling approach has been verified by comparing the expected results with the practical results which were observed and obtained through a batch reactor operation. The application of the ANFIS test shows which amount of catalyst predicted by the proposed model is suitable and in compliance with the experimental values at 0.5% level of significance.

  2. Three-way modelling of NMR relaxation profiles from thawed cod muscle

    DEFF Research Database (Denmark)

    Jensen, Kristina Nedenskov; Guldager, Helle Skov; Jørgensen, Bo Munk

    2002-01-01

    Low-field 1H nuclear magnetic resonance transverse relaxation was used to measure water mobility and distribution in cod stored at -20°C or -30°C for up to 12 months and subsequently from 0 to 21 days in modified atmosphere at +2°C. The relaxation profiles were decomposed by parallel factor......, but not the relaxation times, depended on the frozen storage temperature and on the chilled storage period....

  3. Kinetic modelling of the isomerization of N-Hexane using bifunctional Pt-Ni-MOR catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Brito, K.D.; Sousa, B.V.; Rodrigues, M.G.F.; Alves, J.J.N. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica], E-mail: jailson@deq.ufcg.edu.br

    2008-01-15

    The objective of the present work is to realize the kinetic modelling regarding deactivation of Pt-Ni catalysts present in mordenite zeolite and monitor the isomerization reaction of n-hexane. The catalysts have been prepared with different metal ratios for comparison in terms of ion exchange and characterization by the XRD technique, in order to correlate the catalytic behavior of the material with its properties. The catalysts were also evaluated during the isomerization reaction of n-hexane. According to the XRD analyses it was observed that the incorporation of the metals Pt and Ni in the structure of the mordenite zeolite did not change the X-Ray diffractograms after the ionic exchange process and calcination of the catalysts. Based on the results of the catalytic investigation, a kinetic model was proposed to deactivate the catalysts. By means of two correlations, the deactivation parameters were determined, allowing establishing the profile of the activity at any time, when the composition of one of the metals is known. According to the results of this work, there might be the possibility that the proposed model of deactivation is a result of coke formation. (author)

  4. A Stochastic Multidimensional Scaling Procedure for the Spatial Representation of Three-Mode, Three-Way Pick Any/"J" Data.

    Science.gov (United States)

    Jedidi, Kamel; DeSarbo, Wayne S.

    1991-01-01

    A stochastic multidimensional scaling procedure is presented for analysis of three-mode, three-way pick any/"J" data. The procedure fits both vector and ideal-point models and characterizes the effect of situations by a set of dimension weights. An application in the area of consumer psychology is discussed. (SLD)

  5. Structure and mechanical properties of the ribosomal L1 stalk three-way junction

    Czech Academy of Sciences Publication Activity Database

    Réblová, Kamila; Šponer, Jiří; Lankaš, Filip

    2012-01-01

    Roč. 40, č. 13 (2012), s. 6290-6303 ISSN 0305-1048 R&D Projects: GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GAP208/11/1822; GA ČR(CZ) GAP208/12/1878; GA ČR(CZ) GBP305/12/G034; GA ČR GBP208/12/G016; GA AV ČR(CZ) KJB400040901 Institutional research plan: CEZ:AV0Z50040702; CEZ:AV0Z40550506 Institutional support: RVO:68081707 ; RVO:61388963 Keywords : three-way junction * molecular dynamics * RNA Subject RIV: BO - Biophysics Impact factor: 8.278, year: 2012

  6. Successful three-way kidney paired donation transplantation: The first Indian report

    Directory of Open Access Journals (Sweden)

    V B Kute

    2014-01-01

    Full Text Available Providing transplantation opportunities for patients with incompatible live donors through kidney paired donation (KPD is an important strategy for easing the crisis in organ availability. KPD is can overcome the barriers when the only living potential donors are deemed unsuitable owing to an incompatibility of blood type, of human leukocyte antigen cross-match, or both. In KPD, the incompatibility problems with two donor recipient pairs can be solved by exchanging donors. In the absence of well-organized deceased donor program, or transplantation with desensitization protocol and ABO incompatible transplantation, living donor KPD promises hope to the growing number of patients suffering from end-stage renal disease in India. We report our first successful three-way KPD transplantation from India. In an era of organ shortage, this approach is relevant to encourage wider participation from KPD donors and transplant centers to prevent commercial transplantation.

  7. A proposed agglomerate model for oxygen reduction in the catalyst layer of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhang, Xiaoxian; Gao, Yuan; Ostadi, Hossein; Jiang, Kyle; Chen, Rui

    2014-01-01

    Highlights: • We developed a new agglomerate model to describe oxygen reduction reaction. • We showed how to calculate the model parameters from catalyst layer structure. • We verified the agglomerate model. - Abstract: Oxygen diffusion and reduction in the catalyst layer of PEM fuel cell is an important process in fuel cell modelling, but models able to link the reduction rate to catalyst-layer structure are lack; this paper makes such an effort. We first link the average reduction rate over the agglomerate within a catalyst layer to a probability that an oxygen molecule, which is initially on the agglomerate surface, will enter and remain in the agglomerate at any time in the absence of any electrochemical reaction. We then propose a method to directly calculate distribution function of this probability and apply it to two catalyst layers with contrasting structures. A formula is proposed to describe these calculated distribution functions, from which the agglomerate model is derived. The model has two parameters and both can be independently calculated from catalyst layer structures. We verify the model by first showing that it is an improvement and able to reproduce what the spherical model describes, and then testing it against the average oxygen reductions directly calculated from pore-scale simulations of oxygen diffusion and reaction in the two catalyst layers. The proposed model is simple, but significant as it links the average oxygen reduction to catalyst layer structures, and its two parameters can be directly calculated rather than by calibration

  8. Experimental Study and Kinetic Modeling of Decoking of Pacol Process Dehydrogenation Catalyst

    Directory of Open Access Journals (Sweden)

    M. Toghyani

    2015-07-01

    Full Text Available The Pt/γ-Al2O3 catalyst life time was limited by the formation of coke on the external and internal surfaces of catalyst in dehydrogenation reactors. The kinetics of decoking of dehydrogenation catalyst was studied in a pilot scale fixed bed reactor experimentally. The effects of temperature, oxygen concentration and other operating conditions on decoking process were investigated. A kinetic model was deve-loped to describe the decoking of mentioned catalyst. An objective function was defined as the sum of squares of the deviations among the calculated and plant data. Accordingly the appropriate values were found in order to minimize this function. It was concluded that there was a good agreement between simulation results and experimental data.  © 2015 BCREC UNDIP. All rights reservedReceived: 18th September 2014; Revised: 28th February 2015; Accepted: 9th March 2015How to Cite: Toghyani, M., Rahimi, A., Mamanpoush, M., Kazemian, R., Harandizadeh, A.H. (2015. Experimental Study and Kinetic Modeling of Decoking of Pacol Process Dehydrogenation Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 155-161. (doi:10.9767/bcrec.10.2.7357.155-161 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7357.155-161  

  9. Determination of concentration distribution and velocity of a catalyst in a model of a fluidized bed reactor using nuclear techniques

    International Nuclear Information System (INIS)

    Santos, V.A. dos.

    1981-09-01

    A simplified model of a cracking unit was construct. The gaseous phase consisted of air, the solid phase (zeolite catalyst cracking) and both the phases circulate at the ambiente temperature in the steady state with 500 g of catalyst and air flow of 1600 1/h. Measurements for the circulation time of the solid phase (catalyst), concentration and radial distribution of catalyst have been carried out. The reduced experimental model of the cracking reactor (FCC) was used and radioctive tracer and attenuation of γ-radiation techniques were employed. (E.G.) [pt

  10. Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Ahmed, El Hadi; Christensen, Claus H.

    2011-01-01

    Hydrodeoxygenation of waste fats and oils is a viable method for producing renewable diesel oil. In this study a model feed consisting of oleic acid and tripalmitin in molar ratio 1:3 was hydrotreated at 325°C with 20bars H2 in a stirred batch autoclave with a 5wt% Pt/γ-Al2O3 catalyst, and samples...

  11. Monolayer Iron Carbide Films on Au(111) as a Fischer–Tropsch Model Catalyst

    DEFF Research Database (Denmark)

    Mannie, Gilbère; Lammich, Lutz; Li, Yong-Wang

    2014-01-01

    Using scanning tunneling microscopy (STM), we characterize the atomic-scale details of ultrathin films of iron carbide (FexCy) on Au(111) synthesized as a potential model system for the active iron carbide phase in iron Fischer–Tropsch synthesis (FTS) catalysts. The experiments show that room...

  12. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    Science.gov (United States)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  13. Fresh tar (from biomass gasification) destruction with downstream catalysts: comparison of their intrinsic activity with a realistic kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A model for fresh tar destruction over catalysts placed downstream a biomass gasifier is presented. It includes the stoichio-metry and the calculation of the kinetic constants for the tar destruction. Catalysts studied include commercial Ni steam reforming catalysts and calcinated dolomites. Kinetic constants for tar destruction are calculated for several particle sizes, times- on-stream and temperatures of the catalyst and equivalence ratios in the gasifier. Such intrinsic kinetic constants allow a rigorous or scientific comparison of solids and conditions to be used in an advanced gasification process. (orig.) 4 refs.

  14. Degrees-of-Freedom of the MIMO Three-Way Channel with Node-Intermittency

    KAUST Repository

    Neu, Joachim

    2017-08-28

    The characterization of fundamental performance bounds of many-to-many communication systems in which participating nodes are active in an intermittent way is one of the major challenges in communication theory. In order to address this issue, we introduce the multiple-input multiple-output (MIMO) three-way channel (3WC) with an intermittent node and study its degrees-of-freedom (DoF) region and sum-DoF. We devise a non-adaptive encoding scheme based on zero-forcing, interference alignment and erasure coding, and show its DoF region (and thus sum-DoF) optimality for non-intermittent 3WCs and its sum-DoF optimality for (node-)intermittent 3WCs. However, we show by example that in general some DoF tuples in the intermittent 3WC can only be achieved by adaptive schemes, such as multi-hop or decode-forward relaying. This shows that non-adaptive encoding is sufficient for the non-intermittent 3WC and for the sum-DoF of intermittent 3WCs, but adaptive encoding is necessary for the DoF region of intermittent 3WCs. Our work contributes to a better understanding of the fundamental limits of multi-way communication systems with intermittency and the impact of adaptation therein.

  15. Quality Characteristics of Dry-cured Ham Made from Two Different Three-way Crossbred Pigs.

    Science.gov (United States)

    Yim, Dong-Gyun; Hong, Doo-Il; Chung, Ku-Young

    2016-02-01

    This study was conducted to compare the physicochemical traits of dry-cured hams made from two different three-way crossbred pigs: Yorkshire×Landrace×Duroc (YLD) and Yorkshire×Berkshire×Duroc (YBD). Animals were slaughtered at a live weight of 110 to 120 kg and cooled at 0°C for 24 h in a chilling room, the ham portion of the carcasses were cut and processed by dry-curing for physico-chemical analyses. While the moisture and crude protein contents of dry-cured ham were higher in YLD than in YBD, crude fat and ash content were higher in YBD (pham from YBD were higher than those from YLD (pham samples showed a higher L* and b* values than those from YLD, while YBD ham showed lower a* value (phams were lower than those of YBD samples (pham were higher than those of YLD sample (pham than in YLD samples (pham displayed a superior quality than YBD. Considering the meat quality parameters of two-way crossbred ham, YLD hams could be more suitable for the production of dry-cured products.

  16. On the degrees-of-freedom of the MIMO three-way channel with intermittent connectivity

    KAUST Repository

    Chaaban, Anas

    2017-08-29

    The degrees-of-freedom (DoF) of the multi-antenna three-way channel (3WC) with an intermittent node is studied. Special attention is given to the impact of adaptation when the intermittent node has the largest number of antennas. A non-adaptive transmission scheme based on interference alignment, zero-forcing, and erasure-channel treatment is proposed, and its corresponding DoF region is derived. Then, it is shown that this scheme achieves the sum-DoF of the intermittent channel, in addition to the DoF region of the nonintermittent one. Thus, adaptation is not necessary from those perspectives. To the contrary, it is shown that adaptation is necessary for achieving the DoF region of the intermittent case. This is shown by deriving an outer bound for the intermittent channel with nonadaptive encoding, and proposing an adaptive scheme which achieves DoF tuples outside this bound. This highlights the importance of cooperation in this intermittent network.

  17. Two-dimensional linear discriminant analysis for classification of three-way chemical data.

    Science.gov (United States)

    Silva, Adenilton C da; Soares, Sófacles F C; Insausti, Matías; Galvão, Roberto K H; Band, Beatriz S F; Araújo, Mário César U de

    2016-09-28

    The two-dimensional linear discriminant analysis (2D-LDA) algorithm was originally proposed in the context of face image processing for the extraction of features with maximal discriminant power. However, despite its promising performance in image processing tasks, the 2D-LDA algorithm has not yet been used in applications involving chemical data. The present paper bridges this gap by investigating the use of 2D-LDA in classification problems involving three-way spectral data. The investigation was concerned with simulated data, as well as real-life data sets involving the classification of dry-cured Parma ham according to ageing by surface autofluorescence spectrometry and the classification of edible vegetable oils according to feedstock using total synchronous fluorescence spectrometry. The results were compared with those obtained by using the spectral data with no feature extraction, U-PLS-DA (Partial Least Squares Discriminant Analysis applied to the unfolded data), and LDA employing TUCKER-3 or PARAFAC scores. In the simulated data set, all methods yielded a correct classification rate of 100%. However, in the Parma ham and vegetable oil data sets, better classification rates were obtained by using 2D-LDA (86% and 100%), compared with no feature extraction (76% and 77%), U-PLS-DA (81% and 92%), PARAFAC-LDA (76% and 86%) and TUCKER3-LDA (86% and 93%). Published by Elsevier B.V.

  18. Mathematical model of Fischer-Tropsch catalyst pellet with pointed centers of synthesis

    Science.gov (United States)

    Derevich, I. V.; Fokina, A. Yu

    2017-11-01

    The productivity of Fischer-Tropsch reactors is determined by the efficiency of heat and mass transfer processes inside the catalyst pellets. To reduce the diffusion resistance, the pellet base is made porous. The porous structure of the granules causes a discrete arrangement of cobalt metallic microparticles whose size can reach tens of microns. The distance between these active centres significantly exceeds their characteristic size and the homogeneous catalyst model is incorrect. A mathematical model of heat and mass transfer processes inside a porous spherical pellet with localised active centres is proposed. The heat of the exothermic synthesis reaction is removed from the surface of the granule to the synthesis gas stream washing the catalyst pellet by heat transfer. The components of the synthesis gas enter the granule surface as a result of mass transfer. On the basis of the self-consistent field method, the values of the temperature and concentration of the synthesis gas components at the active centres were determined. It is shown that there is a critical temperature of the synthesis gas washing the granule, exceeding critical temperature leads to a substantial overheating of the active centres. In this case, the surface of the catalyst pellet is superheated slightly. The principal difference between the homogeneous and heterogeneous models in catalytic reactions is discussed.

  19. Multiple serial picture presentation with millisecond resolution using a three-way LC-shutter-tachistoscope.

    Science.gov (United States)

    Fischmeister, Florian Ph S; Leodolter, Ulrich; Windischberger, Christian; Kasess, Christian H; Schöpf, Veronika; Moser, Ewald; Bauer, Herbert

    2010-03-30

    Throughout recent years there has been an increasing interest in studying unconscious visual processes. Such conditions of unawareness are typically achieved by either a sufficient reduction of the stimulus presentation time or visual masking. However, there are growing concerns about the reliability of the presentation devices used. As all these devices show great variability in presentation parameters, the processing of visual stimuli becomes dependent on the display-device, e.g. minimal changes in the physical stimulus properties may have an enormous impact on stimulus processing by the sensory system and on the actual experience of the stimulus. Here we present a custom-built three-way LC-shutter-tachistoscope which allows experimental setups with both, precise and reliable stimulus delivery, and millisecond resolution. This tachistoscope consists of three LCD-projectors equipped with zoom lenses to enable stimulus presentation via a built-in mirror-system onto a back projection screen from an adjacent room. Two high-speed liquid crystal shutters are mounted serially in front of each projector to control the stimulus duration. To verify the intended properties empirically, different sequences of presentation times were performed while changes in optical power were measured using a photoreceiver. The obtained results demonstrate that interfering variabilities in stimulus parameters and stimulus rendering are markedly reduced. Together with the possibility to collect external signals and to send trigger-signals to other devices, this tachistoscope represents a highly flexible and easy to set up research tool not only for the study of unconscious processing in the brain but for vision research in general. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Biomimetic Catalysts for Oxidation of Veratryl Alcohol, a Lignin Model Compound

    Directory of Open Access Journals (Sweden)

    Marcelino Maneiro

    2013-03-01

    Full Text Available Kraft pulp has to be bleached to eliminate the chromophoric structures, which cause a darkening of the pulp. In Nature, an equivalent role is assumed by ligninolytic enzymes such as lignin peroxidases, manganese peroxidases and laccases. The development of low molecular weight manganese peroxidase mimics may achieve environmentally-safe bleaching catalysts for the industry. Herein we report the synthesis and characterization of six manganese(III complexes 1–6, incorporating dianionic hexadentate Schiff base ligands (H2L1-H2L4 and different anions. Complex 4, Mn2L22(H2O2(DCA2 was crystallographically characterized. Complexes 1–4 behave as more efficient mimics of peroxidase in contrast to 5–6. We have studied the use of these complexes as catalysts for the degradation of the lignin model compound veratryl alcohol. The biomimetic catalysts were used in conjunction with chlorine-free inexpensive co-oxidants as dioxygen or hydrogen peroxide. Yields up to 30% of veratryl alcohol conversion to veratraldehyde have been achieved at room temperature in presence of air flow using 0.5% of catalyst.

  1. A novel dynamic kinetic model of oxygen isotopic exchange on a supported metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Galdikas, Arvaidas; Duprez, Daniel; Descorme, Claude

    2004-09-15

    A time-resolved kinetic analysis has been developed for modeling experimental results of {sup 18}O/{sup 16}O isotopic exchange over oxide-supported metal catalysts. Model is based on two very important points: (1) the parallel calculation of surface and bulk diffusion and (2) the implication of certain O species such as superoxides. The model includes adsorption-desorption processes on metal clusters and oxygen spillover from the metal to the surface of support and vice versa. Different mechanisms of exchange were also taken into account via mononuclear (O atoms, O{sup -}, OH) or binuclear (superoxides) oxygen species. A refined model taking into account surface diffusion, direct exchange on surface of support by binuclear oxygen species and bulk diffusion was also developed. Kinetic (reaction rates and diffusion coefficients) as well as thermodynamic parameters (activation energies) were derived by fitting theoretical and experimental curves of {sup 18}O{sub 2}, {sup 18}O{sup 16}O and {sup 16}O{sub 2} gas phase concentrations versus time. The experimental results of Pt/CeZrO{sub 2} catalyst samples obtained in the 200-450 deg. C range of temperatures are examined. The refined model provides a very good fitting of the kinetic curves recorded with ceria-zirconia-supported catalysts. Moreover, values of diffusion coefficients and activation energies are in good agreement with already published values found by other methods. For a better understanding of all the steps of exchange, the kinetics of {sup 18}O and {sup 16}O distribution on the surface of metal clusters and on the surface of support are calculated and analyzed. On the basis of this model, a computer code is developed for analysis and calculations of kinetic and thermodynamic parameters of automotive catalysts.

  2. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al2O3) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum

  3. The relationship between CO2 emission, energy consumption and economic growth in Malaysia: a three-way linkage approach.

    Science.gov (United States)

    Sulaiman, Chindo; Abdul-Rahim, A S

    2017-11-01

    This study examines the three-way linkage relationships between CO 2 emission, energy consumption and economic growth in Malaysia, covering the 1975-2015 period. An autoregressive distributed lag approach was employed to achieve the objective of the study and gauged by dynamic ordinary least squares. Additionally, vector error correction model, variance decompositions and impulse response functions were employed to further examine the relationship between the interest variables. The findings show that economic growth is neither influenced by energy consumption nor by CO 2 emission. Energy consumption is revealed to be an increasing function of CO 2 emission. Whereas, CO 2 emission positively and significantly depends on energy consumption and economic growth. This implies that CO 2 emission increases with an increase in both energy consumption and economic growth. Conclusively, the main drivers of CO 2 emission in Malaysia are proven to be energy consumption and economic growth. Therefore, renewable energy sources ought to be considered by policy makers to curb emission from the current non-renewable sources. Wind and biomass can be explored as they are viable sources. Energy efficiency and savings should equally be emphasised and encouraged by policy makers. Lastly, growth-related policies that target emission reduction are also recommended.

  4. Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wonseok; Weber, Adam Z.

    2011-01-01

    The cathode catalyst layer within a proton-exchange-membrane fuel cell is the most complex and critical, yet least understood, layer within the cell. The exact method and equations for modeling this layer are still being revised and will be discussed in this paper, including a 0.8 reaction order, existence of Pt oxides, possible non-isopotential agglomerates, and the impact of a film resistance towards oxygen transport. While the former assumptions are relatively straightforward to understand and implement, the latter film resistance is shown to be critically important in explaining increased mass-transport limitations with low Pt-loading catalyst layers. Model results demonstrate agreement with experimental data that the increased oxygen flux and/or diffusion pathway through the film can substantially decrease performance. Also, some scale-up concepts from the agglomerate scale to the more macroscopic porous-electrode scale are discussed and the resulting optimization scenarios investigated.

  5. A Systematic Modelling Framework for Phase Transfer Catalyst Systems

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata; Sales-Cruz, Mauricio; Hyung Kim, Sun

    2016-01-01

    equilibria, as well as kinetic mechanisms and rates. This paper presents a modelling framework for design and analysis of PTC systems that requires a minimum amount of experimental data to develop and employ the necessary thermodynamic and reaction models and embeds them into a reactor model for simulation...... in an aqueous phase. These reacting systems are receiving increased attention as novel organic synthesis options due to their flexible operation, higher product yields, and ability to avoid hazardous or expensive solvents. Major considerations in the design and analysis of PTC systems are physical and chemical....... The application of the framework is made to two cases in order to highlight the performance and issues of activity coefficient models for predicting design and operation and the effects when different organic solvents are employed....

  6. From Colloidal Monodisperse Nickel Nanoparticles to Well-Defined Ni/Al2O3Model Catalysts.

    Science.gov (United States)

    Zacharaki, Eirini; Beato, Pablo; Tiruvalam, Ramchandra R; Andersson, Klas J; Fjellvåg, Helmer; Sjåstad, Anja O

    2017-09-26

    In the past few decades, advances in colloidal nanoparticle synthesis have created new possibilities for the preparation of supported model catalysts. However, effective removal of surfactants is a prerequisite to evaluate the catalytic properties of these catalysts in any reaction of interest. Here we report on the colloidal preparation of surfactant-free Ni/Al 2 O 3 model catalysts. Monodisperse Ni nanoparticles (NPs) with mean particle size ranging from 4 to 9 nm were synthesized via thermal decomposition of a zerovalent precursor in the presence of oleic acid. Five weight percent Ni/Al 2 O 3 catalysts were produced by direct deposition of the presynthesized NPs on an alumina support, followed by thermal activation (oxidation-reduction cycle) for complete surfactant removal and surface cleaning. Structural and morphological characteristics of the nanoscale catalysts are described in detail following the propagation of the bulk and surface Ni species at the different treatment stages. Powder X-ray diffraction, electron microscopy, and temperature-programmed reduction experiments as well as infrared spectroscopy of CO adsorption and magnetic measurements were conducted. The applied thermal treatments are proven to be fully adequate for complete surfactant removal while preserving the metal particle size and the size distribution at the level attained by the colloidal synthesis. Compared with standard impregnated Ni/Al 2 O 3 catalysts, the current model materials display narrowed Ni particle size distributions and increased reducibility with a higher fraction of the metallic nickel atoms exposed at the catalyst surface.

  7. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig Richmond [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl4 and a Al(Et)3 co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl2 and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl4 in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl2 by TiCl4 resulting in a thin film of MgCl2/TiClx, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl2/TiClx on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to ~1 Torr of Al(Et)3.

  8. Kinetics modeling of ethylbenzene dehydrogenation to styrene over a mesoporous alumina supported iron catalyst

    KAUST Repository

    Hossain, Mohammad M.

    2012-10-01

    The kinetics of ethylbenzene (EB) dehydrogenation over a FeO x-meso-Al 2O 3 catalyst is studied. The models were developed based on physicochemical characterization and a CREC fluidized Riser Simulator data. N 2 adsorption shows that the synthesized FeO x-meso-Al 2O 3 catalyst is mesoporous with pore size between 9 and 35nm. TPR profile indicates that iron on meso-Al 2O 3 forms easily reducible nanostructured crystals which is confirmed by TEM image. NH 3- and CO-TPD analysis, respectively reveals the availability of both acidic and basic sites. The dehydrogenation of ethylbenzene on FeO x-meso-Al 2O 3 catalyst mainly gives styrene (∼99%) while a small amount of benzene, toluene and coke are also detected. Based on the experimental observations two Langmuir-Hinshelwood type kinetics models are formulated. The possible catalyst deactivation is expressed as function of EB conversion. Parameters are estimated by fitting of the experimental data implemented in MATLAB. Results show that one type site Langmuir-Hinshelwood model appropriately describes the experimental data, with adequate statistical fitting indicators and also satisfied the physical constraints. The activation energy for the formation of styrene (80kJ/mol) found to be significantly lower than that of the undesired products benzene (144kJ/mol) and toluene (164kJ/mol). The estimated heat of adsorptions of EB and ST are found to be 55kJ/mol and 19kJ/mol, respectively. © 2012 Elsevier B.V.

  9. Modeling of ethylbenzene dehydrogenation kinetics process taking into account deactivation of catalyst bed of the reactor

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2017-01-01

    Full Text Available Styrene synthesis process occurring in a two-stage continuous adiabatic reactor is a complex chemical engineering system. It is characterized by indeterminacy, nonstationarity and occurs in permanent uncontrolled disturbances. Therefore, the task of developing the predictive control system of the main product concentration of the dehydrogenation reaction - styrene to maintain this value within a predetermined range throughout the period of operation is important. This solution is impossible without the development of the process model on the basis of the kinetic revised scheme, taking into account the drop of the reactor catalytic bed activity due to coke formation on the surface. The article justifies and proposes: the drop changes dependence of catalyst bed activity as a time of reactor block operation function and improved model of chemical reactions kinetics. The synthesized mathematical model of the process is a system of ordinary differential equations and allows you: to calculate the concentration profiles of reaction mixture components during the passage of the charge through the adiabatic reactor stage, to determine the contact gas composition at the outlet of the reactor stages throughout the cycle of catalytic system, taking into account temperature changes and drop of the catalyst bed activity. The compensation of the decreased catalyst bed activity is carried out by raising the temperature in the reactor block for the duration of the operation. The estimation of the values of chemical reactions rate constants, as well as the calculation and analysis of the main and by-products concentrations of dehydrogenation reactions at the outlet of the reactor plant is curried out. Simulation results show that the change of temperature of the reactor, carried out by the exponential law considering deactivation of the catalyst bed allows the yield in a given range of technological regulations throughout the operation cycle of the reactor block.

  10. Modelling of the kinetics of deactivation of monofunctional catalysts with an acid strength distribution in their nonhomogeneous surface. Application to the deactivation of commercial catalysts in the fcc process

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Menendez, M.

    1986-01-01

    A model for the kinetics of the deactivation of monofunctional catalysts with a heterogeneous or non-uniform active surface is presented. This model is based on previous work by Butt et al. (1978, Chem. Engng Sci. 33, 1321) and starts from the consideration of a function of strength distribution for the active sites. Four types of strength distribution are considered. In the model time-on-stream is used as the independent variable. The influence of the values of the parameters of the catalyst surface on the activity-time curves and the parametric sensitivity of the model are analyzed. With the consideration of the non-uniformity of the catalyst surface developed in this model one can adjust perfectly well the data of deactivation of commercial catalysts in the cracking of gas oils and the empirical correlation of a general character proposed by Pacheco and Petersen (1984a, J. Catalysis 86, 75) for a large variety of processes and catalysts.

  11. Modeling the Kinetics of Deactivation of Catalysts during the Upgrading of Bio-Oil

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Robert S.; Olarte, Mariefel V.; Wang, Huamin

    2015-01-25

    The fouling of catalysts for the upgrading of bio-oils appears to be very different from the fouling of catalysts for the hydroprocessing of petroleum-derived streams. There are two reasons for the differences: a) bio-oil contains polarizable components and phases that can stabilize reaction intermediates exhibiting charge separation and b) bio-oil components contain functional groups that contain O, notably carbonyls (>C=O). Aldol condensation of carbonyls affords very different pathways for the production of oligomeric, refractory deposits than does dehydrogenation/polymerization of petroleum-derived hydrocarbons. Colloquially, we refer to the bio-oil derived deposits as “gunk” to discriminate them from coke, the carbonaceous deposits encountered in petroleum refining. Classical gelation, appears to be a suitable model for the “gunking” reaction. Our work has helped explain the temperature range at which bio-oil should be pre-processed (“stabilized”) to confer longer lifetimes on the catalysts used for more severe processing. Stochastic modeling (kinetic Monte Carlo simulations) appears suitable to capture the rates of oligomerization of bio-oil. This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  12. Novel techniques for the synthesis of three-way catalytic converter support materials

    Science.gov (United States)

    Anyaba, Prince Nwabueze

    Current automobiles use catalytic converters, consisting of noble metals on an oxide support, to convert noxious engine exhaust pollutants into less harmful species. The development of mesoporous oxide supports with optimal pore geometries could enable these devises to decrease in size and weight and significantly reduce the metal loadings required to achieve optimal performance. Thus, in this work, I investigated a wide range of techniques for the synthesis of mesoporous oxides to determine if they could be adapted to ceria-zirconia-yttria mixed oxide (CZY) systems, which are the industry standard for the optimal oxide support for catalytic converter applications. Additionally, I compared and critically evaluated the catalytic performance of the CZY mixed oxides, which were synthesized from the various templating techniques. The catalytic performance test was broken up into two: catalyst activity test which was determined based on the light-off temperatures at which 50% conversion of the reacting species have been converted; and resistance to surface area loss under accelerated aging at heating rate of 20°C/min form 700 to 1000°C, with the final temperature being held fixed for 4 h. To date, the most cost effective methods for preparing mesoporous materials are via techniques that employ templates or structure directing agents. These templates can be divided into two groups: endo-templates (i.e., soft templates, such as surfactants, dendrimers, and block copolymers) and exo-templates (i.e., hard templates, such as porous carbons and resins). The soft templating techniques generally involve both sol-gel and templating methods, while the hard templates required no sol-gel chemistry to achieve the desired templating effect. The precursors for ceria, zirconia, and yttria used were cerium (III) nitrate hexahydrate, zirconyl nitrate, and yttrium nitrate hexahydrate, respectively. The mesoporous CZY materials that were synthesized had surface area values that were

  13. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jernigan, Glenn Geoffrey [California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu2O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu2O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu2O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N2 and CO2. At the end of each reaction, the catalyst was found to be Cu2O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  14. Solithromycin, a novel macrolide, does not prolong cardiac repolarization: a randomized, three-way crossover study in healthy subjects.

    Science.gov (United States)

    Darpo, Borje; Sager, Philip T; Fernandes, Prabhavathi; Jamieson, Brian D; Keedy, Kara; Zhou, Meijian; Oldach, David

    2017-02-01

    Macrolide antibiotics may cause QT prolongation. To study the QT effect of a novel macrolide, solithromycin. This was a thorough QT study with a three-way crossover design performed in healthy male and female subjects to evaluate the ECG effects of a novel macrolide, solithromycin. Forty-eight subjects were randomized to receive 800 mg of intravenous (iv) solithromycin, 400 mg of oral moxifloxacin and placebo in three separate treatment periods. Continuous 12 lead ECGs were recorded at a pre-dose baseline and serially after drug administration for 24 h. After the 40 min infusion of 800 mg of solithromycin, the geometric mean solithromycin peak plasma concentration (C max ) reached 5.9 (SD: 1.30) μg/mL. Solithromycin infusion caused a heart rate increase with a peak effect of 15 bpm immediately after the end of the infusion. The change-from-baseline QTcF (ΔQTcF) was similar after dosing with solithromycin and placebo and the resulting placebo-corrected ΔQTcF (ΔΔQTcF) for solithromycin was therefore small at all timepoints with a peak effect at 4 h of only 2.8 ms (upper bound of the 90% CI: 4.9 ms). Using a linear exposure-response model, a statistically significant, slightly negative slope of -0.86 ms per ng/mL (90% CI: -1.19 to -0.53; P = 0.0001) was observed with solithromycin. The study's ability to detect small QT changes was confirmed by the moxifloxacin response. Solithromycin did not have a clinically meaningful effect on the PR or QRS interval. The study demonstrated that solithromycin, unlike other macrolide antibiotics, does not cause QT prolongation. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Anthony Marshall [Univ. of California, Berkeley, CA (United States)

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  16. First-Principles Approach to Heat and Mass Transfer Effects in Model Catalyst Studies

    OpenAIRE

    Matera, Sebastian; Reuter, Karsten

    2009-01-01

    We assess heat and mass transfer limitations in in situ studies of model catalysts with a first-principles based multiscale modeling approach that integrates a detailed description of the surface reaction chemistry and the macro-scale flow structures. Using the CO oxidation at RuO2(110) as a prototypical example we demonstrate that factors like a suppressed heat conduction at the backside of the thin single-crystal, and the build-up of a product boundary layer above the flat-faced surface pla...

  17. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles

    DEFF Research Database (Denmark)

    Hellman, A.; Honkala, Johanna Karoliina; Remediakis, Ioannis

    2009-01-01

    A recently published first-principles model for the ammonia synthesis on an unpromoted Ru-based catalyst is extended to also describe ammonia decomposition. In addition, further analysis concerning trends in ammonia productivity, surface conditions during the reaction, and macro......-properties, such as apparent activation energies and reaction orders are provided. All observed trends in activity are captured by the model and the absolute value of ammonia synthesis/decomposition productivity is predicted to within a factor of 1-100 depending on the experimental conditions. Moreover it is shown: (i...

  18. RNA three-way junctions can act as flexible RNA structural elements in large RNA molecules: a molecular simulation analysis

    Czech Academy of Sciences Publication Activity Database

    Beššeová, Ivana; Réblová, Kamila; Leontis, N.B.; Šponer, Jiří

    2009-01-01

    Roč. 26, č. 6 (2009), s. 830-831 ISSN 0739-1102. [The 17th Conversation. 16.06.2009-20.06.2009, Albany] Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : RNA three-way junctions * RNA Subject RIV: BO - Biophysics

  19. Atomic structure of graphene supported heterogeneous model catalysts

    International Nuclear Information System (INIS)

    Franz, Dirk

    2017-04-01

    Graphene on Ir(111) forms a moire structure with well defined nucleation centres. Therefore it can be utilized to create hexagonal metal cluster lattices with outstanding structural quality. At diffraction experiments these 2D surface lattices cause a coherent superposition of the moire cell structure factor, so that the measured signal intensity scales with the square of coherently scattering unit cells. This artificial signal enhancement enables the opportunity for X-ray diffraction to determine the atomic structure of small nano-objects, which are hardly accessible with any experimental technique. The uniform environment of every metal cluster makes the described metal cluster lattices on graphene/Ir(111) an attractive model system for the investigation of catalytic, magnetic and quantum size properties of ultra-small nano-objects. In this context the use of x-rays provides a maximum of flexibility concerning the possible sample environments (vacuum, selected gases, liquids, sample temperature) and allows in-situ/operando measurements. In the framework of the present thesis the structure of different metal clusters grown by physical vapor deposition in an UHV environment and after gas exposure have been investigated. On the one hand the obtained results will explore many aspects of the atomic structure of these small metal clusters and on the other hand the presented results will proof the capabilities of the described technique (SXRD on cluster lattices). For iridium, platinum, iridium/palladium and platinum/rhodium the growth on graphene/Ir(111) of epitaxial, crystalline clusters with an ordered hexagonal lattice arrangement has been confirmed using SXRD. The clusters nucleate at the hcp sites of the moire cell and bind via rehybridization of the carbon atoms (sp 2 → sp 3 ) to the Ir(111) substrate. This causes small displacements of the substrate atoms, which is revealed by the diffraction experiments. All metal clusters exhibit a fcc structure, whereupon

  20. Atomic structure of graphene supported heterogeneous model catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Franz, Dirk

    2017-04-15

    Graphene on Ir(111) forms a moire structure with well defined nucleation centres. Therefore it can be utilized to create hexagonal metal cluster lattices with outstanding structural quality. At diffraction experiments these 2D surface lattices cause a coherent superposition of the moire cell structure factor, so that the measured signal intensity scales with the square of coherently scattering unit cells. This artificial signal enhancement enables the opportunity for X-ray diffraction to determine the atomic structure of small nano-objects, which are hardly accessible with any experimental technique. The uniform environment of every metal cluster makes the described metal cluster lattices on graphene/Ir(111) an attractive model system for the investigation of catalytic, magnetic and quantum size properties of ultra-small nano-objects. In this context the use of x-rays provides a maximum of flexibility concerning the possible sample environments (vacuum, selected gases, liquids, sample temperature) and allows in-situ/operando measurements. In the framework of the present thesis the structure of different metal clusters grown by physical vapor deposition in an UHV environment and after gas exposure have been investigated. On the one hand the obtained results will explore many aspects of the atomic structure of these small metal clusters and on the other hand the presented results will proof the capabilities of the described technique (SXRD on cluster lattices). For iridium, platinum, iridium/palladium and platinum/rhodium the growth on graphene/Ir(111) of epitaxial, crystalline clusters with an ordered hexagonal lattice arrangement has been confirmed using SXRD. The clusters nucleate at the hcp sites of the moire cell and bind via rehybridization of the carbon atoms (sp{sup 2} → sp{sup 3}) to the Ir(111) substrate. This causes small displacements of the substrate atoms, which is revealed by the diffraction experiments. All metal clusters exhibit a fcc structure

  1. Model studies of secondary hydrogenation in Fischer-Tropsch synthesis studied by cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aaserud, Christian

    2003-07-01

    Mass transfer effects are very important in Fischer-Tropsch (FT) synthesis. In order to study the FT synthesis without the influence of any transport limitations, cobalt foils have been used as model catalysts. The effect of pretreatment (number of calcinations and different reduction times) for cobalt foil catalysts at 220 {sup o}C, 1 bar and H{sub 2}/CO = 3 has been studied in a microreactor. The foils were examined by Scanning electron microscopy (SEM). It was found that the catalytic activity of the cobalt foil increases with the number of pretreatments possibly due to an increase in the surface area of the cobalt foil. The SEM results support the assumption that the surface area of the cobalt foil increases with the number of pretreatments. The reduction time was also found to influence the catalytic activity of the cobalt foil. Highest activity was obtained using a reduction time of only five min (compared to one and thirty min). The decrease in activity after reduction for thirty min compared to five min was suggested to be due to restructuring of the surface of the cobalt foil and a reduction time of only 1 min was not enough to reduce the cobalt foil sufficiently. Time of reduction did also influence the product distribution. Increased reduction time resulted in a lower selectivity to light products and increased selectivity to heavier components. The paraffin/olefin ratio increased with increasing CO-conversion also for cobalt foils. The paraffin/olefin ratio also increased when the reduction period of the cobalt foil was increased at a given CO-conversion. Hydrogenation of propene to propane has been studied as a model reaction for secondary hydrogenation of olefins in the FT synthesis. The study has involved promoted and unpromoted cobalt FT catalysts supported on different types of supports and also unsupported cobalt. Hydrogenation of propene was carried out at 120 {sup o}C, 1.8 bar and H{sub 2}/C{sub 3}H{sub 6} 6 in a fixed bed microreactor. The rate

  2. Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts

    Science.gov (United States)

    Roiaz, Matteo; Pramhaas, Verena; Li, Xia; Rameshan, Christoph; Rupprechter, Günther

    2018-04-01

    A new custom-designed ultrahigh vacuum (UHV) chamber coupled to a UHV and atmospheric-pressure-compatible spectroscopic and catalytic reaction cell is described, which allows us to perform IR-vis sum frequency generation (SFG) vibrational spectroscopy during catalytic (kinetic) measurements. SFG spectroscopy is an exceptional tool to study vibrational properties of surface adsorbates under operando conditions, close to those of technical catalysis. This versatile setup allows performing surface science, SFG spectroscopy, catalysis, and electrochemical investigations on model systems, including single crystals, thin films, and deposited metal nanoparticles, under well-controlled conditions of gas composition, pressure, temperature, and potential. The UHV chamber enables us to prepare the model catalysts and to analyze their surface structure and composition by low energy electron diffraction and Auger electron spectroscopy, respectively. Thereafter, a sample transfer mechanism moves samples under UHV to the spectroscopic cell, avoiding air exposure. In the catalytic cell, SFG spectroscopy and catalytic tests (reactant/product analysis by mass spectrometry or gas chromatography) are performed simultaneously. A dedicated sample manipulation stage allows the model catalysts to be examined from LN2 temperature to 1273 K, with gaseous reactants in a pressure range from UHV to atmospheric. For post-reaction analysis, the SFG cell is rapidly evacuated and samples are transferred back to the UHV chamber. The capabilities of this new setup are demonstrated by benchmark results of CO adsorption on Pt and Pd(111) single crystal surfaces and of CO adsorption and oxidation on a ZrO2 supported Pt nanoparticle model catalyst grown by atomic layer deposition.

  3. Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis.

    Science.gov (United States)

    Bennett, Alison E; Alers-Garcia, Janice; Bever, James D

    2006-02-01

    A number of studies have shown that an association with mycorrhizal fungi can alter the outcome of interactions between plants and their enemies. While the directions of these effects vary, their strength suggests the need for greater attention to multispecies interactions among plant enemies, plants, and mycorrhizal fungi. We recognize that mycorrhizal fungi could effect plant enemies by improving plant nutrition, modifying plant tolerance, or modifying plant defenses. In addition, mycorrhizal fungi could directly interfere with pathogen infection, herbivory, or parasitism by occupying root space. We formalize these alternative outcomes of multispecies interactions and explore the long-term dynamics of the plant-enemy interactions based on these different scenarios using a general model of interactions between plants and plant enemies. We then review the literature in terms of the assumptions of the alternative mechanisms and the predictions of these models. Through this effort, we identify new directions in the study of tritrophic interactions between enemies, plants, and soil mutualists.

  4. The Three-Way Linkages between Export, Import and Economic Growth: New Evidence from Tunisia

    OpenAIRE

    Bakari, Sayef

    2017-01-01

    This study investigates the nexus between exports, imports and economic growth in Tunisia using annual time series data for the period 1965 - 2016 by implementing cointegration analysis and vector error correction model. The empirical results show that in the long run (i) exports affect negatively on economic growth, (ii) imports have positive effect on economic growth, (iii) economic growth have positive effect on exports, and imports have positive effect on exports. However in the short run...

  5. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation.

    Science.gov (United States)

    Shu, Qing; Nawaz, Zeeshan; Gao, Jixian; Liao, Yuhui; Zhang, Qiang; Wang, Dezheng; Wang, Jinfu

    2010-07-01

    A solid acid catalyst that can keep high activity and stability is necessary when low cost feedstocks are utilized for biodiesel synthesis because the reaction medium contains a large amount of water. Three solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt. The structure of these catalysts was characterized by a variety of techniques. A new process that used the coupling of the reaction and separation was employed, which greatly improved the conversion of cottonseed oil (triglyceride) and free fatty acids (FFA) when a model waste oil feedstock was used. The vegetable oil asphalt-based catalyst showed the highest catalytic activity. This was due to the high density and stability of its acid sites, its loose irregular network, its hydrophobicity that prevented the hydration of -OH species, and large pores that provided more acid sites for the reactants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  7. Oxidative destruction of biomolecules by gasoline engine exhaust products and detoxifying effects of the three-way catalytic converter.

    Science.gov (United States)

    Blaurock, B; Hippeli, S; Metz, N; Elstner, E F

    1992-01-01

    Aqueous solutions of engine exhaust condensation products were derived from cars powered by diesel or four-stroke gasoline engines (with and without three-way catalytic converter). The cars were operated on a static test platform. Samples of the different exhaust solutions accumulated in a Grimmer-type distillation trap (VDI 3872) during standard test programs (Federal Test Procedure) were incubated with important biomolecules. As indicators of reactive oxygen species or oxidative destruction, ascorbic acid, cysteine, glutathione, serum albumin, the enzymes glycerinaldehyde phosphate dehydrogenase and xanthine oxidase, and the oxygen free-radical indicator keto-methylthiobutyrate were used. During and after the incubations, oxygen activation (consumption) and oxidative destruction were determined. Comparison of the oxidative activities of the different types of exhaust condensates clearly showed that the exhaust condensate derived from the four-stroke car equipped with a three-way catalytic converter exhibited by far the lowest oxidative and destructive power.

  8. MECHANISTIC KINETIC MODELS FOR STEAM REFORMING OF CONCENTRATED CRUDE ETHANOL ON NI/AL2O3 CATALYST

    Directory of Open Access Journals (Sweden)

    O. A. OLAFADEHAN

    2015-05-01

    Full Text Available Mechanistic kinetic models were postulated for the catalytic steam reforming of concentrated crude ethanol on a Ni-based commercial catalyst at atmosphere pressure in the temperature range of 673-863 K, and at different catalyst weight to the crude ethanol molar flow rate ratio (in the range 0.9645-9.6451 kg catalyst h/kg mole crude ethanol in a stainless steel packed bed tubular microreactor. The models were based on Langmuir-Hinshelwood-Hougen-Watson (LHHW and Eley-Rideal (ER mechanisms. The optimization routine of Nelder-Mead simplex algorithm was used to estimate the inherent kinetic parameters in the proposed models. The selection of the best kinetic model amongst the rival kinetic models was based on physicochemical, statistical and thermodynamic scrutinies. The rate determining step for the steam reforming of concentrated crude ethanol on Ni/Al2O3 catalyst was found to be surface reaction between chemisorbed CH3O and O when hydrogen and oxygen were adsorbed as monomolecular species on the catalyst surface. Excellent agreement was obtained between the experimental rate of reaction and conversion of crude ethanol, and the simulated results, with ADD% being ±0.46.

  9. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles

    Science.gov (United States)

    Hellman, A.; Honkala, K.; Remediakis, I. N.; Logadóttir, Á.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K.

    2009-06-01

    A recently published first-principles model for the ammonia synthesis on an unpromoted Ru-based catalyst is extended to also describe ammonia decomposition. In addition, further analysis concerning trends in ammonia productivity, surface conditions during the reaction, and macro-properties, such as apparent activation energies and reaction orders are provided. All observed trends in activity are captured by the model and the absolute value of ammonia synthesis/decomposition productivity is predicted to within a factor of 1-100 depending on the experimental conditions. Moreover it is shown: (i) that small changes in the relative adsorption potential energies are sufficient to get a quantitative agreement between theory and experiment ( Appendix A) and (ii) that it is possible to reproduce results from the first-principles model by a simple micro-kinetic model ( Appendix B).

  10. Disproportionation of rosin on an industrial Pd/C catalyst: reaction pathway and kinetic model discrimination.

    Science.gov (United States)

    Souto, Juan Carlos; Yustos, Pedro; Ladero, Miguel; Garcia-Ochoa, Felix

    2011-02-01

    In this work, a phenomenological study of the isomerisation and disproportionation of rosin acids using an industrial 5% Pd on charcoal catalyst from 200 to 240°C is carried out. Medium composition is determined by elemental microanalysis, GC-MS and GC-FID. Dehydrogenated and hydrogenated acid species molar amounts in the final product show that dehydrogenation is the main reaction. Moreover, both hydrogen and non-hydrogen concentration considering kinetic models are fitted to experimental data using a multivariable non-linear technique. Statistical discrimination among the proposed kinetic models lead to the conclusion hydrogen considering models fit much better to experimental results. The final kinetic model involves first-order isomerisation reactions of neoabietic and palustric acids to abietic acid, first-order dehydrogenation and hydrogenation of this latter acid, and hydrogenation of pimaric acids. Hydrogenation reactions are partial first-order regarding the acid and hydrogen. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. A comprehensive model for the supported vanadium oxide catalyst: The umbrella model

    NARCIS (Netherlands)

    Lingen, J.N.J. van

    2006-01-01

    Supported vanadium oxide catalysts are widely used in industry. However, the molecular structure of the active species, responsible for the actual catalysis, is for a large part still unknown. This thesis describes four years study on the elucidation of this molecular structure. It mainly focuses on

  12. Global Structure of a Three-Way Junction in a Phi29 Packaging RNA Dimer Determined Using Site-Directed Spin Labeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojun; Tung, Chang-Shung; Sowa, Glenna; Hatmal, Ma' mon M.; Haworth, Ian S.; Qin, Peter Z.

    2012-02-08

    The condensation of bacteriophage phi29 genomic DNA into its preformed procapsid requires the DNA packaging motor, which is the strongest known biological motor. The packaging motor is an intricate ring-shaped protein/RNA complex, and its function requires an RNA component called packaging RNA (pRNA). Current structural information on pRNA is limited, which hinders studies of motor function. Here, we used site-directed spin labeling to map the conformation of a pRNA three-way junction that bridges binding sites for the motor ATPase and the procapsid. The studies were carried out on a pRNA dimer, which is the simplest ring-shaped pRNA complex and serves as a functional intermediate during motor assembly. Using a nucleotide-independent labeling scheme, stable nitroxide radicals were attached to eight specific pRNA sites without perturbing RNA folding and dimer formation, and a total of 17 internitroxide distances spanning the three-way junction were measured using Double Electron-Electron Resonance spectroscopy. The measured distances, together with steric chemical constraints, were used to select 3662 viable three-way junction models from a pool of 65 billion. The results reveal a similar conformation among the viable models, with two of the helices (HT and HL) adopting an acute bend. This is in contrast to a recently reported pRNA tetramer crystal structure, in which HT and HL stack onto each other linearly. The studies establish a new method for mapping global structures of complex RNA molecules, and provide information on pRNA conformation that aids investigations of phi29 packaging motor and developments of pRNA-based nanomedicine and nanomaterial.

  13. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts.

    Science.gov (United States)

    Park, Hyun Ju; Park, Sung Hoon; Sohn, Jung Min; Park, Junhong; Jeon, Jong-Ki; Kim, Seung-Soo; Park, Young-Kwon

    2010-01-01

    The steam reforming of benzene as a model compound of biomass gasification tar was carried out over various Ni/metal oxide catalysts. The effects of the support, temperature, Ni-precursor, Ni loading and reaction time were examined, and their catalytic performance was compared with that of a commercial Ni catalyst. Among the Ni/metal oxide catalysts used, 15 wt% Ni/CeO(2)(75%)-ZrO(2)(25%) showed the highest catalytic performance owing to its greater redox characteristics and increased surface area, irrespective of the reaction temperature. The catalytic activity of 15 wt% Ni/CeO(2)(75%)-ZrO(2)(25%) was higher than that of the commercial Ni catalyst. Moreover, the catalyst activity was retained due to its excellent resistance to coke deposition even after 5h. The Ni-precursor played a critical role in the catalytic activity. With the exception of nickel nitrate, all the Ni-precursors (chloride and sulfate) caused deactivation of the catalyst.

  14. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling.

    Science.gov (United States)

    Hou, Ting; Li, Wei; Zhang, Lianfang; Li, Feng

    2015-08-21

    Herein, a highly sensitive and versatile homogeneous electrochemical biosensing strategy is proposed, based on the split aptamer-incorporated DNA three-way junction and the exonuclease (Exo) III-assisted target recycling. The aptamer of adenosine triphosphate (ATP, chosen as the model analyte) is split into two fragments and embedded in single-stranded DNA1 and DNA2, respectively. ATP specifically binds with the split aptamers, bringing DNA1 and DNA2 close to each other, thus inducing the DNA three-way junction formation through the partial hybridization among DNA1, DNA2 and the methylene blue-labelled MB-DNA. Subsequently, MB-DNA is specifically digested by Exo III, releasing a MB-labelled mononucleotide, as well as a DNA1-ATP-DNA2 complex, which acts as the recycled target and hybridizes with another intact MB-DNA to initiate the subsequent cycling cleavage process. As a result, large amounts of MB-labelled mononucleotides are released, generating a significantly amplified electrochemical signal toward the ATP assay. To the best of our knowledge, it is the first example to successfully incorporate split aptamers into DNA three-way junctions and to be adopted in a homogeneous electrochemical assay. In addition to high sensitivity, this strategy also exhibits the advantages of simplicity and convenience, because it is carried out in a homogeneous solution, and sophisticated electrode modification processes are avoided. By simply changing the sequences of the split aptamer fragments, this versatile strategy can be easily adopted to assay a large spectrum of targets. Due to its advantages of high sensitivity, excellent selectivity, versatility and simple operation, the as-proposed approach has great potential to be applied in biochemical research and clinical practices.

  15. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Manos Mavrikakis; James Dumesic; Rahul Nabar; Calvin Bartholonew; Hu Zou; Uchenna Paul

    2008-09-29

    This work focuses on (1) searching/summarizing published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) preparation and characterization of unsupported iron catalysts with/without potassium/platinum promoters; (3) measurement of H{sub 2} and CO adsorption/dissociation kinetics on iron catalysts using transient methods; (3) analysis of the transient rate data to calculate kinetic parameters of early elementary steps in FTS; (4) construction of a microkinetic model of FTS on iron, and (5) validation of the model from collection of steady-state rate data for FTS on iron catalysts. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by non-aqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, temperature-programmed reduction (TPR), extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2} and thus ideal for kinetic and mechanistic studies. Kinetic parameters for CO adsorption, CO dissociation, and surface carbon hydrogenation on these catalysts were determined from temperature-programmed desorption (TPD) of CO and temperature programmed surface hydrogenation (TPSR), temperature-programmed hydrogenation (TPH), and isothermal, transient hydrogenation (ITH). A microkinetic model was constructed for the early steps in FTS on polycrystalline iron from the kinetic parameters of elementary steps determined experimentally in this work and from literature values. Steady-state rate data were collected in a Berty reactor and used for validation of the microkinetic model. These rate data were fitted to 'smart' Langmuir-Hinshelwood rate expressions derived from a sequence of elementary steps and using a combination of fitted steady-state parameters and parameters specified from the transient

  16. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst

    Science.gov (United States)

    Lee, Heejin; Kim, Hannah; Yu, Mi Jin; Ko, Chang Hyun; Jeon, Jong-Ki; Jae, Jungho; Park, Sung Hoon; Jung, Sang-Chul; Park, Young-Kwon

    2016-06-01

    The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst.

  17. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

    DEFF Research Database (Denmark)

    Kemppainen, Erno; Halme, Janne; Hansen, Ole

    2016-01-01

    With electrocatalysts it is important to be able to distinguish between the effects of mass transport and reaction kinetics on the performance of the catalyst. When the hydrogen evolution reaction (HER) is considered, an additional and often neglected detail of mass transport in liquid...... is the evolution and transport of gaseous H2, since HER leads to the continuous formation of H2 bubbles near the electrode. We present a numerical model that includes the transport of both gaseous and dissolved H2, as well as mass exchange between them, and combine it with a kinetic model of HER at platinum (Pt......) nanoparticle electrodes. We study the effect of the diffusion layer thickness and H2 dissolution rate constant on the importance of gaseous transport, and the effect of equilibrium hydrogen coverage and Pt loading on the kinetic and mass transport overpotentials. Gaseous transport becomes significant when...

  18. Modelling the aqueous and nonaqueous interfaces for CO2 electro-reduction over Sn catalysts

    Science.gov (United States)

    Sheng, Tian; Sun, Shi-Gang

    2018-01-01

    In CO2 electroreduction, Sn catalysts with a high overpotential for hydrogen evolution reaction and a high selectivity towards formic acid formation are very attractive. Many efforts have been made for improving the catalytic performance and for understanding the mechanisms. In electrochemistry, the role of solvents for surface reactions was deserved to be investigated, in particular for some nonaqueous solvents. Here, we have modeled the aqueous (water) and nonaqueous (acetonitrile and dichloromethane) for investigation of CO2 electroreduction on Sn surface, by constrained ab initio molecular dynamics simulations and thermodynamic integrations, including a number of explicit solvent molecules in computational models. It was found that CO2 reduction is initiated from formate formation and solvents, in particular, water can effectively facilitate the reaction.

  19. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  20. Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling

    International Nuclear Information System (INIS)

    Niu, Juntian; Du, Xuesen; Ran, Jingyu; Wang, Ruirui

    2016-01-01

    Graphical abstract: - Highlights: • CH appears to be the most abundant species on Pt(1 1 1) surface in CH 4 dissociation. • CO 2 * + H* → COOH* + * → CO* + OH* is the dominant reaction pathway in CO 2 activation. • Major reaction pathway in CH oxidation: CH* + OH* → CHOH* + * → CHO* + H* → CO* + 2H*. • C* + OH* → COH* + * → CO* + H* is the dominant reaction pathway in C oxidation. - Abstract: Dry reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. In order to design catalysts that minimize the deactivation and improve the selectivity and activity for a high H 2 /CO yield, it is necessary to understand the elementary reaction steps involved in activation and conversion of CO 2 and CH 4 . In our present work, a microkinetic model based on density functional theory (DFT) calculations is applied to explore the reaction mechanism for methane dry reforming on Pt catalysts. The adsorption energies of the reactants, intermediates and products, and the activation barriers for the elementary reactions involved in the DRM process are calculated over the Pt(1 1 1) surface. In the process of CH 4 direct dissociation, the kinetic results show that CH dissociative adsorption on Pt(1 1 1) surface is the rate-determining step. CH appears to be the most abundant species on the Pt(1 1 1) surface, suggesting that carbon deposition is not easy to form in CH 4 dehydrogenation on Pt(1 1 1) surface. In the process of CO 2 activation, three possible reaction pathways are considered to contribute to the CO 2 decomposition: (I) CO 2 * + * → CO* + O*; (II) CO 2 * + H* → COOH* + * → CO* + OH*; (III) CO 2 * + H* → mono-HCOO* + * → bi-HCOO* + * [CO 2 * + H* → bi-HCOO* + *] → CHO* + O*. Path I requires process to overcome the activation barrier of 1.809 eV and the forward reaction is calculated to be strongly endothermic by 1.430 eV. In addition, the kinetic results also indicate this process is not easy

  1. Jacobsen Catalyst as a Cytochrome P450 Biomimetic Model for the Metabolism of Monensin A

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rocha

    2014-01-01

    Full Text Available Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.

  2. Hybrid plasma-catalytic steam reforming of toluene as a biomass tar model compound over Ni/Al₂O₃ catalysts

    OpenAIRE

    Liu, SY; Mei, DH; Nahil, MA; Gadkari, S; Gu, S; Williams, PT; Tu, X

    2017-01-01

    In this study, plasma-catalytic steam reforming of toluene as a biomass tar model compound was carried out in a coaxial dielectric barrier discharge (DBD) plasma reactor. The effect of Ni/Al2O3 catalysts with different nickel loadings (5–20 wt%) on the plasma-catalytic gas cleaning process was evaluated in terms of toluene conversion, gas yield, by-products formation and energy efficiency of the plasma-catalytic process. Compared to the plasma reaction without a catalyst, the combination of D...

  3. Half-sandwich group 4 metal siloxy and silsesquioxane complexes : Soluble model systems for silica-grafted olefin polymerization catalysts

    NARCIS (Netherlands)

    Duchateau, R; Cremer, U; Harmsen, RJ; Mohamud, SI; Abbenhuis, HCL; van Santen, RA; Meetsma, A; Thiele, SKH; van Tol, MFH; Kranenburg, M

    1999-01-01

    The cuboctameric hydroxysilsesquioxane (c-C5H9)(7)Si8O12(OH) (2), obtained after hydrolysis of (c-C5H9)(7)Si8O12Cl (1), and triphenylsilanol have been applied as model supports for silica-grafted olefin polymerization catalysts. The ligands were introduced on group 4 metals by either chloride

  4. Modeling the kinetics of cobalt Fischer-Tropsch catalyst deactivation trends through an innovative modified Weibull distribution.

    Science.gov (United States)

    Khorashadizadeh, Mahdi; Atashi, Hossein

    2017-07-26

    Since the increase in clean energy demand is driven by environmental concerns, energy management is an ever-lasting issue globally. Among the different scenarios for energy manufacturing, the catalytic route through the famous process named Fischer-Tropsch Synthesis provides beneficial consequences including pollution reduction and economic efficiency, among others. In this regard, catalyst stability must be taken into account as a crucial performance parameter, especially in the expensive cobalt-catalyzed CO hydrogenation processes. As catalyst deactivation seems to be inevitable in catalytic processes, deactivation issues such as the extent, failure rate, or reactivation significantly influence the exploration, development, design, and operation of commercial processes. Accordingly, the deactivation trend of a cobalt-based catalyst was modeled via an innovative Weibull distribution base, which presents a significant advance over the existing macroscopic deactivation models. Being employed to obtain informative equations, the model parameters provide valuable information about the catalyst lifetime, which can be used as a useful predictive tool for industrial control purposes.

  5. CLV3W : A clustering around latent variables approach to detect panel disagreement in three-way conventional sensory profiling data

    NARCIS (Netherlands)

    Wilderjans, T.F.; Cariou, V.

    2016-01-01

    To detect panel disagreement, we propose the clustering around latent variables for three-way data (CLV3W) approach which extends the clustering of variables around latent components (CLV) approach to three-way data typically obtained from a conventional sensory profiling procedure (i.e., assessors

  6. Modeling intraparticle transports during propylene polymerizations using supported metallocene and dual function metallocene as catalysts: Single particle model

    Directory of Open Access Journals (Sweden)

    Li Hua-Rong

    2014-01-01

    Full Text Available Two improved multigrain models (MGMs for preparing homopolypropylene and long chain branched polypropylene via propylene polymerization using silica-supported metallocene or dual function metallocene as catalysts are presented in this paper. The presented models are used to predict the intraparticle flow fields involved in the polymerizations. The simulation results show that the flow field distributions involve dare basically identical. The results also show that both the two polymerization processes have an initiation stage and the controlling step for them is reaction-diffusion-reaction with the polymerization proceeding. Furthermore, the simulation results show that the intra particle mass transfer resistance has significant effect on the polymerization but the heat transfer resistance can be ignored.

  7. A review on kinetic modeling of deactivation of SAPO-34 catalyst during Methanol to Olefins (MTO) process

    OpenAIRE

    Mohammad Ali Ahmadi, Seyed; Askari, Sima; Halladj, Rouein

    2013-01-01

    The major cause of deactivation in the MTO reaction over SAPO-34 is coke deposition that influences both activity and selectivity. This review describes different kinetic modeling of deactivation  of SAPO-34 during MTO process. It also presents different deactivation functions for the methanol conversion and the yields of olefins, which are hyperbolic and exponential respectively. A modified Voorhies model that estimates the average coke selectivity and catalyst capacity for olefin formation ...

  8. In situ hydrogenation of model compounds and raw bio-oil over Raney Ni catalyst

    International Nuclear Information System (INIS)

    Xu, Ying; Long, Jinxing; Liu, Qiying; Li, Yanbin; Wang, Chenguang; Zhang, Qi; Lv, Wei; Zhang, Xinghua; Qiu, Songbai; Wang, Tiejun; Ma, Longlong

    2015-01-01

    Graphical abstract: Over Raney Ni catalyst, the aqueous phase reforming (APR) of methanol could couple with the hydrogenation of the model compounds of bio-oil and the raw bio-oil. The hydrogen product from the APR of methanol could offer hydrogen source for the upgrading of the raw bio-oil. The main products of acetone and phenol were isopropanol and cyclohexanol. At 220 °C and 3 MPa, the conversion of acetone and phenol reached the highest point with 55.76% and 64.65% and the bio-oil was improved not only on the appearance but also on the composition significantly. The contents of ketone/aldehyde and organic acids decreased from 30.36% and 39.89% to 9.32% and 30.25% respectively. The contents of alcohols and esters increased from 8.89% and 4.9% to 16.33% and 20.53%. During the in situ hydrogenation process, hydrogenation and esterification were the main reactions in the bio-oil. - Highlights: • We proposed a novel hydrogenation method in mild condition without adding external hydrogen. • The methanol APR and hydrogenation of model compounds and the raw bio-oil could couple with each other. • The hydrogen generated in situ by the APR of methanol could be used for the hydrogenation of the raw bio oil. • After in situ hydrogenation, the appearance and composition of the bio oil was improved significantly. - Abstract: The conversion of renewable energy is one of the most important research fields. A novel upgrading method of bio-oil produced from fast pyrolysis of biomass was reported in the paper. Methanol, as hydrogenation liquid donor, was used in the hydrogenation process instead of hydrogen gas. The effects on the aqueous phase reforming (APR) of methanol and the in situ hydrogenation of model compounds (acetone and phenol) and bio-oil were investigated. The results showed that over Raney Ni catalyst, the in situ hydrogenation could couple with the APR of methanol. The conversions of acetone and phenol reached the highest point with 55.76% and 64

  9. Interaction of NO2 with model NSR catalysts: metal-oxide interaction controls initial NOx storage mechanism.

    Science.gov (United States)

    Desikusumastuti, Aine; Staudt, Thorsten; Qin, Zhihui; Happel, Markus; Laurin, Mathias; Lykhach, Yaroslava; Shaikhutdinov, Shamil; Rohr, Friedemann; Libuda, Jörg

    2008-10-24

    Using scanning tunneling microscopy (STM), molecular-beam (MB) methods and time-resolved infrared reflection absorption spectroscopy (TR-IRAS), we investigate the mechanism of initial NO(x) uptake on a model nitrogen storage and reduction (NSR) catalyst. The model system is prepared by co-deposition of Pd metal particles and Ba-containing oxide particles onto an ordered alumina film on NiAl(110). We show that the metal-oxide interaction between the active noble metal particles and the NO(x) storage compound in NSR model catalysts plays an important role in the reaction mechanism. We suggest that strong interaction facilitates reverse spillover of activated oxygen species from the NO(x) storage compound to the metal. This process leads to partial oxidation of the metal nanoparticles and simultaneous stabilization of the surface nitrite intermediate.

  10. Jacobsen Catalyst as a Cytochrome P450 Biomimetic Model for the Metabolism of Monensin A

    Czech Academy of Sciences Publication Activity Database

    Rocha, B. A.; de Oliveira, A. M.; Pazin, M.; Dorta, D.J.; Rodrigues, A.P.N.; Berretta, A.A.; Peti, A. P. F.; de Moraes, L.A.B.; Lopes, N. P.; Pospíšil, Stanislav; Gates, P. J.; Assis, M. D.

    2014-01-01

    Roč. 2014, č. 2014 (2014), s. 1-8 ISSN 2314-6133 Institutional support: RVO:61388971 Keywords : Monensin A * Jacobsen Catalyst Subject RIV: EE - Microbiology, Virology Impact factor: 1.579, year: 2014

  11. Nanocomposite catalyst with palladium nanoparticles encapsulated in a polymeric acid: A model for tandem environmental catalysis

    KAUST Repository

    Isimjan, Tayirjan T.

    2013-04-01

    The synthesis and characterization of a novel hybrid nanocomposite catalyst comprised of palladium nanoparticles embedded in polystyrene sulfonic acid (PSSH) and supported on metal oxides is reported. The catalysts are intended for application in green catalysis, and they are shown to be effective in the hydrolysisreduction sequence of tandem catalytic reactions required for conversion of 2-phenyl-1,3-dioxolane to toluene or of phenol to cyclohexane. The two distinct components in the catalyst, Pd nanoparticles and acidic PSSH, are capable of catalyzing sequential reactions in one pot under mild conditions. This work has demonstrated a powerful approach toward designing highperformance, multifunctional, scalable, and environmentally friendly nanostructured tandem catalysts. © 2013 American Chemical Society.

  12. Transient Model of Heat,Mass,and Charge transfer as well as Electrochemistry in the Cathode Catalyst Layer of a PEMFC

    OpenAIRE

    Genevey, Daniel Bruno

    2001-01-01

    A transient model of the cathode catalyst layer of a proton exchange membrane fuel cell is presented. The catalyst layer structure can be described as a superposition of the polymer membrane, the backing layer, and some additional platinum particles. The model, which incorporates some of the features of the pseudo-homogeneous models currently present in the literature, considers the kinetics of the electrochemical reaction taking place at the platinum surface, the proton transport through the...

  13. Supported sub-nanometer Ta oxide clusters as model catalysts for the selective epoxidation of cyclooctene

    KAUST Repository

    Zwaschka, Gregor

    2018-01-22

    The preparation of organic ligands-free, isolated tantalum oxide atoms (Ta1) and small clusters (Tan>1) on flat silicate supports was accomplished by ultra-high vacuum (UHV) techniques followed by oxidation in air. The resulting surface complexes were thoroughly characterized and tested as supported catalysts for the epoxidation of cycloalkenes. The observed catalytic performance highlights the potential of the applied method for the production of active catalysts and the study of well-defined, ligand-free metal oxide moieties.

  14. Theoretical modeling of structure and function of cathode catalyst layers in PEMFC

    International Nuclear Information System (INIS)

    Wang, Q.; Eikerling, M.; Song, D.; Liu, Z.

    2004-01-01

    'Full text:' In this work, we first investigate transport and reaction kinetics in single agglomerates of cathode catalyst layers in proton exchange fuel cells. Two types of spherical agglomerates are evaluated, which represent limiting structures that can be obtained by distinct synthetic procedures. One type consists of a mixture of carbon/catalyst particles and proton conducting perfluorosulfonated ionomer (PFSI). The other type consists of carbon/catalyst particles and water-filled pores. Performance of the former type is rationalized on the basis of the well-known Thiele-modulus. Characteristics of the latter type are studied using Nernst-Planck and Poisson equations. Aspects of current conversion, reactant and current distributions, and catalyst utilization are explored. In general, the PFSI-filled agglomerates exhibit more homogeneous distributions of reaction rates. Effectiveness factors for them are close to one. However, it was found that proton penetration depths in waterflooded agglomerates could be quite significant as well under certain conditions, resulting in unexpectedly high catalyst utilization. The effects of agglomerate radius and of boundary conditions at the agglomerate surface are studied. Moreover, using the same approach, we evaluate the performance of a flat PFSI-free catalyst layer with water-filled pore space. Compared with conventional composite catalyst layers impregnated with PFSI, the PFSI-free layer exhibits better performance and high Pt utilization for thicknesses less than 0.1 μm. The significance of these results for the optimization catalyst layers in view of operation conditions and synthesis methods is discussed. (author)

  15. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.

    Science.gov (United States)

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias

    2013-03-14

    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  16. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  17. Evidence for the Active Phase of Heterogeneous Catalysts through In Situ Reaction Product Imaging and Multiscale Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Matera, S.; Blomberg, S.; Hoffmann, M. J.; Zetterberg, J.; Gustafson, J.; Lundgren, E.; Reuter, K.

    2015-06-17

    We use multiscale modeling to analyze laser-induced fluorescence (LIF) measurements of the CO oxidation reaction over Pd(100) at near-ambient reaction conditions. Integrating density functional theory-based kinetic Monte Carlo simulations of the active catalyst into fluid-dynamical simulations of the mass transport inside the reactor chamber, we calculate the reaction product concentration directly above the catalyst surface. Comparing corresponding data calculated for different surface models against the measured LIF signals, we can discriminate the one that predominantly actuates the experimentally measured catalytic activity. For the probed CO oxidation reaction conditions, the experimental activity is due to pristine Pd(100) possibly coexisting with other (oxidic) domains on the surface.

  18. Combined high-pressure cell-ultrahigh vacuum system for fast testing of model metal alloy catalysts using scanning mass spectrometry

    DEFF Research Database (Denmark)

    Johansson, Martin; Jørgensen, Jan Hoffmann; Chorkendorff, Ib

    2004-01-01

    An apparatus for fabrication, surface analysis in ultrahigh vacuum, and testing of the catalytic activity of model metal alloy catalysts is described. Arrays of model catalysts are produced by electron-beam deposition of up to four metals simultaneously onto a substrate. The surface analysis...... be studied on a substrate 10 mm in diameter. A high pressure cell with an all-metal sealed ultrahigh vacuum lock is also described as part of the work. ©2004 American Institute of Physics....

  19. Modeling of Diffusion Process in the Isotopic Oxygen Exchange Experiments of CexZr(1-xO2 Catalysts

    Directory of Open Access Journals (Sweden)

    Arvaidas GALDIKAS

    2013-03-01

    Full Text Available The oxygen mobility processes during the temperature programmed oxygen isotopic exchange is considered by proposed kinetic model. Model includes simple and complex heteroexchange reactions and bulk diffusion processes. The model is applied to fit experimental curves of CexZr(1-xO2 catalysts with different composition in order to calculate reaction rates and diffusion coefficients, and activation energies of those processes.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.1630

  20. Synthesis and evaluation of novel biochar-based and metal oxide-based catalysts for removal of model tar (toluene), ammonia, and hydrogen sulfide from simulated producer gas

    Science.gov (United States)

    Bhandari, Pushpak

    Gasification is a thermochemical conversion process in which carbonaceous feedstock is gasified in a controlled atmosphere to generate producer gas. The producer gas is used for production of heat, power, fuels and chemicals. Various contaminants such as tars, NH3, and H2S in producer gas possess many problems due to their corrosive nature and their ability to clog and deactivate catalysts. In this study, several catalysts were synthesized, characterized, and tested for removal of three contaminants (toluene (model tar), NH3, and H2S) from the biomass-generated producer gas. Biochar, a catalyst, was generated from gasification of switchgrass. Activated carbon and acidic surface activated carbon were synthesized using ultrasonication method from biochar. Acidic surface was synthesized by coating activated carbon with dilute acid. Mixed metal oxide catalysts were synthesized from hydrotalcite precursors using novel synthesis technique using microwave and ultrasonication. Surface area of activated carbon (˜900 m2/g) was significantly higher than that of its precursor biochar (˜60 m2/g). Surface area of metal oxide catalyst was approximately 180 m2/g after calcination. Biochar, activated carbon, and acidic surface activated carbon showed toluene removal efficiencies of approximately 78, 88, and 88 %, respectively, when the catalysts were tested individually with toluene in the presence of producer gas at 800 °C. The toluene removal efficiencies increased to 86, 91, and 97 % using biochar, activated carbon and acidic surface activated carbon, respectively in the presence of NH3 and H2S in the producer gas. Increase in toluene removal efficiencies in presence of NH3 and H2S indicates that NH3 and H 2S play a role in toluene reforming reactions during simultaneous removal of contaminants. Toluene removal efficiency for mixed metal oxide was approximately 83%. Ammonia adsorption capacities were 0.008 g NH3/g catalyst for biochar and 0.03g NH3/g catalyst for activated

  1. Synthesis of Supported Bimetal Catalysts using Galvanic Deposition Method.

    Science.gov (United States)

    Mahara, Yuji; Ohyama, Junya; Sawabe, Kyoichi; Satsuma, Atsushi

    2018-02-22

    Supported bimetallic catalysts have been studied because of their enhanced catalytic properties due to metal-metal interactions compared with monometallic catalysts. We focused on galvanic deposition (GD) as a bimetallization method, which achieves well-defined metal-metal interfaces by exchanging heterogeneous metals with different ionisation tendencies. We have developed Ni@Ag/SiO 2 catalysts for CO oxidation, Co@Ru/Al 2 O 3 catalysts for automotive three-way reactions and Pd-Co/Al 2 O 3 catalysts for methane combustion by using the GD method. In all cases, the catalysts prepared by the GD method showed higher catalytic activity than the corresponding monometallic and bimetallic catalysts prepared by the conventional co-impregnation method. The GD method provides contact between noble and base metals to improve the electronic state, surface structure and reducibility of noble metals. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Directly observing catalytic intermediates of methane dry reforming (MDR) on model Ni(111) catalyst via in operando surface techniques

    Science.gov (United States)

    Yuan, Kaidi

    In this work, near ambient pressure x-ray photoelectron spectroscopy was used to trace the in operando catalytic intermediates of methane dry reforming on model Ni(111) catalyst. The following reactive carbon intermediates have been characterized from dissociation of CH4: *CH, *C1 (Ni3C), *Cn (n≥2) and clock-reconstructed Ni2C. They can develop into inert graphene, and the conditions for this transition have been explored. One the other hand, the oxygen intermediates from CO2 dissociation were also studied, which play an important role on restraining graphene growth. Their dynamic coverage decreases with increasing temperature, which is suggested the fundamental mechanism of regional carbon overspill and causes irreversible graphene formation. Therefore, solutions based on Ni-O stabilization were proposed in developing coking resisting catalysts.

  3. Kinetics and mechanism of NH3 synthesis over Fe(100 and K/Fe(100 model catalysts

    Directory of Open Access Journals (Sweden)

    A. Z. Moshfegh

    2004-06-01

    Full Text Available   In this investigation kinetics and mechanism of NH3 synthesis over Fe(100 and K/Fe(100 model catalysts have been studied. In this context, adsorption kinetics of both N2/Fe (100 and H2/Fe (100systems is initially investigated. By using statistical mechanic approach, we have determined the adsorption coefficient for N2 and H2 molecules as well as transition probability of different states of adsorption and dissociation of the reactants molecules. The effect of surface catalyst temperature on the reaction rate (TOF is studied under different reactant partial pressures. The mechanism of NH3 synthesis is suggested based on LH surface reactions model. According to the obtained results, activation energy for the reaction over Fe (100 and K/Fe(100 (for θk=0.1ML was determined 19.6 and 11.1 kcal/mole, respectively. The order of reaction on both catalysts with respect to PN2 and PH2 was unity and negative, respectively. Based on our data analysis, the NH3 synthesis obeys Temkin isotherm.

  4. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts: A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale; Rahul P. Nabar; Calvin H. Bartholomew; Hu Zou; Brian Critchfield

    2006-03-03

    rate-determining steps. In the coming year, studies will focus on quantitative determination of the rates of kinetically-relevant elementary steps on Fe catalysts with/without K and Pt promoters and at various levels of Al{sub 2}O{sub 3} support, providing a database for understanding (1) effects of promoter and support on elementary kinetic parameters and (2) for validation of computational models that incorporate effects of surface structure and promoters. Kinetic parameters will be incorporated into a microkinetics model, enabling prediction of rate without invoking assumptions, e.g. of a rate-determining step or a most-abundant surface intermediate. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on two model surfaces: (1) Fe(110) with 1/4 ML subsurface carbon, and (2) Fe(110) with 1/4 ML Pt adatoms. Reaction networks for FTS on these systems were characterized in full detail by evaluating the thermodynamics and kinetics of each elementary step. We discovered that subsurface C stabilizes all the reactive intermediates, in contrast to Pt, which destabilizes most of them. A comparative study of the reactivities of the modified-Fe surfaces against pure Fe is expected to yield a more comprehensive understanding of promotion mechanisms for FTS on Fe.

  5. Oxidative-reforming of model biogas over NiO/Al2O3 catalysts: The influence of the variation of support synthesis conditions

    International Nuclear Information System (INIS)

    Asencios, Yvan J.O.; Elias, Kariny F.M.; Assaf, Elisabete M.

    2014-01-01

    obtained at neutral pH conditions was the best support for nickel catalysts in the oxidative-reforming of model biogas

  6. Oxidative-reforming of model biogas over NiO/Al{sub 2}O{sub 3} catalysts: The influence of the variation of support synthesis conditions

    Energy Technology Data Exchange (ETDEWEB)

    Asencios, Yvan J.O., E-mail: yvan.jesus@unifesp.br [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Alm. Saldanha da Gama, 89, Ponta da Praia, CEP: 11030-400, Santos-SP (Brazil); Elias, Kariny F.M. [Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, 13560-970, São Carlos-SP (Brazil); Assaf, Elisabete M., E-mail: eassaf@iqsc.usp.br [Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, 13560-970, São Carlos-SP (Brazil)

    2014-10-30

    high coke formation which affected the course of the reaction. The γ-Al{sub 2}O{sub 3} synthesized from bayerite obtained at neutral pH conditions was the best support for nickel catalysts in the oxidative-reforming of model biogas.

  7. Dynamic Modelling of Glucose Oxidation with Palladium Catalyst Deactivation in Multifunctional CSTR; Benefits of Periodic Operation

    Czech Academy of Sciences Publication Activity Database

    Gogová, Zuzana; Hanika, Jiří

    2009-01-01

    Roč. 150, č. 1 (2009), s. 223-230 ISSN 1385-8947 R&D Projects: GA ČR(CZ) GD203/08/H032 Institutional research plan: CEZ:AV0Z40720504 Keywords : glucose oxidation * palladium catalyst * periodic operation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.816, year: 2009

  8. Comparison of three-way and four-way calibration for the real-time quantitative analysis of drug hydrolysis in complex dynamic samples by excitation-emission matrix fluorescence

    Science.gov (United States)

    Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long

    2018-03-01

    Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems.

  9. Comparison of three-way and four-way calibration for the real-time quantitative analysis of drug hydrolysis in complex dynamic samples by excitation-emission matrix fluorescence.

    Science.gov (United States)

    Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long

    2018-03-05

    Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Modeling to study the role of catalyst in the formation of graphitic shells during carbon nanofiber growth subjected to reactive plasma

    Science.gov (United States)

    Gupta, Ravi; Gupta, Neha; Sharma, Suresh C.

    2018-04-01

    An analytical model to study the role of a metal catalyst nanofilm in the nucleation, growth, and resulting structure of carbon nanofibers (CNFs) in low-temperature hydrogen diluted acetylene plasma has been developed. The model incorporates the nanostructuring of thin catalyst films, growth of CNF, restructuring of catalyst nanoparticles during growth, and its repercussion on the resulting structure (alignment of rolled graphene sheets around catalyst nanoparticles) by taking into account the plasma sheath formalization, kinetics of neutrals and positively charged species in the reactive plasma, flux of plasma species onto the catalyst front surface, and numerous surface reactions for carbon generation. In order to examine the influence of the catalyst film on the growth of CNFs, the numerical solutions of the model equations have been obtained for experimentally determined initial conditions and glow discharge plasma parameters. From the solutions obtained, we found that nanostructuring of thin films leads to the formation of small nanoparticles with high surface number density. The CNF nucleates over these small-sized nanoparticles grow faster and attain early saturation because of the quick poisoning of small-sized catalyst particles, and contain only a few graphitic shells. However, thick nanofilms result in shorter CNFs with large diameters composed of many graphitic shells. Moreover, we found that the inclination of graphitic shells also depends on the extent up to which the catalyst can reconstruct itself during the growth. The small nanoparticles show much greater elongation along the growth axis and also show a very small difference between their tip and base diameter during the growth due to which graphitic shells align at very small angles as compared to the larger nanoparticles. The present study is useful to synthesize the thin and more extended CNFs/CNTs having a smaller opening angle (inclination angle of graphene layers) as the opening angle has a

  11. Three-way principal component analysis as a tool to evaluate the chemical stability of metal bearing residues from wastewater treatment by the ferrite process

    International Nuclear Information System (INIS)

    Pardo, Rafael; Vega, Marisol; Barrado, Enrique; Castrillejo, Yolanda; Sánchez, Isabel

    2013-01-01

    Highlights: • Metal fractionation of residues from the ferrite process was investigated by n-way PCA. • BCR sequential extraction procedure used for metal fractionation. • Tucker3 algorithm originated a coherent two-term trilinear model. • Metal fractionation patterns correlate with magnetic character of solids. -- Abstract: The chemical fractionation patterns of eight metals (Cd, Co, Cu, Cr, Mn, Ni, Pb and Zn) have been determined in 27 metal-bearing residues by using the BCR sequential extraction procedure. The residues were generated as by-products during the optimization of a semi-continuous reactor for metal removal from wastewater based on ferrite synthesis by co-precipitation. The three-dimensional X dataset (samples × metals × fractions) obtained by applying the BCR procedure has been analyzed by multivariate methods: matrix augmentation (MA-PCA) and three-way principal component analysis, 3-PCA (PARAFAC and Tucker3 models). MA-PCA and PARAFAC methods led to two-factor models giving a satisfactory but incomplete picture of the metal fractionation patterns, but the Tucker3 [2,1,2] model allowed to simultaneously describe both the ‘pseudo-total’ (acid-soluble) contents and the chemical fractionation by means of two non-null interactions g 111 and g 212 which explain 53.5% and 18.0% of the total variance, respectively. The A-mode loadings of the g 212 interaction showed the close relationship between the magnetic character of the solid residues, i.e. the crystalline structure, and the chemical fractionation patterns of the metals resulting from the application of the BCR sequential extraction procedure

  12. DFT simulations and microkinetic modelling of 1-pentyne hydrogenation on Cu20 model catalysts.

    Science.gov (United States)

    Ma, Li; Melander, Marko; Weckman, Timo; Lipasti, Saana; Laasonen, Kari; Akola, Jaakko

    2016-04-01

    Adsorption and dissociation of H2 and hydrogenation of 1-pentyne on neutral and anionic Cu20 clusters have been investigated using the density functional theory and microkinetic modelling. Molecular adsorption of H2 is found to occur strictly at atop sites. The H2 dimer is activated upon adsorption, and the dissociation occurs with moderate energy barriers. The dissociated H atoms reside preferentially on 3-fold face and 2-fold edge sites. Based on these results, the reaction paths leading to the partial and total hydrogenation of 1-pentyne have been studied step-by-step. The results suggest that copper clusters can display selective activity on the hydrogenation of alkyne and alkene molecules. The hydrogenated products are more stable than the corresponding initial reactants following an energetic staircase with the number of added H atoms. Stable semi-hydrogenated intermediates are formed before the partial (1-pentene) and total (pentane) hydrogenation stages of 1-pentyne. The microkinetic model analysis shows that C5H10 is the dominant product. Increasing the reactants (C5H8/H2) ratio enhances the formation of products (C5H10 and C5H12). Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Cu/ZnO aggregates in siliceous mesoporous matrices : development of a new model methanol synthesis catalyst

    OpenAIRE

    Berg, Maurits W. E. van den; Polarz, Sebastian; Tkachenko, Olga P.; Klementiev, Konstantin V.; Bandyopadhyay, Mahuya; Khodeir, Lamma; Gies, Hermann; Muhler, Martin; Grünert, Wolfgang

    2006-01-01

    Copper and zinc were introduced into mesoporous siliceous matrices with the goal of obtaining model methanol synthesis catalysts with intense interaction between copper and the ZnO promoter. The preparation methods included various aqueous routes starting from acetate solutions (into MCM-48) and a route involving an organometallic step thermolysis of a liquid heterocubane of Zn4O4 type ([CH3ZnOCH2CH2OCH3]4) in a wormhole-type silica of 5 nm average pore size followed by aqueous Cu (nitrate) i...

  14. Modeling of carbon monoxide oxidation kinetics over NASA carbon dioxide laser catalysts

    Science.gov (United States)

    Herz, Richard K.

    1989-01-01

    The recombination of CO and O2 formed by the dissociation of CO2 in a sealed CO2 laser discharge zone is examined. Conventional base-metal-oxide catalysts and conventional noble-metal catalysts are not effective in recombining the low O2/CO ratio at the low temperatures used by the lasers. The use of Pt/SnO2 as the noble-metal reducible-oxide (NMRO), or other related materials from Group VIIIA and IB and SnO2 interact synergistically to produce a catalytic activity that is substantially higher than either componet separately. The Pt/SnO2 and Pd/SnO2 were reported to have significant reaction rates at temperatures as low as -27 C, conditions under which conventional catalysts are inactive. The gas temperature range of lasers is 0 + or - 40 C. There are three general ways in which the NMRO composite materials can interact synergistically: one component altering the properties of another component; the two components each providing independent catalytic functions in a complex reaction mechanism; and the formation of catalytic sites through the combination of two components at the atomic level. All three of these interactions may be important in low temperature CO oxidation over NMRO catalysts. The effect of the noble metal on the oxide is discussed first, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  15. Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2010-07-01

    Full Text Available Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NOx traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NOx-loading of lean NOx traps, and the soot loading of Diesel particulate filters

  16. Fuel penalty comparison for (Electrically) heated catalyst technology

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Foster, D.L.; Bleuanus, W.A.J.

    2010-01-01

    The conversion efficiency of three way catalytic converters is mainly defined by the temperature range wherein they are operating. Traditionally, ignition retard has been used to reduce the light-off time of the catalyst. This is however associated with a fuel penalty. With increasing vehicle

  17. Catalysts preparing

    International Nuclear Information System (INIS)

    Normatov, I.Sh.; Mirsaidov, U.M.

    2003-01-01

    One of the base area of zeolites industry using is catalysis. The catalytic properties of zeolites use in the carbonated reactions in the petrochemistry. Last years zeolite catalysts use in oxidative-reduction processes

  18. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  19. Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO2/SBA-15 Catalysts

    Directory of Open Access Journals (Sweden)

    Erik Dahlquist

    2013-07-01

    Full Text Available Nickel supported on SBA-15 doped with CeO2 catalysts (Ni-CeO2/SBA-15 was prepared, and used for steam reforming of toluene which was selected as a model compound of biomass gasification tar. A fixed-bed lab-scale set was designed and employed to evaluate the catalytic performances of the Ni-CeO2/SBA-15 catalysts. Experiments were performed to reveal the effects of several factors on the toluene conversion and product gas composition, including the reaction temperature, steam/carbon (S/C ratio, and CeO2 loading content. Moreover, the catalysts were subjected to analysis of their carbon contents after the steam reforming experiments, as well as to test the catalytic stability over a long experimental period. The results indicated that the Ni-CeO2/SBA-15 catalysts exhibited promising capabilities on the toluene conversion, anti-coke deposition and catalytic stability. The toluene conversion reached as high as 98.9% at steam reforming temperature of 850 °C and S/C ratio of 3 using the Ni-CeO2(3wt%/SBA-15 catalyst. Negligible coke formation was detected on the used catalyst. The gaseous products mainly consisted of H2 and CO, together with a little CO2 and CH4.

  20. The three-way relationship of polymorphisms of porcine genes encoding terminal complement components, their differential expression, and health-related phenotypes.

    Science.gov (United States)

    Wimmers, Klaus; Khoa, Do Vo Anh; Schütze, Sabine; Murani, Eduard; Ponsuksili, Siriluck

    2011-06-03

    The complement system is an evolutionary ancient mechanism that plays an essential role in innate immunity and contributes to the acquired immune response. Three modes of activation, known as classical, alternative and lectin pathway, lead to the initiation of a common terminal lytic pathway. The terminal complement components (TCCs: C6, C7, C8A, C8B, and C9) are encoded by the genes C6, C7, C8A, C8B, C8G, and C9. We aimed at experimentally testing the porcine genes encoding TCCs as candidate genes for immune competence and disease resistance by addressing the three-way relationship of genotype, health related phenotype, and mRNA expression. Comparative sequencing of cDNAs of animals of the breeds German Landrace, Piétrain, Hampshire, Duroc, Vietnamese Potbelly Pig, and Berlin Miniature Pig (BMP) revealed 30 SNPs (21 in protein domains, 12 with AA exchange). The promoter regions (each ~1.5 kb upstream the transcription start sites) of C6, C7, C8A, C8G, and C9 exhibited 29 SNPs. Significant effects of the TCC encoding genes on hemolytic complement activity were shown in a cross of Duroc and BMP after vaccination against Mycoplasma hyopneumoniae, Aujeszky disease virus and PRRSV by analysis of variance using repeated measures mixed models. Family based association tests (FBAT) confirmed the associations. The promoter SNPs were associated with the relative abundance of TCC transcripts obtained by real time RT-PCR of 311 liver samples of commercial slaughter pigs. Complement gene expression showed significant relationship with the prevalence of acute and chronic lung lesions. The analyses point to considerable variation of the porcine TCC genes and promote the genes as candidate genes for disease resistance.

  1. Photo-oxidation catalysts

    Science.gov (United States)

    Pitts, J Roland [Lakewood, CO; Liu, Ping [Irvine, CA; Smith, R Davis [Golden, CO

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  2. Handling large numbers of observation units in three-way methods for the analysis of qualitative and quantitative two-way data

    NARCIS (Netherlands)

    Kiers, Henk A.L.; Marchetti, G.M.

    1994-01-01

    Recently, a number of methods have been proposed for the exploratory analysis of mixtures of qualitative and quantitative variables. In these methods for each variable an object by object similarity matrix is constructed, and these are consequently analyzed by means of three-way methods like

  3. Comparison of Meat Quality and Fatty Acid Composition of Longissimus Muscles from Purebred Pigs and Three-way Crossbred LYD Pigs

    OpenAIRE

    Choi, Yeong-Seok; Lee, Jin-Kyu; Jung, Ji-Taek; Jung, Young-Chul; Jung, Jong-Hyun; Jung, Myung-Ok; Choi, Yang-Il; Jin, Sang-Keun; Choi, Jung-Seok

    2016-01-01

    This study was conducted to find pork quality to meet the needs of consumers. Thus, the meat quality and fatty acid composition of longissimus muscles from purebred pigs (Landrace, Yorkshire, and Duroc) and three-way crossbred LYD pigs were compared and evaluated. Chemical compositions of longissimus muscles were significant (p

  4. Mechanistic insights on ethanol dehydrogenation on Pd-Au model catalysts: a combined experimental and DFT study.

    Science.gov (United States)

    Evans, E J; Li, H; Yu, Wen-Yueh; Mullen, G M; Henkelman, G; Mullins, C Buddie

    2017-11-22

    In this study, we have combined ultra-high vacuum (UHV) experiments and density functional theory (DFT) calculations to investigate ethanol (EtOH) dehydrogenation on Pd-Au model catalysts. Using EtOH reactive molecular beam scattering (RMBS), EtOH temperature-programmed desorption (TPD), and DFT calculations, we show how different Pd ensemble sizes on Au(111) can affect the mechanism for EtOH dehydrogenation and H 2 production. The Au(111) surface with an initial coverage of 2 monolayers of Pd (2 ML Pd-Au) had the highest H 2 yield. However, the 1 ML Pd-Au catalyst showed the highest selectivity and stability, yielding appreciable amounts of only H 2 and acetaldehyde. Arrhenius plots of H 2 production confirm that the mechanisms for EtOH dehydrogenation differed between 1 and 2 ML Pd-Au, supporting the perceived difference in selectivity between the two surfaces. DFT calculations support this difference in mechanism, showing a dependence of the initial dehydrogenation selectivity of EtOH on the size of Pd ensemble. DFT binding energies and EtOH TPD confirm that EtOH has increasing surface affinity with increasing Pd ensemble size and Pd coverage, indicating that surfaces with more Pd are more likely to induce an EtOH reaction instead of desorb. Our theoretical results show that the synergistic influence of atomic ensemble and electronic effects on Pd/Au(111) can lead to different H 2 association energies and EtOH dehydrogenation capacities at different Pd ensembles. These results provide mechanistic insights into ethanol's dehydrogenation interactions with different sites on the Pd-Au surface and can potentially aid in bimetallic catalyst design for applications such as fuel cells.

  5. Kinetic modeling of hydrocracking reaction in a trickle-bed reactor with Pt/Y-zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, BalSang; Park, Myung-June; Kim, Young-A; Park, Eun Duck [Ajou University, Suwon (Korea, Republic of); Han, Jeongsik [Agency for Defense Development, Daejeon (Korea, Republic of); Jeong, Kwang-Eun; Kim, Chul-Ung; Jeong, Soon-Yong [Korea Research Institute of Chemical Technology (KRICT), Daejeon (Korea, Republic of)

    2014-03-15

    A kinetic model is developed to predict the entire distribution of hydrocarbon products for the hydrocracking reaction with Pt/Y-zeolite catalysts in a trickle-bed reactor. Operating conditions, such as temperature, pressure, and wax and H{sub 2} flow rates were varied to evaluate their effects on conversion and distribution, and kinetic parameters were estimated using the experimental data that covers the window of operating conditions. The comparison between experimental data and simulated results corroborated the validity of the developed model, and the quantitative prediction of the reactor performance was clearly demonstrated. To make evident the usefulness of the model, an optimization method, genetic algorithm (GA), was applied, and the optimal condition for the maximum production of C{sub 10}-C{sub 17} was successfully calculated.

  6. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction

    DEFF Research Database (Denmark)

    Hernandez-Fernandez, Patricia; Masini, Federico; McCarthy, David Norman

    2014-01-01

    Low-temperature fuel cells are limited by the oxygen reduction reaction, and their widespread implementation in automotive vehicles is hindered by the cost of platinum, currently the best-known catalyst for reducing oxygen in terms of both activity and stability. One solution is to decrease...... the amount of platinum required, for example by alloying, but without detrimentally affecting its properties. The alloy PtxY is known to be active and stable, but its synthesis in nanoparticulate form has proved challenging, which limits its further study. Herein we demonstrate the synthesis...

  7. PLASTIC WASTE CONVERSION TO LIQUID FUELS OVER MODIFIED-RESIDUAL CATALYTIC CRACKING CATALYSTS: MODELING AND OPTIMIZATION USING HYBRID ARTIFICIAL NEURAL NETWORK – GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2012-04-01

    Full Text Available The plastic waste utilization can be addressed toward different valuable products. A promising technology for the utilization is by converting it to fuels. Simultaneous modeling and optimization representing effect of reactor temperature, catalyst calcinations temperature, and plastic/catalyst weight ratio toward performance of liquid fuel production was studied over modified catalyst waste. The optimization was performed to find optimal operating conditions (reactor temperature, catalyst calcination temperature, and plastic/catalyst weight ratio that maximize the liquid fuel product. A Hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA method was used for the modeling and optimization, respectively. The variable interaction between the reactor temperature, catalyst calcination temperature, as well as plastic/catalyst ratio is presented in surface plots. From the GC-MS characterization, the liquid fuels product was mainly composed of C4 to C13 hydrocarbons.KONVERSI LIMBAH PLASTIK MENJADI BAHAN BAKAR CAIR DENGAN METODE PERENGKAHAN KATALITIK MENGGUNAKAN KATALIS BEKAS YANG TERMODIFIKASI: PEMODELAN DAN OPTIMASI MENGGUNAKAN GABUNGAN METODE ARTIFICIAL NEURAL NETWORK DAN GENETIC ALGORITHM. Pemanfaatan limbah plastik dapat dilakukan untuk menghasilkan produk yang lebih bernilai tinggi. Salah satu teknologi yang menjanjikan adalah dengan mengkonversikannya menjadi bahan bakar. Permodelan, simulasi dan optimisasi simultan yang menggambarkan efek dari suhu reaktor, suhu kalsinasi katalis, dan rasio berat plastik/katalis terhadap kinerja produksi bahan bakar cair telah dipelajari menggunakan katalis bekas termodifikasi Optimisasi ini ditujukan untuk mencari kondisi operasi optimum (suhu reaktor, suhu kalsinasi katalis, dan rasio berat plastik/katalis yang memaksimalkan produk bahan bakar cair. Metode Hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA telah digunakan untuk permodelan dan optimisasi simultan tersebut. Inetraksi antar variabel

  8. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  9. Kinetic Studies of Oxidative Coupling of Methane Reaction on Model Catalysts

    KAUST Repository

    Khan, Abdulaziz M.

    2016-04-26

    With the increasing production of natural gas as a result of the advancement in the technology, methane conversion to more valuable products has become a must. One of the most attractive processes which allow the utilization of the world’s most abundant hydrocarbon is the oxidative coupling. The main advantage of this process is the ability of converting methane into higher paraffins and olefins (primarily C2) in a direct way using a single reactor. Nevertheless, low C2+ yields have prevented the process to be commercialized despite the fact that great number of attempts to prepare catalysts were conducted so that it can be economically viable. Due to these limitations, understanding the mechanism and kinetics of the reaction can be utilized in improving the catalysts’ performance. The reaction involves the formation of methyl radicals that undergo gas-phase radical reactions. CH4 activation is believed to be done the surface oxygen species. However, recent studies showed that, in addition to the surface oxygen mediated pathway, an OH radical mediated pathway have a large contribution on the CH4 activation. The experiments of Li/MgO, Sr/La2O3 and NaWO4/SiO2 catalysts revealed variation of behavior in activity and selectivity. In addition, water effect analysis showed that Li/MgO deactivate at the presence of water due to sintering phenomena and the loss of active sites. On the other hand, negative effect on the C2 yield and CH4 conversion rate was observed with Sr/La2O3 with increasing the water partial pressure. Na2WO4/SiO2 showed a positive behavior with water in terms of CH4 conversion and C2 yield. In addition, the increment in CH4 conversion rate was found to be proportional with PO2 ¼ PH2O ½ which is consistent with the formation of OH radicals and the OH-mediated pathway. Experiments of using ring-dye laser, which is used to detect OH in combustion experiments, were tried in order to detect OH radicals in the gas-phase of the catalyst. Nevertheless

  10. Bimetal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K. Y. Simon; Salley, Steve O.; Wang, Huali

    2017-10-03

    A catalyst comprises a carbide or nitride of a metal and a promoter element. The metal is selected from the group consisting of Mo, W, Co, Fe, Rh or Mn, and the promoter element is selected from the group consisting of Ni, Co, Al, Si, S or P, provided that the metal and the promoter element are different. The catalyst also comprises a mesoporous support having a surface area of at least about 170 m.sup.2 g.sup.-1, wherein the carbide or nitride of the metal and the promoter element is supported by the mesoporous support, and is in a non-sulfided form and in an amorphous form.

  11. Catalyst Architecture

    DEFF Research Database (Denmark)

    Kiib, Hans; Marling, Gitte; Hansen, Peter Mandal

    2014-01-01

    How can architecture promote the enriching experiences of the tolerant, the democratic, and the learning city - a city worth living in, worth supporting and worth investing in? Catalyst Architecture comprises architectural projects, which, by virtue of their location, context and their combination...... of programs, have a role in mediating positive social and/or cultural development. In this sense, we talk about architecture as a catalyst for: sustainable adaptation of the city’s infrastructure appropriate renovation of dilapidated urban districts strengthening of social cohesiveness in the city development...

  12. Dry (CO{sub 2}) reforming of methane over Pt catalysts studied by DFT and kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Juntian [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing, 400044 (China); College of Power Engineering, Chongqing University, Chongqing, 400044 (China); Du, Xuesen, E-mail: xuesendu@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing, 400044 (China); College of Power Engineering, Chongqing University, Chongqing, 400044 (China); Ran, Jingyu, E-mail: jyran@189.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing, 400044 (China); College of Power Engineering, Chongqing University, Chongqing, 400044 (China); Wang, Ruirui [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing, 400044 (China); College of Power Engineering, Chongqing University, Chongqing, 400044 (China)

    2016-07-15

    Graphical abstract: - Highlights: • CH appears to be the most abundant species on Pt(1 1 1) surface in CH{sub 4} dissociation. • CO{sub 2}* + H* → COOH* + * → CO* + OH* is the dominant reaction pathway in CO{sub 2} activation. • Major reaction pathway in CH oxidation: CH* + OH* → CHOH* + * → CHO* + H* → CO* + 2H*. • C* + OH* → COH* + * → CO* + H* is the dominant reaction pathway in C oxidation. - Abstract: Dry reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. In order to design catalysts that minimize the deactivation and improve the selectivity and activity for a high H{sub 2}/CO yield, it is necessary to understand the elementary reaction steps involved in activation and conversion of CO{sub 2} and CH{sub 4}. In our present work, a microkinetic model based on density functional theory (DFT) calculations is applied to explore the reaction mechanism for methane dry reforming on Pt catalysts. The adsorption energies of the reactants, intermediates and products, and the activation barriers for the elementary reactions involved in the DRM process are calculated over the Pt(1 1 1) surface. In the process of CH{sub 4} direct dissociation, the kinetic results show that CH dissociative adsorption on Pt(1 1 1) surface is the rate-determining step. CH appears to be the most abundant species on the Pt(1 1 1) surface, suggesting that carbon deposition is not easy to form in CH{sub 4} dehydrogenation on Pt(1 1 1) surface. In the process of CO{sub 2} activation, three possible reaction pathways are considered to contribute to the CO{sub 2} decomposition: (I) CO{sub 2}* + * → CO* + O*; (II) CO{sub 2}* + H* → COOH* + * → CO* + OH*; (III) CO{sub 2}* + H* → mono-HCOO* + * → bi-HCOO* + * [CO{sub 2}* + H* → bi-HCOO* + *] → CHO* + O*. Path I requires process to overcome the activation barrier of 1.809 eV and the forward reaction is calculated to be strongly endothermic by 1.430 eV. In

  13. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    Energy Technology Data Exchange (ETDEWEB)

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  14. Catalytic Hydrodeoxygenation of Biomass Pyrolysis Vapor Model Compounds over Molybdenum Sulfide Catalysts: Influence of Support, H2S and Water

    DEFF Research Database (Denmark)

    Arndal, Trine Marie Hartmann; Høj, Martin; Pintos, Delfina Garcia

    Conventional fast pyrolysis of biomass produces a high yield of bio-oil through well-established technologies1. The produced bio-oil must be further processed in order to decrease the content of oxygen(from 15-30 wt% down to heating...... value,acidity and stability1-2. Upgrading of condensed pyrolysis oil is challenged by severe polymerization andcoking upon heating. Instead, it is proposed to perform pyrolysis in the presence of hydrogen and an HDOcatalyst for immediate stabilization and upgrading of reactive pyrolysis products...... is to provide a proof-ofconceptfor the continuous conversion of solid biomass to low oxygen, fuel-grade bio-oil.In this contribution, a combined experimental, characterization and theoretical study of catalytic hydrodeoxygenationof biomass pyrolysis vapor model compounds over molybdenum sulfide catalysts...

  15. Disproportionation phenema of wistite phase in the model iron catalysts for ammonia synthesis studied by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Pattek-Janczyk, A.; Miczko, B.

    1990-01-01

    A model iron catalysts for ammonia synthesis containing a large amount of wustite (35 wt%) has been studied during the annealing in an inert atmosphere in the temperature range of 573-773 K. Changes in magnetite and wustite phases were followed by Muessbauer spectroscopy (MS). Before starting the thermal treatment, two kinds of wustite of different structures have been found by MS and X-ray diffraction. The behaviour of both kinds of wustite during the annealing was different. One of them, closer to the stoichiometric compound, disproportionated at once into magnetite and iron; its content decreased systematically without changes in the Muessbauer parameters. In the second wustite, only qualitatieve changes were observed at first (its nonstoichiometry decreases without changes in content and, next, this phase started to disproportionate too. (auhtor). 31 refs.; 6 figs.; 2 tabs

  16. Modeling the RNA 2'OH activation: possible roles of metal ion and nucleobase as catalysts in self-cleaving ribozymes.

    Science.gov (United States)

    Chval, Zdeněk; Chvalová, Daniela; Leclerc, Fabrice

    2011-09-22

    The RNA 2'OH activation as taking place in the first chemical step of self-cleaving ribozymes is studied theoretically by DFT and MP2 methods using a continuum solvation model (CPCM). The reaction of proton transfer is studied in the presence of two kinds of catalysts: a fully hydrated metal ion (Mg(2+)) or partially hydrated nucleobase (guanine), taken separately or together leading to three different modes of activation. The metal ion is either directly bound (inner-sphere) or indirectly bound (outer-sphere) to the 2'OH group and a hydroxide ion acts as a general or specific base; the nucleobase is taken in anionic or in neutral enol-tautomeric forms playing itself the role of general base. The presence of a close metal ion (outer-sphere) lowers the pK(a) value of the 2'OH group by several log units in both metal-ion and nuleobase catalysis. The direct metal coordination to the 2'OH group (inner-sphere) further stabilizes the developing negative charge on the nucleophile. The switching from the inner-sphere to the outer-sphere coordination appears to be driven by the energy cost for reorganizing the first coordination shell rather than by the electrostatic repulsion between the ligands. The metal-ion catalysis is more effective with a specific base in the dianionic mechanism. On the other hand, the nucleobase catalysis is more effective in the monoanionic mechanism and in the presence of a metal ion acting as a cofactor through nonspecific electrostatic interactions. The results establish a baseline to study the possible roles of metal and nucleobase catalysts and their environment in more realistic models for self-cleaving ribozymes.

  17. Thermal Stability of Au/NbOx/Nb and Au/Nb2O5/W Model Catalysts Studied by Angle-resolved X-ray Photoelectron Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Lykhach, Yaroslava; Plšek, Jan; Spirovová, Ilona; Bastl, Zdeněk

    2003-01-01

    Roč. 68, č. 10 (2003), s. 1791-1804 ISSN 0010-0765 R&D Projects: GA ČR GA104/02/0664 Institutional research plan: CEZ:AV0Z4040901 Keywords : model metal catalysts * angle resolved photoemission * depth profiles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.041, year: 2003

  18. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  19. Selective Hydrogenation of Acrolein Over Pd Model Catalysts: Temperature and Particle-Size Effects.

    Science.gov (United States)

    O'Brien, Casey P; Dostert, Karl-Heinz; Schauermann, Swetlana; Freund, Hans-Joachim

    2016-10-24

    The selectivity in the hydrogenation of acrolein over Fe 3 O 4 -supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220-270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR-reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle-size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Modeling and optimization of Fischer-Tropsch synthesis over Co-Mn-Ce/SiO2 catalyst using hybrid RSM/LHHW approaches

    International Nuclear Information System (INIS)

    Zohdi-Fasaei, Hossein; Atashi, Hossein; Farshchi Tabrizi, Farshad; Mirzaei, Ali Akbar

    2017-01-01

    Operating conditions considerably affect the energy required for Fischer-Tropsch synthesis, depending on the catalyst composition and reactor type (catalyst system). This paper reports the use of cobalt-manganese-cerium supported on silica as a novel CO hydrogenation catalyst, to produce hydrocarbons in a fixed bed micro-reactor. Response surface methodology (RSM) was applied to study the effects of temperature, pressure, feed ratio and their interactions on CO consumption rate, and the selectivity of light olefins (light olefinity), methane and C 5+ hydrocarbons. Quadratic mathematical models adequately described the responses in this catalyst system. According to Langmuir Hinshelwood Hougen Watson (LHHW) approach, kinetic mechanism of the reaction was found to be an associative adsorption of H 2 and CO. Statistical analysis demonstrated that pressure and feed ratio were the most important factors for the production of C 5+ and light alkenes, respectively. Model graphs indicated that minimum methane selectivity was achieved at 523.15 k and 2 bar. The maximum amounts of light olefins and heavier hydrocarbons were obtained at H 2 /CO = 1 and H 2 /CO = 2, respectively. Characterization of precursor and calcined catalyst (before and after the reaction) was carried out using SEM and BET techniques. - Highlights: • The performance of a new catalytic system was studied using RSM as a research plan. • Interactions between significant factors were investigated using mathematical models. • Based on LHHW approach, kinetic mechanism was molecular adsorptions of H 2 and CO. • RSM rate expression was in consistent with the LHHW kinetic model. • Hybrid RSM/LHHW is promising for optimization, mechanism and selectivity studies.

  1. Catalyst Architecture

    DEFF Research Database (Denmark)

    Catalyst Architecture’ takes its point of departure in a broadened understanding of the role of architecture in relation to developmental problems in large cities. Architectural projects frame particular functions and via their form language, they can provide the user with an aesthetic experience....... The broadened understanding of architecture consists in that an architectural project, by virtue of its placement in the context and of its composition of programs, can have a mediating role in a positive or cultural development of the district in question. In this sense, we talk about architecture as catalyst...... cities on the planet have growing pains and social cohesiveness is under pressure from an increased difference between rich and poor, social segregation, ghettoes, immigration of guest workers and refugees, commercial mass tourism etc. In this context, it is important to ask which role architecture...

  2. Electrocatalysis in alkaline media: Mechanistic studies of fuel cell reactions on well-defined model catalysts

    Science.gov (United States)

    Spendelow, Jacob S.

    Scanning tunneling microscopy and electrochemical techniques have been used to study several electrocatalytic reactions occurring on Pt(111) and Pt(111)/Ru surfaces in alkaline media. The reactions chosen, CO oxidation, methanol oxidation, and oxygen reduction, are relevant to direct methanol fuel cells (DMFCs). Each is relatively slow, and therefore requires high loading of precious metal catalysts to achieve sufficient fuel cell power density. The focus of these studies has been on determining mechanisms and limiting factors in each reaction. Special attention has been given to the role of adsorbed Ru and the role of Pt defects in enhancing catalytic activity. All defects were found to be more active than terraces for CO oxidation on Pt(111) in alkaline media at DMFC-relevant potentials. Step-typed defects enhance methanol dehydrogenation, but kink-type defects are inactive for this reaction. All defects are inactive for oxygen reduction. These observations can be explained in terms of the local geometric and electronic structure at defects. Adsorbate-adsorbate repulsions, with resultant effects on activation barriers, control the rates of CO oxidation, as well as methanol oxidation. In the case of CO, coverage-dependent CO-CO repulsions and OH-OH repulsions on defects both enhance kinetics. In the case of methanol, repulsive interactions with CO decrease the rate of methanol dehydrogenation, thus giving rise to the CO poisoning effect. Ru was found to promote both methanol dehydrogenation and CO oxidation on adjacent Pt sites. Ru enhances methanol dehydrogenation through two distinct ligand effects: it increases the intrinsic dehydrogenation activity of adjacent Pt sites, and it causes CO to diffuse away from these active sites, decreasing the CO poisoning effect. A Ru ligand effect also enhances CO oxidation by weakening the Pt-CO bond. Ru supplies adsorbed OH for bifunctional CO oxidation, but since Pt defects can also supply OH in alkaline media, the Ru

  3. Effects of mycoplasmal pneumonia of swine (MPS) lung lesion-selected Landrace pigs on MPS resistance and immune competence in three-way crossbred pigs.

    Science.gov (United States)

    Borjigin, Liushiqi; Shimazu, Tomoyuki; Katayama, Yuki; Watanabe, Kouichi; Kitazawa, Haruki; Roh, Sang-Gun; Aso, Hisashi; Katoh, Kazuo; Satoh, Masahiro; Suda, Yoshihito; Sakuma, Akiko; Nakajo, Mituru; Suzuki, Keiichi

    2017-04-01

    To clarify the genetic influence of mycoplasmal pneumonia of swine (MPS) lesion-selected Landrace (La) on MPS resistance and immune characteristics in three-way crossbred pigs (LaWaDa), the LaWaDa pigs were compared with the non-selected crossbred (LbWbDb) and purebred (La) pigs. The MPS lesion score in the three lines was as follows: La line pigs compared with those in the other two lines. Messenger RNA (mRNA) expression of interleukin (IL)-6, IL-10, transforming growth factor-β, and interferon-γ in peripheral blood was significantly increased after vaccination in the La and LaWaDa lines. IL-4 mRNA expression in the LaWaDa line was intermediate to the La and LbWbDb lines. Furthermore, principal component analysis for immune traits and MPS lesions was executed to clarify the characteristics of each pig line. These findings suggest that the immune responses in the three pig lines are genetically distinct and that MPS resistance and some immunity characteristics from the La line were transmitted to the three-way crossbred pigs. © 2016 Japanese Society of Animal Science.

  4. Effects of Pt and ionomer ratios on the structure of catalyst layer: A theoretical model for polymer electrolyte fuel cells

    Science.gov (United States)

    Ishikawa, H.; Sugawara, Y.; Inoue, G.; Kawase, M.

    2018-01-01

    The 3D structure of the catalyst layer (CL) in the polymer electrolyte fuel cell (PEFC) is modeled with a Pt/carbon (Pt/C) ratio of 0.4-2.3 and ionomer/carbon (i/C) ratio of 0.5-1.5, and the structural properties are evaluated by numerical simulation. The models are constructed by mimicking the actual shapes of Pt particles and carbon aggregates, as well as the ionomer adhesion in real CLs. CLs with different compositions are characterized by structural properties such as Pt inter-particle distance, ionomer coating thickness, pore size distribution, tortuosity, and ionomer coverage on Pt. The results for Pt/C = 1.0, i/C = 1.0 with Pt loading of 0.3 mg cm-2 and 50% porosity are validated against measured data for CLs with the same composition. With increasing i/C ratio, the smaller pores disappear and the number of isolated pores increases; while the ionomer connection and its coverage on Pt are significantly enhanced at i/C ∼1.0. With increasing Pt/C ratio, the Pt inter-particle distance decreases as the particles connect with each other. The tortuosity of the pores and the ionomer exhibits a trade-off relation depending on the ionomer volume. Further CL design concepts to optimize both O2 diffusion and H+ conduction are discussed.

  5. A genetically optimized kinetic model for ethanol electro-oxidation on Pt-based binary catalysts used in direct ethanol fuel cells

    Science.gov (United States)

    Sánchez-Monreal, Juan; García-Salaberri, Pablo A.; Vera, Marcos

    2017-09-01

    A one-dimensional model is proposed for the anode of a liquid-feed direct ethanol fuel cell. The complex kinetics of the ethanol electro-oxidation reaction is described using a multi-step reaction mechanism that considers free and adsorbed intermediate species on Pt-based binary catalysts. The adsorbed species are modeled using coverage factors to account for the blockage of the active reaction sites on the catalyst surface. The reaction rates are described by Butler-Volmer equations that are coupled to a one-dimensional mass transport model, which incorporates the effect of ethanol and acetaldehyde crossover. The proposed kinetic model circumvents the acetaldehyde bottleneck effect observed in previous studies by incorporating CH3CHOHads among the adsorbed intermediates. A multi-objetive genetic algorithm is used to determine the reaction constants using anode polarization and product selectivity data obtained from the literature. By adjusting the reaction constants using the methodology developed here, different catalyst layers could be modeled and their selectivities could be successfully reproduced.

  6. Application of New Electrolyte Model to Phase Transfer Catalyst (PTC) Systems

    DEFF Research Database (Denmark)

    Hyung Kim, Sun; Anantpinijwatna, Amata; Kang, Jeong Won

    2015-01-01

    behaviours of all components including water, organic solvents, inorganic salts, and the PTC. In this work, a new electrolyte model based on the KT-UNIFAC group contribution approach has been developed by adding the Debye-Hückel theory and a second virial coefficient-type term into the KT-UNIFAC model....... The temperature-dependent parameters of the new model are introduced to improve the description of phase equilibria in temperature ranges between 273.15 and 373.15 K. The proposed model has been successfully applied to the predictions of phase behaviours of alkali halide aqueous solutions that are usually found...

  7. Next Generation Catalyst Engineering via Support Modification

    Science.gov (United States)

    2016-01-21

    performance of AT-treated MEAs is related to an improved interface between the catalyst and Nafion ionomer . Among potential explanations, this...Gennett, Ryan O’Hayre. Effect of Halide-Modified Model Carbon Supports on Catalyst Stability, ACS Applied Materials & Interfaces , (12 2012): 0...model carbon supports on catalyst stability”, ACS Appl. Mater. Interfaces , 4 (12), 6728-6734 (2012) 4) Demonstration of Improved Durability Using a

  8. Government As Innovation Catalyst: Lessons From The Early Center For Medicare And Medicaid Innovation Models.

    Science.gov (United States)

    Perla, Rocco J; Pham, Hoangmai; Gilfillan, Richard; Berwick, Donald M; Baron, Richard J; Lee, Peter; McCannon, C Joseph; Progar, Kevin; Shrank, William H

    2018-02-01

    Congress established the Center for Medicare and Medicaid Innovation (CMMI) to design, test, and spread innovative payment and service delivery models that either reduce spending without reducing the quality of care or improve the quality of care without increasing spending. CMMI sought to leverage these models to foster market innovation and accelerate the transformation of payment and care delivery to achieve the Triple Aim of better health, better care, and lower cost. This article provides a perspective on the design and execution of CMMI's five initial models, the resulting outcomes and lessons, and how their core concepts evolved within and spread beyond CMMI. This experience yields three key insights that could inform future efforts by CMMI and public and private payers, including model designs and policy decisions. These insights center on the need for iterative testing and learning guided by market feedback, more realistic time frames to demonstrate impact on cost and quality, and greater integration of models.

  9. Catalytic reforming of toluene as tar model compound: effect of Ce and Ce-Mg promoter using Ni/olivine catalyst.

    Science.gov (United States)

    Zhang, Ruiqin; Wang, Huajian; Hou, Xiaoxue

    2014-02-01

    Tar produced by biomass gasification as a route of renewable energy must be removed before the gas can be used. This study was undertaken using toluene as a model tar compound for evaluating its steam reforming conversion with three Ni-based catalysts, Ni/olivine, Ni-Ce/olivine and Ni-Ce-Mg/olivine. Effects of Ce and Mg promoters on the reaction activity and coke deposition were studied. Overall the performance of Ce and Mg promoted Ni/olivine catalysts is better than that of only Ce promoter and Ni/olivine alone. The experimental results indicate that Ni-Ce-Mg/olivine catalysts could improve the resistance to carbon deposition, enhance energy gases yield and resist 10ppm H2S poison at 100mLmin(-1) for up to 400min. Furthermore, the activity of catalysts was related to the steam/carbon (S/C) ratios; at S/C ratio=5, T=790°C, space velocity=782h(-1) and t=2h, the Ni-Ce-Mg/olivine system yielded 89% toluene conversion, 5.6Lh(-1) product gas rate, 62.6mol% H2 content and 10% (mol useful gas mol(-1) toluene) energy yield. Moreover, at low S/C ratio, it had higher reaction activity and better ability to prevent coking. There is a small amount of carbon deposition in the form of amorphous carbon after 7h. Various characterization techniques such as XRD, FTIR and thermogravimetric were performed to investigate the coke deposition of Ni/olivine, Ni-Ce/olivine and Ni-Ce-Mg/olivine. It is suggested that 3% Ni-1% Ce-1% Mg/olivine was the most promising catalyst due to its minimum coke amount and the lower activation energy of coke burning. Copyright © 2014. Published by Elsevier Ltd.

  10. Hydrotreatment of solvolytically liquefied lignocellulosic biomass over NiMo/Al2O3 catalyst: Reaction mechanism, hydrodeoxygenation kinetics and mass transfer model based on FTIR

    International Nuclear Information System (INIS)

    Grilc, M.; Likozar, B.; Levec, J.

    2014-01-01

    Raw residual wood biomass, containing cellulose, hemicellulose and lignin, was liquefied at low temperature by ultrasound-assisted solvolysis and acidolysis by glycerol, diethylene glycol and p-toluenesulfonic acid. Liquefied biomass was consequently upgraded by hydrotreatment utilizing heterogeneous catalysis over NiMo/Al 2 O 3 bifunctional catalyst. Effects of temperature (200−350 °C), heating rate (2.5–10.0 K min −1 ), hydrogen/nitrogen pressure (2−8 MPa), mixing (250−1000 min −1 ), hydrogen donor solvent (tetralin) and catalyst contents on deoxygenation were established. Reactions of liquefaction products, such as levulinic acid, were quantified based on their functional groups by Fourier transform infrared spectroscopy, whereas catalyst was examined by scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). Chemical kinetics of hydrodeoxygenation (HDO), decarbonylation and decarboxylation were determined by originally developed lumped model, based on reaction mechanisms and pathways, while the external mass transfer resistance proved to be negligible under the applied hydrodynamic conditions. The presence of hydrocracking reactions was confirmed by a decrease in product viscosity, and the upgrade for energetic or fuel applications by measurements of calorific value. - Highlights: • Liquefaction of waste lignocellulosic biomass with glycerol at low temperature. • Hydrotreatment, hydrocracking and hydrodeoxygenation of liquefied waste biomass. • Deoxygenation using heterogeneous catalysis over NiMo/Al 2 O 3 bifunctional catalyst. • Proposal of reaction mechanism; chemical kinetics and mass transfer considerations. • Effect of temperature, heating rate, pressure, mixing, solvent and catalyst content

  11. Modeling and simulation of graphene/palladium catalyst reformer for hydrogen generation from waste of IC engine

    Science.gov (United States)

    Rahman, A.; Aung, K. M.

    2018-01-01

    A small amount of hydrogen made by on-board reformer is added to the normal intake air and gasoline mixture in the vehicle’s engine could improves overall combustion quality by allowing nearly twice as much air for a given amount of fuel introduced into the combustion chamber. This can be justified based on the calorific value of Hydrogen (H2) 141.9 MJ/kg while the gasoline (C6.4H11.8) is 47MJ/kg. Different weight % of Pd and GO uses for the reformer model and has conducted simulation by COMSOL software. The best result found for the composition of catalyst (palladium 30% and graphene 70%). The study shows that reformer yield hydrogen 23% for the exhaust temperature of 600-900°C and 20% for 80-90°C. Pumping hydrogen may boost the fuel atomization and vaporization at engine idle condition, which could enhances the fuel combustion efficiency. Thus, this innovative technology would be able to save fuel about 12% and reduce the emission about 35%.

  12. Concatenated logic circuits based on a three-way DNA junction: a keypad-lock security system with visible readout and an automatic reset function.

    Science.gov (United States)

    Chen, Junhua; Zhou, Shungui; Wen, Junlin

    2015-01-07

    Concatenated logic circuits operating as a biocomputing keypad-lock security system with an automatic reset function have been successfully constructed on the basis of toehold-mediated strand displacement and three-way-DNA-junction architecture. In comparison with previously reported keypad locks, the distinctive advantage of the proposed security system is that it can be reset and cycled spontaneously a large number of times without an external stimulus, thus making practical applications possible. By the use of a split-G-quadruplex DNAzyme as the signal reporter, the output of the keypad lock can be recognized readily by the naked eye. The "lock" is opened only when the inputs are introduced in an exact order. This requirement provides defense against illegal invasion to protect information at the molecular scale. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Three-Way-Switchable (Right/Left/OFF) Selective Reflection of Circularly Polarized Light on Solid Thin Films of Helical Polymer Blends.

    Science.gov (United States)

    Nagata, Yuuya; Uno, Makoto; Suginome, Michinori

    2016-06-13

    Two poly(quinoxaline-2,3-diyl) copolymers bearing miscibility-enhancing 8-chlorooctyloxy and (S)-2-methylbutoxy or n-butoxy side chains were synthesized. After annealing in CHCl3 vapor, a polymer-blend film of these copolymers exhibited selective reflection of right-handed circularly polarized light (CPL) in the visible region. The handedness of the CPL reflected was completely inverted upon annealing of the film in THF vapor. Annealing in n-hexane vapor resulted in the phase separation of the polymer blend, which turned the selective reflection off. This three-way-switchable reflection, that is, reflection of right-handed or left-handed CPL, together with an OFF state, could be observed visually through right- and left-handed CPL filters. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Conventional and fluorescence in situ hybridization analysis of three-way complex BCR-ABL rearrangement in a chronic myeloid leukemia patient

    Directory of Open Access Journals (Sweden)

    Ganguly Bani

    2007-01-01

    Full Text Available Chromosomal analysis was carried out in bone marrow sample of an 11-year-old girl suspected of myeloproliferative disorder. Conventional G-banding study detected a complex three-way translocation involving 7, 9 and 22, which has resulted in the formation of a variant Philadelphia chromosome causing rearrangement of abl and bcr genes in 87% cells. Fluorescence in situ hybridization (FISH confirmed the fusion of bcr-abl oncogene. Thus the bone marrow karyotype was observed as 46,XX (13% / 46,XX,t(7;9;22(q11;q34;q11 (87%. Hyperdiploidy was present in two cells. In this study, both conventional cytogenetic and FISH diagnosis proved to be significant to identify the variant nature of the Philadelphia chromosome and hyperdiploid condition for introduction of a suitable treatment regimen and estimation of life expectancy of the young girl.

  15. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  16. The Women's Health Care Empowerment Model as a Catalyst for Change in Developing Countries.

    Science.gov (United States)

    Mitroi, Lavinia R; Sahak, Medina; Sherzai, Ayesha Z; Sherzai, Dean

    2016-01-01

    Women's empowerment has been attempted through a number of different fields including the realms of politics, finance, and education, yet none of these domains are as promising as health care. Here we review preliminary work in this domain and introduce a model for women's empowerment through involvement in health care, titled the "women's health care empowerment model." Principles upon which our model is built include: acknowledging the appropriate definition of empowerment within the cultural context, creating a women's network for communication, integrating local culture and tradition into training women, and increasing the capability of women to care for their children and other women.

  17. Predictive Modelling of Phase-Transfer Catalyst Systems for Improved and Innovative Design

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata; Hyung Kim, Sun; Sales-Cruz, Mauricio

    2016-01-01

    increasing attention as a novel organic synthesis option due to its flexible and easier operation, higher production yield, and ability to eliminate expensive solvents, although, not eliminating the use of solvents. New mathematical models of the PTC system, which includes physical and chemical equilibrium......, reaction mechanism and unit operation has been developed. In the developed model, the PTC system is divided into four sub-systems of aqueous-organic solvent partition, inorganic salt in aqueous phase, PTC in aqueous phase, and PTC in aqueous phase. Each subsystem requires an appropriate thermodynamic model...... significantly widened, making it feasible to identify new and innovative biphasic reaction options. In this paper, the predictive qualities of the new model together with the improvements in the predicted design and operation of reaction with PTC systems are highlighted. Also, applications of problem...

  18. An analytic model of formation of carbon nanotubes by the vapor-liquid-drop mechanism and the possibility of optimizing catalysts of nanotube growth on the basis of this model

    Science.gov (United States)

    Alekseev, N. I.; Afanas'ev, D. V.; Charykov, N. A.

    2007-07-01

    A model of the growth of carbon nanotubes of various types from nanodrops of metallic catalysts supersaturated with carbon was developed. The model was used to calculate cocatalysts minimizing the work of critical nucleus formation. Among pure substances, atoms of iron family metals characterized by the lowest van der Waals interaction energy with graphene islands and a certain energy of chemical bonds with carbon are optimum. More effective catalysts can be prepared by selecting components in a certain ratio. The most effective combinations found empirically were nickel-yttrium and cobalt-molybdenum.

  19. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    New Pei Yee

    2008-04-01

    Full Text Available A one-dimensional mathematical model was developed to simulate the performance of catalytic fixed bedreactor for carbon dioxide reforming of methane over Rh/Al2O3 catalyst at atmospheric pressure. The reactionsinvolved in the system are carbon dioxide reforming of methane (CORM and reverse water gas shiftreaction (RWGS. The profiles of CH4 and CO2 conversions, CO and H2 yields, molar flow rate and molefraction of all species as well as reactor temperature along the axial bed of catalyst were simulated. In addition,the effects of different reactor temperature on the reactor performance were also studied. The modelscan also be applied to analyze the performances of lab-scale micro reactor as well as pilot-plant scale reactorwith certain modifications and model verification with experimental data. © 2008 BCREC UNDIP. All rights reserved.[Received: 20 August 2008; Accepted: 25 September 2008][How to Cite: N.A.S. Amin, I. Istadi, N.P. Yee. (2008. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 3 (1-3: 21-29. doi:10.9767/bcrec.3.1-3.19.21-29

  20. Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren

    2011-01-01

    by the Ostwald ripening mechanism. The in situ TEM images also provide information about the temporal evolution of the Pt particle size distribution and of the growth or decay of the individual nanoparticles. The observed Pt nanoparticle changes compare well with predictions made by mean-field kinetic models...... for ripening, but deviations are revealed for the time-evolution for the individual nanoparticles. A better description of the individual nanoparticle ripening is obtained by kinetic models that include local correlations between neighboring nanoparticles in the atom-exchange process....

  1. Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts

    DEFF Research Database (Denmark)

    Friebel, Daniel; Viswanathan, Venkatasubramanian; Miller, Daniel J.

    2012-01-01

    We have studied the effect of nanostructuring in Pt monolayer model electrocatalysts on a Rh(111) single-crystal substrate on the adsorption strength of chemisorbed species. In situ high energy resolution fluorescence detection X-ray absorption spectroscopy at the Pt L3 edge reveals characteristi...

  2. Effect of phase interaction on catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Shujing [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); The Institute of Seawater Desalination and Miltipurpose Utilization, State Oceanic Administration, Tianjin 300192 (China); Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); Xian, Hui [Tianjin Polytechnic University, School of Computer Science & Software Engineering, Tianjin 300387 (China); Mi, Wenbo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300354 (China); Li, Xingang, E-mail: xingang_li@tju.edu.cn [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China)

    2017-04-30

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO{sub 2} and Al{sub 2}O{sub 3}. • Interaction between SnO{sub 2} and Al{sub 2}O{sub 3} phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn{sup 4+} cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalysts. Our results show that interaction between the Al{sub 2}O{sub 3} and SnO{sub 2} phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO{sub 2}/Al{sub 2}O{sub 3} catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO{sub 2}, which probably results from the change of electron concentration on the interface of the SnO{sub 2} and Al{sub 2}O{sub 3} phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn{sup 4+} cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO{sub 2}-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  3. Generator Approach to Evolutionary Optimization of Catalysts and its Integration with Surrogate Modeling

    Czech Academy of Sciences Publication Activity Database

    Holeňa, Martin; Linke, D.; Rodemerck, U.

    2011-01-01

    Roč. 159, č. 1 (2011), s. 84-95 ISSN 0920-5861 R&D Projects: GA ČR GA201/08/0802 Institutional research plan: CEZ:AV0Z10300504 Keywords : optimization of catalytic materials * evolutionary optimization * surrogate modeling * artificial neural networks * multilayer perceptron * regression boosting Subject RIV: IN - Informatics, Computer Science Impact factor: 3.407, year: 2011

  4. Surface analysis of model systems: From a metal-graphite interface to an intermetallic catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kwolek, Emma J. [Iowa State Univ., Ames, IA (United States)

    2016-10-25

    This thesis summarizes research completed on two different model systems. In the first system, we investigate the deposition of the elemental metal dysprosium on highly-oriented pyrolytic graphite (HOPG) and its resulting nucleation and growth. The goal of this research is to better understand the metal-carbon interactions that occur on HOPG and to apply those to an array of other carbon surfaces. This insight may prove beneficial to developing and using new materials for electronic applications, magnetic applications and catalysis.

  5. Reaction mechanism of coal liquefaction: hydrogenolysis of model compound using synthetic pyrite as catalysts. 7. Property change of synthetic pyrite catalyst with the time after production; Sekitan ekika hanno kiko (model kagobutsu no hanno). 7. Gosei ryukatetsu shokubai no keiji henka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Meno, H.; Uemaki, O.; Shibata, T.; Tsuji, T. [Hokkaido University, Sapporo (Japan)

    1996-10-28

    Reactions of various model compounds were investigated using synthetic pyrites for coal liquefaction. In this study, successive changes of the catalysts were investigated from the reactions of model compounds by using three different synthetic pyrites with the lapse of time after production. Benzyl phenyl ether, dibenzyl, and n-octylbenzene were used as model compounds. Reactions were conducted in an autoclave, into which sample, catalyst, decalin as solvent, and initial hydrogen pressure 10 MPa were charged. The autoclave was held at 450 or 475{degree}C of reaction temperature for 1 hour. The catalyst with a shorter lapse of time after production acted to hydrogen transfer, and inhibited the formation of condensation products due to the stabilization of decomposed fragment. It also acted to isomerization of materials by cutting alkyl side chains. When adding sulfur to the catalyst with longer lapse of time after production under these reaction conditions, it inhibited the formation of condensation products for the reaction of benzyl phenyl ether. However, it did not provide the effect for the reaction of n-octylbenzene. 5 refs., 3 figs.

  6. Dehydrogenation Kinetics and Modeling Studies of MgH2 Enhanced by Transition Metal Oxide Catalysts Using Constant Pressure Thermodynamic Driving Forces

    Directory of Open Access Journals (Sweden)

    Saidi Temitope Sabitu

    2012-06-01

    Full Text Available The influence of transition metal oxide catalysts (ZrO2, CeO2, Fe3O4 and Nb2O5 on the hydrogen desorption kinetics of MgH2 was investigated using constant pressure thermodynamic driving forces in which the ratio of the equilibrium plateau pressure (pm to the opposing plateau (pop was the same in all the reactions studied. The results showed Nb2O5 to be vastly superior to other catalysts for improving the thermodynamics and kinetics of MgH2. The modeling studies showed reaction at the phase boundary to be likely process controlling the reaction rates of all the systems studied.

  7. [NiFe] hydrogenase structural and functional models: new bio-inspired catalysts for hydrogen evolution

    International Nuclear Information System (INIS)

    Oudart, Y.

    2006-09-01

    Hydrogenase enzymes reversibly catalyze the oxidation and production of hydrogen in a range close to the thermodynamic potential. The [NiFe] hydrogenase active site contains an iron-cyano-carbonyl moiety linked to a nickel atom which is in an all sulphur environment. Both the active site originality and the potential development of an hydrogen economy make the synthesis of functional and structural models worthy. To take up this challenge, we have synthesised mononuclear ruthenium models and more importantly, nickel-ruthenium complexes, mimicking some structural features of the [NiFe] hydrogenase active site. Ruthenium is indeed isoelectronic to iron and some of its complexes are well-known to bear hydrides. The compounds described in this study have been well characterised and their activity in proton reduction has been successfully tested. Most of them are able to catalyze this reaction though their electrocatalytic potentials remain much more negative compared to which of platinum. The studied parameters point out the importance of the complexes electron richness, especially of the nickel environment. Furthermore, the proton reduction activity is stable for several hours at good rates. The ruthenium environment seems important for this stability. Altogether, these compounds represent the very first catalytically active [NiFe] hydrogenase models. Important additional results of this study are the synergetic behaviour of the two metals in protons reduction and the evidence of a protonation step as the limiting step of the catalytic cycle. We have also shown that a basic site close to ruthenium improves the electrocatalytic potential of the complexes. (author)

  8. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    International Nuclear Information System (INIS)

    Mayr, Lukas; Klötzer, Bernhard; Penner, Simon; Rameshan, Raffael; Rameshan, Christoph

    2014-01-01

    An ultra-high vacuum (UHV) setup for “real” and “inverse” model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, “magic angle”) and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown

  9. Efficacy of dental floss and chlorhexidine mouth rinse as an adjunct to toothbrushing in removing plaque and gingival inflammation - a three way cross over trial.

    Science.gov (United States)

    Arora, Vikram; Tangade, Pradeep; T L, Ravishankar; Tirth, Amit; Pal, Sumit; Tandon, Vaibhav

    2014-10-01

    Maintaining good oral hygiene is important to combat periodontal diseases. The use of tooth brush alone does not serve the purpose of removing plaque which demands the use of some adjuncts such as proximal cleaning aids. The study was conducted to compare the efficacy of Dental Floss and 0.12% Chlorhexidine Gluconate Mouthrinse as an adjunct to toothbrushing on plaque accumulation and gingival inflammation. Department of Public Health Dentistry, Kothiwal Dental College and Research Centre, Moradabad, India. This was a randomized, double blind, three-way cross over clinical trial. Forty five dental students in the age group of 19-25yr. were enrolled into the study. Subjects were randomly assigned into three groups (n=15) i.e. Group A- Toothbrushing with Dental floss (TB+DF), Group B- Toothbrushing with 0.12% Chlorhexidine Gluconate Mouthrinse (TB+CHX-MR) and Group C- Toothbrushing alone (TB Alone) in a three-way crossover manner. After 21 d of trial period, plaque index (PI) and gingival index (GI) were assessed for each group, oral prophylaxis followed by a washout period for 14d. Mean, standard deviations and p-values were obtained. ANOVA test was used to compare the intergroup difference and Post hoc test to compare between the two groups. The inter-group comparison for GI and PI at all interventions showed statistically significant difference (p<0.001). While comparing between group A and group C at second and third follow up, no significant difference were observed though group A showed reduction in mean values for both the clinical parameters whereas while comparing between group A and group B, statistically significant difference was observed, which is in line when compared with group B and group C. The Group B showed more reduction in plaque and gingival scores which was found to be statistically significant (p<0.001). CHX-MR when used as an adjunct to toothbrushing is more effective in the reduction of plaque and gingival scores than a toothbrush alone or

  10. Mg2+-Dependent High Mechanical Anisotropy of Three-Way-Junction pRNA as Revealed by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Sun, Yang; Di, Weishuai; Li, Yiran; Huang, Wenmao; Wang, Xin; Qin, Meng; Wang, Wei; Cao, Yi

    2017-08-01

    Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three-way-junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg 2+ binding. In the absence of Mg 2+ , 3WJ-pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg 2+ , the unfolding forces can differ by more than 4-fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ-pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg 2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ-pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes

    Science.gov (United States)

    Luo, Qingying; Liu, Lin; Yang, Cai; Yuan, Jing; Feng, Hongtao; Chen, Yan; Zhao, Peng; Yu, Zhiqiang; Jin, Zongwen

    2018-03-01

    MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.

  12. A novel colorimetric aptasensor for ultrasensitive detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles.

    Science.gov (United States)

    Abnous, Khalil; Danesh, Noor Mohammad; Ramezani, Mohammad; Taghdisi, Seyed Mohammad; Emrani, Ahmad Sarreshtehdar

    2018-08-22

    Herein, a novel colorimetric aptasensor was introduced for detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles (AuNPs) and the catalytic activity of the surfaces of AuNPs. Simplicity and detection of cocaine in a short time (only 35 min) are some of the unique features of the proposed sensing strategy. In the presence of cocaine, triple-fragment aptamer (TFA) forms on the surfaces of AuNPs, leading to a significant decrease of the catalytic activity of AuNPs and the color of samples remains yellow. In the absence of target, TFA does not form on the surfaces of AuNPs and 4-Nitrophenol, as a colorimetric agent, has more access to the surfaces of AuNPs, resulting in the reduction of 4-Nitrophenol and the color of sample changes from yellow to colorless. The sensing strategy showed good specificity, a limit of detection (LOD) of 440 pM and a dynamic range over 2-100 nM. The sensing method was also successfully applied to detect cocaine in spiked human serum samples with recovery of 94.71-98.63%. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. RNA Nanoparticles Derived from Three-Way Junction of Phi29 Motor pRNA Are Resistant to I-125 and Cs-131 Radiation

    Science.gov (United States)

    Li, Hui; Rychahou, Piotr G.; Cui, Zheng; Pi, Fengmei; Evers, B. Mark; Shu, Dan

    2015-01-01

    Radiation reagents that specifically target tumors are in high demand for the treatment of cancer. The emerging field of RNA nanotechnology might provide new opportunities for targeted radiation therapy. This study investigates whether chemically modified RNA nanoparticles derived from the packaging RNA (pRNA) three-way junction (3WJ) of phi29 DNA-packaging motor are resistant to potent I-125 and Cs-131 radiation, which is a prerequisite for utilizing these RNA nanoparticles as carriers for targeted radiation therapy. pRNA 3WJ nanoparticles were constructed and characterized, and the stability of these nanoparticles under I-125 and Cs-131 irradiation with clinically relevant doses was examined. RNA nanoparticles derived from the pRNA 3WJ targeted tumors specifically and they were stable under irradiation of I-125 and Cs-131 with clinically relevant doses ranging from 1 to 90 Gy over a significantly long time up to 20 days, while control plasmid DNA was damaged at 20 Gy or higher. PMID:26017686

  14. Neuroticism Magnifies the Detrimental Association between Social Media Addiction Symptoms and Wellbeing in Women, but Not in Men: a three-Way Moderation Model.

    Science.gov (United States)

    Turel, Ofir; Poppa, Natalie Tasha; Gil-Or, Oren

    2018-02-03

    Addiction symptoms in relation to the use of social networking sites (SNS) can be associated with reduced wellbeing. However, the mechanisms that can control this association have not been fully characterized, despite their relevance to effective treatment of individuals presenting SNS addiction symptoms. In this study we hypothesize that sex and neuroticism, which are important determinants of how people evaluate and respond to addiction symptoms, moderate this association. To examine these assertions, we employed hierarchical linear and logistic regression techniques to analyze data collected with a cross-sectional survey of 215 Israeli college students who use SNS. Results lend support to the hypothesized negative association between SNS addiction symptoms and wellbeing (as well as potentially being at-risk for low mood/ mild depression), and the ideas that (1) this association is augmented by neuroticism, and (2) that the augmentation is stronger for women than for men. They demonstrated that the sexes may differ in their SNS addiction-wellbeing associations: while men had similar addiction symptoms -wellbeing associations across neuroticism levels, women with high levels of neuroticism presented much steeper associations compared to women with low neuroticism. This provides an interesting account of possible "telescoping effect", the idea that addicted women present a more severe clinical profile compared to men, in the case of technology-"addictions".

  15. A Three-Way Street: MISR and MODIS Provide Context, SEAC4RS Provides Detail and Validation, Models Complete the Picture

    Science.gov (United States)

    Kahn, Ralph A.

    2014-01-01

    The Transported Smoke Survey had three objectives: to evaluate imager and polarimeter sensitivity to smoke properties (remote sensing validation); to study characteristics of transported smoke (chemistry/transport); and to assess rediative impact of smoke layers (radiation closure).

  16. EFFECTS OF CATALYST MORPHOLOGY ON HYDROTREATING REACTIONS

    Directory of Open Access Journals (Sweden)

    TYE CHING THIAN

    2008-08-01

    Full Text Available Due to the new environmental regulations for fuel quality, refineries need to process cleaner fuel. This requires an improvement in performance of hydrotreating catalysts. Improvements in catalyst activity require knowledge of the relationships between catalyst morphology and activity. Molybdenum sulfide, the generally agreed catalysts that give the best performance in hydrocracking and hydrotreating was investigated for its morphology effects on hydrotreating reactions. Three types of MoS2 catalysts with different morphology were studied. They are crystalline MoS2, exfoliated MoS2 and MoS2 derived from a precursor, molybdenum naphthenate. Exfoliated MoS2 with minimal long range order, with much higher rim edges has shown relative higher hydrogenation activity. Generally, results of MoS2 catalyst activities in hydrogenation, hydrodesulfurization, hydrodenitrogenation and hydrideoxy¬gena¬tion are in agreement with the rim-edge model.

  17. Modeling the selective catalytic reduction of NOx by ammonia over a Vanadia-based catalyst from heavy duty diesel exhaust gases

    International Nuclear Information System (INIS)

    Yun, Byoung Kyu; Kim, Man Young

    2013-01-01

    A numerical simulation for prediction of NO X conversion over a commercial V 2 O 5 catalyst with NH 3 as a reductant was performed for a heavy duty diesel engine applications. The chemical behaviors of the SCR reactor are described by using the global NO X kinetics including standard, fast, and NH 3 oxidation reactions with the Langmuir–Hinshelwood (LH) mechanism incorporated into the commercial Boost code. After introducing mathematical models for the SCR reaction with specific reaction parameters, the effects of various parameters such as space velocities, the O 2 , H 2 O, NO 2 , and NH 3 concentrations on the NOx conversion are thoroughly studied and validated by comparing with the experimental data available in the literature. It is found that NO X conversion increases with decreasing space velocity, H 2 O concentration, and NH 3 /NO X ratio, and increasing O 2 concentration and NO 2 /NO X ratio. The study shows that not only is the present approach adopted is flexible in treating performance of the commercial V 2 O 5 based SCR catalyst, it is also accurate and efficient for the prediction of NO X conversion in diesel exhaust environments. - Highlights: ► To find the reaction parameters for LH mechanism over a commercial V2O5 catalyst. ► To investigate the effects of various parameters on the SCR NO X conversion. ► To present benchmark solutions on SCR behavior with diesel exhaust environments.

  18. Theoretical investigations of olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cundari, T.R.; Gordon, M.S. [North Dakota State Univ., Fargo, ND (United States)

    1992-01-01

    An ab initio analysis of the electronic structure of high-valent, transition-metal alkylidenes as models for olefin metathesis catalysts is presented. The catalyst models studied fall into three categories: {open_quotes}new{close_quotes} metathesis catalyst models-tetrahedral M(OH){sup 2}(XH)(CH{sub 2}) complexes; {open_quotes}old{close_quotes} metathesis catalyst models-tetrahedral MCl{sub 2}(Y)(CH{sub 2}) complexes and alkylidene-substituted Mo metathesis catalysts, Mo(OH){sub 2}(NH)(=C(H)Z). The effect on the bonding caused by modification of either the metal, ligands, or alkylidene substitutents is considered. 21 refs., 2 figs., 5 tabs.

  19. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    Science.gov (United States)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3

  20. Pilot‐scale investigation and CFD modeling of particle deposition in low‐dust monolithic SCR DeNOx catalysts

    DEFF Research Database (Denmark)

    Heiredal, Michael Lykke; Jensen, Anker Degn; Thøgersen, Joakim Reimer

    2013-01-01

    Deposition of particles in selective catalytic reduction DeNOx monolithic catalysts was studied by low‐dust pilot‐scale experiments. The experiments showed a total deposition efficiency of about 30%, and the deposition pattern was similar to that observed in full‐scale low‐dust applications. On e...

  1. Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts

    NARCIS (Netherlands)

    Mahfud, F. H.; Ghijsen, F.; Heeres, H. J.

    2007-01-01

    The use of homogeneous ruthenium catalysts to hydrogenate the water-soluble fraction of pyrolysis oil is reported. Pyrolysis oil, which is obtained by fast pyrolysis of lignocellulosic biomass at 450-600 degrees C, contains significant amounts of aldehydes and ketones (e.g. 1-hydroxy-2-propanone (1)

  2. Reduce NOx Emissions by Adsorber-Reduction Catalyst on Lean Burn Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Dongpeng Yue

    2013-09-01

    Full Text Available The effect of a new catalyst system composed of traditional three way catalyst converter and adsorber-reduction catalysis converter on the emission characteristics and BSFC (Breake Specific Fuel Consumption- BSFCof a lean burn gasoline engine operated were investigated in this paper under different schemes of catalyst converter arrangement and different speeds and loads. The results show that the position of Three Way Catalyst is before the NOx adsorber Catalyst was the best scheme of catalyst converter arrangement. Which has the highest converter efficiency of reduction NOx emission in lean burn gasoline engine. The effects of speed on the exhaust emission and BSFC were also related to the ratio of lean burn time to rich burn time and the absolute value of both time of the adsorber-reduction catalyst converter. The load of the engine was the main influential factor to the exhaust emission characteristics and BSFC of lean burn gasoline engine, and the more load of the engine was, the more NOx emission , the less NOx conversion rate (CNOx and the better BSFC were.

  3. A sequential vesicle pool model with a single release sensor and a ca(2+)-dependent priming catalyst effectively explains ca(2+)-dependent properties of neurosecretion

    DEFF Research Database (Denmark)

    Walter, Alexander M; da Silva Pinheiro, Paulo César; Verhage, Matthijs

    2013-01-01

    identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca(2+)-dependent action: a Ca(2+)-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1...... - synaptotagmin-1 - slower Ca(2+)-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca(2+) sensors for release, but no slow release sensor acting on a parallel vesicle pool has been......, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca(2+)-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model...

  4. Determination of the catalyst velocity profile along the riser of a fluidized bed reactor model by nuclear techniques

    International Nuclear Information System (INIS)

    Santos, V.A. dos; Dantas, C.C.

    1982-01-01

    A method adequated to industrial applications of flow measurements in fuidized bed reactor was developed. To measure the medium velocity of a catalyst, where the velocity is low, a radioactive tracer was used, 59 Fe and, to measure density by gamma attenuation, a standard source of 241 Am was used. The signals produced in NaI (Tl) scintilators detectors, were sent simultaneously to an electronic clock, to register the transit time, in the medium velocity measure of the catalyst whose reproductibility was 0.4%. The total estimated error for the method was a maximum of 4%. Important simplifications and pratical advantages are presented, if the method is compared to conventional measures with tracers. (E.G.) [pt

  5. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering

    DEFF Research Database (Denmark)

    Kehres, Jan; Pedersen, Thomas; Masini, Federico

    2016-01-01

    -incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments......The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing...

  6. Model bimetallic Pd-Ni automotive exhaust catalysts. Influence of thermal aging and hydrocarbon self-poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Hungria, A.B.; Martinez-Arias, A. [Instituto de Catalisis y Petroleoquimica, CSIC, C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Calvino, J.J. [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain); Anderson, J.A. [Surface Chemistry and Catalysis Group, Department of Chemistry, University of Aberdeen, AB24 3UE Scotland (United Kingdom)

    2006-02-22

    Bimetallic Pd-Ni catalysts supported on Al{sub 2}O{sub 3} and (Ce,Zr)O{sub x}/Al{sub 2}O{sub 3} were examined with respect to their catalytic performance for the elimination of CO, NO and C{sub 3}H{sub 6} under stoichiometric conditions. The effects of a thermal aging treatment at 1273K, reactant competition in the presence of the hydrocarbon and the influence of the presence of nickel in the catalyst have been analysed by XRD, HREM, catalytic activity measurements and in situ DRIFTS spectroscopy. Self-poisoning effects, induced by the presence of the hydrocarbon in the reactant mixture, were identified as the main factor affecting the light-off activity. While a Ni-induced preferential interaction between Pd and the Ce-Zr mixed oxide component appears, in general terms, to be beneficial for the catalytic performance of the fresh (Ce,Zr)O{sub x}/Al{sub 2}O{sub 3}-supported bimetallic catalyst, it is shown to be detrimental for the aged system as a consequence of a facilitated degradation of the (Ce,Zr)O{sub x} component and encapsulation of the active palladium particles. (author)

  7. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    The title of my PhD thesis is “Design of Heterogeneous Catalysts”. Three reactions have been investigated: the methanation reaction, the Fischer-Tropsch reaction, and the NH3-based selective catalytic reduction (SCR) of NO. The experimental work performed in connection with the methanation reaction...... hydrogenation. For both systems a maximum in catalytic activity was found for some of the bimetallic catalysts being superior to the monometallic catalysts. This resulted in volcano curves for all investigated systems. In the Fischer-Tropsch reaction promotion of cobalt catalysts with manganese was studied...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  8. Ceria-based model catalysts: fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2hydrogenation, and methane and alcohol reforming.

    Science.gov (United States)

    Rodriguez, José A; Grinter, David C; Liu, Zongyuan; Palomino, Robert M; Senanayake, Sanjaya D

    2017-04-03

    Model metal/ceria and ceria/metal catalysts have been shown to be excellent systems for studying fundamental phenomena linked to the operation of technical catalysts. In the last fifteen years, many combinations of well-defined systems involving different kinds of metals and ceria have been prepared and characterized using the modern techniques of surface science. So far most of the catalytic studies have been centered on a few reactions: CO oxidation, the hydrogenation of CO 2 , and the production of hydrogen through the water-gas shift reaction and the reforming of methane or alcohols. Using model catalysts it has been possible to examine in detail correlations between the structural, electronic and catalytic properties of ceria-metal interfaces. In situ techniques (X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, infrared spectroscopy, scanning tunneling microscopy) have been combined to study the morphological changes under reaction conditions and investigate the evolution of active phases involved in the cleavage of C-O, C-H and C-C bonds. Several studies with model ceria catalysts have shown the importance of strong metal-support interactions. In general, a substantial body of knowledge has been acquired and concepts have been developed for a more rational approach to the design of novel technical catalysts containing ceria.

  9. Presenting a new kinetic model for methanol to light olefins reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson mechanism

    Science.gov (United States)

    Javad Azarhoosh, Mohammad; Halladj, Rouein; Askari, Sima

    2017-10-01

    In this study, a new kinetic model for methanol to light olefins (MTO) reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism was presented and the kinetic parameters was obtained using a genetic algorithm (GA) and genetic programming (GP). Several kinetic models for the MTO reactions have been presented. However, due to the complexity of the reactions, most reactions are considered lumped and elementary, which cannot be deemed a completely accurate kinetic model of the process. Therefore, in this study, the LHHW mechanism is presented as kinetic models of MTO reactions. Because of the non-linearity of the kinetic models and existence of many local optimal points, evolutionary algorithms (GA and GP) are used in this study to estimate the kinetic parameters in the rate equations. Via the simultaneous connection of the code related to modelling the reactor and the GA and GP codes in the MATLAB R2013a software, optimization of the kinetic models parameters was performed such that the least difference between the results from the kinetic models and experiential results was obtained and the best kinetic parameters of MTO process reactions were achieved. A comparison of the results from the model with experiential results showed that the present model possesses good accuracy.

  10. Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification.

    Science.gov (United States)

    Kong, Meng; Fei, Jinhua; Wang, Shuai; Lu, Wen; Zheng, Xiaoming

    2011-01-01

    A series of supported Ni catalysts including Ni/MgO, Ni/γ-Al2O3, Ni/α-Al2O3, Ni/SiO2 and Ni/ZrO2 was tested in CO2 reforming of toluene as a model compound of tar from biomass gasification in a fluidized bed reactor, and characterized by the means of temperature programmed reduction with hydrogen (H2-TPR), XRD, TEM and temperature programmed oxidation (TPO). Combining the characterization results with the performance tests, the activity of catalyst greatly depended on Ni particles size, and the stability was affected by the coke composition. Both of them (Ni particle size and coke composition) were closely related to the interaction between nickel and support which would determine the chemical environment where Ni inhabited. The best catalytic performance was observed on Ni/MgO due to the strong interaction between NiO and MgO via the formation of Ni-Mg-O solid solution, and the highest dispersion of Ni particle in the basic environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts

    Science.gov (United States)

    2017-01-01

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation. PMID:29225721

  12. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  13. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  14. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  15. Modeling of the kinetics of deactivation of a commercial hydrocracking catalyst in the reaction of cumene disproportionation

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Monzon, A.; Butt, J.B.; Absil, R.P.

    1986-07-01

    The mechanism of coke formation on a commercial hydrocracking catalyst is studied. The data by R.P.L. Absil, J.B. Butt, and J.B. Dranoff (J. Catal. 85, 415, 1984) for cumene disproportionation have been analyzed using the theory and developments of J. Corella and J.M. Asua (Ind. Eng. Chem. Process Des. Dev. 21, 55, 1982). Several coke formation mechanisms are presented and their Langmuir-Hinshelwood kinetic equations are deduced. Only the mechanisms with two active sites in the controlling step or with deactivation order 1.5 fit the data. The chemical mechanism of coke formation in this process is presented and a reasonable mechanistic explanation for the empirical deactivation kinetic equations given previously is presented.

  16. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  17. A UPS study of the thermal reduction of fully oxidized V2O5/TiO2(001-anatase) model catalysts

    International Nuclear Information System (INIS)

    Silversmit, G.; Poelman, H.; Depla, D.; Poelman, D.; DE Gryse, R.; Marin, G.B.; Barrett, N.

    2004-01-01

    Full text: Vanadium oxides are important catalysts in various industrial processes. Supported vanadium oxides have enhanced catalytic properties as compared to unsupported vanadium oxides. Model systems, consisting of a thin vanadium oxide layer deposited on a crystalline support, are used to study supported vanadium oxides. As calcined industrial powder systems contain V 5+ , representative model systems should also have fully oxidized vanadium oxide layers. DC magnetron sputtering in a pure O 2 atmosphere is used as deposition technique in order to develop fully oxidized V 2 O 5 /TiO 2 (001-anatase) model catalysts. Vanadium oxide layers deposited with magnetron sputtering on mineral TiO 2 (001-anatase) supports were examined with UPS (hv=150 eV) at the SA73 beamline of the S.ACO storage ring (LURE, France) by recording the valence band and the V3p, Ti3p and O2s core line spectra. Ex-situ depositions did not yield fully oxidized vanadium oxide layers. Fully oxidized vanadium oxide layers on TiO 2 (001-anatase) can be obtained by in-situ depositions. The in-situ deposited layers are gradually reduced upon irradiation with the monochromated synchrotron beam. The thermal behaviour of the V 2 O 5 /TiO 2 (001-anatase) system was studied up to approximately 240 deg C for a layer thickness of 16 Angstroms. The heating induced a reduction of the vanadium oxide layer. Furthermore, the thickness of the layers diminished by the heating: more than 8 Angstroms vanadium oxide disappeared. A re-oxidation did not restore the vanadium oxide layer completely to the V 5+ oxidation state

  18. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  19. Hydroliquefaction of coal with supported catalysts: 1980 status review

    Energy Technology Data Exchange (ETDEWEB)

    Polinski, Leon M.; Stiegel, Gary J.; Tischer, Richard E.

    1981-06-01

    The objectives of the program have been to determine catalyst deactivation kinetic models and catalyst deactivation modes for supported Co-Mo and Ni-Mo catalysts used primarily in coal liquefaction via the H-COAL process. Emphasis has been on developing methods to increase catalyst usage by determining how to decrease catalyst replacement rates in the process and how to decrease catalyst poisoning. An important conclusion reached via model analysis and verified by experiment is that larger diameter (1/16 in.) catalysts resist poisoning deactivation much more than smaller (1/32 in.) catalysts over extended periods (60 to 110 hours) of time. If this trend can be verified, it gives a powerful tool for reducing catalyst replacement rate in the H-COAL ebullated bed system by factors of 2 or more. A second conclusion is that poisoning of catalysts occurs by several possible mechanisms or modes. Indirect or direct evidence of all these modes can be presented, though the relative importance of each mechanism has not been established. The modes include (a) poisoning by coking - with gradual increase in C/H ratio (more refractory coke) with time, (b) poisoning by metallization (selective/non-selective adsorption of inorganics such as Ti and Fe on the catalyst), (c) sintering - increase in larger pores/decrease in surface area, and (d) parallel poisoning by irreversible nitrogen compound adsorption.

  20. METHOD OF PURIFYING CATALYSTS

    Science.gov (United States)

    Joris, G.G.

    1958-09-01

    It has been fuund that the presence of chlorine as an impurity adversely affects the performance of finely divided platinum catalysts such as are used in the isotopic exchange process for the production of beavy water. This chlorine impurity may be removed from these catalysts by treating the catalyst at an elevated temperature with dry hydrogen and then with wet hydrogen, having a hydrogen-water vapor volume of about 8: 1. This alternate treatment by dry hydrogen and wet hydrogen is continued until the chlorine is largely removed from the catalyst.

  1. Modelling Methods of Magnetohydrodynamic Phenomena Occurring in a Channel of the Device Used to Wash Out the Spent Automotive Catalyst by a Liquid Metal

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-06-01

    Full Text Available The recovery of precious metals is necessary for environmental and economic reasons. Spent catalysts from automotive industry containing precious metals are very attractive recyclable material as the devices have to be periodically renovated and eventually replaced. This paper presents the method of removing platinum from the spent catalytic converters applying lead as a collector metal in a device used to wash out by using mangetohydrodynamic stirrer. The article includes the description of the methods used for modeling of magnetohydrodynamic phenomena (coupled analysis of the electromagnetic, temperature and flow fields occurring in this particular device. The paper describes the general phenomena and ways of coupling the various physical fields for this type of calculation. The basic computational techniques with a discussion of their advantages and disadvantages are presented.

  2. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  3. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  4. System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor

    Science.gov (United States)

    None

    2017-07-25

    A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level based on the one of the predetermined value and the input received from the nitrogen oxide sensor.

  5. Amorphous molybdenum sulfides as hydrogen evolution catalysts.

    Science.gov (United States)

    Morales-Guio, Carlos G; Hu, Xile

    2014-08-19

    from simple wet-chemical routes. Electron transport is sometimes slow in the particle catalysts, and an impedance model has been established to identify this slow electron transport. Finally, the amorphous molybdenum sulfide film catalyst has been integrated onto a copper(I) oxide photocathode for photoelectrochemical hydrogen evolution. The conformal catalyst efficiently extracts the excited electrons to give an impressive photocurrent density of -5.7 mA/cm(2) at 0 V vs RHE. The catalyst also confers good stability.

  6. Phenomenological-based kinetics modelling of dehydrogenation of ethylbenzene to styrene over a Mg 3 Fe 0.25 Mn 0.25 Al 0.5 hydrotalcite catalyst

    KAUST Repository

    Hossain, Mohammad M.

    2012-05-18

    This communication reports a mechanism-based kinetics modelling for the dehydrogenation of ethylbenzene to styrene (ST) using Mg3Fe0.25Mn0.25Al0.5 catalyst. Physicochemical characterisation of the catalyst indicates that the presence of basic sites Mg2+O2- on the catalysts along with Fe3+ is responsible for the catalytic activity. The kinetics experiments are developed using a CREC Fluidised Riser Simulator. Based on the experimental observations and the possible mechanism of the various elementary steps, Langmuir-Hinshelwood type kinetics model are developed. To take into account of the possible catalyst deactivation a reactant conversion-based deactivation function is also introduced into the model. Parameters are estimated by fitting of the experimental data implemented in MATLAB. Results show that one site type Langmuir-Hinshelwood model appropriately describes the experimental data, with adequate statistical fitting indicators and also satisfied the thermodynamic restraints. The estimated heat of adsorptions of EB (64kJ/mole) is comparable to the values available in the literature. The activation energy for the formation of ST (85.5kJ/mole) found to be significantly lower than that of the cracking product benzene (136.6kJ/mole). These results are highly desirable in order to achieve high selectivity of the desired product ST. © 2012 Canadian Society for Chemical Engineering.

  7. Sulfur Resistance of Pt-W Catalysts

    Directory of Open Access Journals (Sweden)

    Carolina P. Betti

    2013-01-01

    Full Text Available The sulfur resistance of low-loaded monometallic Pt catalysts and bimetallic Pt-W catalysts during the partial selective hydrogenation of styrene, a model compound of Pygas streams, was studied. The effect of metal impregnation sequence on the activity and selectivity was also evaluated. Catalysts were characterized by ICP, TPR, XRD, and XPS techniques. Catalytic tests with sulfur-free and sulfur-doped feeds were performed. All catalysts showed high selectivities (>98% to ethylbenzene. Activity differences between the catalysts were mainly attributed to electronic effects due to the presence of different electron-rich species of Pt0 and electron-deficient species of Ptδ+. Pt0 promotes the cleavage of H2 while Ptδ+ the adsorption of styrene. The catalyst successively impregnated with W and Pt (WPt/Al was more active and sulfur resistant than the catalyst prepared with an inverse impregnation order (PtW/Al. The higher poison resistance of WPt/Al was attributed to both steric and electronic effects.

  8. A new kinetic model based on the remote control mechanism to fit experimental data in the selective oxidation of propene into acrolein on biphasic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Abdeldayem, H.M.; Ruiz, P.; Delmon, B. [Unite de Catalyse et Chimie des Materiaux Divises, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium); Thyrion, F.C. [Unite des Procedes Faculte des Sciences Appliquees, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium)

    1998-12-31

    A new kinetic model for a more accurate and detailed fitting of the experimental data is proposed. The model is based on the remote control mechanism (RCM). The RCM assumes that some oxides (called `donors`) are able to activate molecular oxygen transforming it to very active mobile species (spillover oxygen (O{sub OS})). O{sub OS} migrates onto the surface of the other oxide (called `acceptor`) where it creates and/or regenerates the active sites during the reaction. The model contains tow terms, one considering the creation of selective sites and the other the catalytic reaction at each site. The model has been tested in the selective oxidation of propene into acrolein (T=380, 400, 420 C; oxygen and propene partial pressures between 38 and 152 Torr). Catalysts were prepared as pure MoO{sub 3} (acceptor) and their mechanical mixtures with {alpha}-Sb{sub 2}O{sub 4} (donor) in different proportions. The presence of {alpha}-Sb{sub 2}O{sub 4} changes the reaction order, the activation energy of the reaction and the number of active sites of MoO{sub 3} produced by oxygen spillover. These changes are consistent with a modification in the degree of irrigation of the surface by oxygen spillover. The fitting of the model to experimental results shows that the number of sites created by O{sub SO} increases with the amount of {alpha}-Sb{sub 2}O{sub 4}. (orig.)

  9. A fluid dynamic model for catalyst flow in riser of a FCC cold pilot unity is validated by gamma ray transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Souza Netto, Wilson F. de; Brito, Marcio F. P.; Dantas, Carlos C.; Silva, Jose Marcos F. da; Freitas, Romero B., E-mail: wilson.netto@ufpe.br, E-mail: jmfs5@yahoo.com.br, E-mail: romero.borgesf@gmail.com, E-mail: ccd@ufpe.br, E-mail: marciopaixaobrito@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Santos, Valdemir A. dos, E-mail: vas@unicap.br [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil). Dept. de Quimica; Barbosa, Enivaldo S., E-mail: enivaldo@dem.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Unidade Academica de Engenharia Mecanica

    2013-07-01

    An one-dimensional model was previously used to describe solid flow and operational conditions tests. By radial gamma ray profile a two-dimensional model was evaluated taken volumetric solid fraction as experimental parameters. Literature data provide a first test for solution of the two-dimensional model equations. Then, Axial and radial catalyst profiles were measured by gamma ray transmission in the riser of the Cold Flow Pilot Unit. For fluid flow, the mathematical model is established based on the equations of conservation of momentum and mass. However, in multicomponent flows, one should have a correction factor in these equations taking into account the influence of each component in the flow. This factor is the volumetric fraction of each component. The volumetric fraction of solids was obtained by measuring the pressure profile and calculating the solids specific mass relative to riser volume. With the technique of gamma transmission radiation could be measured in one single point of the riser, direct measurement, then several points to get a more precise axial profile and better definition. The data obtained were used as parameters for the differential equations of fluid dynamic model and MATLAB solved. (author)

  10. A sequential vesicle pool model with a single release sensor and a Ca(2+-dependent priming catalyst effectively explains Ca(2+-dependent properties of neurosecretion.

    Directory of Open Access Journals (Sweden)

    Alexander M Walter

    Full Text Available Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca(2+ dependence, but also upstream steps depend on Ca(2+. After deletion of the Ca(2+ sensor for fast release - synaptotagmin-1 - slower Ca(2+-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM driven by alternative Ca(2+ sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM, assuming a novel Ca(2+-dependent action: a Ca(2+-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca(2+-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP, whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca(2+-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca(2+-dependent fusion from the NRP. We conclude that the elusive 'alternative Ca(2+ sensor' for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca(2+-dependent

  11. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    1999-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the

  12. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  13. Nanostructured catalyst supports

    Science.gov (United States)

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  14. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  15. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...

  16. Catalyst for Expanding Human Spaceflight

    Science.gov (United States)

    Lueders, Kathryn L.

    2014-01-01

    History supplies us with many models of how and how not to commercialize an industry. This presentation draws parallels between industries with government roots, like the railroad, air transport, communications and the internet, and NASAs Commercial Crew Program. In these examples, government served as a catalyst for what became a booming industry. The building block approach the Commercial Crew Program is taking is very simple -- establish a need, laying the groundwork, enabling industry and legal framework.

  17. WOx supported on γ-Al2O3 with different morphologies as model catalysts for alkanol dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Dachuan; Wang, Huamin; Kovarik, Libor; Gao, Feng; Wan, Chuan; Hu, Jian Z.; Wang, Yong

    2018-04-21

    The distinctive morphological and surface characteristics of platelet-like γ-Al2O3 were compared to a regular, commercial γ-Al2O3. γ-Al2O3 platelets display dominant (110) surface facets and higher densities of coordinative unsaturated penta-coordinate Al3+ (Al3+penta) sites than regular γ-Al2O3, as measured by solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). Such Al3+penta sites are also the preferred surface anchoring sites for tungsten oxide (WOx) species consistent with NMR analysis indicating that these sites are consumed upon WOx adsorption. The higher Al3+penta density on γ-Al2O3 platelets leads to greater WOx dispersion (or smaller WOx clusters), as demonstrated by scanning transmission electron microscopy and ultraviolet–visible spectroscopy, and WOx species at intermediate WOx surface concentration are the most active for the probe reaction of 2-butanol dehydration. WOx on γ-Al2O3 platelets approaches the highest turnover rates at higher surface densities than WOx on regular γ-Al2O3, yet with similar highest rate values for both series of catalysts. This indicates that different Al2O3 supports mainly affect the dispersion of supported WOx rather than the intrinsic reactivity of individual WOx clusters with similar size.

  18. Large zeolite H-ZSM-5 crystals as models for the methanol-to-hydrocarbons process: bridging the gap between single-particle examination and bulk catalyst analysis.

    Science.gov (United States)

    Hofmann, Jan P; Mores, Davide; Aramburo, Luis R; Teketel, Shewangizaw; Rohnke, Marcus; Janek, Jürgen; Olsbye, Unni; Weckhuysen, Bert M

    2013-06-24

    The catalytic, deactivation, and regeneration characteristics of large coffin-shaped H-ZSM-5 crystals were investigated during the methanol-to-hydrocarbons (MTH) reaction at 350 and 500 °C. Online gas-phase effluent analysis and examination of retained material thereof were used to explore the bulk properties of large coffin-shaped zeolite H-ZSM-5 crystals in a fixed-bed reactor to introduce them as model catalysts for the MTH reaction. These findings were related to observations made at the individual particle level by using polarization-dependent UV-visible microspectroscopy and mass spectrometric techniques after reaction in an in situ microspectroscopy reaction cell. Excellent agreement between the spectroscopic measurements and the analysis of hydrocarbon deposits by means of retained hydrocarbon analysis and time-of-flight secondary-ion mass spectrometry of spent catalyst materials was observed. The obtained data reveal a shift towards more condensed coke deposits on the outer zeolite surface at higher reaction temperatures. Zeolites in the fixed-bed reactor setup underwent more coke deposition than those reacted in the in situ microspectroscopy reaction cell. Regeneration studies of the large zeolite crystals were performed by oxidation in O2 /inert gas mixtures at 550 °C. UV-visible microspectroscopic measurements using the oligomerization of styrene derivatives as probe reaction indicated that the fraction of strong acid sites decreased during regeneration. This change was accompanied by a slight decrease in the initial conversion obtained after regeneration. H-ZSM-5 deactivated more rapidly at higher reaction temperature. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Modeling the adsorption of sulfur containing molecules and their hydrodesulfurization intermediates on the Co-promoted MoS2 catalyst by DFT

    DEFF Research Database (Denmark)

    Šarić, Manuel; Rossmeisl, Jan; Moses, Poul Georg

    2018-01-01

    Achieving ultra-deep hydrodesulfurization means enabling removal of the last fractions of sulfur, contained in refractory molecules, from oil. Improving the state-of-the-art Co-promoted MoS2 (CoMoS) catalyst or the development of novel catalysts is crucial for this. Improving CoMoS requires more ...

  20. Determination of tartrazine in beverage samples by stopped-flow analysis and three-way multivariate calibration of non-linear kinetic-spectrophotometric data.

    Science.gov (United States)

    Schenone, Agustina V; Culzoni, María J; Marsili, Nilda R; Goicoechea, Héctor C

    2013-06-01

    The performance of MCR-ALS was studied in the modeling of non-linear kinetic-spectrophotometric data acquired by a stopped-flow system for the quantitation of tartrazine in the presence of brilliant blue and sunset yellow FCF as possible interferents. In the present work, MCR-ALS and U-PCA/RBL were firstly applied to remove the contribution of unexpected components not included in the calibration set. Secondly, a polynomial function was used to model the non-linear data obtained by the implementation of the algorithms. MCR-ALS was the only strategy that allowed the determination of tartrazine in test samples accurately. Therefore, it was applied for the analysis of tartrazine in beverage samples with minimum sample preparation and short analysis time. The proposed method was validated by comparison with a chromatographic procedure published in the literature. Mean recovery values between 98% and 100% and relative errors of prediction values between 4% and 9% were indicative of the good performance of the method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The cycle use test of Pt based catalyst for the steam reforming of naphthalene / benzene as model tar compounds of biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Takeshi; Saito, Katsuhiko; Sato, Masahide; Suzuki, Noboru [Utsunomiya Univ. (Japan). Graduate School of Engineering

    2010-07-01

    Although Pt/Al{sub 2}O{sub 3} catalyst showed high and stable activity (carbon conv. to gas: 90%) for steam reforming of naphthalene/benzene at 1073 K with S/C=3, this catalyst gradually lost its activity at 1023 K with S/C=3 due to deposition of carboneous species. Two kinds of regeneration treatment was conducted to enlongate the life time of Pt/Al{sub 2}O{sub 3} catalyst. Although regeneration treatment completely remove the carboneous species from catalyst, mild oxidation treatment led to decrease activity due to sintering of Pt particles. On the contrary, hydrogen treatment led to maintain activity until 5th cycle test. It was concluded from these obtained results that hydrogen treatment is suitable regeneration method during cycle test in the case of Pt/Al{sub 2}O{sub 3} catalyst. (orig.)

  2. Highly sensitive silicon microreactor for catalyst testing

    DEFF Research Database (Denmark)

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  3. Optimal Catalyst and Cocatalyst Precontacting in Industrial Ethylene Copolymerization Processes

    Directory of Open Access Journals (Sweden)

    Paul Aigner

    2016-01-01

    Full Text Available In industrial-scale catalytic olefin copolymerization processes, catalyst and cocatalyst precontacting before being introduced in the polymerization reactor is of profound significance in terms of catalyst kinetics and morphology control. The precontacting process takes place under either well-mixing (e.g., static mixers or plug-flow (e.g., pipes conditions. The scope of this work is to study the influence of mixing on catalyst/cocatalyst precontacting for a heterogeneous Ziegler-Natta catalyst system under different polymerization conditions. Slurry ethylene homopolymerization and ethylene copolymerization experiments with 1-butene are performed in a 0.5 L reactor. In addition, the effect of several key parameters (e.g., precontacting time, and ethylene/hydrogen concentration on catalyst activity is analyzed. Moreover, a comprehensive mass transfer model is employed to provide insight on the mass transfer process and support the experimental findings. The model is capable of assessing the external and internal mass transfer limitations during catalyst/cocatalyst precontacting process. It is shown that catalyst/cocatalyst precontacting is very important for the catalyst activation as well as for the overall catalyst kinetic behavior. The study reveals that there is an optimum precontacting time before and after which the catalyst activity decreases, while this optimum time depends on the precontacting mixing conditions.

  4. Study on molecular modelling of the selectivity of catalysts for heavy petroleum fractions hydrocracking; Etude sur molecule modele des parametres regissant la selectivite des catalyseurs d'hydrocraquage des charges lourdes

    Energy Technology Data Exchange (ETDEWEB)

    Leite, L.

    2000-10-19

    Hydrocracking is a catalytic petroleum refining process that is commonly applied to upgrade the heavier fractions obtained from the distillation of crude oils. Nowadays the European demand for good quality middle distillates (kerosene and gas-oil) is high and one important goal for the refining is to transform selectively feedstocks into middle distillates. To understand how this transformation occurs, studies on model compounds have been investigated. Numerous studies have been devoted to paraffin hydrocracking. However theses molecules do not fully represent heavy petroleum fraction. Taking into account that the trend in the future will be to treat heavier feedstocks containing a large quantity of PNA (Polynuclear Aromatic hydrocarbons), the understanding of their transformation under hydrocracking conditions is a key point. In this study, we studied hydrocracking of phenanthrene over platinum on acid solids catalysts. Our main aim was to compare hydrocracking catalysts in term of catalytic activity and selectivity toward primary products thanks to our model reaction and to correlate these catalytic performances with acid solid properties and especially to rationalize the effects due to the acidity and the porosity of the acid solids. Catalytic experiments emphasised an effect of the porous structure on the selectivities. The acidity of the catalysts seemed to impose the catalytic activity but did not permit to explain the selectivities. This 'effect of the structure' has been clarified with the simulation of intermediate products adsorption and diffusion in the studied structures thanks to a molecular modelling study. Indeed, the selectivities obtained during phenanthrene hydrocracking have been linked up with the intermediate products adsorption energies in the structures. The results of this study permit to propose that the key-step for selectivities determination is the physical desorption of the primary products. (author)

  5. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  6. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    International Nuclear Information System (INIS)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku

    2016-01-01

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness and shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.

  7. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  8. Study of spent hydrorefining catalysts

    International Nuclear Information System (INIS)

    Gellerman, M.M.; Aliev, R.R.; Sidel'kovskaya, V.G.

    1993-01-01

    Aluminonickelmolybdenum catalysts for diesel fuel hydrorefining have been studied by DTA, XSPS, and diffuse reflection spectroscopy. Chemical and phase states of molybdenum compounds in samples of fresh catalyst, regenerated one after one year operation, and clogged with coke catalyst after five year operation, are determined. Chemical reactions and crystal-phase transformations of the molybdenum compounds during catalyst deactivation and regeneration are discussed

  9. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    on titania (V2O5-WO3/TiO2) as the example catalyst. The main photocatalysts examined for mineralization of organic compounds were TiO2 and MoS2. It is important to obtain insight into the catalyst structure-to-activity relationship in order to understand and locate the active site(s). In this chapter......The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  10. Classification of jet fuels by fuzzy rule-building expert systems applied to three-way data by fast gas chromatography--fast scanning quadrupole ion trap mass spectrometry.

    Science.gov (United States)

    Sun, Xiaobo; Zimmermann, Carolyn M; Jackson, Glen P; Bunker, Christopher E; Harrington, Peter B

    2011-01-30

    A fast method that can be used to classify unknown jet fuel types or detect possible property changes in jet fuel physical properties is of paramount interest to national defense and the airline industries. While fast gas chromatography (GC) has been used with conventional mass spectrometry (MS) to study jet fuels, fast GC was combined with fast scanning MS and used to classify jet fuels into lot numbers or origin for the first time by using fuzzy rule-building expert system (FuRES) classifiers. In the process of building classifiers, the data were pretreated with and without wavelet transformation and evaluated with respect to performance. Principal component transformation was used to compress the two-way data images prior to classification. Jet fuel samples were successfully classified with 99.8 ± 0.5% accuracy for both with and without wavelet compression. Ten bootstrapped Latin partitions were used to validate the generalized prediction accuracy. Optimized partial least squares (o-PLS) regression results were used as positively biased references for comparing the FuRES prediction results. The prediction results for the jet fuel samples obtained with these two methods were compared statistically. The projected difference resolution (PDR) method was also used to evaluate the fast GC and fast MS data. Two batches of aliquots of ten new samples were prepared and run independently 4 days apart to evaluate the robustness of the method. The only change in classification parameters was the use of polynomial retention time alignment to correct for drift that occurred during the 4-day span of the two collections. FuRES achieved perfect classifications for four models of uncompressed three-way data. This fast GC/fast MS method furnishes characteristics of high speed, accuracy, and robustness. This mode of measurement may be useful as a monitoring tool to track changes in the chemical composition of fuels that may also lead to property changes. Copyright © 2010

  11. Model Ziegler-type hydrogenation catalyst precursors, [(1,5-COD)M(mu-O2C8H15)]2 (M = Ir and Rh): synthesis, characterization, and demonstration of catalytic activity en route to identifying the true industrial hydrogenation catalysts.

    Science.gov (United States)

    Alley, William M; Girard, Chase W; Ozkar, Saim; Finke, Richard G

    2009-02-02

    The compounds [(1,5-COD)M(mu-O2C8H15)]2 (COD = cyclooctadiene, M = Ir (1) or Rh (2), O2C8H15 = 2-ethylhexanoate) were synthesized by addition of Bu3NH(2-ethylhexanoate) or Na(2-ethylhexanoate) to acetone suspensions of [(1,5-COD)Ir(mu-Cl)]2 or [(1,5-COD)Rh(mu-Cl)]2, respectively. The synthesis of such well-defined second and third row model precursors is key to determining the true nature of commercial Ziegler-type hydrogenation catalysts (i.e., catalysts made from the combination of a non-zerovalent, group 8-10 transition metal precatalyst and a trialkylaluminum cocatalyst), an unsolved, approximately 40 year old problem. The characterizations of 1 and 2 were accomplished by elemental analysis, melting point, FAB-MS, FT-IR, UV-vis, NMR spectroscopy, and single crystal X-ray diffraction. The complexes, C32H54Ir2O4 and C32H54O4Rh2, are isostructural: monoclinic, P2(1)/n, Z = 4. The lattice constants for 1 are a = 15.7748(5) A, b = 9.8962(3) A, c = 20.8847(7) A, beta = 108.408(2) degrees. The lattice constants for 2 are a = 15.7608(4) A, b = 9.9032(3) A, c = 20.8259(5) A, beta = 108.527(1) degrees. Complexes 1 and 2 are dimeric, bridged by the 2-ethylhexanoates, and with one 1,5-COD ligand bound to each metal. The formally 16 electron metal atoms are in square ligand planes with dihedral angles between the planes of 56.5 degrees for 1 and 58.1 degrees for 2. The M-M distances of 3.2776(2) and 3.3390(4) A for 1 and 2, respectively, fall in the range of similar structures thought to have some M-M interaction despite the lack of a formal M-M bond. Demonstration that active Ziegler-type hydrogenation catalysts are made when 1 or 2 combine with AlEt3 is provided, results that open the door to the use of 1 and 2 as well-defined third and second row congeners, respectively, of Ziegler-type hydrogenation catalysts. These compounds have proven important in addressing the previously unsolved problem of the true nature of the catalyst in industrial Ziegler-type hydrogenation

  12. Methanol Synthesis from CO2 Hydrogenation over a Pd4/In2O3 Model Catalyst: A Combined DFT and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jingyun; Liu, Changjun; Mei, Donghai; Ge, Qingfeng

    2014-08-01

    Methanol synthesis from CO2 hydrogenation on Pd4/In2O3 has been investigated using density functional theory (DFT) and microkinetic modeling. In this study, three possible routes in the reaction network of CO2 + H2 → CH3OH + H2O have been examined. Our DFT results show that the HCOO route competes with the RWGS route whereas a high activation barrier kinetically blocks the HCOOH route. DFT results also suggest that H2COO* + H* ↔ H2CO* +OH* and cis-COOH* + H* ↔CO* + H2O* are the rate limiting steps in the HCOO route and the RWGS route, respectively. Microkinetic modeling results demonstrate that the HCOO route is the dominant reaction route for methanol synthesis from CO2 hydrogenation. We found that the activation of H adatom on the small Pd cluster and the presence of H2O on the In2O3 substrate play important roles in promoting the methanol synthesis. The hydroxyl adsorbed at the interface of Pd4/In2O3 induces the transformation of the supported Pd4 cluster from a butterfly structure into a tetrahedron structure. This important structure change not only indicates the dynamical nature of the supported nanoparticle catalyst structure during the reaction but also shifts the final hydrogenation step from H2COH to CH3O.

  13. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...

  14. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  15. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.

    Science.gov (United States)

    Liu, Wei; Yin, Ping; Liu, Xiguang; Qu, Rongjun

    2014-12-01

    Biodiesel production has become an intense research area because of rapidly depleting energy reserves and increasing petroleum prices together with environmental concerns. This paper focused on the optimization of the catalytic performance in the esterification reaction of oleic acid for biodiesel production over the bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate ATMP-FA. The reaction parameters including catalyst amount, ethanol to oleic acid molar ratio and reaction temperature have been optimized by response surface methodology (RSM) using the Box-Behnken model. It was found that the reaction temperature was the most significant factor, and the best conversion ratio of oleic acid could reach 93.17% under the reaction conditions with 9.53% of catalyst amount and 8.62:1 of ethanol to oleic acid molar ratio at 91.0 °C. The research results show that two catalytic species could work cooperatively to promote the esterification reaction, and the bifunctional ATMP-FA is a potential catalyst for biodiesel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Hydrogenation of toluene on Ni-Co-Mo supported zeolite catalysts ...

    African Journals Online (AJOL)

    -a, HY-b and Mordenite were prepared and characterized using many techniques for use as hydrotreating catalysts. In a preliminary investigation, toluene was employed as model compound to test the catalysts in hydrogenation, as a major ...

  17. Catalysts and method

    Science.gov (United States)

    Taylor, Charles E.; Noceti, Richard P.

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  18. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  19. Foucault's Three Ways of Decentering the State

    DEFF Research Database (Denmark)

    Villadsen, Kaspar

    It is well known that Michel Foucault challenged the centrality of the state, advancing a view of the state as ‘decentered’. He said: “The state has no heart, as we well know, but not just in the sense that it has no feelings, either good or bad, but it has no heart in the sense that it has...

  20. On Three Ways to Justify Religious Beliefs

    NARCIS (Netherlands)

    Brümmer, V.

    2001-01-01

    This paper compares the ways in which revealed theology, natural theology and philosophical theology justify religious belief. Revealed theology does so with an appeal to revelation and natural theology with an appeal to reason and perception. It is argued that both are inadequate. Philosophical

  1. Latent olefin metathesis catalysts

    OpenAIRE

    Monsaert, Stijn; Lozano Vila, Ana; Drozdzak, Renata; Van Der Voort, Pascal; Verpoort, Francis

    2009-01-01

    Olefin metathesis is a versatile synthetic tool for the redistribution of alkylidene fragments at carbon-carbon double bonds. This field, and more specifically the development of task-specific, latent catalysts, attracts emerging industrial and academic interest. This tutorial review aims to provide the reader with a concise overview of early breakthroughs and recent key developments in the endeavor to develop latent olefin metathesis catalysts, and to illustrate their use by prominent exampl...

  2. Plasmatron-catalyst system

    Science.gov (United States)

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  3. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    Science.gov (United States)

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  4. Size and Structure Effects Controlling the Stability of the Liquid Organic Hydrogen Carrier Dodecahydro-N-ethylcarbazole during Dehydrogenation over Pt Model Catalysts.

    Science.gov (United States)

    Amende, Max; Gleichweit, Christoph; Schernich, Stefan; Höfert, Oliver; Lorenz, Michael P A; Zhao, Wei; Koch, Marcus; Obesser, Katharina; Papp, Christian; Wasserscheid, Peter; Steinrück, Hans-Peter; Libuda, Jörg

    2014-04-17

    Hydrogen can be stored conveniently using so-called liquid organic hydrogen carriers (LOHCs), for example, N-ethylcarbazole (NEC), which can be reversibly hydrogenated to dodecahydro-N-ethylcarbazole (H12-NEC). In this study, we focus on the dealkylation of H12-NEC, an undesired side reaction, which competes with dehydrogenation. The structural sensivity of dealkylation was studied by high-resolution X-ray photoelectron spectroscopy (HR-XPS) on Al2O3-supported Pt model catalysts and Pt(111) single crystals. We show that the morphology of the Pt deposit strongly influences LOHC degradation via C-N bond breakage. On smaller, defect-rich Pt particles, the onset of dealkylation is shifted by 90 K to lower temperatures as compared to large, well-shaped particles and well-ordered Pt(111). We attribute these effects to a reduced activation barrier for C-N bond breakage at low-coordinated Pt sites, which are abundant on small Pt aggregates but are rare on large particles and single crystal surfaces.

  5. Magnetic and dendritic catalysts.

    Science.gov (United States)

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  6. Metal-free phenanthrenequinone cyclotrimer as an effective heterogeneous catalyst.

    Science.gov (United States)

    Zhang, Jian; Wang, Xuan; Su, Qi; Zhi, Linjie; Thomas, Arne; Feng, Xinliang; Su, Dang Sheng; Schlögl, Robert; Müllen, Klaus

    2009-08-19

    A phenanthrenequinone macrocyclic trimer was synthesized and used as a heterogeneous catalyst for oxidative dehydrogenation of ethylbenzene. This model molecule under comparable kinetic conditions is up to 47 times more active than extended solid catalysts including nanocarbons, metal phosphates, and oxides, confirming the hypothesis that diketone-like groups can serve as active sites.

  7. The asymmetric Schrock olefin metathesis catalysts. A computational study

    NARCIS (Netherlands)

    Goumans, T.P.M.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    The mechanism of the transition metal catalyzed olefin metathesis reaction with the Schrock catalyst is investigated with pure (BP86) and hybrid (B3LYP) density functional theory. On the free-energy surface there is no adduct between ethylene and model catalyst (MeO)

  8. Catalyst component interactions in nickel/alumina catalyst

    Directory of Open Access Journals (Sweden)

    Kiš Erne E.

    2007-01-01

    Full Text Available The influence of nickel loading (5; 10; 20 wt% Ni, temperature of heat treatment (400; 700; 1100°C and way of catalyst preparation on the catalyst component interactions (CCI in the impregnated, mechanical powder mixed and co-precipitated catalyst was investigated. For sample characterization, low temperature nitrogen adsorption (LTNA and X-ray diffraction (XRD were applied. Significant differences were revealed, concerning CCI in dependence of nickel loading, temperature of heat treatment and way of catalyst preparation. The obtained results show that the support metal oxide interactions (SMI in impregnated and co-precipitated catalysts are more intensive than in the mechanical powder mixed catalyst. The degree and intensity of CCI is expressed by the ratio of real and theoretical surface area of the catalyst. This ratio can be used for a quantitative estimation of CCI and it is generally applicable to all types of heterogeneous catalysts.

  9. Supported organoiridium catalysts for alkane dehydrogenation

    Science.gov (United States)

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  10. Catalyst, method of making, and reactions using the catalyst

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2002-08-27

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  11. Experimental comparison of biomass chars with other catalysts for tar reduction

    NARCIS (Netherlands)

    Abu El-Rub, Z.; Bramer, E.A.; Brem, G.

    2008-01-01

    In this paper the potential of using biomass char as a catalyst for tar reduction is discussed. Biomass char is compared with other known catalysts used for tar conversion. Model tar compounds, phenol and naphthalene, were used to test char and other catalysts. Tests were carried out in a fixed bed

  12. Modeling methanol transfer in the mesoporous catalyst for the methanol-to-olefins reaction by the time-fractional diffusion equation

    Science.gov (United States)

    Zhokh, Alexey A.; Strizhak, Peter E.

    2018-04-01

    The solutions of the time-fractional diffusion equation for the short and long times are obtained via an application of the asymptotic Green's functions. The derived solutions are applied to analysis of the methanol mass transfer through H-ZSM-5/alumina catalyst grain. It is demonstrated that the methanol transport in the catalysts pores may be described by the obtained solutions in a fairly good manner. The measured fractional exponent is equal to 1.20 ± 0.02 and reveals the super-diffusive regime of the methanol mass transfer. The presence of the anomalous transport may be caused by geometrical restrictions and the adsorption process on the internal surface of the catalyst grain's pores.

  13. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  14. Olefin metathesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S.G.; Banks, R.L.

    1986-05-20

    A process is described for preparing a disproportionation catalyst comprising admixing a catalytically effective amount of a calcined and activated catalyst consisting essentially of at least one metal oxide selected from molybdenum oxide and tungsten oxide and a support containing a major proportion of silica or alumina with a promoting amount of a methylating agent selected from the group consisting of dimethyl sulfate, dimethylsulfoxide, trimethyloxonium tetrafluorborate, methyl iodide, and methyl bromide, and subjecting same to inert atmospheric conditions for the methylating agent to promote the activity of the calcined molybdenum and tungsten oxides for the disproportionation of olefins.

  15. Knowledge Based Catalyst Design by High Throughput Screening of Model Reactions and Statistical Modelling Conception de catalyseur par criblage à haut débit de réactions modèles et modélisation statistique

    Directory of Open Access Journals (Sweden)

    Morra G.

    2013-08-01

    Full Text Available Material design and synthesis are key steps in the development of catalysts. They are usually based on an empiric and/or theoretical approach. The recently developed high-throughput experimentation can accelerate optimisation of new catalytic formulations by systematic screening in a predefined study domain. This work aims at developing a QSAR (Quantitative Structure Activity Relationship method based on kinetic and mechanistic descriptors for metal and acid catalysis. Physico-chemicalfeatures of approximately sixty bimetallic catalysts have been measured according to their performance in two model reactions: xylene hydrogenation for catalysis on metallic sites and isomerisation of 3,3-dimethyl-l-butene for catalysis on acid sites. These descriptors were finally used to model the performances of around twenty catalysts for a more complex reaction: n-decane dehydrogenation. La définition et la préparation de matériaux sont des étapes clés dans le développement de catalyseurs. Celles-ci peuvent être effectuées de façon empirique et/ou à partir de bases théoriques. Par ailleurs, l’expérimentation à haut débit, technologie récente, permet d’accélérer l’optimisation de formulations catalytiques par exemple par criblage systématique d’un espace d’étude prédéfini. Cet article a pour objet de développer une méthode QSAR (Quantitative Structure Activity Relationship basée sur la recherche de descripteurs cinétiques et mécanistiques, dans le domaine de la catalyse acide et métallique supportée. Des caractéristiques physico-chimiques (descripteurs d’une soixantaine de catalyseurs bimétalliques ont été mesurées suivant leur performance dans deux réactions modèles : l’hydrogénation de ro-xylène pour rendre compte de la catalyse par le métal et l’isomérisation du diméthyl-3,3butène-1 pour la catalyse par les sites acides. Ces descripteurs ont été ensuite mis à profit pour modéliser les performances

  16. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  17. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  18. Catalyst design for clean and efficient fuels

    DEFF Research Database (Denmark)

    Šaric, Manuel

    of synthesizing dimethyl carbonate electrochemically. Hydrodesulfurization is an industrial refining process in which sulfur is removed from oil in order to reduce SO2 emissions. The study on hydrodesulfurization involves determining the active sites and their atomic scale structure for the industrially used...... cobalt promoted MoS2 catalyst. Reactivity of a series of model molecules, found in oil prior to desulfurization, is studied on cobalt promoted MoS2. Such an approach has the potential to explain the underlying processes involved in the removal of sulfur at each specific site of the catalyst. The goal...... processes currently used. It is found that noble metals can be used as electrocatalysts for the synthesis of dimethyl carbonate, significantly lowering the potential when using copper instead of gold. Besides being active, copper was found to be selective towards dimethyl carbonate. A non-selective catalyst...

  19. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne

    2014-01-01

    The lifetimes of heterogeneous catalysts in many widely used industrial processes are determined by the loss of active surface area. In this context, the underlying physical sintering mechanism and quantitative information about the rate of sintering at industrial conditions are relevant....... In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...... compared to other potential nickel transport species. The relation between experimental catalyst sintering data and the effective mass diffusion constant for Ni-OH is established by numerical modelling of the particle migration and coalescence process. Using this relation, the effective mass diffusion...

  20. Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts: An in Situ XAS and DFT Study

    Energy Technology Data Exchange (ETDEWEB)

    Friebel, Daniel; Viswanathan, Venkatasubramanian; Miller, Daniel James; Anniyev, Toyli; Ogasawara, Hirohito; Larsen, Ask Hjorth; O' Grady, Christopher P.; Norskov, Jens K.; Nilsson, Anders

    2012-05-31

    We have studied the effect of nanostructuring in Pt monolayer model electrocatalysts on a Rh(111) single-crystal substrate on the adsorption strength of chemisorbed species. In situ high energy resolution fluorescence detection X-ray absorption spectroscopy at the Pt L(3) edge reveals characteristic changes of the shape and intensity of the 'white-line' due to chemisorption of atomic hydrogen (H(ad)) at low potentials and oxygen-containing species (O/OH(ad)) at high potentials. On a uniform, two-dimensional Pt monolayer grown by Pt evaporation in ultrahigh vacuum, we observe a significant destabilization of both H(ad) and O/OH(ad) due to strain and ligand effects induced by the underlying Rh(111) substrate. When Pt is deposited via a wet-chemical route, by contrast, three-dimensional Pt islands are formed. In this case, strain and Rh ligand effects are balanced with higher local thickness of the Pt islands as well as higher defect density, shifting H and OH adsorption energies back toward pure Pt. Using density functional theory, we calculate O adsorption energies and corresponding local ORR activities for fcc 3-fold hollow sites with various local geometries that are present in the three-dimensional Pt islands.

  1. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-05-14

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory oxide support containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one methylating agent under conditions suitable for the methylating agent compounds to promote the activity of tungsten and molybdenum oxides for the disproportionation reaction.

  2. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  3. Sabatier Catalyst Poisoning Investigation

    Science.gov (United States)

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  4. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  5. Noble metal ionic catalysts.

    Science.gov (United States)

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  6. One-pot synthesis of (R)-1-(pyridin-4-yl)ethyl acetate using tandem catalyst prepared by co-immobilization of palladium and lipase on mesoporous foam: Optimization and kinetic modeling.

    Science.gov (United States)

    Magadum, Deepali B; Yadav, Ganapati D

    2017-12-01

    The synthesis of (R)-1-(pyridin-4-yl)ethyl acetate was achieved over tandem palladium-lipase catalyst with 100% selectivity using 4-acetyl pyridine as a reactant. The 2% w/w palladium and lipase catalyst was successfully co-immobilized in the microenvironment of the mesocellular foam and characterized by various techniques. The palladium metal from catalyst hydrogenated 4-acetyl pyridine to form 1-(pyridin-4-yl)ethanol. The generated intermediate product then underwent kinetic resolution over lipase and selectively gave (R)-1-(pyridin-4- yl)ethyl acetate. The catalytic conditions were then studied for optimal performance of both steps. The reaction conditions were optimized to 50 °C and toluene as a solvent. Both chemical and enzymatic kinetic models of the reaction were developed for a given set of reaction conditions and kinetic parameters were predicted. At optimal conditions, the obtained selectivity of intermediate (1-(pyridin-4-yl)ethanol) was 51.38%. The final product yield of ((R)-1-(pyridin-4-yl)ethyl acetate) was 48.62%. © 2017 Wiley Periodicals, Inc.

  7. SELECTIVE CATALYTIC REDUCTION (SCR) OF NO BY AMMONIA OVER V2O5/TiO2 CATALYST IN A CATALYTIC FILTER MEDIUM AND HONEYCOMB REACTOR: A KINETIC MODELING STUDY

    OpenAIRE

    M. Nahavandi

    2015-01-01

    Abstract The present study addresses a numerical modeling and simulation based on the available knowledge of SCR kinetics for prediction of NO conversion over a V2O3/TiO3 catalyst through a catalytic filter medium and honeycomb reactor. After introducing the NH3-SCR system with specific operational criteria, a reactor model was developed to evaluate the effect of various operating parameters such as flue gas temperature, velocity, NH3/NO molar ratio, etc., on the SCR process. Computational in...

  8. Heterogeneously catalyzed coal hydroliquefaction: screening of catalysts and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Legarreta, J.; Arias, P.L.; Marco, I. de; Chomon, M.J.; Caballero, B.; Cambra, J.F.; Guemez, B.; Fierro, J.L.G. (Universidad del Pais Vasco, Bilbao (Spain). Escuel de Ingenieros de Bilbao)

    1994-03-01

    This project is centred upon the study of the activities of different catalysts in one-step coal liquefaction processes. A series of alumina supported catalysts was prepared by multistep impregnation, including a conventional CoMo/Al[sub 2]O[sub 3] and other preparations containing Zn as a second promoter, and the alumina was acidified with different fluorine contents. These catalysts were extensive physicochemically characterized and their hydrodesulphurization (HDS) and hydrogenation (HYD) activities were tested using a model compound (thiophene). The results obtained indicate that partial substitution of Co by Zn does not affect the HDS and HYD activities and that fluorination diminishes these activities because of textural changes of the carrier. The prepared catalysts were tested in coal liquefaction and their activities were compared to those of cheap iron containing dispersion catalysts such as red mud, Fe[sub 2]O[sub 3] aerosol, and Cottrell and pyrite ashes (by-products of the sulphur acid industry). Prior to the study and comparison of the catalyst activities and exploration of the influence of various operating conditions (temperature, tetralin/coal ratio, type of solvent and operating pressure) on catalytic and non-catalytic coal liquefaction was performed. The coal used in most of the experiments was a Spanish subbituminous A coal. Additionally, a comparison of all the catalysts was carried out with a standard high volatile bituminous coal. Supported catalysts present higher activities than iron-based catalysts. Among these catalysts, red mud proved to be the most active. Catalytic experiments using anthracene oil as solvent and CoZnMo/fluorinated alumina catalysts present maximum yields indicating that Zn as second promoter and carrier acidification to be beneficial in coal liquefaction with solvents similar to those used in real plants. 41 refs., 9 figs., 13 tabs.

  9. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  10. Formic acid decomposition on Pt1/Cu (111) single platinum atom catalyst: Insights from DFT calculations and energetic span model analysis

    Science.gov (United States)

    Wang, Ying-Fan; Li, Kun; Wang, Gui-Chang

    2018-04-01

    Inspired by the recent surface experimental results that the monatomic Pt catalysts has more excellent hydrogen production that Cu(111) surface, the mechanism of decomposition of formic acid on Cu(111) and single atom Pt1/Cu(111) surface was studied by periodic density functional theory calculations in the present work. The results show that the formic acid tends to undergo dehydrogenation on both surfaces to obtain the hydrogen product of the target product, and the selectivity and catalytic activity of Pt1/Cu (111) surface for formic acid dehydrogenation are better. The reason is that the single atom Pt1/Cu(111) catalyst reduces the reaction energy barrier (i.e., HCOO → CO2 + H) of the critical step of the dehydrogenation reaction due to the fact that the single atom Pt1/Cu(111) catalyst binds formate weakly compared to that of Cu (111) one. Moreover, it was found that the Pt1/Cu (111) binds CO more strongly than that of Cu (111) one and thus leading to the difficult for the formation of CO. These two factors would make the single Pt atom catalyst had the high selectivity for the H2 production. It is hoped that the present work may help people to design the efficient H2 production from HCOOH decomposition by reduce the surface binding strength of HCOO species, for example, using the low coordination number active site like single atom or other related catalytic system.

  11. Comparison of Nitrogen Tolerance of PdMo/Al2O3 and CoMo/Al2O3 Catalysts in Hydrodesulfurization of Model Compounds

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk; Kaluža, Luděk; Gulková, Daniela

    2014-01-01

    Roč. 120, MAR (2014), s. 86-90 ISSN 0016-2361 R&D Projects: GA ČR GA104/09/0751; GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : hydrodesulfurization * nitrogen inhibition * PdMo catalyst Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.520, year: 2014

  12. Experimental and kinetic modeling studies on the biphasic hydrogenation of levulinic acid to gamma-valerolactone using a homogeneous water-soluble Ru-(TPPTS) catalyst

    NARCIS (Netherlands)

    Chalid, M.; Broekhuis, A. A.; Heeres, H. J.

    2011-01-01

    gamma-Valerolactone (GVL) is considered a very attractive biomass derived platform chemical. This paper describes the application of biphasic homogeneous catalysis for the hydrogenation of levulinic acid (LA) to GVL using molecular hydrogen. A water soluble Ru-catalyst made in situ from RuCl3 center

  13. Understanding the Performance of Automotive Catalysts via Spatial Resolution of Reactions inside Honeycomb Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Partridge Jr, William P. [ORNL; Choi, Jae-Soon [ORNL

    2017-11-01

    By directly resolving spatial and temporal species distributions within operating honeycomb monolith catalysts, spatially resolved capillary inlet mass spectrometry (SpaciMS) provides a uniquely enabling perspective for advancing automotive catalysis. Specifically, the ability to follow the spatiotemporal evolution of reactions throughout the catalyst is a significant advantage over inlet-and-effluent-limited analysis. Intracatalyst resolution elucidates numerous catalyst details including the network and sequence of reactions, clarifying reaction pathways; the relative rates of different reactions and impacts of operating conditions and catalyst state; and reaction dynamics and intermediate species that exist only within the catalyst. These details provide a better understanding of how the catalyst functions and have basic and practical benefits; e.g., catalyst system design; strategies for on-road catalyst state assessment, control, and on-board diagnostics; and creating robust and accurate predictive catalyst models. Moreover, such spatiotemporally distributed data provide for critical model assessment, and identification of improvement opportunities that might not be apparent from effluent assessment; i.e., while an incorrectly formulated model may provide correct effluent predictions, one that can accurately predict the spatiotemporal evolution of reactions along the catalyst channels will be more robust, accurate, and reliable. In such ways, intracatalyst diagnostics comprehensively enable improved design and development tools, and faster and lower-cost development of more efficient and durable automotive catalyst systems. Beyond these direct contributions, SpaciMS has spawned and been applied to enable other analytical techniques for resolving transient distributed intracatalyst performance. This chapter focuses on SpaciMS applications and associated catalyst insights and improvements, with specific sections related to lean NOx traps, selective catalytic

  14. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    Transmission electron microscopy (TEM) is extensively used in catalysis research. Recent developments in aberration correction allows imaging surface structures with unprecedented resolution. Using these correctors in conjunction with environmental TEM (ETEM), where imaging of materials can be done...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...... and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...

  15. Mesoporous molecular sieve catalysts

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane

    This thesis deals with a very specific class of molecular sieves known as zeolites. Zeolites are a class of crystalline aluminosilicates characterised by pores or cavities of molecular dimensions as part of their crystal structure. In this work zeolites were modified for the use and understanding...... of different catalytic applications. Primarily the zeolites were modified regarding the porosity and the introduction of metals to the framework. The obtained materials were used as solid acid catalysts, as an inert matrix for stabilising metal nanoparticles and as an anchoring material for molecular metal....... Furthermore, preliminary work was done using mesoporous ZSM-5 zeolites as support material for anchoring molecular CoMo6 species for the application as potential bi-functional catalyst in simultaneous hydrodesulfurisation (HDS) and hydrocracking. HDS activity tests revealed that the anchoring improved...

  16. Photo catalyst; Ko shokubai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    While titanium oxide is excited by the light, electrons of titanium oxide are taken away by the light energy to form positive holes. Water will be decomposed into hydrogen ion and hydroxy radical (OH) by these positive holes. This hydroxy radical is a strong reactive substance called active oxygen, it decomposes organisms. Besides this photo- catalyst function, the titanium oxide can also make surface of a substance superhydrophilic. The super hydrophilicity results in not forming water drops on the glass surface but spreading all over the surface to prevent a covering of fog on the glass surface. The published patents concerning the photo catalysts were 593 from Jan. 1998 to Jan. 1999. The applicant order is the first TOTO 143, the second Daikin Industry 19, the third Toshiba Raitech, Nitto Denko, Hitachi 17 respectively. (NEDO)

  17. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  18. Kinetic modeling of hydrogenation and hydro-denitrogenation mechanisms on sulfurated catalysts; Etude par modelisation cinetique des mecanismes d'hydrogenation et d'hydrodesazotation sur catalyseurs sulfures

    Energy Technology Data Exchange (ETDEWEB)

    Penet, H.

    1998-10-23

    Toluene hydrogenation on a NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst was studied at 350 deg. C as a function of the partial pressures of H{sub 2}, H{sub 2}S and NH{sub 3}. This experimental study shows the following facts: the effect of the H{sub 2}S partial pressure on the hydrogenation rate is complex. The order with respect to H{sub 2}S varies between -0.05 and -0.5 as the pressure varies between 0.125 and 3 bar; in the presence of NH{sub 3}, the H{sub 2}S inhibiting effect is enhanced. Kinetic modeling was performed with the Chemkin II/Surface Chemkin II software package. On the basis of the effect of contact time and H{sub 2}S on toluene hydrogenation, the adsorption by heterolytic dissociation of H{sub 2} and H{sub 2}S was selected. H{sub 2} provides hydride species (H{sup -}) attacking the aromatic ring in a first step. Proton addition during the hydrogenation of the first double bond is the limiting step. In the presence of ammonia. the kinetic modeling shows that the catalyst surface is modified and that the displacement of the H{sub 2}S adsorption equilibrium is expected. The NH{sub 3} adsorption mode could not be clearly discriminated between a simple adsorption through coordination and an adsorption through protonation. This model was applied to the hydro-denitrogenation of 2,6-diethyl-aniline at 350 deg. C on NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst and showed that the limitation step is the hydrogenation of the aromatic ring. (author)

  19. Deactivation of Oxidation Catalysts

    Science.gov (United States)

    1991-05-01

    been observed to decrease CO oxidation even at 500TC ( Farrauto and Wedding, 1973, p. 254) by a sulfate formation mechanism, it is likely that the...sulfated CoO, in the study of Farrauto and Wedding (1973) and that no deactivation was observed in the previously discussed study by Pope et al...This is attributed to the adsorption of HO on the catalyst surface which competes with the adsorption of ethanol. Farrauto and Wedding (1973) studied

  20. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-03-12

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory material containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one treating agent selected from chlorinated silicon compounds, thionyl chloride, and sulfuryl chloride under conditions suitable for the treating agent to promote the activity of tungsten and molybdenum oxides for the disporoportionation reaction.

  1. Catalyst in Basic Oleochemicals

    OpenAIRE

    Eva Suyenty; Herlina Sentosa; Mariani Agustine; Sandy Anwar; Abun Lie; Erwin Sutanto

    2007-01-01

    Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemic...

  2. Theoretical study to investigate the impact of plasma parameters on the catalyst nanoparticle growth

    International Nuclear Information System (INIS)

    Gupta, R; Sharma, S C; Gupta, N

    2017-01-01

    The plasma kinetics based model is adopted to elucidate the effect of plasma parameters on the nucleation and growth mechanism of catalyst nanoparticle. The present model considers the plasma processing of thin catalyst film, power equalization at the film surface, flux and kinetics of plasma species (electrons, ions, and neutrals). In our investigation, it is found that catalyst nanoparticle diameter decreases with increase in ion number density in plasma. Moreover, it is also found that catalyst film thickness significantly affect the catalyst nanoparticle size i.e., catalyst nanoparticle diameter increases with catalyst film thickness. In addition, it is observed that the substrate temperature increases during the plasma processing and finally achieve saturation. Our theoretical results are in good agreement with the experimental results. (paper)

  3. Catalyst component interactions in nickel/alumina catalyst

    OpenAIRE

    Kiš Erne E.; Lazić Matilda M.; Bošković Goran C.

    2007-01-01

    The influence of nickel loading (5; 10; 20 wt% Ni), temperature of heat treatment (400; 700; 1100°C) and way of catalyst preparation on the catalyst component interactions (CCI) in the impregnated, mechanical powder mixed and co-precipitated catalyst was investigated. For sample characterization, low temperature nitrogen adsorption (LTNA) and X-ray diffraction (XRD) were applied. Significant differences were revealed, concerning CCI in dependence of nickel loading, temperature of heat treatme...

  4. Characterization and Regeneration of Pt-Catalysts Deactivated in Municipal Waste Flue Gas

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Kustov, Arkadii; Due-Hansen, Johannes

    2006-01-01

    Severe deactivation was observed for industrially aged catalysts used in waste incineration plants and tested in lab-scale. Possible compounds that cause deactivation of these Pt-based CO oxidation catalysts have been studied. Kinetic observations of industrial and model catalysts showed...... that siloxanes were the most severe catalyst poisons, although acidic sulfur compounds also caused deactivation. Furthermore, a method for on-site regeneration without shutdown of the catalytic flue gas cleaning system has been developed, i.e. an addition of H-2/N-2 gas to the off-gas can completely restore...... the activity of the deactivated catalysts. (c) 2006 Elsevier B.V. All rights reserved....

  5. Characterization and regeneration of Pt-catalysts deactivated in municipal waste flue gas

    International Nuclear Information System (INIS)

    Rasmussen, Soeren Birk; Kustov, Arkady; Due-Hansen, Johannes; Fehrmann, Rasmus; Siret, Bernard; Tabaries, Frank

    2006-01-01

    Severe deactivation was observed for industrially aged catalysts used in waste incineration plants and tested in lab-scale. Possible compounds that cause deactivation of these Pt-based CO oxidation catalysts have been studied. Kinetic observations of industrial and model catalysts showed that siloxanes were the most severe catalyst poisons, although acidic sulfur compounds also caused deactivation. Furthermore, a method for on-site regeneration without shutdown of the catalytic flue gas cleaning system has been developed, i.e. an addition of H 2 /N 2 gas to the off-gas can completely restore the activity of the deactivated catalysts. (author)

  6. Hydrogen peroxide oxidation of mustard-model sulfides catalyzed by iron and manganese tetraarylporphyrines. Oxygen transfer to sulfides versus H(2)O(2) dismutation and catalyst breakdown.

    Science.gov (United States)

    Marques, A; Marin, M; Ruasse, M F

    2001-11-16

    Fe(III)- and Mn(III)-meso-tetraarylporphyrin catalysis of H(2)O(2) oxidation of dibenzyl and phenyl-2-chloroethyl sulfides, 1, is investigated in ethanol with the aim of designing catalytic systems for mustard decontamination. The sulfide conversion, the sulfoxide and sulfone yields, the oxygen transfer from H(2)O(2) to the sulfide, and the catalyst stability depend markedly on the metal, on the substituents of its ligand, and on the presence or the absence of a cocatalyst, imidazole or ammonium acetate. With Fe, sulfones, the only oxidation products, are readily obtained whatever the ligand (TPP, F(20)TPP, or TDCPP) and the cocatalyst; the oxygen transfer is fairly good, up to 95% when the catalyst concentration is small ([1]/[Cat] = 420); the catalyst breakdown is insignificant only in the absence of any cocatalyst. With Mn, the sulfide conversion is achieved completely when the ligand is TDCPP or TSO(3)PP, but not F(20)TPP or TPP; a mixture of sulfoxide, 2, and sulfone, 3, is always obtained with [2]/[3] = 3.5-0.85 depending on the ligand and the cocatalyst (electron withdrawing substituents favor 3 and NH(4)OAc, 2). The catalyst stability is very good, but the oxygen transfer is poor whatever the ligand and the cocatalyst. These results are discussed in terms of a scheme in which sulfide oxygenation, H(2)O(2) dismutation, and oxidative ligand breaking compete. It is shown that the efficiency of the oxygen transfer is related not only to the rate constant of the dismutation route but also to the concentration of the active metal-oxo intermediate, most likely a perferryl or permanganyl species, i.e., to the rate of its formation.

  7. Dispersion enhanced metal/zeolite catalysts

    Science.gov (United States)

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  8. Non-PGM cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Consulting, Aiken, SC (United States); Ganesan, P. [Savannah River Consulting, Aiken, SC (United States)

    2017-09-27

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

  9. Hyperfine interactions in metallic catalysts

    International Nuclear Information System (INIS)

    Saitovitch, Henrique; Silva, Paulo R.J.; Passos, Fabio B.

    2005-01-01

    Heterogeneous catalysts are of fundamental importance in several modern chemical processes. The characterization of catalysts is an issue of very present interest as it can provide a better understanding of the fundamental aspects of the catalytic phenomena, thus helping in the development of more efficient catalysts. In order to extend and improve the characterization of catalysts, new and less conventional methods are being applied, such as nuclear spectroscopies. In this paper we focus on the application of angular correlation, with can be used to resolve different local environments of probe atoms in solids and can be applied, as shown here, in the characterization of heterogeneous catalysts. A brief theoretical introduction is given and experimental results related to catalytic systems of alumina and niobia-supported Pt-In and Pd-In catalysts are presented. (author)

  10. Experimental, kinetic and numerical modeling of hydrogen production by catalytic reforming of crude ethanol over a commercial catalyst in packed bed tubular reactor and packed bed membrane reactor

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Akande, Abayomi; Idem, Raphael

    2006-01-01

    The demand for hydrogen energy has increased tremendously in recent years essentially because of the increase in the word energy consumption as well as recent developments in fuel cell technologies. The energy information administration has projected that world energy consumption will increase by 59% over the next two decades, from 1999 to 2020, in which the largest share is still dominated by fossil fuels (oil, natural gas and coal). Carbon dioxide (CO 2 ) emissions resulting from the combustion of these fossil fuels currently are estimated to account for three-fourth of human-caused CO 2 emissions worldwide. Greenhouse gas emission, including CO 2 , should be limited, as recommended at the Kyoto Conference, Japan, in December 1997. In this regard, hydrogen (H 2 ) has a significant future potential as an alternative fuel that can solve the problems of CO 2 emissions as well as the emissions of other air contaminants. One of the techniques to produce hydrogen is by reforming of hydrocarbons or biomass. Crude ethanol (a form of biomass, which essentially is fermentation broth) is easy to produce, is free of sulphur, has low toxicity, and is also safe to handle, transport and store. In addition, crude ethanol consists of oxygenated hydrocarbons, such as ethanol, lactic acid, glycerol, and maltose. These oxygenated hydrocarbons can be reformed completely to H 2 and CO 2 , the latter of which could be separated from H 2 by membrane technology. This provides for CO 2 capture for eventual storage or destruction. In the case of using crude ethanol, this will result in negative CO 2 , emissions. In this paper, we conducted experimental work on production of hydrogen by the catalytic reforming of crude ethanol over a commercial promoted Ni-based catalyst in a packed bed tubular reactor as well as a packed bed membrane reactor. As well, a rigorous numerical model was developed to simulate this process in both the catalytic packed bed tubular reactor and packed bed membrane

  11. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  12. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  13. Catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  14. Estudo Comparativo de Polimerização de Propileno com Diferentes Catalisadores Metalocênicos Através de um Planejamento de Experimentos Comparative Study of Propylene Polymerization with Different Metallocene Catalysts Using a Statistic Experimental Planning Model

    Directory of Open Access Journals (Sweden)

    Maria de Fátima V. Marques

    2002-01-01

    Full Text Available Neste trabalho, o desempenho dos catalisadores SiMe2(Ind2ZrCl2, Et(Ind2ZrCl2, SiMe2(Ind2HfCl2 e Et(Ind2HfCl2 na polimerização de propileno usando MAO como cocatalisador empregando-se um Planejamento estatístico de experimentos foi avaliado. As polimerizações foram realizadas em diferentes temperaturas e razões molares alumínio/metal de transição. O efeito destas variáveis na atividade de cada catalisador e nas características do polipropileno obtido foi melhor investigado utilizando-se os modelos propostos para cada variável. Foram observadas influências significativas das condições experimentais principalmente na atividade catalítica, bem como no peso molecular ponderal médio, temperatura de fusão e percentagem de isotaticidade dos polímeros obtidos. A partir dos modelos propostos através do tratamento estatístico realizado pode-se observar que os catalisadores a base de zircônio são os de maior atividade catalítica, enquanto que os hafnocenos produzem polipropileno com peso molecular mais elevado. Os complexos com ponte dimetil-silânica produziram polipropileno com maior peso molecular, estereorregularidade e maior temperatura de fusão do que os similares com ponte etilidênica.In this work, the performance of the catalysts SiMe2(Ind2ZrCl2, Et(Ind2ZrCl2, SiMe2(Ind2HfCl2 e Et(Ind2HfCl2 on propylene polymerization using MAO as cocatalyst and employing a Statistic Experimental Planning Model was evaluated. The polymerizations were carried out at different temperatures and aluminum/transition metal molar ratios. The effect of these variables on the catalyst activity and on the polymer characteristics was investigated using the proposed models for each variable. A significant influence was observed of the experimental conditions on the catalyst activity in particular, but also on the weight-average molecular weight, melting point and isotacticity of the polypropylenes produced; the statistical analysis with the proposed

  15. EFFECT OF VANADIUM ON THE DEACTIVATION OF FCC CATALYSTS

    Directory of Open Access Journals (Sweden)

    Roncolatto R.E

    1998-01-01

    Full Text Available This work provides concrete evidence that vanadium causes the destruction of the zeolite in the FCC catalysts by a mechanism of acid attack or solid-solid transformation, as well as additional dealumination of the zeolite framework in the presence of steam and at high temperature. While these effects resulted in the reduction in crystallinity (zeolite Y content, specific area and unit cell size of the Y zeolite as the amount of vanadium in the catalysts increased, the reduction in activity was the most pronounced. The differences in these behaviors were interpreted and the model can be used for better catalyst formulation or screening.

  16. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  17. Mixed Alcohol Synthesis Catalyst Screening

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  18. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Harold, Michael [Univ. of Houston, TX (United States); Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States); Balakotaiah, Vemuri [Univ. of Houston, TX (United States); Luss, Dan [Univ. of Houston, TX (United States); Choi, Jae-Soon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dearth, Mark [Ford Motor Company, Dearborn, MI (United States); McCabe, Bob [Ford Motor Company, Dearborn, MI (United States); Theis, Joe [Ford Motor Company, Dearborn, MI (United States)

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO2) commonly referred to as NOx, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NOx} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NOx in the presence of excess O2. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NOx. Two catalytic technologies that have emerged as effective for NOx abatement are NOx storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NOx. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and

  19. Computationally Probing the Performance of Hybrid, Heterogeneous, and Homogeneous Iridium-Based Catalysts for Water Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    García-Melchor, Max [SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford CA (United States); Vilella, Laia [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST),Tarragona (Spain); Departament de Quimica, Universitat Autonoma de Barcelona, Barcelona (Spain); López, Núria [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona (Spain); Vojvodic, Aleksandra [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park CA (United States)

    2016-04-29

    An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity. Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.

  20. REACTOR FILLED WITH CATALYST MATERIAL, AND CATALYST THEREFOR

    NARCIS (Netherlands)

    Sie, S.T.

    1995-01-01

    Abstract of WO 9521691 (A1) Described is a reactor (1) at least partially filled with catalyst granules (11), which is intended for catalytically reacting at least one gas and at least one liquid with each other. According to the invention the catalyst granules (11) are collected in agglomerates

  1. Plasma and catalyst for the oxidation of NOx

    DEFF Research Database (Denmark)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik

    2018-01-01

    . In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either...... by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst....... to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal...

  2. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Haibin Jiang

    2016-06-01

    Full Text Available Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  3. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  4. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  5. Deactivation of SCR catalysts in biomass fired power plants

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard

    and test new alkali resistant catalyst formulations, coatings and/or improved means of operation which can extend the life-time of SCR catalysts in biomass fired power plants. Plate-type V2O5-(WO3)/TiO2 SCR catalysts have been exposed to KCl and K2SO4 aerosols in a bench-scale reactor at 150, 300 or 350 °C......-scale setup at 350 °C for up to 1100 hours, and their activities were followed by in situ measurements. A 3%V2O5-7%WO3/TiO2 reference catalyst deactivated with a rate of 0.91 %/day during 960 hours of exposure, and a subsequent SEM-EDS analysis showed complete potassium penetration of the catalyst wall....... A catalyst coated with a 1:1 mixture of MgO and TiO2 showed insufficient start activity (30 % of that of the reference) when tested in the bench-scale setup, likely due to a low porosity of the coat.vA deactivation model describing the potassium poisoning of an SCR monolith catalyst has been derived...

  6. Novel Reforming Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, Lisa D; Haller, Gary L

    2012-10-16

    Aqueous phase reforming is useful for processing oxygenated hydrocarbons to hydrogen and other more useful products. Current processing is hampered by the fact that oxide based catalysts are not stable under high temperature hydrothermal conditions. Silica in the form of structured MCM-41 is thermally a more stable support for Co and Ni than conventional high surface area amorphous silica but hydrothermal stability is not demonstrated. Carbon nanotube supports, in contrast, are highly stable under hydrothermal reaction conditions. In this project we show that carbon nanotubes are stable high activity/selectivity supports for the conversion of ethylene glycol to hydrogen.

  7. A Catalyst for Change

    DEFF Research Database (Denmark)

    Lønsmann, Dorte

    2017-01-01

    into in a process that hinges on new members functioning as tools for management to bring about the desired change. The article shows that while the newcomer is used as a catalyst for increased use of English and for the creation of a 'global mindset,' she is at the same time socialized into the existing Danish...... for changing language practices toward more English, with the ultimate aim of creating a 'global mindset' in the organization. Language socialization in a transient multilingual setting is shown to focus on and assign positive value to new linguistic norms that experienced members are socialized...

  8. Study and modelling of deactivation by coke in catalytic reforming of hydrocarbons on Pt-Sn/Al{sub 2}O{sub 3} catalyst; La microbalance inertielle: etude et modelisation cinetique de la desactivation par le coke en reformage catalytique des hydrocarbures sur catalyseur Pt-Sn/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu-Deghais, S.

    2004-07-01

    Catalytic reforming is the refining process that produces gasoline with a high octane number. During a reforming operation, undesired side reactions promote the formation of carbon deposits (coke) on the surface of the catalyst. As the reactions proceed, the coke accumulation leads to a progressive decrease of the catalyst activity and to a change in its selectivity. Getting this phenomenon under control is interesting to optimize the industrial plants. This work aims to improve the comprehension and the modeling of coke formation and its deactivating effect on reforming reactions, while working under conditions chosen within a range as close as possible to the industrial conditions of the regenerative process. The experimental study is carried out with a micro unit that is designed to observe simultaneously the coke formation and its influence on the catalyst activity. A vibrational microbalance reactor (TEOM - Tapered Element Oscillating Microbalance) is used to provide continuous monitoring of coke. On-line gas chromatography is used to observe the catalyst activity and selectivity as a function of the coke content. The coking experiments are performed on a fresh Pt-Sn/alumina catalyst, with mixtures of hydrocarbon molecules of 7 carbon atoms as hydrocarbon feeds. The coking tests permitted to highlight the operating parameters that may affect the amount of coke, and to identify the hydrocarbon molecules that behave as coke intermediate. A kinetic model for coke formation could be developed through the compilation of these results. The catalytic activity analysis permitted to point out the coke effect on both of the active phases of the catalyst, to construct a simplified reforming kinetic model that simulates the catalyst activity under the reforming conditions, and to quantify deactivation via deactivation functions. (author)

  9. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  10. Mechanistic studies of olefin and alkyne trimerization with chromium catalysts: deuterium labeling and studies of regiochemistry using a model chromacyclopentane complex.

    Science.gov (United States)

    Agapie, Theodor; Labinger, Jay A; Bercaw, John E

    2007-11-21

    A system for catalytic trimerization of ethylene utilizing chromium(III) precursors supported by diphosphine ligand PNP(O4) = (o-MeO-C6H4)2PN(Me)P(o-MeO-C6H4)2 has been investigated. The mechanism of the olefin trimerization reaction was examined using deuterium labeling and studies of reactions with alpha-olefins and internal olefins. A well-defined chromium precursor utilized in this studies is Cr(PNP(O4))(o,o'-biphenyldiyl)Br. A cationic species, obtained by halide abstraction with NaB[C6H3(CF3)2]4, is required for catalytic turnover to generate 1-hexene from ethylene. The initiation byproduct is vinylbiphenyl; this is formed even without activation by halide abstraction. Trimerization of 2-butyne is accomplished by the same cationic system but not by the neutral species. Catalytic trimerization, with various (PNP(O4))Cr precursors, of a 1:1 mixture of C2D4 and C2H4 gives isotopologs of 1-hexene without H/D scrambling (C6D12, C6D8H4, C6D4H8, and C6H12 in a 1:3:3:1 ratio). The lack of crossover supports a mechanism involving metallacyclic intermediates. Using a SHOP catalyst to perform the oligomerization of a 1:1 mixture of C2D4 and C2H4 leads to the generation of a broader distribution of 1-hexene isotopologs, consistent with a Cossee-type mechanism for 1-hexene formation. The ethylene trimerization reaction was further studied by the reaction of trans-, cis-, and gem-ethylene-d2 upon activation of Cr(PNP(O4))(o,o'-biphenyldiyl)Br with NaB[C6H3(CF3)2]4. The trimerization of cis- and trans-ethylene-d2 generates 1-hexene isotopomers having terminal CDH groups, with an isotope effect of 3.1(1) and 4.1(1), respectively. These results are consistent with reductive elimination of 1-hexene from a putative Cr(H)[(CH2)4CH=CH2] occurring much faster than a hydride 2,1-insertion or with concerted 1-hexene formation from a chromacycloheptane via a 3,7-H shift. The trimerization of gem-ethylene-d2 has an isotope effect of 1.3(1), consistent with irreversible formation of a

  11. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    Science.gov (United States)

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  12. Catalysts for low temperature oxidation

    Science.gov (United States)

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  13. Ring opening metathesis polymerization catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H.; Johnson, L.K.; Novak, B.M.; Hillmyer, M.; Benedicto, A.; France, M.; Nguyen, S.T. [California Institute of Technology, Pasadena, CA (United States)

    1993-12-31

    Over the past eight years, a number of new catalysts for the ring opening metathesis polymerization of cyclic olefins have been developed. These catalysts are simple organometallic complexes containing metal carbon multiple bonds that in most cases polymerize olefins by a living process. These catalysts have been used to prepare a family of near monodispersed and structurally homogeneous polymers, a series of telechelic polymers with controlled molecular weight and functionality and triblock polymers with segments with potentially interesting electronic properties. A series of new group VIII catalysts are being developed that allow a wide range of functionality to be incorporated into the polymer side chains. The same catalysts can also be used in the synthesis of fine chemicals.

  14. Supported molten-metal catalysts

    Science.gov (United States)

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  15. Atomic-scale investigation of the interaction of organic molecules with MoS2-based hydrotreating model catalysts

    DEFF Research Database (Denmark)

    Salazar Moreira, Norberto José

    The aim of this work is to provide new insight into the formation, activation and reactivity of hydrotreating catalysts extensively used in the refinery for the conversion of heavy feedstocks and for improving the quality of the final oil products. This is done through numerous studies of the con......The aim of this work is to provide new insight into the formation, activation and reactivity of hydrotreating catalysts extensively used in the refinery for the conversion of heavy feedstocks and for improving the quality of the final oil products. This is done through numerous studies...... of the morphology, structure, and stoichiometry of molybdenum oxide on Au(111) single crystal as a function of the annealing temperature is studied through the interplay of X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). The progressive annealing steps in ultra high vacuum (UHV....... However, for the reduced MoS2 nanoparticles, it is shown that the new S-edge generated present coverage of 100% S with the possible presence of S-H groups formed. Formation of S-H groups on the S-edge for the reduced Co-promoted MoS2 nanoparticles is also proposed but for this edge the sulfur coverage...

  16. Uncertainty evaluation of fluid dynamic models and validation by gamma ray transmission measurements of the catalyst flow in a FCC cold pilot unity

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Francisco A.S.; Santos, Ebenezer F.; Dantas, Carlos C., E-mail: francisco.teles@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Melo, Silvio B., E-mail: sbm@cin.ufpe.br [Universidade Federal de Pernambuco (CIN/UFPE), Recife, PE (Brazil). Centro de Informatica; Santos, Valdemir A. dos, E-mail: vas@unicap.br [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil). Dept. de Quimica; Lima, Emerson A.O., E-mail: emathematics@gmail.com [Universidade de Pernambuco (POLI/UPE), Recife, PE (Brazil). Escola Politecnica

    2013-07-01

    In this paper, fluid dynamics of Fluid Catalytic Cracking (FCC) process is investigated by means of a Cold Flow Pilot Unit (CFPU) constructed in Plexiglas to visualize operational conditions. Axial and radial catalyst profiles were measured by gamma ray transmission in the riser of the CFPU. Standard uncertainty was evaluated in volumetric solid fraction measurements for several concentrations at a given point of axial profile. Monitoring of the pressure drop in riser shows a good agreement with measured standard uncertainty data. A further evaluation of the combined uncertainty was applied to volumetric solid fraction equation using gamma transmission data. Limit condition of catalyst concentration in riser was defined and simulation with random numbers provided by MATLAB software has tested uncertainty evaluation. The Guide to the expression of Uncertainty in Measurement (GUM) is based on the law of propagation of uncertainty and on the characterization of the quantities measured by means of either a Gaussian distribution or a t-distribution, which allows measurement uncertainty to be delimited by means of a confidence interval. A variety of supplements to GUM are being developed, which will progressively enter into effect. The first of these supplements [3] describes an alternative procedure for the calculation of uncertainties: the Monte Carlo Method (MCM).MCM is an alternative to GUM, since it performs a characterization of the quantities measured based on the random sampling of the probability distribution functions. This paper also explains the basic implementation of the MCM method in MATLAB. (author)

  17. A versatile elevated-pressure reactor combined with an ultrahigh vacuum surface setup for efficient testing of model and powder catalysts under clean gas-phase conditions

    Energy Technology Data Exchange (ETDEWEB)

    Morfin, Franck; Piccolo, Laurent [Institut de recherches sur la catalyse et l' environnement de Lyon (IRCELYON), UMR 5256 CNRS and Université Lyon 1, 2 avenue Albert Einstein, F-69626 Villeurbanne (France)

    2013-09-15

    A small-volume reaction cell for catalytic or photocatalytic testing of solid materials at pressures up to 1000 Torr has been coupled to a surface-science setup used for standard sample preparation and characterization under ultrahigh vacuum (UHV). The reactor and sample holder designs allow easy sample transfer from/to the UHV chamber, and investigation of both planar and small amounts of powder catalysts under the same conditions. The sample is heated with an infrared laser beam and its temperature is measured with a compact pyrometer. Combined in a regulation loop, this system ensures fast and accurate temperature control as well as clean heating. The reaction products are automatically sampled and analyzed by mass spectrometry and/or gas chromatography (GC). Unlike previous systems, our GC apparatus does not use a recirculation loop and allows working in clean conditions at pressures as low as 1 Torr while detecting partial pressures smaller than 10{sup −4} Torr. The efficiency and versatility of the reactor are demonstrated in the study of two catalytic systems: butadiene hydrogenation on Pd(100) and CO oxidation over an AuRh/TiO{sub 2} powder catalyst.

  18. Regeneration of Pt-catalysts deactivated in municipal waste flue gas with H2/N2 and the effect of regeneration step on the SCR catalyst

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Rasmussen, Søren Brik; Kustov, Arkady

    The deactivation performance of Pt-catalysts for CO oxidation has been studied in relation to use in sewage sludge municipal waste burners, where HMDS was found to poison the industrial catalyst in a similar way to the model Pt/TiO2 catalyst. A promising regeneration procedure was developed based...... on reduction with hydrogen. This procedure had negligible effect on the performance of the SCR catalyst. After treatment with 2% H2, 8% O2 in N2 for one hour, a slight better NO SCR activity was observed due to increase in the concentration V4+ sites. However, after exposure in normal NO SCR gases the activity...

  19. Development and optimisation of a novel three-way extraction technique based on a combination of Soxhlet extraction, membrane assisted solvent extraction and a molecularly imprinted polymer using sludge polycyclic aromatic hydrocarbons as model compounds.

    Science.gov (United States)

    Ncube, Somandla; Lekoto, Goitsemang; Cukrowska, Ewa; Chimuka, Luke

    2018-02-01

    A novel technique that integrates extraction and clean-up into a single step format is reported as part of the search for new sample preparation techniques in the analysis of persistent organic pollutants from complex samples. This was achieved by combining the extraction efficiency of the Soxhlet extractor, the selectivity of a size exclusion membrane and the specificity of a molecularly imprinted polymer for the extraction of polycyclic aromatic hydrocarbons from wastewater sludge followed by quantitation using gas chromatography with time-of-flight mass spectrometry. The approach is described as the Soxhlet extraction membrane-assisted solvent extraction molecularly imprinted polymer technique. This technique was optimised for various parameters such as extraction solvent, reflux time and membrane acceptor phase. The applicability of the developed technique was optimised using a wastewater sludge certified reference material and then tested on real wastewater sludge samples. The method detection limits ranged from 0.14 to 12.86 ng/g with relative standard deviation values for the extraction of the 16 US-EPA priority polycyclic aromatic hydrocarbons from wastewater sludge samples ranging from 0.78 to 18%. The extraction process was therefore reproducible and showed remarkable selectivity. The developed technique is a promising prospect that can be applied in the analysis of organic pollutants from complex solid samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Plasma and catalyst for the oxidation of NOx

    Science.gov (United States)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Raud, Jüri; Stamate, Eugen

    2018-03-01

    Efficient exhaust gas cleaning from NO x (NO and NO2) by absorption and adsorption based methods requires the oxidation of NO. The application of non-thermal plasma is considered as a promising oxidation method but the oxidation of NO by direct plasma remains limited due to the back-reaction of NO2 to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal-oxide catalysts in the improvement of oxidation efficiency for both direct and indirect plasma oxidation of NO x . The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst surfaces while the exact mechanism and extent of the effect were different for direct and indirect oxidation. In the case of direct plasma oxidation, both short and long lifetime oxygen species could reach the catalyst and participate in the oxidation of NO to NO2. The back-reaction in the plasma phase remained still important factor and limited the effect of catalyst. In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst.

  1. Characterization of catalysts by Moessbauer spectroscopy: An application to the study of Fischer-Tropsch, hydrotreating and super Claus catalysts

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Boellaard, E.; Craje, M.W.J.

    1993-01-01

    Moessbauer spectroscopy is an excellent in-situ technique for the identification of phases present in catalysts. Applied to metallic iron catalysts used in the Fischer-Tropsch reaction it reveals a detailed picture of the carburization process and provides insight into the relation between the properties of the catalytic material and its activity. The influence of a support and the effect of alloying iron with an (in)active metal on the catalytic performance is discussed for Fe, Cu-Fe and Ni-Fe systems. In addition, Moessbauer spectroscopy is used for the identification of 'Co-sulfide' species present in sulfided Co and CoMo catalysts applied in one of the largest chemical processes in the world, the hydrotreatment of crude oil. A structural model is proposed. Finally, the contribution of Moessbauer spectroscopic studies to the development of a new catalyst for cleaning of Claus tail gas via selective oxidation of hydrogen sulfide to elemental sulfur is discussed. (orig.)

  2. Physico-Chemical and Structural Properties of DeNOx and SO2 Oxidation Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen Grenville; Oehlers, Cord; Nielsen, Kurt

    1996-01-01

    Commercial catalysts for NOx removal and SO2 oxidation and their model systems have been investigated by spectroscopic, thermal, electrochemical and X-ray methods. Structural information on the vanadium complexes and compounds as well as physico-chemical properties for catalyst model systems have...

  3. Catalyst support effects on hydrogen spillover

    Science.gov (United States)

    Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; Vandevondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A.

    2017-01-01

    Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

  4. Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts.

    Science.gov (United States)

    Merle, Nicolas; Le Quéméner, Frédéric; Barman, Samir; Samantaray, Manoja K; Szeto, Kai C; De Mallmann, Aimery; Taoufik, Mostafa; Basset, Jean-Marie

    2017-10-12

    A well-defined, silica-supported molybdenum oxo alkyl species, ([triple bond, length as m-dash]SiO-) 2 Mo([double bond, length as m-dash]O)(CH 2 t Bu) 2 , was prepared by the selective grafting of Mo([double bond, length as m-dash]O)(CH 2 t Bu) 3 Cl onto a silica partially dehydroxylated at 200 °C using a rigorous surface organometallic chemistry approach. The immobilized bipodal surface species, partly resembling the active species of industrial MoO 3 /SiO 2 olefin metathesis catalysts, exhibited excellent functional group tolerance in conjunction with its high activity in homocoupling, self and ring closing olefin metathesis.

  5. Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts

    KAUST Repository

    Merle, Nicolas

    2017-09-25

    A well-defined, silica-supported molybdenum oxo alkyl species, ([triple bond, length as m-dash]SiO-)2Mo([double bond, length as m-dash]O)(CH2tBu)2, was prepared by the selective grafting of Mo([double bond, length as m-dash]O)(CH2tBu)3Cl onto a silica partially dehydroxylated at 200 °C using a rigorous surface organometallic chemistry approach. The immobilized bipodal surface species, partly resembling the active species of industrial MoO3/SiO2 olefin metathesis catalysts, exhibited excellent functional group tolerance in conjunction with its high activity in homocoupling, self and ring closing olefin metathesis.

  6. Chalcogen catalysts for polymer electrolyte fuel cell

    Science.gov (United States)

    Alonso-Vante, Nicolas [Buxerolles, FR; Zelenay, Piotr [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Wieckowski, Andrzej [Champaign, IL; Cao, Dianxue [Urbana, IL

    2009-09-15

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  7. Increasing the lifetime of fuel cell catalysts

    NARCIS (Netherlands)

    Latsuzbaia, R.

    2015-01-01

    In this thesis, I discuss a novel idea of fuel cell catalyst regeneration to increase lifetime of the PEM fuel cell electrode/catalyst operation and, therefore, reduce the catalyst costs. As many of the catalyst degradation mechanisms are difficult to avoid, the regeneration is alternative option to

  8. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  9. Restrictive liquid-phase diffusion and reaction in bidispersed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.; Seader, J.D. (Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering); Tsai, C.H.; Massoth, F.E. (Utah Univ., Salt Lake City, UT (United States). Dept. of Fuels Engineering)

    1991-08-01

    In this paper, the effect of bidispersed pore-size distribution on liquid-phase diffusion and reaction in NiMo/Al{sub 2}O{sub 3} catalysts is investigated by applying two bidispersed-pore-structure models, the random-pore model and a globular-structure model, to extensive experimental data, which were obtained from sorptive diffusion measurements at ambient conditions and catalytic reaction rate measurements on nitrogen-containing compounds. Transport of the molecules in the catalysts was found to be controlled by micropore diffusion, in accordance with the random-pore model, rather than macropore diffusion as predicted by the globular-structure model. A qualitative criterion for micropore-diffusion control is proposed: relatively small macroporosity and high catalyst pellet density. Since most hydrotreating catalysts have high density, diffusion in these types of catalysts may be controlled by micropore diffusion. Accordingly, it is believed in this case that increasing the size of micropores may be more effective to reduce intraparticle diffusion resistance than incorporating macropores alone.

  10. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan, Song; Kirby, S.; Schmidt, E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  11. Synthesis of palm biodiesel using sodium methoxide catalyst

    International Nuclear Information System (INIS)

    Azhari; Robiah Yunus; Rasyid, S.A.; Abdullah, L.C.

    2006-01-01

    Synthesis of palm biodiesel (methyl ester) was successfully carried out from refined bleached deodorized palm oil (RBDPO) by transesterification reaction. Two kinds of alkali catalyst were selected for this reaction namely sodium hydroxide (NaOH) and sodium methoxide (NaOCH 3 ), and the effects of operating variables such as molar ratio, reaction temperature and quantity of catalyst were also investigated. The reaction was carried out under atmosphere pressure. The reaction temperature and time were varied between 55 to 70 degree C and 50 to 90 minutes respectively. The methanol to oil molar ratios were also varied at 6:1, 5:1, 4:1 and 3:1 to examine its effect on reaction yield. The reaction conversion was 99% by use of NaOCH 3 as a catalyst. However, with NaOH as catalyst, the conversion was slightly lower compared to using NaOCH 3 . The optimum conditions for NaOCH 3 as catalyst were reaction temperature, 65 degree C; reaction time, 60 minutes; molar ratio, 6:1; and catalyst amount, 1.0% w/w. The kinetics study on transesterification of RBDPO with methanol established that the reaction occurred via two stepwise and irreversible elementary reactions following second order model. A vacuum distillation process was used to reduce the pour point of palm biodiesel. The lowest pour point attainable for palm biodiesel was at 3 degree C. (Author)

  12. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    Science.gov (United States)

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone.

  13. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  14. Intermediate Ethanol Blends Catalyst Durability Program

    Energy Technology Data Exchange (ETDEWEB)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  15. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    Science.gov (United States)

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  16. Effect of catalyst pretreatment on the olefin metathesis catalyzed by alumina-supported (9%) rhenium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.C.

    1979-01-01

    A kinetic model was developed to express the time-on-stream profile of the activity during catalyst break-in and deactivation. The catalyst surface is in geometric and energetic heterogeneity. Partial catalyst reduction is a prerequisite step for olefin metathesis. The metathesis activity may be affected by the coordination number and the type of ligands associated with the sites on the catalyst. The deactivation is proposed due to deposition of residues on the active sites, and to sintering, etc. A dispersion pretreatment increased activity. Oxygen is an activator. The hydrogen reduction at 500/sup 0/C causes partial but permanent loss of activity.

  17. The innovation catalysts.

    Science.gov (United States)

    Martin, Roger L

    2011-06-01

    A few years ago the software development company Intuit realized that it needed a new approach to galvanizing customers. The company's Net Promoter Score was faltering, and customer recommendations of new products were especially disappointing. Intuit decided to hold a two-day, off-site meeting for the company's top 300 managers with a focus on the role of design in innovation. One of the days was dedicated to a program called Design for Delight. The centerpiece of the day was a PowerPoint presentation by Intuit founder Scott Cook, who realized midway through that he was no Steve Jobs: The managers listened dutifully, but there was little energy in the room. By contrast, a subsequent exercise in which the participants worked through a design challenge by creating prototypes, getting feedback, iterating, and refining, had them mesmerized. The eventual result was the creation of a team of nine design-thinking coaches--"innovation catalysts"--from across Intuit who were made available to help any work group create prototypes, run experiments, and learn from customers. The process includes a "painstorm" (to determine the customer's greatest pain point), a "soljam" (to generate and then winnow possible solutions), and a "code-jam" (to write code "good enough" to take to customers within two weeks). Design for Delight has enabled employees throughout Intuit to move from satisfying customers to delighting them.

  18. Application of ASA supported noble metal catalysts in the deep hydrodesulphurisation of diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Reinhoudt, H.R.; Troost, R.; Van Schalkwijk, S.; Van Langeveld, A.D.; Sie, S.T.; Moulijn, J.A. [Delft University of Technology, Delft (Netherlands); Schulz, H. [Universitaet Karlsruhe, Engler Bunte Institut, Karlsruhe (Germany); Chadwick, D. [Imperial College of Science, Technology and Medicine, London (United Kingdom); Cambra, J. [Escuela de Ingenierios, Bilbao (Spain); De Beer, V.H.J.; Van Veen, J.A.R. [Eindhoven University of Technology, Eindhoven (Netherlands); Fierro, J.L.G. [C.S.I.C., Madrid (Spain)

    1997-07-01

    The potential of Amorphous Silica Alumina (ASA) supported Pt and Pd catalysts for deep hydrodesulphurisation (HDS) of diesel fuels was investigated. It appeared that the ASA supported catalysts exhibit an excellent activity for the conversion of 4-Ethyl, 6-Methyl Dibenzothiophene (4-E,6-M DBT) under model conditions as compared to conventional HDS catalysts and {gamma}-Al{sub 2}O{sub 3} supported noble metal catalysts. Pt/ASA was also tested under practical conditions using a diesel fuel feed. The Pt/ASA catalyst showed a comparable activity to the NiW/{gamma}-Al{sub 2}O{sub 3} catalyst which was higher than that of the conventional CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst. The main difference of the catalyst was the better hydroconversion of the 4,6 di-alkylated DBT's. The better performance of Pt/ASA in the testing under model conditions as compared to the diesel fuel HDS can be attributed to poisoning of part of the active phase by basic nitrogen compounds like quinoline. It is concluded that ASA supported noble metal catalysts have a promising potential for deep HDS processing. 5 refs.

  19. Nanostructured catalysts for organic transformations.

    Science.gov (United States)

    Chng, Leng Leng; Erathodiyil, Nandanan; Ying, Jackie Y

    2013-08-20

    The development of green, sustainable and economical chemical processes is one of the major challenges in chemistry. Besides the traditional need for efficient and selective catalytic reactions that will transform raw materials into valuable chemicals, pharmaceuticals and fuels, green chemistry also strives for waste reduction, atomic efficiency and high rates of catalyst recovery. Nanostructured materials are attractive candidates as heterogeneous catalysts for various organic transformations, especially because they meet the goals of green chemistry. Researchers have made significant advances in the synthesis of well-defined nanostructured materials in recent years. Among these are novel approaches that have permitted the rational design and synthesis of highly active and selective nanostructured catalysts by controlling the structure and composition of the active nanoparticles (NPs) and by manipulating the interaction between the catalytically active NP species and their support. The ease of isolation and separation of the heterogeneous catalysts from the desired organic product and the recovery and reuse of these NPs further enhance their attractiveness as green and sustainable catalysts. This Account reviews recent advances in the use of nanostructured materials for catalytic organic transformations. We present a broad overview of nanostructured catalysts used in different types of organic transformations including chemoselective oxidations and reductions, asymmetric hydrogenations, coupling reactions, C-H activations, oxidative aminations, domino and tandem reactions, and more. We focus on recent research efforts towards the development of the following nanostructured materials: (i) nanostructured catalysts with controlled morphologies, (ii) magnetic nanocomposites, (iii) semiconductor-metal nanocomposites, and (iv) hybrid nanostructured catalysts. Selected examples showcase principles of nanoparticle design such as the enhancement of reactivity, selectivity

  20. Forecasting the zeolite-containing catalyst activity in catalytic cracking technology taking into account the feedstock composition

    Science.gov (United States)

    Ivashkina, Elena; Nazarova, Galina; Shafran, Tatyana; Stebeneva, Valeriya

    2017-08-01

    The effect of the feedstock composition and the process conditions on the current catalyst activity in catalytic cracking technology using a mathematical model is performed in this research. The mathematical model takes into account the catalyst deactivation by coke for primary and secondary cracking reactions. The investigation results have shown that the feedstock has significant effect on the yield and the content of coke on the catalyst. Thus, the relative catalyst activity is significantly reduced by 7.5-10.7 %. With increasing the catalytic cracking temperature due to the catalyst flow temperature rising, the coke content and the yield per feedstock increase and the catalyst activity decreases by 5.3-7.7%. Rising the process temperature together with the catalyst circulation ratio contributes to increase of the coke yield per feedstock in the catalytic cracking and decrease of the coke content on the catalyst. It is connected with the catalyst flow rising to the riser and the contact time decreasing in the reaction zone. Also, the catalyst activity decreases in the range of 3.8-5.5% relatively to the regenerated catalyst activity (83 %).

  1. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  2. NOVEL SUPPORTED BIMETALLIC CARBIDE CATALYSTS FOR COPROCESSING OF COAL WITH WASTE METERIALS

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox; Chunshan Song; Fred Allen; Weilin Wang; Viviane Schwartz; Xinqin Wang; Jianli Yang

    2001-01-01

    The overall objectives of this project are to explore the potential of novel monometallic and bimetallic Mo-based carbide catalysts for heavy hydrocarbon coprocessing, and to understand the fundamental chemistry related to the reaction pathways of coprocessing and the role of the catalysts in the conversion of heavy hydrocarbon resources into liquid fuels based on the model compound reactions.

  3. Design of a stable steam reforming catalyst - A promising route to sustainable hydrogen form biomass oxygenates

    NARCIS (Netherlands)

    Matas Güell, B.; Babych, Igor V.; Nichols, K.P.F.; Gardeniers, Johannes G.E.; Lefferts, Leonardus; Seshan, Kulathuiyer

    2009-01-01

    The influence of the support and the presence of oxygen were investigated in the steam reforming of acetic acid, a bio-oil model compound, over Pt/ZrO2 and Pt/CeO2 catalysts. In the absence of oxygen, all catalysts suffered from deactivation. Acetone, formed via condensation/dehydration of acetic

  4. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST COMPARISONS. (R826694C633)

    Science.gov (United States)

    Catalyst candidates for steam reforming chlorocarbons have been screened for activity using methyl chloride as a model reactant. At 500°C, a H2O/C ratio of about 10 and a GHSV of 254 000 h-1, catalysts comprising 0.5% loading of the metals ...

  5. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST COMPARISONS. (R822721C633)

    Science.gov (United States)

    Catalyst candidates for steam reforming chlorocarbons have been screened for activity using methyl chloride as a model reactant. At 500°C, a H2O/C ratio of about 10 and a GHSV of 254 000 h-1, catalysts comprising 0.5% loading of the metals o...

  6. Catalytic Cracking of Palm Oil Over Zeolite Catalysts: Statistical Approach

    Directory of Open Access Journals (Sweden)

    F. A. A. Twaiq and S. Bhatia

    2012-08-01

    Full Text Available The catalytic cracking of palm oil was conducted in a fixed bed micro-reactor over HZSM-5, zeolite ? and ultrastable Y (USY zeolite catalysts. The objective of the present investigation was to study the effect of cracking reaction variables such as temperature, weight hourly space velocity, catalyst pore size and type of palm oil feed of different molecular weight on the conversion, yield of hydrocarbons in gasoline boiling range and BTX aromatics in the organic liquid product.  Statistical Design of Experiment (DOE with 24 full factorial design was used in experimentation at the first stage.  The nonlinear model and Response Surface Methodology (RSM were utilized in the second stage of experimentation to obtain the optimum values of the variables for maximum yields of hydrocarbons in gasoline boiling range and aromatics.  The HZSM-5 showed the best performance amongst the three catalysts tested.  At 623 K and WHSV of 1 h-1, the highest experimental yields of gasoline and aromatics were 28.3 wt.% and 27 wt.%, respectively over the HZSM-5 catalyst.  For the same catalyst, the statistical model predicted that the optimum yield of gasoline was 28.1 wt.% at WHSV of 1.75 h-1 and 623 K.  The predicted optimum yield of gasoline was 25.5 wt.% at 623 K and WHSV of 1 h-1.KEY WORDS: Catalytic Cracking, Palm Oil, Zeolite, Design Of Experiment, Response Surface Methodology.

  7. Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM

    International Nuclear Information System (INIS)

    Lorenz, Harald; Zhao Qian; Turner, Stuart; Lebedev, Oleg I.; Van Tendeloo, Gustaaf; Kloetzer, Bernhard; Rameshan, Christoph; Penner, Simon

    2010-01-01

    Structure, morphology and composition of different tin oxide and germanium oxide thin film catalysts for the methanol steam reforming (MSR) reaction have been studied by a combination of (high-resolution) transmission electron microscopy, selected area electron diffraction, dark-field imaging and electron energy-loss spectroscopy. Deposition of the thin films on NaCl(0 0 1) cleavage faces has been carried out by thermal evaporation of the respective SnO 2 and GeO 2 powders in varying oxygen partial pressures and at different substrate temperatures. Preparation of tin oxide films in high oxygen pressures (10 -1 Pa) exclusively resulted in SnO phases, at and above 473 K substrate temperature epitaxial growth of SnO on NaCl(0 0 1) leads to well-ordered films. For lower oxygen partial pressures (10 -3 to 10 -2 Pa), mixtures of SnO and β-Sn are obtained. Well-ordered SnO 2 films, as verified by electron diffraction patterns and energy-loss spectra, are only obtained after post-oxidation of SnO films at temperatures T ≥ 673 K in 10 5 Pa O 2 . Preparation of GeO x films inevitably results in amorphous films with a composition close to GeO 2 , which cannot be crystallized by annealing treatments in oxygen or hydrogen at temperatures comparable to SnO/SnO 2 . Similarities and differences to neighbouring oxides relevant for selective MSR in the third group of the periodic system (In 2 O 3 and Ga 2 O 3 ) are also discussed with the aim of cross-correlation in formation of nanomaterials, and ultimately, also catalytic properties.

  8. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  9. Ring Opening of Naphthenic Molecules Over Metal Containing Mesoporous Y Zeolite Catalyst.

    Science.gov (United States)

    Lee, You-Jin; Kim, Eun Sang; Kim, Tae-Wan; Kim, Chul-Ung; Jeong, Kwang-Eun; Lee, Chang-Ha; Jeong, Soon-Yong

    2015-07-01

    Mesoporous Y zeolite (Meso-Y) with a uniform mesopore was synthesized via pseudomorphic syn- thesis. The Meso-Y supported Ni-W catalyst (NiW/Meso-Y) was introduced as a catalyst for the selective ring opening of naphthenic rings. The catalytic test for the ring opening of naphthalene as a model compound of multi-ring aromatics was performed using a batch-type reaction system with both sulfided 20 wt% NiW/Meso-Y and NiW/Y catalysts under different reaction conditions. The catalytic results reveal that the Meso-Y supported NiW catalyst experiences a naphthalene conversion similar to the NiW/Y catalyst, but the NiW/Meso-Y catalyst has higher product yields for BTEX (benzene, toluene, ethyl benzene, and xylene) and the middle distillate than those of the NiW/Y catalyst at a low reaction temperature. These results suggest that the mesoporosity of the NiW/Meso-Y catalyst is more advantageous for the ring opening reaction of multi-ring aromatics due to the easier access for the bulky molecules compared to the NiW/Y catalyst.

  10. SELECTIVE CATALYTIC REDUCTION (SCR OF NO BY AMMONIA OVER V2O5/TiO2 CATALYST IN A CATALYTIC FILTER MEDIUM AND HONEYCOMB REACTOR: A KINETIC MODELING STUDY

    Directory of Open Access Journals (Sweden)

    M. Nahavandi

    2015-12-01

    Full Text Available Abstract The present study addresses a numerical modeling and simulation based on the available knowledge of SCR kinetics for prediction of NO conversion over a V2O3/TiO3 catalyst through a catalytic filter medium and honeycomb reactor. After introducing the NH3-SCR system with specific operational criteria, a reactor model was developed to evaluate the effect of various operating parameters such as flue gas temperature, velocity, NH3/NO molar ratio, etc., on the SCR process. Computational investigations were performed based on the proposed model and optimum operational conditions were identified. Simulation results indicate that SCR performance is substantially under the effects of reactant concentration and operating temperature, so that the concentration of unreacted ammonia emitted from reactor discharge (ammonia slip increases significantly at NH3/NO ratios of more than 1.14 and operating temperatures less than 360 ºC and 300 ºC, respectively, in the catalytic filter medium and honeycomb reactor. The results also show that there are three sections in NO conversion variation versus changing temperature and the required conversion with a maximum of almost 87% and low level of ammonia slip can be achieved at the NH3/NO ratio of 1 and temperature range of 240–360 ºC in both reactors.

  11. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  12. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  13. Olefins metathesis, synthesis and properties of homogeneous models of the Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3} catalyst; Methathese des olefines, synthese et proprietes des modeles homogenes du catalyseur Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Doledec, G.

    1999-10-05

    The aim of this work was to synthesize and to study homogeneous models of the rhenium oxide on alumina catalyst in order to better understand the influence of the alumina environment over the activity in olefin metathesis. A series of aluminium complexes (ArO){sub 2}Al-Y have been synthesised, where ArO is a 4-substituted-2,6-di-tert-butyl-phenoxy, or (ArO){sub 2} is a CH{sub 2{sup -}} or S-ortho bridged-4,4'-di-tert-butyl-di-phenoxy, and Y is an alkyl or chlorine ligand. The reaction of (ArO){sub 2}Al-Cl with AgReO{sub 4} led to new complexes (ArO){sub 2}Al-OReO{sub 3} (A). These complexes exhibit a low to moderate activity in metathesis of 2-pentene (TOF = 0,5 min{sup -1} at 25 deg. C in a toluene solution). Complexes (ArO){sub 2}Al-R (R = iBu, Et) react with Re{sub 2}O{sub 7} in THF or dioxane giving type B complexes including oligomeric linkages like O{sub 3}Re-[Al(OAr)-O){sub 2}-ReO{sub 3}. They show a fairly high activity in the metathesis of 2-pentene, with TOF values as high as 100 min{sup -1}. As far as we know, these are the most active rhenium-based homogeneous metathesis catalysts. Complexes type A may be converted into type B complexes upon reaction with (ArO){sub 2}Al-R in an ether solvent. The high activity of B complexes is tentatively related to the Al-O-Al linkages that are molecular in the homogeneous models or present at the surface of the alumina in the heterogeneous catalyst. These results bear out again the role of the Lewis acidity in these catalysts. We used (ArO){sub 2}Al-R complexes to modify the heterogenous catalyst. It appears that it is an excellent way to reduce the rhenium loading without any loss of activity. (author)

  14. Influence of hydrodynamic conditions on catalyst isotope exchange HDO-H2 in a successive catalyst - ordered packing system

    International Nuclear Information System (INIS)

    Bornea, Anisia; Cristescu, I.; Stefanescu, Doina

    1997-01-01

    The paper presents a mathematical model with the aim of a complete characterization of isotope exchange on a column equipped with a platinum catalyst followed by ordered packing, according to the reaction HDO + H 2 = H 2 O + HD, proceeding in both directions. The catalyst is of Pt/C/PTFE type achieving the isotope exchange between water vapor and hydrogen. On the ordered packing the isotope exchange between liquid phase and vapor is achieved by distillation. The catalyst and the packing are successively disposed along the column. The experimental studies were made at different values of pressure and temperature and for various values of gas-liquid flow rate ratio. There were chosen such values for deuterium concentration in water that will allow obtaining preliminary data required by the development of the installation for tritium separation from tritiated heavy water. The mathematical model presented in the paper allowed computing experimental data for testing the catalyst performances. In this way the rate constants of catalyst exchange and distillation were expressed as function of experimental concentrations and hydrodynamic conditions

  15. Catalysts for improved fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Inbody, M.A. [and others

    2000-09-01

    This report covers our technical progress on fuel processing catalyst characterization for the specific purpose of hydrogen production for proton-exchange-membrane (PEM) fuel cells. These development efforts support DOE activities in the development of compact, transient capable reformers for on-board hydrogen generation starting from candidate fuels. The long-term objective includes increased durability and lifetime, in addition to smaller volume, improved performance, and other specifications required meeting fuel processor goals. The technical barriers of compact fuel processor size, transient capability, and compact, efficient thermal management all are functions of catalyst performance. Significantly, work at LANL now tests large-scale fuel processors for performance and durability, as influenced by fuels and fuel constituents, and complements that testing with micro-scale catalyst evaluation which is accomplished under well controlled conditions.

  16. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  17. Self-Assembled Pd@CeO2/γ-Al2O3Catalysts with Enhanced Activity for Catalytic Methane Combustion.

    Science.gov (United States)

    Feng, Xilan; Li, Wang; Liu, Dapeng; Zhang, Zheng; Duan, Yang; Zhang, Yu

    2017-08-01

    Pd@CeO 2 /Al 2 O 3 catalysts are of great importance for real applications, such as three-way catalysis, CO oxidation, and methane combustion. In this article, the Pd@CeO 2 core@shell nanospheres are prepared via the autoredox reaction in aqueous phase. Three kinds of methods are then employed, that is, electrostatic interaction, supramolecular self-assembly, and physical mixing, to support the as-prepared Pd@CeO 2 nanospheres on γ-Al 2 O 3 . A model reaction of catalytic methane-combustion is employed here to evaluate the three Pd@CeO 2 /γ-Al 2 O 3 samples. As a result, the sample Pd@CeO 2 -S-850 prepared via supramolecular self-assembly and calcined at 850 °C exhibits superior catalytic performance to the others, which has a far lower light-off temperature (T 50 of about 364 °C). Moreover, almost no deterioration of Pd@CeO 2 -S-850 is observed after five sequent catalytic cycles. The analysis of H 2 -TPR curves concludes that there exists hydrogen spillover related to the strong metal-support interaction between Pd species and oxides. The strong metal-support interaction and the specific surface areas might be responsible for the catalytic performance of the Pd@CeO 2 samples toward catalytic methane combustion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Use of lanthanide catalysts in air electrodes

    International Nuclear Information System (INIS)

    Souza Parente, L.T. de

    1982-01-01

    A review on the lanthanide catalysts suitable for the reduction catalysis of oxygen in air electrodes is presented. The kinds of lanthanide indicated to be used as catalysts of oxygen reduction are shown. (A.R.H.) [pt

  19. Catalyst for Decomposition of Nitrogen Oxides

    Science.gov (United States)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  20. Novel Fischer-Tropsch catalysts. [DOE patent

    Science.gov (United States)

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  1. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  2. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-11-01

    Full Text Available Major problem in CO2 reforming of methane (CORM process is coke formation which is a carbonaceous residue that can physically cover active sites of a catalyst surface and leads to catalyst deactivation. A key to develop a more coke-resistant catalyst lies in a better understanding of the methane reforming mechanism at a molecular level. Therefore, this paper is aimed to simulate a micro-kinetic approach in order to calculate coking rate in CORM reaction. Rates of encapsulating and filamentous carbon formation are also included. The simulation results show that the studied catalyst has a high activity, and the rate of carbon formation is relatively low. This micro-kinetic modeling approach can be used as a tool to better understand the catalyst deactivation phenomena in reaction via carbon deposition. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 10th May 2011; Revised: 16th August 2011; Accepted: 27th August 2011[How to Cite: I. Istadi, D.D. Anggoro, N.A.S. Amin, and D.H.W. Ling. (2011. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 129-136. doi:10.9767/bcrec.6.2.1213.129-136][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.1213.129-136 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/1213 ] | View in  |  

  3. Quick Guide to Flash Catalyst

    CERN Document Server

    Elmansy, Rafiq

    2011-01-01

    How do you transform user interface designs created in Photoshop or Illustrator into interactive web pages? It's easier than you think. This guide shows you how to use Adobe Flash Catalyst to create interactive UIs and website wireframes for Rich Internet Applications-without writing a single line of code. Ideal for web designers, this book introduces Flash Catalyst basics with detailed step-by-step instructions and screenshots that illustrate every part of the process. You'll learn hands-on how to turn your static design or artwork into working user interfaces that can be implemented in Fla

  4. Rhenium Nanochemistry for Catalyst Preparation

    Directory of Open Access Journals (Sweden)

    Vadim G. Kessler

    2012-08-01

    Full Text Available The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

  5. Hydrothermal performance of catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.; Dumesic, James A.; Pagan-Torres, Yomaira J.

    2018-04-10

    A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.

  6. Stereospecific olefin polymerization with chiral metallocene catalysts

    OpenAIRE

    Brintzinger, Hans-Herbert; Fischer, David; Mülhaupt, Rolf; Rieger, Bernhard; Waymouth, Robert M.

    1995-01-01

    Current studies on novel, metallocenebased catalysts for the polymerization of α-olefins have far-reaching implications for the development of new materials as well as for the understanding of basic reaction mechanisms responsible for the growth of a polymer chain at a catalyst center and the control of its stereoregularity. In contrast to heterogeneous Ziegler–Natta catalysts, polymerization by a homogeneous, metallocene-based catalyst occurs principally at a single type of metal center with...

  7. Rare behaviour of a catalyst pellet catalyst dynamics

    NARCIS (Netherlands)

    Westerterp, K.R.; Loonen, R.A.; Martens, A.

    1986-01-01

    Temperature overshoots and undershoots were found for a Pd on alumina catalyst pellet in its course towards a new steady state after a change in concentration of one of the reactants ethylene or hydrogen. When cooling the pellet, after heat-up by reaction, with pure hydrogen a sudden temperature

  8. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    Science.gov (United States)

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  9. Plasma and catalyst for the oxidation of NOx

    DEFF Research Database (Denmark)

    Jögi, I.; Erme, K.; Levoll, E.

    2017-01-01

    The removal of NOx from the exhaust gases requires the oxidation of most abundant NO to NO2 or N2O5. The oxidation can be done by non-thermal plasma but the efficiency is limited due to the back-reaction of NO2 to NO by O radicals. Present contribution investigates the role of catalysts in the im......The removal of NOx from the exhaust gases requires the oxidation of most abundant NO to NO2 or N2O5. The oxidation can be done by non-thermal plasma but the efficiency is limited due to the back-reaction of NO2 to NO by O radicals. Present contribution investigates the role of catalysts...... in the improvement of oxidation efficiency based on the stationary and time-dependent studies of the NOx oxidation at different reactor configurations and experimental conditions. The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst...... surfaces while the exact mechanism and extent of the effect depended on the reactor configuration. The effect of catalyst at different experimental conditions was quantitatively described with the aid of analytical lumped kinetic models derived for the NOx oxidation when the catalyst was directly...

  10. Structure of silica-supported catalysts

    International Nuclear Information System (INIS)

    Gladden, L.F.; Vignaux, M.; Griffiths, R.W.; Jackson, S.D.; Jones, J.R.; Sharratt, A.P.; Robertson, F.J.; Webb, G.

    1992-01-01

    Neutron diffraction and SANS studies of silica supported metal catalysts have indicated that more active metal:silica catalysts are produced when the silica support has a relatively high content of three-membered rings in its network structure. SANS studies also suggest that the more active catalysts possess a bimodal metal particle size distribution. (orig.)

  11. 40 CFR 721.9665 - Organotin catalysts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Organotin catalysts. 721.9665 Section... Substances § 721.9665 Organotin catalysts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as organotin catalysts (PMNs P-93-853, P-93...

  12. Catalysts and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-02-14

    The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.

  13. Efficient epoxidation of propene using molecular catalysts

    DEFF Research Database (Denmark)

    Markovits, Iulius I. E.; Anthofer, Michael H.; Kolding, Helene

    2014-01-01

    The epoxidation of propene is performed in homogeneous phase using various molecular catalysts and H2O2 or tert-butyl hydroperoxide as oxidants. A comparison between some molybdenum catalysts and methyltrioxorhenium (MTO) shows that the well known Re catalyst is the best among the examined...

  14. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  15. Low platinum catalyst and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  16. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared...

  17. Potent Heterogeneous Catalyst for Low Temperature Selective Oxidation of Cyclohexanol by Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Haroon ur Rashid

    2016-01-01

    Full Text Available Platinum supported on zirconium dioxide catalyst was prepared by standard method and characterized by SEM, EDX, XRD, BET surface area and pore size analyzer, and FT-IR. The catalyst was screened for its catalytic activity in a model reaction, selective oxidation of cyclohexanol. The only one major product, cyclohexanone 31%, with 99.8% selectivity was obtained. Experimental data was analyzed through different kinetic models and we deduced that the reaction follows Langmuir-Hinshelwood mechanism. The apparent activation energy for the model reaction was calculated as 45 kJ/mole. The catalyst was regenerated several times with same efficiency.

  18. Sulfide Catalysts Supported on Porous Aromatic Frameworks for Naphthalene Hydroprocessing

    Directory of Open Access Journals (Sweden)

    Eduard Karakhanov

    2016-08-01

    Full Text Available This paper describes the first example of using porous aromatic frameworks as supports for sulfide catalysts for the hydrogenation of aromatic hydrocarbons. The synthesis of bimetallic Ni-W and Ni-Mo sulfides was performed by in situ decomposition of [(n-Bu4N]2[Ni(MeS42] (Me = W, Mo complexes, supported on mesoporous aromatic framework with a diamond-like structure. It is shown that the highest naphthalene conversions were achieved in the case of additional sulfidation with sulfur. After the reaction, catalysts were characterized by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. The activity of synthesized catalysts has been studied using naphthalene as a model substrate. The materials used in this study were substantially active in hydrogenation and slightly in hydrocracking of naphthalene.

  19. Progress on the mechanistic understanding of SO2 oxidation catalysts

    DEFF Research Database (Denmark)

    Lapina, Olga B.; Bal'zhinimaev, B.S.; Boghosian, Soghomon

    1999-01-01

    For almost a century vanadium oxide based catalysts have been the dominant materials in industrial processes for sulfuric acid production. A vast body of information leading to fundamental knowledge on the catalytic process was obtained by Academician [G.K. Boreskov, Catalysis in Sulphuric Acid...... Production, Goskhimizdat (in Russian), Moscow, 1954, p. 348]. In recent years these catalysts have also been used to clean flue gases and other SO; containing, industrial off-gases. In spite of the importance and long utilization of these industrial processes, the catalytic active species and the reaction...... mechanism. A multiinstrumental investigation that combine the efforts of four groups from four different countries has been carried out on the model system as well as on working industrial catalysts. Detailed information has been obtained on the complex and on the redox chemistry of vanadium. Based on this...

  20. Perovskite catalysts for oxidative coupling

    Science.gov (United States)

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  1. Organic Synthesis using Clay Catalysts

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Organic Synthesis using Clay Catalysts - Clays for 'Green Chemistry'. Gopalpur Nagendrappa. General Article Volume 7 Issue 1 January 2002 pp 64-77. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Cellulose Depolymerization over Heterogeneous Catalysts.

    Science.gov (United States)

    Shrotri, Abhijit; Kobayashi, Hirokazu; Fukuoka, Atsushi

    2018-02-14

    Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40-50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H 2 gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble

  3. Industrial production of catalyst 5058

    Energy Technology Data Exchange (ETDEWEB)

    von Fuener, W.

    1943-05-03

    Catalyst 5058 was tungsten sulfide, WS/sub 2/. It was produced from tungstic acid, WO/sub 3/.H/sub 2/O, which was itself produced from concentrated tungsten ores. The formation of tungstic acid from the ore proceeded in two or three cycles of dissolving the substance in a base (sodium hydroxide, ammonia, lime), decomposing the result with acid, and the filtering, washing, and drying the resulting impure tungstic acid. The final tungstic acid had only about 0.2% impurities. The formation of tungsten sulfide from the tungstic acid proceeded in several steps. First, the tungstic acid was reacted with ammonium hydroxide to give ammonium tungstate, (NH/sub 4/)/sub 2/WO/sub 4/, which was then saturated with hydrogen sulfide to give ammonium sulfotungstate, (NH/sub 4/)/sub 2/WS/sub 4/, which precipitated out of solution at reduced temperature as monoclinic crystals in an orange-red powder. The saturation itself had to be done at about 70/sup 0/C to prevent formation (and later coprecipitation) of an interfering oxysulfate compound, (NH/sub 4/)/sub 2/WO/sub 2/S/sub 2/. The ammonium sulfotungstate precipitate was filtered out under suction and dried in hydrogen in a steam-heated vessel. The ammonium sulfotungstate was then decomposed in a stream of hydrogen in a furnace, at high temperature, to give tungsten sulfide in a monoclinic crystalline structure, which was different from the usual hexagonal crystal structure of tungsten sulfide. The resulting porous structure of the crystal lattice contributed to the activity of the catalyst. Finally, the catalyst was powdered into a fine powder and then compressed into cylindrical tablets as the form in which the catalyst was introduced into the hydrogenation ovens for use. Regeneration of the catalyst was necessary after 1 or 2 years of use.

  4. Operando chemistry of catalyst surfaces during catalysis.

    Science.gov (United States)

    Dou, Jian; Sun, Zaicheng; Opalade, Adedamola A; Wang, Nan; Fu, Wensheng; Tao, Franklin Feng

    2017-04-03

    Chemistry of a catalyst surface during catalysis is crucial for a fundamental understanding of mechanism of a catalytic reaction performed on the catalyst in the gas or liquid phase. Due to the pressure- or molecular density-dependent entropy contribution of gas or liquid phase of the reactants and the potential formation of a catalyst surface during catalysis different from that observed in an ex situ condition, the characterization of the surface of a catalyst under reaction conditions and during catalysis can be significant and even necessary for understanding the catalytic mechanism at a molecular level. Electron-based analytical techniques are challenging for studying catalyst nanoparticles in the gas or liquid phase although they are necessary techniques to employ. Instrumentation and further development of these electron-based techniques have now made in situ/operando studies of catalysts possible. New insights into the chemistry and structure of catalyst nanoparticles have been uncovered over the last decades. Herein, the origin of the differences between ex situ and in situ/operando studies of catalysts, and the technical challenges faced as well as the corresponding instrumentation and innovations utilized for characterizing catalysts under reaction conditions and during catalysis, are discussed. The restructuring of catalyst surfaces driven by the pressure of reactant(s) around a catalyst, restructuring in reactant(s) driven by reaction temperature and restructuring during catalysis are also reviewed herein. The remaining challenges and possible solutions are briefly discussed.

  5. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William [Univ. of Notre Dame, IN (United States)

    2014-12-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  6. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  7. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass.

    Science.gov (United States)

    Li, Dalin; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2015-02-01

    Biomass gasification is one of the most important technologies for the conversion of biomass to electricity, fuels, and chemicals. The main obstacle preventing the commercial application of this technology is the presence of tar in the product gas. Catalytic reforming of tar appears a promising approach to remove tar and supported metal catalysts are among the most effective catalysts. Nevertheless, improvement of catalytic performances including activity, stability, resistance to coke deposition and aggregation of metal particles, as well as catalyst regenerability is greatly needed. This review focuses on the design and catalysis of supported metal catalysts for the removal of tar in the gasification of biomass. The recent development of metal catalysts including Rh, Ni, Co, and their alloys for steam reforming of biomass tar and tar model compounds is introduced. The role of metal species, support materials, promoters, and their interfaces is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of catalyst properties and operating conditions on hydroprocessing high metals feeds

    Energy Technology Data Exchange (ETDEWEB)

    Pazos, J.M.; Gonzalez, J.C.; Saluzar-Gullen, A.J.

    1983-10-01

    Catalytic hydroprocessing of high metals heavy oils, containing over 480 ppm Ni + V, was carried out in trickle bed pilot units. The analyses of the used catalysts (coke, metals content, and vanadium distribution) were correlated with the deactivation runs. The deactivation by coke is very much dependent on the catalyst physical properties (mean pore diameter), rather than on the chemical properties, and on the nature of the feed. As metals removal is a diffusion-controlled reaction, catalysts and operating conditions that increase the Thiele modulus, e.g., high activity and small pore catalysts, high hydrogen pressures and temperatures, show a stronger deactivation by feed metals. In this case, most of the vanadium was deposited in the outer edge of the catalyst particle. Unconventional vanadium profiles along the reactor length were obtained under certain conditions. Based on these data, a kinetic model was proposed which considers that demetallization is a complex reaction that occurs through a series of consecutive and parallel reactions.

  9. Membrane-electrode structures for molecular catalysts for use in fuel cells and other electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John B.; Zhu, Xiaobing; Hwang, Gi Suk; Martin, Zulima; He, Qinggang; Driscoll, Peter; Weber, Adam; Clark, Kyle

    2016-09-27

    Water soluble catalysts, (M)meso-tetra(N-Methyl-4-Pyridyl)Porphinepentachloride (M=Fe, Co, Mn & Cu), have been incorporated into the polymer binder of oxygen reduction cathodes in membrane electrode assemblies used in PEM fuel cells and found to support encouragingly high current densities. The voltages achieved are low compared to commercial platinum catalysts but entirely consistent with the behavior observed in electroanalytical measurements of the homogeneous catalysts. A model of the dynamics of the electrode action has been developed and validated and this allows the MEA electrodes to be optimized for any chemistry that has been demonstrated in solution. It has been shown that improvements to the performance will come from modifications to the structure of the catalyst combined with optimization of the electrode structure and a well-founded pathway to practical non-platinum group metal catalysts exists.

  10. Catalyst for Carbon Monoxide Oxidation

    Science.gov (United States)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the

  11. Application of 140La and 24Na as intrinsic radiotracers for investigating catalyst dynamics in FCCUs.

    Science.gov (United States)

    Pant, H J; Sharma, V K; Nair, A G C; Tomar, B S; Nathaniel, T N; Reddy, A V R; Singh, Gursharan

    2009-09-01

    Instrumental neutron activation analysis (INAA) of fluid catalytic cracking (FCC) catalyst samples was carried out with an objective to identify activable elements and evaluate its suitability for use as an intrinsic radiotracer for tracing catalyst itself in Fluid Catalytic Cracking Units (FCCUs) used in petroleum refining. Two catalyst samples obtained from two different refineries were analyzed. Twelve different elements were identified in each catalyst sample and their respective concentrations were determined. From the recorded gamma-ray spectra, it was found that lanthanum-140 ((140)La) and sodium-24 ((24)Na) were the predominantly present and suitable radionuclides that could be used as radiotracers for tracing catalyst in FCCUs. Lanthanum being present in much higher concentration forms the major component of the radiotracer after irradiation. Based on the results of INAA, appropriate quantities of the catalyst samples were irradiated with neutrons to produce the desired amount of activity of lanthanum-140 and sodium-24 to be used as radiotracers for tracing the catalyst itself in a pilot as well as an industrial-scale FCCU. The residence time distribution (RTD) of catalyst was measured and analyzed to determine mean residence time (MRT). The axial dispersion model (ADM) was used to simulate the measured RTD data and investigate the degree of axial mixing. The results of the experiments were used to improve the design of pilot-scale FCCU and optimize the performance of the industrial-scale FCCU.

  12. Rare-earth elements in refinery cracking catalysts and fuel oils

    International Nuclear Information System (INIS)

    Kitto, M.

    1992-01-01

    This paper reports that nearly all fluid catalytic-cracking units operating at refineries in the U.S. use zeolite catalysts to produce light-weight hydrocarbons, such as fuel oil and gasoline. These petroleum catalysts, typically containing 1-3% rare-earth elements (REEs), have accounted for an average of 40% of the U.S. consumption of REEs in the last 20 years. In a refinery, as the catalyst becomes deactivated (coked) it enters a regenerator, where the coke is oxidized and the flue gases are emitted to the atmosphere. Although refineries regenerate the catalysts many times, annual REE consumption suggests that portions of these catalysts are both discharged to the atmosphere and lost into refined fuels. Fuel combustion dispenses additional REE-containing catalysts into the atmosphere. It thus appears that the unique REE pattern creates an identifiable marker of aerosols containing the cracking catalysts. This study was conducted to determine trace-element composition of cracking catalysts and fuel oils in an effort to compare their REE patterns with emissions from OFPPs and refineries, and recent atmospheric measurements, as well as provide additional composition data for source identification and apportionments. As emission characterizations are difficult and expensive, results from this study can be applied to receptor modeling

  13. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  14. Application of 140La and 24Na as intrinsic radiotracers for investigating catalyst dynamics in FCCUs

    International Nuclear Information System (INIS)

    Pant, H.J.; Sharma, V.K.; Nair, A.G.C.; Tomar, B.S.; Nathaniel, T.N.; Reddy, A.V.R.; Singh, Gursharan

    2009-01-01

    Instrumental neutron activation analysis (INAA) of fluid catalytic cracking (FCC) catalyst samples was carried out with an objective to identify activable elements and evaluate its suitability for use as an intrinsic radiotracer for tracing catalyst itself in Fluid Catalytic Cracking Units (FCCUs) used in petroleum refining. Two catalyst samples obtained from two different refineries were analyzed. Twelve different elements were identified in each catalyst sample and their respective concentrations were determined. From the recorded gamma-ray spectra, it was found that lanthanum-140 ( 140 La) and sodium-24 ( 24 Na) were the predominantly present and suitable radionuclides that could be used as radiotracers for tracing catalyst in FCCUs. Lanthanum being present in much higher concentration forms the major component of the radiotracer after irradiation. Based on the results of INAA, appropriate quantities of the catalyst samples were irradiated with neutrons to produce the desired amount of activity of lanthanum-140 and sodium-24 to be used as radiotracers for tracing the catalyst itself in a pilot as well as an industrial-scale FCCU. The residence time distribution (RTD) of catalyst was measured and analyzed to determine mean residence time (MRT). The axial dispersion model (ADM) was used to simulate the measured RTD data and investigate the degree of axial mixing. The results of the experiments were used to improve the design of pilot-scale FCCU and optimize the performance of the industrial-scale FCCU.

  15. Modelagem do Processo de Fragmentação de Catalisadores Suportados Durante a Pré-polimerização de Olefinas Modeling of Catalyst Fragmentation During Olefin Pre-polymerizations

    Directory of Open Access Journals (Sweden)

    Douglas M. Merquior

    2002-01-01

    Full Text Available Uma metodologia é proposta para descrever a morfologia das partículas de polímero que são obtidas durante os momentos iniciais da polimerização de olefinas via catálise heterogênea. O método é baseado na análise matemática da capacidade da partícula em liberar a energia mecânica acumulada no seu interior devido à rápida produção de polímero. O balanço entre as quantidades de energia acumulada e liberada é calculado com o auxílio de um modelo dinâmico da reação de pré-polimerização. A combinação da metodologia proposta com o modelo dinâmico permitiu a análise dos mecanismos de fragmentação, indicando a morfologia da partícula de polímero produzida em função do tamanho da partícula e da temperatura do reator.A model-based methodology is proposed for describing the morphology of the polymer particles that are obtained during the very early stages of the olefin polymerization. The method is based on the analysis of the particle capacity to release the amount of energy that is accumulated in its interior during the polymerization, due to the fast polymer production. The balance between the accumulated and released amounts of energy is calculated with the help of a dynamic pre-polymerization reaction model. The combination of the fragmentation criteria and of the polymerization model allows the analysis of the prepolymerization step, indicating the morphology of the final polymer particles as a function of the catalyst particle diameter and reactor temperature.

  16. Biomass gasification bottom ash as a source of CaO catalyst for biodiesel production via transesterification of palm oil

    International Nuclear Information System (INIS)

    Maneerung, Thawatchai; Kawi, Sibudjing; Wang, Chi-Hwa

    2015-01-01

    Highlights: • CaO catalyst was successfully developed from wood gasification bottom ash. • CaCO 3 in bottom ash can be converted to CaO catalyst by calcination. • CaO catalysts derived from bottom ash exhibited high activity towards transesterification. • CaO catalysts derived from bottom ash can be reutilized up to four times. - Abstract: The main aim of this research is to develop environmentally and economically benign heterogeneous catalysts for biodiesel production via transesterification of palm oil. For this propose, calcium oxide (CaO) catalyst has been developed from bottom ash waste arising from woody biomass gasification. Calcium carbonate was found to be the main component in bottom ash and can be transformed into the active CaO catalyst by simple calcination at 800 °C without any chemical treatment. The obtained CaO catalysts exhibit high biodiesel production activity, over 90% yield of methyl ester can be achieved at the optimized reaction condition. Experimental kinetic data fit well the pseudo-first order kinetic model. The activation energy (E a ) of the transesterification reaction was calculated to be 83.9 kJ mol −1 . Moreover, the CaO catalysts derived from woody biomass gasification bottom ash can be reutilized up to four times, offering the efficient and low-cost CaO catalysts which could make biodiesel production process more economic and environmental friendly

  17. Study of the redox properties of bismuth-molybdate and uranium-antimonate catalysts

    International Nuclear Information System (INIS)

    Paz-Pujalt, G.R.

    1985-01-01

    The oxidation/reduction properties of various bismuth molybdates, molybdenum trioxide, bismuth oxide, uranium antimonate, and iron antimonate have been studied in an effort to correlate them to their catalytic properties. The temperature at which γ-phase bismuth molybdate is prereduced plays an important role in the behavior the catalyst exhibits under reoxidation conditions. The overall behavior of γ-phase bismuth molybdate under catalytic conditions may be divided into two temperature regimes: below 360 0 C the catalyst shows a higher rate of propylene adsorption than product desorption, and above 360 0 C where produced desorption is dominant. This temperature is the same at which the Arrhenius plot for the reaction has a break. Several reduction of γ-bismuth molybdate results in the formation of clusters of bismuth metal and crystallites of molybdenum dioxide. This is irreversible. The reoxidation of the bismuth molybdate catalysts shows the presence of two oxygen incorporation temperatures. The ratios of the areas under these peaks are not the same for the three catalysts. Uranium antimonate shows a lesser degree of lattice oxygen participation. During several reduction the catalyst decomposes partially and an excess of antimony is evident. The isothermal reduction profiles of the catalysts permitted their classification into either of two reduction models: (A) α-, β-, γ-phase bismuth molybdates, molybdenum trioxide, bismuth oxide, and the equimolar mixture follow the nucleation model, (B) uranium antimonate, and iron antimonate following the shrinking sphere model. These models have been correlated to certain characteristics of these catalysts. Group A catalysts show a high degree of lattice oxygen participation (migration of bulk oxygen to surface nuclei). In contrast in group B catalysts only a few layers of oxygen are peeled off during catalysis

  18. Polymerization catalyst, production and use

    International Nuclear Information System (INIS)

    Best, S.A.

    1987-01-01

    A process is described for polymerization of ethylene and alpha-olefins having from 1 to 20 carbon atoms or mixtures of ethylene, alpha-olefins and diolefins. The process comprises polymerizing one or more olefins in the presence of the catalyst system comprising (a) an organoaluminum cocatalyst, and (b) a vanadium containing a catalyst component obtained by treating an inert solid support material in an inert solvent with (i) an organoaluminum compound represented by the formula R/sub m/AIX/sub 3-m/, wherein R represents an alkyl group, cycloalkyl group or aryl group having from 1 to 18 carbon atoms, X represents halogen atoms, and 1≤m≤3, (ii) an acyl halide, and (iii) a vanadium compound. Another process is identified wherein the inert solid support material is an inorganic oxide or mixtures of inorganic oxides. Also a process wherein the inorganic oxide is silica is described

  19. Polymerization catalyst, production and use

    International Nuclear Information System (INIS)

    Best, S.A.

    1987-01-01

    A process is described for the polymerization of ethylene and alpha-olefins having from 1 to 2 carbon atoms of mixtures of ethylene, alpha-olefins or diolefins. The process comprises polymerizing one or more olefins in the presence of the catalyst system comprising (A) an organo aluminum cocatalyst, and (B) a vanadium-containing catalyst component obtained by sequentially treating an inert solid support material in an inert solvent with (i) a dihydrocarbyl magnesium compound, (ii) optionally an oxygen-containing compound which is an alcohol, ketone or aldehyde, (iii) a vanadium compound, and (iv) a Group IIIa metal halide. The process as above is described wherein the inert solid support material is an inorganic oxide or mixtures of inorganic oxides

  20. Biodiesel production using heterogeneous catalysts.

    Science.gov (United States)

    Semwal, Surbhi; Arora, Ajay K; Badoni, Rajendra P; Tuli, Deepak K

    2011-02-01

    The production and use of biodiesel has seen a quantum jump in the recent past due to benefits associated with its ability to mitigate greenhouse gas (GHG). There are large number of commercial plants producing biodiesel by transesterification of vegetable oils and fats based on base catalyzed (caustic) homogeneous transesterification of oils. However, homogeneous process needs steps of glycerol separation, washings, very stringent and extremely low limits of Na, K, glycerides and moisture limits in biodiesel. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The present report is review of the progress made in development of heterogeneous catalysts suitable for biodiesel production. This review shall help in selection of suitable catalysts and the optimum conditions for biodiesel production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Investigation of the influence of heated catalyst feeding system on the intensity of temperature-dependent chemical reaction in the fluidized bed apparatus

    Science.gov (United States)

    Soloveva, O. V.; Solovyev, S. A.

    2016-11-01

    A mathematical model was developed and a numerical study of operation parameters of the fluidized bed apparatus for temperature-dependent processes was performed. Fields of catalyst concentration and temperature fields were obtained. The circulation flow analysis was carried out. The effect of the influence of heated catalyst feeder on the efficiency of apparatus heating was analyzed. The change of the circulating gas flows and catalyst structures due to changes in the heated catalyst feeder was shown. The influence of the catalyst fractional composition on the efficiency of apparatus heating was studied.

  2. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Stephen D. [Energy and Environmental; Spies, Kurt A. [Energy and Environmental; Mei, Donghai [Energy and Environmental; Kovarik, Libor [Energy and Environmental; Kutnyakov, Igor [Energy and Environmental; Li, Xiaohong S. [Energy and Environmental; Lebarbier Dagle, Vanessa [Energy and Environmental; Albrecht, Karl O. [Energy and Environmental; Dagle, Robert A. [Energy and Environmental

    2017-09-11

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, and activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.

  3. Degradation forecast for PEMFC cathode-catalysts under cyclic loads

    Science.gov (United States)

    Moein-Jahromi, M.; Kermani, M. J.; Movahed, S.

    2017-08-01

    Degradation of Fuel Cell (FC) components under cyclic loads is one of the biggest bottlenecks in FC commercialization. In this paper, a novel experimental based algorithm is presented to predict the Catalyst Layer (CL) performance loss during cyclic load. The algorithm consists of two models namely Models 1 and 2. The Model 1 calculates the Electro-Chemical Surface Area (ECSA) and agglomerate size (e.g. agglomerate radius, rt,agg) for the catalyst layer under cyclic load. The Model 2 is the already-existing model from our earlier studies that computes catalyst performance with fixed structural parameters. Combinations of these two Models predict the CL performance under an arbitrary cyclic load. A set of parametric/sensitivity studies is performed to investigate the effects of operating parameters on the percentage of Voltage Degradation Rate (VDR%) with rank 1 for the most influential one. Amongst the considered parameters (such as: temperature, relative humidity, pressure, minimum and maximum voltage of the cyclic load), the results show that temperature and pressure have the most and the least influences on the VDR%, respectively. So that, increase of temperature from 60 °C to 80 °C leads to over 20% VDR intensification, the VDR will also reduce 1.41% by increasing pressure from 2 atm to 4 atm.

  4. Organic synthesis with olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1995-12-31

    Over the past nine years, early transition metal catalysts for the ring opening metathesis polymerization of cyclic olefins have been developed. These catalysts are simple organometallic complexes containing metal carbon multiple bonds that in most cases polymerize olefins by a living process. These catalysts have been used to prepare a family of near monodispersed and structurally homogeneous polymers. A series of group VII ROMP catalysts that allow a wide range of functionality to be incorporated into the polymer side chains have been prepared. The most important member of this family of complexes are the bisphosphinedihalo-ruthenium carbene complexes. These polymerization catalysts can also be used in the synthesis of fine chemicals by ring closing (RCM) and vinyl coupling reactions. The availability of the group VII catalysts allow metathesis to be carried out on highly functionalized substrates such as polypeptides and in unusual environments such as in aqueous emulsions.

  5. Optimization of catalyst system reaps economic benefits

    International Nuclear Information System (INIS)

    Le Roy, C.F.; Hanshaw, M.J.; Fischer, S.M.; Malik, T.; Kooiman, R.R.

    1991-01-01

    Champlin Refining and Chemicals Inc. is learning to optimize its catalyst systems for hydrotreating Venezuelan gas oils through a program of research, pilot plant testing, and commercial unit operation. The economic results of this project have been evaluated, and the benefits are most evident in improvements in product yields and qualities. The project has involved six commercial test runs, to date (Runs 10-15), with a seventh run planned. A summary of the different types of catalyst systems used in the test runs, and the catalyst philosophy that developed is given. Runs 10 and 11 used standard CoMo and NiMo catalysts for heavy gas oils hydrotreating. These catalysts had small pore sizes and suffered high deactivation rates because of metals contamination. When it was discovered that metals contamination was a problem, catalyst options were reviewed

  6. Alternative deNOx catalysts and technologies

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    . The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N2. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts...... a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different...... active species distributed on the support were investigated, such as iron, copper and vanadium oxides. However, based on the catalysts performance in the SCR reaction and their resistances towards potassium, the most promising candidate of the formulations studied was the vanadia-loaded catalyst, i.e. V2...

  7. New self-assembled material based on Ru nanoparticles and 4-sulfocalix[4]arene as an efficient and recyclable catalyst for reduction of brilliant yellow azo dye in water: a new model catalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu, Darsi; Pradeep, Chullikkattil P.; Dhir, Abhimanew, E-mail: abhimanew@iitmandi.ac.in [Indian Institute of Technology (India)

    2016-12-15

    New self-assembled material (Ru@SC) with ruthenium nanoparticles (Ru NPs) and 4-sulfocalix[4]arene (SC) is synthesized in water at room temperature. Ru@SC is characterized by thermal gravimetric analysis, FT-IR, powder x-ray diffraction, TEM and SEM analysis. The size of Ru nanoparticles in the self-assembly is approximately 5 nm. The self-assembled material Ru@SC shows an efficient catalytic reduction of toxic ‘brilliant yellow’ (BY) azo dye. The reduced amine products were successfully separated and confirmed by single-crystal XRD, NMR and UV-Vis spectroscopy. Ru@SC showed a better catalytic activity in comparison with commercial catalysts Ru/C (ruthenium on charcoal 5 %) and Pd/C (palladium on charcoal 5 and 10 %). The catalyst also showed a promising recyclability and heterogeneous nature as a catalyst for reduction of ‘BY’ azo dye.

  8. Toward molecular catalysts by computer.

    Science.gov (United States)

    Raugei, Simone; DuBois, Daniel L; Rousseau, Roger; Chen, Shentan; Ho, Ming-Hsun; Bullock, R Morris; Dupuis, Michel

    2015-02-17

    CONSPECTUS: Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to design catalysts by computer. In this Account, we first review how thermodynamic properties such as redox potentials (E°), acidity constants (pKa), and hydride donor abilities (ΔGH(-)) form the basis for a framework for the systematic design of molecular catalysts for reactions that are critical for a secure energy future. We illustrate this for hydrogen evolution and oxidation, oxygen reduction, and CO conversion, and we give references to other instances where it has been successfully applied. The framework is amenable to quantum-chemical calculations and conducive to predictions by computer. We review how density functional theory allows the determination and prediction of these thermodynamic properties within an accuracy relevant to experimentalists (∼0.06 eV for redox potentials, ∼1 pKa unit for pKa values, and 1-2 kcal/mol for hydricities). Computation yielded correlations among thermodynamic properties as they reflect the electron population in the d shell of the metal center, thus substantiating empirical correlations used by experimentalists. These correlations point to the key role of redox potentials and other properties (pKa of the parent aminium for the proton-relay-based catalysts designed in our laboratory) that are easily accessible experimentally or computationally in reducing the parameter space for design. These properties suffice to fully determine free energies maps and profiles associated with catalytic cycles, i.e., the relative energies of intermediates. Their prediction puts us in a position to distinguish a priori between desirable and undesirable pathways and mechanisms. Efficient catalysts have flat free energy profiles that avoid high activation barriers due to low- and high

  9. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.

    Science.gov (United States)

    Gao, Wenpei; Hood, Zachary D; Chi, Miaofang

    2017-04-18

    interfaces and providing deeper insight for fine-tuning and optimizing catalyst properties. Scanning transmission electron microscopy (STEM) has long been a primary characterization technique used for studying nanomaterials because of its exceptional imaging resolution and simultaneous chemical analysis. Over the past decade, advances in STEM, that is, the commercialization of both aberration correctors and monochromators, have significantly improved the spatial and energy resolution. Imaging atomic structures with subangstrom resolution and identifying chemical species with single-atom sensitivity are now routine for STEM. These advancements have greatly benefitted catalytic research. For example, the roles of lattice strain and surface elemental distribution and their effect on catalytic stability and reactivity have been well documented in bimetallic catalysts. In addition, three-dimensional atomic structures revealed by STEM tomography have been integrated in theoretical modeling for predictive catalyst NP design. Recent developments in stable electronic and mechanical devices have opened opportunities to monitor the evolution of catalysts in operando under synthesis and reaction conditions; high-speed direct electron detectors have achieved sub-millisecond time resolutions and allow for rapid structural and chemical changes to be captured. Investigations of catalysts using these latest microscopy techniques have provided new insights into atomic-level catalytic mechanisms. Further integration of new microscopy methods is expected to provide multidimensional descriptions of interfaces under relevant synthesis and reaction conditions. In this Account, we discuss recent insights on understanding catalyst activity, selectivity, and stability using advanced STEM techniques, with an emphasis on how critical interfaces dictate the performance of precious metal-based heterogeneous catalysts. The role of extended interfacial structures, including those between core and shell

  10. Thermally Stable, Latent Olefin Metathesis Catalysts

    OpenAIRE

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.; Grubbs, Robert H.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to i...

  11. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  12. Catalysts for Dehydrogenation of ammonia boranes

    Energy Technology Data Exchange (ETDEWEB)

    Heinekey, Dennis M. [Univ. of Washington, Seattle, WA (United States)

    2009-10-31

    Several effective homogeneous catalysts for the dehydrogenation of amine boranes have been developed. The best catalyst uses an iridium complex, and is capable of dehydrogenating H3NBH3 (AB) and CH3NH2BH3 (MeAB) at comparable rates. Thermodynamic measurements using this catalyst demonstrate that the dehydrogenation of AB and MeAB is substantially exothermic, which has important implications for regeneration.

  13. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  14. Monitoring catalyst flow rate in a FCC cold pilot unity by gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Brito, Marcio F.P.; Netto, Wilson F.S.; Miranda, Marcia V.F.E.S.; Junior, Isacc A.S.; Dantas, Carlos C.; Melo, Silvio B.; Lima, Emerson A.O.

    2013-01-01

    A model for monitoring catalyst mass flow in riser of Fluid Catalytic Cracking - FCC, pilot unity as a function of air flow and solid injection is proposed. The fluidized FCC- catalyst bed system is investigated in an experimental setup the Cold Pilot Unity - CPU by means of gamma ray transmission measurements. Riser in CPU simulates the reactor in FCC process. By automation control air flow is instrumentally measured in riser and the solid injection is manually controlled by valve adjusting. Keeping a constant solid injection, catalyst level at the return column was measured by gamma transmission for several air flow values in riser. The operational condition reached a steady state regime before given to setup a new air flow value. A calibration of catalyst level as a function of air flow in riser is calculated, therefore, a model for solid feed rate is derived. Recent published work evaluates solid concentration in riser of the CPU by means of gamma ray transmission, and a correlation with air velocity is obtained. In this work, the model for solid feed rate was further investigated by carrying out experiments to measure catalyst concentration at the same air flow values. These experiments lead to a model for monitoring catalyst flow in riser as function of solid feed rate and air flow. Simulation with random numbers produced with Matlab software allows to define validation criteria for the model parameters. (author)

  15. New metathesis catalyst bearing chromanyl moieties at the N-heterocyclic carbene ligand

    Directory of Open Access Journals (Sweden)

    Agnieszka Hryniewicka

    2015-12-01

    Full Text Available The synthesis of a new type of Hoveyda–Grubbs 2nd generation catalyst bearing a modified N-heterocyclic carbene ligands is reported. The new catalyst contains an NHC ligand symmetrically substituted with chromanyl moieties. The complex was tested in model CM and RCM reactions. It showed very high activity in CM reactions with electron-deficient α,β-unsaturated compounds even at 0 °C. It was also examined in more demanding systems such as conjugated dienes and polyenes. The catalyst is stable, storable and easy to purify.

  16. Combination of hollow fluorescent carbon and gold nanoparticles: A super-catalyst

    Science.gov (United States)

    Santra, Kakali; Purkayastha, Pradipta

    2018-02-01

    Hollow fluorescent carbon nanoparticles (HFCNs) have been combined with gold nanoparticles (AuNPs) to produce a special catalyst. The catalytic properties of HFCNs and AuNPs were exploited to conceptualize the new catalytic functionality. The AuNP-embedded-HFCNs produced in situ were found to massively enhance the rate of reduction of 4-nitrophenol (a model reaction) in presence of sodium borohydride. Comparison with functioning of other nanoparticulate catalysts on the same reaction proved our product to be an extremely efficient catalyst.

  17. XAFS analysis of unsupported $MoS_{2}$ catalysts prepared by two methods

    CERN Document Server

    Matsubayashi, N; Imamura, M; Yoshimura, Y; Nishijima, A; Calais, C; Geantet, C

    1999-01-01

    Structural analysis by XAFS method was applied to two kinds of unsupported molybdenum disulfide catalysts. Assuming a structural model consisting of crystalline and non-crystalline parts, curve fitting analysis was performed for the $9 catalysts. The residual XAFS after subtraction of the crystalline contribution showed that the structure of the non-crystalline part was significantly different between the catalysts prepared by the two methods. It was suggested that $9 EXAFS would give the average size of the micro-domains, while other methods such as TEM and TPR would give the size of macro- domains. (6 refs).

  18. Catalyst Initiation in the Oscillatory Carbonylation Reaction

    Directory of Open Access Journals (Sweden)

    Katarina Novakovic

    2011-01-01

    Full Text Available Palladium(II iodide is used as a catalyst in the phenylacetylene oxidative carbonylation reaction that has demonstrated oscillatory behaviour in both pH and heat of reaction. In an attempt to extract the reaction network responsible for the oscillatory nature of this reaction, the system was divided into smaller parts and they were studied. This paper focuses on understanding the reaction network responsible for the initial reactions of palladium(II iodide within this oscillatory reaction. The species researched include methanol, palladium(II iodide, potassium iodide, and carbon monoxide. Several chemical reactions were considered and applied in a modelling study. The study revealed the significant role played by traces of water contained in the standard HPLC grade methanol used.

  19. Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming

    Science.gov (United States)

    Kramer, Michelle; McKelvie, Millie; Watson, Matthew

    2018-01-01

    Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).

  20. Interfacial charge distributions in carbon-supported palladium catalysts.

    Science.gov (United States)

    Rao, Radhika G; Blume, Raoul; Hansen, Thomas W; Fuentes, Erika; Dreyer, Kathleen; Moldovan, Simona; Ersen, Ovidiu; Hibbitts, David D; Chabal, Yves J; Schlögl, Robert; Tessonnier, Jean-Philippe

    2017-08-24

    Controlling the charge transfer between a semiconducting catalyst carrier and the supported transition metal active phase represents an elite strategy for fine turning the electronic structure of the catalytic centers, hence their activity and selectivity. These phenomena have been theoretically and experimentally elucidated for oxide supports but remain poorly understood for carbons due to their complex nanoscale structure. Here, we combine advanced spectroscopy and microscopy on model Pd/C samples to decouple the electronic and surface chemistry effects on catalytic performance. Our investigations reveal trends between the charge distribution at the palladium-carbon interface and the metal's selectivity for hydrogenation of multifunctional chemicals. These electronic effects are strong enough to affect the performance of large (~5 nm) Pd particles. Our results also demonstrate how simple thermal treatments can be used to tune the interfacial charge distribution, hereby providing a strategy to rationally design carbon-supported catalysts.Control over charge transfer in carbon-supported metal nanoparticles is essential for designing new catalysts. Here, the authors show that thermal treatments effectively tune the interfacial charge distribution in carbon-supported palladium catalysts with consequential changes in hydrogenation performance.

  1. Catalytic cracking of iso-hexene over sapo-34 catalyst

    International Nuclear Information System (INIS)

    Nawaz, Z.; Shu, Q.

    2009-01-01

    The catalytic cracking of model feed compound, iso-hexene (2-methyl-1-pentene) was experimentally studied over 100% pure SAPO-34 zeolite catalyst. The critical focus was given to obtain maximum propylene selectivity. The product distributions were analyzed at temperature between 450-600 degree C. time-on-stream (TOS) from 1 to 5 min. and at WHSV = 7.9 h/sub -1/ The reaction behavior was quantified on both direct and indirect carbenium ion mechanisms owing to catalyst's small pore diameter with respect to 2-methyl-l-pentene kinetic diameter. The propylene yield and selectivity obtained was 41.2% and 43.1% respectively. with higher overall olefins selectivity 90.3%. The small pore size and week surface acid sites of 1000 percent pure SAPO-34 catalyst were found to be suitable for light olefins production and eliminate chances of bimolecular reactions. It was observed that both conversion and selectivity were strongly effected by TOS, as coke precursors become dominant and deactivate catalyst at higher TOS. (author)

  2. Deactivation by carbon of iron catalysts for indirect liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, C.H.

    1990-10-11

    This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for Fischer-Tropsch (FT) synthesis, the objectives of which are: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; model the rates of deactivation of the same catalysts in fixed-bed reactors. During the thirteenth quarter design of software for a computer-automated reactor system to be used in the kinetic and deactivation studies was continued. Further progress was made toward the completion of the control language, control routines, and software for operating this system. Progress was also made on the testing of the system hardware and software. H{sub 2} chemisorption capacities and activity selectivity data were also measured for three iron catalysts promoted with 1% alumina. 47 refs., 8 figs., 1 tab.

  3. Meiotic behaviour in three interspecific three-way hybrids between ...

    Indian Academy of Sciences (India)

    Chromosome paired predominantly as multivalents suggesting that genetic recombination and introgression of specific target genes from B. brizantha into B. ruziziensis can be expected. Arrangement of parental genomes in distinct metaphase plates was observed in H27 and H34, which have different male genitors.

  4. Three Ways to Link Merge with Hierarchical Concept-Combination

    Directory of Open Access Journals (Sweden)

    Chris Thornton

    2016-11-01

    Full Text Available In the Minimalist Program, language competence is seen to stem from a fundamental ability to construct hierarchical structure, an operation dubbed ‘Merge’. This raises the problem of how to view hierarchical concept-combination. This is a conceptual operation which also builds hierarchical structure. We can conceive of a garden that consists of a lawn and a flower-bed, for example, or a salad consisting of lettuce, fennel and rocket, or a crew consisting of a pilot and engineer. In such cases, concepts are put together in a way that makes one the accommodating element with respect to the others taken in combination. The accommodating element becomes the root of a hierarchical unit. Since this unit is itself a concept, the operation is inherently recursive. Does this mean the mind has two independent systems of hierarchical construction? Or is some form of integration more likely? Following a detailed examination of the operations involved, this paper shows there are three main ways in which Merge might be linked to hierarchical concept-combination. Also examined are the architectural implications that arise in each case.

  5. Behaviour and beyond: three ways to examine dog cognitive processing.

    OpenAIRE

    Howell, Tiffani Josey

    2017-01-01

    Dog cognition research relies heavily on behavioural approaches in order to determine the nature and extent of dog cognitive abilities. These behavioural data have greatly advanced current understanding of dog cognitive abilities. While there has been much research exploring how dogs respond in paradigms which require cooperation or communication with humans, fewer studies have explored their capabilities in non-social cognitive domains. More research of this kind would provide a more compreh...

  6. Empathy: Implications of Three Ways of Knowing in Counseling

    Science.gov (United States)

    Clark, Arthur J.

    2004-01-01

    From a humanistic orientation, Carl Rogers (1964) described 3 ways of knowing with reference to empathic understanding: subjective, interpersonal, and objective. In the context of a threefold perspective of knowledge, the author expands on Rogers's conception of empathy. As a consequence of a conceptual change in the direction of empathy,…

  7. Meiotic behaviour in three interspecific three-way hybrids between ...

    Indian Academy of Sciences (India)

    development and which can be successfully used in the breeding. Hybrids with high frequency of meiotic abnormalities can seriously compromise seed production, a key trait in assuring adoption of a new apomictic cultivar of Brachiaria for pasture formation. [Adamowski E. V., Pagliarini M. S. and Valle C. B. 2008 Meiotic ...

  8. Introduction: Integration as a three-way process approach?

    NARCIS (Netherlands)

    Garcés-Mascareñas, B.; Penninx, R.; Garcés-Mascareñas, B.; Penninx, R.

    2016-01-01

    This chapter introduces the topic of this volume, which is the recent departure from viewing integration as a strictly two-way process (between migrants and the receiving society) to acknowledge the potential role that countries of origin might play in support of the integration process. It traces

  9. New learning : three ways to learn in a new balance

    NARCIS (Netherlands)

    Simons, P.R.J.

    2000-01-01

    Because people are learning all the time, we need criteria that can help us distinguish between better and worse kinds of learning. Organizations and societies as well as the psychology of learning ask for new learning outcomes, new learning processes and new forms of instruction. New learning

  10. Bifunctional cobalt F-T catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  11. Nitrogen oxides storage catalysts containing cobalt

    Science.gov (United States)

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  12. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    , we report a more detailed catalytic study aimed at optimizing the catalyst performance. For this purpose, two series of mono and bimetallic Ni-Fe catalysts supported on MgAl2O4 and Al2O3, respectively, were prepared. All catalysts were tested in the CO methanation reaction in the temperature interval...

  13. Selective oxidation of methyl {alpha}-D-glucopyranoside with oxygen over supported platinum: Kinetic modeling in the presence of deactivation by overoxidation of the catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)

    1997-09-01

    The selective oxidation of alcohols and carbohydrates with molecular oxygen in aqueous media is an industrial and environmental attractive process. A kinetic model is presented, which describes the platinum-catalyzed selective oxidation of methyl {alpha}-D-glucopyranoside to sodium methyl {alpha}-D-glucuronate with molecular oxygen in the presence of deactivation by overoxidation. Overoxidation is completely reversible and most adequately described by a reversible transformation of oxygen adatoms into inactive subsurface oxygen. A clear distinction is made between the rapid establishment of the steady-state degree of coverage by the reaction intermediates at the platinum surface and the much slower reversible process of overoxidation. This clear distinction is reflected in the rate equation, which can be written as the product of an initial rate and a deactivation function. The deactivation function is given as a function of the degree of coverage by inactive subsurface oxygen. The rate-determining step in the selective oxidation consists of the reaction between dissociatively chemisorbed oxygen and physisorbed methyl {alpha}-D-glucopyranoside. The corresponding standard activation entropy and enthalpy amount to respectively {minus}111 {+-} 12 J/mol K and 51 {+-} 4 kJ/mol. The standard reaction entropy for the transformation of oxygen atoms into subsurface oxygen amounts to {minus}35 {+-} 16 J/mol K and the standard reaction enthalpy to {minus}36 {+-} 15 kJ/mol.

  14. A new green process for biodiesel production from waste oils via catalytic distillation using a solid acid catalyst – Modeling, economic and environmental analysis

    Directory of Open Access Journals (Sweden)

    Aashish Gaurav

    2016-04-01

    Full Text Available The challenges in the chemical processing industry today are environmental concerns, energy and capital costs. Catalytic distillation (CD is a green reactor technology which combines a catalytic reaction and separation via distillation in the same distillation column. Utilization of CD in chemical process development could result in capital and energy savings, and the reduction of greenhouse gases. The efficacy of CD and the economic merits, in terms of energy and equipment savings, brought by CD for the production of biodiesel from waste oil such as yellow grease is quantified. Process flow sheets for industrial routes for an annual production of 10 million gallon ASTM purity biodiesel in a conventional process (reactor followed by distillation and CD configurations are modeled in Aspen Plus. Material and energy flows, as well as sized unit operation blocks, are used to conduct an economic assessment of each process. Total capital investment, total operating and utility costs are calculated for each process. The waste oil feedstock is yellow grease containing both triglyceride and free fatty acid. Both transesterification and esterification reactions are considered in the process simulations. Results show a significant advantage of CD compared to a conventional biodiesel processes due to the reduction of distillation columns, waste streams and greenhouse gas emissions. The significant savings in capital and energy costs together with the reduction of greenhouse gases demonstrate that process intensification via CD is a feasible and new green process for the biodiesel production from waste oils. Keywords: Yellow grease, Catalytic distillation, Aspen plus economic analyzer, Process intensification

  15. Lean burn versus stoichiometric operation with EGR and 3-way catalyst of an engine fueled with natural gas and hydrogen enriched natural gas

    OpenAIRE

    Saanum, Inge; Bysveen, Marie; Tunestål, Per; Johansson, Bengt

    2007-01-01

    Engine tests have been performed on a 9.6 liter spark-ignited engine fueled by natural gas and a mixture of 25/75 hydrogen/natural gas by volume. The scope of the work was to test two strategies for low emissions of harmful gases; lean burn operation and stoichiometric operation with EGR and a three-way catalyst. Most gas engines today, used in city buses, utilize the lean burn approach to achieve low NOx formation and high thermal efficiency. However, the lean burn appro...

  16. Decomposition kinetics of ammonia in gaseous stream by a nanoscale copper-cerium bimetallic catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2008-01-15

    This study performance is to examine the kinetics over nanoscale copper-cerium bimetallic catalyst under selective catalytic oxidation (SCO) of ammonia to N(2) in a tubular fixed-bed reactor (TFBR) at temperatures from 150 to 400 degrees C in the presence of oxygen. The nanoscale copper-cerium bimetallic catalyst was prepared by co-precipitation with Cu(NO(3))(2) and Ce(NO(3))(3) at molar ratio of 6:4. Experimental results showed that the catalyst with transmission electron microscopy (TEM) revealed that copper and cerium are well dispersed and catalyst in the form of nanometer-sized particles. Moreover, the kinetic behavior of NH(3) oxidation with catalysis can be accounted by using the rate expression of the Langmuir-Hinshelwood type kinetic model. Kinetic parameters are also developed on the basis of the differential reactor data. Also, experimental results are compared with those of the model predicted.

  17. Use of Pillared Clay-Based Catalysts for Wastewater Treatment Through Fenton-Like Processes

    Science.gov (United States)

    Herney-Ramírez, J.; Madeira, Luis M.

    Clays, both natural and physical-chemically modified, are attractive materials for the preparation of supported catalysts. In this chapter, a review is made regarding the use of pillared interlayered clays (PILCs) in heterogeneous Fenton-like advanced oxidation processes. Their applications in pollutants degradation is summarized, with particular emphasis on the effect of the main operating conditions (e.g., initial H2O2 or parent compound concentration, catalyst load, pH, or temperature) on oxidation efficiency. Special attention is also given to the type of catalyst or precursor used, to the importance and advantages of the heterogeneous versus homogeneous process, and to significant aspects like catalyst stability. Among the technological issues that are of concern, the importance of using continuous flow reactors (e.g., fixed-bed) is discussed. Finally, some mechanistic studies are reviewed as well as modeling works, based on phenomenological or semi-empiric models (e.g., using statistic tools like design of experiments).

  18. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting.

    Science.gov (United States)

    Lindgren, Mikaela; Panas, Itai

    2014-01-01

    Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE), where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions.

  19. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

    Directory of Open Access Journals (Sweden)

    Mikaela Lindgren

    2014-02-01

    Full Text Available Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE, where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions.

  20. Application of La-ZSM-5 Coated Silicon Carbide Foam Catalyst for Toluene Methylation with Methanol

    Directory of Open Access Journals (Sweden)

    Debarpita Ghosal

    2015-07-01

    Full Text Available The performance of toluene methylation reaction was studied on H-ZSM-5 catalyst modified with La, Ce and Nb at different percentage loading. It was found that 10% metal loading produced the best performance in the reaction in terms of toluene conversion. The catalyst was coated on silicon carbide foam support which showed better conversion than the pelleted catalyst. Again, among the treated and untreated H-ZSM-5, the La-ZSM-5 catalyst is chosen for the reaction for its highest selectivity towards xylene, the main product. All catalysts were characterized in terms of surface properties, SEM, XRD and NH3-TPD. Kinetic study was done on La-ZSM-5 catalyst with 10% loading. In this kineticstudy, Langmuir Hinshelwood kinetic model with surface reaction as rate controlling step was selected as the rate equation. The activation energy was found to be 47 kJ/mol. © 2015 BCREC UNDIP. All rights reserved. Received: 9th December 2014; Revised: 27th April 2015; Accepted: 29th April 2015  How to Cite: Ghosal, D., Basu, J.K., Sengupta, S. (2015. Application of La-ZSM-5 Coated Silicon Carbide Foam Catalyst for Toluene Methylation with Methanol. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 201-209. (doi:10.9767/bcrec.10.2.7872.201-209 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7872.201-209